bytecodeInterpreter.cpp revision 6669:56c8024da07e
1/*
2 * Copyright (c) 2002, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/vmSymbols.hpp"
27#include "gc_interface/collectedHeap.hpp"
28#include "interpreter/bytecodeHistogram.hpp"
29#include "interpreter/bytecodeInterpreter.hpp"
30#include "interpreter/bytecodeInterpreter.inline.hpp"
31#include "interpreter/bytecodeInterpreterProfiling.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/interpreterRuntime.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/methodCounters.hpp"
36#include "oops/objArrayKlass.hpp"
37#include "oops/oop.inline.hpp"
38#include "prims/jvmtiExport.hpp"
39#include "prims/jvmtiThreadState.hpp"
40#include "runtime/atomic.inline.hpp"
41#include "runtime/biasedLocking.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/handles.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/orderAccess.inline.hpp"
46#include "runtime/sharedRuntime.hpp"
47#include "runtime/threadCritical.hpp"
48#include "utilities/exceptions.hpp"
49
50// no precompiled headers
51#ifdef CC_INTERP
52
53/*
54 * USELABELS - If using GCC, then use labels for the opcode dispatching
55 * rather -then a switch statement. This improves performance because it
56 * gives us the oportunity to have the instructions that calculate the
57 * next opcode to jump to be intermixed with the rest of the instructions
58 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
59 */
60#undef USELABELS
61#ifdef __GNUC__
62/*
63   ASSERT signifies debugging. It is much easier to step thru bytecodes if we
64   don't use the computed goto approach.
65*/
66#ifndef ASSERT
67#define USELABELS
68#endif
69#endif
70
71#undef CASE
72#ifdef USELABELS
73#define CASE(opcode) opc ## opcode
74#define DEFAULT opc_default
75#else
76#define CASE(opcode) case Bytecodes:: opcode
77#define DEFAULT default
78#endif
79
80/*
81 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
82 * opcode before going back to the top of the while loop, rather then having
83 * the top of the while loop handle it. This provides a better opportunity
84 * for instruction scheduling. Some compilers just do this prefetch
85 * automatically. Some actually end up with worse performance if you
86 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
87 */
88#undef PREFETCH_OPCCODE
89#define PREFETCH_OPCCODE
90
91/*
92  Interpreter safepoint: it is expected that the interpreter will have no live
93  handles of its own creation live at an interpreter safepoint. Therefore we
94  run a HandleMarkCleaner and trash all handles allocated in the call chain
95  since the JavaCalls::call_helper invocation that initiated the chain.
96  There really shouldn't be any handles remaining to trash but this is cheap
97  in relation to a safepoint.
98*/
99#define SAFEPOINT                                                                 \
100    if ( SafepointSynchronize::is_synchronizing()) {                              \
101        {                                                                         \
102          /* zap freed handles rather than GC'ing them */                         \
103          HandleMarkCleaner __hmc(THREAD);                                        \
104        }                                                                         \
105        CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
106    }
107
108/*
109 * VM_JAVA_ERROR - Macro for throwing a java exception from
110 * the interpreter loop. Should really be a CALL_VM but there
111 * is no entry point to do the transition to vm so we just
112 * do it by hand here.
113 */
114#define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
115    DECACHE_STATE();                                                              \
116    SET_LAST_JAVA_FRAME();                                                        \
117    {                                                                             \
118       InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
119       ThreadInVMfromJava trans(THREAD);                                          \
120       Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
121    }                                                                             \
122    RESET_LAST_JAVA_FRAME();                                                      \
123    CACHE_STATE();
124
125// Normal throw of a java error.
126#define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
127    VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
128    goto handle_exception;
129
130#ifdef PRODUCT
131#define DO_UPDATE_INSTRUCTION_COUNT(opcode)
132#else
133#define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
134{                                                                                                    \
135    BytecodeCounter::_counter_value++;                                                               \
136    BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
137    if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
138    if (TraceBytecodes) {                                                                            \
139      CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
140                                   topOfStack[Interpreter::expr_index_at(1)],   \
141                                   topOfStack[Interpreter::expr_index_at(2)]),  \
142                                   handle_exception);                      \
143    }                                                                      \
144}
145#endif
146
147#undef DEBUGGER_SINGLE_STEP_NOTIFY
148#ifdef VM_JVMTI
149/* NOTE: (kbr) This macro must be called AFTER the PC has been
150   incremented. JvmtiExport::at_single_stepping_point() may cause a
151   breakpoint opcode to get inserted at the current PC to allow the
152   debugger to coalesce single-step events.
153
154   As a result if we call at_single_stepping_point() we refetch opcode
155   to get the current opcode. This will override any other prefetching
156   that might have occurred.
157*/
158#define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
159{                                                                                \
160      if (_jvmti_interp_events) {                                                \
161        if (JvmtiExport::should_post_single_step()) {                            \
162          DECACHE_STATE();                                                       \
163          SET_LAST_JAVA_FRAME();                                                 \
164          ThreadInVMfromJava trans(THREAD);                                      \
165          JvmtiExport::at_single_stepping_point(THREAD,                          \
166                                          istate->method(),                      \
167                                          pc);                                   \
168          RESET_LAST_JAVA_FRAME();                                               \
169          CACHE_STATE();                                                         \
170          if (THREAD->pop_frame_pending() &&                                     \
171              !THREAD->pop_frame_in_process()) {                                 \
172            goto handle_Pop_Frame;                                               \
173          }                                                                      \
174          if (THREAD->jvmti_thread_state() &&                                    \
175              THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
176            goto handle_Early_Return;                                            \
177          }                                                                      \
178          opcode = *pc;                                                          \
179        }                                                                        \
180      }                                                                          \
181}
182#else
183#define DEBUGGER_SINGLE_STEP_NOTIFY()
184#endif
185
186/*
187 * CONTINUE - Macro for executing the next opcode.
188 */
189#undef CONTINUE
190#ifdef USELABELS
191// Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
192// initialization (which is is the initialization of the table pointer...)
193#define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
194#define CONTINUE {                              \
195        opcode = *pc;                           \
196        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
197        DEBUGGER_SINGLE_STEP_NOTIFY();          \
198        DISPATCH(opcode);                       \
199    }
200#else
201#ifdef PREFETCH_OPCCODE
202#define CONTINUE {                              \
203        opcode = *pc;                           \
204        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
205        DEBUGGER_SINGLE_STEP_NOTIFY();          \
206        continue;                               \
207    }
208#else
209#define CONTINUE {                              \
210        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
211        DEBUGGER_SINGLE_STEP_NOTIFY();          \
212        continue;                               \
213    }
214#endif
215#endif
216
217
218#define UPDATE_PC(opsize) {pc += opsize; }
219/*
220 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
221 */
222#undef UPDATE_PC_AND_TOS
223#define UPDATE_PC_AND_TOS(opsize, stack) \
224    {pc += opsize; MORE_STACK(stack); }
225
226/*
227 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
228 * and executing the next opcode. It's somewhat similar to the combination
229 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
230 */
231#undef UPDATE_PC_AND_TOS_AND_CONTINUE
232#ifdef USELABELS
233#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
234        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
235        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
236        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
237        DISPATCH(opcode);                                       \
238    }
239
240#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
241        pc += opsize; opcode = *pc;                             \
242        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
243        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
244        DISPATCH(opcode);                                       \
245    }
246#else
247#ifdef PREFETCH_OPCCODE
248#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
249        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
250        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
251        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
252        goto do_continue;                                       \
253    }
254
255#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
256        pc += opsize; opcode = *pc;                             \
257        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
258        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
259        goto do_continue;                                       \
260    }
261#else
262#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
263        pc += opsize; MORE_STACK(stack);                \
264        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
265        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
266        goto do_continue;                               \
267    }
268
269#define UPDATE_PC_AND_CONTINUE(opsize) {                \
270        pc += opsize;                                   \
271        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
272        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
273        goto do_continue;                               \
274    }
275#endif /* PREFETCH_OPCCODE */
276#endif /* USELABELS */
277
278// About to call a new method, update the save the adjusted pc and return to frame manager
279#define UPDATE_PC_AND_RETURN(opsize)  \
280   DECACHE_TOS();                     \
281   istate->set_bcp(pc+opsize);        \
282   return;
283
284
285#define METHOD istate->method()
286#define GET_METHOD_COUNTERS(res)    \
287  res = METHOD->method_counters();  \
288  if (res == NULL) {                \
289    CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
290  }
291
292#define OSR_REQUEST(res, branch_pc) \
293            CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
294/*
295 * For those opcodes that need to have a GC point on a backwards branch
296 */
297
298// Backedge counting is kind of strange. The asm interpreter will increment
299// the backedge counter as a separate counter but it does it's comparisons
300// to the sum (scaled) of invocation counter and backedge count to make
301// a decision. Seems kind of odd to sum them together like that
302
303// skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
304
305
306#define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
307    if ((skip) <= 0) {                                                                              \
308      MethodCounters* mcs;                                                                          \
309      GET_METHOD_COUNTERS(mcs);                                                                     \
310      if (UseLoopCounter) {                                                                         \
311        bool do_OSR = UseOnStackReplacement;                                                        \
312        mcs->backedge_counter()->increment();                                                       \
313        if (ProfileInterpreter) {                                                                   \
314          BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
315          /* Check for overflow against MDO count. */                                               \
316          do_OSR = do_OSR                                                                           \
317            && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
318            /* When ProfileInterpreter is on, the backedge_count comes     */                       \
319            /* from the methodDataOop, which value does not get reset on   */                       \
320            /* the call to frequency_counter_overflow(). To avoid          */                       \
321            /* excessive calls to the overflow routine while the method is */                       \
322            /* being compiled, add a second test to make sure the overflow */                       \
323            /* function is called only once every overflow_frequency.      */                       \
324            && (!(mdo_last_branch_taken_count & 1023));                                             \
325        } else {                                                                                    \
326          /* check for overflow of backedge counter */                                              \
327          do_OSR = do_OSR                                                                           \
328            && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
329        }                                                                                           \
330        if (do_OSR) {                                                                               \
331          nmethod* osr_nmethod;                                                                     \
332          OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
333          if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
334            intptr_t* buf;                                                                          \
335            /* Call OSR migration with last java frame only, no checks. */                          \
336            CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
337            istate->set_msg(do_osr);                                                                \
338            istate->set_osr_buf((address)buf);                                                      \
339            istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
340            return;                                                                                 \
341          }                                                                                         \
342        }                                                                                           \
343      }  /* UseCompiler ... */                                                                      \
344      SAFEPOINT;                                                                                    \
345    }
346
347/*
348 * For those opcodes that need to have a GC point on a backwards branch
349 */
350
351/*
352 * Macros for caching and flushing the interpreter state. Some local
353 * variables need to be flushed out to the frame before we do certain
354 * things (like pushing frames or becomming gc safe) and some need to
355 * be recached later (like after popping a frame). We could use one
356 * macro to cache or decache everything, but this would be less then
357 * optimal because we don't always need to cache or decache everything
358 * because some things we know are already cached or decached.
359 */
360#undef DECACHE_TOS
361#undef CACHE_TOS
362#undef CACHE_PREV_TOS
363#define DECACHE_TOS()    istate->set_stack(topOfStack);
364
365#define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
366
367#undef DECACHE_PC
368#undef CACHE_PC
369#define DECACHE_PC()    istate->set_bcp(pc);
370#define CACHE_PC()      pc = istate->bcp();
371#define CACHE_CP()      cp = istate->constants();
372#define CACHE_LOCALS()  locals = istate->locals();
373#undef CACHE_FRAME
374#define CACHE_FRAME()
375
376// BCI() returns the current bytecode-index.
377#undef  BCI
378#define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
379
380/*
381 * CHECK_NULL - Macro for throwing a NullPointerException if the object
382 * passed is a null ref.
383 * On some architectures/platforms it should be possible to do this implicitly
384 */
385#undef CHECK_NULL
386#define CHECK_NULL(obj_)                                                                         \
387        if ((obj_) == NULL) {                                                                    \
388          VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
389        }                                                                                        \
390        VERIFY_OOP(obj_)
391
392#define VMdoubleConstZero() 0.0
393#define VMdoubleConstOne() 1.0
394#define VMlongConstZero() (max_jlong-max_jlong)
395#define VMlongConstOne() ((max_jlong-max_jlong)+1)
396
397/*
398 * Alignment
399 */
400#define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
401
402// Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
403#define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
404
405// Reload interpreter state after calling the VM or a possible GC
406#define CACHE_STATE()   \
407        CACHE_TOS();    \
408        CACHE_PC();     \
409        CACHE_CP();     \
410        CACHE_LOCALS();
411
412// Call the VM with last java frame only.
413#define CALL_VM_NAKED_LJF(func)                                    \
414        DECACHE_STATE();                                           \
415        SET_LAST_JAVA_FRAME();                                     \
416        func;                                                      \
417        RESET_LAST_JAVA_FRAME();                                   \
418        CACHE_STATE();
419
420// Call the VM. Don't check for pending exceptions.
