c1_Runtime1.cpp revision 1601:126ea7725993
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_Runtime1.cpp.incl"
27
28
29// Implementation of StubAssembler
30
31StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
32  _name = name;
33  _must_gc_arguments = false;
34  _frame_size = no_frame_size;
35  _num_rt_args = 0;
36  _stub_id = stub_id;
37}
38
39
40void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
41  _name = name;
42  _must_gc_arguments = must_gc_arguments;
43}
44
45
46void StubAssembler::set_frame_size(int size) {
47  if (_frame_size == no_frame_size) {
48    _frame_size = size;
49  }
50  assert(_frame_size == size, "can't change the frame size");
51}
52
53
54void StubAssembler::set_num_rt_args(int args) {
55  if (_num_rt_args == 0) {
56    _num_rt_args = args;
57  }
58  assert(_num_rt_args == args, "can't change the number of args");
59}
60
61// Implementation of Runtime1
62
63CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
64const char *Runtime1::_blob_names[] = {
65  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
66};
67
68#ifndef PRODUCT
69// statistics
70int Runtime1::_generic_arraycopy_cnt = 0;
71int Runtime1::_primitive_arraycopy_cnt = 0;
72int Runtime1::_oop_arraycopy_cnt = 0;
73int Runtime1::_arraycopy_slowcase_cnt = 0;
74int Runtime1::_new_type_array_slowcase_cnt = 0;
75int Runtime1::_new_object_array_slowcase_cnt = 0;
76int Runtime1::_new_instance_slowcase_cnt = 0;
77int Runtime1::_new_multi_array_slowcase_cnt = 0;
78int Runtime1::_monitorenter_slowcase_cnt = 0;
79int Runtime1::_monitorexit_slowcase_cnt = 0;
80int Runtime1::_patch_code_slowcase_cnt = 0;
81int Runtime1::_throw_range_check_exception_count = 0;
82int Runtime1::_throw_index_exception_count = 0;
83int Runtime1::_throw_div0_exception_count = 0;
84int Runtime1::_throw_null_pointer_exception_count = 0;
85int Runtime1::_throw_class_cast_exception_count = 0;
86int Runtime1::_throw_incompatible_class_change_error_count = 0;
87int Runtime1::_throw_array_store_exception_count = 0;
88int Runtime1::_throw_count = 0;
89#endif
90
91// Simple helper to see if the caller of a runtime stub which
92// entered the VM has been deoptimized
93
94static bool caller_is_deopted() {
95  JavaThread* thread = JavaThread::current();
96  RegisterMap reg_map(thread, false);
97  frame runtime_frame = thread->last_frame();
98  frame caller_frame = runtime_frame.sender(&reg_map);
99  assert(caller_frame.is_compiled_frame(), "must be compiled");
100  return caller_frame.is_deoptimized_frame();
101}
102
103// Stress deoptimization
104static void deopt_caller() {
105  if ( !caller_is_deopted()) {
106    JavaThread* thread = JavaThread::current();
107    RegisterMap reg_map(thread, false);
108    frame runtime_frame = thread->last_frame();
109    frame caller_frame = runtime_frame.sender(&reg_map);
110    // bypass VM_DeoptimizeFrame and deoptimize the frame directly
111    Deoptimization::deoptimize_frame(thread, caller_frame.id());
112    assert(caller_is_deopted(), "Must be deoptimized");
113  }
114}
115
116
117void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
118  assert(0 <= id && id < number_of_ids, "illegal stub id");
119  ResourceMark rm;
120  // create code buffer for code storage
121  CodeBuffer code(buffer_blob->instructions_begin(),
122                  buffer_blob->instructions_size());
123
124  Compilation::setup_code_buffer(&code, 0);
125
126  // create assembler for code generation
127  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
128  // generate code for runtime stub
129  OopMapSet* oop_maps;
130  oop_maps = generate_code_for(id, sasm);
131  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
132         "if stub has an oop map it must have a valid frame size");
133
134#ifdef ASSERT
135  // Make sure that stubs that need oopmaps have them
