chaitin.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25class LoopTree;
26class MachCallNode;
27class MachSafePointNode;
28class Matcher;
29class PhaseCFG;
30class PhaseLive;
31class PhaseRegAlloc;
32class   PhaseChaitin;
33
34#define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
35#define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
36
37//------------------------------LRG--------------------------------------------
38// Live-RanGe structure.
39class LRG : public ResourceObj {
40public:
41  enum { SPILL_REG=29999 };     // Register number of a spilled LRG
42
43  double _cost;                 // 2 for loads/1 for stores times block freq
44  double _area;                 // Sum of all simultaneously live values
45  double score() const;         // Compute score from cost and area
46  double _maxfreq;              // Maximum frequency of any def or use
47
48  Node *_def;                   // Check for multi-def live ranges
49#ifndef PRODUCT
50  GrowableArray<Node*>* _defs;
51#endif
52
53  uint _risk_bias;              // Index of LRG which we want to avoid color
54  uint _copy_bias;              // Index of LRG which we want to share color
55
56  uint _next;                   // Index of next LRG in linked list
57  uint _prev;                   // Index of prev LRG in linked list
58private:
59  uint _reg;                    // Chosen register; undefined if mask is plural
60public:
61  // Return chosen register for this LRG.  Error if the LRG is not bound to
62  // a single register.
63  OptoReg::Name reg() const { return OptoReg::Name(_reg); }
64  void set_reg( OptoReg::Name r ) { _reg = r; }
65
66private:
67  uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
68public:
69  int degree() const { assert( _degree_valid, "" ); return _eff_degree; }
70  // Degree starts not valid and any change to the IFG neighbor
71  // set makes it not valid.
72  void set_degree( uint degree ) { _eff_degree = degree; debug_only(_degree_valid = 1;) }
73  // Made a change that hammered degree
74  void invalid_degree() { debug_only(_degree_valid=0;) }
75  // Incrementally modify degree.  If it was correct, it should remain correct
76  void inc_degree( uint mod ) { _eff_degree += mod; }
77  // Compute the degree between 2 live ranges
78  int compute_degree( LRG &l ) const;
79
80private:
81  RegMask _mask;                // Allowed registers for this LRG
82  uint _mask_size;              // cache of _mask.Size();
83public:
84  int compute_mask_size() const { return _mask.is_AllStack() ? 65535 : _mask.Size(); }
85  void set_mask_size( int size ) {
86    assert((size == 65535) || (size == (int)_mask.Size()), "");
87    _mask_size = size;
88    debug_only(_msize_valid=1;)
89    debug_only( if( _num_regs == 2 && !_fat_proj ) _mask.VerifyPairs(); )
90  }
91  void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
92  int mask_size() const { assert( _msize_valid, "mask size not valid" );
93                          return _mask_size; }
94  // Get the last mask size computed, even if it does not match the
95  // count of bits in the current mask.
96  int get_invalid_mask_size() const { return _mask_size; }
97  const RegMask &mask() const { return _mask; }
98  void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
99  void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
100  void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
101  void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
102  void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
103  void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
104  void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
105  void ClearToPairs() { _mask.ClearToPairs(); debug_only(_msize_valid=0;) }
106
107  // Number of registers this live range uses when it colors
108private:
109  uint8 _num_regs;              // 2 for Longs and Doubles, 1 for all else
110                                // except _num_regs is kill count for fat_proj
111public:
112  int num_regs() const { return _num_regs; }
113  void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
114
115private:
116  // Number of physical registers this live range uses when it colors
117  // Architecture and register-set dependent
118  uint8 _reg_pressure;
119public:
120  void set_reg_pressure(int i)  { _reg_pressure = i; }
121  int      reg_pressure() const { return _reg_pressure; }
122
123  // How much 'wiggle room' does this live range have?
124  // How many color choices can it make (scaled by _num_regs)?
125  int degrees_of_freedom() const { return mask_size() - _num_regs; }
126  // Bound LRGs have ZERO degrees of freedom.  We also count
127  // must_spill as bound.
128  bool is_bound  () const { return _is_bound; }
129  // Negative degrees-of-freedom; even with no neighbors this
130  // live range must spill.
131  bool not_free() const { return degrees_of_freedom() <  0; }
132  // Is this live range of "low-degree"?  Trivially colorable?
133  bool lo_degree () const { return degree() <= degrees_of_freedom(); }
134  // Is this live range just barely "low-degree"?  Trivially colorable?
135  bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
136
137  uint   _is_oop:1,             // Live-range holds an oop
138         _is_float:1,           // True if in float registers
139         _was_spilled1:1,       // True if prior spilling on def
140         _was_spilled2:1,       // True if twice prior spilling on def
141         _is_bound:1,           // live range starts life with no
142                                // degrees of freedom.
