callGenerator.hpp revision 6571:9be8f500449d
1/*
2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_CALLGENERATOR_HPP
26#define SHARE_VM_OPTO_CALLGENERATOR_HPP
27
28#include "compiler/compileBroker.hpp"
29#include "opto/callnode.hpp"
30#include "opto/compile.hpp"
31#include "opto/type.hpp"
32#include "runtime/deoptimization.hpp"
33
34//---------------------------CallGenerator-------------------------------------
35// The subclasses of this class handle generation of ideal nodes for
36// call sites and method entry points.
37
38class CallGenerator : public ResourceObj {
39 public:
40  enum {
41    xxxunusedxxx
42  };
43
44 private:
45  ciMethod*             _method;                // The method being called.
46
47 protected:
48  CallGenerator(ciMethod* method) : _method(method) {}
49
50 public:
51  // Accessors
52  ciMethod*         method() const              { return _method; }
53
54  // is_inline: At least some code implementing the method is copied here.
55  virtual bool      is_inline() const           { return false; }
56  // is_intrinsic: There's a method-specific way of generating the inline code.
57  virtual bool      is_intrinsic() const        { return false; }
58  // is_parse: Bytecodes implementing the specific method are copied here.
59  virtual bool      is_parse() const            { return false; }
60  // is_virtual: The call uses the receiver type to select or check the method.
61  virtual bool      is_virtual() const          { return false; }
62  // is_deferred: The decision whether to inline or not is deferred.
63  virtual bool      is_deferred() const         { return false; }
64  // is_predicated: Uses an explicit check (predicate).
65  virtual bool      is_predicated() const       { return false; }
66  virtual int       predicates_count() const    { return 0; }
67  // is_trap: Does not return to the caller.  (E.g., uncommon trap.)
68  virtual bool      is_trap() const             { return false; }
69  // does_virtual_dispatch: Should try inlining as normal method first.
70  virtual bool      does_virtual_dispatch() const     { return false; }
71
72  // is_late_inline: supports conversion of call into an inline
73  virtual bool      is_late_inline() const      { return false; }
74  // same but for method handle calls
75  virtual bool      is_mh_late_inline() const   { return false; }
76  virtual bool      is_string_late_inline() const{ return false; }
77
78  // for method handle calls: have we tried inlinining the call already?
79  virtual bool      already_attempted() const   { ShouldNotReachHere(); return false; }
80
81  // Replace the call with an inline version of the code
82  virtual void do_late_inline() { ShouldNotReachHere(); }
83
84  virtual CallStaticJavaNode* call_node() const { ShouldNotReachHere(); return NULL; }
85
86  virtual void set_unique_id(jlong id)          { fatal("unique id only for late inlines"); };
87  virtual jlong unique_id() const               { fatal("unique id only for late inlines"); return 0; };
88
89  // Note:  It is possible for a CG to be both inline and virtual.
90  // (The hashCode intrinsic does a vtable check and an inlined fast path.)
91
92  // Utilities:
93  const TypeFunc*   tf() const;
94
95  // The given jvms has state and arguments for a call to my method.
96  // Edges after jvms->argoff() carry all (pre-popped) argument values.
97  //
98  // Update the map with state and return values (if any) and return it.
99  // The return values (0, 1, or 2) must be pushed on the map's stack,
100  // and the sp of the jvms incremented accordingly.
101  //
102  // The jvms is returned on success.  Alternatively, a copy of the
103  // given jvms, suitably updated, may be returned, in which case the
104  // caller should discard the original jvms.
105  //
106  // The non-Parm edges of the returned map will contain updated global state,
107  // and one or two edges before jvms->sp() will carry any return values.
108  // Other map edges may contain locals or monitors, and should not
109  // be changed in meaning.
110  //
111  // If the call traps, the returned map must have a control edge of top.
112  // If the call can throw, the returned map must report has_exceptions().
113  //
114  // If the result is NULL, it means that this CallGenerator was unable
115  // to handle the given call, and another CallGenerator should be consulted.
116  virtual JVMState* generate(JVMState* jvms) = 0;
117
118  // How to generate a call site that is inlined:
119  static CallGenerator* for_inline(ciMethod* m, float expected_uses = -1);
120  // How to generate code for an on-stack replacement handler.
