relocInfo.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Types in this file:
26//    relocInfo
27//      One element of an array of halfwords encoding compressed relocations.
28//      Also, the source of relocation types (relocInfo::oop_type, ...).
29//    Relocation
30//      A flyweight object representing a single relocation.
31//      It is fully unpacked from the compressed relocation array.
32//    oop_Relocation, ... (subclasses of Relocation)
33//      The location of some type-specific operations (oop_addr, ...).
34//      Also, the source of relocation specs (oop_Relocation::spec, ...).
35//    RelocationHolder
36//      A ValueObj type which acts as a union holding a Relocation object.
37//      Represents a relocation spec passed into a CodeBuffer during assembly.
38//    RelocIterator
39//      A StackObj which iterates over the relocations associated with
40//      a range of code addresses.  Can be used to operate a copy of code.
41//    PatchingRelocIterator
42//      Specialized subtype of RelocIterator which removes breakpoints
43//      temporarily during iteration, then restores them.
44//    BoundRelocation
45//      An _internal_ type shared by packers and unpackers of relocations.
46//      It pastes together a RelocationHolder with some pointers into
47//      code and relocInfo streams.
48
49
50// Notes on relocType:
51//
52// These hold enough information to read or write a value embedded in
53// the instructions of an CodeBlob.  They're used to update:
54//
55//   1) embedded oops     (isOop()          == true)
56//   2) inline caches     (isIC()           == true)
57//   3) runtime calls     (isRuntimeCall()  == true)
58//   4) internal word ref (isInternalWord() == true)
59//   5) external word ref (isExternalWord() == true)
60//
61// when objects move (GC) or if code moves (compacting the code heap).
62// They are also used to patch the code (if a call site must change)
63//
64// A relocInfo is represented in 16 bits:
65//   4 bits indicating the relocation type
66//  12 bits indicating the offset from the previous relocInfo address
67//
68// The offsets accumulate along the relocInfo stream to encode the
69// address within the CodeBlob, which is named RelocIterator::addr().
70// The address of a particular relocInfo always points to the first
71// byte of the relevant instruction (and not to any of its subfields
72// or embedded immediate constants).
73//
74// The offset value is scaled appropriately for the target machine.
75// (See relocInfo_<arch>.hpp for the offset scaling.)
76//
77// On some machines, there may also be a "format" field which may provide
78// additional information about the format of the instruction stream
79// at the corresponding code address.  The format value is usually zero.
80// Any machine (such as Intel) whose instructions can sometimes contain
81// more than one relocatable constant needs format codes to distinguish
82// which operand goes with a given relocation.
83//
84// If the target machine needs N format bits, the offset has 12-N bits,
85// the format is encoded between the offset and the type, and the
86// relocInfo_<arch>.hpp file has manifest constants for the format codes.
87//
88// If the type is "data_prefix_tag" then the offset bits are further encoded,
89// and in fact represent not a code-stream offset but some inline data.
90// The data takes the form of a counted sequence of halfwords, which
91// precedes the actual relocation record.  (Clients never see it directly.)
92// The interpetation of this extra data depends on the relocation type.
93//
94// On machines that have 32-bit immediate fields, there is usually
95// little need for relocation "prefix" data, because the instruction stream
96// is a perfectly reasonable place to store the value.  On machines in
97// which 32-bit values must be "split" across instructions, the relocation
98// data is the "true" specification of the value, which is then applied
99// to some field of the instruction (22 or 13 bits, on SPARC).
100//
101// Whenever the location of the CodeBlob changes, any PC-relative
102// relocations, and any internal_word_type relocations, must be reapplied.
103// After the GC runs, oop_type relocations must be reapplied.
104//
105//
106// Here are meanings of the types:
107//
108// relocInfo::none -- a filler record
109//   Value:  none
110//   Instruction: The corresponding code address is ignored
111//   Data:  Any data prefix and format code are ignored
112//   (This means that any relocInfo can be disabled by setting
113//   its type to none.  See relocInfo::remove.)
114//
115// relocInfo::oop_type -- a reference to an oop
116//   Value:  an oop, or else the address (handle) of an oop
117//   Instruction types: memory (load), set (load address)
118//   Data:  []       an oop stored in 4 bytes of instruction
119//          [n]      n is the index of an oop in the CodeBlob's oop pool
120//          [[N]n l] and l is a byte offset to be applied to the oop
121//          [Nn Ll]  both index and offset may be 32 bits if necessary
122//   Here is a special hack, used only by the old compiler:
123//          [[N]n 00] the value is the __address__ of the nth oop in the pool
124//   (Note that the offset allows optimal references to class variables.)
125//
126// relocInfo::internal_word_type -- an address within the same CodeBlob
127// relocInfo::section_word_type -- same, but can refer to another section
128//   Value:  an address in the CodeBlob's code or constants section
129//   Instruction types: memory (load), set (load address)
130//   Data:  []     stored in 4 bytes of instruction
131//          [[L]l] a relative offset (see [About Offsets] below)
132//   In the case of section_word_type, the offset is relative to a section
133//   base address, and the section number (e.g., SECT_INSTS) is encoded
134//   into the low two bits of the offset L.
135//
136// relocInfo::external_word_type -- a fixed address in the runtime system
137//   Value:  an address
138//   Instruction types: memory (load), set (load address)
139//   Data:  []   stored in 4 bytes of instruction
140//          [n]  the index of a "well-known" stub (usual case on RISC)
141//          [Ll] a 32-bit address
142//
143// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
144//   Value:  an address
145//   Instruction types: PC-relative call (or a PC-relative branch)
146//   Data:  []   stored in 4 bytes of instruction
147//
148// relocInfo::static_call_type -- a static call
149//   Value:  an CodeBlob, a stub, or a fixup routine
150//   Instruction types: a call
151//   Data:  []
152//   The identity of the callee is extracted from debugging information.
