cfgnode.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_cfgnode.cpp.incl"
31
32//=============================================================================
33//------------------------------Value------------------------------------------
34// Compute the type of the RegionNode.
35const Type *RegionNode::Value( PhaseTransform *phase ) const {
36  for( uint i=1; i<req(); ++i ) {       // For all paths in
37    Node *n = in(i);            // Get Control source
38    if( !n ) continue;          // Missing inputs are TOP
39    if( phase->type(n) == Type::CONTROL )
40      return Type::CONTROL;
41  }
42  return Type::TOP;             // All paths dead?  Then so are we
43}
44
45//------------------------------Identity---------------------------------------
46// Check for Region being Identity.
47Node *RegionNode::Identity( PhaseTransform *phase ) {
48  // Cannot have Region be an identity, even if it has only 1 input.
49  // Phi users cannot have their Region input folded away for them,
50  // since they need to select the proper data input
51  return this;
52}
53
54//------------------------------merge_region-----------------------------------
55// If a Region flows into a Region, merge into one big happy merge.  This is
56// hard to do if there is stuff that has to happen
57static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
58  if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
59    return NULL;
60  Node *progress = NULL;        // Progress flag
61  PhaseIterGVN *igvn = phase->is_IterGVN();
62
63  uint rreq = region->req();
64  for( uint i = 1; i < rreq; i++ ) {
65    Node *r = region->in(i);
66    if( r && r->Opcode() == Op_Region && // Found a region?
67        r->in(0) == r &&        // Not already collapsed?
68        r != region &&          // Avoid stupid situations
69        r->outcnt() == 2 ) {    // Self user and 'region' user only?
70      assert(!r->as_Region()->has_phi(), "no phi users");
71      if( !progress ) {         // No progress
72        if (region->has_phi()) {
73          return NULL;        // Only flatten if no Phi users
74          // igvn->hash_delete( phi );
75        }
76        igvn->hash_delete( region );
77        progress = region;      // Making progress
78      }
79      igvn->hash_delete( r );
80
81      // Append inputs to 'r' onto 'region'
82      for( uint j = 1; j < r->req(); j++ ) {
83        // Move an input from 'r' to 'region'
84        region->add_req(r->in(j));
85        r->set_req(j, phase->C->top());
86        // Update phis of 'region'
87        //for( uint k = 0; k < max; k++ ) {
88        //  Node *phi = region->out(k);
89        //  if( phi->is_Phi() ) {
90        //    phi->add_req(phi->in(i));
91        //  }
92        //}
93
94        rreq++;                 // One more input to Region
95      } // Found a region to merge into Region
96      // Clobber pointer to the now dead 'r'
97      region->set_req(i, phase->C->top());
98    }
99  }
100
101  return progress;
102}
103
104
105
106//--------------------------------has_phi--------------------------------------
107// Helper function: Return any PhiNode that uses this region or NULL
108PhiNode* RegionNode::has_phi() const {
109  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
110    Node* phi = fast_out(i);
111    if (phi->is_Phi()) {   // Check for Phi users
112      assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
113      return phi->as_Phi();  // this one is good enough
114    }
115  }
116
117  return NULL;
118}
119
120
121//-----------------------------has_unique_phi----------------------------------
122// Helper function: Return the only PhiNode that uses this region or NULL
123PhiNode* RegionNode::has_unique_phi() const {
124  // Check that only one use is a Phi
125  PhiNode* only_phi = NULL;
126  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
127    Node* phi = fast_out(i);
128    if (phi->is_Phi()) {   // Check for Phi users
129      assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
130      if (only_phi == NULL) {
131        only_phi = phi->as_Phi();
132      } else {
133        return NULL;  // multiple phis
134      }
135    }
136  }
137
138  return only_phi;
139}
140
141
142//------------------------------check_phi_clipping-----------------------------
143// Helper function for RegionNode's identification of FP clipping
144// Check inputs to the Phi
145static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
146  min     = NULL;
147  max     = NULL;
148  val     = NULL;
149  min_idx = 0;
150  max_idx = 0;
151  val_idx = 0;
152  uint  phi_max = phi->req();
153  if( phi_max == 4 ) {
154    for( uint j = 1; j < phi_max; ++j ) {
155      Node *n = phi->in(j);
156      int opcode = n->Opcode();
157      switch( opcode ) {
158      case Op_ConI:
159        {
160          if( min == NULL ) {
161            min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
162            min_idx = j;
163          } else {
164            max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
165            max_idx = j;
166            if( min->get_int() > max->get_int() ) {
167              // Swap min and max
168              ConNode *temp;
169              uint     temp_idx;
170              temp     = min;     min     = max;     max     = temp;
171              temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
172            }
173          }
174        }
175        break;
176      default:
177        {
178          val = n;
179          val_idx = j;
180        }
181        break;
182      }
183    }
184  }
185  return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
186}
187
188
189//------------------------------check_if_clipping------------------------------
190// Helper function for RegionNode's identification of FP clipping
191// Check that inputs to Region come from two IfNodes,
192//
193//            If
194//      False    True
195//       If        |
196//  False  True    |
197//    |      |     |
198//  RegionNode_inputs
199//
200static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
201  top_if = NULL;
202  bot_if = NULL;
203
204  // Check control structure above RegionNode for (if  ( if  ) )
205  Node *in1 = region->in(1);
206  Node *in2 = region->in(2);
207  Node *in3 = region->in(3);
208  // Check that all inputs are projections
209  if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
210    Node *in10 = in1->in(0);
211    Node *in20 = in2->in(0);
212    Node *in30 = in3->in(0);
213    // Check that #1 and #2 are ifTrue and ifFalse from same If
214    if( in10 != NULL && in10->is_If() &&
215        in20 != NULL && in20->is_If() &&
216        in30 != NULL && in30->is_If() && in10 == in20 &&
217        (in1->Opcode() != in2->Opcode()) ) {
218      Node  *in100 = in10->in(0);
219      Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
220      // Check that control for in10 comes from other branch of IF from in3
221      if( in1000 != NULL && in1000->is_If() &&
222          in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
223        // Control pattern checks
224        top_if = (IfNode*)in1000;
225        bot_if = (IfNode*)in10;
226      }
227    }
228  }
229
230  return (top_if != NULL);
231}
232
233
234//------------------------------check_convf2i_clipping-------------------------
235// Helper function for RegionNode's identification of FP clipping
236// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
237static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
238  convf2i = NULL;
239
240  // Check for the RShiftNode
241  Node *rshift = phi->in(idx);
242  assert( rshift, "Previous checks ensure phi input is present");
243  if( rshift->Opcode() != Op_RShiftI )  { return false; }
244
245  // Check for the LShiftNode
246  Node *lshift = rshift->in(1);
247  assert( lshift, "Previous checks ensure phi input is present");
248  if( lshift->Opcode() != Op_LShiftI )  { return false; }
249
250  // Check for the ConvF2INode
251  Node *conv = lshift->in(1);
252  if( conv->Opcode() != Op_ConvF2I ) { return false; }
253
254  // Check that shift amounts are only to get sign bits set after F2I
255  jint max_cutoff     = max->get_int();
256  jint min_cutoff     = min->get_int();
257  jint left_shift     = lshift->in(2)->get_int();
258  jint right_shift    = rshift->in(2)->get_int();
259  jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
260  if( left_shift != right_shift ||
261      0 > left_shift || left_shift >= BitsPerJavaInteger ||
262      max_post_shift < max_cutoff ||
263      max_post_shift < -min_cutoff ) {
264    // Shifts are necessary but current transformation eliminates them
265    return false;
266  }
267
268  // OK to return the result of ConvF2I without shifting
269  convf2i = (ConvF2INode*)conv;
270  return true;
271}
272
273
274//------------------------------check_compare_clipping-------------------------
275// Helper function for RegionNode's identification of FP clipping
276static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
277  Node *i1 = iff->in(1);
278  if ( !i1->is_Bool() ) { return false; }
279  BoolNode *bool1 = i1->as_Bool();
280  if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
281  else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
282  const Node *cmpF = bool1->in(1);
283  if( cmpF->Opcode() != Op_CmpF )      { return false; }
284  // Test that the float value being compared against
285  // is equivalent to the int value used as a limit
286  Node *nodef = cmpF->in(2);
287  if( nodef->Opcode() != Op_ConF ) { return false; }
288  jfloat conf = nodef->getf();
289  jint   coni = limit->get_int();
290  if( ((int)conf) != coni )        { return false; }
291  input = cmpF->in(1);
292  return true;
293}
294
295//------------------------------is_unreachable_region--------------------------
296// Find if the Region node is reachable from the root.
297bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
298  assert(req() == 2, "");
299
300  // First, cut the simple case of fallthrough region when NONE of
301  // region's phis references itself directly or through a data node.
302  uint max = outcnt();
303  uint i;
304  for (i = 0; i < max; i++) {
305    Node* phi = raw_out(i);
306    if (phi != NULL && phi->is_Phi()) {
307      assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
308      if (phi->outcnt() == 0)
309        continue; // Safe case - no loops
310      if (phi->outcnt() == 1) {
311        Node* u = phi->raw_out(0);
312        // Skip if only one use is an other Phi or Call or Uncommon trap.
313        // It is safe to consider this case as fallthrough.