136  switch (id) {
137    // These stubs don't need to have an oopmap
138    case dtrace_object_alloc_id:
139    case g1_pre_barrier_slow_id:
140    case g1_post_barrier_slow_id:
141    case slow_subtype_check_id:
142    case fpu2long_stub_id:
143    case unwind_exception_id:
144#ifndef TIERED
145    case counter_overflow_id: // Not generated outside the tiered world
146#endif
147#if defined(SPARC) || defined(PPC)
148    case handle_exception_nofpu_id:  // Unused on sparc
149#endif
150      break;
151
152    // All other stubs should have oopmaps
153    default:
154      assert(oop_maps != NULL, "must have an oopmap");
155  }
156#endif
157
158  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
159  sasm->align(BytesPerWord);
160  // make sure all code is in code buffer
161  sasm->flush();
162  // create blob - distinguish a few special cases
163  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
164                                                 &code,
165                                                 CodeOffsets::frame_never_safe,
166                                                 sasm->frame_size(),
167                                                 oop_maps,
168                                                 sasm->must_gc_arguments());
169  // install blob
170  assert(blob != NULL, "blob must exist");
171  _blobs[id] = blob;
172}
173
174
175void Runtime1::initialize(BufferBlob* blob) {
176  // platform-dependent initialization
177  initialize_pd();
178  // generate stubs
179  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
180  // printing
181#ifndef PRODUCT
182  if (PrintSimpleStubs) {
183    ResourceMark rm;
184    for (int id = 0; id < number_of_ids; id++) {
185      _blobs[id]->print();
186      if (_blobs[id]->oop_maps() != NULL) {
187        _blobs[id]->oop_maps()->print();
188      }
189    }
190  }
191#endif
192}
193
194
195CodeBlob* Runtime1::blob_for(StubID id) {
196  assert(0 <= id && id < number_of_ids, "illegal stub id");
197  return _blobs[id];
198}
199
200
201const char* Runtime1::name_for(StubID id) {
202  assert(0 <= id && id < number_of_ids, "illegal stub id");
203  return _blob_names[id];
204}
205
206const char* Runtime1::name_for_address(address entry) {
207  for (int id = 0; id < number_of_ids; id++) {
208    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
209  }
210
211#define FUNCTION_CASE(a, f) \
212  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
213
214  FUNCTION_CASE(entry, os::javaTimeMillis);
215  FUNCTION_CASE(entry, os::javaTimeNanos);
216  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
217  FUNCTION_CASE(entry, SharedRuntime::d2f);
218  FUNCTION_CASE(entry, SharedRuntime::d2i);
219  FUNCTION_CASE(entry, SharedRuntime::d2l);
220  FUNCTION_CASE(entry, SharedRuntime::dcos);
221  FUNCTION_CASE(entry, SharedRuntime::dexp);
222  FUNCTION_CASE(entry, SharedRuntime::dlog);
223  FUNCTION_CASE(entry, SharedRuntime::dlog10);
224  FUNCTION_CASE(entry, SharedRuntime::dpow);
225  FUNCTION_CASE(entry, SharedRuntime::drem);
226  FUNCTION_CASE(entry, SharedRuntime::dsin);
227  FUNCTION_CASE(entry, SharedRuntime::dtan);
228  FUNCTION_CASE(entry, SharedRuntime::f2i);
229  FUNCTION_CASE(entry, SharedRuntime::f2l);
230  FUNCTION_CASE(entry, SharedRuntime::frem);
231  FUNCTION_CASE(entry, SharedRuntime::l2d);
232  FUNCTION_CASE(entry, SharedRuntime::l2f);
233  FUNCTION_CASE(entry, SharedRuntime::ldiv);
234  FUNCTION_CASE(entry, SharedRuntime::lmul);
235  FUNCTION_CASE(entry, SharedRuntime::lrem);
236  FUNCTION_CASE(entry, SharedRuntime::lrem);
237  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
238  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
239  FUNCTION_CASE(entry, trace_block_entry);
240
241#undef FUNCTION_CASE
242
243  // Soft float adds more runtime names.