421#define CALL_VM_NOCHECK(func)                                      \
422        CALL_VM_NAKED_LJF(func)                                    \
423        if (THREAD->pop_frame_pending() &&                         \
424            !THREAD->pop_frame_in_process()) {                     \
425          goto handle_Pop_Frame;                                   \
426        }                                                          \
427        if (THREAD->jvmti_thread_state() &&                        \
428            THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
429          goto handle_Early_Return;                                \
430        }
431
432// Call the VM and check for pending exceptions
433#define CALL_VM(func, label) {                                     \
434          CALL_VM_NOCHECK(func);                                   \
435          if (THREAD->has_pending_exception()) goto label;         \
436        }
437
438/*
439 * BytecodeInterpreter::run(interpreterState istate)
440 * BytecodeInterpreter::runWithChecks(interpreterState istate)
441 *
442 * The real deal. This is where byte codes actually get interpreted.
443 * Basically it's a big while loop that iterates until we return from
444 * the method passed in.
445 *
446 * The runWithChecks is used if JVMTI is enabled.
447 *
448 */
449#if defined(VM_JVMTI)
450void
451BytecodeInterpreter::runWithChecks(interpreterState istate) {
452#else
453void
454BytecodeInterpreter::run(interpreterState istate) {
455#endif
456
457  // In order to simplify some tests based on switches set at runtime
458  // we invoke the interpreter a single time after switches are enabled
459  // and set simpler to to test variables rather than method calls or complex
460  // boolean expressions.
461
462  static int initialized = 0;
463  static int checkit = 0;
464  static intptr_t* c_addr = NULL;
465  static intptr_t  c_value;
466
467  if (checkit && *c_addr != c_value) {
468    os::breakpoint();
469  }
470#ifdef VM_JVMTI
471  static bool _jvmti_interp_events = 0;
472#endif
473
474  static int _compiling;  // (UseCompiler || CountCompiledCalls)
475
476#ifdef ASSERT
477  if (istate->_msg != initialize) {
478    assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
479#ifndef SHARK
480    IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
481#endif // !SHARK
482  }
483  // Verify linkages.
484  interpreterState l = istate;
485  do {
486    assert(l == l->_self_link, "bad link");
487    l = l->_prev_link;
488  } while (l != NULL);
489  // Screwups with stack management usually cause us to overwrite istate
490  // save a copy so we can verify it.
491  interpreterState orig = istate;
492#endif
493
494  register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
495  register address          pc = istate->bcp();
496  register jubyte opcode;
497  register intptr_t*        locals = istate->locals();
498  register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
499#ifdef LOTS_OF_REGS
500  register JavaThread*      THREAD = istate->thread();
501#else
502#undef THREAD
503#define THREAD istate->thread()
504#endif
505
506#ifdef USELABELS
507  const static void* const opclabels_data[256] = {
508/* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
509/* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
510/* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
511/* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
512
513/* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
514/* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
515/* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
516/* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
517
518/* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
519/* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
520/* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
521/* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
522
523/* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
524/* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
525/* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
526/* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
527
528/* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
529/* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
530/* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
531/* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
532
533/* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
534/* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
535/* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
536/* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
537
538/* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
539/* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
540/* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
541/* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
542
543/* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
544/* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
545/* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
546/* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
547
548/* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
549/* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
550/* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
551/* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
552
553/* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
554/* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
555/* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
556/* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
557
558/* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
559/* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
560/* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
561/* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
562
563/* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
564/* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
565/* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
566/* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
567
568/* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
569/* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
570/* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
571/* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
572
573/* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
574/* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
575/* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
576/* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
577
578/* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
579/* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
580/* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
581/* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
582
583/* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
584/* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
585/* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
586/* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
587  };
588  register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
589#endif /* USELABELS */
590
591#ifdef ASSERT
592  // this will trigger a VERIFY_OOP on entry
593  if (istate->msg() != initialize && ! METHOD->is_static()) {
594    oop rcvr = LOCALS_OBJECT(0);
595    VERIFY_OOP(rcvr);
596  }
597#endif
598// #define HACK
599#ifdef HACK
600  bool interesting = false;
601#endif // HACK
602
603  /* QQQ this should be a stack method so we don't know actual direction */
604  guarantee(istate->msg() == initialize ||
605         topOfStack >= istate->stack_limit() &&
606         topOfStack < istate->stack_base(),
607         "Stack top out of range");
608
609#ifdef CC_INTERP_PROFILE
610  // MethodData's last branch taken count.
611  uint mdo_last_branch_taken_count = 0;
612#else
613  const uint mdo_last_branch_taken_count = 0;
614#endif
615
616  switch (istate->msg()) {
617    case initialize: {
618      if (initialized++) ShouldNotReachHere(); // Only one initialize call.
619      _compiling = (UseCompiler || CountCompiledCalls);
620#ifdef VM_JVMTI
621      _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
622#endif
623      return;
624    }
625    break;
626    case method_entry: {
627      THREAD->set_do_not_unlock();
628      // count invocations
629      assert(initialized, "Interpreter not initialized");
630      if (_compiling) {
631        MethodCounters* mcs;
632        GET_METHOD_COUNTERS(mcs);
633        if (ProfileInterpreter) {
634          METHOD->increment_interpreter_invocation_count(THREAD);
635        }
636        mcs->invocation_counter()->increment();
637        if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
638          CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
639          // We no longer retry on a counter overflow.
640        }
641        // Get or create profile data. Check for pending (async) exceptions.
642        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
643        SAFEPOINT;
644      }
645
646      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
647        // initialize
648        os::breakpoint();
649      }
650
651#ifdef HACK
652      {
653        ResourceMark rm;
654        char *method_name = istate->method()->name_and_sig_as_C_string();
655        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
656          tty->print_cr("entering: depth %d bci: %d",
657                         (istate->_stack_base - istate->_stack),
658                         istate->_bcp - istate->_method->code_base());
659          interesting = true;
660        }
661      }
662#endif // HACK
663
664      // Lock method if synchronized.
665      if (METHOD->is_synchronized()) {
666        // oop rcvr = locals[0].j.r;
667        oop rcvr;
668        if (METHOD->is_static()) {
669          rcvr = METHOD->constants()->pool_holder()->java_mirror();
670        } else {
671          rcvr = LOCALS_OBJECT(0);
672          VERIFY_OOP(rcvr);
673        }
674        // The initial monitor is ours for the taking.
675        // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
676        BasicObjectLock* mon = &istate->monitor_base()[-1];
677        mon->set_obj(rcvr);
678        bool success = false;
679        uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
680        markOop mark = rcvr->mark();
681        intptr_t hash = (intptr_t) markOopDesc::no_hash;
682        // Implies UseBiasedLocking.
683        if (mark->has_bias_pattern()) {
684          uintptr_t thread_ident;
685          uintptr_t anticipated_bias_locking_value;
686          thread_ident = (uintptr_t)istate->thread();
687          anticipated_bias_locking_value =
688            (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
689            ~((uintptr_t) markOopDesc::age_mask_in_place);
690
691          if (anticipated_bias_locking_value == 0) {
692            // Already biased towards this thread, nothing to do.
693            if (PrintBiasedLockingStatistics) {
694              (* BiasedLocking::biased_lock_entry_count_addr())++;
695            }
696            success = true;
697          } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
698            // Try to revoke bias.
699            markOop header = rcvr->klass()->prototype_header();
700            if (hash != markOopDesc::no_hash) {
701              header = header->copy_set_hash(hash);
702            }
703            if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
704              if (PrintBiasedLockingStatistics)
705                (*BiasedLocking::revoked_lock_entry_count_addr())++;
706            }
707          } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
708            // Try to rebias.
709            markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
710            if (hash != markOopDesc::no_hash) {
711              new_header = new_header->copy_set_hash(hash);
712            }
713            if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
714              if (PrintBiasedLockingStatistics) {
715                (* BiasedLocking::rebiased_lock_entry_count_addr())++;
716              }
717            } else {
718              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
719            }
720            success = true;
721          } else {
722            // Try to bias towards thread in case object is anonymously biased.
723            markOop header = (markOop) ((uintptr_t) mark &
724                                        ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
725                                         (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
726            if (hash != markOopDesc::no_hash) {
727              header = header->copy_set_hash(hash);
728            }
729            markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
730            // Debugging hint.
731            DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
732            if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
733              if (PrintBiasedLockingStatistics) {
734                (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
735              }
736            } else {
737              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
738            }
739            success = true;
740          }
741        }
742
743        // Traditional lightweight locking.
744        if (!success) {
745          markOop displaced = rcvr->mark()->set_unlocked();
746          mon->lock()->set_displaced_header(displaced);
747          bool call_vm = UseHeavyMonitors;
748          if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
749            // Is it simple recursive case?
750            if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
751              mon->lock()->set_displaced_header(NULL);
752            } else {
753              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
754            }
755          }
756        }
757      }
758      THREAD->clr_do_not_unlock();
759
760      // Notify jvmti
761#ifdef VM_JVMTI
762      if (_jvmti_interp_events) {
763        // Whenever JVMTI puts a thread in interp_only_mode, method
764        // entry/exit events are sent for that thread to track stack depth.
765        if (THREAD->is_interp_only_mode()) {
766          CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
767                  handle_exception);
768        }
769      }
770#endif /* VM_JVMTI */
771
772      goto run;
773    }
774
775    case popping_frame: {
776      // returned from a java call to pop the frame, restart the call
777      // clear the message so we don't confuse ourselves later
778      assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
779      istate->set_msg(no_request);
780      if (_compiling) {
781        // Set MDX back to the ProfileData of the invoke bytecode that will be
782        // restarted.
783        SET_MDX(NULL);
784        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
785      }
786      THREAD->clr_pop_frame_in_process();
787      goto run;
788    }
789
790    case method_resume: {
791      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
792        // resume
793        os::breakpoint();
794      }
795#ifdef HACK
796      {
797        ResourceMark rm;
798        char *method_name = istate->method()->name_and_sig_as_C_string();
799        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
800          tty->print_cr("resume: depth %d bci: %d",
801                         (istate->_stack_base - istate->_stack) ,
802                         istate->_bcp - istate->_method->code_base());
803          interesting = true;
804        }
805      }
806#endif // HACK
807      // returned from a java call, continue executing.
808      if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
809        goto handle_Pop_Frame;
810      }
811      if (THREAD->jvmti_thread_state() &&
812          THREAD->jvmti_thread_state()->is_earlyret_pending()) {
813        goto handle_Early_Return;
814      }
815
816      if (THREAD->has_pending_exception()) goto handle_exception;
817      // Update the pc by the saved amount of the invoke bytecode size
818      UPDATE_PC(istate->bcp_advance());
819
820      if (_compiling) {
821        // Get or create profile data. Check for pending (async) exceptions.
822        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
823      }
824      goto run;
825    }
826
827    case deopt_resume2: {
828      // Returned from an opcode that will reexecute. Deopt was
829      // a result of a PopFrame request.
830      //
831
832      if (_compiling) {
833        // Get or create profile data. Check for pending (async) exceptions.
834        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
835      }
836      goto run;
837    }
838
839    case deopt_resume: {
840      // Returned from an opcode that has completed. The stack has
841      // the result all we need to do is skip across the bytecode
842      // and continue (assuming there is no exception pending)
843      //
844      // compute continuation length
845      //
846      // Note: it is possible to deopt at a return_register_finalizer opcode
847      // because this requires entering the vm to do the registering. While the
848      // opcode is complete we can't advance because there are no more opcodes
849      // much like trying to deopt at a poll return. In that has we simply
850      // get out of here
851      //
852      if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
853        // this will do the right thing even if an exception is pending.
854        goto handle_return;
855      }
856      UPDATE_PC(Bytecodes::length_at(METHOD, pc));
857      if (THREAD->has_pending_exception()) goto handle_exception;
858
859      if (_compiling) {
860        // Get or create profile data. Check for pending (async) exceptions.
861        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
862      }
863      goto run;
864    }
865    case got_monitors: {
866      // continue locking now that we have a monitor to use
867      // we expect to find newly allocated monitor at the "top" of the monitor stack.
