c1_Runtime1.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Defs.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_MacroAssembler.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "classfile/systemDictionary.hpp"
34#include "classfile/vmSymbols.hpp"
35#include "code/codeBlob.hpp"
36#include "code/compiledIC.hpp"
37#include "code/pcDesc.hpp"
38#include "code/scopeDesc.hpp"
39#include "code/vtableStubs.hpp"
40#include "compiler/disassembler.hpp"
41#include "gc_interface/collectedHeap.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "memory/allocation.inline.hpp"
45#include "memory/barrierSet.hpp"
46#include "memory/oopFactory.hpp"
47#include "memory/resourceArea.hpp"
48#include "oops/objArrayKlass.hpp"
49#include "oops/oop.inline.hpp"
50#include "runtime/atomic.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/compilationPolicy.hpp"
53#include "runtime/interfaceSupport.hpp"
54#include "runtime/javaCalls.hpp"
55#include "runtime/sharedRuntime.hpp"
56#include "runtime/threadCritical.hpp"
57#include "runtime/vframe.hpp"
58#include "runtime/vframeArray.hpp"
59#include "runtime/vm_version.hpp"
60#include "utilities/copy.hpp"
61#include "utilities/events.hpp"
62
63
64// Implementation of StubAssembler
65
66StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
67  _name = name;
68  _must_gc_arguments = false;
69  _frame_size = no_frame_size;
70  _num_rt_args = 0;
71  _stub_id = stub_id;
72}
73
74
75void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
76  _name = name;
77  _must_gc_arguments = must_gc_arguments;
78}
79
80
81void StubAssembler::set_frame_size(int size) {
82  if (_frame_size == no_frame_size) {
83    _frame_size = size;
84  }
85  assert(_frame_size == size, "can't change the frame size");
86}
87
88
89void StubAssembler::set_num_rt_args(int args) {
90  if (_num_rt_args == 0) {
91    _num_rt_args = args;
92  }
93  assert(_num_rt_args == args, "can't change the number of args");
94}
95
96// Implementation of Runtime1
97
98CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
99const char *Runtime1::_blob_names[] = {
100  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
101};
102
103#ifndef PRODUCT
104// statistics
105int Runtime1::_generic_arraycopy_cnt = 0;
106int Runtime1::_primitive_arraycopy_cnt = 0;
107int Runtime1::_oop_arraycopy_cnt = 0;
108int Runtime1::_generic_arraycopystub_cnt = 0;
109int Runtime1::_arraycopy_slowcase_cnt = 0;
110int Runtime1::_arraycopy_checkcast_cnt = 0;
111int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
112int Runtime1::_new_type_array_slowcase_cnt = 0;
113int Runtime1::_new_object_array_slowcase_cnt = 0;
114int Runtime1::_new_instance_slowcase_cnt = 0;
115int Runtime1::_new_multi_array_slowcase_cnt = 0;
116int Runtime1::_monitorenter_slowcase_cnt = 0;
117int Runtime1::_monitorexit_slowcase_cnt = 0;
118int Runtime1::_patch_code_slowcase_cnt = 0;
119int Runtime1::_throw_range_check_exception_count = 0;
120int Runtime1::_throw_index_exception_count = 0;
121int Runtime1::_throw_div0_exception_count = 0;
122int Runtime1::_throw_null_pointer_exception_count = 0;
123int Runtime1::_throw_class_cast_exception_count = 0;
124int Runtime1::_throw_incompatible_class_change_error_count = 0;
125int Runtime1::_throw_array_store_exception_count = 0;
126int Runtime1::_throw_count = 0;
127
128static int _byte_arraycopy_stub_cnt = 0;
129static int _short_arraycopy_stub_cnt = 0;
130static int _int_arraycopy_stub_cnt = 0;
131static int _long_arraycopy_stub_cnt = 0;
132static int _oop_arraycopy_stub_cnt = 0;
133
134address Runtime1::arraycopy_count_address(BasicType type) {
135  switch (type) {
136  case T_BOOLEAN:
137  case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
138  case T_CHAR:
139  case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
140  case T_FLOAT:
141  case T_INT:    return (address)&_int_arraycopy_stub_cnt;
142  case T_DOUBLE:
143  case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
144  case T_ARRAY:
145  case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
146  default:
147    ShouldNotReachHere();
148    return NULL;
149  }
150}
151
152
153#endif
154
155// Simple helper to see if the caller of a runtime stub which
156// entered the VM has been deoptimized
157
158static bool caller_is_deopted() {
159  JavaThread* thread = JavaThread::current();
160  RegisterMap reg_map(thread, false);
161  frame runtime_frame = thread->last_frame();
162  frame caller_frame = runtime_frame.sender(&reg_map);
163  assert(caller_frame.is_compiled_frame(), "must be compiled");
164  return caller_frame.is_deoptimized_frame();
165}
166
167// Stress deoptimization
168static void deopt_caller() {
169  if ( !caller_is_deopted()) {
170    JavaThread* thread = JavaThread::current();
171    RegisterMap reg_map(thread, false);
172    frame runtime_frame = thread->last_frame();
173    frame caller_frame = runtime_frame.sender(&reg_map);
174    Deoptimization::deoptimize_frame(thread, caller_frame.id());
175    assert(caller_is_deopted(), "Must be deoptimized");
176  }
177}
178
179
180void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
181  assert(0 <= id && id < number_of_ids, "illegal stub id");
182  ResourceMark rm;
183  // create code buffer for code storage
184  CodeBuffer code(buffer_blob);
185
186  Compilation::setup_code_buffer(&code, 0);
187
188  // create assembler for code generation
189  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
190  // generate code for runtime stub
191  OopMapSet* oop_maps;
192  oop_maps = generate_code_for(id, sasm);
193  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
194         "if stub has an oop map it must have a valid frame size");
195
196#ifdef ASSERT
197  // Make sure that stubs that need oopmaps have them
198  switch (id) {
199    // These stubs don't need to have an oopmap
200    case dtrace_object_alloc_id:
201    case g1_pre_barrier_slow_id:
202    case g1_post_barrier_slow_id:
203    case slow_subtype_check_id:
204    case fpu2long_stub_id:
205    case unwind_exception_id:
206    case counter_overflow_id:
207#if defined(SPARC) || defined(PPC)
208    case handle_exception_nofpu_id:  // Unused on sparc
209#endif
210      break;
211
212    // All other stubs should have oopmaps
213    default:
214      assert(oop_maps != NULL, "must have an oopmap");
215  }
216#endif
217