153//   //%note reloc_3
154//
155// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
156//                                 cache)
157//   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
158//   Instruction types: a call, plus some associated set-oop instructions
159//   Data:  []       the associated set-oops are adjacent to the call
160//          [n]      n is a relative offset to the first set-oop
161//          [[N]n l] and l is a limit within which the set-oops occur
162//          [Nn Ll]  both n and l may be 32 bits if necessary
163//   The identity of the callee is extracted from debugging information.
164//
165// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
166//
167//    Same info as a static_call_type. We use a special type, so the handling of
168//    virtuals and statics are separated.
169//
170//
171//   The offset n points to the first set-oop.  (See [About Offsets] below.)
172//   In turn, the set-oop instruction specifies or contains an oop cell devoted
173//   exclusively to the IC call, which can be patched along with the call.
174//
175//   The locations of any other set-oops are found by searching the relocation
176//   information starting at the first set-oop, and continuing until all
177//   relocations up through l have been inspected.  The value l is another
178//   relative offset.  (Both n and l are relative to the call's first byte.)
179//
180//   The limit l of the search is exclusive.  However, if it points within
181//   the call (e.g., offset zero), it is adjusted to point after the call and
182//   any associated machine-specific delay slot.
183//
184//   Since the offsets could be as wide as 32-bits, these conventions
185//   put no restrictions whatever upon code reorganization.
186//
187//   The compiler is responsible for ensuring that transition from a clean
188//   state to a monomorphic compiled state is MP-safe.  This implies that
189//   the system must respond well to intermediate states where a random
190//   subset of the set-oops has been correctly from the clean state
191//   upon entry to the VEP of the compiled method.  In the case of a
192//   machine (Intel) with a single set-oop instruction, the 32-bit
193//   immediate field must not straddle a unit of memory coherence.
194//   //%note reloc_3
195//
196// relocInfo::breakpoint_type -- a conditional breakpoint in the code
197//   Value:  none
198//   Instruction types: any whatsoever
199//   Data:  [b [T]t  i...]
200//   The b is a bit-packed word representing the breakpoint's attributes.
201//   The t is a target address which the breakpoint calls (when it is enabled).
202//   The i... is a place to store one or two instruction words overwritten
203//   by a trap, so that the breakpoint may be subsequently removed.
204//
205// relocInfo::static_stub_type -- an extra stub for each static_call_type
206//   Value:  none
207//   Instruction types: a virtual call:  { set_oop; jump; }
208//   Data:  [[N]n]  the offset of the associated static_call reloc
209//   This stub becomes the target of a static call which must be upgraded
210//   to a virtual call (because the callee is interpreted).
211//   See [About Offsets] below.
212//   //%note reloc_2
213//
214// For example:
215//
216//   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
217//   ------------                               ----    -----------
218// sethi      %hi(myObject),  R               oop_type [n(myObject)]
219// ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
220// add R2, 1, R2
221// st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
222//%note reloc_1
223//
224// This uses 4 instruction words, 8 relocation halfwords,
225// and an entry (which is sharable) in the CodeBlob's oop pool,
226// for a total of 36 bytes.
227//
228// Note that the compiler is responsible for ensuring the "fldOffset" when
229// added to "%lo(myObject)" does not overflow the immediate fields of the
230// memory instructions.
231//
232//
233// [About Offsets] Relative offsets are supplied to this module as
234// positive byte offsets, but they may be internally stored scaled
235// and/or negated, depending on what is most compact for the target
236// system.  Since the object pointed to by the offset typically
237// precedes the relocation address, it is profitable to store
238// these negative offsets as positive numbers, but this decision
239// is internal to the relocation information abstractions.
240//
241
242class Relocation;
243class CodeBuffer;
244class CodeSection;
245class RelocIterator;
246
247class relocInfo VALUE_OBJ_CLASS_SPEC {
248  friend class RelocIterator;
249 public:
250  enum relocType {
251    none                    =  0, // Used when no relocation should be generated
252    oop_type                =  1, // embedded oop
253    virtual_call_type       =  2, // a standard inline cache call for a virtual send
254    opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
255    static_call_type        =  4, // a static send
256    static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
257    runtime_call_type       =  6, // call to fixed external routine
258    external_word_type      =  7, // reference to fixed external address
259    internal_word_type      =  8, // reference within the current code blob
260    section_word_type       =  9, // internal, but a cross-section reference
261    poll_type               = 10, // polling instruction for safepoints
262    poll_return_type        = 11, // polling instruction for safepoints at return
263    breakpoint_type         = 12, // an initialization barrier or safepoint
264    yet_unused_type         = 13, // Still unused
265    yet_unused_type_2       = 14, // Still unused
266    data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
267    type_mask               = 15  // A mask which selects only the above values
268  };
269
270 protected:
271  unsigned short _value;
272
273  enum RawBitsToken { RAW_BITS };
274  relocInfo(relocType type, RawBitsToken ignore, int bits)
275    : _value((type << nontype_width) + bits) { }
276
277  relocInfo(relocType type, RawBitsToken ignore, int off, int f)
278    : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
279
280 public:
281  // constructor
282  relocInfo(relocType type, int offset, int format = 0)
283#ifndef ASSERT
284  {
285    (*this) = relocInfo(type, RAW_BITS, offset, format);
286  }
287#else
288  // Put a bunch of assertions out-of-line.