868      oop lockee = STACK_OBJECT(-1);
869      VERIFY_OOP(lockee);
870      // derefing's lockee ought to provoke implicit null check
871      // find a free monitor
872      BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
873      assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
874      entry->set_obj(lockee);
875      bool success = false;
876      uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
877
878      markOop mark = lockee->mark();
879      intptr_t hash = (intptr_t) markOopDesc::no_hash;
880      // implies UseBiasedLocking
881      if (mark->has_bias_pattern()) {
882        uintptr_t thread_ident;
883        uintptr_t anticipated_bias_locking_value;
884        thread_ident = (uintptr_t)istate->thread();
885        anticipated_bias_locking_value =
886          (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
887          ~((uintptr_t) markOopDesc::age_mask_in_place);
888
889        if  (anticipated_bias_locking_value == 0) {
890          // already biased towards this thread, nothing to do
891          if (PrintBiasedLockingStatistics) {
892            (* BiasedLocking::biased_lock_entry_count_addr())++;
893          }
894          success = true;
895        } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
896          // try revoke bias
897          markOop header = lockee->klass()->prototype_header();
898          if (hash != markOopDesc::no_hash) {
899            header = header->copy_set_hash(hash);
900          }
901          if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
902            if (PrintBiasedLockingStatistics) {
903              (*BiasedLocking::revoked_lock_entry_count_addr())++;
904            }
905          }
906        } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
907          // try rebias
908          markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
909          if (hash != markOopDesc::no_hash) {
910                new_header = new_header->copy_set_hash(hash);
911          }
912          if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
913            if (PrintBiasedLockingStatistics) {
914              (* BiasedLocking::rebiased_lock_entry_count_addr())++;
915            }
916          } else {
917            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
918          }
919          success = true;
920        } else {
921          // try to bias towards thread in case object is anonymously biased
922          markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
923                                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
924          if (hash != markOopDesc::no_hash) {
925            header = header->copy_set_hash(hash);
926          }
927          markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
928          // debugging hint
929          DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
930          if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
931            if (PrintBiasedLockingStatistics) {
932              (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
933            }
934          } else {
935            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
936          }
937          success = true;
938        }
939      }
940
941      // traditional lightweight locking
942      if (!success) {
943        markOop displaced = lockee->mark()->set_unlocked();
944        entry->lock()->set_displaced_header(displaced);
945        bool call_vm = UseHeavyMonitors;
946        if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
947          // Is it simple recursive case?
948          if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
949            entry->lock()->set_displaced_header(NULL);
950          } else {
951            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
952          }
953        }
954      }
955      UPDATE_PC_AND_TOS(1, -1);
956      goto run;
957    }
958    default: {
959      fatal("Unexpected message from frame manager");
960    }
961  }
962
963run:
964
965  DO_UPDATE_INSTRUCTION_COUNT(*pc)
966  DEBUGGER_SINGLE_STEP_NOTIFY();
967#ifdef PREFETCH_OPCCODE
968  opcode = *pc;  /* prefetch first opcode */
969#endif
970
971#ifndef USELABELS
972  while (1)
973#endif
974  {
975#ifndef PREFETCH_OPCCODE
976      opcode = *pc;
977#endif
978      // Seems like this happens twice per opcode. At worst this is only
979      // need at entry to the loop.
980      // DEBUGGER_SINGLE_STEP_NOTIFY();
981      /* Using this labels avoids double breakpoints when quickening and
982       * when returing from transition frames.
983       */
984  opcode_switch:
985      assert(istate == orig, "Corrupted istate");
986      /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
987      assert(topOfStack >= istate->stack_limit(), "Stack overrun");
988      assert(topOfStack < istate->stack_base(), "Stack underrun");
989
990#ifdef USELABELS
991      DISPATCH(opcode);
992#else
993      switch (opcode)
994#endif
995      {
996      CASE(_nop):
997          UPDATE_PC_AND_CONTINUE(1);
998
999          /* Push miscellaneous constants onto the stack. */
1000
1001      CASE(_aconst_null):
1002          SET_STACK_OBJECT(NULL, 0);
1003          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1004
1005#undef  OPC_CONST_n
1006#define OPC_CONST_n(opcode, const_type, value)                          \
1007      CASE(opcode):                                                     \
1008          SET_STACK_ ## const_type(value, 0);                           \
1009          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1010
1011          OPC_CONST_n(_iconst_m1,   INT,       -1);
1012          OPC_CONST_n(_iconst_0,    INT,        0);
1013          OPC_CONST_n(_iconst_1,    INT,        1);
1014          OPC_CONST_n(_iconst_2,    INT,        2);
1015          OPC_CONST_n(_iconst_3,    INT,        3);
1016          OPC_CONST_n(_iconst_4,    INT,        4);
1017          OPC_CONST_n(_iconst_5,    INT,        5);
1018          OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1019          OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1020          OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1021
1022#undef  OPC_CONST2_n
1023#define OPC_CONST2_n(opcname, value, key, kind)                         \
1024      CASE(_##opcname):                                                 \
1025      {                                                                 \
1026          SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1027          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1028      }
1029         OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1030         OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1031         OPC_CONST2_n(lconst_0, Zero, long, LONG);
1032         OPC_CONST2_n(lconst_1, One,  long, LONG);
1033
1034         /* Load constant from constant pool: */
1035
1036          /* Push a 1-byte signed integer value onto the stack. */
1037      CASE(_bipush):
1038          SET_STACK_INT((jbyte)(pc[1]), 0);
1039          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1040
1041          /* Push a 2-byte signed integer constant onto the stack. */
1042      CASE(_sipush):
1043          SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1044          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1045
1046          /* load from local variable */
1047
1048      CASE(_aload):
1049          VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1050          SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1051          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1052
1053      CASE(_iload):
1054      CASE(_fload):
1055          SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1056          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1057
1058      CASE(_lload):
1059          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1060          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1061
1062      CASE(_dload):
1063          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1064          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1065
1066#undef  OPC_LOAD_n
1067#define OPC_LOAD_n(num)                                                 \
1068      CASE(_aload_##num):                                               \
1069          VERIFY_OOP(LOCALS_OBJECT(num));                               \
1070          SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1071          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1072                                                                        \
1073      CASE(_iload_##num):                                               \
1074      CASE(_fload_##num):                                               \
1075          SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1076          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1077                                                                        \
1078      CASE(_lload_##num):                                               \
1079          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1080          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1081      CASE(_dload_##num):                                               \
1082          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1083          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1084
1085          OPC_LOAD_n(0);
1086          OPC_LOAD_n(1);
1087          OPC_LOAD_n(2);
1088          OPC_LOAD_n(3);
1089
1090          /* store to a local variable */
1091
1092      CASE(_astore):
1093          astore(topOfStack, -1, locals, pc[1]);
1094          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1095
1096      CASE(_istore):
1097      CASE(_fstore):
1098          SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1099          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1100
1101      CASE(_lstore):
1102          SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1103          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1104
1105      CASE(_dstore):
1106          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1107          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1108
1109      CASE(_wide): {
1110          uint16_t reg = Bytes::get_Java_u2(pc + 2);
1111
1112          opcode = pc[1];
1113
1114          // Wide and it's sub-bytecode are counted as separate instructions. If we
1115          // don't account for this here, the bytecode trace skips the next bytecode.
1116          DO_UPDATE_INSTRUCTION_COUNT(opcode);
1117
1118          switch(opcode) {
1119              case Bytecodes::_aload:
1120                  VERIFY_OOP(LOCALS_OBJECT(reg));
1121                  SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1122                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1123
1124              case Bytecodes::_iload:
1125              case Bytecodes::_fload:
1126                  SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1127                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1128
1129              case Bytecodes::_lload:
1130                  SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1131                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1132
1133              case Bytecodes::_dload:
1134                  SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1135                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1136
1137              case Bytecodes::_astore:
1138                  astore(topOfStack, -1, locals, reg);
1139                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1140
1141              case Bytecodes::_istore:
1142              case Bytecodes::_fstore:
1143                  SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1144                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1145
1146              case Bytecodes::_lstore:
1147                  SET_LOCALS_LONG(STACK_LONG(-1), reg);
1148                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1149
1150              case Bytecodes::_dstore:
1151                  SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1152                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1153
1154              case Bytecodes::_iinc: {
1155                  int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1156                  // Be nice to see what this generates.... QQQ
1157                  SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1158                  UPDATE_PC_AND_CONTINUE(6);
1159              }
1160              case Bytecodes::_ret:
1161                  // Profile ret.
1162                  BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1163                  // Now, update the pc.
1164                  pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1165                  UPDATE_PC_AND_CONTINUE(0);
1166              default:
1167                  VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1168          }
1169      }
1170
1171
1172#undef  OPC_STORE_n
1173#define OPC_STORE_n(num)                                                \
1174      CASE(_astore_##num):                                              \
1175          astore(topOfStack, -1, locals, num);                          \
1176          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1177      CASE(_istore_##num):                                              \
1178      CASE(_fstore_##num):                                              \
1179          SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1180          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1181
1182          OPC_STORE_n(0);
1183          OPC_STORE_n(1);
1184          OPC_STORE_n(2);
1185          OPC_STORE_n(3);
1186
1187#undef  OPC_DSTORE_n
1188#define OPC_DSTORE_n(num)                                               \
1189      CASE(_dstore_##num):                                              \
1190          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1191          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1192      CASE(_lstore_##num):                                              \
1193          SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1194          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1195
1196          OPC_DSTORE_n(0);
1197          OPC_DSTORE_n(1);
1198          OPC_DSTORE_n(2);
1199          OPC_DSTORE_n(3);
1200
1201          /* stack pop, dup, and insert opcodes */
1202
1203
1204      CASE(_pop):                /* Discard the top item on the stack */
1205          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1206
1207
1208      CASE(_pop2):               /* Discard the top 2 items on the stack */
1209          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1210
1211
1212      CASE(_dup):               /* Duplicate the top item on the stack */
1213          dup(topOfStack);
1214          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1215
1216      CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1217          dup2(topOfStack);
1218          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1219
1220      CASE(_dup_x1):    /* insert top word two down */
1221          dup_x1(topOfStack);
1222          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1223
1224      CASE(_dup_x2):    /* insert top word three down  */
1225          dup_x2(topOfStack);
1226          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1227
1228      CASE(_dup2_x1):   /* insert top 2 slots three down */
1229          dup2_x1(topOfStack);
1230          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1231
1232      CASE(_dup2_x2):   /* insert top 2 slots four down */
1233          dup2_x2(topOfStack);
1234          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1235
1236      CASE(_swap): {        /* swap top two elements on the stack */
1237          swap(topOfStack);
1238          UPDATE_PC_AND_CONTINUE(1);
1239      }
1240
1241          /* Perform various binary integer operations */
1242
1243#undef  OPC_INT_BINARY
1244#define OPC_INT_BINARY(opcname, opname, test)                           \
1245      CASE(_i##opcname):                                                \
1246          if (test && (STACK_INT(-1) == 0)) {                           \
1247              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1248                            "/ by zero", note_div0Check_trap);          \
1249          }                                                             \
1250          SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1251                                      STACK_INT(-1)),                   \
1252                                      -2);                              \
1253          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1254      CASE(_l##opcname):                                                \
1255      {                                                                 \
1256          if (test) {                                                   \
1257            jlong l1 = STACK_LONG(-1);                                  \
1258            if (VMlongEqz(l1)) {                                        \
1259              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1260                            "/ by long zero", note_div0Check_trap);     \
1261            }                                                           \
1262          }                                                             \
1263          /* First long at (-1,-2) next long at (-3,-4) */              \
1264          SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1265                                        STACK_LONG(-1)),                \
1266                                        -3);                            \
1267          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1268      }
1269
1270      OPC_INT_BINARY(add, Add, 0);
1271      OPC_INT_BINARY(sub, Sub, 0);
1272      OPC_INT_BINARY(mul, Mul, 0);
1273      OPC_INT_BINARY(and, And, 0);
1274      OPC_INT_BINARY(or,  Or,  0);
1275      OPC_INT_BINARY(xor, Xor, 0);
1276      OPC_INT_BINARY(div, Div, 1);
1277      OPC_INT_BINARY(rem, Rem, 1);
1278
1279
1280      /* Perform various binary floating number operations */
1281      /* On some machine/platforms/compilers div zero check can be implicit */
1282
1283#undef  OPC_FLOAT_BINARY
1284#define OPC_FLOAT_BINARY(opcname, opname)                                  \
1285      CASE(_d##opcname): {                                                 \
1286          SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1287                                            STACK_DOUBLE(-1)),             \
1288                                            -3);                           \
1289          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1290      }                                                                    \
1291      CASE(_f##opcname):                                                   \
1292          SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1293                                          STACK_FLOAT(-1)),                \
1294                                          -2);                             \
1295          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1296
1297
1298     OPC_FLOAT_BINARY(add, Add);
1299     OPC_FLOAT_BINARY(sub, Sub);
1300     OPC_FLOAT_BINARY(mul, Mul);
1301     OPC_FLOAT_BINARY(div, Div);
1302     OPC_FLOAT_BINARY(rem, Rem);
1303
1304      /* Shift operations
1305       * Shift left int and long: ishl, lshl
1306       * Logical shift right int and long w/zero extension: iushr, lushr
