coalesce.cpp revision 605:98cb887364d3
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_coalesce.cpp.incl"
27
28//=============================================================================
29//------------------------------reset_uf_map-----------------------------------
30void PhaseChaitin::reset_uf_map( uint maxlrg ) {
31  _maxlrg = maxlrg;
32  // Force the Union-Find mapping to be at least this large
33  _uf_map.extend(_maxlrg,0);
34  // Initialize it to be the ID mapping.
35  for( uint i=0; i<_maxlrg; i++ )
36    _uf_map.map(i,i);
37}
38
39//------------------------------compress_uf_map--------------------------------
40// Make all Nodes map directly to their final live range; no need for
41// the Union-Find mapping after this call.
42void PhaseChaitin::compress_uf_map_for_nodes( ) {
43  // For all Nodes, compress mapping
44  uint unique = _names.Size();
45  for( uint i=0; i<unique; i++ ) {
46    uint lrg = _names[i];
47    uint compressed_lrg = Find(lrg);
48    if( lrg != compressed_lrg )
49      _names.map(i,compressed_lrg);
50  }
51}
52
53//------------------------------Find-------------------------------------------
54// Straight out of Tarjan's union-find algorithm
55uint PhaseChaitin::Find_compress( uint lrg ) {
56  uint cur = lrg;
57  uint next = _uf_map[cur];
58  while( next != cur ) {        // Scan chain of equivalences
59    assert( next < cur, "always union smaller" );
60    cur = next;                 // until find a fixed-point
61    next = _uf_map[cur];
62  }
63  // Core of union-find algorithm: update chain of
64  // equivalences to be equal to the root.
65  while( lrg != next ) {
66    uint tmp = _uf_map[lrg];
67    _uf_map.map(lrg, next);
68    lrg = tmp;
69  }
70  return lrg;
71}
72
73//------------------------------Find-------------------------------------------
74// Straight out of Tarjan's union-find algorithm
75uint PhaseChaitin::Find_compress( const Node *n ) {
76  uint lrg = Find_compress(_names[n->_idx]);
77  _names.map(n->_idx,lrg);
78  return lrg;
79}
80
81//------------------------------Find_const-------------------------------------
82// Like Find above, but no path compress, so bad asymptotic behavior
83uint PhaseChaitin::Find_const( uint lrg ) const {
84  if( !lrg ) return lrg;        // Ignore the zero LRG
85  // Off the end?  This happens during debugging dumps when you got
86  // brand new live ranges but have not told the allocator yet.
87  if( lrg >= _maxlrg ) return lrg;
88  uint next = _uf_map[lrg];
89  while( next != lrg ) {        // Scan chain of equivalences
90    assert( next < lrg, "always union smaller" );
91    lrg = next;                 // until find a fixed-point
92    next = _uf_map[lrg];
93  }
94  return next;
95}
96
97//------------------------------Find-------------------------------------------
98// Like Find above, but no path compress, so bad asymptotic behavior
99uint PhaseChaitin::Find_const( const Node *n ) const {
100  if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump
101  return Find_const( _names[n->_idx] );
102}
103
104//------------------------------Union------------------------------------------
105// union 2 sets together.
106void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
107  uint src = Find(src_n);
108  uint dst = Find(dst_n);
109  assert( src, "" );
110  assert( dst, "" );
111  assert( src < _maxlrg, "oob" );
112  assert( dst < _maxlrg, "oob" );
113  assert( src < dst, "always union smaller" );
114  _uf_map.map(dst,src);
115}
116
117//------------------------------new_lrg----------------------------------------
118void PhaseChaitin::new_lrg( const Node *x, uint lrg ) {
119  // Make the Node->LRG mapping
120  _names.extend(x->_idx,lrg);
121  // Make the Union-Find mapping an identity function
122  _uf_map.extend(lrg,lrg);
123}
124
125//------------------------------clone_projs------------------------------------
126// After cloning some rematerialized instruction, clone any MachProj's that
127// follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
128// use G3 as an address temp.