244  return pd_name_for_address(entry);
245}
246
247
248JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
249  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
250
251  assert(oop(klass)->is_klass(), "not a class");
252  instanceKlassHandle h(thread, klass);
253  h->check_valid_for_instantiation(true, CHECK);
254  // make sure klass is initialized
255  h->initialize(CHECK);
256  // allocate instance and return via TLS
257  oop obj = h->allocate_instance(CHECK);
258  thread->set_vm_result(obj);
259JRT_END
260
261
262JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
263  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
264  // Note: no handle for klass needed since they are not used
265  //       anymore after new_typeArray() and no GC can happen before.
266  //       (This may have to change if this code changes!)
267  assert(oop(klass)->is_klass(), "not a class");
268  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
269  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
270  thread->set_vm_result(obj);
271  // This is pretty rare but this runtime patch is stressful to deoptimization
272  // if we deoptimize here so force a deopt to stress the path.
273  if (DeoptimizeALot) {
274    deopt_caller();
275  }
276
277JRT_END
278
279
280JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
281  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
282
283  // Note: no handle for klass needed since they are not used
284  //       anymore after new_objArray() and no GC can happen before.
285  //       (This may have to change if this code changes!)
286  assert(oop(array_klass)->is_klass(), "not a class");
287  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
288  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
289  thread->set_vm_result(obj);
290  // This is pretty rare but this runtime patch is stressful to deoptimization
291  // if we deoptimize here so force a deopt to stress the path.
292  if (DeoptimizeALot) {
293    deopt_caller();
294  }
295JRT_END
296
297
298JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
299  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
300
301  assert(oop(klass)->is_klass(), "not a class");
302  assert(rank >= 1, "rank must be nonzero");
303  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
304  thread->set_vm_result(obj);
305JRT_END
306
307
308JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
309  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
310JRT_END
311
312
313JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
314  THROW(vmSymbolHandles::java_lang_ArrayStoreException());
315JRT_END
316
317
318JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
319  if (JvmtiExport::can_post_on_exceptions()) {
320    vframeStream vfst(thread, true);
321    address bcp = vfst.method()->bcp_from(vfst.bci());
322    JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
323  }
324JRT_END
325
326#ifdef TIERED
327JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
328  RegisterMap map(thread, false);
329  frame fr =  thread->last_frame().sender(&map);
330  nmethod* nm = (nmethod*) fr.cb();
331  assert(nm!= NULL && nm->is_nmethod(), "what?");
332  methodHandle method(thread, nm->method());
333  if (bci == 0) {
334    // invocation counter overflow
335    if (!Tier1CountOnly) {
336      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
337    } else {
338      method()->invocation_counter()->reset();
339    }
340  } else {
341    if (!Tier1CountOnly) {
342      // Twe have a bci but not the destination bci and besides a backedge
343      // event is more for OSR which we don't want here.
344      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
345    } else {
346      method()->backedge_counter()->reset();
347    }
348  }
349JRT_END
350#endif // TIERED
351
352extern void vm_exit(int code);
353
354// Enter this method from compiled code handler below. This is where we transition
355// to VM mode. This is done as a helper routine so that the method called directly
356// from compiled code does not have to transition to VM. This allows the entry
357// method to see if the nmethod that we have just looked up a handler for has
358// been deoptimized while we were in the vm. This simplifies the assembly code
359// cpu directories.
360//
361// We are entering here from exception stub (via the entry method below)
362// If there is a compiled exception handler in this method, we will continue there;
363// otherwise we will unwind the stack and continue at the caller of top frame method
364// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
365// control the area where we can allow a safepoint. After we exit the safepoint area we can
366// check to see if the handler we are going to return is now in a nmethod that has
367// been deoptimized. If that is the case we return the deopt blob
368// unpack_with_exception entry instead. This makes life for the exception blob easier
369// because making that same check and diverting is painful from assembly language.
370//
371
372
373JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
374
375  Handle exception(thread, ex);
376  nm = CodeCache::find_nmethod(pc);
377  assert(nm != NULL, "this is not an nmethod");
378  // Adjust the pc as needed/
379  if (nm->is_deopt_pc(pc)) {
380    RegisterMap map(thread, false);
381    frame exception_frame = thread->last_frame().sender(&map);
382    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
383    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
384    pc = exception_frame.pc();
385  }
386#ifdef ASSERT
387  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
388  assert(exception->is_oop(), "just checking");
389  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
390  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
391    if (ExitVMOnVerifyError) vm_exit(-1);
392    ShouldNotReachHere();
393  }
394#endif
395
396  // Check the stack guard pages and reenable them if necessary and there is
397  // enough space on the stack to do so.  Use fast exceptions only if the guard
398  // pages are enabled.