289  ;
290#endif
291
292  #define APPLY_TO_RELOCATIONS(visitor) \
293    visitor(oop) \
294    visitor(virtual_call) \
295    visitor(opt_virtual_call) \
296    visitor(static_call) \
297    visitor(static_stub) \
298    visitor(runtime_call) \
299    visitor(external_word) \
300    visitor(internal_word) \
301    visitor(poll) \
302    visitor(poll_return) \
303    visitor(breakpoint) \
304    visitor(section_word) \
305
306
307 public:
308  enum {
309    value_width             = sizeof(unsigned short) * BitsPerByte,
310    type_width              = 4,   // == log2(type_mask+1)
311    nontype_width           = value_width - type_width,
312    datalen_width           = nontype_width-1,
313    datalen_tag             = 1 << datalen_width,  // or-ed into _value
314    datalen_limit           = 1 << datalen_width,
315    datalen_mask            = (1 << datalen_width)-1
316  };
317
318  // accessors
319 public:
320  relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
321  int  format()           const { return format_mask==0? 0: format_mask &
322                                         ((unsigned)_value >> offset_width); }
323  int  addr_offset()      const { assert(!is_prefix(), "must have offset");
324                                  return (_value & offset_mask)*offset_unit; }
325
326 protected:
327  const short* data()     const { assert(is_datalen(), "must have data");
328                                  return (const short*)(this + 1); }
329  int          datalen()  const { assert(is_datalen(), "must have data");
330                                  return (_value & datalen_mask); }
331  int         immediate() const { assert(is_immediate(), "must have immed");
332                                  return (_value & datalen_mask); }
333 public:
334  static int addr_unit()        { return offset_unit; }
335  static int offset_limit()     { return (1 << offset_width) * offset_unit; }
336
337  void set_type(relocType type);
338  void set_format(int format);
339
340  void remove() { set_type(none); }
341
342 protected:
343  bool is_none()                const { return type() == none; }
344  bool is_prefix()              const { return type() == data_prefix_tag; }
345  bool is_datalen()             const { assert(is_prefix(), "must be prefix");
346                                        return (_value & datalen_tag) != 0; }
347  bool is_immediate()           const { assert(is_prefix(), "must be prefix");
348                                        return (_value & datalen_tag) == 0; }
349
350 public:
351  // Occasionally records of type relocInfo::none will appear in the stream.
352  // We do not bother to filter these out, but clients should ignore them.
353  // These records serve as "filler" in three ways:
354  //  - to skip large spans of unrelocated code (this is rare)
355  //  - to pad out the relocInfo array to the required oop alignment
356  //  - to disable old relocation information which is no longer applicable
357
358  inline friend relocInfo filler_relocInfo();
359
360  // Every non-prefix relocation may be preceded by at most one prefix,
361  // which supplies 1 or more halfwords of associated data.  Conventionally,
362  // an int is represented by 0, 1, or 2 halfwords, depending on how
363  // many bits are required to represent the value.  (In addition,
364  // if the sole halfword is a 10-bit unsigned number, it is made
365  // "immediate" in the prefix header word itself.  This optimization
366  // is invisible outside this module.)
367
368  inline friend relocInfo prefix_relocInfo(int datalen = 0);
369
370 protected:
371  // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
372  static relocInfo immediate_relocInfo(int data0) {
373    assert(fits_into_immediate(data0), "data0 in limits");
374    return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
375  }
376  static bool fits_into_immediate(int data0) {
377    return (data0 >= 0 && data0 < datalen_limit);
378  }
379
380 public:
381  // Support routines for compilers.
382
383  // This routine takes an infant relocInfo (unprefixed) and
384  // edits in its prefix, if any.  It also updates dest.locs_end.
385  void initialize(CodeSection* dest, Relocation* reloc);
386
387  // This routine updates a prefix and returns the limit pointer.
388  // It tries to compress the prefix from 32 to 16 bits, and if
389  // successful returns a reduced "prefix_limit" pointer.
390  relocInfo* finish_prefix(short* prefix_limit);
391
392  // bit-packers for the data array:
393
394  // As it happens, the bytes within the shorts are ordered natively,
395  // but the shorts within the word are ordered big-endian.
396  // This is an arbitrary choice, made this way mainly to ease debugging.
397  static int data0_from_int(jint x)         { return x >> value_width; }
398  static int data1_from_int(jint x)         { return (short)x; }
399  static jint jint_from_data(short* data) {
400    return (data[0] << value_width) + (unsigned short)data[1];
401  }
402
403  static jint short_data_at(int n, short* data, int datalen) {
404    return datalen > n ? data[n] : 0;
405  }
406
407  static jint jint_data_at(int n, short* data, int datalen) {
408    return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
409  }
410
411  // Update methods for relocation information
412  // (since code is dynamically patched, we also need to dynamically update the relocation info)
413  // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
414  static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
415  static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
416
417  // Machine dependent stuff
418  #include "incls/_relocInfo_pd.hpp.incl"
419
420 protected:
421  // Derived constant, based on format_width which is PD:
422  enum {
423    offset_width       = nontype_width - format_width,
424    offset_mask        = (1<<offset_width) - 1,
425    format_mask        = (1<<format_width) - 1
426  };
427 public:
428  enum {
429    // Conservatively large estimate of maximum length (in shorts)
430    // of any relocation record (probably breakpoints are largest).
431    // Extended format is length prefix, data words, and tag/offset suffix.
432    length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
433    have_format        = format_width > 0
434  };
435};
436
437#define FORWARD_DECLARE_EACH_CLASS(name)              \
438class name##_Relocation;
439APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
440#undef FORWARD_DECLARE_EACH_CLASS
441
442
443
444inline relocInfo filler_relocInfo() {
445  return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
446}
447
448inline relocInfo prefix_relocInfo(int datalen) {
449  assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
450  return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
451}
452
453
454// Holder for flyweight relocation objects.
455// Although the flyweight subclasses are of varying sizes,
456// the holder is "one size fits all".
457class RelocationHolder VALUE_OBJ_CLASS_SPEC {
458  friend class Relocation;
459  friend class CodeSection;
460
461 private:
462  // this preallocated memory must accommodate all subclasses of Relocation
463  // (this number is assertion-checked in Relocation::operator new)
464  enum { _relocbuf_size = 5 };
465  void* _relocbuf[ _relocbuf_size ];
466
467 public:
468  Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
469  inline relocInfo::relocType type() const;
470
471  // Add a constant offset to a relocation.  Helper for class Address.
