lcm.cpp revision 5990:b0133e4187d3
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/c2compiler.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/machnode.hpp"
32#include "opto/runtime.hpp"
33#ifdef TARGET_ARCH_MODEL_x86_32
34# include "adfiles/ad_x86_32.hpp"
35#endif
36#ifdef TARGET_ARCH_MODEL_x86_64
37# include "adfiles/ad_x86_64.hpp"
38#endif
39#ifdef TARGET_ARCH_MODEL_sparc
40# include "adfiles/ad_sparc.hpp"
41#endif
42#ifdef TARGET_ARCH_MODEL_zero
43# include "adfiles/ad_zero.hpp"
44#endif
45#ifdef TARGET_ARCH_MODEL_arm
46# include "adfiles/ad_arm.hpp"
47#endif
48#ifdef TARGET_ARCH_MODEL_ppc_32
49# include "adfiles/ad_ppc_32.hpp"
50#endif
51#ifdef TARGET_ARCH_MODEL_ppc_64
52# include "adfiles/ad_ppc_64.hpp"
53#endif
54
55// Optimization - Graph Style
56
57// Check whether val is not-null-decoded compressed oop,
58// i.e. will grab into the base of the heap if it represents NULL.
59static bool accesses_heap_base_zone(Node *val) {
60  if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
61    if (val && val->is_Mach()) {
62      if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
63        // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
64        // decode NULL to point to the heap base (Decode_NN).
65        if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
66          return true;
67        }
68      }
69      // Must recognize load operation with Decode matched in memory operand.
70      // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
71      // returns true everywhere else. On PPC, no such memory operands
72      // exist, therefore we did not yet implement a check for such operands.
73      NOT_AIX(Unimplemented());
74    }
75  }
76  return false;
77}
78
79static bool needs_explicit_null_check_for_read(Node *val) {
80  // On some OSes (AIX) the page at address 0 is only write protected.
81  // If so, only Store operations will trap.
82  if (os::zero_page_read_protected()) {
83    return false;  // Implicit null check will work.
84  }
85  // Also a read accessing the base of a heap-based compressed heap will trap.
86  if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
87      Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
88    return false;
89  }
90
91  return true;
92}
93
94//------------------------------implicit_null_check----------------------------
95// Detect implicit-null-check opportunities.  Basically, find NULL checks
96// with suitable memory ops nearby.  Use the memory op to do the NULL check.
97// I can generate a memory op if there is not one nearby.
98// The proj is the control projection for the not-null case.
99// The val is the pointer being checked for nullness or
100// decodeHeapOop_not_null node if it did not fold into address.
101void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
102  // Assume if null check need for 0 offset then always needed
103  // Intel solaris doesn't support any null checks yet and no
104  // mechanism exists (yet) to set the switches at an os_cpu level
105  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
106
107  // Make sure the ptr-is-null path appears to be uncommon!
108  float f = block->end()->as_MachIf()->_prob;
109  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
110  if( f > PROB_UNLIKELY_MAG(4) ) return;
111
112  uint bidx = 0;                // Capture index of value into memop
113  bool was_store;               // Memory op is a store op
114
115  // Get the successor block for if the test ptr is non-null
116  Block* not_null_block;  // this one goes with the proj
117  Block* null_block;
118  if (block->get_node(block->number_of_nodes()-1) == proj) {
119    null_block     = block->_succs[0];
120    not_null_block = block->_succs[1];
121  } else {
122    assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
123    not_null_block = block->_succs[0];
124    null_block     = block->_succs[1];
125  }
126  while (null_block->is_Empty() == Block::empty_with_goto) {
127    null_block     = null_block->_succs[0];
128  }
129
130  // Search the exception block for an uncommon trap.
131  // (See Parse::do_if and Parse::do_ifnull for the reason
132  // we need an uncommon trap.  Briefly, we need a way to
133  // detect failure of this optimization, as in 6366351.)
134  {
135    bool found_trap = false;
136    for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
137      Node* nn = null_block->get_node(i1);
138      if (nn->is_MachCall() &&
139          nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
140        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
141        if (trtype->isa_int() && trtype->is_int()->is_con()) {
142          jint tr_con = trtype->is_int()->get_con();
143          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
144          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
145          assert((int)reason < (int)BitsPerInt, "recode bit map");
146          if (is_set_nth_bit(allowed_reasons, (int) reason)
147              && action != Deoptimization::Action_none) {
148            // This uncommon trap is sure to recompile, eventually.
149            // When that happens, C->too_many_traps will prevent
150            // this transformation from happening again.
151            found_trap = true;
152          }
153        }
154        break;
155      }
156    }
157    if (!found_trap) {
158      // We did not find an uncommon trap.
159      return;
160    }
161  }
162
163  // Check for decodeHeapOop_not_null node which did not fold into address
164  bool is_decoden = ((intptr_t)val) & 1;
165  val = (Node*)(((intptr_t)val) & ~1);
166
167  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
168         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
169
170  // Search the successor block for a load or store who's base value is also
171  // the tested value.  There may be several.