129int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) {
130  Block *bcon = _cfg._bbs[con->_idx];
131  uint cindex = bcon->find_node(con);
132  Node *con_next = bcon->_nodes[cindex+1];
133  if( con_next->in(0) != con || con_next->Opcode() != Op_MachProj )
134    return false;               // No MachProj's follow
135
136  // Copy kills after the cloned constant
137  Node *kills = con_next->clone();
138  kills->set_req( 0, copy );
139  b->_nodes.insert( idx, kills );
140  _cfg._bbs.map( kills->_idx, b );
141  new_lrg( kills, maxlrg++ );
142  return true;
143}
144
145//------------------------------compact----------------------------------------
146// Renumber the live ranges to compact them.  Makes the IFG smaller.
147void PhaseChaitin::compact() {
148  // Current the _uf_map contains a series of short chains which are headed
149  // by a self-cycle.  All the chains run from big numbers to little numbers.
150  // The Find() call chases the chains & shortens them for the next Find call.
151  // We are going to change this structure slightly.  Numbers above a moving
152  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
153  // compacted live range with no further chaining.  There are no chains or
154  // cycles below 'i', so the Find call no longer works.
155  uint j=1;
156  uint i;
157  for( i=1; i < _maxlrg; i++ ) {
158    uint lr = _uf_map[i];
159    // Ignore unallocated live ranges
160    if( !lr ) continue;
161    assert( lr <= i, "" );
162    _uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]);
163  }
164  if( false )                  // PrintOptoCompactLiveRanges
165    printf("Compacted %d LRs from %d\n",i-j,i);
166  // Now change the Node->LR mapping to reflect the compacted names
167  uint unique = _names.Size();
168  for( i=0; i<unique; i++ )
169    _names.map(i,_uf_map[_names[i]]);
170
171  // Reset the Union-Find mapping
172  reset_uf_map(j);
173
174}
175
176//=============================================================================
177//------------------------------Dump-------------------------------------------
178#ifndef PRODUCT
179void PhaseCoalesce::dump( Node *n ) const {
180  // Being a const function means I cannot use 'Find'
181  uint r = _phc.Find(n);
182  tty->print("L%d/N%d ",r,n->_idx);
183}
184
185//------------------------------dump-------------------------------------------
186void PhaseCoalesce::dump() const {
187  // I know I have a block layout now, so I can print blocks in a loop
188  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
189    uint j;
190    Block *b = _phc._cfg._blocks[i];
191    // Print a nice block header
192    tty->print("B%d: ",b->_pre_order);
193    for( j=1; j<b->num_preds(); j++ )
194      tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
195    tty->print("-> ");
196    for( j=0; j<b->_num_succs; j++ )
197      tty->print("B%d ",b->_succs[j]->_pre_order);
198    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
199    uint cnt = b->_nodes.size();
200    for( j=0; j<cnt; j++ ) {
201      Node *n = b->_nodes[j];
202      dump( n );
203      tty->print("\t%s\t",n->Name());
204
205      // Dump the inputs
206      uint k;                   // Exit value of loop
207      for( k=0; k<n->req(); k++ ) // For all required inputs
208        if( n->in(k) ) dump( n->in(k) );
209        else tty->print("_ ");
210      int any_prec = 0;
211      for( ; k<n->len(); k++ )          // For all precedence inputs
212        if( n->in(k) ) {
213          if( !any_prec++ ) tty->print(" |");
214          dump( n->in(k) );
215        }
216
217      // Dump node-specific info
218      n->dump_spec(tty);
219      tty->print("\n");
220
221    }
222    tty->print("\n");
223  }
224}
225#endif
226
227//------------------------------combine_these_two------------------------------
228// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
229void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) {
230  uint lr1 = _phc.Find(n1);
231  uint lr2 = _phc.Find(n2);
232  if( lr1 != lr2 &&             // Different live ranges already AND
233      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
234    LRG *lrg1 = &_phc.lrgs(lr1);
235    LRG *lrg2 = &_phc.lrgs(lr2);
236    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
237
238    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
239    // and in general that's a bad thing.  However, int->oop conversions only
240    // happen at GC points, so the lifetime of the misclassified raw-pointer
241    // is from the CheckCastPP (that converts it to an oop) backwards up
242    // through a merge point and into the slow-path call, and around the
243    // diamond up to the heap-top check and back down into the slow-path call.