399  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
400  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
401
402  if (JvmtiExport::can_post_on_exceptions()) {
403    // To ensure correct notification of exception catches and throws
404    // we have to deoptimize here.  If we attempted to notify the
405    // catches and throws during this exception lookup it's possible
406    // we could deoptimize on the way out of the VM and end back in
407    // the interpreter at the throw site.  This would result in double
408    // notifications since the interpreter would also notify about
409    // these same catches and throws as it unwound the frame.
410
411    RegisterMap reg_map(thread);
412    frame stub_frame = thread->last_frame();
413    frame caller_frame = stub_frame.sender(&reg_map);
414
415    // We don't really want to deoptimize the nmethod itself since we
416    // can actually continue in the exception handler ourselves but I
417    // don't see an easy way to have the desired effect.
418    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
419    VMThread::execute(&deopt);
420
421    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
422  }
423
424  // ExceptionCache is used only for exceptions at call and not for implicit exceptions
425  if (guard_pages_enabled) {
426    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
427    if (fast_continuation != NULL) {
428      if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
429      return fast_continuation;
430    }
431  }
432
433  // If the stack guard pages are enabled, check whether there is a handler in
434  // the current method.  Otherwise (guard pages disabled), force an unwind and
435  // skip the exception cache update (i.e., just leave continuation==NULL).
436  address continuation = NULL;
437  if (guard_pages_enabled) {
438
439    // New exception handling mechanism can support inlined methods
440    // with exception handlers since the mappings are from PC to PC
441
442    // debugging support
443    // tracing
444    if (TraceExceptions) {
445      ttyLocker ttyl;
446      ResourceMark rm;
447      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
448                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
449    }
450    // for AbortVMOnException flag
451    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
452
453    // Clear out the exception oop and pc since looking up an
454    // exception handler can cause class loading, which might throw an
455    // exception and those fields are expected to be clear during
456    // normal bytecode execution.
457    thread->set_exception_oop(NULL);
458    thread->set_exception_pc(NULL);
459
460    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
461    // If an exception was thrown during exception dispatch, the exception oop may have changed
462    thread->set_exception_oop(exception());
463    thread->set_exception_pc(pc);
464
465    // the exception cache is used only by non-implicit exceptions
466    if (continuation == NULL) {
467      nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
468    } else {
469      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
470    }
471  }
472
473  thread->set_vm_result(exception());
474
475  if (TraceExceptions) {
476    ttyLocker ttyl;
477    ResourceMark rm;
478    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
479                  thread, continuation, pc);
480  }
481
482  return continuation;
483JRT_END
484
485// Enter this method from compiled code only if there is a Java exception handler
486// in the method handling the exception
487// We are entering here from exception stub. We don't do a normal VM transition here.
488// We do it in a helper. This is so we can check to see if the nmethod we have just
489// searched for an exception handler has been deoptimized in the meantime.
490address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
491  oop exception = thread->exception_oop();
492  address pc = thread->exception_pc();
493  // Still in Java mode
494  debug_only(ResetNoHandleMark rnhm);
495  nmethod* nm = NULL;
496  address continuation = NULL;
497  {
498    // Enter VM mode by calling the helper
499
500    ResetNoHandleMark rnhm;
501    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
502  }
503  // Back in JAVA, use no oops DON'T safepoint
504
505  // Now check to see if the nmethod we were called from is now deoptimized.