172  Node_List *out = new Node_List(Thread::current()->resource_area());
173  MachNode *best = NULL;        // Best found so far
174  for (DUIterator i = val->outs(); val->has_out(i); i++) {
175    Node *m = val->out(i);
176    if( !m->is_Mach() ) continue;
177    MachNode *mach = m->as_Mach();
178    was_store = false;
179    int iop = mach->ideal_Opcode();
180    switch( iop ) {
181    case Op_LoadB:
182    case Op_LoadUB:
183    case Op_LoadUS:
184    case Op_LoadD:
185    case Op_LoadF:
186    case Op_LoadI:
187    case Op_LoadL:
188    case Op_LoadP:
189    case Op_LoadN:
190    case Op_LoadS:
191    case Op_LoadKlass:
192    case Op_LoadNKlass:
193    case Op_LoadRange:
194    case Op_LoadD_unaligned:
195    case Op_LoadL_unaligned:
196      assert(mach->in(2) == val, "should be address");
197      break;
198    case Op_StoreB:
199    case Op_StoreC:
200    case Op_StoreCM:
201    case Op_StoreD:
202    case Op_StoreF:
203    case Op_StoreI:
204    case Op_StoreL:
205    case Op_StoreP:
206    case Op_StoreN:
207    case Op_StoreNKlass:
208      was_store = true;         // Memory op is a store op
209      // Stores will have their address in slot 2 (memory in slot 1).
210      // If the value being nul-checked is in another slot, it means we
211      // are storing the checked value, which does NOT check the value!
212      if( mach->in(2) != val ) continue;
213      break;                    // Found a memory op?
214    case Op_StrComp:
215    case Op_StrEquals:
216    case Op_StrIndexOf:
217    case Op_AryEq:
218    case Op_EncodeISOArray:
219      // Not a legit memory op for implicit null check regardless of
220      // embedded loads
221      continue;
222    default:                    // Also check for embedded loads
223      if( !mach->needs_anti_dependence_check() )
224        continue;               // Not an memory op; skip it
225      if( must_clone[iop] ) {
226        // Do not move nodes which produce flags because
227        // RA will try to clone it to place near branch and
228        // it will cause recompilation, see clone_node().
229        continue;
230      }
231      {
232        // Check that value is used in memory address in
233        // instructions with embedded load (CmpP val1,(val2+off)).
234        Node* base;
235        Node* index;
236        const MachOper* oper = mach->memory_inputs(base, index);
237        if (oper == NULL || oper == (MachOper*)-1) {
238          continue;             // Not an memory op; skip it
239        }
240        if (val == base ||
241            val == index && val->bottom_type()->isa_narrowoop()) {
242          break;                // Found it
243        } else {
244          continue;             // Skip it
245        }
246      }
247      break;
248    }
249
250    // On some OSes (AIX) the page at address 0 is only write protected.
251    // If so, only Store operations will trap.
252    // But a read accessing the base of a heap-based compressed heap will trap.
253    if (!was_store && needs_explicit_null_check_for_read(val)) {
254      continue;
255    }
256
257    // check if the offset is not too high for implicit exception
258    {
259      intptr_t offset = 0;
260      const TypePtr *adr_type = NULL;  // Do not need this return value here
261      const Node* base = mach->get_base_and_disp(offset, adr_type);
262      if (base == NULL || base == NodeSentinel) {
263        // Narrow oop address doesn't have base, only index
264        if( val->bottom_type()->isa_narrowoop() &&
265            MacroAssembler::needs_explicit_null_check(offset) )
266          continue;             // Give up if offset is beyond page size
267        // cannot reason about it; is probably not implicit null exception
268      } else {
269        const TypePtr* tptr;
270        if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
271                                  Universe::narrow_klass_shift() == 0)) {
272          // 32-bits narrow oop can be the base of address expressions
273          tptr = base->get_ptr_type();
274        } else {
275          // only regular oops are expected here
276          tptr = base->bottom_type()->is_ptr();
277        }
278        // Give up if offset is not a compile-time constant
279        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
280          continue;
281        offset += tptr->_offset; // correct if base is offseted
282        if( MacroAssembler::needs_explicit_null_check(offset) )
283          continue;             // Give up is reference is beyond 4K page size
284      }
285    }
286
287    // Check ctrl input to see if the null-check dominates the memory op
288    Block *cb = get_block_for_node(mach);
289    cb = cb->_idom;             // Always hoist at least 1 block
290    if( !was_store ) {          // Stores can be hoisted only one block
291      while( cb->_dom_depth > (block->_dom_depth + 1))
292        cb = cb->_idom;         // Hoist loads as far as we want
293      // The non-null-block should dominate the memory op, too. Live
294      // range spilling will insert a spill in the non-null-block if it is
295      // needs to spill the memory op for an implicit null check.