472  RelocationHolder plus(int offset) const;
473
474  inline RelocationHolder();                // initializes type to none
475
476  inline RelocationHolder(Relocation* r);   // make a copy
477
478  static const RelocationHolder none;
479};
480
481// A RelocIterator iterates through the relocation information of a CodeBlob.
482// It is a variable BoundRelocation which is able to take on successive
483// values as it is advanced through a code stream.
484// Usage:
485//   RelocIterator iter(nm);
486//   while (iter.next()) {
487//     iter.reloc()->some_operation();
488//   }
489// or:
490//   RelocIterator iter(nm);
491//   while (iter.next()) {
492//     switch (iter.type()) {
493//      case relocInfo::oop_type          :
494//      case relocInfo::ic_type           :
495//      case relocInfo::prim_type         :
496//      case relocInfo::uncommon_type     :
497//      case relocInfo::runtime_call_type :
498//      case relocInfo::internal_word_type:
499//      case relocInfo::external_word_type:
500//      ...
501//     }
502//   }
503
504class RelocIterator : public StackObj {
505  enum { SECT_CONSTS = 2,
506         SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT
507  friend class Relocation;
508  friend class relocInfo;       // for change_reloc_info_for_address only
509  typedef relocInfo::relocType relocType;
510
511 private:
512  address    _limit;   // stop producing relocations after this _addr
513  relocInfo* _current; // the current relocation information
514  relocInfo* _end;     // end marker; we're done iterating when _current == _end
515  CodeBlob*  _code;    // compiled method containing _addr
516  address    _addr;    // instruction to which the relocation applies
517  short      _databuf; // spare buffer for compressed data
518  short*     _data;    // pointer to the relocation's data
519  short      _datalen; // number of halfwords in _data
520  char       _format;  // position within the instruction
521
522  // Base addresses needed to compute targets of section_word_type relocs.
523  address    _section_start[SECT_LIMIT];
524
525  void set_has_current(bool b) {
526    _datalen = !b ? -1 : 0;
527    debug_only(_data = NULL);
528  }
529  void set_current(relocInfo& ri) {
530    _current = &ri;
531    set_has_current(true);
532  }
533
534  RelocationHolder _rh; // where the current relocation is allocated
535
536  relocInfo* current() const { assert(has_current(), "must have current");
537                               return _current; }
538
539  void set_limits(address begin, address limit);
540
541  void advance_over_prefix();    // helper method
542
543  void initialize_misc() {
544    set_has_current(false);
545    for (int i = 0; i < SECT_LIMIT; i++) {
546      _section_start[i] = NULL;  // these will be lazily computed, if needed
547    }
548  }
549
550  address compute_section_start(int n) const;  // out-of-line helper
551
552  void initialize(CodeBlob* nm, address begin, address limit);
553
554  friend class PatchingRelocIterator;
555  // make an uninitialized one, for PatchingRelocIterator:
556  RelocIterator() { initialize_misc(); }
557
558 public:
559  // constructor
560  RelocIterator(CodeBlob* cb,    address begin = NULL, address limit = NULL);
561  RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
562
563  // get next reloc info, return !eos
564  bool next() {
565    _current++;
566    assert(_current <= _end, "must not overrun relocInfo");
567    if (_current == _end) {
568      set_has_current(false);
569      return false;
570    }
571    set_has_current(true);
572
573    if (_current->is_prefix()) {
574      advance_over_prefix();
575      assert(!current()->is_prefix(), "only one prefix at a time");
576    }
577
578    _addr += _current->addr_offset();
579
580    if (_limit != NULL && _addr >= _limit) {
581      set_has_current(false);
582      return false;
583    }
584
585    if (relocInfo::have_format)  _format = current()->format();
586    return true;
587  }
588
589  // accessors
590  address      limit()        const { return _limit; }
591  void     set_limit(address x);
592  relocType    type()         const { return current()->type(); }
593  int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
594  address      addr()         const { return _addr; }
595  CodeBlob*    code()         const { return _code; }
596  short*       data()         const { return _data; }
597  int          datalen()      const { return _datalen; }
598  bool     has_current()      const { return _datalen >= 0; }
599
600  void       set_addr(address addr) { _addr = addr; }
601  bool   addr_in_const()      const { return addr() >= section_start(SECT_CONSTS); }
602
603  address section_start(int n) const {
604    address res = _section_start[n];
605    return (res != NULL) ? res : compute_section_start(n);
606  }
607
608  // The address points to the affected displacement part of the instruction.
609  // For RISC, this is just the whole instruction.
610  // For Intel, this is an unaligned 32-bit word.
611
612  // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
613  #define EACH_TYPE(name)                               \
614  inline name##_Relocation* name##_reloc();
615  APPLY_TO_RELOCATIONS(EACH_TYPE)
616  #undef EACH_TYPE
617  // generic relocation accessor; switches on type to call the above
618  Relocation* reloc();
619
620  // CodeBlob's have relocation indexes for faster random access:
621  static int locs_and_index_size(int code_size, int locs_size);
622  // Store an index into [dest_start+dest_count..dest_end).
623  // At dest_start[0..dest_count] is the actual relocation information.
624  // Everything else up to dest_end is free space for the index.
625  static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
626
627#ifndef PRODUCT
628 public:
629  void print();
630  void print_current();
631#endif
632};
633
634
635// A Relocation is a flyweight object allocated within a RelocationHolder.
636// It represents the relocation data of relocation record.
637// So, the RelocIterator unpacks relocInfos into Relocations.
638
639class Relocation VALUE_OBJ_CLASS_SPEC {
640  friend class RelocationHolder;
641  friend class RelocIterator;
642
643 private:
644  static void guarantee_size();
645
646  // When a relocation has been created by a RelocIterator,
647  // this field is non-null.  It allows the relocation to know
648  // its context, such as the address to which it applies.