218  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
219  sasm->align(BytesPerWord);
220  // make sure all code is in code buffer
221  sasm->flush();
222  // create blob - distinguish a few special cases
223  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
224                                                 &code,
225                                                 CodeOffsets::frame_never_safe,
226                                                 sasm->frame_size(),
227                                                 oop_maps,
228                                                 sasm->must_gc_arguments());
229  // install blob
230  assert(blob != NULL, "blob must exist");
231  _blobs[id] = blob;
232}
233
234
235void Runtime1::initialize(BufferBlob* blob) {
236  // platform-dependent initialization
237  initialize_pd();
238  // generate stubs
239  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
240  // printing
241#ifndef PRODUCT
242  if (PrintSimpleStubs) {
243    ResourceMark rm;
244    for (int id = 0; id < number_of_ids; id++) {
245      _blobs[id]->print();
246      if (_blobs[id]->oop_maps() != NULL) {
247        _blobs[id]->oop_maps()->print();
248      }
249    }
250  }
251#endif
252}
253
254
255CodeBlob* Runtime1::blob_for(StubID id) {
256  assert(0 <= id && id < number_of_ids, "illegal stub id");
257  return _blobs[id];
258}
259
260
261const char* Runtime1::name_for(StubID id) {
262  assert(0 <= id && id < number_of_ids, "illegal stub id");
263  return _blob_names[id];
264}
265
266const char* Runtime1::name_for_address(address entry) {
267  for (int id = 0; id < number_of_ids; id++) {
268    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
269  }
270
271#define FUNCTION_CASE(a, f) \
272  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
273
274  FUNCTION_CASE(entry, os::javaTimeMillis);
275  FUNCTION_CASE(entry, os::javaTimeNanos);
276  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
277  FUNCTION_CASE(entry, SharedRuntime::d2f);
278  FUNCTION_CASE(entry, SharedRuntime::d2i);
279  FUNCTION_CASE(entry, SharedRuntime::d2l);
280  FUNCTION_CASE(entry, SharedRuntime::dcos);
281  FUNCTION_CASE(entry, SharedRuntime::dexp);
282  FUNCTION_CASE(entry, SharedRuntime::dlog);
283  FUNCTION_CASE(entry, SharedRuntime::dlog10);
284  FUNCTION_CASE(entry, SharedRuntime::dpow);
285  FUNCTION_CASE(entry, SharedRuntime::drem);
286  FUNCTION_CASE(entry, SharedRuntime::dsin);
287  FUNCTION_CASE(entry, SharedRuntime::dtan);
288  FUNCTION_CASE(entry, SharedRuntime::f2i);
289  FUNCTION_CASE(entry, SharedRuntime::f2l);
290  FUNCTION_CASE(entry, SharedRuntime::frem);
291  FUNCTION_CASE(entry, SharedRuntime::l2d);
292  FUNCTION_CASE(entry, SharedRuntime::l2f);
293  FUNCTION_CASE(entry, SharedRuntime::ldiv);
294  FUNCTION_CASE(entry, SharedRuntime::lmul);
295  FUNCTION_CASE(entry, SharedRuntime::lrem);
296  FUNCTION_CASE(entry, SharedRuntime::lrem);
297  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
298  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
299  FUNCTION_CASE(entry, is_instance_of);
300  FUNCTION_CASE(entry, trace_block_entry);
301#ifdef TRACE_HAVE_INTRINSICS
302  FUNCTION_CASE(entry, TRACE_TIME_METHOD);
303#endif
304  FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
305
306#undef FUNCTION_CASE
307
308  // Soft float adds more runtime names.
309  return pd_name_for_address(entry);
310}
311
312
313JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
314  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
315
316  assert(klass->is_klass(), "not a class");
317  instanceKlassHandle h(thread, klass);
318  h->check_valid_for_instantiation(true, CHECK);
319  // make sure klass is initialized
320  h->initialize(CHECK);
321  // allocate instance and return via TLS
322  oop obj = h->allocate_instance(CHECK);
323  thread->set_vm_result(obj);
324JRT_END
325
326
327JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
328  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
329  // Note: no handle for klass needed since they are not used
330  //       anymore after new_typeArray() and no GC can happen before.
331  //       (This may have to change if this code changes!)
332  assert(klass->is_klass(), "not a class");
333  BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
334  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
335  thread->set_vm_result(obj);
336  // This is pretty rare but this runtime patch is stressful to deoptimization
337  // if we deoptimize here so force a deopt to stress the path.
338  if (DeoptimizeALot) {
339    deopt_caller();
340  }
341
342JRT_END
343
344
345JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
346  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
347
348  // Note: no handle for klass needed since they are not used
349  //       anymore after new_objArray() and no GC can happen before.
350  //       (This may have to change if this code changes!)
351  assert(array_klass->is_klass(), "not a class");
352  Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
353  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
354  thread->set_vm_result(obj);
355  // This is pretty rare but this runtime patch is stressful to deoptimization
356  // if we deoptimize here so force a deopt to stress the path.
357  if (DeoptimizeALot) {
358    deopt_caller();
359  }
360JRT_END
361
362
363JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
364  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
365
366  assert(klass->is_klass(), "not a class");
367  assert(rank >= 1, "rank must be nonzero");
368  oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
369  thread->set_vm_result(obj);
370JRT_END
371
372
373JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
374  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
375JRT_END
376
377
378JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
379  ResourceMark rm(thread);
380  const char* klass_name = obj->klass()->external_name();
381  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
382JRT_END
383
384
385// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
386// associated with the top activation record. The inlinee (that is possibly included in the enclosing
387// method) method oop is passed as an argument. In order to do that it is embedded in the code as
388// a constant.