121  static CallGenerator* for_osr(ciMethod* m, int osr_bci);
122
123  // How to generate vanilla out-of-line call sites:
124  static CallGenerator* for_direct_call(ciMethod* m, bool separate_io_projs = false);   // static, special
125  static CallGenerator* for_virtual_call(ciMethod* m, int vtable_index);  // virtual, interface
126  static CallGenerator* for_dynamic_call(ciMethod* m);   // invokedynamic
127
128  static CallGenerator* for_method_handle_call(  JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden);
129  static CallGenerator* for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const);
130
131  // How to generate a replace a direct call with an inline version
132  static CallGenerator* for_late_inline(ciMethod* m, CallGenerator* inline_cg);
133  static CallGenerator* for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const);
134  static CallGenerator* for_string_late_inline(ciMethod* m, CallGenerator* inline_cg);
135  static CallGenerator* for_boxing_late_inline(ciMethod* m, CallGenerator* inline_cg);
136
137  // How to make a call but defer the decision whether to inline or not.
138  static CallGenerator* for_warm_call(WarmCallInfo* ci,
139                                      CallGenerator* if_cold,
140                                      CallGenerator* if_hot);
141
142  // How to make a call that optimistically assumes a receiver type:
143  static CallGenerator* for_predicted_call(ciKlass* predicted_receiver,
144                                           CallGenerator* if_missed,
145                                           CallGenerator* if_hit,
146                                           float hit_prob);
147
148  // How to make a call that optimistically assumes a MethodHandle target:
149  static CallGenerator* for_predicted_dynamic_call(ciMethodHandle* predicted_method_handle,
150                                                   CallGenerator* if_missed,
151                                                   CallGenerator* if_hit,
152                                                   float hit_prob);
153
154  // How to make a call that gives up and goes back to the interpreter:
155  static CallGenerator* for_uncommon_trap(ciMethod* m,
156                                          Deoptimization::DeoptReason reason,
157                                          Deoptimization::DeoptAction action);
158
159  // Registry for intrinsics:
160  static CallGenerator* for_intrinsic(ciMethod* m);
161  static void register_intrinsic(ciMethod* m, CallGenerator* cg);
162  static CallGenerator* for_predicated_intrinsic(CallGenerator* intrinsic,
163                                                 CallGenerator* cg);
164  virtual Node* generate_predicate(JVMState* jvms, int predicate) { return NULL; };
165
166  virtual void print_inlining_late(const char* msg) { ShouldNotReachHere(); }
167
168  static void print_inlining(Compile* C, ciMethod* callee, int inline_level, int bci, const char* msg) {
169    if (C->print_inlining()) {
170      C->print_inlining(callee, inline_level, bci, msg);
171    }
172  }
173};
174
175
176//------------------------InlineCallGenerator----------------------------------
177class InlineCallGenerator : public CallGenerator {
178 protected:
179  InlineCallGenerator(ciMethod* method) : CallGenerator(method) {}
180
181 public:
182  virtual bool      is_inline() const           { return true; }
183};
184
185
186//---------------------------WarmCallInfo--------------------------------------
187// A struct to collect information about a given call site.
188// Helps sort call sites into "hot", "medium", and "cold".
189// Participates in the queueing of "medium" call sites for possible inlining.
190class WarmCallInfo : public ResourceObj {
191 private:
192
193  CallNode*     _call;   // The CallNode which may be inlined.
194  CallGenerator* _hot_cg;// CG for expanding the call node
195
196  // These are the metrics we use to evaluate call sites:
197
198  float         _count;  // How often do we expect to reach this site?
199  float         _profit; // How much time do we expect to save by inlining?
200  float         _work;   // How long do we expect the average call to take?
201  float         _size;   // How big do we expect the inlined code to be?
202
203  float         _heat;   // Combined score inducing total order on call sites.
204  WarmCallInfo* _next;   // Next cooler call info in pending queue.
205
206  // Count is the number of times this call site is expected to be executed.
207  // Large count is favorable for inlining, because the extra compilation
208  // work will be amortized more completely.
209
210  // Profit is a rough measure of the amount of time we expect to save
211  // per execution of this site if we inline it.  (1.0 == call overhead)
212  // Large profit favors inlining.  Negative profit disables inlining.
213
214  // Work is a rough measure of the amount of time a typical out-of-line
215  // call from this site is expected to take.  (1.0 == call, no-op, return)
216  // Small work is somewhat favorable for inlining, since methods with
217  // short "hot" traces are more likely to inline smoothly.
218
219  // Size is the number of graph nodes we expect this method to produce,
220  // not counting the inlining of any further warm calls it may include.
