lcm.cpp revision 3447:8c92982cbbc4
1/*
2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/c2compiler.hpp"
29#include "opto/callnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/machnode.hpp"
32#include "opto/runtime.hpp"
33#ifdef TARGET_ARCH_MODEL_x86_32
34# include "adfiles/ad_x86_32.hpp"
35#endif
36#ifdef TARGET_ARCH_MODEL_x86_64
37# include "adfiles/ad_x86_64.hpp"
38#endif
39#ifdef TARGET_ARCH_MODEL_sparc
40# include "adfiles/ad_sparc.hpp"
41#endif
42#ifdef TARGET_ARCH_MODEL_zero
43# include "adfiles/ad_zero.hpp"
44#endif
45#ifdef TARGET_ARCH_MODEL_arm
46# include "adfiles/ad_arm.hpp"
47#endif
48#ifdef TARGET_ARCH_MODEL_ppc
49# include "adfiles/ad_ppc.hpp"
50#endif
51
52// Optimization - Graph Style
53
54//------------------------------implicit_null_check----------------------------
55// Detect implicit-null-check opportunities.  Basically, find NULL checks
56// with suitable memory ops nearby.  Use the memory op to do the NULL check.
57// I can generate a memory op if there is not one nearby.
58// The proj is the control projection for the not-null case.
59// The val is the pointer being checked for nullness or
60// decodeHeapOop_not_null node if it did not fold into address.
61void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
62  // Assume if null check need for 0 offset then always needed
63  // Intel solaris doesn't support any null checks yet and no
64  // mechanism exists (yet) to set the switches at an os_cpu level
65  if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
66
67  // Make sure the ptr-is-null path appears to be uncommon!
68  float f = end()->as_MachIf()->_prob;
69  if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
70  if( f > PROB_UNLIKELY_MAG(4) ) return;
71
72  uint bidx = 0;                // Capture index of value into memop
73  bool was_store;               // Memory op is a store op
74
75  // Get the successor block for if the test ptr is non-null
76  Block* not_null_block;  // this one goes with the proj
77  Block* null_block;
78  if (_nodes[_nodes.size()-1] == proj) {
79    null_block     = _succs[0];
80    not_null_block = _succs[1];
81  } else {
82    assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
83    not_null_block = _succs[0];
84    null_block     = _succs[1];
85  }
86  while (null_block->is_Empty() == Block::empty_with_goto) {
87    null_block     = null_block->_succs[0];
88  }
89
90  // Search the exception block for an uncommon trap.
91  // (See Parse::do_if and Parse::do_ifnull for the reason
92  // we need an uncommon trap.  Briefly, we need a way to
93  // detect failure of this optimization, as in 6366351.)
94  {
95    bool found_trap = false;
96    for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
97      Node* nn = null_block->_nodes[i1];
98      if (nn->is_MachCall() &&
99          nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
100        const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
101        if (trtype->isa_int() && trtype->is_int()->is_con()) {
102          jint tr_con = trtype->is_int()->get_con();
103          Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
104          Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
105          assert((int)reason < (int)BitsPerInt, "recode bit map");
106          if (is_set_nth_bit(allowed_reasons, (int) reason)
107              && action != Deoptimization::Action_none) {
108            // This uncommon trap is sure to recompile, eventually.
109            // When that happens, C->too_many_traps will prevent
110            // this transformation from happening again.
111            found_trap = true;
112          }
113        }
114        break;
115      }
116    }
117    if (!found_trap) {
118      // We did not find an uncommon trap.
119      return;
120    }
121  }
122
123  // Check for decodeHeapOop_not_null node which did not fold into address
124  bool is_decoden = ((intptr_t)val) & 1;
125  val = (Node*)(((intptr_t)val) & ~1);
126
127  assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
128         (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
129
130  // Search the successor block for a load or store who's base value is also
131  // the tested value.  There may be several.
132  Node_List *out = new Node_List(Thread::current()->resource_area());
133  MachNode *best = NULL;        // Best found so far
134  for (DUIterator i = val->outs(); val->has_out(i); i++) {
135    Node *m = val->out(i);
136    if( !m->is_Mach() ) continue;
137    MachNode *mach = m->as_Mach();
138    was_store = false;
139    int iop = mach->ideal_Opcode();
140    switch( iop ) {
141    case Op_LoadB:
142    case Op_LoadUB:
143    case Op_LoadUS:
144    case Op_LoadD:
145    case Op_LoadF:
146    case Op_LoadI:
147    case Op_LoadL:
148    case Op_LoadP:
149    case Op_LoadN:
150    case Op_LoadS:
151    case Op_LoadKlass:
152    case Op_LoadNKlass:
153    case Op_LoadRange:
154    case Op_LoadD_unaligned:
155    case Op_LoadL_unaligned:
156      assert(mach->in(2) == val, "should be address");
157      break;
158    case Op_StoreB:
159    case Op_StoreC:
160    case Op_StoreCM:
161    case Op_StoreD:
162    case Op_StoreF:
163    case Op_StoreI:
164    case Op_StoreL:
165    case Op_StoreP:
166    case Op_StoreN:
167      was_store = true;         // Memory op is a store op
168      // Stores will have their address in slot 2 (memory in slot 1).