314        if (u != NULL && (u->is_Phi() || u->is_CFG()))
315          continue;
316      }
317      // Check when phi references itself directly or through an other node.
318      if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
319        break; // Found possible unsafe data loop.
320    }
321  }
322  if (i >= max)
323    return false; // An unsafe case was NOT found - don't need graph walk.
324
325  // Unsafe case - check if the Region node is reachable from root.
326  ResourceMark rm;
327
328  Arena *a = Thread::current()->resource_area();
329  Node_List nstack(a);
330  VectorSet visited(a);
331
332  // Mark all control nodes reachable from root outputs
333  Node *n = (Node*)phase->C->root();
334  nstack.push(n);
335  visited.set(n->_idx);
336  while (nstack.size() != 0) {
337    n = nstack.pop();
338    uint max = n->outcnt();
339    for (uint i = 0; i < max; i++) {
340      Node* m = n->raw_out(i);
341      if (m != NULL && m->is_CFG()) {
342        if (phase->eqv(m, this)) {
343          return false; // We reached the Region node - it is not dead.
344        }
345        if (!visited.test_set(m->_idx))
346          nstack.push(m);
347      }
348    }
349  }
350
351  return true; // The Region node is unreachable - it is dead.
352}
353
354//------------------------------Ideal------------------------------------------
355// Return a node which is more "ideal" than the current node.  Must preserve
356// the CFG, but we can still strip out dead paths.
357Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
358  if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
359  assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
360
361  // Check for RegionNode with no Phi users and both inputs come from either
362  // arm of the same IF.  If found, then the control-flow split is useless.
363  bool has_phis = false;
364  if (can_reshape) {            // Need DU info to check for Phi users
365    has_phis = (has_phi() != NULL);       // Cache result
366    if (!has_phis) {            // No Phi users?  Nothing merging?
367      for (uint i = 1; i < req()-1; i++) {
368        Node *if1 = in(i);
369        if( !if1 ) continue;
370        Node *iff = if1->in(0);
371        if( !iff || !iff->is_If() ) continue;
372        for( uint j=i+1; j<req(); j++ ) {
373          if( in(j) && in(j)->in(0) == iff &&
374              if1->Opcode() != in(j)->Opcode() ) {
375            // Add the IF Projections to the worklist. They (and the IF itself)
376            // will be eliminated if dead.
377            phase->is_IterGVN()->add_users_to_worklist(iff);
378            set_req(i, iff->in(0));// Skip around the useless IF diamond
379            set_req(j, NULL);
380            return this;      // Record progress
381          }
382        }
383      }
384    }
385  }
386
387  // Remove TOP or NULL input paths. If only 1 input path remains, this Region
388  // degrades to a copy.
389  bool add_to_worklist = false;
390  int cnt = 0;                  // Count of values merging
391  DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
392  int del_it = 0;               // The last input path we delete
393  // For all inputs...
394  for( uint i=1; i<req(); ++i ){// For all paths in
395    Node *n = in(i);            // Get the input
396    if( n != NULL ) {
397      // Remove useless control copy inputs
398      if( n->is_Region() && n->as_Region()->is_copy() ) {
399        set_req(i, n->nonnull_req());
400        i--;
401        continue;
402      }
403      if( n->is_Proj() ) {      // Remove useless rethrows
404        Node *call = n->in(0);
405        if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
406          set_req(i, call->in(0));
407          i--;
408          continue;
409        }
410      }
411      if( phase->type(n) == Type::TOP ) {
412        set_req(i, NULL);       // Ignore TOP inputs
413        i--;
414        continue;
415      }
416      cnt++;                    // One more value merging
417
418    } else if (can_reshape) {   // Else found dead path with DU info
419      PhaseIterGVN *igvn = phase->is_IterGVN();
420      del_req(i);               // Yank path from self
421      del_it = i;
422      uint max = outcnt();
423      DUIterator j;
424      bool progress = true;
425      while(progress) {         // Need to establish property over all users
426        progress = false;
427        for (j = outs(); has_out(j); j++) {
428          Node *n = out(j);
429          if( n->req() != req() && n->is_Phi() ) {
430            assert( n->in(0) == this, "" );
431            igvn->hash_delete(n); // Yank from hash before hacking edges
432            n->set_req_X(i,NULL,igvn);// Correct DU info
433            n->del_req(i);        // Yank path from Phis
434            if( max != outcnt() ) {
435              progress = true;
436              j = refresh_out_pos(j);
437              max = outcnt();
438            }
439          }
440        }
441      }
442      add_to_worklist = true;
443      i--;
444    }
445  }
446
447  if (can_reshape && cnt == 1) {
448    // Is it dead loop?
449    // If it is LoopNopde it had 2 (+1 itself) inputs and
450    // one of them was cut. The loop is dead if it was EntryContol.
451    assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
452    if (this->is_Loop() && del_it == LoopNode::EntryControl ||
453       !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
454      // Yes,  the region will be removed during the next step below.
455      // Cut the backedge input and remove phis since no data paths left.
456      // We don't cut outputs to other nodes here since we need to put them
457      // on the worklist.
458      del_req(1);
459      cnt = 0;
460      assert( req() == 1, "no more inputs expected" );
461      uint max = outcnt();
462      bool progress = true;
463      Node *top = phase->C->top();
464      PhaseIterGVN *igvn = phase->is_IterGVN();
465      DUIterator j;
466      while(progress) {
467        progress = false;
468        for (j = outs(); has_out(j); j++) {
469          Node *n = out(j);
470          if( n->is_Phi() ) {
471            assert( igvn->eqv(n->in(0), this), "" );
472            assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
473            // Break dead loop data path.
474            // Eagerly replace phis with top to avoid phis copies generation.
475            igvn->add_users_to_worklist(n);
476            igvn->hash_delete(n); // Yank from hash before hacking edges
477            igvn->subsume_node(n, top);
478            if( max != outcnt() ) {
479              progress = true;
480              j = refresh_out_pos(j);
481              max = outcnt();
482            }
483          }
484        }
485      }
486      add_to_worklist = true;
487    }
488  }
489  if (add_to_worklist) {
490    phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
491  }
492
493  if( cnt <= 1 ) {              // Only 1 path in?
494    set_req(0, NULL);           // Null control input for region copy
495    if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
496      // No inputs or all inputs are NULL.
497      return NULL;
498    } else if (can_reshape) {   // Optimization phase - remove the node
499      PhaseIterGVN *igvn = phase->is_IterGVN();
500      Node *parent_ctrl;
501      if( cnt == 0 ) {
502        assert( req() == 1, "no inputs expected" );
503        // During IGVN phase such region will be subsumed by TOP node
504        // so region's phis will have TOP as control node.
505        // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
506        // Also set other user's input to top.
507        parent_ctrl = phase->C->top();
508      } else {
509        // The fallthrough case since we already checked dead loops above.
510        parent_ctrl = in(1);
511        assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
512        assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
513      }
514      if (!add_to_worklist)
515        igvn->add_users_to_worklist(this); // Check for further allowed opts
516      for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
517        Node* n = last_out(i);
518        igvn->hash_delete(n); // Remove from worklist before modifying edges
519        if( n->is_Phi() ) {   // Collapse all Phis
520          // Eagerly replace phis to avoid copies generation.
521          igvn->add_users_to_worklist(n);
522          igvn->hash_delete(n); // Yank from hash before hacking edges
523          if( cnt == 0 ) {
524            assert( n->req() == 1, "No data inputs expected" );
525            igvn->subsume_node(n, parent_ctrl); // replaced by top
526          } else {
527            assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
528            Node* in1 = n->in(1);               // replaced by unique input
529            if( n->as_Phi()->is_unsafe_data_reference(in1) )
530              in1 = phase->C->top();            // replaced by top
531            igvn->subsume_node(n, in1);
532          }
533        }
534        else if( n->is_Region() ) { // Update all incoming edges
535          assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
536          uint uses_found = 0;
537          for( uint k=1; k < n->req(); k++ ) {
538            if( n->in(k) == this ) {
539              n->set_req(k, parent_ctrl);
540              uses_found++;
541            }
542          }
543          if( uses_found > 1 ) { // (--i) done at the end of the loop.
544            i -= (uses_found - 1);
545          }
546        }
547        else {
548          assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
549          n->set_req(0, parent_ctrl);
550        }
551#ifdef ASSERT
552        for( uint k=0; k < n->req(); k++ ) {
553          assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
554        }
555#endif
556      }
557      // Remove the RegionNode itself from DefUse info
558      igvn->remove_dead_node(this);
559      return NULL;
560    }
561    return this;                // Record progress
562  }
563
564
565  // If a Region flows into a Region, merge into one big happy merge.
