allocation.cpp revision 6853:91eeb8807a03
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.inline.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
40void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
41void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
42void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
43
44void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
45void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
46void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
47void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
48
49void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
50                                 size_t word_size, bool read_only,
51                                 MetaspaceObj::Type type, TRAPS) throw() {
52  // Klass has it's own operator new
53  return Metaspace::allocate(loader_data, word_size, read_only,
54                             type, CHECK_NULL);
55}
56
57bool MetaspaceObj::is_shared() const {
58  return MetaspaceShared::is_in_shared_space(this);
59}
60
61bool MetaspaceObj::is_metaspace_object() const {
62  return Metaspace::contains((void*)this);
63}
64
65void MetaspaceObj::print_address_on(outputStream* st) const {
66  st->print(" {" INTPTR_FORMAT "}", p2i(this));
67}
68
69void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
70  address res;
71  switch (type) {
72   case C_HEAP:
73    res = (address)AllocateHeap(size, flags, CALLER_PC);
74    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
75    break;
76   case RESOURCE_AREA:
77    // new(size) sets allocation type RESOURCE_AREA.
78    res = (address)operator new(size);
79    break;
80   default:
81    ShouldNotReachHere();
82  }
83  return res;
84}
85
86void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
87  return (address) operator new(size, type, flags);
88}
89
90void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
91    allocation_type type, MEMFLAGS flags) throw() {
92  //should only call this with std::nothrow, use other operator new() otherwise
93  address res;
94  switch (type) {
95   case C_HEAP:
96    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
97    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
98    break;
99   case RESOURCE_AREA:
100    // new(size) sets allocation type RESOURCE_AREA.
101    res = (address)operator new(size, std::nothrow);
102    break;
103   default:
104    ShouldNotReachHere();
105  }
106  return res;
107}
108
109void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
110    allocation_type type, MEMFLAGS flags) throw() {
111  return (address)operator new(size, nothrow_constant, type, flags);
112}
113
114void ResourceObj::operator delete(void* p) {
115  assert(((ResourceObj *)p)->allocated_on_C_heap(),
116         "delete only allowed for C_HEAP objects");
117  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
118  FreeHeap(p);
119}
120
121void ResourceObj::operator delete [](void* p) {
122  operator delete(p);
123}
124
125#ifdef ASSERT
126void ResourceObj::set_allocation_type(address res, allocation_type type) {
127    // Set allocation type in the resource object
128    uintptr_t allocation = (uintptr_t)res;
129    assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
130    assert(type <= allocation_mask, "incorrect allocation type");
131    ResourceObj* resobj = (ResourceObj *)res;
132    resobj->_allocation_t[0] = ~(allocation + type);
133    if (type != STACK_OR_EMBEDDED) {
134      // Called from operator new() and CollectionSetChooser(),
135      // set verification value.
136      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
137    }
138}
139
140ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
141    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
142    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
143}
144
145bool ResourceObj::is_type_set() const {
146    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
147    return get_allocation_type()  == type &&
148           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
149}
150
151ResourceObj::ResourceObj() { // default constructor
152    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
153      // Operator new() is not called for allocations
154      // on stack and for embedded objects.
155      set_allocation_type((address)this, STACK_OR_EMBEDDED);
156    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
157      // For some reason we got a value which resembles
158      // an embedded or stack object (operator new() does not
159      // set such type). Keep it since it is valid value
160      // (even if it was garbage).
161      // Ignore garbage in other fields.
162    } else if (is_type_set()) {
163      // Operator new() was called and type was set.
164      assert(!allocated_on_stack(),
165             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
166                     p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
167    } else {
168      // Operator new() was not called.
169      // Assume that it is embedded or stack object.
170      set_allocation_type((address)this, STACK_OR_EMBEDDED);
171    }
172    _allocation_t[1] = 0; // Zap verification value
173}
174
175ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
176    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
177    // Note: garbage may resembles valid value.