169      // If the value being nul-checked is in another slot, it means we
170      // are storing the checked value, which does NOT check the value!
171      if( mach->in(2) != val ) continue;
172      break;                    // Found a memory op?
173    case Op_StrComp:
174    case Op_StrEquals:
175    case Op_StrIndexOf:
176    case Op_AryEq:
177      // Not a legit memory op for implicit null check regardless of
178      // embedded loads
179      continue;
180    default:                    // Also check for embedded loads
181      if( !mach->needs_anti_dependence_check() )
182        continue;               // Not an memory op; skip it
183      if( must_clone[iop] ) {
184        // Do not move nodes which produce flags because
185        // RA will try to clone it to place near branch and
186        // it will cause recompilation, see clone_node().
187        continue;
188      }
189      {
190        // Check that value is used in memory address in
191        // instructions with embedded load (CmpP val1,(val2+off)).
192        Node* base;
193        Node* index;
194        const MachOper* oper = mach->memory_inputs(base, index);
195        if (oper == NULL || oper == (MachOper*)-1) {
196          continue;             // Not an memory op; skip it
197        }
198        if (val == base ||
199            val == index && val->bottom_type()->isa_narrowoop()) {
200          break;                // Found it
201        } else {
202          continue;             // Skip it
203        }
204      }
205      break;
206    }
207    // check if the offset is not too high for implicit exception
208    {
209      intptr_t offset = 0;
210      const TypePtr *adr_type = NULL;  // Do not need this return value here
211      const Node* base = mach->get_base_and_disp(offset, adr_type);
212      if (base == NULL || base == NodeSentinel) {
213        // Narrow oop address doesn't have base, only index
214        if( val->bottom_type()->isa_narrowoop() &&
215            MacroAssembler::needs_explicit_null_check(offset) )
216          continue;             // Give up if offset is beyond page size
217        // cannot reason about it; is probably not implicit null exception
218      } else {
219        const TypePtr* tptr;
220        if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
221          // 32-bits narrow oop can be the base of address expressions
222          tptr = base->bottom_type()->make_ptr();
223        } else {
224          // only regular oops are expected here
225          tptr = base->bottom_type()->is_ptr();
226        }
227        // Give up if offset is not a compile-time constant
228        if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
229          continue;
230        offset += tptr->_offset; // correct if base is offseted
231        if( MacroAssembler::needs_explicit_null_check(offset) )
232          continue;             // Give up is reference is beyond 4K page size
233      }
234    }
235
236    // Check ctrl input to see if the null-check dominates the memory op
237    Block *cb = cfg->_bbs[mach->_idx];
238    cb = cb->_idom;             // Always hoist at least 1 block
239    if( !was_store ) {          // Stores can be hoisted only one block
240      while( cb->_dom_depth > (_dom_depth + 1))
241        cb = cb->_idom;         // Hoist loads as far as we want
242      // The non-null-block should dominate the memory op, too. Live
243      // range spilling will insert a spill in the non-null-block if it is
244      // needs to spill the memory op for an implicit null check.
245      if (cb->_dom_depth == (_dom_depth + 1)) {
246        if (cb != not_null_block) continue;
247        cb = cb->_idom;
248      }
249    }
250    if( cb != this ) continue;
251
252    // Found a memory user; see if it can be hoisted to check-block
253    uint vidx = 0;              // Capture index of value into memop
254    uint j;
255    for( j = mach->req()-1; j > 0; j-- ) {
256      if( mach->in(j) == val ) {
257        vidx = j;
258        // Ignore DecodeN val which could be hoisted to where needed.
259        if( is_decoden ) continue;
260      }
261      // Block of memory-op input
262      Block *inb = cfg->_bbs[mach->in(j)->_idx];
263      Block *b = this;          // Start from nul check
264      while( b != inb && b->_dom_depth > inb->_dom_depth )
265        b = b->_idom;           // search upwards for input
266      // See if input dominates null check
267      if( b != inb )
268        break;
269    }
270    if( j > 0 )
271      continue;
272    Block *mb = cfg->_bbs[mach->_idx];
273    // Hoisting stores requires more checks for the anti-dependence case.