389static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
390  nmethod* osr_nm = NULL;
391  methodHandle method(THREAD, m);
392
393  RegisterMap map(THREAD, false);
394  frame fr =  THREAD->last_frame().sender(&map);
395  nmethod* nm = (nmethod*) fr.cb();
396  assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
397  methodHandle enclosing_method(THREAD, nm->method());
398
399  CompLevel level = (CompLevel)nm->comp_level();
400  int bci = InvocationEntryBci;
401  if (branch_bci != InvocationEntryBci) {
402    // Compute desination bci
403    address pc = method()->code_base() + branch_bci;
404    Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
405    int offset = 0;
406    switch (branch) {
407      case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
408      case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
409      case Bytecodes::_if_icmple: case Bytecodes::_ifle:
410      case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
411      case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
412      case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
413      case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
414        offset = (int16_t)Bytes::get_Java_u2(pc + 1);
415        break;
416      case Bytecodes::_goto_w:
417        offset = Bytes::get_Java_u4(pc + 1);
418        break;
419      default: ;
420    }
421    bci = branch_bci + offset;
422  }
423  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
424  osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
425  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
426  return osr_nm;
427}
428
429JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
430  nmethod* osr_nm;
431  JRT_BLOCK
432    osr_nm = counter_overflow_helper(thread, bci, method);
433    if (osr_nm != NULL) {
434      RegisterMap map(thread, false);
435      frame fr =  thread->last_frame().sender(&map);
436      Deoptimization::deoptimize_frame(thread, fr.id());
437    }
438  JRT_BLOCK_END
439  return NULL;
440JRT_END
441
442extern void vm_exit(int code);
443
444// Enter this method from compiled code handler below. This is where we transition
445// to VM mode. This is done as a helper routine so that the method called directly
446// from compiled code does not have to transition to VM. This allows the entry
447// method to see if the nmethod that we have just looked up a handler for has
448// been deoptimized while we were in the vm. This simplifies the assembly code
449// cpu directories.
450//
451// We are entering here from exception stub (via the entry method below)
452// If there is a compiled exception handler in this method, we will continue there;
453// otherwise we will unwind the stack and continue at the caller of top frame method
454// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
455// control the area where we can allow a safepoint. After we exit the safepoint area we can
456// check to see if the handler we are going to return is now in a nmethod that has
457// been deoptimized. If that is the case we return the deopt blob
458// unpack_with_exception entry instead. This makes life for the exception blob easier
459// because making that same check and diverting is painful from assembly language.
460JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
461  // Reset method handle flag.
462  thread->set_is_method_handle_return(false);
463
464  Handle exception(thread, ex);
465  nm = CodeCache::find_nmethod(pc);
466  assert(nm != NULL, "this is not an nmethod");
467  // Adjust the pc as needed/
468  if (nm->is_deopt_pc(pc)) {
469    RegisterMap map(thread, false);
470    frame exception_frame = thread->last_frame().sender(&map);
471    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
472    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
473    pc = exception_frame.pc();
474  }
475#ifdef ASSERT
476  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
477  assert(exception->is_oop(), "just checking");
478  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
479  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
480    if (ExitVMOnVerifyError) vm_exit(-1);
481    ShouldNotReachHere();
482  }
483#endif
484
485  // Check the stack guard pages and reenable them if necessary and there is
486  // enough space on the stack to do so.  Use fast exceptions only if the guard
487  // pages are enabled.
488  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
489  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
490
491  if (JvmtiExport::can_post_on_exceptions()) {
492    // To ensure correct notification of exception catches and throws
493    // we have to deoptimize here.  If we attempted to notify the
494    // catches and throws during this exception lookup it's possible
495    // we could deoptimize on the way out of the VM and end back in
496    // the interpreter at the throw site.  This would result in double
497    // notifications since the interpreter would also notify about
498    // these same catches and throws as it unwound the frame.
499
500    RegisterMap reg_map(thread);
501    frame stub_frame = thread->last_frame();
502    frame caller_frame = stub_frame.sender(&reg_map);
503
504    // We don't really want to deoptimize the nmethod itself since we
505    // can actually continue in the exception handler ourselves but I
506    // don't see an easy way to have the desired effect.
507    Deoptimization::deoptimize_frame(thread, caller_frame.id());
508    assert(caller_is_deopted(), "Must be deoptimized");
509
510    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
511  }
512
513  // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
514  if (guard_pages_enabled) {
515    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
516    if (fast_continuation != NULL) {
517      // Set flag if return address is a method handle call site.
518      thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
519      return fast_continuation;
520    }
521  }
522
523  // If the stack guard pages are enabled, check whether there is a handler in
524  // the current method.  Otherwise (guard pages disabled), force an unwind and
525  // skip the exception cache update (i.e., just leave continuation==NULL).
526  address continuation = NULL;
527  if (guard_pages_enabled) {
528
529    // New exception handling mechanism can support inlined methods
530    // with exception handlers since the mappings are from PC to PC
531
532    // debugging support
533    // tracing
534    if (TraceExceptions) {
535      ttyLocker ttyl;
536      ResourceMark rm;
537      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
538                    exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
539    }
540    // for AbortVMOnException flag
541    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
542
543    // Clear out the exception oop and pc since looking up an
544    // exception handler can cause class loading, which might throw an
545    // exception and those fields are expected to be clear during
546    // normal bytecode execution.
547    thread->clear_exception_oop_and_pc();
548
549    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
550    // If an exception was thrown during exception dispatch, the exception oop may have changed
551    thread->set_exception_oop(exception());
552    thread->set_exception_pc(pc);
553
554    // the exception cache is used only by non-implicit exceptions
555    if (continuation != NULL) {
556      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
557    }
558  }
559
560  thread->set_vm_result(exception());
561  // Set flag if return address is a method handle call site.
562  thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
563
564  if (TraceExceptions) {
565    ttyLocker ttyl;
566    ResourceMark rm;
567    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
568                  p2i(thread), p2i(continuation), p2i(pc));
569  }
570
571  return continuation;
572JRT_END
573
574// Enter this method from compiled code only if there is a Java exception handler
575// in the method handling the exception.