566  if (can_reshape) {
567    Node *m = merge_region(this, phase);
568    if (m != NULL)  return m;
569  }
570
571  // Check if this region is the root of a clipping idiom on floats
572  if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
573    // Check that only one use is a Phi and that it simplifies to two constants +
574    PhiNode* phi = has_unique_phi();
575    if (phi != NULL) {          // One Phi user
576      // Check inputs to the Phi
577      ConNode *min;
578      ConNode *max;
579      Node    *val;
580      uint     min_idx;
581      uint     max_idx;
582      uint     val_idx;
583      if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
584        IfNode *top_if;
585        IfNode *bot_if;
586        if( check_if_clipping( this, bot_if, top_if ) ) {
587          // Control pattern checks, now verify compares
588          Node   *top_in = NULL;   // value being compared against
589          Node   *bot_in = NULL;
590          if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
591              check_compare_clipping( false, top_if, max, top_in ) ) {
592            if( bot_in == top_in ) {
593              PhaseIterGVN *gvn = phase->is_IterGVN();
594              assert( gvn != NULL, "Only had DefUse info in IterGVN");
595              // Only remaining check is that bot_in == top_in == (Phi's val + mods)
596
597              // Check for the ConvF2INode
598              ConvF2INode *convf2i;
599              if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
600                convf2i->in(1) == bot_in ) {
601                // Matched pattern, including LShiftI; RShiftI, replace with integer compares
602                // max test
603                Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
604                Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
605                IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
606                Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
607                Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
608                // min test
609                cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
610                boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
611                iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
612                Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
613                ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
614                // update input edges to region node
615                set_req_X( min_idx, if_min, gvn );
616                set_req_X( max_idx, if_max, gvn );
617                set_req_X( val_idx, ifF,    gvn );
618                // remove unnecessary 'LShiftI; RShiftI' idiom
619                gvn->hash_delete(phi);
620                phi->set_req_X( val_idx, convf2i, gvn );
621                gvn->hash_find_insert(phi);
622                // Return transformed region node
623                return this;
624              }
625            }
626          }
627        }
628      }
629    }
630  }
631
632  return NULL;
633}
634
635
636
637const RegMask &RegionNode::out_RegMask() const {
638  return RegMask::Empty;
639}
640
641// Find the one non-null required input.  RegionNode only
642Node *Node::nonnull_req() const {
643  assert( is_Region(), "" );
644  for( uint i = 1; i < _cnt; i++ )
645    if( in(i) )
646      return in(i);
647  ShouldNotReachHere();
648  return NULL;
649}
650
651
652//=============================================================================
653// note that these functions assume that the _adr_type field is flattened
654uint PhiNode::hash() const {
655  const Type* at = _adr_type;
656  return TypeNode::hash() + (at ? at->hash() : 0);
657}
658uint PhiNode::cmp( const Node &n ) const {
659  return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
660}
661static inline
662const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
663  if (at == NULL || at == TypePtr::BOTTOM)  return at;
664  return Compile::current()->alias_type(at)->adr_type();
665}
666
667//----------------------------make---------------------------------------------
668// create a new phi with edges matching r and set (initially) to x
669PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
670  uint preds = r->req();   // Number of predecessor paths
671  assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
672  PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
673  for (uint j = 1; j < preds; j++) {
674    // Fill in all inputs, except those which the region does not yet have
675    if (r->in(j) != NULL)
676      p->init_req(j, x);
677  }
678  return p;
679}
680PhiNode* PhiNode::make(Node* r, Node* x) {
681  const Type*    t  = x->bottom_type();
682  const TypePtr* at = NULL;
683  if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
684  return make(r, x, t, at);
685}
686PhiNode* PhiNode::make_blank(Node* r, Node* x) {
687  const Type*    t  = x->bottom_type();
688  const TypePtr* at = NULL;
689  if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
690  return new (Compile::current(), r->req()) PhiNode(r, t, at);
691}
692
693
694//------------------------slice_memory-----------------------------------------
695// create a new phi with narrowed memory type
696PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
697  PhiNode* mem = (PhiNode*) clone();
698  *(const TypePtr**)&mem->_adr_type = adr_type;
699  // convert self-loops, or else we get a bad graph
700  for (uint i = 1; i < req(); i++) {
701    if ((const Node*)in(i) == this)  mem->set_req(i, mem);
702  }
703  mem->verify_adr_type();
704  return mem;
705}
706
707//------------------------split_out_instance-----------------------------------
708// Split out an instance type from a bottom phi.
709PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
710  const TypeOopPtr *t_oop = at->isa_oopptr();
711  assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
712  const TypePtr *t = adr_type();
713  assert(type() == Type::MEMORY &&
714         (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
715          t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
716          t->is_oopptr()->cast_to_exactness(true)
717           ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
718           ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
719         "bottom or raw memory required");
720
721  // Check if an appropriate node already exists.
722  Node *region = in(0);
723  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
724    Node* use = region->fast_out(k);
725    if( use->is_Phi()) {
726      PhiNode *phi2 = use->as_Phi();
727      if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
728        return phi2;
729      }
730    }
731  }
732  Compile *C = igvn->C;
733  Arena *a = Thread::current()->resource_area();
734  Node_Array node_map = new Node_Array(a);
735  Node_Stack stack(a, C->unique() >> 4);
736  PhiNode *nphi = slice_memory(at);
737  igvn->register_new_node_with_optimizer( nphi );
738  node_map.map(_idx, nphi);
739  stack.push((Node *)this, 1);
740  while(!stack.is_empty()) {
741    PhiNode *ophi = stack.node()->as_Phi();
742    uint i = stack.index();
743    assert(i >= 1, "not control edge");
744    stack.pop();
745    nphi = node_map[ophi->_idx]->as_Phi();
746    for (; i < ophi->req(); i++) {
747      Node *in = ophi->in(i);
748      if (in == NULL || igvn->type(in) == Type::TOP)
749        continue;
750      Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
751      PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
752      if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
753        opt = node_map[optphi->_idx];
754        if (opt == NULL) {
755          stack.push(ophi, i);
756          nphi = optphi->slice_memory(at);
757          igvn->register_new_node_with_optimizer( nphi );
758          node_map.map(optphi->_idx, nphi);
759          ophi = optphi;
760          i = 0; // will get incremented at top of loop
761          continue;
762        }
763      }
764      nphi->set_req(i, opt);
765    }
766  }
767  return nphi;
768}
769
770//------------------------verify_adr_type--------------------------------------
771#ifdef ASSERT
772void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
773  if (visited.test_set(_idx))  return;  //already visited
774
775  // recheck constructor invariants:
776  verify_adr_type(false);
777
778  // recheck local phi/phi consistency:
779  assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
780         "adr_type must be consistent across phi nest");
781
782  // walk around
783  for (uint i = 1; i < req(); i++) {
784    Node* n = in(i);
785    if (n == NULL)  continue;
786    const Node* np = in(i);
787    if (np->is_Phi()) {
788      np->as_Phi()->verify_adr_type(visited, at);
789    } else if (n->bottom_type() == Type::TOP
790               || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
791      // ignore top inputs
792    } else {
793      const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
794      // recheck phi/non-phi consistency at leaves:
795      assert((nat != NULL) == (at != NULL), "");
796      assert(nat == at || nat == TypePtr::BOTTOM,
797             "adr_type must be consistent at leaves of phi nest");
798    }
799  }
800}
801
802// Verify a whole nest of phis rooted at this one.
803void PhiNode::verify_adr_type(bool recursive) const {
804  if (is_error_reported())  return;  // muzzle asserts when debugging an error
805  if (Node::in_dump())      return;  // muzzle asserts when printing
806
807  assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
808
809  if (!VerifyAliases)       return;  // verify thoroughly only if requested
810
811  assert(_adr_type == flatten_phi_adr_type(_adr_type),
812         "Phi::adr_type must be pre-normalized");
813
814  if (recursive) {
815    VectorSet visited(Thread::current()->resource_area());
816    verify_adr_type(visited, _adr_type);
817  }
818}
819#endif
820
821
822//------------------------------Value------------------------------------------
823// Compute the type of the PhiNode
824const Type *PhiNode::Value( PhaseTransform *phase ) const {
825  Node *r = in(0);              // RegionNode
826  if( !r )                      // Copy or dead
827    return in(1) ? phase->type(in(1)) : Type::TOP;
828
829  // Note: During parsing, phis are often transformed before their regions.
830  // This means we have to use type_or_null to defend against untyped regions.
831  if( phase->type_or_null(r) == Type::TOP )  // Dead code?
832    return Type::TOP;
833
834  // Check for trip-counted loop.  If so, be smarter.
835  CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
836  if( l && l->can_be_counted_loop(phase) &&
837      ((const Node*)l->phi() == this) ) { // Trip counted loop!
838    // protect against init_trip() or limit() returning NULL
839    const Node *init   = l->init_trip();
840    const Node *limit  = l->limit();
841    if( init != NULL && limit != NULL && l->stride_is_con() ) {
842      const TypeInt *lo = init ->bottom_type()->isa_int();
843      const TypeInt *hi = limit->bottom_type()->isa_int();
844      if( lo && hi ) {            // Dying loops might have TOP here
845        int stride = l->stride_con();
846        if( stride < 0 ) {          // Down-counter loop
847          const TypeInt *tmp = lo; lo = hi; hi = tmp;
848          stride = -stride;
849        }
850        if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
851          return TypeInt::make(lo->_lo,hi->_hi,3);
852      }
853    }
854  }
855
856  // Until we have harmony between classes and interfaces in the type
857  // lattice, we must tread carefully around phis which implicitly
858  // convert the one to the other.