274    // Give up hoisting if we have to move the store past any load.
275    if( was_store ) {
276      Block *b = mb;            // Start searching here for a local load
277      // mach use (faulting) trying to hoist
278      // n might be blocker to hoisting
279      while( b != this ) {
280        uint k;
281        for( k = 1; k < b->_nodes.size(); k++ ) {
282          Node *n = b->_nodes[k];
283          if( n->needs_anti_dependence_check() &&
284              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
285            break;              // Found anti-dependent load
286        }
287        if( k < b->_nodes.size() )
288          break;                // Found anti-dependent load
289        // Make sure control does not do a merge (would have to check allpaths)
290        if( b->num_preds() != 2 ) break;
291        b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
292      }
293      if( b != this ) continue;
294    }
295
296    // Make sure this memory op is not already being used for a NullCheck
297    Node *e = mb->end();
298    if( e->is_MachNullCheck() && e->in(1) == mach )
299      continue;                 // Already being used as a NULL check
300
301    // Found a candidate!  Pick one with least dom depth - the highest
302    // in the dom tree should be closest to the null check.
303    if( !best ||
304        cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
305      best = mach;
306      bidx = vidx;
307
308    }
309  }
310  // No candidate!
311  if( !best ) return;
312
313  // ---- Found an implicit null check
314  extern int implicit_null_checks;
315  implicit_null_checks++;
316
317  if( is_decoden ) {
318    // Check if we need to hoist decodeHeapOop_not_null first.
319    Block *valb = cfg->_bbs[val->_idx];
320    if( this != valb && this->_dom_depth < valb->_dom_depth ) {
321      // Hoist it up to the end of the test block.
322      valb->find_remove(val);
323      this->add_inst(val);
324      cfg->_bbs.map(val->_idx,this);
325      // DecodeN on x86 may kill flags. Check for flag-killing projections
326      // that also need to be hoisted.
327      for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
328        Node* n = val->fast_out(j);
329        if( n->is_MachProj() ) {
330          cfg->_bbs[n->_idx]->find_remove(n);
331          this->add_inst(n);
332          cfg->_bbs.map(n->_idx,this);
333        }
334      }
335    }
336  }
337  // Hoist the memory candidate up to the end of the test block.
338  Block *old_block = cfg->_bbs[best->_idx];
339  old_block->find_remove(best);
340  add_inst(best);
341  cfg->_bbs.map(best->_idx,this);
342
343  // Move the control dependence
344  if (best->in(0) && best->in(0) == old_block->_nodes[0])
345    best->set_req(0, _nodes[0]);
346
347  // Check for flag-killing projections that also need to be hoisted
348  // Should be DU safe because no edge updates.
349  for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
350    Node* n = best->fast_out(j);
351    if( n->is_MachProj() ) {
352      cfg->_bbs[n->_idx]->find_remove(n);
353      add_inst(n);
354      cfg->_bbs.map(n->_idx,this);
355    }
356  }
357
358  Compile *C = cfg->C;
359  // proj==Op_True --> ne test; proj==Op_False --> eq test.
360  // One of two graph shapes got matched:
361  //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
362  //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
363  // NULL checks are always branch-if-eq.  If we see a IfTrue projection
364  // then we are replacing a 'ne' test with a 'eq' NULL check test.
365  // We need to flip the projections to keep the same semantics.
366  if( proj->Opcode() == Op_IfTrue ) {
367    // Swap order of projections in basic block to swap branch targets
368    Node *tmp1 = _nodes[end_idx()+1];
369    Node *tmp2 = _nodes[end_idx()+2];
370    _nodes.map(end_idx()+1, tmp2);
371    _nodes.map(end_idx()+2, tmp1);
372    Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
373    tmp1->replace_by(tmp);
374    tmp2->replace_by(tmp1);
375    tmp->replace_by(tmp2);
376    tmp->destruct();
377  }
378
379  // Remove the existing null check; use a new implicit null check instead.
380  // Since schedule-local needs precise def-use info, we need to correct
381  // it as well.
382  Node *old_tst = proj->in(0);
383  MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
384  _nodes.map(end_idx(),nul_chk);
385  cfg->_bbs.map(nul_chk->_idx,this);
386  // Redirect users of old_test to nul_chk
387  for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
388    old_tst->last_out(i2)->set_req(0, nul_chk);
389  // Clean-up any dead code
390  for (uint i3 = 0; i3 < old_tst->req(); i3++)
391    old_tst->set_req(i3, NULL);
392
393  cfg->latency_from_uses(nul_chk);
394  cfg->latency_from_uses(best);
395}
396
397
398//------------------------------select-----------------------------------------
399// Select a nice fellow from the worklist to schedule next. If there is only
400// one choice, then use it. Projections take top priority for correctness
401// reasons - if I see a projection, then it is next.  There are a number of
402// other special cases, for instructions that consume condition codes, et al.