649  RelocIterator* _binding;
650
651 protected:
652  RelocIterator* binding() const {
653    assert(_binding != NULL, "must be bound");
654    return _binding;
655  }
656  void set_binding(RelocIterator* b) {
657    assert(_binding == NULL, "must be unbound");
658    _binding = b;
659    assert(_binding != NULL, "must now be bound");
660  }
661
662  Relocation() {
663    _binding = NULL;
664  }
665
666  static RelocationHolder newHolder() {
667    return RelocationHolder();
668  }
669
670 public:
671  void* operator new(size_t size, const RelocationHolder& holder) {
672    if (size > sizeof(holder._relocbuf)) guarantee_size();
673    assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
674    return holder.reloc();
675  }
676
677  // make a generic relocation for a given type (if possible)
678  static RelocationHolder spec_simple(relocInfo::relocType rtype);
679
680  // here is the type-specific hook which writes relocation data:
681  virtual void pack_data_to(CodeSection* dest) { }
682
683  // here is the type-specific hook which reads (unpacks) relocation data:
684  virtual void unpack_data() {
685    assert(datalen()==0 || type()==relocInfo::none, "no data here");
686  }
687
688 protected:
689  // Helper functions for pack_data_to() and unpack_data().
690
691  // Most of the compression logic is confined here.
692  // (The "immediate data" mechanism of relocInfo works independently
693  // of this stuff, and acts to further compress most 1-word data prefixes.)
694
695  // A variable-width int is encoded as a short if it will fit in 16 bits.
696  // The decoder looks at datalen to decide whether to unpack short or jint.
697  // Most relocation records are quite simple, containing at most two ints.
698
699  static bool is_short(jint x) { return x == (short)x; }
700  static short* add_short(short* p, int x)  { *p++ = x; return p; }
701  static short* add_jint (short* p, jint x) {
702    *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
703    return p;
704  }
705  static short* add_var_int(short* p, jint x) {   // add a variable-width int
706    if (is_short(x))  p = add_short(p, x);
707    else              p = add_jint (p, x);
708    return p;
709  }
710
711  static short* pack_1_int_to(short* p, jint x0) {
712    // Format is one of:  [] [x] [Xx]
713    if (x0 != 0)  p = add_var_int(p, x0);
714    return p;
715  }
716  int unpack_1_int() {
717    assert(datalen() <= 2, "too much data");
718    return relocInfo::jint_data_at(0, data(), datalen());
719  }
720
721  // With two ints, the short form is used only if both ints are short.
722  short* pack_2_ints_to(short* p, jint x0, jint x1) {
723    // Format is one of:  [] [x y?] [Xx Y?y]
724    if (x0 == 0 && x1 == 0) {
725      // no halfwords needed to store zeroes
726    } else if (is_short(x0) && is_short(x1)) {
727      // 1-2 halfwords needed to store shorts
728      p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
729    } else {
730      // 3-4 halfwords needed to store jints
731      p = add_jint(p, x0);             p = add_var_int(p, x1);
732    }
733    return p;
734  }
735  void unpack_2_ints(jint& x0, jint& x1) {
736    int    dlen = datalen();
737    short* dp  = data();
738    if (dlen <= 2) {
739      x0 = relocInfo::short_data_at(0, dp, dlen);
740      x1 = relocInfo::short_data_at(1, dp, dlen);
741    } else {
742      assert(dlen <= 4, "too much data");
743      x0 = relocInfo::jint_data_at(0, dp, dlen);
744      x1 = relocInfo::jint_data_at(2, dp, dlen);
745    }
746  }
747
748 protected:
749  // platform-dependent utilities for decoding and patching instructions
750  void       pd_set_data_value       (address x, intptr_t off); // a set or mem-ref
751  address    pd_call_destination     (address orig_addr = NULL);
752  void       pd_set_call_destination (address x);
753  void       pd_swap_in_breakpoint   (address x, short* instrs, int instrlen);
754  void       pd_swap_out_breakpoint  (address x, short* instrs, int instrlen);
755  static int pd_breakpoint_size      ();
756
757  // this extracts the address of an address in the code stream instead of the reloc data
758  address* pd_address_in_code       ();
759
760  // this extracts an address from the code stream instead of the reloc data
761  address  pd_get_address_from_code ();
762
763  // these convert from byte offsets, to scaled offsets, to addresses
764  static jint scaled_offset(address x, address base) {
765    int byte_offset = x - base;
766    int offset = -byte_offset / relocInfo::addr_unit();
767    assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
768    return offset;
769  }
770  static jint scaled_offset_null_special(address x, address base) {
771    // Some relocations treat offset=0 as meaning NULL.
772    // Handle this extra convention carefully.
773    if (x == NULL)  return 0;
774    assert(x != base, "offset must not be zero");
775    return scaled_offset(x, base);
776  }
777  static address address_from_scaled_offset(jint offset, address base) {
778    int byte_offset = -( offset * relocInfo::addr_unit() );
779    return base + byte_offset;
780  }
781
782  // these convert between indexes and addresses in the runtime system
783  static int32_t runtime_address_to_index(address runtime_address);
784  static address index_to_runtime_address(int32_t index);
785
786  // helpers for mapping between old and new addresses after a move or resize
787  address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
788  address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
789  void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
790
791 public:
792  // accessors which only make sense for a bound Relocation
793  address   addr()         const { return binding()->addr(); }
794  CodeBlob* code()         const { return binding()->code(); }
795  bool      addr_in_const() const { return binding()->addr_in_const(); }
796 protected:
797  short*   data()         const { return binding()->data(); }
798  int      datalen()      const { return binding()->datalen(); }
799  int      format()       const { return binding()->format(); }
800
801 public:
802  virtual relocInfo::relocType type()            { return relocInfo::none; }
803
804  // is it a call instruction?
805  virtual bool is_call()                         { return false; }
806
807  // is it a data movement instruction?