576// We are entering here from exception stub. We don't do a normal VM transition here.
577// We do it in a helper. This is so we can check to see if the nmethod we have just
578// searched for an exception handler has been deoptimized in the meantime.
579address Runtime1::exception_handler_for_pc(JavaThread* thread) {
580  oop exception = thread->exception_oop();
581  address pc = thread->exception_pc();
582  // Still in Java mode
583  DEBUG_ONLY(ResetNoHandleMark rnhm);
584  nmethod* nm = NULL;
585  address continuation = NULL;
586  {
587    // Enter VM mode by calling the helper
588    ResetNoHandleMark rnhm;
589    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
590  }
591  // Back in JAVA, use no oops DON'T safepoint
592
593  // Now check to see if the nmethod we were called from is now deoptimized.
594  // If so we must return to the deopt blob and deoptimize the nmethod
595  if (nm != NULL && caller_is_deopted()) {
596    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
597  }
598
599  assert(continuation != NULL, "no handler found");
600  return continuation;
601}
602
603
604JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
605  NOT_PRODUCT(_throw_range_check_exception_count++;)
606  char message[jintAsStringSize];
607  sprintf(message, "%d", index);
608  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
609JRT_END
610
611
612JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
613  NOT_PRODUCT(_throw_index_exception_count++;)
614  char message[16];
615  sprintf(message, "%d", index);
616  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
617JRT_END
618
619
620JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
621  NOT_PRODUCT(_throw_div0_exception_count++;)
622  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
623JRT_END
624
625
626JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
627  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
628  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
629JRT_END
630
631
632JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
633  NOT_PRODUCT(_throw_class_cast_exception_count++;)
634  ResourceMark rm(thread);
635  char* message = SharedRuntime::generate_class_cast_message(
636    thread, object->klass()->external_name());
637  SharedRuntime::throw_and_post_jvmti_exception(
638    thread, vmSymbols::java_lang_ClassCastException(), message);
639JRT_END
640
641
642JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
643  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
644  ResourceMark rm(thread);
645  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
646JRT_END
647
648
649JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
650  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
651  if (PrintBiasedLockingStatistics) {
652    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
653  }
654  Handle h_obj(thread, obj);
655  assert(h_obj()->is_oop(), "must be NULL or an object");
656  if (UseBiasedLocking) {
657    // Retry fast entry if bias is revoked to avoid unnecessary inflation
658    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
659  } else {
660    if (UseFastLocking) {
661      // When using fast locking, the compiled code has already tried the fast case
662      assert(obj == lock->obj(), "must match");
663      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
664    } else {
665      lock->set_obj(obj);
666      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
667    }
668  }
669JRT_END
670
671
672JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
673  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
674  assert(thread == JavaThread::current(), "threads must correspond");
675  assert(thread->last_Java_sp(), "last_Java_sp must be set");
676  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
677  EXCEPTION_MARK;
678
679  oop obj = lock->obj();
680  assert(obj->is_oop(), "must be NULL or an object");
681  if (UseFastLocking) {
682    // When using fast locking, the compiled code has already tried the fast case
683    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
684  } else {
685    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
686  }
687JRT_END
688
689// Cf. OptoRuntime::deoptimize_caller_frame
690JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
691  // Called from within the owner thread, so no need for safepoint
692  RegisterMap reg_map(thread, false);
693  frame stub_frame = thread->last_frame();
694  assert(stub_frame.is_runtime_frame(), "Sanity check");
695  frame caller_frame = stub_frame.sender(&reg_map);
696  nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
697  assert(nm != NULL, "Sanity check");
698  methodHandle method(thread, nm->method());
699  assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
700  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
701  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
702
703  if (action == Deoptimization::Action_make_not_entrant) {
704    if (nm->make_not_entrant()) {
705      if (reason == Deoptimization::Reason_tenured) {
706        MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
707        if (trap_mdo != NULL) {
708          trap_mdo->inc_tenure_traps();
709        }
710      }
711    }
712  }
713
714  // Deoptimize the caller frame.
715  Deoptimization::deoptimize_frame(thread, caller_frame.id());
716  // Return to the now deoptimized frame.
717JRT_END
718
719
720static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
721  Bytecode_field field_access(caller, bci);
722  // This can be static or non-static field access
723  Bytecodes::Code code       = field_access.code();
724
725  // We must load class, initialize class and resolvethe field
726  fieldDescriptor result; // initialize class if needed
727  constantPoolHandle constants(THREAD, caller->constants());
728  LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
729  return result.field_holder();
730}
731
732
733//
734// This routine patches sites where a class wasn't loaded or
735// initialized at the time the code was generated.  It handles
736// references to classes, fields and forcing of initialization.  Most
737// of the cases are straightforward and involving simply forcing
738// resolution of a class, rewriting the instruction stream with the
739// needed constant and replacing the call in this function with the
740// patched code.  The case for static field is more complicated since
741// the thread which is in the process of initializing a class can
742// access it's static fields but other threads can't so the code
743// either has to deoptimize when this case is detected or execute a
744// check that the current thread is the initializing thread.  The
745// current
746//
747// Patches basically look like this:
748//
749//
750// patch_site: jmp patch stub     ;; will be patched
751// continue:   ...
752//             ...
753//             ...
754//             ...
755//
756// They have a stub which looks like this:
757//
758//             ;; patch body
759//             movl <const>, reg           (for class constants)
760//        <or> movl [reg1 + <const>], reg  (for field offsets)
761//        <or> movl reg, [reg1 + <const>]  (for field offsets)
762//             <being_init offset> <bytes to copy> <bytes to skip>
763// patch_stub: call Runtime1::patch_code (through a runtime stub)
764//             jmp patch_site
765//
766//
767// A normal patch is done by rewriting the patch body, usually a move,
768// and then copying it into place over top of the jmp instruction
769// being careful to flush caches and doing it in an MP-safe way.  The
770// constants following the patch body are used to find various pieces
771// of the patch relative to the call site for Runtime1::patch_code.