859  const TypePtr* ttp = _type->make_ptr();
860  const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
861  const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
862  bool is_intf = false;
863  if (ttip != NULL) {
864    ciKlass* k = ttip->klass();
865    if (k->is_loaded() && k->is_interface())
866      is_intf = true;
867  }
868  if (ttkp != NULL) {
869    ciKlass* k = ttkp->klass();
870    if (k->is_loaded() && k->is_interface())
871      is_intf = true;
872  }
873
874  // Default case: merge all inputs
875  const Type *t = Type::TOP;        // Merged type starting value
876  for (uint i = 1; i < req(); ++i) {// For all paths in
877    // Reachable control path?
878    if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
879      const Type* ti = phase->type(in(i));
880      // We assume that each input of an interface-valued Phi is a true
881      // subtype of that interface.  This might not be true of the meet
882      // of all the input types.  The lattice is not distributive in
883      // such cases.  Ward off asserts in type.cpp by refusing to do
884      // meets between interfaces and proper classes.
885      const TypePtr* tip = ti->make_ptr();
886      const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
887      if (tiip) {
888        bool ti_is_intf = false;
889        ciKlass* k = tiip->klass();
890        if (k->is_loaded() && k->is_interface())
891          ti_is_intf = true;
892        if (is_intf != ti_is_intf)
893          { t = _type; break; }
894      }
895      t = t->meet(ti);
896    }
897  }
898
899  // The worst-case type (from ciTypeFlow) should be consistent with "t".
900  // That is, we expect that "t->higher_equal(_type)" holds true.
901  // There are various exceptions:
902  // - Inputs which are phis might in fact be widened unnecessarily.
903  //   For example, an input might be a widened int while the phi is a short.
904  // - Inputs might be BotPtrs but this phi is dependent on a null check,
905  //   and postCCP has removed the cast which encodes the result of the check.
906  // - The type of this phi is an interface, and the inputs are classes.
907  // - Value calls on inputs might produce fuzzy results.
908  //   (Occurrences of this case suggest improvements to Value methods.)
909  //
910  // It is not possible to see Type::BOTTOM values as phi inputs,
911  // because the ciTypeFlow pre-pass produces verifier-quality types.
912  const Type* ft = t->filter(_type);  // Worst case type
913
914#ifdef ASSERT
915  // The following logic has been moved into TypeOopPtr::filter.
916  const Type* jt = t->join(_type);
917  if( jt->empty() ) {           // Emptied out???
918
919    // Check for evil case of 't' being a class and '_type' expecting an
920    // interface.  This can happen because the bytecodes do not contain
921    // enough type info to distinguish a Java-level interface variable
922    // from a Java-level object variable.  If we meet 2 classes which
923    // both implement interface I, but their meet is at 'j/l/O' which
924    // doesn't implement I, we have no way to tell if the result should
925    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
926    // into a Phi which "knows" it's an Interface type we'll have to
927    // uplift the type.
928    if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
929      { assert(ft == _type, ""); } // Uplift to interface
930    else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
931      { assert(ft == _type, ""); } // Uplift to interface
932    // Otherwise it's something stupid like non-overlapping int ranges
933    // found on dying counted loops.
934    else
935      { assert(ft == Type::TOP, ""); } // Canonical empty value
936  }
937
938  else {
939
940    // If we have an interface-typed Phi and we narrow to a class type, the join
941    // should report back the class.  However, if we have a J/L/Object
942    // class-typed Phi and an interface flows in, it's possible that the meet &
943    // join report an interface back out.  This isn't possible but happens
944    // because the type system doesn't interact well with interfaces.
945    const TypePtr *jtp = jt->make_ptr();
946    const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
947    const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
948    if( jtip && ttip ) {
949      if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
950          ttip->is_loaded() && !ttip->klass()->is_interface() ) {
951        // Happens in a CTW of rt.jar, 320-341, no extra flags
952        assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
953               ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
954        jt = ft;
955      }
956    }
957    if( jtkp && ttkp ) {
958      if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
959          !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
960          ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
961        assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
962               ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
963        jt = ft;
964      }
965    }
966    if (jt != ft && jt->base() == ft->base()) {
967      if (jt->isa_int() &&
968          jt->is_int()->_lo == ft->is_int()->_lo &&
969          jt->is_int()->_hi == ft->is_int()->_hi)
970        jt = ft;
971      if (jt->isa_long() &&
972          jt->is_long()->_lo == ft->is_long()->_lo &&
973          jt->is_long()->_hi == ft->is_long()->_hi)
974        jt = ft;
975    }
976    if (jt != ft) {
977      tty->print("merge type:  "); t->dump(); tty->cr();
978      tty->print("kill type:   "); _type->dump(); tty->cr();
979      tty->print("join type:   "); jt->dump(); tty->cr();
980      tty->print("filter type: "); ft->dump(); tty->cr();
981    }
982    assert(jt == ft, "");
983  }
984#endif //ASSERT
985
986  // Deal with conversion problems found in data loops.
987  ft = phase->saturate(ft, phase->type_or_null(this), _type);
988
989  return ft;
990}
991
992
993//------------------------------is_diamond_phi---------------------------------
994// Does this Phi represent a simple well-shaped diamond merge?  Return the
995// index of the true path or 0 otherwise.
996int PhiNode::is_diamond_phi() const {
997  // Check for a 2-path merge
998  Node *region = in(0);
999  if( !region ) return 0;
1000  if( region->req() != 3 ) return 0;
1001  if(         req() != 3 ) return 0;
1002  // Check that both paths come from the same If
1003  Node *ifp1 = region->in(1);
1004  Node *ifp2 = region->in(2);
1005  if( !ifp1 || !ifp2 ) return 0;
1006  Node *iff = ifp1->in(0);
1007  if( !iff || !iff->is_If() ) return 0;
1008  if( iff != ifp2->in(0) ) return 0;
1009  // Check for a proper bool/cmp
1010  const Node *b = iff->in(1);
1011  if( !b->is_Bool() ) return 0;
1012  const Node *cmp = b->in(1);
1013  if( !cmp->is_Cmp() ) return 0;
1014
1015  // Check for branching opposite expected
1016  if( ifp2->Opcode() == Op_IfTrue ) {
1017    assert( ifp1->Opcode() == Op_IfFalse, "" );
1018    return 2;
1019  } else {
1020    assert( ifp1->Opcode() == Op_IfTrue, "" );
1021    return 1;
1022  }
1023}
1024
1025//----------------------------check_cmove_id-----------------------------------
1026// Check for CMove'ing a constant after comparing against the constant.
1027// Happens all the time now, since if we compare equality vs a constant in
1028// the parser, we "know" the variable is constant on one path and we force
1029// it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1030// conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1031// general in that we don't need constants.  Since CMove's are only inserted
1032// in very special circumstances, we do it here on generic Phi's.
1033Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1034  assert(true_path !=0, "only diamond shape graph expected");
1035
1036  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1037  // phi->region->if_proj->ifnode->bool->cmp
1038  Node*     region = in(0);
1039  Node*     iff    = region->in(1)->in(0);
1040  BoolNode* b      = iff->in(1)->as_Bool();
1041  Node*     cmp    = b->in(1);
1042  Node*     tval   = in(true_path);
1043  Node*     fval   = in(3-true_path);
1044  Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1045  if (id == NULL)
1046    return NULL;
1047
1048  // Either value might be a cast that depends on a branch of 'iff'.
1049  // Since the 'id' value will float free of the diamond, either
1050  // decast or return failure.
1051  Node* ctl = id->in(0);
1052  if (ctl != NULL && ctl->in(0) == iff) {
1053    if (id->is_ConstraintCast()) {
1054      return id->in(1);
1055    } else {
1056      // Don't know how to disentangle this value.
1057      return NULL;
1058    }
1059  }
1060
1061  return id;
1062}
1063
1064//------------------------------Identity---------------------------------------
1065// Check for Region being Identity.
1066Node *PhiNode::Identity( PhaseTransform *phase ) {
1067  // Check for no merging going on
1068  // (There used to be special-case code here when this->region->is_Loop.
1069  // It would check for a tributary phi on the backedge that the main phi
1070  // trivially, perhaps with a single cast.  The unique_input method
1071  // does all this and more, by reducing such tributaries to 'this'.)
1072  Node* uin = unique_input(phase);
1073  if (uin != NULL) {
1074    return uin;
1075  }
1076
1077  int true_path = is_diamond_phi();
1078  if (true_path != 0) {
1079    Node* id = is_cmove_id(phase, true_path);
1080    if (id != NULL)  return id;
1081  }
1082
1083  return this;                     // No identity
1084}
1085
1086//-----------------------------unique_input------------------------------------
1087// Find the unique value, discounting top, self-loops, and casts.
1088// Return top if there are no inputs, and self if there are multiple.
1089Node* PhiNode::unique_input(PhaseTransform* phase) {
1090  //  1) One unique direct input, or
1091  //  2) some of the inputs have an intervening ConstraintCast and
1092  //     the type of input is the same or sharper (more specific)
1093  //     than the phi's type.
