taskqueue.inline.hpp revision 11857:d0fbf661cc16
1/*
2 * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
26#define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
27
28#include "gc/shared/taskqueue.hpp"
29#include "memory/allocation.inline.hpp"
30#include "oops/oop.inline.hpp"
31#include "runtime/atomic.hpp"
32#include "runtime/orderAccess.inline.hpp"
33#include "utilities/debug.hpp"
34#include "utilities/stack.inline.hpp"
35
36template <class T, MEMFLAGS F>
37inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
38  typedef T* GenericTaskQueuePtr;
39  _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
40  for (int i = 0; i < n; i++) {
41    _queues[i] = NULL;
42  }
43}
44
45template<class E, MEMFLAGS F, unsigned int N>
46inline void GenericTaskQueue<E, F, N>::initialize() {
47  _elems = ArrayAllocator<E, F>::allocate(N);
48}
49
50template<class E, MEMFLAGS F, unsigned int N>
51inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
52  assert(false, "This code is currently never called");
53  ArrayAllocator<E, F>::free(const_cast<E*>(_elems), N);
54}
55
56template<class E, MEMFLAGS F, unsigned int N>
57bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
58  if (dirty_n_elems == N - 1) {
59    // Actually means 0, so do the push.
60    uint localBot = _bottom;
61    // g++ complains if the volatile result of the assignment is
62    // unused, so we cast the volatile away.  We cannot cast directly
63    // to void, because gcc treats that as not using the result of the
64    // assignment.  However, casting to E& means that we trigger an
65    // unused-value warning.  So, we cast the E& to void.
66    (void)const_cast<E&>(_elems[localBot] = t);
67    OrderAccess::release_store(&_bottom, increment_index(localBot));
68    TASKQUEUE_STATS_ONLY(stats.record_push());
69    return true;
70  }
71  return false;
72}
73
74template<class E, MEMFLAGS F, unsigned int N> inline bool
75GenericTaskQueue<E, F, N>::push(E t) {
76  uint localBot = _bottom;
77  assert(localBot < N, "_bottom out of range.");
78  idx_t top = _age.top();
79  uint dirty_n_elems = dirty_size(localBot, top);
80  assert(dirty_n_elems < N, "n_elems out of range.");
81  if (dirty_n_elems < max_elems()) {
82    // g++ complains if the volatile result of the assignment is
83    // unused, so we cast the volatile away.  We cannot cast directly
84    // to void, because gcc treats that as not using the result of the
85    // assignment.  However, casting to E& means that we trigger an
86    // unused-value warning.  So, we cast the E& to void.
87    (void) const_cast<E&>(_elems[localBot] = t);
88    OrderAccess::release_store(&_bottom, increment_index(localBot));
89    TASKQUEUE_STATS_ONLY(stats.record_push());
90    return true;
91  } else {
92    return push_slow(t, dirty_n_elems);
93  }
94}
95
96template <class E, MEMFLAGS F, unsigned int N>
97inline bool OverflowTaskQueue<E, F, N>::push(E t)
98{
99  if (!taskqueue_t::push(t)) {
100    overflow_stack()->push(t);
101    TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
102  }
103  return true;
104}
105
106template <class E, MEMFLAGS F, unsigned int N>
107inline bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
108  return taskqueue_t::push(t);
109}
110
111// pop_local_slow() is done by the owning thread and is trying to
112// get the last task in the queue.  It will compete with pop_global()
113// that will be used by other threads.  The tag age is incremented
114// whenever the queue goes empty which it will do here if this thread
115// gets the last task or in pop_global() if the queue wraps (top == 0
116// and pop_global() succeeds, see pop_global()).
117template<class E, MEMFLAGS F, unsigned int N>
118bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
119  // This queue was observed to contain exactly one element; either this
120  // thread will claim it, or a competing "pop_global".  In either case,
121  // the queue will be logically empty afterwards.  Create a new Age value
122  // that represents the empty queue for the given value of "_bottom".  (We
123  // must also increment "tag" because of the case where "bottom == 1",
124  // "top == 0".  A pop_global could read the queue element in that case,
125  // then have the owner thread do a pop followed by another push.  Without
126  // the incrementing of "tag", the pop_global's CAS could succeed,
127  // allowing it to believe it has claimed the stale element.)
128  Age newAge((idx_t)localBot, oldAge.tag() + 1);
129  // Perhaps a competing pop_global has already incremented "top", in which
130  // case it wins the element.
131  if (localBot == oldAge.top()) {
132    // No competing pop_global has yet incremented "top"; we'll try to
133    // install new_age, thus claiming the element.
134    Age tempAge = _age.cmpxchg(newAge, oldAge);
135    if (tempAge == oldAge) {
136      // We win.