403// These are chosen immediately. Some instructions are required to immediately
404// precede the last instruction in the block, and these are taken last. Of the
405// remaining cases (most), choose the instruction with the greatest latency
406// (that is, the most number of pseudo-cycles required to the end of the
407// routine). If there is a tie, choose the instruction with the most inputs.
408Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
409
410  // If only a single entry on the stack, use it
411  uint cnt = worklist.size();
412  if (cnt == 1) {
413    Node *n = worklist[0];
414    worklist.map(0,worklist.pop());
415    return n;
416  }
417
418  uint choice  = 0; // Bigger is most important
419  uint latency = 0; // Bigger is scheduled first
420  uint score   = 0; // Bigger is better
421  int idx = -1;     // Index in worklist
422
423  for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
424    // Order in worklist is used to break ties.
425    // See caller for how this is used to delay scheduling
426    // of induction variable increments to after the other
427    // uses of the phi are scheduled.
428    Node *n = worklist[i];      // Get Node on worklist
429
430    int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
431    if( n->is_Proj() ||         // Projections always win
432        n->Opcode()== Op_Con || // So does constant 'Top'
433        iop == Op_CreateEx ||   // Create-exception must start block
434        iop == Op_CheckCastPP
435        ) {
436      worklist.map(i,worklist.pop());
437      return n;
438    }
439
440    // Final call in a block must be adjacent to 'catch'
441    Node *e = end();
442    if( e->is_Catch() && e->in(0)->in(0) == n )
443      continue;
444
445    // Memory op for an implicit null check has to be at the end of the block
446    if( e->is_MachNullCheck() && e->in(1) == n )
447      continue;
448
449    // Schedule IV increment last.
450    if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
451        e->in(1)->in(1) == n && n->is_iteratively_computed())
452      continue;
453
454    uint n_choice  = 2;
455
456    // See if this instruction is consumed by a branch. If so, then (as the
457    // branch is the last instruction in the basic block) force it to the
458    // end of the basic block
459    if ( must_clone[iop] ) {
460      // See if any use is a branch
461      bool found_machif = false;
462
463      for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
464        Node* use = n->fast_out(j);
465
466        // The use is a conditional branch, make them adjacent
467        if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
468          found_machif = true;
469          break;
470        }
471
472        // More than this instruction pending for successor to be ready,
473        // don't choose this if other opportunities are ready
474        if (ready_cnt.at(use->_idx) > 1)
475          n_choice = 1;
476      }
477
478      // loop terminated, prefer not to use this instruction
479      if (found_machif)
480        continue;
481    }
482
483    // See if this has a predecessor that is "must_clone", i.e. sets the
484    // condition code. If so, choose this first
485    for (uint j = 0; j < n->req() ; j++) {
486      Node *inn = n->in(j);
487      if (inn) {
488        if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
489          n_choice = 3;
490          break;
491        }
492      }
493    }
494
495    // MachTemps should be scheduled last so they are near their uses
496    if (n->is_MachTemp()) {
497      n_choice = 1;
498    }
499
500    uint n_latency = cfg->_node_latency->at_grow(n->_idx);
501    uint n_score   = n->req();   // Many inputs get high score to break ties
502
503    // Keep best latency found
504    if( choice < n_choice ||
505        ( choice == n_choice &&
506          ( latency < n_latency ||
507            ( latency == n_latency &&
508              ( score < n_score ))))) {
509      choice  = n_choice;
510      latency = n_latency;
511      score   = n_score;
512      idx     = i;               // Also keep index in worklist
513    }
514  } // End of for all ready nodes in worklist
515
516  assert(idx >= 0, "index should be set");
517  Node *n = worklist[(uint)idx];      // Get the winner
518
519  worklist.map((uint)idx, worklist.pop());     // Compress worklist
520  return n;
521}
522
523
524//------------------------------set_next_call----------------------------------
525void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
526  if( next_call.test_set(n->_idx) ) return;
527  for( uint i=0; i<n->len(); i++ ) {
528    Node *m = n->in(i);
529    if( !m ) continue;  // must see all nodes in block that precede call
530    if( bbs[m->_idx] == this )
531      set_next_call( m, next_call, bbs );
532  }
533}
534
535//------------------------------needed_for_next_call---------------------------
536// Set the flag 'next_call' for each Node that is needed for the next call to
537// be scheduled.  This flag lets me bias scheduling so Nodes needed for the
538// next subroutine call get priority - basically it moves things NOT needed
539// for the next call till after the call.  This prevents me from trying to
540// carry lots of stuff live across a call.