1094  //  3) an input is a self loop
1095  //
1096  //  1) input   or   2) input     or   3) input __
1097  //     /   \           /   \               \  /  \
1098  //     \   /          |    cast             phi  cast
1099  //      phi            \   /               /  \  /
1100  //                      phi               /    --
1101
1102  Node* r = in(0);                      // RegionNode
1103  if (r == NULL)  return in(1);         // Already degraded to a Copy
1104  Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1105  Node* direct_input   = NULL; // The unique direct input
1106
1107  for (uint i = 1, cnt = req(); i < cnt; ++i) {
1108    Node* rc = r->in(i);
1109    if (rc == NULL || phase->type(rc) == Type::TOP)
1110      continue;                 // ignore unreachable control path
1111    Node* n = in(i);
1112    if (n == NULL)
1113      continue;
1114    Node* un = n->uncast();
1115    if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1116      continue; // ignore if top, or in(i) and "this" are in a data cycle
1117    }
1118    // Check for a unique uncasted input
1119    if (uncasted_input == NULL) {
1120      uncasted_input = un;
1121    } else if (uncasted_input != un) {
1122      uncasted_input = NodeSentinel; // no unique uncasted input
1123    }
1124    // Check for a unique direct input
1125    if (direct_input == NULL) {
1126      direct_input = n;
1127    } else if (direct_input != n) {
1128      direct_input = NodeSentinel; // no unique direct input
1129    }
1130  }
1131  if (direct_input == NULL) {
1132    return phase->C->top();        // no inputs
1133  }
1134  assert(uncasted_input != NULL,"");
1135
1136  if (direct_input != NodeSentinel) {
1137    return direct_input;           // one unique direct input
1138  }
1139  if (uncasted_input != NodeSentinel &&
1140      phase->type(uncasted_input)->higher_equal(type())) {
1141    return uncasted_input;         // one unique uncasted input
1142  }
1143
1144  // Nothing.
1145  return NULL;
1146}
1147
1148//------------------------------is_x2logic-------------------------------------
1149// Check for simple convert-to-boolean pattern
1150// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1151// Convert Phi to an ConvIB.
1152static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1153  assert(true_path !=0, "only diamond shape graph expected");
1154  // Convert the true/false index into an expected 0/1 return.
1155  // Map 2->0 and 1->1.
1156  int flipped = 2-true_path;
1157
1158  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1159  // phi->region->if_proj->ifnode->bool->cmp
1160  Node *region = phi->in(0);
1161  Node *iff = region->in(1)->in(0);
1162  BoolNode *b = (BoolNode*)iff->in(1);
1163  const CmpNode *cmp = (CmpNode*)b->in(1);
1164
1165  Node *zero = phi->in(1);
1166  Node *one  = phi->in(2);
1167  const Type *tzero = phase->type( zero );
1168  const Type *tone  = phase->type( one  );
1169
1170  // Check for compare vs 0
1171  const Type *tcmp = phase->type(cmp->in(2));
1172  if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1173    // Allow cmp-vs-1 if the other input is bounded by 0-1
1174    if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1175      return NULL;
1176    flipped = 1-flipped;        // Test is vs 1 instead of 0!
1177  }
1178
1179  // Check for setting zero/one opposite expected
1180  if( tzero == TypeInt::ZERO ) {
1181    if( tone == TypeInt::ONE ) {
1182    } else return NULL;
1183  } else if( tzero == TypeInt::ONE ) {
1184    if( tone == TypeInt::ZERO ) {
1185      flipped = 1-flipped;
1186    } else return NULL;
1187  } else return NULL;
1188
1189  // Check for boolean test backwards
1190  if( b->_test._test == BoolTest::ne ) {
1191  } else if( b->_test._test == BoolTest::eq ) {
1192    flipped = 1-flipped;
1193  } else return NULL;
1194
1195  // Build int->bool conversion
1196  Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
1197  if( flipped )
1198    n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
1199
1200  return n;
1201}
1202
1203//------------------------------is_cond_add------------------------------------
1204// Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1205// To be profitable the control flow has to disappear; there can be no other
1206// values merging here.  We replace the test-and-branch with:
1207// "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1208// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1209// Then convert Y to 0-or-Y and finally add.
1210// This is a key transform for SpecJava _201_compress.
1211static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1212  assert(true_path !=0, "only diamond shape graph expected");
1213
1214  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1215  // phi->region->if_proj->ifnode->bool->cmp
1216  RegionNode *region = (RegionNode*)phi->in(0);
1217  Node *iff = region->in(1)->in(0);
1218  BoolNode* b = iff->in(1)->as_Bool();
1219  const CmpNode *cmp = (CmpNode*)b->in(1);
1220
1221  // Make sure only merging this one phi here
1222  if (region->has_unique_phi() != phi)  return NULL;
1223
1224  // Make sure each arm of the diamond has exactly one output, which we assume
1225  // is the region.  Otherwise, the control flow won't disappear.
1226  if (region->in(1)->outcnt() != 1) return NULL;
1227  if (region->in(2)->outcnt() != 1) return NULL;
1228
1229  // Check for "(P < Q)" of type signed int
1230  if (b->_test._test != BoolTest::lt)  return NULL;
1231  if (cmp->Opcode() != Op_CmpI)        return NULL;
1232
1233  Node *p = cmp->in(1);
1234  Node *q = cmp->in(2);
1235  Node *n1 = phi->in(  true_path);
1236  Node *n2 = phi->in(3-true_path);
1237
1238  int op = n1->Opcode();
1239  if( op != Op_AddI           // Need zero as additive identity
1240      /*&&op != Op_SubI &&
1241      op != Op_AddP &&
1242      op != Op_XorI &&
1243      op != Op_OrI*/ )
1244    return NULL;
1245
1246  Node *x = n2;
1247  Node *y = n1->in(1);
1248  if( n2 == n1->in(1) ) {
1249    y = n1->in(2);
1250  } else if( n2 == n1->in(1) ) {
1251  } else return NULL;
1252
1253  // Not so profitable if compare and add are constants
1254  if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1255    return NULL;
1256
1257  Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
1258  Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
1259  return new (phase->C, 3) AddINode(j_and,x);
1260}
1261
1262//------------------------------is_absolute------------------------------------
1263// Check for absolute value.
1264static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1265  assert(true_path !=0, "only diamond shape graph expected");
1266
1267  int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1268  int  phi_x_idx = 0;           // Index of phi input where to find naked x
1269
1270  // ABS ends with the merge of 2 control flow paths.
1271  // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1272  int false_path = 3 - true_path;
1273
1274  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1275  // phi->region->if_proj->ifnode->bool->cmp
1276  BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1277
1278  // Check bool sense
1279  switch( bol->_test._test ) {
1280  case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1281  case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1282  case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1283  case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1284  default:           return NULL;                              break;
1285  }
1286
1287  // Test is next
1288  Node *cmp = bol->in(1);
1289  const Type *tzero = NULL;
1290  switch( cmp->Opcode() ) {
1291  case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1292  case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1293  default: return NULL;
1294  }
1295
1296  // Find zero input of compare; the other input is being abs'd
1297  Node *x = NULL;
1298  bool flip = false;
1299  if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1300    x = cmp->in(3 - cmp_zero_idx);
1301  } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1302    // The test is inverted, we should invert the result...
1303    x = cmp->in(cmp_zero_idx);
1304    flip = true;
1305  } else {
1306    return NULL;
1307  }
1308
1309  // Next get the 2 pieces being selected, one is the original value
1310  // and the other is the negated value.
1311  if( phi_root->in(phi_x_idx) != x ) return NULL;
1312
1313  // Check other phi input for subtract node
1314  Node *sub = phi_root->in(3 - phi_x_idx);
1315
1316  // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1317  if( tzero == TypeF::ZERO ) {
1318    if( sub->Opcode() != Op_SubF ||
1319        sub->in(2) != x ||
1320        phase->type(sub->in(1)) != tzero ) return NULL;
1321    x = new (phase->C, 2) AbsFNode(x);
1322    if (flip) {
1323      x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
1324    }
1325  } else {
1326    if( sub->Opcode() != Op_SubD ||
1327        sub->in(2) != x ||
1328        phase->type(sub->in(1)) != tzero ) return NULL;
1329    x = new (phase->C, 2) AbsDNode(x);
1330    if (flip) {
1331      x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
1332    }
1333  }
1334
1335  return x;
1336}
1337
1338//------------------------------split_once-------------------------------------
1339// Helper for split_flow_path
1340static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1341  igvn->hash_delete(n);         // Remove from hash before hacking edges
1342
1343  uint j = 1;
1344  for( uint i = phi->req()-1; i > 0; i-- ) {
1345    if( phi->in(i) == val ) {   // Found a path with val?
1346      // Add to NEW Region/Phi, no DU info
1347      newn->set_req( j++, n->in(i) );
1348      // Remove from OLD Region/Phi
1349      n->del_req(i);
1350    }
1351  }
1352
1353  // Register the new node but do not transform it.  Cannot transform until the
1354  // entire Region/Phi conglomerate has been hacked as a single huge transform.
1355  igvn->register_new_node_with_optimizer( newn );
1356  // Now I can point to the new node.