1307       * Arithmetic shift right int and long w/sign extension: ishr, lshr
1308       */
1309
1310#undef  OPC_SHIFT_BINARY
1311#define OPC_SHIFT_BINARY(opcname, opname)                               \
1312      CASE(_i##opcname):                                                \
1313         SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1314                                     STACK_INT(-1)),                    \
1315                                     -2);                               \
1316         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1317      CASE(_l##opcname):                                                \
1318      {                                                                 \
1319         SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1320                                       STACK_INT(-1)),                  \
1321                                       -2);                             \
1322         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1323      }
1324
1325      OPC_SHIFT_BINARY(shl, Shl);
1326      OPC_SHIFT_BINARY(shr, Shr);
1327      OPC_SHIFT_BINARY(ushr, Ushr);
1328
1329     /* Increment local variable by constant */
1330      CASE(_iinc):
1331      {
1332          // locals[pc[1]].j.i += (jbyte)(pc[2]);
1333          SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1334          UPDATE_PC_AND_CONTINUE(3);
1335      }
1336
1337     /* negate the value on the top of the stack */
1338
1339      CASE(_ineg):
1340         SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1341         UPDATE_PC_AND_CONTINUE(1);
1342
1343      CASE(_fneg):
1344         SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1345         UPDATE_PC_AND_CONTINUE(1);
1346
1347      CASE(_lneg):
1348      {
1349         SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1350         UPDATE_PC_AND_CONTINUE(1);
1351      }
1352
1353      CASE(_dneg):
1354      {
1355         SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1356         UPDATE_PC_AND_CONTINUE(1);
1357      }
1358
1359      /* Conversion operations */
1360
1361      CASE(_i2f):       /* convert top of stack int to float */
1362         SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1363         UPDATE_PC_AND_CONTINUE(1);
1364
1365      CASE(_i2l):       /* convert top of stack int to long */
1366      {
1367          // this is ugly QQQ
1368          jlong r = VMint2Long(STACK_INT(-1));
1369          MORE_STACK(-1); // Pop
1370          SET_STACK_LONG(r, 1);
1371
1372          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1373      }
1374
1375      CASE(_i2d):       /* convert top of stack int to double */
1376      {
1377          // this is ugly QQQ (why cast to jlong?? )
1378          jdouble r = (jlong)STACK_INT(-1);
1379          MORE_STACK(-1); // Pop
1380          SET_STACK_DOUBLE(r, 1);
1381
1382          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1383      }
1384
1385      CASE(_l2i):       /* convert top of stack long to int */
1386      {
1387          jint r = VMlong2Int(STACK_LONG(-1));
1388          MORE_STACK(-2); // Pop
1389          SET_STACK_INT(r, 0);
1390          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1391      }
1392
1393      CASE(_l2f):   /* convert top of stack long to float */
1394      {
1395          jlong r = STACK_LONG(-1);
1396          MORE_STACK(-2); // Pop
1397          SET_STACK_FLOAT(VMlong2Float(r), 0);
1398          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1399      }
1400
1401      CASE(_l2d):       /* convert top of stack long to double */
1402      {
1403          jlong r = STACK_LONG(-1);
1404          MORE_STACK(-2); // Pop
1405          SET_STACK_DOUBLE(VMlong2Double(r), 1);
1406          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1407      }
1408
1409      CASE(_f2i):  /* Convert top of stack float to int */
1410          SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1411          UPDATE_PC_AND_CONTINUE(1);
1412
1413      CASE(_f2l):  /* convert top of stack float to long */
1414      {
1415          jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1416          MORE_STACK(-1); // POP
1417          SET_STACK_LONG(r, 1);
1418          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1419      }
1420
1421      CASE(_f2d):  /* convert top of stack float to double */
1422      {
1423          jfloat f;
1424          jdouble r;
1425          f = STACK_FLOAT(-1);
1426          r = (jdouble) f;
1427          MORE_STACK(-1); // POP
1428          SET_STACK_DOUBLE(r, 1);
1429          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1430      }
1431
1432      CASE(_d2i): /* convert top of stack double to int */
1433      {
1434          jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1435          MORE_STACK(-2);
1436          SET_STACK_INT(r1, 0);
1437          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1438      }
1439
1440      CASE(_d2f): /* convert top of stack double to float */
1441      {
1442          jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1443          MORE_STACK(-2);
1444          SET_STACK_FLOAT(r1, 0);
1445          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1446      }
1447
1448      CASE(_d2l): /* convert top of stack double to long */
1449      {
1450          jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1451          MORE_STACK(-2);
1452          SET_STACK_LONG(r1, 1);
1453          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1454      }
1455
1456      CASE(_i2b):
1457          SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1458          UPDATE_PC_AND_CONTINUE(1);
1459
1460      CASE(_i2c):
1461          SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1462          UPDATE_PC_AND_CONTINUE(1);
1463
1464      CASE(_i2s):
1465          SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1466          UPDATE_PC_AND_CONTINUE(1);
1467
1468      /* comparison operators */
1469
1470
1471#define COMPARISON_OP(name, comparison)                                      \
1472      CASE(_if_icmp##name): {                                                \
1473          const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1474          int skip = cmp                                                     \
1475                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1476          address branch_pc = pc;                                            \
1477          /* Profile branch. */                                              \
1478          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1479          UPDATE_PC_AND_TOS(skip, -2);                                       \
1480          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1481          CONTINUE;                                                          \
1482      }                                                                      \
1483      CASE(_if##name): {                                                     \
1484          const bool cmp = (STACK_INT(-1) comparison 0);                     \
1485          int skip = cmp                                                     \
1486                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1487          address branch_pc = pc;                                            \
1488          /* Profile branch. */                                              \
1489          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1490          UPDATE_PC_AND_TOS(skip, -1);                                       \
1491          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1492          CONTINUE;                                                          \
1493      }
1494
1495#define COMPARISON_OP2(name, comparison)                                     \
1496      COMPARISON_OP(name, comparison)                                        \
1497      CASE(_if_acmp##name): {                                                \
1498          const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1499          int skip = cmp                                                     \
1500                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1501          address branch_pc = pc;                                            \
1502          /* Profile branch. */                                              \
1503          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1504          UPDATE_PC_AND_TOS(skip, -2);                                       \
1505          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1506          CONTINUE;                                                          \
1507      }
1508
1509#define NULL_COMPARISON_NOT_OP(name)                                         \
1510      CASE(_if##name): {                                                     \
1511          const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1512          int skip = cmp                                                     \
1513                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1514          address branch_pc = pc;                                            \
1515          /* Profile branch. */                                              \
1516          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1517          UPDATE_PC_AND_TOS(skip, -1);                                       \
1518          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1519          CONTINUE;                                                          \
1520      }
1521
1522#define NULL_COMPARISON_OP(name)                                             \
1523      CASE(_if##name): {                                                     \
1524          const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1525          int skip = cmp                                                     \
1526                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1527          address branch_pc = pc;                                            \
1528          /* Profile branch. */                                              \
1529          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1530          UPDATE_PC_AND_TOS(skip, -1);                                       \
1531          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1532          CONTINUE;                                                          \
1533      }
1534      COMPARISON_OP(lt, <);
1535      COMPARISON_OP(gt, >);
1536      COMPARISON_OP(le, <=);
1537      COMPARISON_OP(ge, >=);
1538      COMPARISON_OP2(eq, ==);  /* include ref comparison */
1539      COMPARISON_OP2(ne, !=);  /* include ref comparison */
1540      NULL_COMPARISON_OP(null);
1541      NULL_COMPARISON_NOT_OP(nonnull);
1542
1543      /* Goto pc at specified offset in switch table. */
1544
1545      CASE(_tableswitch): {
1546          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1547          int32_t  key  = STACK_INT(-1);
1548          int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1549          int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1550          int32_t  skip;
1551          key -= low;
1552          if (((uint32_t) key > (uint32_t)(high - low))) {
1553            key = -1;
1554            skip = Bytes::get_Java_u4((address)&lpc[0]);
1555          } else {
1556            skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1557          }
1558          // Profile switch.
1559          BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1560          // Does this really need a full backedge check (osr)?
1561          address branch_pc = pc;
1562          UPDATE_PC_AND_TOS(skip, -1);
1563          DO_BACKEDGE_CHECKS(skip, branch_pc);
1564          CONTINUE;
1565      }
1566
1567      /* Goto pc whose table entry matches specified key. */
1568
1569      CASE(_lookupswitch): {
1570          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1571          int32_t  key  = STACK_INT(-1);
1572          int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1573          // Remember index.
1574          int      index = -1;
1575          int      newindex = 0;
1576          int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1577          while (--npairs >= 0) {
1578            lpc += 2;
1579            if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1580              skip = Bytes::get_Java_u4((address)&lpc[1]);
1581              index = newindex;
1582              break;
1583            }
1584            newindex += 1;
1585          }
1586          // Profile switch.
1587          BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1588          address branch_pc = pc;
1589          UPDATE_PC_AND_TOS(skip, -1);
1590          DO_BACKEDGE_CHECKS(skip, branch_pc);
1591          CONTINUE;
1592      }
1593
1594      CASE(_fcmpl):
1595      CASE(_fcmpg):
1596      {
1597          SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1598                                        STACK_FLOAT(-1),
1599                                        (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1600                        -2);
1601          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1602      }
1603
1604      CASE(_dcmpl):
1605      CASE(_dcmpg):
1606      {
1607          int r = VMdoubleCompare(STACK_DOUBLE(-3),
1608                                  STACK_DOUBLE(-1),
1609                                  (opcode == Bytecodes::_dcmpl ? -1 : 1));
1610          MORE_STACK(-4); // Pop
1611          SET_STACK_INT(r, 0);
1612          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1613      }
1614
1615      CASE(_lcmp):
1616      {
1617          int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1618          MORE_STACK(-4);
1619          SET_STACK_INT(r, 0);
1620          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1621      }
1622
1623
1624      /* Return from a method */
1625
1626      CASE(_areturn):
1627      CASE(_ireturn):
1628      CASE(_freturn):
1629      {
1630          // Allow a safepoint before returning to frame manager.
1631          SAFEPOINT;
1632
1633          goto handle_return;
1634      }
1635
1636      CASE(_lreturn):
1637      CASE(_dreturn):
1638      {
1639          // Allow a safepoint before returning to frame manager.
1640          SAFEPOINT;
1641          goto handle_return;
1642      }
1643
1644      CASE(_return_register_finalizer): {
1645
1646          oop rcvr = LOCALS_OBJECT(0);
1647          VERIFY_OOP(rcvr);
1648          if (rcvr->klass()->has_finalizer()) {
1649            CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1650          }
1651          goto handle_return;
1652      }
1653      CASE(_return): {
1654
1655          // Allow a safepoint before returning to frame manager.
1656          SAFEPOINT;
1657          goto handle_return;
1658      }
1659
1660      /* Array access byte-codes */
1661
1662      /* Every array access byte-code starts out like this */
1663//        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1664#define ARRAY_INTRO(arrayOff)                                                  \
1665      arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1666      jint     index  = STACK_INT(arrayOff + 1);                               \
1667      char message[jintAsStringSize];                                          \
1668      CHECK_NULL(arrObj);                                                      \
1669      if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1670          sprintf(message, "%d", index);                                       \
1671          VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1672                        message, note_rangeCheck_trap);                        \
1673      }
1674
1675      /* 32-bit loads. These handle conversion from < 32-bit types */
1676#define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1677      {                                                                               \
1678          ARRAY_INTRO(-2);                                                            \
1679          (void)extra;                                                                \
1680          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1681                           -2);                                                       \
1682          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1683      }
1684
1685      /* 64-bit loads */
1686#define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1687      {                                                                                    \
1688          ARRAY_INTRO(-2);                                                                 \
1689          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1690          (void)extra;                                                                     \
1691          UPDATE_PC_AND_CONTINUE(1);                                                       \
1692      }
1693
1694      CASE(_iaload):
1695          ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1696      CASE(_faload):
1697          ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1698      CASE(_aaload): {
1699          ARRAY_INTRO(-2);
1700          SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1701          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1702      }
1703      CASE(_baload):
1704          ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1705      CASE(_caload):
1706          ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1707      CASE(_saload):
1708          ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1709      CASE(_laload):
1710          ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1711      CASE(_daload):
1712          ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1713
1714      /* 32-bit stores. These handle conversion to < 32-bit types */
1715#define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1716      {                                                                              \
1717          ARRAY_INTRO(-3);                                                           \
1718          (void)extra;                                                               \
1719          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1720          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1721      }
1722
1723      /* 64-bit stores */
1724#define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1725      {                                                                              \
1726          ARRAY_INTRO(-4);                                                           \
1727          (void)extra;                                                               \
1728          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1729          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1730      }
1731
1732      CASE(_iastore):
1733          ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1734      CASE(_fastore):
1735          ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1736      /*
1737       * This one looks different because of the assignability check
1738       */
1739      CASE(_aastore): {
1740          oop rhsObject = STACK_OBJECT(-1);
1741          VERIFY_OOP(rhsObject);
1742          ARRAY_INTRO( -3);
1743          // arrObj, index are set
1744          if (rhsObject != NULL) {
1745            /* Check assignability of rhsObject into arrObj */
1746            Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1747            Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1748            //
1749            // Check for compatibilty. This check must not GC!!