772// The case for getstatic and putstatic is more complicated because
773// getstatic and putstatic have special semantics when executing while
774// the class is being initialized.  getstatic/putstatic on a class
775// which is being_initialized may be executed by the initializing
776// thread but other threads have to block when they execute it.  This
777// is accomplished in compiled code by executing a test of the current
778// thread against the initializing thread of the class.  It's emitted
779// as boilerplate in their stub which allows the patched code to be
780// executed before it's copied back into the main body of the nmethod.
781//
782// being_init: get_thread(<tmp reg>
783//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
784//             jne patch_stub
785//             movl [reg1 + <const>], reg  (for field offsets)  <or>
786//             movl reg, [reg1 + <const>]  (for field offsets)
787//             jmp continue
788//             <being_init offset> <bytes to copy> <bytes to skip>
789// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
790//             jmp patch_site
791//
792// If the class is being initialized the patch body is rewritten and
793// the patch site is rewritten to jump to being_init, instead of
794// patch_stub.  Whenever this code is executed it checks the current
795// thread against the intializing thread so other threads will enter
796// the runtime and end up blocked waiting the class to finish
797// initializing inside the calls to resolve_field below.  The
798// initializing class will continue on it's way.  Once the class is
799// fully_initialized, the intializing_thread of the class becomes
800// NULL, so the next thread to execute this code will fail the test,
801// call into patch_code and complete the patching process by copying
802// the patch body back into the main part of the nmethod and resume
803// executing.
804//
805//
806
807JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
808  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
809
810  ResourceMark rm(thread);
811  RegisterMap reg_map(thread, false);
812  frame runtime_frame = thread->last_frame();
813  frame caller_frame = runtime_frame.sender(&reg_map);
814
815  // last java frame on stack
816  vframeStream vfst(thread, true);
817  assert(!vfst.at_end(), "Java frame must exist");
818
819  methodHandle caller_method(THREAD, vfst.method());
820  // Note that caller_method->code() may not be same as caller_code because of OSR's
821  // Note also that in the presence of inlining it is not guaranteed
822  // that caller_method() == caller_code->method()
823
824  int bci = vfst.bci();
825  Bytecodes::Code code = caller_method()->java_code_at(bci);
826
827  // this is used by assertions in the access_field_patching_id
828  BasicType patch_field_type = T_ILLEGAL;
829  bool deoptimize_for_volatile = false;
830  bool deoptimize_for_atomic = false;
831  int patch_field_offset = -1;
832  KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
833  KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
834  Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
835  Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
836  bool load_klass_or_mirror_patch_id =
837    (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
838
839  if (stub_id == Runtime1::access_field_patching_id) {
840
841    Bytecode_field field_access(caller_method, bci);
842    fieldDescriptor result; // initialize class if needed
843    Bytecodes::Code code = field_access.code();
844    constantPoolHandle constants(THREAD, caller_method->constants());
845    LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
846    patch_field_offset = result.offset();
847
848    // If we're patching a field which is volatile then at compile it
849    // must not have been know to be volatile, so the generated code
850    // isn't correct for a volatile reference.  The nmethod has to be
851    // deoptimized so that the code can be regenerated correctly.
852    // This check is only needed for access_field_patching since this
853    // is the path for patching field offsets.  load_klass is only
854    // used for patching references to oops which don't need special
855    // handling in the volatile case.
856
857    deoptimize_for_volatile = result.access_flags().is_volatile();
858
859    // If we are patching a field which should be atomic, then
860    // the generated code is not correct either, force deoptimizing.
861    // We need to only cover T_LONG and T_DOUBLE fields, as we can
862    // break access atomicity only for them.
863
864    // Strictly speaking, the deoptimizaation on 64-bit platforms
865    // is unnecessary, and T_LONG stores on 32-bit platforms need
866    // to be handled by special patching code when AlwaysAtomicAccesses
867    // becomes product feature. At this point, we are still going
868    // for the deoptimization for consistency against volatile
869    // accesses.
870
871    patch_field_type = result.field_type();
872    deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
873
874  } else if (load_klass_or_mirror_patch_id) {
875    Klass* k = NULL;
876    switch (code) {
877      case Bytecodes::_putstatic:
878      case Bytecodes::_getstatic:
879        { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
880          init_klass = KlassHandle(THREAD, klass);
881          mirror = Handle(THREAD, klass->java_mirror());
882        }
883        break;
884      case Bytecodes::_new:
885        { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
886          k = caller_method->constants()->klass_at(bnew.index(), CHECK);
887        }
888        break;
889      case Bytecodes::_multianewarray:
890        { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
891          k = caller_method->constants()->klass_at(mna.index(), CHECK);
892        }
893        break;
894      case Bytecodes::_instanceof:
895        { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
896          k = caller_method->constants()->klass_at(io.index(), CHECK);
897        }
898        break;
899      case Bytecodes::_checkcast:
900        { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
901          k = caller_method->constants()->klass_at(cc.index(), CHECK);
902        }
903        break;
904      case Bytecodes::_anewarray:
905        { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
906          Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
907          k = ek->array_klass(CHECK);
908        }
909        break;
910      case Bytecodes::_ldc:
911      case Bytecodes::_ldc_w:
912        {
913          Bytecode_loadconstant cc(caller_method, bci);
914          oop m = cc.resolve_constant(CHECK);
915          mirror = Handle(THREAD, m);
916        }
917        break;
918      default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
919    }
920    // convert to handle
921    load_klass = KlassHandle(THREAD, k);
922  } else if (stub_id == load_appendix_patching_id) {
923    Bytecode_invoke bytecode(caller_method, bci);
924    Bytecodes::Code bc = bytecode.invoke_code();
925
926    CallInfo info;
927    constantPoolHandle pool(thread, caller_method->constants());
928    int index = bytecode.index();
929    LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
930    appendix = info.resolved_appendix();
931    switch (bc) {
932      case Bytecodes::_invokehandle: {
933        int cache_index = ConstantPool::decode_cpcache_index(index, true);
934        assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
935        pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
936        break;
937      }
938      case Bytecodes::_invokedynamic: {
939        pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
940        break;
941      }
942      default: fatal("unexpected bytecode for load_appendix_patching_id");
943    }
944  } else {
945    ShouldNotReachHere();
946  }
947
948  if (deoptimize_for_volatile || deoptimize_for_atomic) {
949    // At compile time we assumed the field wasn't volatile/atomic but after
950    // loading it turns out it was volatile/atomic so we have to throw the
951    // compiled code out and let it be regenerated.