541void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
542  // Find the next control-defining Node in this block
543  Node* call = NULL;
544  for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
545    Node* m = this_call->fast_out(i);
546    if( bbs[m->_idx] == this && // Local-block user
547        m != this_call &&       // Not self-start node
548        m->is_MachCall() )
549      call = m;
550      break;
551  }
552  if (call == NULL)  return;    // No next call (e.g., block end is near)
553  // Set next-call for all inputs to this call
554  set_next_call(call, next_call, bbs);
555}
556
557//------------------------------add_call_kills-------------------------------------
558void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
559  // Fill in the kill mask for the call
560  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
561    if( !regs.Member(r) ) {     // Not already defined by the call
562      // Save-on-call register?
563      if ((save_policy[r] == 'C') ||
564          (save_policy[r] == 'A') ||
565          ((save_policy[r] == 'E') && exclude_soe)) {
566        proj->_rout.Insert(r);
567      }
568    }
569  }
570}
571
572
573//------------------------------sched_call-------------------------------------
574uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
575  RegMask regs;
576
577  // Schedule all the users of the call right now.  All the users are
578  // projection Nodes, so they must be scheduled next to the call.
579  // Collect all the defined registers.
580  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
581    Node* n = mcall->fast_out(i);
582    assert( n->is_MachProj(), "" );
583    int n_cnt = ready_cnt.at(n->_idx)-1;
584    ready_cnt.at_put(n->_idx, n_cnt);
585    assert( n_cnt == 0, "" );
586    // Schedule next to call
587    _nodes.map(node_cnt++, n);
588    // Collect defined registers
589    regs.OR(n->out_RegMask());
590    // Check for scheduling the next control-definer
591    if( n->bottom_type() == Type::CONTROL )
592      // Warm up next pile of heuristic bits
593      needed_for_next_call(n, next_call, bbs);
594
595    // Children of projections are now all ready
596    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
597      Node* m = n->fast_out(j); // Get user
598      if( bbs[m->_idx] != this ) continue;
599      if( m->is_Phi() ) continue;
600      int m_cnt = ready_cnt.at(m->_idx)-1;
601      ready_cnt.at_put(m->_idx, m_cnt);
602      if( m_cnt == 0 )
603        worklist.push(m);
604    }
605
606  }
607
608  // Act as if the call defines the Frame Pointer.
609  // Certainly the FP is alive and well after the call.
610  regs.Insert(matcher.c_frame_pointer());
611
612  // Set all registers killed and not already defined by the call.
613  uint r_cnt = mcall->tf()->range()->cnt();
614  int op = mcall->ideal_Opcode();
615  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
616  bbs.map(proj->_idx,this);
617  _nodes.insert(node_cnt++, proj);
618
619  // Select the right register save policy.
620  const char * save_policy;
621  switch (op) {
622    case Op_CallRuntime:
623    case Op_CallLeaf:
624    case Op_CallLeafNoFP:
625      // Calling C code so use C calling convention
626      save_policy = matcher._c_reg_save_policy;
627      break;
628
629    case Op_CallStaticJava:
630    case Op_CallDynamicJava:
631      // Calling Java code so use Java calling convention
632      save_policy = matcher._register_save_policy;
633      break;
634
635    default:
636      ShouldNotReachHere();
637  }
638
639  // When using CallRuntime mark SOE registers as killed by the call
640  // so values that could show up in the RegisterMap aren't live in a
641  // callee saved register since the register wouldn't know where to
642  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
643  // have debug info on them.  Strictly speaking this only needs to be
644  // done for oops since idealreg2debugmask takes care of debug info
645  // references but there no way to handle oops differently than other
646  // pointers as far as the kill mask goes.
647  bool exclude_soe = op == Op_CallRuntime;
648
649  // If the call is a MethodHandle invoke, we need to exclude the
650  // register which is used to save the SP value over MH invokes from
651  // the mask.  Otherwise this register could be used for
652  // deoptimization information.
653  if (op == Op_CallStaticJava) {
654    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
655    if (mcallstaticjava->_method_handle_invoke)
656      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
657  }
658
659  add_call_kills(proj, regs, save_policy, exclude_soe);
660
661  return node_cnt;
662}
663
664
665//------------------------------schedule_local---------------------------------
666// Topological sort within a block.  Someday become a real scheduler.
667bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
668  // Already "sorted" are the block start Node (as the first entry), and
669  // the block-ending Node and any trailing control projections.  We leave
670  // these alone.  PhiNodes and ParmNodes are made to follow the block start
671  // Node.  Everything else gets topo-sorted.