296      if (cb->_dom_depth == (block->_dom_depth + 1)) {
297        if (cb != not_null_block) continue;
298        cb = cb->_idom;
299      }
300    }
301    if( cb != block ) continue;
302
303    // Found a memory user; see if it can be hoisted to check-block
304    uint vidx = 0;              // Capture index of value into memop
305    uint j;
306    for( j = mach->req()-1; j > 0; j-- ) {
307      if( mach->in(j) == val ) {
308        vidx = j;
309        // Ignore DecodeN val which could be hoisted to where needed.
310        if( is_decoden ) continue;
311      }
312      // Block of memory-op input
313      Block *inb = get_block_for_node(mach->in(j));
314      Block *b = block;          // Start from nul check
315      while( b != inb && b->_dom_depth > inb->_dom_depth )
316        b = b->_idom;           // search upwards for input
317      // See if input dominates null check
318      if( b != inb )
319        break;
320    }
321    if( j > 0 )
322      continue;
323    Block *mb = get_block_for_node(mach);
324    // Hoisting stores requires more checks for the anti-dependence case.
325    // Give up hoisting if we have to move the store past any load.
326    if( was_store ) {
327      Block *b = mb;            // Start searching here for a local load
328      // mach use (faulting) trying to hoist
329      // n might be blocker to hoisting
330      while( b != block ) {
331        uint k;
332        for( k = 1; k < b->number_of_nodes(); k++ ) {
333          Node *n = b->get_node(k);
334          if( n->needs_anti_dependence_check() &&
335              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
336            break;              // Found anti-dependent load
337        }
338        if( k < b->number_of_nodes() )
339          break;                // Found anti-dependent load
340        // Make sure control does not do a merge (would have to check allpaths)
341        if( b->num_preds() != 2 ) break;
342        b = get_block_for_node(b->pred(1)); // Move up to predecessor block
343      }
344      if( b != block ) continue;
345    }
346
347    // Make sure this memory op is not already being used for a NullCheck
348    Node *e = mb->end();
349    if( e->is_MachNullCheck() && e->in(1) == mach )
350      continue;                 // Already being used as a NULL check
351
352    // Found a candidate!  Pick one with least dom depth - the highest
353    // in the dom tree should be closest to the null check.
354    if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
355      best = mach;
356      bidx = vidx;
357    }
358  }
359  // No candidate!
360  if (best == NULL) {
361    return;
362  }
363
364  // ---- Found an implicit null check
365  extern int implicit_null_checks;
366  implicit_null_checks++;
367
368  if( is_decoden ) {
369    // Check if we need to hoist decodeHeapOop_not_null first.
370    Block *valb = get_block_for_node(val);
371    if( block != valb && block->_dom_depth < valb->_dom_depth ) {
372      // Hoist it up to the end of the test block.
373      valb->find_remove(val);
374      block->add_inst(val);
375      map_node_to_block(val, block);
376      // DecodeN on x86 may kill flags. Check for flag-killing projections
377      // that also need to be hoisted.
378      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
379        Node* n = val->fast_out(j);
380        if( n->is_MachProj() ) {
381          get_block_for_node(n)->find_remove(n);
382          block->add_inst(n);
383          map_node_to_block(n, block);
384        }
385      }
386    }
387  }
388  // Hoist the memory candidate up to the end of the test block.
389  Block *old_block = get_block_for_node(best);
390  old_block->find_remove(best);
391  block->add_inst(best);
392  map_node_to_block(best, block);
393
394  // Move the control dependence
395  if (best->in(0) && best->in(0) == old_block->head())
396    best->set_req(0, block->head());
397
398  // Check for flag-killing projections that also need to be hoisted
399  // Should be DU safe because no edge updates.
400  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
401    Node* n = best->fast_out(j);
402    if( n->is_MachProj() ) {
403      get_block_for_node(n)->find_remove(n);
404      block->add_inst(n);
405      map_node_to_block(n, block);
406    }
407  }
408
409  // proj==Op_True --> ne test; proj==Op_False --> eq test.
410  // One of two graph shapes got matched:
411  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
412  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
413  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
414  // then we are replacing a 'ne' test with a 'eq' NULL check test.
415  // We need to flip the projections to keep the same semantics.
416  if( proj->Opcode() == Op_IfTrue ) {
417    // Swap order of projections in basic block to swap branch targets
418    Node *tmp1 = block->get_node(block->end_idx()+1);
419    Node *tmp2 = block->get_node(block->end_idx()+2);
420    block->map_node(tmp2, block->end_idx()+1);
421    block->map_node(tmp1, block->end_idx()+2);
422    Node *tmp = new (C) Node(C->top()); // Use not NULL input
423    tmp1->replace_by(tmp);
424    tmp2->replace_by(tmp1);
425    tmp->replace_by(tmp2);
426    tmp->destruct();
427  }
428
429  // Remove the existing null check; use a new implicit null check instead.
430  // Since schedule-local needs precise def-use info, we need to correct
431  // it as well.