244    // The misclassified raw pointer is NOT live across the slow-path call,
245    // and so does not appear in any GC info, so the fact that it is
246    // misclassified is OK.
247
248    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
249        // Compatible final mask
250        lrg1->mask().overlap( lrg2->mask() ) ) {
251      // Merge larger into smaller.
252      if( lr1 > lr2 ) {
253        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
254        Node   *n =   n1;   n1 =   n2;   n2 =    n;
255        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
256      }
257      // Union lr2 into lr1
258      _phc.Union( n1, n2 );
259      if (lrg1->_maxfreq < lrg2->_maxfreq)
260        lrg1->_maxfreq = lrg2->_maxfreq;
261      // Merge in the IFG
262      _phc._ifg->Union( lr1, lr2 );
263      // Combine register restrictions
264      lrg1->AND(lrg2->mask());
265    }
266  }
267}
268
269//------------------------------coalesce_driver--------------------------------
270// Copy coalescing
271void PhaseCoalesce::coalesce_driver( ) {
272
273  verify();
274  // Coalesce from high frequency to low
275  for( uint i=0; i<_phc._cfg._num_blocks; i++ )
276    coalesce( _phc._blks[i] );
277
278}
279
280//------------------------------insert_copy_with_overlap-----------------------
281// I am inserting copies to come out of SSA form.  In the general case, I am
282// doing a parallel renaming.  I'm in the Named world now, so I can't do a
283// general parallel renaming.  All the copies now use  "names" (live-ranges)
284// to carry values instead of the explicit use-def chains.  Suppose I need to
285// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
286// If I insert them in the wrong order then L128 will get clobbered before it
287// can get used by the second copy.  This cannot happen in the SSA model;
288// direct use-def chains get me the right value.  It DOES happen in the named
289// model so I have to handle the reordering of copies.
290//
291// In general, I need to topo-sort the placed copies to avoid conflicts.
292// Its possible to have a closed cycle of copies (e.g., recirculating the same
293// values around a loop).  In this case I need a temp to break the cycle.
294void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
295
296  // Scan backwards for the locations of the last use of the dst_name.
297  // I am about to clobber the dst_name, so the copy must be inserted
298  // after the last use.  Last use is really first-use on a backwards scan.
299  uint i = b->end_idx()-1;
300  while( 1 ) {
301    Node *n = b->_nodes[i];
302    // Check for end of virtual copies; this is also the end of the
303    // parallel renaming effort.
304    if( n->_idx < _unique ) break;
305    uint idx = n->is_Copy();
306    assert( idx || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
307    if( idx && _phc.Find(n->in(idx)) == dst_name ) break;
308    i--;
309  }
310  uint last_use_idx = i;
311
312  // Also search for any kill of src_name that exits the block.
313  // Since the copy uses src_name, I have to come before any kill.
314  uint kill_src_idx = b->end_idx();
315  // There can be only 1 kill that exits any block and that is
316  // the last kill.  Thus it is the first kill on a backwards scan.
317  i = b->end_idx()-1;
318  while( 1 ) {
319    Node *n = b->_nodes[i];
320    // Check for end of virtual copies; this is also the end of the
321    // parallel renaming effort.
322    if( n->_idx < _unique ) break;
323    assert( n->is_Copy() || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
324    if( _phc.Find(n) == src_name ) {
325      kill_src_idx = i;
326      break;
327    }
328    i--;
329  }
330  // Need a temp?  Last use of dst comes after the kill of src?
331  if( last_use_idx >= kill_src_idx ) {
332    // Need to break a cycle with a temp
333    uint idx = copy->is_Copy();
334    Node *tmp = copy->clone();
335    _phc.new_lrg(tmp,_phc._maxlrg++);
336    // Insert new temp between copy and source
337    tmp ->set_req(idx,copy->in(idx));
338    copy->set_req(idx,tmp);
339    // Save source in temp early, before source is killed
340    b->_nodes.insert(kill_src_idx,tmp);
341    _phc._cfg._bbs.map( tmp->_idx, b );
342    last_use_idx++;
343  }
344
345  // Insert just after last use
346  b->_nodes.insert(last_use_idx+1,copy);
347}
348
349//------------------------------insert_copies----------------------------------
350void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
351  // We do LRGs compressing and fix a liveout data only here since the other
352  // place in Split() is guarded by the assert which we never hit.