1750            // Seems way more expensive now that we must dispatch
1751            //
1752            if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1753              // Decrement counter if subtype check failed.
1754              BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1755              VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1756            }
1757            // Profile checkcast with null_seen and receiver.
1758            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1759          } else {
1760            // Profile checkcast with null_seen and receiver.
1761            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1762          }
1763          ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1764          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1765      }
1766      CASE(_bastore):
1767          ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1768      CASE(_castore):
1769          ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1770      CASE(_sastore):
1771          ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1772      CASE(_lastore):
1773          ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1774      CASE(_dastore):
1775          ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1776
1777      CASE(_arraylength):
1778      {
1779          arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1780          CHECK_NULL(ary);
1781          SET_STACK_INT(ary->length(), -1);
1782          UPDATE_PC_AND_CONTINUE(1);
1783      }
1784
1785      /* monitorenter and monitorexit for locking/unlocking an object */
1786
1787      CASE(_monitorenter): {
1788        oop lockee = STACK_OBJECT(-1);
1789        // derefing's lockee ought to provoke implicit null check
1790        CHECK_NULL(lockee);
1791        // find a free monitor or one already allocated for this object
1792        // if we find a matching object then we need a new monitor
1793        // since this is recursive enter
1794        BasicObjectLock* limit = istate->monitor_base();
1795        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1796        BasicObjectLock* entry = NULL;
1797        while (most_recent != limit ) {
1798          if (most_recent->obj() == NULL) entry = most_recent;
1799          else if (most_recent->obj() == lockee) break;
1800          most_recent++;
1801        }
1802        if (entry != NULL) {
1803          entry->set_obj(lockee);
1804          int success = false;
1805          uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1806
1807          markOop mark = lockee->mark();
1808          intptr_t hash = (intptr_t) markOopDesc::no_hash;
1809          // implies UseBiasedLocking
1810          if (mark->has_bias_pattern()) {
1811            uintptr_t thread_ident;
1812            uintptr_t anticipated_bias_locking_value;
1813            thread_ident = (uintptr_t)istate->thread();
1814            anticipated_bias_locking_value =
1815              (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1816              ~((uintptr_t) markOopDesc::age_mask_in_place);
1817
1818            if  (anticipated_bias_locking_value == 0) {
1819              // already biased towards this thread, nothing to do
1820              if (PrintBiasedLockingStatistics) {
1821                (* BiasedLocking::biased_lock_entry_count_addr())++;
1822              }
1823              success = true;
1824            }
1825            else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1826              // try revoke bias
1827              markOop header = lockee->klass()->prototype_header();
1828              if (hash != markOopDesc::no_hash) {
1829                header = header->copy_set_hash(hash);
1830              }
1831              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1832                if (PrintBiasedLockingStatistics)
1833                  (*BiasedLocking::revoked_lock_entry_count_addr())++;
1834              }
1835            }
1836            else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1837              // try rebias
1838              markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1839              if (hash != markOopDesc::no_hash) {
1840                new_header = new_header->copy_set_hash(hash);
1841              }
1842              if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1843                if (PrintBiasedLockingStatistics)
1844                  (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1845              }
1846              else {
1847                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1848              }
1849              success = true;
1850            }
1851            else {
1852              // try to bias towards thread in case object is anonymously biased
1853              markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1854                                                              (uintptr_t)markOopDesc::age_mask_in_place |
1855                                                              epoch_mask_in_place));
1856              if (hash != markOopDesc::no_hash) {
1857                header = header->copy_set_hash(hash);
1858              }
1859              markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1860              // debugging hint
1861              DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1862              if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1863                if (PrintBiasedLockingStatistics)
1864                  (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1865              }
1866              else {
1867                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1868              }
1869              success = true;
1870            }
1871          }
1872
1873          // traditional lightweight locking
1874          if (!success) {
1875            markOop displaced = lockee->mark()->set_unlocked();
1876            entry->lock()->set_displaced_header(displaced);
1877            bool call_vm = UseHeavyMonitors;
1878            if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1879              // Is it simple recursive case?
1880              if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1881                entry->lock()->set_displaced_header(NULL);
1882              } else {
1883                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1884              }
1885            }
1886          }
1887          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1888        } else {
1889          istate->set_msg(more_monitors);
1890          UPDATE_PC_AND_RETURN(0); // Re-execute
1891        }
1892      }
1893
1894      CASE(_monitorexit): {
1895        oop lockee = STACK_OBJECT(-1);
1896        CHECK_NULL(lockee);
1897        // derefing's lockee ought to provoke implicit null check
1898        // find our monitor slot
1899        BasicObjectLock* limit = istate->monitor_base();
1900        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1901        while (most_recent != limit ) {
1902          if ((most_recent)->obj() == lockee) {
1903            BasicLock* lock = most_recent->lock();
1904            markOop header = lock->displaced_header();
1905            most_recent->set_obj(NULL);
1906            if (!lockee->mark()->has_bias_pattern()) {
1907              bool call_vm = UseHeavyMonitors;
1908              // If it isn't recursive we either must swap old header or call the runtime
1909              if (header != NULL || call_vm) {
1910                if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1911                  // restore object for the slow case
1912                  most_recent->set_obj(lockee);
1913                  CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1914                }
1915              }
1916            }
1917            UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1918          }
1919          most_recent++;
1920        }
1921        // Need to throw illegal monitor state exception
1922        CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1923        ShouldNotReachHere();
1924      }
1925
1926      /* All of the non-quick opcodes. */
1927
1928      /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1929       *  constant pool index in the instruction.
1930       */
1931      CASE(_getfield):
1932      CASE(_getstatic):
1933        {
1934          u2 index;
1935          ConstantPoolCacheEntry* cache;
1936          index = Bytes::get_native_u2(pc+1);
1937
1938          // QQQ Need to make this as inlined as possible. Probably need to
1939          // split all the bytecode cases out so c++ compiler has a chance
1940          // for constant prop to fold everything possible away.
1941
1942          cache = cp->entry_at(index);
1943          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1944            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1945                    handle_exception);
1946            cache = cp->entry_at(index);
1947          }
1948
1949#ifdef VM_JVMTI
1950          if (_jvmti_interp_events) {
1951            int *count_addr;
1952            oop obj;
1953            // Check to see if a field modification watch has been set
1954            // before we take the time to call into the VM.
1955            count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1956            if ( *count_addr > 0 ) {
1957              if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1958                obj = (oop)NULL;
1959              } else {
1960                obj = (oop) STACK_OBJECT(-1);
1961                VERIFY_OOP(obj);
1962              }
1963              CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1964                                          obj,
1965                                          cache),
1966                                          handle_exception);
1967            }
1968          }
1969#endif /* VM_JVMTI */
1970
1971          oop obj;
1972          if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1973            Klass* k = cache->f1_as_klass();
1974            obj = k->java_mirror();
1975            MORE_STACK(1);  // Assume single slot push
1976          } else {
1977            obj = (oop) STACK_OBJECT(-1);
1978            CHECK_NULL(obj);
1979          }
1980
1981          //
1982          // Now store the result on the stack
1983          //
1984          TosState tos_type = cache->flag_state();
1985          int field_offset = cache->f2_as_index();
1986          if (cache->is_volatile()) {
1987            if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1988              OrderAccess::fence();
1989            }
1990            if (tos_type == atos) {
1991              VERIFY_OOP(obj->obj_field_acquire(field_offset));
1992              SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1993            } else if (tos_type == itos) {
1994              SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1995            } else if (tos_type == ltos) {
1996              SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1997              MORE_STACK(1);
1998            } else if (tos_type == btos) {
1999              SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2000            } else if (tos_type == ctos) {
2001              SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2002            } else if (tos_type == stos) {
2003              SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2004            } else if (tos_type == ftos) {
2005              SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2006            } else {
2007              SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2008              MORE_STACK(1);
2009            }
2010          } else {
2011            if (tos_type == atos) {
2012              VERIFY_OOP(obj->obj_field(field_offset));
2013              SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2014            } else if (tos_type == itos) {
2015              SET_STACK_INT(obj->int_field(field_offset), -1);
2016            } else if (tos_type == ltos) {
2017              SET_STACK_LONG(obj->long_field(field_offset), 0);
2018              MORE_STACK(1);
2019            } else if (tos_type == btos) {
2020              SET_STACK_INT(obj->byte_field(field_offset), -1);
2021            } else if (tos_type == ctos) {
2022              SET_STACK_INT(obj->char_field(field_offset), -1);
2023            } else if (tos_type == stos) {
2024              SET_STACK_INT(obj->short_field(field_offset), -1);
2025            } else if (tos_type == ftos) {
2026              SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2027            } else {
2028              SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2029              MORE_STACK(1);
2030            }
2031          }
2032
2033          UPDATE_PC_AND_CONTINUE(3);
2034         }
2035
2036      CASE(_putfield):
2037      CASE(_putstatic):
2038        {
2039          u2 index = Bytes::get_native_u2(pc+1);
2040          ConstantPoolCacheEntry* cache = cp->entry_at(index);
2041          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2042            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
2043                    handle_exception);
2044            cache = cp->entry_at(index);
2045          }
2046
2047#ifdef VM_JVMTI
2048          if (_jvmti_interp_events) {
2049            int *count_addr;
2050            oop obj;
2051            // Check to see if a field modification watch has been set
2052            // before we take the time to call into the VM.
2053            count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2054            if ( *count_addr > 0 ) {
2055              if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2056                obj = (oop)NULL;
2057              }
2058              else {
2059                if (cache->is_long() || cache->is_double()) {
2060                  obj = (oop) STACK_OBJECT(-3);
2061                } else {
2062                  obj = (oop) STACK_OBJECT(-2);
2063                }
2064                VERIFY_OOP(obj);
2065              }
2066
2067              CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2068                                          obj,
2069                                          cache,
2070                                          (jvalue *)STACK_SLOT(-1)),
2071                                          handle_exception);
2072            }
2073          }
2074#endif /* VM_JVMTI */
2075
2076          // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2077          // out so c++ compiler has a chance for constant prop to fold everything possible away.
2078
2079          oop obj;
2080          int count;
2081          TosState tos_type = cache->flag_state();
2082
2083          count = -1;
2084          if (tos_type == ltos || tos_type == dtos) {
2085            --count;
2086          }
2087          if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2088            Klass* k = cache->f1_as_klass();
2089            obj = k->java_mirror();
2090          } else {
2091            --count;
2092            obj = (oop) STACK_OBJECT(count);
2093            CHECK_NULL(obj);
2094          }
2095
2096          //
2097          // Now store the result
2098          //
2099          int field_offset = cache->f2_as_index();
2100          if (cache->is_volatile()) {
2101            if (tos_type == itos) {
2102              obj->release_int_field_put(field_offset, STACK_INT(-1));
2103            } else if (tos_type == atos) {
2104              VERIFY_OOP(STACK_OBJECT(-1));
2105              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2106            } else if (tos_type == btos) {
2107              obj->release_byte_field_put(field_offset, STACK_INT(-1));
2108            } else if (tos_type == ltos) {
2109              obj->release_long_field_put(field_offset, STACK_LONG(-1));
2110            } else if (tos_type == ctos) {
2111              obj->release_char_field_put(field_offset, STACK_INT(-1));
2112            } else if (tos_type == stos) {
2113              obj->release_short_field_put(field_offset, STACK_INT(-1));
2114            } else if (tos_type == ftos) {
2115              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2116            } else {
2117              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2118            }
2119            OrderAccess::storeload();
2120          } else {
2121            if (tos_type == itos) {
2122              obj->int_field_put(field_offset, STACK_INT(-1));
2123            } else if (tos_type == atos) {
2124              VERIFY_OOP(STACK_OBJECT(-1));
2125              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2126            } else if (tos_type == btos) {
2127              obj->byte_field_put(field_offset, STACK_INT(-1));
2128            } else if (tos_type == ltos) {
2129              obj->long_field_put(field_offset, STACK_LONG(-1));
2130            } else if (tos_type == ctos) {
2131              obj->char_field_put(field_offset, STACK_INT(-1));
2132            } else if (tos_type == stos) {
2133              obj->short_field_put(field_offset, STACK_INT(-1));
2134            } else if (tos_type == ftos) {
2135              obj->float_field_put(field_offset, STACK_FLOAT(-1));
2136            } else {
2137              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2138            }
2139          }
2140
2141          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2142        }
2143
2144      CASE(_new): {
2145        u2 index = Bytes::get_Java_u2(pc+1);
2146        ConstantPool* constants = istate->method()->constants();
2147        if (!constants->tag_at(index).is_unresolved_klass()) {
2148          // Make sure klass is initialized and doesn't have a finalizer
2149          Klass* entry = constants->slot_at(index).get_klass();
2150          assert(entry->is_klass(), "Should be resolved klass");
2151          Klass* k_entry = (Klass*) entry;
2152          assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2153          InstanceKlass* ik = (InstanceKlass*) k_entry;
2154          if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2155            size_t obj_size = ik->size_helper();
2156            oop result = NULL;
2157            // If the TLAB isn't pre-zeroed then we'll have to do it
2158            bool need_zero = !ZeroTLAB;
2159            if (UseTLAB) {
2160              result = (oop) THREAD->tlab().allocate(obj_size);
2161            }
2162            // Disable non-TLAB-based fast-path, because profiling requires that all
2163            // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2164            // returns NULL.