1357  n->add_req(newn);
1358  igvn->_worklist.push(n);
1359}
1360
1361//------------------------------split_flow_path--------------------------------
1362// Check for merging identical values and split flow paths
1363static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1364  BasicType bt = phi->type()->basic_type();
1365  if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1366    return NULL;                // Bail out on funny non-value stuff
1367  if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1368    return NULL;                // third unequal input to be worth doing
1369
1370  // Scan for a constant
1371  uint i;
1372  for( i = 1; i < phi->req()-1; i++ ) {
1373    Node *n = phi->in(i);
1374    if( !n ) return NULL;
1375    if( phase->type(n) == Type::TOP ) return NULL;
1376    if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
1377      break;
1378  }
1379  if( i >= phi->req() )         // Only split for constants
1380    return NULL;
1381
1382  Node *val = phi->in(i);       // Constant to split for
1383  uint hit = 0;                 // Number of times it occurs
1384
1385  for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1386    Node *n = phi->in(i);
1387    if( !n ) return NULL;
1388    if( phase->type(n) == Type::TOP ) return NULL;
1389    if( phi->in(i) == val )
1390      hit++;
1391  }
1392
1393  if( hit <= 1 ||               // Make sure we find 2 or more
1394      hit == phi->req()-1 )     // and not ALL the same value
1395    return NULL;
1396
1397  // Now start splitting out the flow paths that merge the same value.
1398  // Split first the RegionNode.
1399  PhaseIterGVN *igvn = phase->is_IterGVN();
1400  Node *r = phi->region();
1401  RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
1402  split_once(igvn, phi, val, r, newr);
1403
1404  // Now split all other Phis than this one
1405  for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1406    Node* phi2 = r->fast_out(k);
1407    if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1408      PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1409      split_once(igvn, phi, val, phi2, newphi);
1410    }
1411  }
1412
1413  // Clean up this guy
1414  igvn->hash_delete(phi);
1415  for( i = phi->req()-1; i > 0; i-- ) {
1416    if( phi->in(i) == val ) {
1417      phi->del_req(i);
1418    }
1419  }
1420  phi->add_req(val);
1421
1422  return phi;
1423}
1424
1425//=============================================================================
1426//------------------------------simple_data_loop_check-------------------------
1427//  Try to determining if the phi node in a simple safe/unsafe data loop.
1428//  Returns:
1429// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1430// Safe       - safe case when the phi and it's inputs reference only safe data
1431//              nodes;
1432// Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1433//              is no reference back to the phi - need a graph walk
1434//              to determine if it is in a loop;
1435// UnsafeLoop - unsafe case when the phi references itself directly or through
1436//              unsafe data node.
1437//  Note: a safe data node is a node which could/never reference itself during
1438//  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1439//  I mark Phi nodes as safe node not only because they can reference itself
1440//  but also to prevent mistaking the fallthrough case inside an outer loop
1441//  as dead loop when the phi references itselfs through an other phi.
1442PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1443  // It is unsafe loop if the phi node references itself directly.
1444  if (in == (Node*)this)
1445    return UnsafeLoop; // Unsafe loop
1446  // Unsafe loop if the phi node references itself through an unsafe data node.
1447  // Exclude cases with null inputs or data nodes which could reference
1448  // itself (safe for dead loops).
1449  if (in != NULL && !in->is_dead_loop_safe()) {
1450    // Check inputs of phi's inputs also.
1451    // It is much less expensive then full graph walk.
1452    uint cnt = in->req();
1453    uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1454    for (; i < cnt; ++i) {
1455      Node* m = in->in(i);
1456      if (m == (Node*)this)
1457        return UnsafeLoop; // Unsafe loop
1458      if (m != NULL && !m->is_dead_loop_safe()) {
1459        // Check the most common case (about 30% of all cases):
1460        // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1461        Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1462        if (m1 == (Node*)this)
1463          return UnsafeLoop; // Unsafe loop
1464        if (m1 != NULL && m1 == m->in(2) &&
1465            m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1466          continue; // Safe case
1467        }
1468        // The phi references an unsafe node - need full analysis.
1469        return Unsafe;
1470      }
1471    }
1472  }
1473  return Safe; // Safe case - we can optimize the phi node.
1474}
1475
1476//------------------------------is_unsafe_data_reference-----------------------
1477// If phi can be reached through the data input - it is data loop.
1478bool PhiNode::is_unsafe_data_reference(Node *in) const {
1479  assert(req() > 1, "");
1480  // First, check simple cases when phi references itself directly or
1481  // through an other node.
1482  LoopSafety safety = simple_data_loop_check(in);
1483  if (safety == UnsafeLoop)
1484    return true;  // phi references itself - unsafe loop
1485  else if (safety == Safe)
1486    return false; // Safe case - phi could be replaced with the unique input.
1487
1488  // Unsafe case when we should go through data graph to determine
1489  // if the phi references itself.
1490
1491  ResourceMark rm;
1492
1493  Arena *a = Thread::current()->resource_area();
1494  Node_List nstack(a);
1495  VectorSet visited(a);
1496
1497  nstack.push(in); // Start with unique input.
1498  visited.set(in->_idx);
1499  while (nstack.size() != 0) {
1500    Node* n = nstack.pop();
1501    uint cnt = n->req();
1502    uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1503    for (; i < cnt; i++) {
1504      Node* m = n->in(i);
1505      if (m == (Node*)this) {
1506        return true;    // Data loop
1507      }
1508      if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1509        if (!visited.test_set(m->_idx))
1510          nstack.push(m);
1511      }
1512    }
1513  }
1514  return false; // The phi is not reachable from its inputs
1515}
1516
1517
1518//------------------------------Ideal------------------------------------------
1519// Return a node which is more "ideal" than the current node.  Must preserve
1520// the CFG, but we can still strip out dead paths.
1521Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1522  // The next should never happen after 6297035 fix.
1523  if( is_copy() )               // Already degraded to a Copy ?
1524    return NULL;                // No change
1525
1526  Node *r = in(0);              // RegionNode
1527  assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1528
1529  // Note: During parsing, phis are often transformed before their regions.
1530  // This means we have to use type_or_null to defend against untyped regions.
1531  if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1532    return NULL;                // No change
1533
1534  Node *top = phase->C->top();
1535  bool new_phi = (outcnt() == 0); // transforming new Phi
1536  assert(!can_reshape || !new_phi, "for igvn new phi should be hooked");
1537
1538  // The are 2 situations when only one valid phi's input is left
1539  // (in addition to Region input).
1540  // One: region is not loop - replace phi with this input.
1541  // Two: region is loop - replace phi with top since this data path is dead
1542  //                       and we need to break the dead data loop.
1543  Node* progress = NULL;        // Record if any progress made
1544  for( uint j = 1; j < req(); ++j ){ // For all paths in
1545    // Check unreachable control paths
1546    Node* rc = r->in(j);
1547    Node* n = in(j);            // Get the input
1548    if (rc == NULL || phase->type(rc) == Type::TOP) {
1549      if (n != top) {           // Not already top?
1550        set_req(j, top);        // Nuke it down
1551        progress = this;        // Record progress
1552      }
1553    }
1554  }
1555
1556  if (can_reshape && outcnt() == 0) {
1557    // set_req() above may kill outputs if Phi is referenced
1558    // only by itself on the dead (top) control path.
1559    return top;
1560  }
1561
1562  Node* uin = unique_input(phase);
1563  if (uin == top) {             // Simplest case: no alive inputs.
1564    if (can_reshape)            // IGVN transformation
1565      return top;
1566    else
1567      return NULL;              // Identity will return TOP
1568  } else if (uin != NULL) {
1569    // Only one not-NULL unique input path is left.
1570    // Determine if this input is backedge of a loop.
1571    // (Skip new phis which have no uses and dead regions).
1572    if( outcnt() > 0 && r->in(0) != NULL ) {
1573      // First, take the short cut when we know it is a loop and
1574      // the EntryControl data path is dead.
1575      assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
1576      // Then, check if there is a data loop when phi references itself directly
1577      // or through other data nodes.
1578      if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
1579         !r->is_Loop() && is_unsafe_data_reference(uin) ) {
1580        // Break this data loop to avoid creation of a dead loop.
1581        if (can_reshape) {
1582          return top;
1583        } else {
1584          // We can't return top if we are in Parse phase - cut inputs only
1585          // let Identity to handle the case.
1586          replace_edge(uin, top);
1587          return NULL;
1588        }
1589      }
1590    }
1591
1592    // One unique input.
1593    debug_only(Node* ident = Identity(phase));
1594    // The unique input must eventually be detected by the Identity call.
1595#ifdef ASSERT
1596    if (ident != uin && !ident->is_top()) {
1597      // print this output before failing assert
1598      r->dump(3);
1599      this->dump(3);
1600      ident->dump();
1601      uin->dump();
1602    }
1603#endif
1604    assert(ident == uin || ident->is_top(), "Identity must clean this up");
1605    return NULL;
1606  }
1607
1608
1609  Node* opt = NULL;
1610  int true_path = is_diamond_phi();
1611  if( true_path != 0 ) {
1612    // Check for CMove'ing identity. If it would be unsafe,
1613    // handle it here. In the safe case, let Identity handle it.
1614    Node* unsafe_id = is_cmove_id(phase, true_path);
1615    if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1616      opt = unsafe_id;
1617
1618    // Check for simple convert-to-boolean pattern
1619    if( opt == NULL )
1620      opt = is_x2logic(phase, this, true_path);
1621
1622    // Check for absolute value
1623    if( opt == NULL )
1624      opt = is_absolute(phase, this, true_path);
1625
1626    // Check for conditional add
1627    if( opt == NULL && can_reshape )
1628      opt = is_cond_add(phase, this, true_path);
1629
1630    // These 4 optimizations could subsume the phi:
1631    // have to check for a dead data loop creation.