506  // If so we must return to the deopt blob and deoptimize the nmethod
507
508  if (nm != NULL && caller_is_deopted()) {
509    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
510  }
511
512  return continuation;
513}
514
515
516JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
517  NOT_PRODUCT(_throw_range_check_exception_count++;)
518  Events::log("throw_range_check");
519  char message[jintAsStringSize];
520  sprintf(message, "%d", index);
521  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
522JRT_END
523
524
525JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
526  NOT_PRODUCT(_throw_index_exception_count++;)
527  Events::log("throw_index");
528  char message[16];
529  sprintf(message, "%d", index);
530  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
531JRT_END
532
533
534JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
535  NOT_PRODUCT(_throw_div0_exception_count++;)
536  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
537JRT_END
538
539
540JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
541  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
542  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
543JRT_END
544
545
546JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
547  NOT_PRODUCT(_throw_class_cast_exception_count++;)
548  ResourceMark rm(thread);
549  char* message = SharedRuntime::generate_class_cast_message(
550    thread, Klass::cast(object->klass())->external_name());
551  SharedRuntime::throw_and_post_jvmti_exception(
552    thread, vmSymbols::java_lang_ClassCastException(), message);
553JRT_END
554
555
556JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
557  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
558  ResourceMark rm(thread);
559  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
560JRT_END
561
562
563JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
564  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
565  if (PrintBiasedLockingStatistics) {
566    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
567  }
568  Handle h_obj(thread, obj);
569  assert(h_obj()->is_oop(), "must be NULL or an object");
570  if (UseBiasedLocking) {
571    // Retry fast entry if bias is revoked to avoid unnecessary inflation
572    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
573  } else {
574    if (UseFastLocking) {
575      // When using fast locking, the compiled code has already tried the fast case
576      assert(obj == lock->obj(), "must match");
577      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
578    } else {
579      lock->set_obj(obj);
580      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
581    }
582  }
583JRT_END
584
585
586JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
587  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
588  assert(thread == JavaThread::current(), "threads must correspond");
589  assert(thread->last_Java_sp(), "last_Java_sp must be set");
590  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
591  EXCEPTION_MARK;
592
593  oop obj = lock->obj();
594  assert(obj->is_oop(), "must be NULL or an object");
595  if (UseFastLocking) {
596    // When using fast locking, the compiled code has already tried the fast case
597    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
598  } else {
599    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
600  }
601JRT_END
602
603
604static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
605  Bytecode_field* field_access = Bytecode_field_at(caller, bci);
606  // This can be static or non-static field access
607  Bytecodes::Code code       = field_access->code();
608
609  // We must load class, initialize class and resolvethe field
610  FieldAccessInfo result; // initialize class if needed
611  constantPoolHandle constants(THREAD, caller->constants());
612  LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
613  return result.klass()();
614}
615
616
617//
618// This routine patches sites where a class wasn't loaded or
619// initialized at the time the code was generated.  It handles
620// references to classes, fields and forcing of initialization.  Most
621// of the cases are straightforward and involving simply forcing
622// resolution of a class, rewriting the instruction stream with the
623// needed constant and replacing the call in this function with the
624// patched code.  The case for static field is more complicated since
625// the thread which is in the process of initializing a class can
626// access it's static fields but other threads can't so the code
627// either has to deoptimize when this case is detected or execute a
628// check that the current thread is the initializing thread.  The
629// current
630//
631// Patches basically look like this:
632//
633//
634// patch_site: jmp patch stub     ;; will be patched
635// continue:   ...
636//             ...
637//             ...
638//             ...
639//
640// They have a stub which looks like this:
641//
642//             ;; patch body
643//             movl <const>, reg           (for class constants)
644//        <or> movl [reg1 + <const>], reg  (for field offsets)
645//        <or> movl reg, [reg1 + <const>]  (for field offsets)
646//             <being_init offset> <bytes to copy> <bytes to skip>
647// patch_stub: call Runtime1::patch_code (through a runtime stub)
648//             jmp patch_site
649//
650//
651// A normal patch is done by rewriting the patch body, usually a move,
652// and then copying it into place over top of the jmp instruction
653// being careful to flush caches and doing it in an MP-safe way.  The
654// constants following the patch body are used to find various pieces
655// of the patch relative to the call site for Runtime1::patch_code.
656// The case for getstatic and putstatic is more complicated because
657// getstatic and putstatic have special semantics when executing while
658// the class is being initialized.  getstatic/putstatic on a class
659// which is being_initialized may be executed by the initializing
660// thread but other threads have to block when they execute it.  This
661// is accomplished in compiled code by executing a test of the current
662// thread against the initializing thread of the class.  It's emitted
663// as boilerplate in their stub which allows the patched code to be
664// executed before it's copied back into the main body of the nmethod.