2165#ifndef CC_INTERP_PROFILE
2166            if (result == NULL) {
2167              need_zero = true;
2168              // Try allocate in shared eden
2169            retry:
2170              HeapWord* compare_to = *Universe::heap()->top_addr();
2171              HeapWord* new_top = compare_to + obj_size;
2172              if (new_top <= *Universe::heap()->end_addr()) {
2173                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2174                  goto retry;
2175                }
2176                result = (oop) compare_to;
2177              }
2178            }
2179#endif
2180            if (result != NULL) {
2181              // Initialize object (if nonzero size and need) and then the header
2182              if (need_zero ) {
2183                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2184                obj_size -= sizeof(oopDesc) / oopSize;
2185                if (obj_size > 0 ) {
2186                  memset(to_zero, 0, obj_size * HeapWordSize);
2187                }
2188              }
2189              if (UseBiasedLocking) {
2190                result->set_mark(ik->prototype_header());
2191              } else {
2192                result->set_mark(markOopDesc::prototype());
2193              }
2194              result->set_klass_gap(0);
2195              result->set_klass(k_entry);
2196              // Must prevent reordering of stores for object initialization
2197              // with stores that publish the new object.
2198              OrderAccess::storestore();
2199              SET_STACK_OBJECT(result, 0);
2200              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2201            }
2202          }
2203        }
2204        // Slow case allocation
2205        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2206                handle_exception);
2207        // Must prevent reordering of stores for object initialization
2208        // with stores that publish the new object.
2209        OrderAccess::storestore();
2210        SET_STACK_OBJECT(THREAD->vm_result(), 0);
2211        THREAD->set_vm_result(NULL);
2212        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2213      }
2214      CASE(_anewarray): {
2215        u2 index = Bytes::get_Java_u2(pc+1);
2216        jint size = STACK_INT(-1);
2217        CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2218                handle_exception);
2219        // Must prevent reordering of stores for object initialization
2220        // with stores that publish the new object.
2221        OrderAccess::storestore();
2222        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2223        THREAD->set_vm_result(NULL);
2224        UPDATE_PC_AND_CONTINUE(3);
2225      }
2226      CASE(_multianewarray): {
2227        jint dims = *(pc+3);
2228        jint size = STACK_INT(-1);
2229        // stack grows down, dimensions are up!
2230        jint *dimarray =
2231                   (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2232                                      Interpreter::stackElementWords-1];
2233        //adjust pointer to start of stack element
2234        CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2235                handle_exception);
2236        // Must prevent reordering of stores for object initialization
2237        // with stores that publish the new object.
2238        OrderAccess::storestore();
2239        SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2240        THREAD->set_vm_result(NULL);
2241        UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2242      }
2243      CASE(_checkcast):
2244          if (STACK_OBJECT(-1) != NULL) {
2245            VERIFY_OOP(STACK_OBJECT(-1));
2246            u2 index = Bytes::get_Java_u2(pc+1);
2247            // Constant pool may have actual klass or unresolved klass. If it is
2248            // unresolved we must resolve it.
2249            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2250              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2251            }
2252            Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2253            Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2254            //
2255            // Check for compatibilty. This check must not GC!!
2256            // Seems way more expensive now that we must dispatch.
2257            //
2258            if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2259              // Decrement counter at checkcast.
2260              BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2261              ResourceMark rm(THREAD);
2262              const char* objName = objKlass->external_name();
2263              const char* klassName = klassOf->external_name();
2264              char* message = SharedRuntime::generate_class_cast_message(
2265                objName, klassName);
2266              VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2267            }
2268            // Profile checkcast with null_seen and receiver.
2269            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2270          } else {
2271            // Profile checkcast with null_seen and receiver.
2272            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2273          }
2274          UPDATE_PC_AND_CONTINUE(3);
2275
2276      CASE(_instanceof):
2277          if (STACK_OBJECT(-1) == NULL) {
2278            SET_STACK_INT(0, -1);
2279            // Profile instanceof with null_seen and receiver.
2280            BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2281          } else {
2282            VERIFY_OOP(STACK_OBJECT(-1));
2283            u2 index = Bytes::get_Java_u2(pc+1);
2284            // Constant pool may have actual klass or unresolved klass. If it is
2285            // unresolved we must resolve it.
2286            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2287              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2288            }
2289            Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2290            Klass* objKlass = STACK_OBJECT(-1)->klass();
2291            //
2292            // Check for compatibilty. This check must not GC!!
2293            // Seems way more expensive now that we must dispatch.
2294            //
2295            if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2296              SET_STACK_INT(1, -1);
2297            } else {
2298              SET_STACK_INT(0, -1);
2299              // Decrement counter at checkcast.
2300              BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2301            }
2302            // Profile instanceof with null_seen and receiver.
2303            BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2304          }
2305          UPDATE_PC_AND_CONTINUE(3);
2306
2307      CASE(_ldc_w):
2308      CASE(_ldc):
2309        {
2310          u2 index;
2311          bool wide = false;
2312          int incr = 2; // frequent case
2313          if (opcode == Bytecodes::_ldc) {
2314            index = pc[1];
2315          } else {
2316            index = Bytes::get_Java_u2(pc+1);
2317            incr = 3;
2318            wide = true;
2319          }
2320
2321          ConstantPool* constants = METHOD->constants();
2322          switch (constants->tag_at(index).value()) {
2323          case JVM_CONSTANT_Integer:
2324            SET_STACK_INT(constants->int_at(index), 0);
2325            break;
2326
2327          case JVM_CONSTANT_Float:
2328            SET_STACK_FLOAT(constants->float_at(index), 0);
2329            break;
2330
2331          case JVM_CONSTANT_String:
2332            {
2333              oop result = constants->resolved_references()->obj_at(index);
2334              if (result == NULL) {
2335                CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2336                SET_STACK_OBJECT(THREAD->vm_result(), 0);
2337                THREAD->set_vm_result(NULL);
2338              } else {
2339                VERIFY_OOP(result);
2340                SET_STACK_OBJECT(result, 0);
2341              }
2342            break;
2343            }
2344
2345          case JVM_CONSTANT_Class:
2346            VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2347            SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2348            break;
2349
2350          case JVM_CONSTANT_UnresolvedClass:
2351          case JVM_CONSTANT_UnresolvedClassInError:
2352            CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2353            SET_STACK_OBJECT(THREAD->vm_result(), 0);
2354            THREAD->set_vm_result(NULL);
2355            break;
2356
2357          default:  ShouldNotReachHere();
2358          }
2359          UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2360        }
2361
2362      CASE(_ldc2_w):
2363        {
2364          u2 index = Bytes::get_Java_u2(pc+1);
2365
2366          ConstantPool* constants = METHOD->constants();
2367          switch (constants->tag_at(index).value()) {
2368
2369          case JVM_CONSTANT_Long:
2370             SET_STACK_LONG(constants->long_at(index), 1);
2371            break;
2372
2373          case JVM_CONSTANT_Double:
2374             SET_STACK_DOUBLE(constants->double_at(index), 1);
2375            break;
2376          default:  ShouldNotReachHere();
2377          }
2378          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2379        }
2380
2381      CASE(_fast_aldc_w):
2382      CASE(_fast_aldc): {
2383        u2 index;
2384        int incr;
2385        if (opcode == Bytecodes::_fast_aldc) {
2386          index = pc[1];
2387          incr = 2;
2388        } else {
2389          index = Bytes::get_native_u2(pc+1);
2390          incr = 3;
2391        }
2392
2393        // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2394        // This kind of CP cache entry does not need to match the flags byte, because
2395        // there is a 1-1 relation between bytecode type and CP entry type.
2396        ConstantPool* constants = METHOD->constants();
2397        oop result = constants->resolved_references()->obj_at(index);
2398        if (result == NULL) {
2399          CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2400                  handle_exception);
2401          result = THREAD->vm_result();
2402        }
2403
2404        VERIFY_OOP(result);
2405        SET_STACK_OBJECT(result, 0);
2406        UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2407      }
2408
2409      CASE(_invokedynamic): {
2410
2411        u4 index = Bytes::get_native_u4(pc+1);
2412        ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2413
2414        // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2415        // This kind of CP cache entry does not need to match the flags byte, because
2416        // there is a 1-1 relation between bytecode type and CP entry type.
2417        if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2418          CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2419                  handle_exception);
2420          cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2421        }
2422
2423        Method* method = cache->f1_as_method();
2424        if (VerifyOops) method->verify();
2425
2426        if (cache->has_appendix()) {
2427          ConstantPool* constants = METHOD->constants();
2428          SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2429          MORE_STACK(1);
2430        }
2431
2432        istate->set_msg(call_method);
2433        istate->set_callee(method);
2434        istate->set_callee_entry_point(method->from_interpreted_entry());
2435        istate->set_bcp_advance(5);
2436
2437        // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2438        BI_PROFILE_UPDATE_CALL();
2439
2440        UPDATE_PC_AND_RETURN(0); // I'll be back...
2441      }
2442
2443      CASE(_invokehandle): {
2444
2445        u2 index = Bytes::get_native_u2(pc+1);
2446        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2447
2448        if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2449          CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2450                  handle_exception);
2451          cache = cp->entry_at(index);
2452        }
2453
2454        Method* method = cache->f1_as_method();
2455        if (VerifyOops) method->verify();
2456
2457        if (cache->has_appendix()) {
2458          ConstantPool* constants = METHOD->constants();
2459          SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2460          MORE_STACK(1);
2461        }
2462
2463        istate->set_msg(call_method);
2464        istate->set_callee(method);
2465        istate->set_callee_entry_point(method->from_interpreted_entry());
2466        istate->set_bcp_advance(3);
2467
2468        // Invokehandle has got a call counter, just like a final call -> increment!
2469        BI_PROFILE_UPDATE_FINALCALL();
2470
2471        UPDATE_PC_AND_RETURN(0); // I'll be back...
2472      }
2473
2474      CASE(_invokeinterface): {
2475        u2 index = Bytes::get_native_u2(pc+1);
2476
2477        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2478        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2479
2480        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2481        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2482          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2483                  handle_exception);
2484          cache = cp->entry_at(index);
2485        }
2486
2487        istate->set_msg(call_method);
2488
2489        // Special case of invokeinterface called for virtual method of
2490        // java.lang.Object.  See cpCacheOop.cpp for details.
2491        // This code isn't produced by javac, but could be produced by
2492        // another compliant java compiler.
2493        if (cache->is_forced_virtual()) {
2494          Method* callee;
2495          CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2496          if (cache->is_vfinal()) {
2497            callee = cache->f2_as_vfinal_method();
2498            // Profile 'special case of invokeinterface' final call.
2499            BI_PROFILE_UPDATE_FINALCALL();
2500          } else {
2501            // Get receiver.
2502            int parms = cache->parameter_size();
2503            // Same comments as invokevirtual apply here.
2504            oop rcvr = STACK_OBJECT(-parms);
2505            VERIFY_OOP(rcvr);
2506            InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2507            callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2508            // Profile 'special case of invokeinterface' virtual call.
2509            BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2510          }
2511          istate->set_callee(callee);
2512          istate->set_callee_entry_point(callee->from_interpreted_entry());
2513#ifdef VM_JVMTI
2514          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2515            istate->set_callee_entry_point(callee->interpreter_entry());
2516          }
2517#endif /* VM_JVMTI */
2518          istate->set_bcp_advance(5);
2519          UPDATE_PC_AND_RETURN(0); // I'll be back...
2520        }
2521
2522        // this could definitely be cleaned up QQQ
2523        Method* callee;
2524        Klass* iclass = cache->f1_as_klass();
2525        // InstanceKlass* interface = (InstanceKlass*) iclass;
2526        // get receiver
2527        int parms = cache->parameter_size();
2528        oop rcvr = STACK_OBJECT(-parms);
2529        CHECK_NULL(rcvr);
2530        InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2531        itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2532        int i;
2533        for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2534          if (ki->interface_klass() == iclass) break;
2535        }
2536        // If the interface isn't found, this class doesn't implement this
2537        // interface.  The link resolver checks this but only for the first
2538        // time this interface is called.
2539        if (i == int2->itable_length()) {
2540          VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2541        }
2542        int mindex = cache->f2_as_index();
2543        itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2544        callee = im[mindex].method();
2545        if (callee == NULL) {
2546          VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2547        }
2548
2549        // Profile virtual call.