432  Node *old_tst = proj->in(0);
433  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
434  block->map_node(nul_chk, block->end_idx());
435  map_node_to_block(nul_chk, block);
436  // Redirect users of old_test to nul_chk
437  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
438    old_tst->last_out(i2)->set_req(0, nul_chk);
439  // Clean-up any dead code
440  for (uint i3 = 0; i3 < old_tst->req(); i3++)
441    old_tst->set_req(i3, NULL);
442
443  latency_from_uses(nul_chk);
444  latency_from_uses(best);
445}
446
447
448//------------------------------select-----------------------------------------
449// Select a nice fellow from the worklist to schedule next. If there is only
450// one choice, then use it. Projections take top priority for correctness
451// reasons - if I see a projection, then it is next.  There are a number of
452// other special cases, for instructions that consume condition codes, et al.
453// These are chosen immediately. Some instructions are required to immediately
454// precede the last instruction in the block, and these are taken last. Of the
455// remaining cases (most), choose the instruction with the greatest latency
456// (that is, the most number of pseudo-cycles required to the end of the
457// routine). If there is a tie, choose the instruction with the most inputs.
458Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
459
460  // If only a single entry on the stack, use it
461  uint cnt = worklist.size();
462  if (cnt == 1) {
463    Node *n = worklist[0];
464    worklist.map(0,worklist.pop());
465    return n;
466  }
467
468  uint choice  = 0; // Bigger is most important
469  uint latency = 0; // Bigger is scheduled first
470  uint score   = 0; // Bigger is better
471  int idx = -1;     // Index in worklist
472  int cand_cnt = 0; // Candidate count
473
474  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
475    // Order in worklist is used to break ties.
476    // See caller for how this is used to delay scheduling
477    // of induction variable increments to after the other
478    // uses of the phi are scheduled.
479    Node *n = worklist[i];      // Get Node on worklist
480
481    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
482    if( n->is_Proj() ||         // Projections always win
483        n->Opcode()== Op_Con || // So does constant 'Top'
484        iop == Op_CreateEx ||   // Create-exception must start block
485        iop == Op_CheckCastPP
486        ) {
487      worklist.map(i,worklist.pop());
488      return n;
489    }
490
491    // Final call in a block must be adjacent to 'catch'
492    Node *e = block->end();
493    if( e->is_Catch() && e->in(0)->in(0) == n )
494      continue;
495
496    // Memory op for an implicit null check has to be at the end of the block
497    if( e->is_MachNullCheck() && e->in(1) == n )
498      continue;
499
500    // Schedule IV increment last.
501    if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
502        e->in(1)->in(1) == n && n->is_iteratively_computed())
503      continue;
504
505    uint n_choice  = 2;
506
507    // See if this instruction is consumed by a branch. If so, then (as the
508    // branch is the last instruction in the basic block) force it to the
509    // end of the basic block
510    if ( must_clone[iop] ) {
511      // See if any use is a branch
512      bool found_machif = false;
513
514      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
515        Node* use = n->fast_out(j);
516
517        // The use is a conditional branch, make them adjacent
518        if (use->is_MachIf() && get_block_for_node(use) == block) {
519          found_machif = true;
520          break;
521        }
522
523        // For nodes that produce a FlagsProj, make the node adjacent to the
524        // use of the FlagsProj
525        if (use->is_FlagsProj() && get_block_for_node(use) == block) {
526          found_machif = true;
527          break;
528        }
529
530        // More than this instruction pending for successor to be ready,
531        // don't choose this if other opportunities are ready
532        if (ready_cnt.at(use->_idx) > 1)
533          n_choice = 1;
534      }
535
536      // loop terminated, prefer not to use this instruction
537      if (found_machif)
538        continue;
539    }
540
541    // See if this has a predecessor that is "must_clone", i.e. sets the
542    // condition code. If so, choose this first
543    for (uint j = 0; j < n->req() ; j++) {
544      Node *inn = n->in(j);
545      if (inn) {
546        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
547          n_choice = 3;
548          break;
549        }
550      }
551    }
552
553    // MachTemps should be scheduled last so they are near their uses
554    if (n->is_MachTemp()) {
555      n_choice = 1;
556    }
557
558    uint n_latency = get_latency_for_node(n);
559    uint n_score   = n->req();   // Many inputs get high score to break ties
560
561    // Keep best latency found
562    cand_cnt++;
563    if (choice < n_choice ||
564        (choice == n_choice &&
565         ((StressLCM && Compile::randomized_select(cand_cnt)) ||
566          (!StressLCM &&
567           (latency < n_latency ||
568            (latency == n_latency &&
569             (score < n_score))))))) {
570      choice  = n_choice;
571      latency = n_latency;
572      score   = n_score;
573      idx     = i;               // Also keep index in worklist
574    }
575  } // End of for all ready nodes in worklist
576
577  assert(idx >= 0, "index should be set");
578  Node *n = worklist[(uint)idx];      // Get the winner
579
580  worklist.map((uint)idx, worklist.pop());     // Compress worklist
581  return n;
582}
583
584
585//------------------------------set_next_call----------------------------------
586void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
587  if( next_call.test_set(n->_idx) ) return;
588  for( uint i=0; i<n->len(); i++ ) {
589    Node *m = n->in(i);
590    if( !m ) continue;  // must see all nodes in block that precede call
591    if (get_block_for_node(m) == block) {
592      set_next_call(block, m, next_call);
593    }
594  }
595}
596
597//------------------------------needed_for_next_call---------------------------
598// Set the flag 'next_call' for each Node that is needed for the next call to
599// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
600// next subroutine call get priority - basically it moves things NOT needed
601// for the next call till after the call.  This prevents me from trying to
602// carry lots of stuff live across a call.