178    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
179           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
180                   p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
181    set_allocation_type((address)this, STACK_OR_EMBEDDED);
182    _allocation_t[1] = 0; // Zap verification value
183}
184
185ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
186    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
187    assert(allocated_on_stack(),
188           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
189                   p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
190    // Keep current _allocation_t value;
191    return *this;
192}
193
194ResourceObj::~ResourceObj() {
195    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
196    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
197      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
198    }
199}
200#endif // ASSERT
201
202
203void trace_heap_malloc(size_t size, const char* name, void* p) {
204  // A lock is not needed here - tty uses a lock internally
205  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
206}
207
208
209void trace_heap_free(void* p) {
210  // A lock is not needed here - tty uses a lock internally
211  tty->print_cr("Heap free   " INTPTR_FORMAT, p2i(p));
212}
213
214//--------------------------------------------------------------------------------------
215// ChunkPool implementation
216
217// MT-safe pool of chunks to reduce malloc/free thrashing
218// NB: not using Mutex because pools are used before Threads are initialized
219class ChunkPool: public CHeapObj<mtInternal> {
220  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
221  size_t       _num_chunks;   // number of unused chunks in pool
222  size_t       _num_used;     // number of chunks currently checked out
223  const size_t _size;         // size of each chunk (must be uniform)
224
225  // Our four static pools
226  static ChunkPool* _large_pool;
227  static ChunkPool* _medium_pool;
228  static ChunkPool* _small_pool;
229  static ChunkPool* _tiny_pool;
230
231  // return first element or null
232  void* get_first() {
233    Chunk* c = _first;
234    if (_first) {
235      _first = _first->next();
236      _num_chunks--;
237    }
238    return c;
239  }
240
241 public:
242  // All chunks in a ChunkPool has the same size
243   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
244
245  // Allocate a new chunk from the pool (might expand the pool)
246  _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
247    assert(bytes == _size, "bad size");
248    void* p = NULL;
249    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
250    // should be done outside ThreadCritical lock due to NMT
251    { ThreadCritical tc;
252      _num_used++;
253      p = get_first();
254    }
255    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
256    if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
257      vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
258    }
259    return p;
260  }
261
262  // Return a chunk to the pool
263  void free(Chunk* chunk) {
264    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
265    ThreadCritical tc;
266    _num_used--;
267
268    // Add chunk to list
269    chunk->set_next(_first);
270    _first = chunk;
271    _num_chunks++;
272  }
273
274  // Prune the pool
275  void free_all_but(size_t n) {
276    Chunk* cur = NULL;
277    Chunk* next;
278    {
279    // if we have more than n chunks, free all of them
280    ThreadCritical tc;
281    if (_num_chunks > n) {
282      // free chunks at end of queue, for better locality
283        cur = _first;
284      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
285
286      if (cur != NULL) {
287          next = cur->next();
288        cur->set_next(NULL);
289        cur = next;
290
291          _num_chunks = n;
292        }
293      }
294    }
295
296    // Free all remaining chunks, outside of ThreadCritical
297    // to avoid deadlock with NMT
298        while(cur != NULL) {
299          next = cur->next();
300      os::free(cur, mtChunk);
301          cur = next;
302        }
303      }
304
305  // Accessors to preallocated pool's
306  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
307  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
308  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
309  static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
310
311  static void initialize() {
312    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
313    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
314    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
315    _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
316  }
317
318  static void clean() {
319    enum { BlocksToKeep = 5 };
320     _tiny_pool->free_all_but(BlocksToKeep);
321     _small_pool->free_all_but(BlocksToKeep);
322     _medium_pool->free_all_but(BlocksToKeep);
323     _large_pool->free_all_but(BlocksToKeep);
324  }
325};
326
327ChunkPool* ChunkPool::_large_pool  = NULL;
328ChunkPool* ChunkPool::_medium_pool = NULL;
329ChunkPool* ChunkPool::_small_pool  = NULL;
330ChunkPool* ChunkPool::_tiny_pool   = NULL;
331
332void chunkpool_init() {
333  ChunkPool::initialize();
334}
335
336void
337Chunk::clean_chunk_pool() {
338  ChunkPool::clean();
339}
340
341
342//--------------------------------------------------------------------------------------
343// ChunkPoolCleaner implementation
344//
345
346class ChunkPoolCleaner : public PeriodicTask {
347  enum { CleaningInterval = 5000 };      // cleaning interval in ms
348
349 public:
350   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
351   void task() {
352     ChunkPool::clean();
353   }
354};
355
356//--------------------------------------------------------------------------------------
357// Chunk implementation
358
359void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
360  // requested_size is equal to sizeof(Chunk) but in order for the arena
361  // allocations to come out aligned as expected the size must be aligned
362  // to expected arena alignment.