808  virtual bool is_data()                         { return false; }
809
810  // some relocations can compute their own values
811  virtual address  value();
812
813  // all relocations are able to reassert their values
814  virtual void set_value(address x);
815
816  virtual void clear_inline_cache()              { }
817
818  // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
819  // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
820  // probably a reasonable assumption, since empty caches simplifies code reloacation.
821  virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
822
823  void print();
824};
825
826
827// certain inlines must be deferred until class Relocation is defined:
828
829inline RelocationHolder::RelocationHolder() {
830  // initialize the vtbl, just to keep things type-safe
831  new(*this) Relocation();
832}
833
834
835inline RelocationHolder::RelocationHolder(Relocation* r) {
836  // wordwise copy from r (ok if it copies garbage after r)
837  for (int i = 0; i < _relocbuf_size; i++) {
838    _relocbuf[i] = ((void**)r)[i];
839  }
840}
841
842
843relocInfo::relocType RelocationHolder::type() const {
844  return reloc()->type();
845}
846
847// A DataRelocation always points at a memory or load-constant instruction..
848// It is absolute on most machines, and the constant is split on RISCs.
849// The specific subtypes are oop, external_word, and internal_word.
850// By convention, the "value" does not include a separately reckoned "offset".
851class DataRelocation : public Relocation {
852 public:
853  bool          is_data()                      { return true; }
854
855  // both target and offset must be computed somehow from relocation data
856  virtual int    offset()                      { return 0; }
857  address         value()                      = 0;
858  void        set_value(address x)             { set_value(x, offset()); }
859  void        set_value(address x, intptr_t o) {
860    if (addr_in_const())
861      *(address*)addr() = x;
862    else
863      pd_set_data_value(x, o);
864  }
865
866  // The "o" (displacement) argument is relevant only to split relocations
867  // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
868  // can encode more than 32 bits between them.  This allows compilers to
869  // share set-hi instructions between addresses that differ by a small
870  // offset (e.g., different static variables in the same class).
871  // On such machines, the "x" argument to set_value on all set-lo
872  // instructions must be the same as the "x" argument for the
873  // corresponding set-hi instructions.  The "o" arguments for the
874  // set-hi instructions are ignored, and must not affect the high-half
875  // immediate constant.  The "o" arguments for the set-lo instructions are
876  // added into the low-half immediate constant, and must not overflow it.
877};
878
879// A CallRelocation always points at a call instruction.
880// It is PC-relative on most machines.
881class CallRelocation : public Relocation {
882 public:
883  bool is_call() { return true; }
884
885  address  destination()                    { return pd_call_destination(); }
886  void     set_destination(address x); // pd_set_call_destination
887
888  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
889  address  value()                          { return destination();  }
890  void     set_value(address x)             { set_destination(x); }
891};
892
893class oop_Relocation : public DataRelocation {
894  relocInfo::relocType type() { return relocInfo::oop_type; }
895
896 public:
897  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
898  // an oop in the CodeBlob's oop pool
899  static RelocationHolder spec(int oop_index, int offset = 0) {
900    assert(oop_index > 0, "must be a pool-resident oop");
901    RelocationHolder rh = newHolder();
902    new(rh) oop_Relocation(oop_index, offset);
903    return rh;
904  }
905  // an oop in the instruction stream
906  static RelocationHolder spec_for_immediate() {
907    const int oop_index = 0;
908    const int offset    = 0;    // if you want an offset, use the oop pool
909    RelocationHolder rh = newHolder();
910    new(rh) oop_Relocation(oop_index, offset);
911    return rh;
912  }
913
914 private:
915  jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
916  jint _offset;                     // byte offset to apply to the oop itself
917
918  oop_Relocation(int oop_index, int offset) {
919    _oop_index = oop_index; _offset = offset;
920  }
921
922  friend class RelocIterator;
923  oop_Relocation() { }
924
925 public:
926  int oop_index() { return _oop_index; }
927  int offset()    { return _offset; }
928
929  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
930  void pack_data_to(CodeSection* dest);
931  void unpack_data();
932
933  void fix_oop_relocation();        // reasserts oop value
934
935  address value()  { return (address) *oop_addr(); }
936
937  bool oop_is_immediate()  { return oop_index() == 0; }
938
939  oop* oop_addr();                  // addr or &pool[jint_data]
940  oop  oop_value();                 // *oop_addr
941  // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
942};
943
944class virtual_call_Relocation : public CallRelocation {
945  relocInfo::relocType type() { return relocInfo::virtual_call_type; }
946
947 public:
948  // "first_oop" points to the first associated set-oop.
949  // The oop_limit helps find the last associated set-oop.
950  // (See comments at the top of this file.)
951  static RelocationHolder spec(address first_oop, address oop_limit = NULL) {
952    RelocationHolder rh = newHolder();
953    new(rh) virtual_call_Relocation(first_oop, oop_limit);
954    return rh;
955  }
956
957  virtual_call_Relocation(address first_oop, address oop_limit) {
958    _first_oop = first_oop; _oop_limit = oop_limit;
959    assert(first_oop != NULL, "first oop address must be specified");
960  }
961
962 private:
963  address _first_oop;               // location of first set-oop instruction
964  address _oop_limit;               // search limit for set-oop instructions
965
966  friend class RelocIterator;
967  virtual_call_Relocation() { }
968
969
970 public:
971  address first_oop();
972  address oop_limit();
973
974  // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
975  // oop_limit is set to 0 if the limit falls somewhere within the call.
976  // When unpacking, a zero oop_limit is taken to refer to the end of the call.
977  // (This has the effect of bringing in the call's delay slot on SPARC.)
978  void pack_data_to(CodeSection* dest);
979  void unpack_data();
980
981  void clear_inline_cache();
982
983  // Figure out where an ic_call is hiding, given a set-oop or call.
984  // Either ic_call or first_oop must be non-null; the other is deduced.