603void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
604  // Find the next control-defining Node in this block
605  Node* call = NULL;
606  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
607    Node* m = this_call->fast_out(i);
608    if (get_block_for_node(m) == block && // Local-block user
609        m != this_call &&       // Not self-start node
610        m->is_MachCall()) {
611      call = m;
612      break;
613    }
614  }
615  if (call == NULL)  return;    // No next call (e.g., block end is near)
616  // Set next-call for all inputs to this call
617  set_next_call(block, call, next_call);
618}
619
620//------------------------------add_call_kills-------------------------------------
621// helper function that adds caller save registers to MachProjNode
622static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
623  // Fill in the kill mask for the call
624  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
625    if( !regs.Member(r) ) {     // Not already defined by the call
626      // Save-on-call register?
627      if ((save_policy[r] == 'C') ||
628          (save_policy[r] == 'A') ||
629          ((save_policy[r] == 'E') && exclude_soe)) {
630        proj->_rout.Insert(r);
631      }
632    }
633  }
634}
635
636
637//------------------------------sched_call-------------------------------------
638uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
639  RegMask regs;
640
641  // Schedule all the users of the call right now.  All the users are
642  // projection Nodes, so they must be scheduled next to the call.
643  // Collect all the defined registers.
644  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
645    Node* n = mcall->fast_out(i);
646    assert( n->is_MachProj(), "" );
647    int n_cnt = ready_cnt.at(n->_idx)-1;
648    ready_cnt.at_put(n->_idx, n_cnt);
649    assert( n_cnt == 0, "" );
650    // Schedule next to call
651    block->map_node(n, node_cnt++);
652    // Collect defined registers
653    regs.OR(n->out_RegMask());
654    // Check for scheduling the next control-definer
655    if( n->bottom_type() == Type::CONTROL )
656      // Warm up next pile of heuristic bits
657      needed_for_next_call(block, n, next_call);
658
659    // Children of projections are now all ready
660    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
661      Node* m = n->fast_out(j); // Get user
662      if(get_block_for_node(m) != block) {
663        continue;
664      }
665      if( m->is_Phi() ) continue;
666      int m_cnt = ready_cnt.at(m->_idx)-1;
667      ready_cnt.at_put(m->_idx, m_cnt);
668      if( m_cnt == 0 )
669        worklist.push(m);
670    }
671
672  }
673
674  // Act as if the call defines the Frame Pointer.
675  // Certainly the FP is alive and well after the call.
676  regs.Insert(_matcher.c_frame_pointer());
677
678  // Set all registers killed and not already defined by the call.
679  uint r_cnt = mcall->tf()->range()->cnt();
680  int op = mcall->ideal_Opcode();
681  MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
682  map_node_to_block(proj, block);
683  block->insert_node(proj, node_cnt++);
684
685  // Select the right register save policy.
686  const char * save_policy;
687  switch (op) {
688    case Op_CallRuntime:
689    case Op_CallLeaf:
690    case Op_CallLeafNoFP:
691      // Calling C code so use C calling convention
692      save_policy = _matcher._c_reg_save_policy;
693      break;
694
695    case Op_CallStaticJava:
696    case Op_CallDynamicJava:
697      // Calling Java code so use Java calling convention
698      save_policy = _matcher._register_save_policy;
699      break;
700
701    default:
702      ShouldNotReachHere();
703  }
704
705  // When using CallRuntime mark SOE registers as killed by the call
706  // so values that could show up in the RegisterMap aren't live in a
707  // callee saved register since the register wouldn't know where to
708  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
709  // have debug info on them.  Strictly speaking this only needs to be
710  // done for oops since idealreg2debugmask takes care of debug info
711  // references but there no way to handle oops differently than other
712  // pointers as far as the kill mask goes.
713  bool exclude_soe = op == Op_CallRuntime;
714
715  // If the call is a MethodHandle invoke, we need to exclude the
716  // register which is used to save the SP value over MH invokes from
717  // the mask.  Otherwise this register could be used for
718  // deoptimization information.