2550        BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2551
2552        istate->set_callee(callee);
2553        istate->set_callee_entry_point(callee->from_interpreted_entry());
2554#ifdef VM_JVMTI
2555        if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2556          istate->set_callee_entry_point(callee->interpreter_entry());
2557        }
2558#endif /* VM_JVMTI */
2559        istate->set_bcp_advance(5);
2560        UPDATE_PC_AND_RETURN(0); // I'll be back...
2561      }
2562
2563      CASE(_invokevirtual):
2564      CASE(_invokespecial):
2565      CASE(_invokestatic): {
2566        u2 index = Bytes::get_native_u2(pc+1);
2567
2568        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2569        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2570        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2571
2572        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2573          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2574                  handle_exception);
2575          cache = cp->entry_at(index);
2576        }
2577
2578        istate->set_msg(call_method);
2579        {
2580          Method* callee;
2581          if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2582            CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2583            if (cache->is_vfinal()) {
2584              callee = cache->f2_as_vfinal_method();
2585              // Profile final call.
2586              BI_PROFILE_UPDATE_FINALCALL();
2587            } else {
2588              // get receiver
2589              int parms = cache->parameter_size();
2590              // this works but needs a resourcemark and seems to create a vtable on every call:
2591              // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2592              //
2593              // this fails with an assert
2594              // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2595              // but this works
2596              oop rcvr = STACK_OBJECT(-parms);
2597              VERIFY_OOP(rcvr);
2598              InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2599              /*
2600                Executing this code in java.lang.String:
2601                    public String(char value[]) {
2602                          this.count = value.length;
2603                          this.value = (char[])value.clone();
2604                     }
2605
2606                 a find on rcvr->klass() reports:
2607                 {type array char}{type array class}
2608                  - klass: {other class}
2609
2610                  but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2611                  because rcvr->klass()->oop_is_instance() == 0
2612                  However it seems to have a vtable in the right location. Huh?
2613
2614              */
2615              callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2616              // Profile virtual call.
2617              BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2618            }
2619          } else {
2620            if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2621              CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2622            }
2623            callee = cache->f1_as_method();
2624
2625            // Profile call.
2626            BI_PROFILE_UPDATE_CALL();
2627          }
2628
2629          istate->set_callee(callee);
2630          istate->set_callee_entry_point(callee->from_interpreted_entry());
2631#ifdef VM_JVMTI
2632          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2633            istate->set_callee_entry_point(callee->interpreter_entry());
2634          }
2635#endif /* VM_JVMTI */
2636          istate->set_bcp_advance(3);
2637          UPDATE_PC_AND_RETURN(0); // I'll be back...
2638        }
2639      }
2640
2641      /* Allocate memory for a new java object. */
2642
2643      CASE(_newarray): {
2644        BasicType atype = (BasicType) *(pc+1);
2645        jint size = STACK_INT(-1);
2646        CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2647                handle_exception);
2648        // Must prevent reordering of stores for object initialization
2649        // with stores that publish the new object.
2650        OrderAccess::storestore();
2651        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2652        THREAD->set_vm_result(NULL);
2653
2654        UPDATE_PC_AND_CONTINUE(2);
2655      }
2656
2657      /* Throw an exception. */
2658
2659      CASE(_athrow): {
2660          oop except_oop = STACK_OBJECT(-1);
2661          CHECK_NULL(except_oop);
2662          // set pending_exception so we use common code
2663          THREAD->set_pending_exception(except_oop, NULL, 0);
2664          goto handle_exception;
2665      }
2666
2667      /* goto and jsr. They are exactly the same except jsr pushes
2668       * the address of the next instruction first.
2669       */
2670
2671      CASE(_jsr): {
2672          /* push bytecode index on stack */
2673          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2674          MORE_STACK(1);
2675          /* FALL THROUGH */
2676      }
2677
2678      CASE(_goto):
2679      {
2680          int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2681          // Profile jump.
2682          BI_PROFILE_UPDATE_JUMP();
2683          address branch_pc = pc;
2684          UPDATE_PC(offset);
2685          DO_BACKEDGE_CHECKS(offset, branch_pc);
2686          CONTINUE;
2687      }
2688
2689      CASE(_jsr_w): {
2690          /* push return address on the stack */
2691          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2692          MORE_STACK(1);
2693          /* FALL THROUGH */
2694      }
2695
2696      CASE(_goto_w):
2697      {
2698          int32_t offset = Bytes::get_Java_u4(pc + 1);
2699          // Profile jump.
2700          BI_PROFILE_UPDATE_JUMP();
2701          address branch_pc = pc;
2702          UPDATE_PC(offset);
2703          DO_BACKEDGE_CHECKS(offset, branch_pc);
2704          CONTINUE;
2705      }
2706
2707      /* return from a jsr or jsr_w */
2708
2709      CASE(_ret): {
2710          // Profile ret.
2711          BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2712          // Now, update the pc.
2713          pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2714          UPDATE_PC_AND_CONTINUE(0);
2715      }
2716
2717      /* debugger breakpoint */
2718
2719      CASE(_breakpoint): {
2720          Bytecodes::Code original_bytecode;
2721          DECACHE_STATE();
2722          SET_LAST_JAVA_FRAME();
2723          original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2724                              METHOD, pc);
2725          RESET_LAST_JAVA_FRAME();
2726          CACHE_STATE();
2727          if (THREAD->has_pending_exception()) goto handle_exception;
2728            CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2729                                                    handle_exception);
2730
2731          opcode = (jubyte)original_bytecode;
2732          goto opcode_switch;
2733      }
2734
2735      DEFAULT:
2736          fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2737                        Bytecodes::name((Bytecodes::Code)opcode)));
2738          goto finish;
2739
2740      } /* switch(opc) */
2741
2742
2743#ifdef USELABELS
2744    check_for_exception:
2745#endif
2746    {
2747      if (!THREAD->has_pending_exception()) {
2748        CONTINUE;
2749      }
2750      /* We will be gcsafe soon, so flush our state. */
2751      DECACHE_PC();
2752      goto handle_exception;
2753    }
2754  do_continue: ;
2755
2756  } /* while (1) interpreter loop */
2757
2758
2759  // An exception exists in the thread state see whether this activation can handle it
2760  handle_exception: {
2761
2762    HandleMarkCleaner __hmc(THREAD);
2763    Handle except_oop(THREAD, THREAD->pending_exception());
2764    // Prevent any subsequent HandleMarkCleaner in the VM
2765    // from freeing the except_oop handle.
2766    HandleMark __hm(THREAD);
2767
2768    THREAD->clear_pending_exception();
2769    assert(except_oop(), "No exception to process");
2770    intptr_t continuation_bci;
2771    // expression stack is emptied
2772    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2773    CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2774            handle_exception);
2775
2776    except_oop = THREAD->vm_result();
2777    THREAD->set_vm_result(NULL);
2778    if (continuation_bci >= 0) {
2779      // Place exception on top of stack
2780      SET_STACK_OBJECT(except_oop(), 0);
2781      MORE_STACK(1);
2782      pc = METHOD->code_base() + continuation_bci;
2783      if (TraceExceptions) {
2784        ttyLocker ttyl;
2785        ResourceMark rm;
2786        tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2787        tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2788        tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2789                      (int)(istate->bcp() - METHOD->code_base()),
2790                      (int)continuation_bci, p2i(THREAD));
2791      }
2792      // for AbortVMOnException flag
2793      NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2794
2795      // Update profiling data.
2796      BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2797      goto run;
2798    }
2799    if (TraceExceptions) {
2800      ttyLocker ttyl;
2801      ResourceMark rm;
2802      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2803      tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2804      tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2805                    (int)(istate->bcp() - METHOD->code_base()),
2806                    p2i(THREAD));
2807    }
2808    // for AbortVMOnException flag
2809    NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2810    // No handler in this activation, unwind and try again
2811    THREAD->set_pending_exception(except_oop(), NULL, 0);
2812    goto handle_return;
2813  }  // handle_exception:
2814
2815  // Return from an interpreter invocation with the result of the interpretation
2816  // on the top of the Java Stack (or a pending exception)
2817
2818  handle_Pop_Frame: {
2819
2820    // We don't really do anything special here except we must be aware
2821    // that we can get here without ever locking the method (if sync).
2822    // Also we skip the notification of the exit.
2823
2824    istate->set_msg(popping_frame);
2825    // Clear pending so while the pop is in process
2826    // we don't start another one if a call_vm is done.
2827    THREAD->clr_pop_frame_pending();
2828    // Let interpreter (only) see the we're in the process of popping a frame
2829    THREAD->set_pop_frame_in_process();
2830
2831    goto handle_return;
2832
2833  } // handle_Pop_Frame
2834
2835  // ForceEarlyReturn ends a method, and returns to the caller with a return value
2836  // given by the invoker of the early return.
2837  handle_Early_Return: {
2838
2839    istate->set_msg(early_return);
2840
2841    // Clear expression stack.
2842    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2843
2844    JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2845
2846    // Push the value to be returned.
2847    switch (istate->method()->result_type()) {
2848      case T_BOOLEAN:
2849      case T_SHORT:
2850      case T_BYTE:
2851      case T_CHAR:
2852      case T_INT:
2853        SET_STACK_INT(ts->earlyret_value().i, 0);
2854        MORE_STACK(1);
2855        break;
2856      case T_LONG:
2857        SET_STACK_LONG(ts->earlyret_value().j, 1);
2858        MORE_STACK(2);
2859        break;
2860      case T_FLOAT:
2861        SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2862        MORE_STACK(1);
2863        break;
2864      case T_DOUBLE:
2865        SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2866        MORE_STACK(2);
2867        break;
2868      case T_ARRAY:
2869      case T_OBJECT:
2870        SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2871        MORE_STACK(1);
2872        break;
2873    }
2874
2875    ts->clr_earlyret_value();
2876    ts->set_earlyret_oop(NULL);
2877    ts->clr_earlyret_pending();
2878
2879    // Fall through to handle_return.
2880
2881  } // handle_Early_Return
2882
2883  handle_return: {
2884    // A storestore barrier is required to order initialization of
2885    // final fields with publishing the reference to the object that
2886    // holds the field. Without the barrier the value of final fields
2887    // can be observed to change.
2888    OrderAccess::storestore();
2889
2890    DECACHE_STATE();
2891
2892    bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2893    bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2894    Handle original_exception(THREAD, THREAD->pending_exception());
2895    Handle illegal_state_oop(THREAD, NULL);
2896
2897    // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2898    // in any following VM entries from freeing our live handles, but illegal_state_oop
2899    // isn't really allocated yet and so doesn't become live until later and
2900    // in unpredicatable places. Instead we must protect the places where we enter the
2901    // VM. It would be much simpler (and safer) if we could allocate a real handle with
2902    // a NULL oop in it and then overwrite the oop later as needed. This isn't
2903    // unfortunately isn't possible.
2904
2905    THREAD->clear_pending_exception();
2906
2907    //
2908    // As far as we are concerned we have returned. If we have a pending exception
2909    // that will be returned as this invocation's result. However if we get any
2910    // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2911    // will be our final result (i.e. monitor exception trumps a pending exception).
2912    //
2913
2914    // If we never locked the method (or really passed the point where we would have),
2915    // there is no need to unlock it (or look for other monitors), since that
2916    // could not have happened.
2917
2918    if (THREAD->do_not_unlock()) {
2919
2920      // Never locked, reset the flag now because obviously any caller must
2921      // have passed their point of locking for us to have gotten here.
2922
2923      THREAD->clr_do_not_unlock();
2924    } else {
2925      // At this point we consider that we have returned. We now check that the
2926      // locks were properly block structured. If we find that they were not
2927      // used properly we will return with an illegal monitor exception.
2928      // The exception is checked by the caller not the callee since this
2929      // checking is considered to be part of the invocation and therefore
2930      // in the callers scope (JVM spec 8.13).
2931      //
2932      // Another weird thing to watch for is if the method was locked
2933      // recursively and then not exited properly. This means we must
2934      // examine all the entries in reverse time(and stack) order and
2935      // unlock as we find them. If we find the method monitor before
2936      // we are at the initial entry then we should throw an exception.
2937      // It is not clear the template based interpreter does this
2938      // correctly
2939
2940      BasicObjectLock* base = istate->monitor_base();
2941      BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2942      bool method_unlock_needed = METHOD->is_synchronized();
2943      // We know the initial monitor was used for the method don't check that
2944      // slot in the loop
2945      if (method_unlock_needed) base--;
2946
2947      // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2948      while (end < base) {
2949        oop lockee = end->obj();
2950        if (lockee != NULL) {
2951          BasicLock* lock = end->lock();
2952          markOop header = lock->displaced_header();
2953          end->set_obj(NULL);
2954
2955          if (!lockee->mark()->has_bias_pattern()) {
2956            // If it isn't recursive we either must swap old header or call the runtime
2957            if (header != NULL) {
2958              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2959                // restore object for the slow case
2960                end->set_obj(lockee);
2961                {
2962                  // Prevent any HandleMarkCleaner from freeing our live handles
2963                  HandleMark __hm(THREAD);
2964                  CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2965                }
2966              }
2967            }
2968          }
2969          // One error is plenty
2970          if (illegal_state_oop() == NULL && !suppress_error) {
2971            {
2972              // Prevent any HandleMarkCleaner from freeing our live handles
2973              HandleMark __hm(THREAD);
2974              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2975            }
2976            assert(THREAD->has_pending_exception(), "Lost our exception!");
2977            illegal_state_oop = THREAD->pending_exception();
2978            THREAD->clear_pending_exception();
2979          }
2980        }
2981        end++;
2982      }
2983      // Unlock the method if needed
2984      if (method_unlock_needed) {
2985        if (base->obj() == NULL) {
2986          // The method is already unlocked this is not good.