985  // Code if non-NULL must be the CodeBlob, else it is deduced.
986  // The address of the patchable oop is also deduced.
987  // The returned iterator will enumerate over the oops and the ic_call,
988  // as well as any other relocations that happen to be in that span of code.
989  // Recognize relevant set_oops with:  oop_reloc()->oop_addr() == oop_addr.
990  static RelocIterator parse_ic(CodeBlob* &code, address &ic_call, address &first_oop, oop* &oop_addr, bool *is_optimized);
991};
992
993
994class opt_virtual_call_Relocation : public CallRelocation {
995  relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
996
997 public:
998  static RelocationHolder spec() {
999    RelocationHolder rh = newHolder();
1000    new(rh) opt_virtual_call_Relocation();
1001    return rh;
1002  }
1003
1004 private:
1005  friend class RelocIterator;
1006  opt_virtual_call_Relocation() { }
1007
1008 public:
1009  void clear_inline_cache();
1010
1011  // find the matching static_stub
1012  address static_stub();
1013};
1014
1015
1016class static_call_Relocation : public CallRelocation {
1017  relocInfo::relocType type() { return relocInfo::static_call_type; }
1018
1019 public:
1020  static RelocationHolder spec() {
1021    RelocationHolder rh = newHolder();
1022    new(rh) static_call_Relocation();
1023    return rh;
1024  }
1025
1026 private:
1027  friend class RelocIterator;
1028  static_call_Relocation() { }
1029
1030 public:
1031  void clear_inline_cache();
1032
1033  // find the matching static_stub
1034  address static_stub();
1035};
1036
1037class static_stub_Relocation : public Relocation {
1038  relocInfo::relocType type() { return relocInfo::static_stub_type; }
1039
1040 public:
1041  static RelocationHolder spec(address static_call) {
1042    RelocationHolder rh = newHolder();
1043    new(rh) static_stub_Relocation(static_call);
1044    return rh;
1045  }
1046
1047 private:
1048  address _static_call;             // location of corresponding static_call
1049
1050  static_stub_Relocation(address static_call) {
1051    _static_call = static_call;
1052  }
1053
1054  friend class RelocIterator;
1055  static_stub_Relocation() { }
1056
1057 public:
1058  void clear_inline_cache();
1059
1060  address static_call() { return _static_call; }
1061
1062  // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1063  void pack_data_to(CodeSection* dest);
1064  void unpack_data();
1065};
1066
1067class runtime_call_Relocation : public CallRelocation {
1068  relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1069
1070 public:
1071  static RelocationHolder spec() {
1072    RelocationHolder rh = newHolder();
1073    new(rh) runtime_call_Relocation();
1074    return rh;
1075  }
1076
1077 private:
1078  friend class RelocIterator;
1079  runtime_call_Relocation() { }
1080
1081 public:
1082};
1083
1084class external_word_Relocation : public DataRelocation {
1085  relocInfo::relocType type() { return relocInfo::external_word_type; }
1086
1087 public:
1088  static RelocationHolder spec(address target) {
1089    assert(target != NULL, "must not be null");
1090    RelocationHolder rh = newHolder();
1091    new(rh) external_word_Relocation(target);
1092    return rh;
1093  }
1094
1095  // Use this one where all 32/64 bits of the target live in the code stream.
1096  // The target must be an intptr_t, and must be absolute (not relative).
1097  static RelocationHolder spec_for_immediate() {
1098    RelocationHolder rh = newHolder();
1099    new(rh) external_word_Relocation(NULL);
1100    return rh;
1101  }
1102
1103 private:
1104  address _target;                  // address in runtime
1105
1106  external_word_Relocation(address target) {
1107    _target = target;
1108  }
1109
1110  friend class RelocIterator;
1111  external_word_Relocation() { }
1112
1113 public:
1114  // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1115  // The function runtime_address_to_index is used to turn full addresses
1116  // to short indexes, if they are pre-registered by the stub mechanism.
1117  // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1118  // in the code stream.  See external_word_Relocation::target().
1119  void pack_data_to(CodeSection* dest);
1120  void unpack_data();
1121
1122  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1123  address  target();        // if _target==NULL, fetch addr from code stream
1124  address  value()          { return target(); }
1125};
1126
1127class internal_word_Relocation : public DataRelocation {
1128  relocInfo::relocType type() { return relocInfo::internal_word_type; }
1129
1130 public:
1131  static RelocationHolder spec(address target) {
1132    assert(target != NULL, "must not be null");
1133    RelocationHolder rh = newHolder();
1134    new(rh) internal_word_Relocation(target);
1135    return rh;
1136  }
1137
1138  // use this one where all the bits of the target can fit in the code stream:
1139  static RelocationHolder spec_for_immediate() {
1140    RelocationHolder rh = newHolder();
1141    new(rh) internal_word_Relocation(NULL);
1142    return rh;
1143  }
1144
1145  internal_word_Relocation(address target) {
1146    _target  = target;
1147    _section = -1;  // self-relative
1148  }
1149
1150 protected:
1151  address _target;                  // address in CodeBlob
1152  int     _section;                 // section providing base address, if any
1153
1154  friend class RelocIterator;
1155  internal_word_Relocation() { }
1156
1157  // bit-width of LSB field in packed offset, if section >= 0
1158  enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1159
1160 public:
1161  // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1162  // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1163  // in the code stream.  See internal_word_Relocation::target().
1164  // If _section is not -1, it is appended to the low bits of the offset.