952    if (TracePatching) {
953      if (deoptimize_for_volatile) {
954        tty->print_cr("Deoptimizing for patching volatile field reference");
955      }
956      if (deoptimize_for_atomic) {
957        tty->print_cr("Deoptimizing for patching atomic field reference");
958      }
959    }
960
961    // It's possible the nmethod was invalidated in the last
962    // safepoint, but if it's still alive then make it not_entrant.
963    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
964    if (nm != NULL) {
965      nm->make_not_entrant();
966    }
967
968    Deoptimization::deoptimize_frame(thread, caller_frame.id());
969
970    // Return to the now deoptimized frame.
971  }
972
973  // Now copy code back
974
975  {
976    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
977    //
978    // Deoptimization may have happened while we waited for the lock.
979    // In that case we don't bother to do any patching we just return
980    // and let the deopt happen
981    if (!caller_is_deopted()) {
982      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
983      address instr_pc = jump->jump_destination();
984      NativeInstruction* ni = nativeInstruction_at(instr_pc);
985      if (ni->is_jump() ) {
986        // the jump has not been patched yet
987        // The jump destination is slow case and therefore not part of the stubs
988        // (stubs are only for StaticCalls)
989
990        // format of buffer
991        //    ....
992        //    instr byte 0     <-- copy_buff
993        //    instr byte 1
994        //    ..
995        //    instr byte n-1
996        //      n
997        //    ....             <-- call destination
998
999        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1000        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1001        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1002        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1003        address copy_buff = stub_location - *byte_skip - *byte_count;
1004        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1005        if (TracePatching) {
1006          tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1007                        p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1008          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1009          assert(caller_code != NULL, "nmethod not found");
1010
1011          // NOTE we use pc() not original_pc() because we already know they are
1012          // identical otherwise we'd have never entered this block of code
1013
1014          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1015          assert(map != NULL, "null check");
1016          map->print();
1017          tty->cr();
1018
1019          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1020        }
1021        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1022        bool do_patch = true;
1023        if (stub_id == Runtime1::access_field_patching_id) {
1024          // The offset may not be correct if the class was not loaded at code generation time.
1025          // Set it now.
1026          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1027          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1028          assert(patch_field_offset >= 0, "illegal offset");
1029          n_move->add_offset_in_bytes(patch_field_offset);
1030        } else if (load_klass_or_mirror_patch_id) {
1031          // If a getstatic or putstatic is referencing a klass which
1032          // isn't fully initialized, the patch body isn't copied into
1033          // place until initialization is complete.  In this case the
1034          // patch site is setup so that any threads besides the
1035          // initializing thread are forced to come into the VM and
1036          // block.
1037          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1038                     InstanceKlass::cast(init_klass())->is_initialized();
1039          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1040          if (jump->jump_destination() == being_initialized_entry) {
1041            assert(do_patch == true, "initialization must be complete at this point");
1042          } else {
1043            // patch the instruction <move reg, klass>
1044            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1045
1046            assert(n_copy->data() == 0 ||
1047                   n_copy->data() == (intptr_t)Universe::non_oop_word(),
1048                   "illegal init value");
1049            if (stub_id == Runtime1::load_klass_patching_id) {
1050              assert(load_klass() != NULL, "klass not set");
1051              n_copy->set_data((intx) (load_klass()));
1052            } else {
1053              assert(mirror() != NULL, "klass not set");
1054              n_copy->set_data(cast_from_oop<intx>(mirror()));
1055            }
1056
1057            if (TracePatching) {
1058              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1059            }
1060          }
1061        } else if (stub_id == Runtime1::load_appendix_patching_id) {
1062          NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1063          assert(n_copy->data() == 0 ||
1064                 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1065                 "illegal init value");
1066          n_copy->set_data(cast_from_oop<intx>(appendix()));
1067
1068          if (TracePatching) {
1069            Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1070          }
1071        } else {
1072          ShouldNotReachHere();
1073        }
1074
1075#if defined(SPARC) || defined(PPC)
1076        if (load_klass_or_mirror_patch_id ||
1077            stub_id == Runtime1::load_appendix_patching_id) {
1078          // Update the location in the nmethod with the proper
1079          // metadata.  When the code was generated, a NULL was stuffed
1080          // in the metadata table and that table needs to be update to
1081          // have the right value.  On intel the value is kept
1082          // directly in the instruction instead of in the metadata
1083          // table, so set_data above effectively updated the value.