665//
666// being_init: get_thread(<tmp reg>
667//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
668//             jne patch_stub
669//             movl [reg1 + <const>], reg  (for field offsets)  <or>
670//             movl reg, [reg1 + <const>]  (for field offsets)
671//             jmp continue
672//             <being_init offset> <bytes to copy> <bytes to skip>
673// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
674//             jmp patch_site
675//
676// If the class is being initialized the patch body is rewritten and
677// the patch site is rewritten to jump to being_init, instead of
678// patch_stub.  Whenever this code is executed it checks the current
679// thread against the intializing thread so other threads will enter
680// the runtime and end up blocked waiting the class to finish
681// initializing inside the calls to resolve_field below.  The
682// initializing class will continue on it's way.  Once the class is
683// fully_initialized, the intializing_thread of the class becomes
684// NULL, so the next thread to execute this code will fail the test,
685// call into patch_code and complete the patching process by copying
686// the patch body back into the main part of the nmethod and resume
687// executing.
688//
689//
690
691JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
692  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
693
694  ResourceMark rm(thread);
695  RegisterMap reg_map(thread, false);
696  frame runtime_frame = thread->last_frame();
697  frame caller_frame = runtime_frame.sender(&reg_map);
698
699  // last java frame on stack
700  vframeStream vfst(thread, true);
701  assert(!vfst.at_end(), "Java frame must exist");
702
703  methodHandle caller_method(THREAD, vfst.method());
704  // Note that caller_method->code() may not be same as caller_code because of OSR's
705  // Note also that in the presence of inlining it is not guaranteed
706  // that caller_method() == caller_code->method()
707
708
709  int bci = vfst.bci();
710
711  Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
712
713  Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
714
715#ifndef PRODUCT
716  // this is used by assertions in the access_field_patching_id
717  BasicType patch_field_type = T_ILLEGAL;
718#endif // PRODUCT
719  bool deoptimize_for_volatile = false;
720  int patch_field_offset = -1;
721  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
722  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
723  if (stub_id == Runtime1::access_field_patching_id) {
724
725    Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
726    FieldAccessInfo result; // initialize class if needed
727    Bytecodes::Code code = field_access->code();
728    constantPoolHandle constants(THREAD, caller_method->constants());
729    LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
730    patch_field_offset = result.field_offset();
731
732    // If we're patching a field which is volatile then at compile it
733    // must not have been know to be volatile, so the generated code
734    // isn't correct for a volatile reference.  The nmethod has to be
735    // deoptimized so that the code can be regenerated correctly.
736    // This check is only needed for access_field_patching since this
737    // is the path for patching field offsets.  load_klass is only
738    // used for patching references to oops which don't need special
739    // handling in the volatile case.
740    deoptimize_for_volatile = result.access_flags().is_volatile();
741
742#ifndef PRODUCT
743    patch_field_type = result.field_type();
744#endif
745  } else if (stub_id == Runtime1::load_klass_patching_id) {
746    oop k;
747    switch (code) {
748      case Bytecodes::_putstatic:
749      case Bytecodes::_getstatic:
750        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
751          // Save a reference to the class that has to be checked for initialization
752          init_klass = KlassHandle(THREAD, klass);
753          k = klass;
754        }
755        break;
756      case Bytecodes::_new:
757        { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
758          k = caller_method->constants()->klass_at(bnew->index(), CHECK);
759        }
760        break;
761      case Bytecodes::_multianewarray:
762        { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
763          k = caller_method->constants()->klass_at(mna->index(), CHECK);
764        }
765        break;
766      case Bytecodes::_instanceof:
767        { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
768          k = caller_method->constants()->klass_at(io->index(), CHECK);
769        }
770        break;
771      case Bytecodes::_checkcast:
772        { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
773          k = caller_method->constants()->klass_at(cc->index(), CHECK);
774        }
775        break;
776      case Bytecodes::_anewarray:
777        { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
778          klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
779          k = Klass::cast(ek)->array_klass(CHECK);
780        }
781        break;
782      case Bytecodes::_ldc:
783      case Bytecodes::_ldc_w:
784        {
785          Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
786          k = cc->resolve_constant(CHECK);
787          assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
788        }
789        break;
790      default: Unimplemented();
791    }
792    // convert to handle
793    load_klass = Handle(THREAD, k);
794  } else {
795    ShouldNotReachHere();
796  }
797
798  if (deoptimize_for_volatile) {
799    // At compile time we assumed the field wasn't volatile but after
800    // loading it turns out it was volatile so we have to throw the
801    // compiled code out and let it be regenerated.