353  _phc.compress_uf_map_for_nodes();
354  // Fix block's liveout data for compressed live ranges.
355  for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) {
356    uint compressed_lrg = _phc.Find(lrg);
357    if( lrg != compressed_lrg ) {
358      for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) {
359        IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
360        if( liveout->member(lrg) ) {
361          liveout->remove(lrg);
362          liveout->insert(compressed_lrg);
363        }
364      }
365    }
366  }
367
368  // All new nodes added are actual copies to replace virtual copies.
369  // Nodes with index less than '_unique' are original, non-virtual Nodes.
370  _unique = C->unique();
371
372  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
373    Block *b = _phc._cfg._blocks[i];
374    uint cnt = b->num_preds();  // Number of inputs to the Phi
375
376    for( uint l = 1; l<b->_nodes.size(); l++ ) {
377      Node *n = b->_nodes[l];
378
379      // Do not use removed-copies, use copied value instead
380      uint ncnt = n->req();
381      for( uint k = 1; k<ncnt; k++ ) {
382        Node *copy = n->in(k);
383        uint cidx = copy->is_Copy();
384        if( cidx ) {
385          Node *def = copy->in(cidx);
386          if( _phc.Find(copy) == _phc.Find(def) )
387            n->set_req(k,def);
388        }
389      }
390
391      // Remove any explicit copies that get coalesced.
392      uint cidx = n->is_Copy();
393      if( cidx ) {
394        Node *def = n->in(cidx);
395        if( _phc.Find(n) == _phc.Find(def) ) {
396          n->replace_by(def);
397          n->set_req(cidx,NULL);
398          b->_nodes.remove(l);
399          l--;
400          continue;
401        }
402      }
403
404      if( n->is_Phi() ) {
405        // Get the chosen name for the Phi
406        uint phi_name = _phc.Find( n );
407        // Ignore the pre-allocated specials
408        if( !phi_name ) continue;
409        // Check for mismatch inputs to Phi
410        for( uint j = 1; j<cnt; j++ ) {
411          Node *m = n->in(j);
412          uint src_name = _phc.Find(m);
413          if( src_name != phi_name ) {
414            Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
415            Node *copy;
416            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
417            // Rematerialize constants instead of copying them
418            if( m->is_Mach() && m->as_Mach()->is_Con() &&
419                m->as_Mach()->rematerialize() ) {
420              copy = m->clone();
421              // Insert the copy in the predecessor basic block
422              pred->add_inst(copy);
423              // Copy any flags as well
424              _phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg );
425            } else {
426              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
427              copy = new (C) MachSpillCopyNode(m,*rm,*rm);
428              // Find a good place to insert.  Kinda tricky, use a subroutine
429              insert_copy_with_overlap(pred,copy,phi_name,src_name);
430            }
431            // Insert the copy in the use-def chain
432            n->set_req( j, copy );
433            _phc._cfg._bbs.map( copy->_idx, pred );
434            // Extend ("register allocate") the names array for the copy.
435            _phc._names.extend( copy->_idx, phi_name );
436          } // End of if Phi names do not match
437        } // End of for all inputs to Phi
438      } else { // End of if Phi
439
440        // Now check for 2-address instructions
441        uint idx;
442        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
443          // Get the chosen name for the Node
444          uint name = _phc.Find( n );
445          assert( name, "no 2-address specials" );
446          // Check for name mis-match on the 2-address input
447          Node *m = n->in(idx);
448          if( _phc.Find(m) != name ) {
449            Node *copy;
450            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
451            // At this point it is unsafe to extend live ranges (6550579).
452            // Rematerialize only constants as we do for Phi above.
453            if( m->is_Mach() && m->as_Mach()->is_Con() &&
454                m->as_Mach()->rematerialize() ) {
455              copy = m->clone();
456              // Insert the copy in the basic block, just before us
457              b->_nodes.insert( l++, copy );
458              if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) )
459                l++;
460            } else {
461              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
462              copy = new (C) MachSpillCopyNode( m, *rm, *rm );
463              // Insert the copy in the basic block, just before us
464              b->_nodes.insert( l++, copy );
465            }
466            // Insert the copy in the use-def chain
467            n->set_req(idx, copy );
468            // Extend ("register allocate") the names array for the copy.