1084          nmethod* nm = CodeCache::find_nmethod(instr_pc);
1085          assert(nm != NULL, "invalid nmethod_pc");
1086          RelocIterator mds(nm, copy_buff, copy_buff + 1);
1087          bool found = false;
1088          while (mds.next() && !found) {
1089            if (mds.type() == relocInfo::oop_type) {
1090              assert(stub_id == Runtime1::load_mirror_patching_id ||
1091                     stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1092              oop_Relocation* r = mds.oop_reloc();
1093              oop* oop_adr = r->oop_addr();
1094              *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1095              r->fix_oop_relocation();
1096              found = true;
1097            } else if (mds.type() == relocInfo::metadata_type) {
1098              assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1099              metadata_Relocation* r = mds.metadata_reloc();
1100              Metadata** metadata_adr = r->metadata_addr();
1101              *metadata_adr = load_klass();
1102              r->fix_metadata_relocation();
1103              found = true;
1104            }
1105          }
1106          assert(found, "the metadata must exist!");
1107        }
1108#endif
1109        if (do_patch) {
1110          // replace instructions
1111          // first replace the tail, then the call
1112#ifdef ARM
1113          if((load_klass_or_mirror_patch_id ||
1114              stub_id == Runtime1::load_appendix_patching_id) &&
1115             !VM_Version::supports_movw()) {
1116            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1117            address addr = NULL;
1118            assert(nm != NULL, "invalid nmethod_pc");
1119            RelocIterator mds(nm, copy_buff, copy_buff + 1);
1120            while (mds.next()) {
1121              if (mds.type() == relocInfo::oop_type) {
1122                assert(stub_id == Runtime1::load_mirror_patching_id ||
1123                       stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1124                oop_Relocation* r = mds.oop_reloc();
1125                addr = (address)r->oop_addr();
1126                break;
1127              } else if (mds.type() == relocInfo::metadata_type) {
1128                assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1129                metadata_Relocation* r = mds.metadata_reloc();
1130                addr = (address)r->metadata_addr();
1131                break;
1132              }
1133            }
1134            assert(addr != NULL, "metadata relocation must exist");
1135            copy_buff -= *byte_count;
1136            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1137            n_copy2->set_pc_relative_offset(addr, instr_pc);
1138          }
1139#endif
1140
1141          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1142            address ptr = copy_buff + i;
1143            int a_byte = (*ptr) & 0xFF;
1144            address dst = instr_pc + i;
1145            *(unsigned char*)dst = (unsigned char) a_byte;
1146          }
1147          ICache::invalidate_range(instr_pc, *byte_count);
1148          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1149
1150          if (load_klass_or_mirror_patch_id ||
1151              stub_id == Runtime1::load_appendix_patching_id) {
1152            relocInfo::relocType rtype =
1153              (stub_id == Runtime1::load_klass_patching_id) ?
1154                                   relocInfo::metadata_type :
1155                                   relocInfo::oop_type;
1156            // update relocInfo to metadata
1157            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1158            assert(nm != NULL, "invalid nmethod_pc");
1159
1160            // The old patch site is now a move instruction so update
1161            // the reloc info so that it will get updated during
1162            // future GCs.
1163            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1164            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1165                                                     relocInfo::none, rtype);
1166#ifdef SPARC
1167            // Sparc takes two relocations for an metadata so update the second one.
1168            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1169            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1170            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1171                                                     relocInfo::none, rtype);
1172#endif
1173#ifdef PPC
1174          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1175            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1176            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1177                                                     relocInfo::none, rtype);
1178          }
1179#endif
1180          }
1181
1182        } else {
1183          ICache::invalidate_range(copy_buff, *byte_count);
1184          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1185        }
1186      }
1187    }
1188  }
1189
1190  // If we are patching in a non-perm oop, make sure the nmethod
1191  // is on the right list.
1192  if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1193                              (appendix.not_null() && appendix->is_scavengable()))) {
1194    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1195    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1196    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1197    if (!nm->on_scavenge_root_list()) {
1198      CodeCache::add_scavenge_root_nmethod(nm);
1199    }
1200
1201    // Since we've patched some oops in the nmethod,
1202    // (re)register it with the heap.
1203    Universe::heap()->register_nmethod(nm);
1204  }
1205JRT_END
1206
1207//
1208// Entry point for compiled code. We want to patch a nmethod.
1209// We don't do a normal VM transition here because we want to
1210// know after the patching is complete and any safepoint(s) are taken
1211// if the calling nmethod was deoptimized. We do this by calling a
1212// helper method which does the normal VM transition and when it
1213// completes we can check for deoptimization. This simplifies the
1214// assembly code in the cpu directories.
1215//
1216int Runtime1::move_klass_patching(JavaThread* thread) {
1217//
1218// NOTE: we are still in Java
1219//
1220  Thread* THREAD = thread;
1221  debug_only(NoHandleMark nhm;)
1222  {
1223    // Enter VM mode
1224
1225    ResetNoHandleMark rnhm;
1226    patch_code(thread, load_klass_patching_id);
1227  }
1228  // Back in JAVA, use no oops DON'T safepoint
1229
1230  // Return true if calling code is deoptimized
1231
1232  return caller_is_deopted();
1233}
1234
1235int Runtime1::move_mirror_patching(JavaThread* thread) {
1236//
1237// NOTE: we are still in Java
1238//
1239  Thread* THREAD = thread;
1240  debug_only(NoHandleMark nhm;)
1241  {
1242    // Enter VM mode
1243
1244    ResetNoHandleMark rnhm;
1245    patch_code(thread, load_mirror_patching_id);
1246  }
1247  // Back in JAVA, use no oops DON'T safepoint
1248
1249  // Return true if calling code is deoptimized
1250
1251  return caller_is_deopted();
1252}
1253
1254int Runtime1::move_appendix_patching(JavaThread* thread) {
1255//
1256// NOTE: we are still in Java
1257//
1258  Thread* THREAD = thread;
1259  debug_only(NoHandleMark nhm;)
1260  {
1261    // Enter VM mode
1262
1263    ResetNoHandleMark rnhm;
1264    patch_code(thread, load_appendix_patching_id);
1265  }
1266  // Back in JAVA, use no oops DON'T safepoint
1267
1268  // Return true if calling code is deoptimized
1269
1270  return caller_is_deopted();
1271}
1272//
1273// Entry point for compiled code. We want to patch a nmethod.
1274// We don't do a normal VM transition here because we want to
1275// know after the patching is complete and any safepoint(s) are taken
1276// if the calling nmethod was deoptimized. We do this by calling a
1277// helper method which does the normal VM transition and when it
1278// completes we can check for deoptimization. This simplifies the
1279// assembly code in the cpu directories.
1280//
1281
1282int Runtime1::access_field_patching(JavaThread* thread) {
1283//
1284// NOTE: we are still in Java
1285//
1286  Thread* THREAD = thread;
1287  debug_only(NoHandleMark nhm;)
1288  {
1289    // Enter VM mode
1290
1291    ResetNoHandleMark rnhm;
1292    patch_code(thread, access_field_patching_id);
1293  }
1294  // Back in JAVA, use no oops DON'T safepoint
1295
1296  // Return true if calling code is deoptimized
1297
1298  return caller_is_deopted();
1299JRT_END
1300
1301
1302JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1303  // for now we just print out the block id
1304  tty->print("%d ", block_id);
1305JRT_END
1306
1307
1308// Array copy return codes.