1165  void pack_data_to(CodeSection* dest);
1166  void unpack_data();
1167
1168  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1169  address  target();        // if _target==NULL, fetch addr from code stream
1170  int      section()        { return _section;   }
1171  address  value()          { return target();   }
1172};
1173
1174class section_word_Relocation : public internal_word_Relocation {
1175  relocInfo::relocType type() { return relocInfo::section_word_type; }
1176
1177 public:
1178  static RelocationHolder spec(address target, int section) {
1179    RelocationHolder rh = newHolder();
1180    new(rh) section_word_Relocation(target, section);
1181    return rh;
1182  }
1183
1184  section_word_Relocation(address target, int section) {
1185    assert(target != NULL, "must not be null");
1186    assert(section >= 0, "must be a valid section");
1187    _target  = target;
1188    _section = section;
1189  }
1190
1191  //void pack_data_to -- inherited
1192  void unpack_data();
1193
1194 private:
1195  friend class RelocIterator;
1196  section_word_Relocation() { }
1197};
1198
1199
1200class poll_Relocation : public Relocation {
1201  bool          is_data()                      { return true; }
1202  relocInfo::relocType type() { return relocInfo::poll_type; }
1203  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1204};
1205
1206class poll_return_Relocation : public Relocation {
1207  bool          is_data()                      { return true; }
1208  relocInfo::relocType type() { return relocInfo::poll_return_type; }
1209  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1210};
1211
1212
1213class breakpoint_Relocation : public Relocation {
1214  relocInfo::relocType type() { return relocInfo::breakpoint_type; }
1215
1216  enum {
1217    // attributes which affect the interpretation of the data:
1218    removable_attr = 0x0010,   // buffer [i...] allows for undoing the trap
1219    internal_attr  = 0x0020,   // the target is an internal addr (local stub)
1220    settable_attr  = 0x0040,   // the target is settable
1221
1222    // states which can change over time:
1223    enabled_state  = 0x0100,   // breakpoint must be active in running code
1224    active_state   = 0x0200,   // breakpoint instruction actually in code
1225
1226    kind_mask      = 0x000F,   // mask for extracting kind
1227    high_bit       = 0x4000    // extra bit which is always set
1228  };
1229
1230 public:
1231  enum {
1232    // kinds:
1233    initialization = 1,
1234    safepoint      = 2
1235  };
1236
1237  // If target is NULL, 32 bits are reserved for a later set_target().
1238  static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
1239    RelocationHolder rh = newHolder();
1240    new(rh) breakpoint_Relocation(kind, target, internal_target);
1241    return rh;
1242  }
1243
1244 private:
1245  // We require every bits value to NOT to fit into relocInfo::datalen_width,
1246  // because we are going to actually store state in the reloc, and so
1247  // cannot allow it to be compressed (and hence copied by the iterator).
1248
1249  short   _bits;                  // bit-encoded kind, attrs, & state
1250  address _target;
1251
1252  breakpoint_Relocation(int kind, address target, bool internal_target);
1253
1254  friend class RelocIterator;
1255  breakpoint_Relocation() { }
1256
1257  short    bits()       const { return _bits; }
1258  short&   live_bits()  const { return data()[0]; }
1259  short*   instrs()     const { return data() + datalen() - instrlen(); }
1260  int      instrlen()   const { return removable() ? pd_breakpoint_size() : 0; }
1261
1262  void set_bits(short x) {
1263    assert(live_bits() == _bits, "must be the only mutator of reloc info");
1264    live_bits() = _bits = x;
1265  }
1266
1267 public:
1268  address  target()     const;
1269  void set_target(address x);
1270
1271  int  kind()           const { return  bits() & kind_mask; }
1272  bool enabled()        const { return (bits() &  enabled_state) != 0; }
1273  bool active()         const { return (bits() &   active_state) != 0; }
1274  bool internal()       const { return (bits() &  internal_attr) != 0; }
1275  bool removable()      const { return (bits() & removable_attr) != 0; }
1276  bool settable()       const { return (bits() &  settable_attr) != 0; }
1277
1278  void set_enabled(bool b);     // to activate, you must also say set_active
1279  void set_active(bool b);      // actually inserts bpt (must be enabled 1st)
1280
1281  // data is packed as 16 bits, followed by the target (1 or 2 words), followed
1282  // if necessary by empty storage for saving away original instruction bytes.
1283  void pack_data_to(CodeSection* dest);
1284  void unpack_data();
1285
1286  // during certain operations, breakpoints must be out of the way:
1287  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
1288    assert(!active(), "cannot perform relocation on enabled breakpoints");
1289  }
1290};
1291
1292
1293// We know all the xxx_Relocation classes, so now we can define these:
1294#define EACH_CASE(name)                                         \
1295inline name##_Relocation* RelocIterator::name##_reloc() {       \
1296  assert(type() == relocInfo::name##_type, "type must agree");  \
1297  /* The purpose of the placed "new" is to re-use the same */   \
1298  /* stack storage for each new iteration. */                   \
1299  name##_Relocation* r = new(_rh) name##_Relocation();          \
1300  r->set_binding(this);                                         \
1301  r->name##_Relocation::unpack_data();                          \
1302  return r;                                                     \
1303}
1304APPLY_TO_RELOCATIONS(EACH_CASE);
1305#undef EACH_CASE
1306
1307inline RelocIterator::RelocIterator(CodeBlob* cb, address begin, address limit) {
1308  initialize(cb, begin, limit);
1309}
1310
1311// if you are going to patch code, you should use this subclass of
1312// RelocIterator
1313class PatchingRelocIterator : public RelocIterator {
1314 private:
1315  RelocIterator _init_state;
1316
1317  void prepass();               // deactivates all breakpoints
1318  void postpass();              // reactivates all enabled breakpoints
1319
1320  // do not copy these puppies; it would have unpredictable side effects
1321  // these are private and have no bodies defined because they should not be called
1322  PatchingRelocIterator(const RelocIterator&);
1323  void        operator=(const RelocIterator&);
1324
1325 public:
1326  PatchingRelocIterator(CodeBlob* cb, address begin =NULL, address limit =NULL)
1327    : RelocIterator(cb, begin, limit)                { prepass();  }
1328
1329  ~PatchingRelocIterator()                           { postpass(); }
1330};
1331