469            _phc._names.extend( copy->_idx, name );
470            _phc._cfg._bbs.map( copy->_idx, b );
471          }
472
473        } // End of is two-adr
474
475        // Insert a copy at a debug use for a lrg which has high frequency
476        if( (b->_freq < OPTO_DEBUG_SPLIT_FREQ) && n->is_MachSafePoint() ) {
477          // Walk the debug inputs to the node and check for lrg freq
478          JVMState* jvms = n->jvms();
479          uint debug_start = jvms ? jvms->debug_start() : 999999;
480          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
481          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
482            // Do not split monitors; they are only needed for debug table
483            // entries and need no code.
484            if( jvms->is_monitor_use(inpidx) ) continue;
485            Node *inp = n->in(inpidx);
486            uint nidx = _phc.n2lidx(inp);
487            LRG &lrg = lrgs(nidx);
488
489            // If this lrg has a high frequency use/def
490            if( lrg._maxfreq >= OPTO_LRG_HIGH_FREQ ) {
491              // If the live range is also live out of this block (like it
492              // would be for a fast/slow idiom), the normal spill mechanism
493              // does an excellent job.  If it is not live out of this block
494              // (like it would be for debug info to uncommon trap) splitting
495              // the live range now allows a better allocation in the high
496              // frequency blocks.
497              //   Build_IFG_virtual has converted the live sets to
498              // live-IN info, not live-OUT info.
499              uint k;
500              for( k=0; k < b->_num_succs; k++ )
501                if( _phc._live->live(b->_succs[k])->member( nidx ) )
502                  break;      // Live in to some successor block?
503              if( k < b->_num_succs )
504                continue;     // Live out; do not pre-split
505              // Split the lrg at this use
506              const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
507              Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
508              // Insert the copy in the use-def chain
509              n->set_req(inpidx, copy );
510              // Insert the copy in the basic block, just before us
511              b->_nodes.insert( l++, copy );
512              // Extend ("register allocate") the names array for the copy.
513              _phc.new_lrg( copy, _phc._maxlrg++ );
514              _phc._cfg._bbs.map( copy->_idx, b );
515              //tty->print_cr("Split a debug use in Aggressive Coalesce");
516            }  // End of if high frequency use/def
517          }  // End of for all debug inputs
518        }  // End of if low frequency safepoint
519
520      } // End of if Phi
521
522    } // End of for all instructions
523  } // End of for all blocks
524}
525
526//=============================================================================
527//------------------------------coalesce---------------------------------------
528// Aggressive (but pessimistic) copy coalescing of a single block
529
530// The following coalesce pass represents a single round of aggressive
531// pessimistic coalesce.  "Aggressive" means no attempt to preserve
532// colorability when coalescing.  This occasionally means more spills, but
533// it also means fewer rounds of coalescing for better code - and that means
534// faster compiles.
535
536// "Pessimistic" means we do not hit the fixed point in one pass (and we are
537// reaching for the least fixed point to boot).  This is typically solved
538// with a few more rounds of coalescing, but the compiler must run fast.  We
539// could optimistically coalescing everything touching PhiNodes together
540// into one big live range, then check for self-interference.  Everywhere
541// the live range interferes with self it would have to be split.  Finding
542// the right split points can be done with some heuristics (based on
543// expected frequency of edges in the live range).  In short, it's a real
544// research problem and the timeline is too short to allow such research.
545// Further thoughts: (1) build the LR in a pass, (2) find self-interference
546// in another pass, (3) per each self-conflict, split, (4) split by finding
547// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
548// according to the GCM algorithm (or just exec freq on CFG edges).
549
550void PhaseAggressiveCoalesce::coalesce( Block *b ) {
551  // Copies are still "virtual" - meaning we have not made them explicitly
552  // copies.  Instead, Phi functions of successor blocks have mis-matched
553  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
554  // up the live-ranges.  Check for Phis in successor blocks.