1309enum {
1310  ac_failed = -1, // arraycopy failed
1311  ac_ok = 0       // arraycopy succeeded
1312};
1313
1314
1315// Below length is the # elements copied.
1316template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1317                                          oopDesc* dst, T* dst_addr,
1318                                          int length) {
1319
1320  // For performance reasons, we assume we are using a card marking write
1321  // barrier. The assert will fail if this is not the case.
1322  // Note that we use the non-virtual inlineable variant of write_ref_array.
1323  BarrierSet* bs = Universe::heap()->barrier_set();
1324  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1325  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1326  if (src == dst) {
1327    // same object, no check
1328    bs->write_ref_array_pre(dst_addr, length);
1329    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1330    bs->write_ref_array((HeapWord*)dst_addr, length);
1331    return ac_ok;
1332  } else {
1333    Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1334    Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1335    if (stype == bound || stype->is_subtype_of(bound)) {
1336      // Elements are guaranteed to be subtypes, so no check necessary
1337      bs->write_ref_array_pre(dst_addr, length);
1338      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1339      bs->write_ref_array((HeapWord*)dst_addr, length);
1340      return ac_ok;
1341    }
1342  }
1343  return ac_failed;
1344}
1345
1346// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1347// and we did not copy anything
1348JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1349#ifndef PRODUCT
1350  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1351#endif
1352
1353  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1354  if (!dst->is_array() || !src->is_array()) return ac_failed;
1355  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1356  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1357
1358  if (length == 0) return ac_ok;
1359  if (src->is_typeArray()) {
1360    Klass* klass_oop = src->klass();
1361    if (klass_oop != dst->klass()) return ac_failed;
1362    TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1363    const int l2es = klass->log2_element_size();
1364    const int ihs = klass->array_header_in_bytes() / wordSize;
1365    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1366    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1367    // Potential problem: memmove is not guaranteed to be word atomic
1368    // Revisit in Merlin
1369    memmove(dst_addr, src_addr, length << l2es);
1370    return ac_ok;
1371  } else if (src->is_objArray() && dst->is_objArray()) {
1372    if (UseCompressedOops) {
1373      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1374      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1375      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1376    } else {
1377      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1378      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1379      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1380    }
1381  }
1382  return ac_failed;
1383JRT_END
1384
1385
1386JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1387#ifndef PRODUCT
1388  _primitive_arraycopy_cnt++;
1389#endif
1390
1391  if (length == 0) return;
1392  // Not guaranteed to be word atomic, but that doesn't matter
1393  // for anything but an oop array, which is covered by oop_arraycopy.
1394  Copy::conjoint_jbytes(src, dst, length);
1395JRT_END
1396
1397JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1398#ifndef PRODUCT
1399  _oop_arraycopy_cnt++;
1400#endif
1401
1402  if (num == 0) return;
1403  BarrierSet* bs = Universe::heap()->barrier_set();
1404  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1405  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1406  if (UseCompressedOops) {
1407    bs->write_ref_array_pre((narrowOop*)dst, num);
1408    Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1409  } else {
1410    bs->write_ref_array_pre((oop*)dst, num);
1411    Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1412  }
1413  bs->write_ref_array(dst, num);
1414JRT_END
1415
1416
1417JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1418  // had to return int instead of bool, otherwise there may be a mismatch
1419  // between the C calling convention and the Java one.
1420  // e.g., on x86, GCC may clear only %al when returning a bool false, but
1421  // JVM takes the whole %eax as the return value, which may misinterpret
1422  // the return value as a boolean true.
1423
1424  assert(mirror != NULL, "should null-check on mirror before calling");
1425  Klass* k = java_lang_Class::as_Klass(mirror);
1426  return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1427JRT_END
1428
1429JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1430  ResourceMark rm;
1431
1432  assert(!TieredCompilation, "incompatible with tiered compilation");
1433
1434  RegisterMap reg_map(thread, false);
1435  frame runtime_frame = thread->last_frame();
1436  frame caller_frame = runtime_frame.sender(&reg_map);
1437
1438  nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1439  assert (nm != NULL, "no more nmethod?");
1440  nm->make_not_entrant();
1441
1442  methodHandle m(nm->method());
1443  MethodData* mdo = m->method_data();
1444
1445  if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1446    // Build an MDO.  Ignore errors like OutOfMemory;
1447    // that simply means we won't have an MDO to update.
1448    Method::build_interpreter_method_data(m, THREAD);
1449    if (HAS_PENDING_EXCEPTION) {
1450      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1451      CLEAR_PENDING_EXCEPTION;
1452    }
1453    mdo = m->method_data();
1454  }
1455
1456  if (mdo != NULL) {
1457    mdo->inc_trap_count(Deoptimization::Reason_none);
1458  }
1459
1460  if (TracePredicateFailedTraps) {
1461    stringStream ss1, ss2;
1462    vframeStream vfst(thread);
1463    methodHandle inlinee = methodHandle(vfst.method());
1464    inlinee->print_short_name(&ss1);
1465    m->print_short_name(&ss2);
1466    tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1467  }
1468
1469
1470  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1471
1472JRT_END
1473
1474#ifndef PRODUCT
1475void Runtime1::print_statistics() {
1476  tty->print_cr("C1 Runtime statistics:");
1477  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1478  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1479  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1480  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1481  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1482  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1483  tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1484  tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1485  tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1486  tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1487  tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1488  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1489  tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1490  tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1491  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1492  tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1493  tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1494
1495  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1496  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1497  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1498  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1499  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1500  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1501  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1502
1503  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1504  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1505  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1506  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1507  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1508  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1509  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1510  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1511
1512  SharedRuntime::print_ic_miss_histogram();
1513  tty->cr();
1514}
1515#endif // PRODUCT
1516