363  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
364  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
365  size_t bytes = ARENA_ALIGN(requested_size) + length;
366  switch (length) {
367   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
368   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
369   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
370   case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
371   default: {
372     void* p = os::malloc(bytes, mtChunk, CALLER_PC);
373     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
374       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
375     }
376     return p;
377   }
378  }
379}
380
381void Chunk::operator delete(void* p) {
382  Chunk* c = (Chunk*)p;
383  switch (c->length()) {
384   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
385   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
386   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
387   case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
388   default:                 os::free(c, mtChunk);
389  }
390}
391
392Chunk::Chunk(size_t length) : _len(length) {
393  _next = NULL;         // Chain on the linked list
394}
395
396
397void Chunk::chop() {
398  Chunk *k = this;
399  while( k ) {
400    Chunk *tmp = k->next();
401    // clear out this chunk (to detect allocation bugs)
402    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
403    delete k;                   // Free chunk (was malloc'd)
404    k = tmp;
405  }
406}
407
408void Chunk::next_chop() {
409  _next->chop();
410  _next = NULL;
411}
412
413
414void Chunk::start_chunk_pool_cleaner_task() {
415#ifdef ASSERT
416  static bool task_created = false;
417  assert(!task_created, "should not start chuck pool cleaner twice");
418  task_created = true;
419#endif
420  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
421  cleaner->enroll();
422}
423
424//------------------------------Arena------------------------------------------
425
426Arena::Arena(MEMFLAGS flag, size_t init_size) : _flags(flag), _size_in_bytes(0)  {
427  size_t round_size = (sizeof (char *)) - 1;
428  init_size = (init_size+round_size) & ~round_size;
429  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
430  _hwm = _chunk->bottom();      // Save the cached hwm, max
431  _max = _chunk->top();
432  MemTracker::record_new_arena(flag);
433  set_size_in_bytes(init_size);
434}
435
436Arena::Arena(MEMFLAGS flag) : _flags(flag), _size_in_bytes(0) {
437  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
438  _hwm = _chunk->bottom();      // Save the cached hwm, max
439  _max = _chunk->top();
440  MemTracker::record_new_arena(flag);
441  set_size_in_bytes(Chunk::init_size);
442}
443
444Arena *Arena::move_contents(Arena *copy) {
445  copy->destruct_contents();
446  copy->_chunk = _chunk;
447  copy->_hwm   = _hwm;
448  copy->_max   = _max;
449  copy->_first = _first;
450
451  // workaround rare racing condition, which could double count
452  // the arena size by native memory tracking
453  size_t size = size_in_bytes();
454  set_size_in_bytes(0);
455  copy->set_size_in_bytes(size);
456  // Destroy original arena
457  reset();
458  return copy;            // Return Arena with contents
459}
460
461Arena::~Arena() {
462  destruct_contents();
463  MemTracker::record_arena_free(_flags);
464}
465
466void* Arena::operator new(size_t size) throw() {
467  assert(false, "Use dynamic memory type binding");
468  return NULL;
469}
470
471void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
472  assert(false, "Use dynamic memory type binding");
473  return NULL;
474}
475
476  // dynamic memory type binding
477void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
478#ifdef ASSERT
479  void* p = (void*)AllocateHeap(size, flags, CALLER_PC);
480  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
481  return p;
482#else
483  return (void *) AllocateHeap(size, flags, CALLER_PC);
484#endif
485}
486
487void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
488#ifdef ASSERT
489  void* p = os::malloc(size, flags, CALLER_PC);
490  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
491  return p;
492#else
493  return os::malloc(size, flags, CALLER_PC);
494#endif
495}
496
497void Arena::operator delete(void* p) {
498  FreeHeap(p);
499}
500
501// Destroy this arenas contents and reset to empty
502void Arena::destruct_contents() {
503  if (UseMallocOnly && _first != NULL) {
504    char* end = _first->next() ? _first->top() : _hwm;
505    free_malloced_objects(_first, _first->bottom(), end, _hwm);
506  }
507  // reset size before chop to avoid a rare racing condition
508  // that can have total arena memory exceed total chunk memory
509  set_size_in_bytes(0);
510  _first->chop();
511  reset();
512}
513
514// This is high traffic method, but many calls actually don't
515// change the size
516void Arena::set_size_in_bytes(size_t size) {
517  if (_size_in_bytes != size) {
518    long delta = (long)(size - size_in_bytes());
519    _size_in_bytes = size;
520    MemTracker::record_arena_size_change(delta, _flags);
521  }
522}
523
524// Total of all Chunks in arena
525size_t Arena::used() const {
526  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
527  register Chunk *k = _first;
528  while( k != _chunk) {         // Whilst have Chunks in a row
529    sum += k->length();         // Total size of this Chunk
530    k = k->next();              // Bump along to next Chunk
531  }
532  return sum;                   // Return total consumed space.