555  uint i;
556  for( i=0; i<b->_num_succs; i++ ) {
557    Block *bs = b->_succs[i];
558    // Find index of 'b' in 'bs' predecessors
559    uint j=1;
560    while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
561    // Visit all the Phis in successor block
562    for( uint k = 1; k<bs->_nodes.size(); k++ ) {
563      Node *n = bs->_nodes[k];
564      if( !n->is_Phi() ) break;
565      combine_these_two( n, n->in(j) );
566    }
567  } // End of for all successor blocks
568
569
570  // Check _this_ block for 2-address instructions and copies.
571  uint cnt = b->end_idx();
572  for( i = 1; i<cnt; i++ ) {
573    Node *n = b->_nodes[i];
574    uint idx;
575    // 2-address instructions have a virtual Copy matching their input
576    // to their output
577    if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
578      MachNode *mach = n->as_Mach();
579      combine_these_two( mach, mach->in(idx) );
580    }
581  } // End of for all instructions in block
582}
583
584//=============================================================================
585//------------------------------PhaseConservativeCoalesce----------------------
586PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) {
587  _ulr.initialize(_phc._maxlrg);
588}
589
590//------------------------------verify-----------------------------------------
591void PhaseConservativeCoalesce::verify() {
592#ifdef ASSERT
593  _phc.set_was_low();
594#endif
595}
596
597//------------------------------union_helper-----------------------------------
598void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
599  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
600  // union-find tree
601  _phc.Union( lr1_node, lr2_node );
602
603  // Single-def live range ONLY if both live ranges are single-def.
604  // If both are single def, then src_def powers one live range
605  // and def_copy powers the other.  After merging, src_def powers
606  // the combined live range.
607  lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
608                        lrgs(lr2).is_multidef() )
609    ? NodeSentinel : src_def;
610  lrgs(lr2)._def = NULL;    // No def for lrg 2
611  lrgs(lr2).Clear();        // Force empty mask for LRG 2
612  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
613  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
614  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
615
616  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
617    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
618
619  // Copy original value instead.  Intermediate copies go dead, and
620  // the dst_copy becomes useless.
621  int didx = dst_copy->is_Copy();
622  dst_copy->set_req( didx, src_def );
623  // Add copy to free list
624  // _phc.free_spillcopy(b->_nodes[bindex]);
625  assert( b->_nodes[bindex] == dst_copy, "" );
626  dst_copy->replace_by( dst_copy->in(didx) );
627  dst_copy->set_req( didx, NULL);
628  b->_nodes.remove(bindex);
629  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
630  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
631
632  // Stretched lr1; add it to liveness of intermediate blocks
633  Block *b2 = _phc._cfg._bbs[src_copy->_idx];
634  while( b != b2 ) {
635    b = _phc._cfg._bbs[b->pred(1)->_idx];
636    _phc._live->live(b)->insert(lr1);
637  }
638}
639
640//------------------------------compute_separating_interferences---------------
641// Factored code from copy_copy that computes extra interferences from
642// lengthening a live range by double-coalescing.
643uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
644
645  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
646  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
647  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
648  Block *b2 = b;
649  uint bindex2 = bindex;
650  while( 1 ) {
651    // Find previous instruction
652    bindex2--;                  // Chain backwards 1 instruction
653    while( bindex2 == 0 ) {     // At block start, find prior block
654      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
655      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
656      bindex2 = b2->end_idx()-1;
657    }
658    // Get prior instruction
659    assert(bindex2 < b2->_nodes.size(), "index out of bounds");
660    Node *x = b2->_nodes[bindex2];
661    if( x == prev_copy ) {      // Previous copy in copy chain?
662      if( prev_copy == src_copy)// Found end of chain and all interferences
663        break;                  // So break out of loop
664      // Else work back one in copy chain
665      prev_copy = prev_copy->in(prev_copy->is_Copy());
666    } else {                    // Else collect interferences
667      uint lidx = _phc.Find(x);
668      // Found another def of live-range being stretched?
669      if( lidx == lr1 ) return max_juint;
670      if( lidx == lr2 ) return max_juint;
671
672      // If we attempt to coalesce across a bound def
673      if( lrgs(lidx).is_bound() ) {
674        // Do not let the coalesced LRG expect to get the bound color
675        rm.SUBTRACT( lrgs(lidx).mask() );
676        // Recompute rm_size
677        rm_size = rm.Size();
678        //if( rm._flags ) rm_size += 1000000;
679        if( reg_degree >= rm_size ) return max_juint;
680      }
681      if( rm.overlap(lrgs(lidx).mask()) ) {
682        // Insert lidx into union LRG; returns TRUE if actually inserted
683        if( _ulr.insert(lidx) ) {
684          // Infinite-stack neighbors do not alter colorability, as they
685          // can always color to some other color.