719  if (op == Op_CallStaticJava) {
720    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
721    if (mcallstaticjava->_method_handle_invoke)
722      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
723  }
724
725  add_call_kills(proj, regs, save_policy, exclude_soe);
726
727  return node_cnt;
728}
729
730
731//------------------------------schedule_local---------------------------------
732// Topological sort within a block.  Someday become a real scheduler.
733bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
734  // Already "sorted" are the block start Node (as the first entry), and
735  // the block-ending Node and any trailing control projections.  We leave
736  // these alone.  PhiNodes and ParmNodes are made to follow the block start
737  // Node.  Everything else gets topo-sorted.
738
739#ifndef PRODUCT
740    if (trace_opto_pipelining()) {
741      tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
742      for (uint i = 0;i < block->number_of_nodes(); i++) {
743        tty->print("# ");
744        block->get_node(i)->fast_dump();
745      }
746      tty->print_cr("#");
747    }
748#endif
749
750  // RootNode is already sorted
751  if (block->number_of_nodes() == 1) {
752    return true;
753  }
754
755  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
756  uint node_cnt = block->end_idx();
757  uint phi_cnt = 1;
758  uint i;
759  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
760    Node *n = block->get_node(i);
761    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
762        (n->is_Proj()  && n->in(0) == block->head()) ) {
763      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
764      block->map_node(block->get_node(phi_cnt), i);
765      block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
766    } else {                    // All others
767      // Count block-local inputs to 'n'
768      uint cnt = n->len();      // Input count
769      uint local = 0;
770      for( uint j=0; j<cnt; j++ ) {
771        Node *m = n->in(j);
772        if( m && get_block_for_node(m) == block && !m->is_top() )
773          local++;              // One more block-local input
774      }
775      ready_cnt.at_put(n->_idx, local); // Count em up
776
777#ifdef ASSERT
778      if( UseConcMarkSweepGC || UseG1GC ) {
779        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
780          // Check the precedence edges
781          for (uint prec = n->req(); prec < n->len(); prec++) {
782            Node* oop_store = n->in(prec);
783            if (oop_store != NULL) {
784              assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
785            }
786          }
787        }
788      }
789#endif
790
791      // A few node types require changing a required edge to a precedence edge
792      // before allocation.
793      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
794          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
795           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
796        // MemBarAcquire could be created without Precedent edge.
797        // del_req() replaces the specified edge with the last input edge
798        // and then removes the last edge. If the specified edge > number of
799        // edges the last edge will be moved outside of the input edges array
800        // and the edge will be lost. This is why this code should be
801        // executed only when Precedent (== TypeFunc::Parms) edge is present.
802        Node *x = n->in(TypeFunc::Parms);
803        n->del_req(TypeFunc::Parms);
804        n->add_prec(x);
805      }
806    }
807  }
808  for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
809    ready_cnt.at_put(block->get_node(i2)->_idx, 0);
810
811  // All the prescheduled guys do not hold back internal nodes
812  uint i3;
813  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
814    Node *n = block->get_node(i3);       // Get pre-scheduled
815    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
816      Node* m = n->fast_out(j);
817      if (get_block_for_node(m) == block) { // Local-block user
818        int m_cnt = ready_cnt.at(m->_idx)-1;
819        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
820      }
821    }
822  }
823
824  Node_List delay;
825  // Make a worklist
826  Node_List worklist;
827  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
828    Node *m = block->get_node(i4);
829    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
830      if (m->is_iteratively_computed()) {
831        // Push induction variable increments last to allow other uses
832        // of the phi to be scheduled first. The select() method breaks
833        // ties in scheduling by worklist order.
834        delay.push(m);
835      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
836        // Force the CreateEx to the top of the list so it's processed
837        // first and ends up at the start of the block.
838        worklist.insert(0, m);
839      } else {
840        worklist.push(m);         // Then on to worklist!