2987          if (illegal_state_oop() == NULL && !suppress_error) {
2988            {
2989              // Prevent any HandleMarkCleaner from freeing our live handles
2990              HandleMark __hm(THREAD);
2991              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2992            }
2993            assert(THREAD->has_pending_exception(), "Lost our exception!");
2994            illegal_state_oop = THREAD->pending_exception();
2995            THREAD->clear_pending_exception();
2996          }
2997        } else {
2998          //
2999          // The initial monitor is always used for the method
3000          // However if that slot is no longer the oop for the method it was unlocked
3001          // and reused by something that wasn't unlocked!
3002          //
3003          // deopt can come in with rcvr dead because c2 knows
3004          // its value is preserved in the monitor. So we can't use locals[0] at all
3005          // and must use first monitor slot.
3006          //
3007          oop rcvr = base->obj();
3008          if (rcvr == NULL) {
3009            if (!suppress_error) {
3010              VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3011              illegal_state_oop = THREAD->pending_exception();
3012              THREAD->clear_pending_exception();
3013            }
3014          } else if (UseHeavyMonitors) {
3015            {
3016              // Prevent any HandleMarkCleaner from freeing our live handles.
3017              HandleMark __hm(THREAD);
3018              CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3019            }
3020            if (THREAD->has_pending_exception()) {
3021              if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3022              THREAD->clear_pending_exception();
3023            }
3024          } else {
3025            BasicLock* lock = base->lock();
3026            markOop header = lock->displaced_header();
3027            base->set_obj(NULL);
3028
3029            if (!rcvr->mark()->has_bias_pattern()) {
3030              base->set_obj(NULL);
3031              // If it isn't recursive we either must swap old header or call the runtime
3032              if (header != NULL) {
3033                if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3034                  // restore object for the slow case
3035                  base->set_obj(rcvr);
3036                  {
3037                    // Prevent any HandleMarkCleaner from freeing our live handles
3038                    HandleMark __hm(THREAD);
3039                    CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3040                  }
3041                  if (THREAD->has_pending_exception()) {
3042                    if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3043                    THREAD->clear_pending_exception();
3044                  }
3045                }
3046              }
3047            }
3048          }
3049        }
3050      }
3051    }
3052    // Clear the do_not_unlock flag now.
3053    THREAD->clr_do_not_unlock();
3054
3055    //
3056    // Notify jvmti/jvmdi
3057    //
3058    // NOTE: we do not notify a method_exit if we have a pending exception,
3059    // including an exception we generate for unlocking checks.  In the former
3060    // case, JVMDI has already been notified by our call for the exception handler
3061    // and in both cases as far as JVMDI is concerned we have already returned.
3062    // If we notify it again JVMDI will be all confused about how many frames
3063    // are still on the stack (4340444).
3064    //
3065    // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3066    // method_exit events whenever we leave an activation unless it was done
3067    // for popframe. This is nothing like jvmdi. However we are passing the
3068    // tests at the moment (apparently because they are jvmdi based) so rather
3069    // than change this code and possibly fail tests we will leave it alone
3070    // (with this note) in anticipation of changing the vm and the tests
3071    // simultaneously.
3072
3073
3074    //
3075    suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3076
3077
3078
3079#ifdef VM_JVMTI
3080      if (_jvmti_interp_events) {
3081        // Whenever JVMTI puts a thread in interp_only_mode, method
3082        // entry/exit events are sent for that thread to track stack depth.
3083        if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3084          {
3085            // Prevent any HandleMarkCleaner from freeing our live handles
3086            HandleMark __hm(THREAD);
3087            CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3088          }
3089        }
3090      }
3091#endif /* VM_JVMTI */
3092
3093    //
3094    // See if we are returning any exception
3095    // A pending exception that was pending prior to a possible popping frame
3096    // overrides the popping frame.
3097    //
3098    assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3099    if (illegal_state_oop() != NULL || original_exception() != NULL) {
3100      // Inform the frame manager we have no result.
3101      istate->set_msg(throwing_exception);
3102      if (illegal_state_oop() != NULL)
3103        THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3104      else
3105        THREAD->set_pending_exception(original_exception(), NULL, 0);
3106      UPDATE_PC_AND_RETURN(0);
3107    }
3108
3109    if (istate->msg() == popping_frame) {
3110      // Make it simpler on the assembly code and set the message for the frame pop.
3111      // returns
3112      if (istate->prev() == NULL) {
3113        // We must be returning to a deoptimized frame (because popframe only happens between
3114        // two interpreted frames). We need to save the current arguments in C heap so that
3115        // the deoptimized frame when it restarts can copy the arguments to its expression
3116        // stack and re-execute the call. We also have to notify deoptimization that this
3117        // has occurred and to pick the preserved args copy them to the deoptimized frame's
3118        // java expression stack. Yuck.
3119        //
3120        THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3121                                LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3122        THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3123      }
3124    } else {
3125      istate->set_msg(return_from_method);
3126    }
3127
3128    // Normal return
3129    // Advance the pc and return to frame manager
3130    UPDATE_PC_AND_RETURN(1);
3131  } /* handle_return: */
3132
3133// This is really a fatal error return
3134
3135finish:
3136  DECACHE_TOS();
3137  DECACHE_PC();
3138
3139  return;
3140}
3141
3142/*
3143 * All the code following this point is only produced once and is not present
3144 * in the JVMTI version of the interpreter
3145*/
3146
3147#ifndef VM_JVMTI
3148
3149// This constructor should only be used to contruct the object to signal
3150// interpreter initialization. All other instances should be created by
3151// the frame manager.
3152BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3153  if (msg != initialize) ShouldNotReachHere();
3154  _msg = msg;
3155  _self_link = this;
3156  _prev_link = NULL;
3157}
3158
3159// Inline static functions for Java Stack and Local manipulation
3160
3161// The implementations are platform dependent. We have to worry about alignment
3162// issues on some machines which can change on the same platform depending on
3163// whether it is an LP64 machine also.
3164address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3165  return (address) tos[Interpreter::expr_index_at(-offset)];
3166}
3167
3168jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3169  return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3170}
3171
3172jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3173  return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3174}
3175
3176oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3177  return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3178}
3179
3180jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3181  return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3182}
3183
3184jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3185  return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3186}
3187
3188// only used for value types
3189void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3190                                                        int offset) {
3191  *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3192}
3193
3194void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3195                                                       int offset) {
3196  *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3197}
3198
3199void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3200                                                         int offset) {
3201  *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3202}
3203
3204void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3205                                                          int offset) {
3206  *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3207}
3208
3209// needs to be platform dep for the 32 bit platforms.
3210void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3211                                                          int offset) {
3212  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3213}
3214
3215void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3216                                              address addr, int offset) {
3217  (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3218                        ((VMJavaVal64*)addr)->d);
3219}
3220
3221void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3222                                                        int offset) {
3223  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3224  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3225}
3226
3227void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3228                                            address addr, int offset) {
3229  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3230  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3231                        ((VMJavaVal64*)addr)->l;
3232}
3233
3234// Locals
3235
3236address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3237  return (address)locals[Interpreter::local_index_at(-offset)];
3238}
3239jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3240  return (jint)locals[Interpreter::local_index_at(-offset)];
3241}
3242jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3243  return (jfloat)locals[Interpreter::local_index_at(-offset)];
3244}
3245oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3246  return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3247}
3248jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3249  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3250}
3251jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3252  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3253}
3254
3255// Returns the address of locals value.
3256address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3257  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3258}
3259address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3260  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3261}
3262
3263// Used for local value or returnAddress
3264void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3265                                   address value, int offset) {
3266  *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3267}
3268void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3269                                   jint value, int offset) {
3270  *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3271}
3272void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3273                                   jfloat value, int offset) {
3274  *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3275}
3276void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3277                                   oop value, int offset) {
3278  *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3279}
3280void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3281                                   jdouble value, int offset) {
3282  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3283}
3284void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3285                                   jlong value, int offset) {
3286  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3287}
3288void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3289                                   address addr, int offset) {
3290  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3291}
3292void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3293                                   address addr, int offset) {
3294  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3295}
3296
3297void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3298                          intptr_t* locals, int locals_offset) {
3299  intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3300  locals[Interpreter::local_index_at(-locals_offset)] = value;
3301}
3302
3303
3304void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3305                                   int to_offset) {
3306  tos[Interpreter::expr_index_at(-to_offset)] =
3307                      (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3308}
3309
3310void BytecodeInterpreter::dup(intptr_t *tos) {
3311  copy_stack_slot(tos, -1, 0);
3312}
3313void BytecodeInterpreter::dup2(intptr_t *tos) {
3314  copy_stack_slot(tos, -2, 0);
3315  copy_stack_slot(tos, -1, 1);
3316}
3317
3318void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3319  /* insert top word two down */
3320  copy_stack_slot(tos, -1, 0);
3321  copy_stack_slot(tos, -2, -1);
3322  copy_stack_slot(tos, 0, -2);
3323}
3324
3325void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3326  /* insert top word three down  */
3327  copy_stack_slot(tos, -1, 0);
3328  copy_stack_slot(tos, -2, -1);
3329  copy_stack_slot(tos, -3, -2);
3330  copy_stack_slot(tos, 0, -3);
3331}
3332void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3333  /* insert top 2 slots three down */
3334  copy_stack_slot(tos, -1, 1);
3335  copy_stack_slot(tos, -2, 0);
3336  copy_stack_slot(tos, -3, -1);
3337  copy_stack_slot(tos, 1, -2);
3338  copy_stack_slot(tos, 0, -3);
3339}
3340void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3341  /* insert top 2 slots four down */
3342  copy_stack_slot(tos, -1, 1);
3343  copy_stack_slot(tos, -2, 0);
3344  copy_stack_slot(tos, -3, -1);
3345  copy_stack_slot(tos, -4, -2);
3346  copy_stack_slot(tos, 1, -3);
3347  copy_stack_slot(tos, 0, -4);
3348}
3349
3350
3351void BytecodeInterpreter::swap(intptr_t *tos) {
3352  // swap top two elements
3353  intptr_t val = tos[Interpreter::expr_index_at(1)];
3354  // Copy -2 entry to -1
3355  copy_stack_slot(tos, -2, -1);
3356  // Store saved -1 entry into -2
3357  tos[Interpreter::expr_index_at(2)] = val;
3358}
3359// --------------------------------------------------------------------------------
3360// Non-product code
3361#ifndef PRODUCT
3362
3363const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3364  switch (msg) {
3365     case BytecodeInterpreter::no_request:  return("no_request");
3366     case BytecodeInterpreter::initialize:  return("initialize");
3367     // status message to C++ interpreter
3368     case BytecodeInterpreter::method_entry:  return("method_entry");
3369     case BytecodeInterpreter::method_resume:  return("method_resume");
3370     case BytecodeInterpreter::got_monitors:  return("got_monitors");
3371     case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3372     // requests to frame manager from C++ interpreter
3373     case BytecodeInterpreter::call_method:  return("call_method");
3374     case BytecodeInterpreter::return_from_method:  return("return_from_method");
3375     case BytecodeInterpreter::more_monitors:  return("more_monitors");
3376     case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3377     case BytecodeInterpreter::popping_frame:  return("popping_frame");
3378     case BytecodeInterpreter::do_osr:  return("do_osr");
3379     // deopt
3380     case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3381     case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3382     default: return("BAD MSG");
3383  }
3384}
3385void
3386BytecodeInterpreter::print() {
3387  tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3388  tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3389  tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3390  tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3391  {
3392    ResourceMark rm;
3393    char *method_name = _method->name_and_sig_as_C_string();
3394    tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3395  }
3396  tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3397  tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3398  tty->print_cr("msg: %s", C_msg(this->_msg));
3399  tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3400  tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3401  tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3402  tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3403  tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3404  tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3405  tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3406  tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3407  tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3408  tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3409#ifdef SPARC
3410  tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3411  tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3412  tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3413  tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3414#endif
3415#if !defined(ZERO) && defined(PPC)
3416  tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3417#endif // !ZERO
3418  tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3419}
3420
3421extern "C" {
3422  void PI(uintptr_t arg) {
3423    ((BytecodeInterpreter*)arg)->print();
3424  }
3425}
3426#endif // PRODUCT
3427
3428#endif // JVMTI
3429#endif // CC_INTERP
3430