143         _direct_conflict:1,    // True if def and use registers in conflict
144         _must_spill:1,         // live range has lost all degrees of freedom
145    // If _fat_proj is set, live range does NOT require aligned, adjacent
146    // registers and has NO interferences.
147    // If _fat_proj is clear, live range requires num_regs() to be a power of
148    // 2, and it requires registers to form an aligned, adjacent set.
149         _fat_proj:1,           //
150         _was_lo:1,             // Was lo-degree prior to coalesce
151         _msize_valid:1,        // _mask_size cache valid
152         _degree_valid:1,       // _degree cache valid
153         _has_copy:1,           // Adjacent to some copy instruction
154         _at_risk:1;            // Simplify says this guy is at risk to spill
155
156
157  // Alive if non-zero, dead if zero
158  bool alive() const { return _def != NULL; }
159  bool is_multidef() const { return _def == NodeSentinel; }
160  bool is_singledef() const { return _def != NodeSentinel; }
161
162#ifndef PRODUCT
163  void dump( ) const;
164#endif
165};
166
167//------------------------------LRG_List---------------------------------------
168// Map Node indices to Live RanGe indices.
169// Array lookup in the optimized case.
170class LRG_List : public ResourceObj {
171  uint _cnt, _max;
172  uint* _lidxs;
173  ReallocMark _nesting;         // assertion check for reallocations
174public:
175  LRG_List( uint max );
176
177  uint lookup( uint nidx ) const {
178    return _lidxs[nidx];
179  }
180  uint operator[] (uint nidx) const { return lookup(nidx); }
181
182  void map( uint nidx, uint lidx ) {
183    assert( nidx < _cnt, "oob" );
184    _lidxs[nidx] = lidx;
185  }
186  void extend( uint nidx, uint lidx );
187
188  uint Size() const { return _cnt; }
189};
190
191//------------------------------IFG--------------------------------------------
192//                         InterFerence Graph
193// An undirected graph implementation.  Created with a fixed number of
194// vertices.  Edges can be added & tested.  Vertices can be removed, then
195// added back later with all edges intact.  Can add edges between one vertex
196// and a list of other vertices.  Can union vertices (and their edges)
197// together.  The IFG needs to be really really fast, and also fairly
198// abstract!  It needs abstraction so I can fiddle with the implementation to
199// get even more speed.
200class PhaseIFG : public Phase {
201  // Current implementation: a triangular adjacency list.
202
203  // Array of adjacency-lists, indexed by live-range number
204  IndexSet *_adjs;
205
206  // Assertion bit for proper use of Squaring
207  bool _is_square;
208
209  // Live range structure goes here
210  LRG *_lrgs;                   // Array of LRG structures
211
212public:
213  // Largest live-range number
214  uint _maxlrg;
215
216  Arena *_arena;
217
218  // Keep track of inserted and deleted Nodes
219  VectorSet *_yanked;
220
221  PhaseIFG( Arena *arena );
222  void init( uint maxlrg );
223
224  // Add edge between a and b.  Returns true if actually addded.
225  int add_edge( uint a, uint b );
226
227  // Add edge between a and everything in the vector
228  void add_vector( uint a, IndexSet *vec );
229
230  // Test for edge existance
231  int test_edge( uint a, uint b ) const;
232
233  // Square-up matrix for faster Union
234  void SquareUp();
235
236  // Return number of LRG neighbors
237  uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
238  // Union edges of b into a on Squared-up matrix
239  void Union( uint a, uint b );
240  // Test for edge in Squared-up matrix
241  int test_edge_sq( uint a, uint b ) const;
242  // Yank a Node and all connected edges from the IFG.  Be prepared to
243  // re-insert the yanked Node in reverse order of yanking.  Return a
244  // list of neighbors (edges) yanked.
245  IndexSet *remove_node( uint a );
246  // Reinsert a yanked Node
247  void re_insert( uint a );
248  // Return set of neighbors
249  IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
250
251#ifndef PRODUCT
252  // Dump the IFG
253  void dump() const;
254  void stats() const;
255  void verify( const PhaseChaitin * ) const;
256#endif
257
258  //--------------- Live Range Accessors
259  LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
260
261  // Compute and set effective degree.  Might be folded into SquareUp().
262  void Compute_Effective_Degree();
263
264  // Compute effective degree as the sum of neighbors' _sizes.