533}
534
535void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
536  vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
537}
538
539// Grow a new Chunk
540void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
541  // Get minimal required size.  Either real big, or even bigger for giant objs
542  size_t len = MAX2(x, (size_t) Chunk::size);
543
544  Chunk *k = _chunk;            // Get filled-up chunk address
545  _chunk = new (alloc_failmode, len) Chunk(len);
546
547  if (_chunk == NULL) {
548    _chunk = k;                 // restore the previous value of _chunk
549    return NULL;
550  }
551  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
552  else _first = _chunk;
553  _hwm  = _chunk->bottom();     // Save the cached hwm, max
554  _max =  _chunk->top();
555  set_size_in_bytes(size_in_bytes() + len);
556  void* result = _hwm;
557  _hwm += x;
558  return result;
559}
560
561
562
563// Reallocate storage in Arena.
564void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
565  assert(new_size >= 0, "bad size");
566  if (new_size == 0) return NULL;
567#ifdef ASSERT
568  if (UseMallocOnly) {
569    // always allocate a new object  (otherwise we'll free this one twice)
570    char* copy = (char*)Amalloc(new_size, alloc_failmode);
571    if (copy == NULL) {
572      return NULL;
573    }
574    size_t n = MIN2(old_size, new_size);
575    if (n > 0) memcpy(copy, old_ptr, n);
576    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
577    return copy;
578  }
579#endif
580  char *c_old = (char*)old_ptr; // Handy name
581  // Stupid fast special case
582  if( new_size <= old_size ) {  // Shrink in-place
583    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
584      _hwm = c_old+new_size;    // Adjust hwm
585    return c_old;
586  }
587
588  // make sure that new_size is legal
589  size_t corrected_new_size = ARENA_ALIGN(new_size);
590
591  // See if we can resize in-place
592  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
593      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
594    _hwm = c_old+corrected_new_size;      // Adjust hwm
595    return c_old;               // Return old pointer
596  }
597
598  // Oops, got to relocate guts
599  void *new_ptr = Amalloc(new_size, alloc_failmode);
600  if (new_ptr == NULL) {
601    return NULL;
602  }
603  memcpy( new_ptr, c_old, old_size );
604  Afree(c_old,old_size);        // Mostly done to keep stats accurate
605  return new_ptr;
606}
607
608
609// Determine if pointer belongs to this Arena or not.
610bool Arena::contains( const void *ptr ) const {
611#ifdef ASSERT
612  if (UseMallocOnly) {
613    // really slow, but not easy to make fast
614    if (_chunk == NULL) return false;
615    char** bottom = (char**)_chunk->bottom();
616    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
617      if (*p == ptr) return true;
618    }
619    for (Chunk *c = _first; c != NULL; c = c->next()) {
620      if (c == _chunk) continue;  // current chunk has been processed
621      char** bottom = (char**)c->bottom();
622      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
623        if (*p == ptr) return true;
624      }
625    }
626    return false;
627  }
628#endif
629  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
630    return true;                // Check for in this chunk
631  for (Chunk *c = _first; c; c = c->next()) {
632    if (c == _chunk) continue;  // current chunk has been processed
633    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
634      return true;              // Check for every chunk in Arena
635    }
636  }
637  return false;                 // Not in any Chunk, so not in Arena
638}
639
640
641#ifdef ASSERT
642void* Arena::malloc(size_t size) {
643  assert(UseMallocOnly, "shouldn't call");
644  // use malloc, but save pointer in res. area for later freeing
645  char** save = (char**)internal_malloc_4(sizeof(char*));
646  return (*save = (char*)os::malloc(size, mtChunk));
647}
648
649// for debugging with UseMallocOnly
650void* Arena::internal_malloc_4(size_t x) {
651  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
652  check_for_overflow(x, "Arena::internal_malloc_4");
653  if (_hwm + x > _max) {
654    return grow(x);
655  } else {
656    char *old = _hwm;
657    _hwm += x;
658    return old;
659  }
660}
661#endif
662
663
664//--------------------------------------------------------------------------------------
665// Non-product code
666
667#ifndef PRODUCT
668// The global operator new should never be called since it will usually indicate
669// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
670// that they're allocated on the C heap.