672
673#ifndef PRODUCT
674    if (cfg->trace_opto_pipelining()) {
675      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
676      for (uint i = 0;i < _nodes.size();i++) {
677        tty->print("# ");
678        _nodes[i]->fast_dump();
679      }
680      tty->print_cr("#");
681    }
682#endif
683
684  // RootNode is already sorted
685  if( _nodes.size() == 1 ) return true;
686
687  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
688  uint node_cnt = end_idx();
689  uint phi_cnt = 1;
690  uint i;
691  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
692    Node *n = _nodes[i];
693    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
694        (n->is_Proj()  && n->in(0) == head()) ) {
695      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
696      _nodes.map(i,_nodes[phi_cnt]);
697      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
698    } else {                    // All others
699      // Count block-local inputs to 'n'
700      uint cnt = n->len();      // Input count
701      uint local = 0;
702      for( uint j=0; j<cnt; j++ ) {
703        Node *m = n->in(j);
704        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
705          local++;              // One more block-local input
706      }
707      ready_cnt.at_put(n->_idx, local); // Count em up
708
709#ifdef ASSERT
710      if( UseConcMarkSweepGC || UseG1GC ) {
711        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
712          // Check the precedence edges
713          for (uint prec = n->req(); prec < n->len(); prec++) {
714            Node* oop_store = n->in(prec);
715            if (oop_store != NULL) {
716              assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
717            }
718          }
719        }
720      }
721#endif
722
723      // A few node types require changing a required edge to a precedence edge
724      // before allocation.
725      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
726          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
727           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
728        // MemBarAcquire could be created without Precedent edge.
729        // del_req() replaces the specified edge with the last input edge
730        // and then removes the last edge. If the specified edge > number of
731        // edges the last edge will be moved outside of the input edges array
732        // and the edge will be lost. This is why this code should be
733        // executed only when Precedent (== TypeFunc::Parms) edge is present.
734        Node *x = n->in(TypeFunc::Parms);
735        n->del_req(TypeFunc::Parms);
736        n->add_prec(x);
737      }
738    }
739  }
740  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
741    ready_cnt.at_put(_nodes[i2]->_idx, 0);
742
743  // All the prescheduled guys do not hold back internal nodes
744  uint i3;
745  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
746    Node *n = _nodes[i3];       // Get pre-scheduled
747    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
748      Node* m = n->fast_out(j);
749      if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
750        int m_cnt = ready_cnt.at(m->_idx)-1;
751        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
752      }
753    }
754  }
755
756  Node_List delay;
757  // Make a worklist
758  Node_List worklist;
759  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
760    Node *m = _nodes[i4];
761    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
762      if (m->is_iteratively_computed()) {
763        // Push induction variable increments last to allow other uses
764        // of the phi to be scheduled first. The select() method breaks
765        // ties in scheduling by worklist order.
766        delay.push(m);
767      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
768        // Force the CreateEx to the top of the list so it's processed
769        // first and ends up at the start of the block.
770        worklist.insert(0, m);
771      } else {
772        worklist.push(m);         // Then on to worklist!
773      }
774    }
775  }
776  while (delay.size()) {
777    Node* d = delay.pop();
778    worklist.push(d);
779  }
780
781  // Warm up the 'next_call' heuristic bits
782  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
783
784#ifndef PRODUCT
785    if (cfg->trace_opto_pipelining()) {
786      for (uint j=0; j<_nodes.size(); j++) {
787        Node     *n = _nodes[j];
788        int     idx = n->_idx;
789        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
790        tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
791        tty->print("%4d: %s\n", idx, n->Name());
792      }
793    }
794#endif
795
796  uint max_idx = (uint)ready_cnt.length();
797  // Pull from worklist and schedule
798  while( worklist.size() ) {    // Worklist is not ready
799
800#ifndef PRODUCT
801    if (cfg->trace_opto_pipelining()) {
802      tty->print("#   ready list:");
803      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
804        Node *n = worklist[i];      // Get Node on worklist
805        tty->print(" %d", n->_idx);
806      }
807      tty->cr();
808    }
809#endif
810
811    // Select and pop a ready guy from worklist
812    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