841      }
842    }
843  }
844  while (delay.size()) {
845    Node* d = delay.pop();
846    worklist.push(d);
847  }
848
849  // Warm up the 'next_call' heuristic bits
850  needed_for_next_call(block, block->head(), next_call);
851
852#ifndef PRODUCT
853    if (trace_opto_pipelining()) {
854      for (uint j=0; j< block->number_of_nodes(); j++) {
855        Node     *n = block->get_node(j);
856        int     idx = n->_idx;
857        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
858        tty->print("latency:%3d  ", get_latency_for_node(n));
859        tty->print("%4d: %s\n", idx, n->Name());
860      }
861    }
862#endif
863
864  uint max_idx = (uint)ready_cnt.length();
865  // Pull from worklist and schedule
866  while( worklist.size() ) {    // Worklist is not ready
867
868#ifndef PRODUCT
869    if (trace_opto_pipelining()) {
870      tty->print("#   ready list:");
871      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
872        Node *n = worklist[i];      // Get Node on worklist
873        tty->print(" %d", n->_idx);
874      }
875      tty->cr();
876    }
877#endif
878
879    // Select and pop a ready guy from worklist
880    Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
881    block->map_node(n, phi_cnt++);    // Schedule him next
882
883#ifndef PRODUCT
884    if (trace_opto_pipelining()) {
885      tty->print("#    select %d: %s", n->_idx, n->Name());
886      tty->print(", latency:%d", get_latency_for_node(n));
887      n->dump();
888      if (Verbose) {
889        tty->print("#   ready list:");
890        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
891          Node *n = worklist[i];      // Get Node on worklist
892          tty->print(" %d", n->_idx);
893        }
894        tty->cr();
895      }
896    }
897
898#endif
899    if( n->is_MachCall() ) {
900      MachCallNode *mcall = n->as_MachCall();
901      phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
902      continue;
903    }
904
905    if (n->is_Mach() && n->as_Mach()->has_call()) {
906      RegMask regs;
907      regs.Insert(_matcher.c_frame_pointer());
908      regs.OR(n->out_RegMask());
909
910      MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
911      map_node_to_block(proj, block);
912      block->insert_node(proj, phi_cnt++);
913
914      add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
915    }
916
917    // Children are now all ready
918    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
919      Node* m = n->fast_out(i5); // Get user
920      if (get_block_for_node(m) != block) {
921        continue;
922      }
923      if( m->is_Phi() ) continue;
924      if (m->_idx >= max_idx) { // new node, skip it
925        assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
926        continue;
927      }
928      int m_cnt = ready_cnt.at(m->_idx)-1;
929      ready_cnt.at_put(m->_idx, m_cnt);
930      if( m_cnt == 0 )
931        worklist.push(m);
932    }
933  }
934
935  if( phi_cnt != block->end_idx() ) {
936    // did not schedule all.  Retry, Bailout, or Die
937    if (C->subsume_loads() == true && !C->failing()) {
938      // Retry with subsume_loads == false
939      // If this is the first failure, the sentinel string will "stick"
940      // to the Compile object, and the C2Compiler will see it and retry.
941      C->record_failure(C2Compiler::retry_no_subsuming_loads());
942    }
943    // assert( phi_cnt == end_idx(), "did not schedule all" );
944    return false;
945  }
946
947#ifndef PRODUCT
948  if (trace_opto_pipelining()) {
949    tty->print_cr("#");
950    tty->print_cr("# after schedule_local");
951    for (uint i = 0;i < block->number_of_nodes();i++) {
952      tty->print("# ");
953      block->get_node(i)->fast_dump();
954    }
955    tty->cr();
956  }
957#endif
958
959
960  return true;
961}
962
963//--------------------------catch_cleanup_fix_all_inputs-----------------------
964static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
965  for (uint l = 0; l < use->len(); l++) {
966    if (use->in(l) == old_def) {
967      if (l < use->req()) {
968        use->set_req(l, new_def);
969      } else {
970        use->rm_prec(l);
971        use->add_prec(new_def);
972        l--;
973      }
974    }
975  }
976}
977
978//------------------------------catch_cleanup_find_cloned_def------------------
979Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
980  assert( use_blk != def_blk, "Inter-block cleanup only");
981
982  // The use is some block below the Catch.  Find and return the clone of the def
983  // that dominates the use. If there is no clone in a dominating block, then
984  // create a phi for the def in a dominating block.
985
986  // Find which successor block dominates this use.  The successor
987  // blocks must all be single-entry (from the Catch only; I will have
988  // split blocks to make this so), hence they all dominate.
989  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
990    use_blk = use_blk->_idom;
991
992  // Find the successor
993  Node *fixup = NULL;
994
995  uint j;
996  for( j = 0; j < def_blk->_num_succs; j++ )
997    if( use_blk == def_blk->_succs[j] )
998      break;
999
1000  if( j == def_blk->_num_succs ) {
1001    // Block at same level in dom-tree is not a successor.  It needs a
1002    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1003    Node_Array inputs = new Node_List(Thread::current()->resource_area());
1004    for(uint k = 1; k < use_blk->num_preds(); k++) {
1005      Block* block = get_block_for_node(use_blk->pred(k));
1006      inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1007    }
1008
1009    // Check to see if the use_blk already has an identical phi inserted.
1010    // If it exists, it will be at the first position since all uses of a
1011    // def are processed together.
1012    Node *phi = use_blk->get_node(1);
1013    if( phi->is_Phi() ) {
1014      fixup = phi;
1015      for (uint k = 1; k < use_blk->num_preds(); k++) {
1016        if (phi->in(k) != inputs[k]) {
1017          // Not a match
1018          fixup = NULL;
1019          break;
1020        }
1021      }
1022    }
1023
1024    // If an existing PhiNode was not found, make a new one.
1025    if (fixup == NULL) {
1026      Node *new_phi = PhiNode::make(use_blk->head(), def);
1027      use_blk->insert_node(new_phi, 1);
1028      map_node_to_block(new_phi, use_blk);
1029      for (uint k = 1; k < use_blk->num_preds(); k++) {
1030        new_phi->set_req(k, inputs[k]);
1031      }
1032      fixup = new_phi;
1033    }
1034
1035  } else {
1036    // Found the use just below the Catch.  Make it use the clone.