221  // Small size favors inlining, since small methods are more likely to
222  // inline smoothly.  The size is estimated by examining the native code
223  // if available.  The method bytecodes are also examined, assuming
224  // empirically observed node counts for each kind of bytecode.
225
226  // Heat is the combined "goodness" of a site's inlining.  If we were
227  // omniscient, it would be the difference of two sums of future execution
228  // times of code emitted for this site (amortized across multiple sites if
229  // sharing applies).  The two sums are for versions of this call site with
230  // and without inlining.
231
232  // We approximate this mythical quantity by playing with averages,
233  // rough estimates, and assumptions that history repeats itself.
234  // The basic formula count * profit is heuristically adjusted
235  // by looking at the expected compilation and execution times of
236  // of the inlined call.
237
238  // Note:  Some of these metrics may not be present in the final product,
239  // but exist in development builds to experiment with inline policy tuning.
240
241  // This heuristic framework does not model well the very significant
242  // effects of multiple-level inlining.  It is possible to see no immediate
243  // profit from inlining X->Y, but to get great profit from a subsequent
244  // inlining X->Y->Z.
245
246  // This framework does not take well into account the problem of N**2 code
247  // size in a clique of mutually inlinable methods.
248
249  WarmCallInfo*  next() const          { return _next; }
250  void       set_next(WarmCallInfo* n) { _next = n; }
251
252  static WarmCallInfo _always_hot;
253  static WarmCallInfo _always_cold;
254
255  // Constructor intitialization of always_hot and always_cold
256  WarmCallInfo(float c, float p, float w, float s) {
257    _call = NULL;
258    _hot_cg = NULL;
259    _next = NULL;
260    _count = c;
261    _profit = p;
262    _work = w;
263    _size = s;
264    _heat = 0;
265  }
266
267 public:
268  // Because WarmInfo objects live over the entire lifetime of the
269  // Compile object, they are allocated into the comp_arena, which
270  // does not get resource marked or reset during the compile process
271  void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
272  void operator delete( void * ) { } // fast deallocation
273
274  static WarmCallInfo* always_hot();
275  static WarmCallInfo* always_cold();
276
277  WarmCallInfo() {
278    _call = NULL;
279    _hot_cg = NULL;
280    _next = NULL;
281    _count = _profit = _work = _size = _heat = 0;
282  }
283
284  CallNode* call() const { return _call; }
285  float count()    const { return _count; }
286  float size()     const { return _size; }
287  float work()     const { return _work; }
288  float profit()   const { return _profit; }
289  float heat()     const { return _heat; }
290
291  void set_count(float x)     { _count = x; }
292  void set_size(float x)      { _size = x; }
293  void set_work(float x)      { _work = x; }
294  void set_profit(float x)    { _profit = x; }
295  void set_heat(float x)      { _heat = x; }
296
297  // Load initial heuristics from profiles, etc.
298  // The heuristics can be tweaked further by the caller.
299  void init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor);
300
301  static float MAX_VALUE() { return +1.0e10; }
302  static float MIN_VALUE() { return -1.0e10; }
303
304  float compute_heat() const;
305
306  void set_call(CallNode* call)      { _call = call; }
307  void set_hot_cg(CallGenerator* cg) { _hot_cg = cg; }
308
309  // Do not queue very hot or very cold calls.
310  // Make very cold ones out of line immediately.
311  // Inline very hot ones immediately.
312  // These queries apply various tunable limits
313  // to the above metrics in a systematic way.
314  // Test for coldness before testing for hotness.
315  bool is_cold() const;
316  bool is_hot() const;
317
318  // Force a warm call to be hot.  This worklists the call node for inlining.
319  void make_hot();
320
321  // Force a warm call to be cold.  This worklists the call node for out-of-lining.
322  void make_cold();
323
324  // A reproducible total ordering, in which heat is the major key.
325  bool warmer_than(WarmCallInfo* that);
326
327  // List management.  These methods are called with the list head,
328  // and return the new list head, inserting or removing the receiver.
329  WarmCallInfo* insert_into(WarmCallInfo* head);
330  WarmCallInfo* remove_from(WarmCallInfo* head);
331
332#ifndef PRODUCT
333  void print() const;
334  void print_all() const;
335  int count_all() const;
336#endif
337};
338
339#endif // SHARE_VM_OPTO_CALLGENERATOR_HPP
340