1632    if( opt != NULL ) {
1633      if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1634        // Found dead loop.
1635        if( can_reshape )
1636          return top;
1637        // We can't return top if we are in Parse phase - cut inputs only
1638        // to stop further optimizations for this phi. Identity will return TOP.
1639        assert(req() == 3, "only diamond merge phi here");
1640        set_req(1, top);
1641        set_req(2, top);
1642        return NULL;
1643      } else {
1644        return opt;
1645      }
1646    }
1647  }
1648
1649  // Check for merging identical values and split flow paths
1650  if (can_reshape) {
1651    opt = split_flow_path(phase, this);
1652    // This optimization only modifies phi - don't need to check for dead loop.
1653    assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1654    if (opt != NULL)  return opt;
1655  }
1656
1657  if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1658    // Try to undo Phi of AddP:
1659    // (Phi (AddP base base y) (AddP base2 base2 y))
1660    // becomes:
1661    // newbase := (Phi base base2)
1662    // (AddP newbase newbase y)
1663    //
1664    // This occurs as a result of unsuccessful split_thru_phi and
1665    // interferes with taking advantage of addressing modes. See the
1666    // clone_shift_expressions code in matcher.cpp
1667    Node* addp = in(1);
1668    const Type* type = addp->in(AddPNode::Base)->bottom_type();
1669    Node* y = addp->in(AddPNode::Offset);
1670    if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1671      // make sure that all the inputs are similar to the first one,
1672      // i.e. AddP with base == address and same offset as first AddP
1673      bool doit = true;
1674      for (uint i = 2; i < req(); i++) {
1675        if (in(i) == NULL ||
1676            in(i)->Opcode() != Op_AddP ||
1677            in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1678            in(i)->in(AddPNode::Offset) != y) {
1679          doit = false;
1680          break;
1681        }
1682        // Accumulate type for resulting Phi
1683        type = type->meet(in(i)->in(AddPNode::Base)->bottom_type());
1684      }
1685      Node* base = NULL;
1686      if (doit) {
1687        // Check for neighboring AddP nodes in a tree.
1688        // If they have a base, use that it.
1689        for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1690          Node* u = this->fast_out(k);
1691          if (u->is_AddP()) {
1692            Node* base2 = u->in(AddPNode::Base);
1693            if (base2 != NULL && !base2->is_top()) {
1694              if (base == NULL)
1695                base = base2;
1696              else if (base != base2)
1697                { doit = false; break; }
1698            }
1699          }
1700        }
1701      }
1702      if (doit) {
1703        if (base == NULL) {
1704          base = new (phase->C, in(0)->req()) PhiNode(in(0), type, NULL);
1705          for (uint i = 1; i < req(); i++) {
1706            base->init_req(i, in(i)->in(AddPNode::Base));
1707          }
1708          phase->is_IterGVN()->register_new_node_with_optimizer(base);
1709        }
1710        return new (phase->C, 4) AddPNode(base, base, y);
1711      }
1712    }
1713  }
1714
1715  // Split phis through memory merges, so that the memory merges will go away.
1716  // Piggy-back this transformation on the search for a unique input....
1717  // It will be as if the merged memory is the unique value of the phi.
1718  // (Do not attempt this optimization unless parsing is complete.
1719  // It would make the parser's memory-merge logic sick.)
1720  // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1721  if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1722    // see if this phi should be sliced
1723    uint merge_width = 0;
1724    bool saw_self = false;
1725    for( uint i=1; i<req(); ++i ) {// For all paths in
1726      Node *ii = in(i);
1727      if (ii->is_MergeMem()) {
1728        MergeMemNode* n = ii->as_MergeMem();
1729        merge_width = MAX2(merge_width, n->req());
1730        saw_self = saw_self || phase->eqv(n->base_memory(), this);
1731      }
1732    }
1733
1734    // This restriction is temporarily necessary to ensure termination:
1735    if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1736
1737    if (merge_width > Compile::AliasIdxRaw) {
1738      // found at least one non-empty MergeMem
1739      const TypePtr* at = adr_type();
1740      if (at != TypePtr::BOTTOM) {
1741        // Patch the existing phi to select an input from the merge:
1742        // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1743        //     Phi:AT1(...m1...)
1744        int alias_idx = phase->C->get_alias_index(at);
1745        for (uint i=1; i<req(); ++i) {
1746          Node *ii = in(i);
1747          if (ii->is_MergeMem()) {
1748            MergeMemNode* n = ii->as_MergeMem();
1749            // compress paths and change unreachable cycles to TOP
1750            // If not, we can update the input infinitely along a MergeMem cycle
1751            // Equivalent code is in MemNode::Ideal_common
1752            Node *m  = phase->transform(n);
1753            if (outcnt() == 0) {  // Above transform() may kill us!
1754              return top;
1755            }
1756            // If transformed to a MergeMem, get the desired slice
1757            // Otherwise the returned node represents memory for every slice
1758            Node *new_mem = (m->is_MergeMem()) ?
1759                             m->as_MergeMem()->memory_at(alias_idx) : m;
1760            // Update input if it is progress over what we have now
1761            if (new_mem != ii) {
1762              set_req(i, new_mem);
1763              progress = this;
1764            }
1765          }
1766        }
1767      } else {
1768        // We know that at least one MergeMem->base_memory() == this
1769        // (saw_self == true). If all other inputs also references this phi
1770        // (directly or through data nodes) - it is dead loop.
1771        bool saw_safe_input = false;
1772        for (uint j = 1; j < req(); ++j) {
1773          Node *n = in(j);
1774          if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1775            continue;              // skip known cases
1776          if (!is_unsafe_data_reference(n)) {
1777            saw_safe_input = true; // found safe input
1778            break;
1779          }
1780        }
1781        if (!saw_safe_input)
1782          return top; // all inputs reference back to this phi - dead loop
1783
1784        // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1785        //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1786        PhaseIterGVN *igvn = phase->is_IterGVN();
1787        Node* hook = new (phase->C, 1) Node(1);
1788        PhiNode* new_base = (PhiNode*) clone();
1789        // Must eagerly register phis, since they participate in loops.
1790        if (igvn) {
1791          igvn->register_new_node_with_optimizer(new_base);
1792          hook->add_req(new_base);
1793        }
1794        MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1795        for (uint i = 1; i < req(); ++i) {
1796          Node *ii = in(i);
1797          if (ii->is_MergeMem()) {
1798            MergeMemNode* n = ii->as_MergeMem();
1799            for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1800              // If we have not seen this slice yet, make a phi for it.
1801              bool made_new_phi = false;
1802              if (mms.is_empty()) {
1803                Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1804                made_new_phi = true;
1805                if (igvn) {
1806                  igvn->register_new_node_with_optimizer(new_phi);
1807                  hook->add_req(new_phi);
1808                }
1809                mms.set_memory(new_phi);
1810              }
1811              Node* phi = mms.memory();
1812              assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1813              phi->set_req(i, mms.memory2());
1814            }
1815          }
1816        }
1817        // Distribute all self-loops.
1818        { // (Extra braces to hide mms.)
1819          for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1820            Node* phi = mms.memory();
1821            for (uint i = 1; i < req(); ++i) {
1822              if (phi->in(i) == this)  phi->set_req(i, phi);
1823            }
1824          }
1825        }
1826        // now transform the new nodes, and return the mergemem
1827        for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1828          Node* phi = mms.memory();
1829          mms.set_memory(phase->transform(phi));
1830        }
1831        if (igvn) { // Unhook.
1832          igvn->hash_delete(hook);
1833          for (uint i = 1; i < hook->req(); i++) {
1834            hook->set_req(i, NULL);
1835          }
1836        }
1837        // Replace self with the result.
1838        return result;
1839      }
1840    }
1841    //
1842    // Other optimizations on the memory chain
1843    //
1844    const TypePtr* at = adr_type();
1845    for( uint i=1; i<req(); ++i ) {// For all paths in
1846      Node *ii = in(i);
1847      Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
1848      if (ii != new_in ) {
1849        set_req(i, new_in);
1850        progress = this;
1851      }
1852    }
1853  }
1854
1855#ifdef _LP64
1856  // Push DecodeN down through phi.
1857  // The rest of phi graph will transform by split EncodeP node though phis up.
1858  if (UseCompressedOops && can_reshape && progress == NULL) {
1859    bool may_push = true;
1860    bool has_decodeN = false;
1861    for (uint i=1; i<req(); ++i) {// For all paths in
1862      Node *ii = in(i);
1863      if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
1864        // Do optimization if a non dead path exist.
1865        if (ii->in(1)->bottom_type() != Type::TOP) {
1866          has_decodeN = true;
1867        }
1868      } else if (!ii->is_Phi()) {
1869        may_push = false;
1870      }
1871    }
1872
1873    if (has_decodeN && may_push) {
1874      PhaseIterGVN *igvn = phase->is_IterGVN();
1875      // Make narrow type for new phi.