813    _nodes.map(phi_cnt++,n);    // Schedule him next
814
815#ifndef PRODUCT
816    if (cfg->trace_opto_pipelining()) {
817      tty->print("#    select %d: %s", n->_idx, n->Name());
818      tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
819      n->dump();
820      if (Verbose) {
821        tty->print("#   ready list:");
822        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
823          Node *n = worklist[i];      // Get Node on worklist
824          tty->print(" %d", n->_idx);
825        }
826        tty->cr();
827      }
828    }
829
830#endif
831    if( n->is_MachCall() ) {
832      MachCallNode *mcall = n->as_MachCall();
833      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
834      continue;
835    }
836
837    if (n->is_Mach() && n->as_Mach()->has_call()) {
838      RegMask regs;
839      regs.Insert(matcher.c_frame_pointer());
840      regs.OR(n->out_RegMask());
841
842      MachProjNode *proj = new (matcher.C, 1) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
843      cfg->_bbs.map(proj->_idx,this);
844      _nodes.insert(phi_cnt++, proj);
845
846      add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
847    }
848
849    // Children are now all ready
850    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
851      Node* m = n->fast_out(i5); // Get user
852      if( cfg->_bbs[m->_idx] != this ) continue;
853      if( m->is_Phi() ) continue;
854      if (m->_idx >= max_idx) { // new node, skip it
855        assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
856        continue;
857      }
858      int m_cnt = ready_cnt.at(m->_idx)-1;
859      ready_cnt.at_put(m->_idx, m_cnt);
860      if( m_cnt == 0 )
861        worklist.push(m);
862    }
863  }
864
865  if( phi_cnt != end_idx() ) {
866    // did not schedule all.  Retry, Bailout, or Die
867    Compile* C = matcher.C;
868    if (C->subsume_loads() == true && !C->failing()) {
869      // Retry with subsume_loads == false
870      // If this is the first failure, the sentinel string will "stick"
871      // to the Compile object, and the C2Compiler will see it and retry.
872      C->record_failure(C2Compiler::retry_no_subsuming_loads());
873    }
874    // assert( phi_cnt == end_idx(), "did not schedule all" );
875    return false;
876  }
877
878#ifndef PRODUCT
879  if (cfg->trace_opto_pipelining()) {
880    tty->print_cr("#");
881    tty->print_cr("# after schedule_local");
882    for (uint i = 0;i < _nodes.size();i++) {
883      tty->print("# ");
884      _nodes[i]->fast_dump();
885    }
886    tty->cr();
887  }
888#endif
889
890
891  return true;
892}
893
894//--------------------------catch_cleanup_fix_all_inputs-----------------------
895static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
896  for (uint l = 0; l < use->len(); l++) {
897    if (use->in(l) == old_def) {
898      if (l < use->req()) {
899        use->set_req(l, new_def);
900      } else {
901        use->rm_prec(l);
902        use->add_prec(new_def);
903        l--;
904      }
905    }
906  }
907}
908
909//------------------------------catch_cleanup_find_cloned_def------------------
910static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
911  assert( use_blk != def_blk, "Inter-block cleanup only");
912
913  // The use is some block below the Catch.  Find and return the clone of the def
914  // that dominates the use. If there is no clone in a dominating block, then
915  // create a phi for the def in a dominating block.
916
917  // Find which successor block dominates this use.  The successor
918  // blocks must all be single-entry (from the Catch only; I will have
919  // split blocks to make this so), hence they all dominate.
920  while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
921    use_blk = use_blk->_idom;
922
923  // Find the successor
924  Node *fixup = NULL;
925
926  uint j;
927  for( j = 0; j < def_blk->_num_succs; j++ )
928    if( use_blk == def_blk->_succs[j] )
929      break;
930
931  if( j == def_blk->_num_succs ) {
932    // Block at same level in dom-tree is not a successor.  It needs a
933    // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
934    Node_Array inputs = new Node_List(Thread::current()->resource_area());
935    for(uint k = 1; k < use_blk->num_preds(); k++) {
936      inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
937    }
938
939    // Check to see if the use_blk already has an identical phi inserted.
940    // If it exists, it will be at the first position since all uses of a
941    // def are processed together.
942    Node *phi = use_blk->_nodes[1];
943    if( phi->is_Phi() ) {
944      fixup = phi;
945      for (uint k = 1; k < use_blk->num_preds(); k++) {
946        if (phi->in(k) != inputs[k]) {
947          // Not a match
948          fixup = NULL;
949          break;
950        }
951      }
952    }
953
954    // If an existing PhiNode was not found, make a new one.
955    if (fixup == NULL) {
956      Node *new_phi = PhiNode::make(use_blk->head(), def);
957      use_blk->_nodes.insert(1, new_phi);
958      bbs.map(new_phi->_idx, use_blk);
959      for (uint k = 1; k < use_blk->num_preds(); k++) {
960        new_phi->set_req(k, inputs[k]);
961      }
962      fixup = new_phi;
963    }
964
965  } else {
966    // Found the use just below the Catch.  Make it use the clone.