137      assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
138      TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
139      return true;
140    }
141  }
142  // We lose; a completing pop_global gets the element.  But the queue is empty
143  // and top is greater than bottom.  Fix this representation of the empty queue
144  // to become the canonical one.
145  _age.set(newAge);
146  assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
147  return false;
148}
149
150template<class E, MEMFLAGS F, unsigned int N> inline bool
151GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
152  uint localBot = _bottom;
153  // This value cannot be N-1.  That can only occur as a result of
154  // the assignment to bottom in this method.  If it does, this method
155  // resets the size to 0 before the next call (which is sequential,
156  // since this is pop_local.)
157  uint dirty_n_elems = dirty_size(localBot, _age.top());
158  assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
159  if (dirty_n_elems == 0) return false;
160  localBot = decrement_index(localBot);
161  _bottom = localBot;
162  // This is necessary to prevent any read below from being reordered
163  // before the store just above.
164  OrderAccess::fence();
165  // g++ complains if the volatile result of the assignment is
166  // unused, so we cast the volatile away.  We cannot cast directly
167  // to void, because gcc treats that as not using the result of the
168  // assignment.  However, casting to E& means that we trigger an
169  // unused-value warning.  So, we cast the E& to void.
170  (void) const_cast<E&>(t = _elems[localBot]);
171  // This is a second read of "age"; the "size()" above is the first.
172  // If there's still at least one element in the queue, based on the
173  // "_bottom" and "age" we've read, then there can be no interference with
174  // a "pop_global" operation, and we're done.
175  idx_t tp = _age.top();    // XXX
176  if (size(localBot, tp) > 0) {
177    assert(dirty_size(localBot, tp) != N - 1, "sanity");
178    TASKQUEUE_STATS_ONLY(stats.record_pop());
179    return true;
180  } else {
181    // Otherwise, the queue contained exactly one element; we take the slow
182    // path.
183    return pop_local_slow(localBot, _age.get());
184  }
185}
186
187template <class E, MEMFLAGS F, unsigned int N>
188bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
189{
190  if (overflow_empty()) return false;
191  t = overflow_stack()->pop();
192  return true;
193}
194
195template<class E, MEMFLAGS F, unsigned int N>
196bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
197  Age oldAge = _age.get();
198  // Architectures with weak memory model require a barrier here
199  // to guarantee that bottom is not older than age,
200  // which is crucial for the correctness of the algorithm.
201#if !(defined SPARC || defined IA32 || defined AMD64)
202  OrderAccess::fence();
203#endif
204  uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
205  uint n_elems = size(localBot, oldAge.top());
206  if (n_elems == 0) {
207    return false;
208  }
209
210  // g++ complains if the volatile result of the assignment is
211  // unused, so we cast the volatile away.  We cannot cast directly
212  // to void, because gcc treats that as not using the result of the
213  // assignment.  However, casting to E& means that we trigger an
214  // unused-value warning.  So, we cast the E& to void.
215  (void) const_cast<E&>(t = _elems[oldAge.top()]);
216  Age newAge(oldAge);
217  newAge.increment();
218  Age resAge = _age.cmpxchg(newAge, oldAge);
219
220  // Note that using "_bottom" here might fail, since a pop_local might
221  // have decremented it.
222  assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
223  return resAge == oldAge;
224}
225
226template<class T, MEMFLAGS F> bool
227GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
228  if (_n > 2) {
229    uint k1 = queue_num;
230    while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
231    uint k2 = queue_num;
232    while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
233    // Sample both and try the larger.
234    uint sz1 = _queues[k1]->size();
235    uint sz2 = _queues[k2]->size();
236    if (sz2 > sz1) return _queues[k2]->pop_global(t);
237    else return _queues[k1]->pop_global(t);
238  } else if (_n == 2) {
239    // Just try the other one.
240    uint k = (queue_num + 1) % 2;
241    return _queues[k]->pop_global(t);
242  } else {
243    assert(_n == 1, "can't be zero.");
244    return false;
245  }
246}
247
248template<class T, MEMFLAGS F> bool
249GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
250  for (uint i = 0; i < 2 * _n; i++) {
251    if (steal_best_of_2(queue_num, seed, t)) {
252      TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
253      return true;
254    }
255  }
256  TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
257  return false;
258}
259
260template <unsigned int N, MEMFLAGS F>
261inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
262  return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
263                                      (volatile intptr_t *)&_data,
264                                      (intptr_t)old_age._data);
265}
266
267template<class E, MEMFLAGS F, unsigned int N>
268template<class Fn>
269inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
270  uint iters = size();
271  uint index = _bottom;
272  for (uint i = 0; i < iters; ++i) {
273    index = decrement_index(index);
274    fn(const_cast<E&>(_elems[index])); // cast away volatility
275  }
276}
277
278
279#endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
280