1876      const Type* narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
1877      PhiNode* new_phi = new (phase->C, r->req()) PhiNode(r, narrow_t);
1878      uint orig_cnt = req();
1879      for (uint i=1; i<req(); ++i) {// For all paths in
1880        Node *ii = in(i);
1881        Node* new_ii = NULL;
1882        if (ii->is_DecodeN()) {
1883          assert(ii->bottom_type() == bottom_type(), "sanity");
1884          new_ii = ii->in(1);
1885        } else {
1886          assert(ii->is_Phi(), "sanity");
1887          if (ii->as_Phi() == this) {
1888            new_ii = new_phi;
1889          } else {
1890            new_ii = new (phase->C, 2) EncodePNode(ii, narrow_t);
1891            igvn->register_new_node_with_optimizer(new_ii);
1892          }
1893        }
1894        new_phi->set_req(i, new_ii);
1895      }
1896      igvn->register_new_node_with_optimizer(new_phi, this);
1897      progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
1898    }
1899  }
1900#endif
1901
1902  return progress;              // Return any progress
1903}
1904
1905//------------------------------is_tripcount-----------------------------------
1906bool PhiNode::is_tripcount() const {
1907  return (in(0) != NULL && in(0)->is_CountedLoop() &&
1908          in(0)->as_CountedLoop()->phi() == this);
1909}
1910
1911//------------------------------out_RegMask------------------------------------
1912const RegMask &PhiNode::in_RegMask(uint i) const {
1913  return i ? out_RegMask() : RegMask::Empty;
1914}
1915
1916const RegMask &PhiNode::out_RegMask() const {
1917  uint ideal_reg = Matcher::base2reg[_type->base()];
1918  assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
1919  if( ideal_reg == 0 ) return RegMask::Empty;
1920  return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
1921}
1922
1923#ifndef PRODUCT
1924void PhiNode::dump_spec(outputStream *st) const {
1925  TypeNode::dump_spec(st);
1926  if (is_tripcount()) {
1927    st->print(" #tripcount");
1928  }
1929}
1930#endif
1931
1932
1933//=============================================================================
1934const Type *GotoNode::Value( PhaseTransform *phase ) const {
1935  // If the input is reachable, then we are executed.
1936  // If the input is not reachable, then we are not executed.
1937  return phase->type(in(0));
1938}
1939
1940Node *GotoNode::Identity( PhaseTransform *phase ) {
1941  return in(0);                // Simple copy of incoming control
1942}
1943
1944const RegMask &GotoNode::out_RegMask() const {
1945  return RegMask::Empty;
1946}
1947
1948//=============================================================================
1949const RegMask &JumpNode::out_RegMask() const {
1950  return RegMask::Empty;
1951}
1952
1953//=============================================================================
1954const RegMask &JProjNode::out_RegMask() const {
1955  return RegMask::Empty;
1956}
1957
1958//=============================================================================
1959const RegMask &CProjNode::out_RegMask() const {
1960  return RegMask::Empty;
1961}
1962
1963
1964
1965//=============================================================================
1966
1967uint PCTableNode::hash() const { return Node::hash() + _size; }
1968uint PCTableNode::cmp( const Node &n ) const
1969{ return _size == ((PCTableNode&)n)._size; }
1970
1971const Type *PCTableNode::bottom_type() const {
1972  const Type** f = TypeTuple::fields(_size);
1973  for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1974  return TypeTuple::make(_size, f);
1975}
1976
1977//------------------------------Value------------------------------------------
1978// Compute the type of the PCTableNode.  If reachable it is a tuple of
1979// Control, otherwise the table targets are not reachable
1980const Type *PCTableNode::Value( PhaseTransform *phase ) const {
1981  if( phase->type(in(0)) == Type::CONTROL )
1982    return bottom_type();
1983  return Type::TOP;             // All paths dead?  Then so are we
1984}
1985
1986//------------------------------Ideal------------------------------------------
1987// Return a node which is more "ideal" than the current node.  Strip out
1988// control copies
1989Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1990  return remove_dead_region(phase, can_reshape) ? this : NULL;
1991}
1992
1993//=============================================================================
1994uint JumpProjNode::hash() const {
1995  return Node::hash() + _dest_bci;
1996}
1997
1998uint JumpProjNode::cmp( const Node &n ) const {
1999  return ProjNode::cmp(n) &&
2000    _dest_bci == ((JumpProjNode&)n)._dest_bci;
2001}
2002
2003#ifndef PRODUCT
2004void JumpProjNode::dump_spec(outputStream *st) const {
2005  ProjNode::dump_spec(st);
2006   st->print("@bci %d ",_dest_bci);
2007}
2008#endif
2009
2010//=============================================================================
2011//------------------------------Value------------------------------------------
2012// Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2013// have the default "fall_through_index" path.
2014const Type *CatchNode::Value( PhaseTransform *phase ) const {
2015  // Unreachable?  Then so are all paths from here.
2016  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2017  // First assume all paths are reachable
2018  const Type** f = TypeTuple::fields(_size);
2019  for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2020  // Identify cases that will always throw an exception
2021  // () rethrow call
2022  // () virtual or interface call with NULL receiver
2023  // () call is a check cast with incompatible arguments
2024  if( in(1)->is_Proj() ) {
2025    Node *i10 = in(1)->in(0);
2026    if( i10->is_Call() ) {
2027      CallNode *call = i10->as_Call();
2028      // Rethrows always throw exceptions, never return
2029      if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2030        f[CatchProjNode::fall_through_index] = Type::TOP;
2031      } else if( call->req() > TypeFunc::Parms ) {
2032        const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2033        // Check for null receiver to virtual or interface calls
2034        if( call->is_CallDynamicJava() &&
2035            arg0->higher_equal(TypePtr::NULL_PTR) ) {
2036          f[CatchProjNode::fall_through_index] = Type::TOP;
2037        }
2038      } // End of if not a runtime stub
2039    } // End of if have call above me
2040  } // End of slot 1 is not a projection
2041  return TypeTuple::make(_size, f);
2042}
2043
2044//=============================================================================
2045uint CatchProjNode::hash() const {
2046  return Node::hash() + _handler_bci;
2047}
2048
2049
2050uint CatchProjNode::cmp( const Node &n ) const {
2051  return ProjNode::cmp(n) &&
2052    _handler_bci == ((CatchProjNode&)n)._handler_bci;
2053}
2054
2055
2056//------------------------------Identity---------------------------------------
2057// If only 1 target is possible, choose it if it is the main control
2058Node *CatchProjNode::Identity( PhaseTransform *phase ) {
2059  // If my value is control and no other value is, then treat as ID
2060  const TypeTuple *t = phase->type(in(0))->is_tuple();
2061  if (t->field_at(_con) != Type::CONTROL)  return this;
2062  // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2063  // also remove any exception table entry.  Thus we must know the call
2064  // feeding the Catch will not really throw an exception.  This is ok for
2065  // the main fall-thru control (happens when we know a call can never throw
2066  // an exception) or for "rethrow", because a further optimization will
2067  // yank the rethrow (happens when we inline a function that can throw an
2068  // exception and the caller has no handler).  Not legal, e.g., for passing
2069  // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2070  // These cases MUST throw an exception via the runtime system, so the VM
2071  // will be looking for a table entry.
2072  Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2073  CallNode *call;
2074  if (_con != TypeFunc::Control && // Bail out if not the main control.
2075      !(proj->is_Proj() &&      // AND NOT a rethrow
2076        proj->in(0)->is_Call() &&
2077        (call = proj->in(0)->as_Call()) &&
2078        call->entry_point() == OptoRuntime::rethrow_stub()))
2079    return this;
2080
2081  // Search for any other path being control
2082  for (uint i = 0; i < t->cnt(); i++) {
2083    if (i != _con && t->field_at(i) == Type::CONTROL)
2084      return this;
2085  }
2086  // Only my path is possible; I am identity on control to the jump
2087  return in(0)->in(0);
2088}
2089
2090
2091#ifndef PRODUCT
2092void CatchProjNode::dump_spec(outputStream *st) const {
2093  ProjNode::dump_spec(st);
2094  st->print("@bci %d ",_handler_bci);
2095}
2096#endif
2097
2098//=============================================================================
2099//------------------------------Identity---------------------------------------
2100// Check for CreateEx being Identity.
2101Node *CreateExNode::Identity( PhaseTransform *phase ) {
2102  if( phase->type(in(1)) == Type::TOP ) return in(1);
2103  if( phase->type(in(0)) == Type::TOP ) return in(0);
2104  // We only come from CatchProj, unless the CatchProj goes away.
2105  // If the CatchProj is optimized away, then we just carry the
2106  // exception oop through.
2107  CallNode *call = in(1)->in(0)->as_Call();
2108
2109  return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2110    ? this
2111    : call->in(TypeFunc::Parms);
2112}
2113
2114//=============================================================================
2115//------------------------------Value------------------------------------------
2116// Check for being unreachable.
2117const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2118  if (!in(0) || in(0)->is_top()) return Type::TOP;
2119  return bottom_type();
2120}
2121
2122//------------------------------Ideal------------------------------------------
2123// Check for no longer being part of a loop
2124Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2125  if (can_reshape && !in(0)->is_Loop()) {
2126    // Dead code elimination can sometimes delete this projection so
2127    // if it's not there, there's nothing to do.
2128    Node* fallthru = proj_out(0);
2129    if (fallthru != NULL) {
2130      phase->is_IterGVN()->subsume_node(fallthru, in(0));
2131    }
2132    return phase->C->top();
2133  }
2134  return NULL;
2135}
2136
2137#ifndef PRODUCT
2138void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2139  st->print("%s", Name());
2140}
2141#endif
2142