686          if( !lrgs(lidx).mask().is_AllStack() ) {
687            // If this coalesce will make any new neighbor uncolorable,
688            // do not coalesce.
689            if( lrgs(lidx).just_lo_degree() )
690              return max_juint;
691            // Bump our degree
692            if( ++reg_degree >= rm_size )
693              return max_juint;
694          } // End of if not infinite-stack neighbor
695        } // End of if actually inserted
696      } // End of if live range overlaps
697    } // End of else collect interferences for 1 node
698  } // End of while forever, scan back for interferences
699  return reg_degree;
700}
701
702//------------------------------update_ifg-------------------------------------
703void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
704  // Some original neighbors of lr1 might have gone away
705  // because the constrained register mask prevented them.
706  // Remove lr1 from such neighbors.
707  IndexSetIterator one(n_lr1);
708  uint neighbor;
709  LRG &lrg1 = lrgs(lr1);
710  while ((neighbor = one.next()) != 0)
711    if( !_ulr.member(neighbor) )
712      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
713        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
714
715
716  // lr2 is now called (coalesced into) lr1.
717  // Remove lr2 from the IFG.
718  IndexSetIterator two(n_lr2);
719  LRG &lrg2 = lrgs(lr2);
720  while ((neighbor = two.next()) != 0)
721    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
722      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
723
724  // Some neighbors of intermediate copies now interfere with the
725  // combined live range.
726  IndexSetIterator three(&_ulr);
727  while ((neighbor = three.next()) != 0)
728    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
729      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
730}
731
732//------------------------------record_bias------------------------------------
733static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
734  // Tag copy bias here
735  if( !ifg->lrgs(lr1)._copy_bias )
736    ifg->lrgs(lr1)._copy_bias = lr2;
737  if( !ifg->lrgs(lr2)._copy_bias )
738    ifg->lrgs(lr2)._copy_bias = lr1;
739}
740
741//------------------------------copy_copy--------------------------------------
742// See if I can coalesce a series of multiple copies together.  I need the
743// final dest copy and the original src copy.  They can be the same Node.
744// Compute the compatible register masks.
745bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
746
747  if( !dst_copy->is_SpillCopy() ) return false;
748  if( !src_copy->is_SpillCopy() ) return false;
749  Node *src_def = src_copy->in(src_copy->is_Copy());
750  uint lr1 = _phc.Find(dst_copy);
751  uint lr2 = _phc.Find(src_def );
752
753  // Same live ranges already?
754  if( lr1 == lr2 ) return false;
755
756  // Interfere?
757  if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false;
758
759  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
760  if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast
761    return false;
762
763  // Coalescing between an aligned live range and a mis-aligned live range?
764  // No, no!  Alignment changes how we count degree.
765  if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj )
766    return false;
767
768  // Sort; use smaller live-range number
769  Node *lr1_node = dst_copy;
770  Node *lr2_node = src_def;
771  if( lr1 > lr2 ) {
772    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
773    lr1_node = src_def;  lr2_node = dst_copy;
774  }
775
776  // Check for compatibility of the 2 live ranges by
777  // intersecting their allowed register sets.
778  RegMask rm = lrgs(lr1).mask();
779  rm.AND(lrgs(lr2).mask());
780  // Number of bits free
781  uint rm_size = rm.Size();
782
783  // If we can use any stack slot, then effective size is infinite
784  if( rm.is_AllStack() ) rm_size += 1000000;
785  // Incompatible masks, no way to coalesce
786  if( rm_size == 0 ) return false;
787
788  // Another early bail-out test is when we are double-coalescing and the
789  // 2 copies are separated by some control flow.