671// Commented out in product version to avoid conflicts with third-party C++ native code.
672//
673// In C++98/03 the throwing new operators are defined with the following signature:
674//
675// void* operator new(std::size_tsize) throw(std::bad_alloc);
676// void* operator new[](std::size_tsize) throw(std::bad_alloc);
677//
678// while all the other (non-throwing) new and delete operators are defined with an empty
679// throw clause (i.e. "operator delete(void* p) throw()") which means that they do not
680// throw any exceptions (see section 18.4 of the C++ standard).
681//
682// In the new C++11/14 standard, the signature of the throwing new operators was changed
683// by completely omitting the throw clause (which effectively means they could throw any
684// exception) while all the other new/delete operators where changed to have a 'nothrow'
685// clause instead of an empty throw clause.
686//
687// Unfortunately, the support for exception specifications among C++ compilers is still
688// very fragile. While some more strict compilers like AIX xlC or HP aCC reject to
689// override the default throwing new operator with a user operator with an empty throw()
690// clause, the MS Visual C++ compiler warns for every non-empty throw clause like
691// throw(std::bad_alloc) that it will ignore the exception specification. The following
692// operator definitions have been checked to correctly work with all currently supported
693// compilers and they should be upwards compatible with C++11/14. Therefore
694// PLEASE BE CAREFUL if you change the signature of the following operators!
695
696void* operator new(size_t size) /* throw(std::bad_alloc) */ {
697  fatal("Should not call global operator new");
698  return 0;
699}
700
701void* operator new [](size_t size) /* throw(std::bad_alloc) */ {
702  fatal("Should not call global operator new[]");
703  return 0;
704}
705
706void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
707  fatal("Should not call global operator new");
708  return 0;
709}
710
711void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
712  fatal("Should not call global operator new[]");
713  return 0;
714}
715
716void operator delete(void* p) throw() {
717  fatal("Should not call global delete");
718}
719
720void operator delete [](void* p) throw() {
721  fatal("Should not call global delete []");
722}
723
724void AllocatedObj::print() const       { print_on(tty); }
725void AllocatedObj::print_value() const { print_value_on(tty); }
726
727void AllocatedObj::print_on(outputStream* st) const {
728  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
729}
730
731void AllocatedObj::print_value_on(outputStream* st) const {
732  st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
733}
734
735julong Arena::_bytes_allocated = 0;
736
737void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
738
739AllocStats::AllocStats() {
740  start_mallocs      = os::num_mallocs;
741  start_frees        = os::num_frees;
742  start_malloc_bytes = os::alloc_bytes;
743  start_mfree_bytes  = os::free_bytes;
744  start_res_bytes    = Arena::_bytes_allocated;
745}
746
747julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
748julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
749julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
750julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
751julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
752void    AllocStats::print() {
753  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
754                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
755                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
756}
757
758
759// debugging code
760inline void Arena::free_all(char** start, char** end) {
761  for (char** p = start; p < end; p++) if (*p) os::free(*p);
762}
763
764void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
765  assert(UseMallocOnly, "should not call");
766  // free all objects malloced since resource mark was created; resource area
767  // contains their addresses
768  if (chunk->next()) {
769    // this chunk is full, and some others too
770    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
771      char* top = c->top();
772      if (c->next() == NULL) {
773        top = hwm2;     // last junk is only used up to hwm2
774        assert(c->contains(hwm2), "bad hwm2");
775      }
776      free_all((char**)c->bottom(), (char**)top);
777    }
778    assert(chunk->contains(hwm), "bad hwm");
779    assert(chunk->contains(max), "bad max");
780    free_all((char**)hwm, (char**)max);
781  } else {
782    // this chunk was partially used
783    assert(chunk->contains(hwm), "bad hwm");
784    assert(chunk->contains(hwm2), "bad hwm2");
785    free_all((char**)hwm, (char**)hwm2);
786  }
787}
788
789
790ReallocMark::ReallocMark() {
791#ifdef ASSERT
792  Thread *thread = ThreadLocalStorage::get_thread_slow();
793  _nesting = thread->resource_area()->nesting();
794#endif
795}
796
797void ReallocMark::check() {
798#ifdef ASSERT
799  if (_nesting != Thread::current()->resource_area()->nesting()) {
800    fatal("allocation bug: array could grow within nested ResourceMark");
801  }
802#endif
803}
804
805#endif // Non-product
806