265  int effective_degree( uint lidx ) const;
266};
267
268// TEMPORARILY REPLACED WITH COMMAND LINE FLAG
269
270//// !!!!! Magic Constants need to move into ad file
271#ifdef SPARC
272//#define FLOAT_PRESSURE 30  /*     SFLT_REG_mask.Size() - 1 */
273//#define INT_PRESSURE   23  /* NOTEMP_I_REG_mask.Size() - 1 */
274#define FLOAT_INCREMENT(regs) regs
275#else
276//#define FLOAT_PRESSURE 6
277//#define INT_PRESSURE   6
278#define FLOAT_INCREMENT(regs) 1
279#endif
280
281//------------------------------Chaitin----------------------------------------
282// Briggs-Chaitin style allocation, mostly.
283class PhaseChaitin : public PhaseRegAlloc {
284
285  int _trip_cnt;
286  int _alternate;
287
288  uint _maxlrg;                 // Max live range number
289  LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
290  PhaseLive *_live;             // Liveness, used in the interference graph
291  PhaseIFG *_ifg;               // Interference graph (for original chunk)
292  Node_List **_lrg_nodes;       // Array of node; lists for lrgs which spill
293  VectorSet _spilled_once;      // Nodes that have been spilled
294  VectorSet _spilled_twice;     // Nodes that have been spilled twice
295
296  LRG_List _names;              // Map from Nodes to Live RanGes
297
298  // Union-find map.  Declared as a short for speed.
299  // Indexed by live-range number, it returns the compacted live-range number
300  LRG_List _uf_map;
301  // Reset the Union-Find map to identity
302  void reset_uf_map( uint maxlrg );
303  // Remove the need for the Union-Find mapping
304  void compress_uf_map_for_nodes( );
305
306  // Combine the Live Range Indices for these 2 Nodes into a single live
307  // range.  Future requests for any Node in either live range will
308  // return the live range index for the combined live range.
309  void Union( const Node *src, const Node *dst );
310
311  void new_lrg( const Node *x, uint lrg );
312
313  // Compact live ranges, removing unused ones.  Return new maxlrg.
314  void compact();
315
316  uint _lo_degree;              // Head of lo-degree LRGs list
317  uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
318  uint _hi_degree;              // Head of hi-degree LRGs list
319  uint _simplified;             // Linked list head of simplified LRGs
320
321  // Helper functions for Split()
322  uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
323  uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
324  int clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg );
325  Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
326                            int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
327  // True if lidx is used before any real register is def'd in the block
328  bool prompt_use( Block *b, uint lidx );
329  Node *get_spillcopy_wide( Node *def, Node *use, uint uidx );
330  // Insert the spill at chosen location.  Skip over any intervening Proj's or
331  // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
332  // instead.  Update high-pressure indices.  Create a new live range.
333  void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
334
335  bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
336
337  uint _oldphi;                 // Node index which separates pre-allocation nodes
338
339  Block **_blks;                // Array of blocks sorted by frequency for coalescing
340
341  float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
342
343#ifndef PRODUCT
344  bool _trace_spilling;
345#endif
346
347public:
348  PhaseChaitin( uint unique, PhaseCFG &cfg, Matcher &matcher );
349  ~PhaseChaitin() {}
350
351  // Convert a Node into a Live Range Index - a lidx
352  uint Find( const Node *n ) {
353    uint lidx = n2lidx(n);
354    uint uf_lidx = _uf_map[lidx];
355    return (uf_lidx == lidx) ? uf_lidx : Find_compress(n);
356  }
357  uint Find_const( uint lrg ) const;
358  uint Find_const( const Node *n ) const;
359
360  // Do all the real work of allocate
361  void Register_Allocate();
362
363  uint n2lidx( const Node *n ) const { return _names[n->_idx]; }
364
365  float high_frequency_lrg() const { return _high_frequency_lrg; }
366
367#ifndef PRODUCT
368  bool trace_spilling() const { return _trace_spilling; }
369#endif
370
371private:
372  // De-SSA the world.  Assign registers to Nodes.  Use the same register for
373  // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
374  // copies as needed.
375  void de_ssa();
376  uint Find_compress( const Node *n );
377  uint Find( uint lidx ) {
378    uint uf_lidx = _uf_map[lidx];
379    return (uf_lidx == lidx) ? uf_lidx : Find_compress(lidx);
380  }
381  uint Find_compress( uint lidx );
382
383  uint Find_id( const Node *n ) {
384    uint retval = n2lidx(n);
385    assert(retval == Find(n),"Invalid node to lidx mapping");
386    return retval;
387  }
388
389  // Add edge between reg and everything in the vector.
390  // Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
391  // information to trim the set of interferences.  Return the
392  // count of edges added.
393  void interfere_with_live( uint reg, IndexSet *live );
394  // Count register pressure for asserts
395  uint count_int_pressure( IndexSet *liveout );
396  uint count_float_pressure( IndexSet *liveout );
397
398  // Build the interference graph using virtual registers only.
399  // Used for aggressive coalescing.