790  if( dst_copy != src_copy ) {
791    Block *src_b = _phc._cfg._bbs[src_copy->_idx];
792    Block *b2 = b;
793    while( b2 != src_b ) {
794      if( b2->num_preds() > 2 ){// Found merge-point
795        _phc._lost_opp_cflow_coalesce++;
796        // extra record_bias commented out because Chris believes it is not
797        // productive.  Since we can record only 1 bias, we want to choose one
798        // that stands a chance of working and this one probably does not.
799        //record_bias( _phc._lrgs, lr1, lr2 );
800        return false;           // To hard to find all interferences
801      }
802      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
803    }
804  }
805
806  // Union the two interference sets together into '_ulr'
807  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
808
809  if( reg_degree >= rm_size ) {
810    record_bias( _phc._ifg, lr1, lr2 );
811    return false;
812  }
813
814  // Now I need to compute all the interferences between dst_copy and
815  // src_copy.  I'm not willing visit the entire interference graph, so
816  // I limit my search to things in dst_copy's block or in a straight
817  // line of previous blocks.  I give up at merge points or when I get
818  // more interferences than my degree.  I can stop when I find src_copy.
819  if( dst_copy != src_copy ) {
820    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
821    if( reg_degree == max_juint ) {
822      record_bias( _phc._ifg, lr1, lr2 );
823      return false;
824    }
825  } // End of if dst_copy & src_copy are different
826
827
828  // ---- THE COMBINED LRG IS COLORABLE ----
829
830  // YEAH - Now coalesce this copy away
831  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
832
833  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
834  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
835
836  // Update the interference graph
837  update_ifg(lr1, lr2, n_lr1, n_lr2);
838
839  _ulr.remove(lr1);
840
841  // Uncomment the following code to trace Coalescing in great detail.
842  //
843  //if (false) {
844  //  tty->cr();
845  //  tty->print_cr("#######################################");
846  //  tty->print_cr("union %d and %d", lr1, lr2);
847  //  n_lr1->dump();
848  //  n_lr2->dump();
849  //  tty->print_cr("resulting set is");
850  //  _ulr.dump();
851  //}
852
853  // Replace n_lr1 with the new combined live range.  _ulr will use
854  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
855  // send its internal memory to the free list.
856  _ulr.swap(n_lr1);
857  _ulr.clear();
858  n_lr2->clear();
859
860  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
861  lrgs(lr2).set_degree( 0 );
862
863  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
864  // union-find tree
865  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
866  // Combine register restrictions
867  lrgs(lr1).set_mask(rm);
868  lrgs(lr1).compute_set_mask_size();
869  lrgs(lr1)._cost += lrgs(lr2)._cost;
870  lrgs(lr1)._area += lrgs(lr2)._area;
871
872  // While its uncommon to successfully coalesce live ranges that started out
873  // being not-lo-degree, it can happen.  In any case the combined coalesced
874  // live range better Simplify nicely.
875  lrgs(lr1)._was_lo = 1;
876
877  // kinda expensive to do all the time
878  //tty->print_cr("warning: slow verify happening");
879  //_phc._ifg->verify( &_phc );
880  return true;
881}
882
883//------------------------------coalesce---------------------------------------
884// Conservative (but pessimistic) copy coalescing of a single block
885void PhaseConservativeCoalesce::coalesce( Block *b ) {
886  // Bail out on infrequent blocks
887  if( b->is_uncommon(_phc._cfg._bbs) )
888    return;
889  // Check this block for copies.
890  for( uint i = 1; i<b->end_idx(); i++ ) {
891    // Check for actual copies on inputs.  Coalesce a copy into its
892    // input if use and copy's input are compatible.
893    Node *copy1 = b->_nodes[i];
894    uint idx1 = copy1->is_Copy();
895    if( !idx1 ) continue;       // Not a copy
896
897    if( copy_copy(copy1,copy1,b,i) ) {
898      i--;                      // Retry, same location in block
899      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
900      continue;
901    }
902
903    /* do not attempt pairs.  About 1/2 of all pairs can be removed by
904       post-alloc.  The other set are too few to bother.
905    Node *copy2 = copy1->in(idx1);
906    uint idx2 = copy2->is_Copy();
907    if( !idx2 ) continue;
908    if( copy_copy(copy1,copy2,b,i) ) {
909      i--;                      // Retry, same location in block
910      PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success
911      continue;
912    }
913    */
914  }
915}
916