1037    fixup = use_blk->get_node(n_clone_idx);
1038  }
1039
1040  return fixup;
1041}
1042
1043//--------------------------catch_cleanup_intra_block--------------------------
1044// Fix all input edges in use that reference "def".  The use is in the same
1045// block as the def and both have been cloned in each successor block.
1046static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1047
1048  // Both the use and def have been cloned. For each successor block,
1049  // get the clone of the use, and make its input the clone of the def
1050  // found in that block.
1051
1052  uint use_idx = blk->find_node(use);
1053  uint offset_idx = use_idx - beg;
1054  for( uint k = 0; k < blk->_num_succs; k++ ) {
1055    // Get clone in each successor block
1056    Block *sb = blk->_succs[k];
1057    Node *clone = sb->get_node(offset_idx+1);
1058    assert( clone->Opcode() == use->Opcode(), "" );
1059
1060    // Make use-clone reference the def-clone
1061    catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1062  }
1063}
1064
1065//------------------------------catch_cleanup_inter_block---------------------
1066// Fix all input edges in use that reference "def".  The use is in a different
1067// block than the def.
1068void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1069  if( !use_blk ) return;        // Can happen if the use is a precedence edge
1070
1071  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1072  catch_cleanup_fix_all_inputs(use, def, new_def);
1073}
1074
1075//------------------------------call_catch_cleanup-----------------------------
1076// If we inserted any instructions between a Call and his CatchNode,
1077// clone the instructions on all paths below the Catch.
1078void PhaseCFG::call_catch_cleanup(Block* block) {
1079
1080  // End of region to clone
1081  uint end = block->end_idx();
1082  if( !block->get_node(end)->is_Catch() ) return;
1083  // Start of region to clone
1084  uint beg = end;
1085  while(!block->get_node(beg-1)->is_MachProj() ||
1086        !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1087    beg--;
1088    assert(beg > 0,"Catch cleanup walking beyond block boundary");
1089  }
1090  // Range of inserted instructions is [beg, end)
1091  if( beg == end ) return;
1092
1093  // Clone along all Catch output paths.  Clone area between the 'beg' and
1094  // 'end' indices.
1095  for( uint i = 0; i < block->_num_succs; i++ ) {
1096    Block *sb = block->_succs[i];
1097    // Clone the entire area; ignoring the edge fixup for now.
1098    for( uint j = end; j > beg; j-- ) {
1099      // It is safe here to clone a node with anti_dependence
1100      // since clones dominate on each path.
1101      Node *clone = block->get_node(j-1)->clone();
1102      sb->insert_node(clone, 1);
1103      map_node_to_block(clone, sb);
1104    }
1105  }
1106
1107
1108  // Fixup edges.  Check the def-use info per cloned Node
1109  for(uint i2 = beg; i2 < end; i2++ ) {
1110    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1111    Node *n = block->get_node(i2);        // Node that got cloned
1112    // Need DU safe iterator because of edge manipulation in calls.
1113    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1114    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1115      out->push(n->fast_out(j1));
1116    }
1117    uint max = out->size();
1118    for (uint j = 0; j < max; j++) {// For all users
1119      Node *use = out->pop();
1120      Block *buse = get_block_for_node(use);
1121      if( use->is_Phi() ) {
1122        for( uint k = 1; k < use->req(); k++ )
1123          if( use->in(k) == n ) {
1124            Block* b = get_block_for_node(buse->pred(k));
1125            Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1126            use->set_req(k, fixup);
1127          }
1128      } else {
1129        if (block == buse) {
1130          catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1131        } else {
1132          catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1133        }
1134      }
1135    } // End for all users
1136
1137  } // End of for all Nodes in cloned area
1138
1139  // Remove the now-dead cloned ops
1140  for(uint i3 = beg; i3 < end; i3++ ) {
1141    block->get_node(beg)->disconnect_inputs(NULL, C);
1142    block->remove_node(beg);
1143  }
1144
1145  // If the successor blocks have a CreateEx node, move it back to the top
1146  for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1147    Block *sb = block->_succs[i4];
1148    uint new_cnt = end - beg;
1149    // Remove any newly created, but dead, nodes.
1150    for( uint j = new_cnt; j > 0; j-- ) {
1151      Node *n = sb->get_node(j);
1152      if (n->outcnt() == 0 &&
1153          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1154        n->disconnect_inputs(NULL, C);
1155        sb->remove_node(j);
1156        new_cnt--;
1157      }
1158    }
1159    // If any newly created nodes remain, move the CreateEx node to the top
1160    if (new_cnt > 0) {
1161      Node *cex = sb->get_node(1+new_cnt);
1162      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1163        sb->remove_node(1+new_cnt);
1164        sb->insert_node(cex, 1);
1165      }
1166    }
1167  }
1168}
1169