400  void build_ifg_virtual( );
401
402  // Build the interference graph using physical registers when available.
403  // That is, if 2 live ranges are simultaneously alive but in their
404  // acceptable register sets do not overlap, then they do not interfere.
405  uint build_ifg_physical( ResourceArea *a );
406
407  // Gather LiveRanGe information, including register masks and base pointer/
408  // derived pointer relationships.
409  void gather_lrg_masks( bool mod_cisc_masks );
410
411  // Force the bases of derived pointers to be alive at GC points.
412  bool stretch_base_pointer_live_ranges( ResourceArea *a );
413  // Helper to stretch above; recursively discover the base Node for
414  // a given derived Node.  Easy for AddP-related machine nodes, but
415  // needs to be recursive for derived Phis.
416  Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
417
418  // Set the was-lo-degree bit.  Conservative coalescing should not change the
419  // colorability of the graph.  If any live range was of low-degree before
420  // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
421  void set_was_low();
422
423  // Split live-ranges that must spill due to register conflicts (as opposed
424  // to capacity spills).  Typically these are things def'd in a register
425  // and used on the stack or vice-versa.
426  void pre_spill();
427
428  // Init LRG caching of degree, numregs.  Init lo_degree list.
429  void cache_lrg_info( );
430
431  // Simplify the IFG by removing LRGs of low degree with no copies
432  void Pre_Simplify();
433
434  // Simplify the IFG by removing LRGs of low degree
435  void Simplify();
436
437  // Select colors by re-inserting edges into the IFG.
438  // Return TRUE if any spills occurred.
439  uint Select( );
440  // Helper function for select which allows biased coloring
441  OptoReg::Name choose_color( LRG &lrg, int chunk );
442  // Helper function which implements biasing heuristic
443  OptoReg::Name bias_color( LRG &lrg, int chunk );
444
445  // Split uncolorable live ranges
446  // Return new number of live ranges
447  uint Split( uint maxlrg );
448
449  // Copy 'was_spilled'-edness from one Node to another.
450  void copy_was_spilled( Node *src, Node *dst );
451  // Set the 'spilled_once' or 'spilled_twice' flag on a node.
452  void set_was_spilled( Node *n );
453
454  // Convert ideal spill-nodes into machine loads & stores
455  // Set C->failing when fixup spills could not complete, node limit exceeded.
456  void fixup_spills();
457
458  // Post-Allocation peephole copy removal
459  void post_allocate_copy_removal();
460  Node *skip_copies( Node *c );
461  // Replace the old node with the current live version of that value
462  // and yank the old value if it's dead.
463  int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
464                                Block *current_block, Node_List& value, Node_List& regnd ) {
465    Node* v = regnd[nreg];
466    assert(v->outcnt() != 0, "no dead values");
467    old->replace_by(v);
468    return yank_if_dead(old, current_block, &value, &regnd);
469  }
470
471  int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
472  int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
473  int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
474  bool may_be_copy_of_callee( Node *def ) const;
475
476  // If nreg already contains the same constant as val then eliminate it
477  bool eliminate_copy_of_constant(Node* val, Node* n,
478                                  Block *current_block, Node_List& value, Node_List &regnd,
479                                  OptoReg::Name nreg, OptoReg::Name nreg2);
480  // Extend the node to LRG mapping
481  void add_reference( const Node *node, const Node *old_node);
482
483private:
484
485  static int _final_loads, _final_stores, _final_copies, _final_memoves;
486  static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
487  static int _conserv_coalesce, _conserv_coalesce_pair;
488  static int _conserv_coalesce_trie, _conserv_coalesce_quad;
489  static int _post_alloc;
490  static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
491  static int _used_cisc_instructions, _unused_cisc_instructions;
492  static int _allocator_attempts, _allocator_successes;
493
494#ifndef PRODUCT
495  static uint _high_pressure, _low_pressure;
496
497  void dump() const;
498  void dump( const Node *n ) const;
499  void dump( const Block * b ) const;
500  void dump_degree_lists() const;
501  void dump_simplified() const;
502  void dump_lrg( uint lidx ) const;
503  void dump_bb( uint pre_order ) const;
504
505  // Verify that base pointers and derived pointers are still sane
506  void verify_base_ptrs( ResourceArea *a ) const;
507
508  void verify( ResourceArea *a, bool verify_ifg = false ) const;
509
510  void dump_for_spill_split_recycle() const;
511
512public:
513  void dump_frame() const;
514  char *dump_register( const Node *n, char *buf  ) const;
515private:
516  static void print_chaitin_statistics();
517#endif
518  friend class PhaseCoalesce;
519  friend class PhaseAggressiveCoalesce;
520  friend class PhaseConservativeCoalesce;
521};
522