967    fixup = use_blk->_nodes[n_clone_idx];
968  }
969
970  return fixup;
971}
972
973//--------------------------catch_cleanup_intra_block--------------------------
974// Fix all input edges in use that reference "def".  The use is in the same
975// block as the def and both have been cloned in each successor block.
976static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
977
978  // Both the use and def have been cloned. For each successor block,
979  // get the clone of the use, and make its input the clone of the def
980  // found in that block.
981
982  uint use_idx = blk->find_node(use);
983  uint offset_idx = use_idx - beg;
984  for( uint k = 0; k < blk->_num_succs; k++ ) {
985    // Get clone in each successor block
986    Block *sb = blk->_succs[k];
987    Node *clone = sb->_nodes[offset_idx+1];
988    assert( clone->Opcode() == use->Opcode(), "" );
989
990    // Make use-clone reference the def-clone
991    catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
992  }
993}
994
995//------------------------------catch_cleanup_inter_block---------------------
996// Fix all input edges in use that reference "def".  The use is in a different
997// block than the def.
998static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
999  if( !use_blk ) return;        // Can happen if the use is a precedence edge
1000
1001  Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
1002  catch_cleanup_fix_all_inputs(use, def, new_def);
1003}
1004
1005//------------------------------call_catch_cleanup-----------------------------
1006// If we inserted any instructions between a Call and his CatchNode,
1007// clone the instructions on all paths below the Catch.
1008void Block::call_catch_cleanup(Block_Array &bbs) {
1009
1010  // End of region to clone
1011  uint end = end_idx();
1012  if( !_nodes[end]->is_Catch() ) return;
1013  // Start of region to clone
1014  uint beg = end;
1015  while(!_nodes[beg-1]->is_MachProj() ||
1016        !_nodes[beg-1]->in(0)->is_MachCall() ) {
1017    beg--;
1018    assert(beg > 0,"Catch cleanup walking beyond block boundary");
1019  }
1020  // Range of inserted instructions is [beg, end)
1021  if( beg == end ) return;
1022
1023  // Clone along all Catch output paths.  Clone area between the 'beg' and
1024  // 'end' indices.
1025  for( uint i = 0; i < _num_succs; i++ ) {
1026    Block *sb = _succs[i];
1027    // Clone the entire area; ignoring the edge fixup for now.
1028    for( uint j = end; j > beg; j-- ) {
1029      // It is safe here to clone a node with anti_dependence
1030      // since clones dominate on each path.
1031      Node *clone = _nodes[j-1]->clone();
1032      sb->_nodes.insert( 1, clone );
1033      bbs.map(clone->_idx,sb);
1034    }
1035  }
1036
1037
1038  // Fixup edges.  Check the def-use info per cloned Node
1039  for(uint i2 = beg; i2 < end; i2++ ) {
1040    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1041    Node *n = _nodes[i2];        // Node that got cloned
1042    // Need DU safe iterator because of edge manipulation in calls.
1043    Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1044    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1045      out->push(n->fast_out(j1));
1046    }
1047    uint max = out->size();
1048    for (uint j = 0; j < max; j++) {// For all users
1049      Node *use = out->pop();
1050      Block *buse = bbs[use->_idx];
1051      if( use->is_Phi() ) {
1052        for( uint k = 1; k < use->req(); k++ )
1053          if( use->in(k) == n ) {
1054            Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
1055            use->set_req(k, fixup);
1056          }
1057      } else {
1058        if (this == buse) {
1059          catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1060        } else {
1061          catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
1062        }
1063      }
1064    } // End for all users
1065
1066  } // End of for all Nodes in cloned area
1067
1068  // Remove the now-dead cloned ops
1069  for(uint i3 = beg; i3 < end; i3++ ) {
1070    _nodes[beg]->disconnect_inputs(NULL);
1071    _nodes.remove(beg);
1072  }
1073
1074  // If the successor blocks have a CreateEx node, move it back to the top
1075  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1076    Block *sb = _succs[i4];
1077    uint new_cnt = end - beg;
1078    // Remove any newly created, but dead, nodes.
1079    for( uint j = new_cnt; j > 0; j-- ) {
1080      Node *n = sb->_nodes[j];
1081      if (n->outcnt() == 0 &&
1082          (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1083        n->disconnect_inputs(NULL);
1084        sb->_nodes.remove(j);
1085        new_cnt--;
1086      }
1087    }
1088    // If any newly created nodes remain, move the CreateEx node to the top
1089    if (new_cnt > 0) {
1090      Node *cex = sb->_nodes[1+new_cnt];
1091      if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1092        sb->_nodes.remove(1+new_cnt);
1093        sb->_nodes.insert(1,cex);
1094      }
1095    }
1096  }
1097}
1098