802    if (TracePatching) {
803      tty->print_cr("Deoptimizing for patching volatile field reference");
804    }
805    // It's possible the nmethod was invalidated in the last
806    // safepoint, but if it's still alive then make it not_entrant.
807    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
808    if (nm != NULL) {
809      nm->make_not_entrant();
810    }
811
812    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
813    VMThread::execute(&deopt);
814
815    // Return to the now deoptimized frame.
816  }
817
818  // If we are patching in a non-perm oop, make sure the nmethod
819  // is on the right list.
820  if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
821    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
822    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
823    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
824    if (!nm->on_scavenge_root_list())
825      CodeCache::add_scavenge_root_nmethod(nm);
826  }
827
828  // Now copy code back
829
830  {
831    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
832    //
833    // Deoptimization may have happened while we waited for the lock.
834    // In that case we don't bother to do any patching we just return
835    // and let the deopt happen
836    if (!caller_is_deopted()) {
837      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
838      address instr_pc = jump->jump_destination();
839      NativeInstruction* ni = nativeInstruction_at(instr_pc);
840      if (ni->is_jump() ) {
841        // the jump has not been patched yet
842        // The jump destination is slow case and therefore not part of the stubs
843        // (stubs are only for StaticCalls)
844
845        // format of buffer
846        //    ....
847        //    instr byte 0     <-- copy_buff
848        //    instr byte 1
849        //    ..
850        //    instr byte n-1
851        //      n
852        //    ....             <-- call destination
853
854        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
855        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
856        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
857        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
858        address copy_buff = stub_location - *byte_skip - *byte_count;
859        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
860        if (TracePatching) {
861          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
862                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
863          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
864          assert(caller_code != NULL, "nmethod not found");
865
866          // NOTE we use pc() not original_pc() because we already know they are
867          // identical otherwise we'd have never entered this block of code
868
869          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
870          assert(map != NULL, "null check");
871          map->print();
872          tty->cr();
873
874          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
875        }
876        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
877        bool do_patch = true;
878        if (stub_id == Runtime1::access_field_patching_id) {
879          // The offset may not be correct if the class was not loaded at code generation time.
880          // Set it now.
881          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
882          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
883          assert(patch_field_offset >= 0, "illegal offset");
884          n_move->add_offset_in_bytes(patch_field_offset);
885        } else if (stub_id == Runtime1::load_klass_patching_id) {
886          // If a getstatic or putstatic is referencing a klass which
887          // isn't fully initialized, the patch body isn't copied into
888          // place until initialization is complete.  In this case the
889          // patch site is setup so that any threads besides the
890          // initializing thread are forced to come into the VM and
891          // block.
892          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
893                     instanceKlass::cast(init_klass())->is_initialized();
894          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
895          if (jump->jump_destination() == being_initialized_entry) {
896            assert(do_patch == true, "initialization must be complete at this point");
897          } else {
898            // patch the instruction <move reg, klass>
899            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
900
901            assert(n_copy->data() == 0 ||
902                   n_copy->data() == (int)Universe::non_oop_word(),
903                   "illegal init value");
904            assert(load_klass() != NULL, "klass not set");
905            n_copy->set_data((intx) (load_klass()));
906
907            if (TracePatching) {
908              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
909            }
910
911#if defined(SPARC) || defined(PPC)
912            // Update the oop location in the nmethod with the proper
913            // oop.  When the code was generated, a NULL was stuffed
914            // in the oop table and that table needs to be update to
915            // have the right value.  On intel the value is kept
916            // directly in the instruction instead of in the oop
917            // table, so set_data above effectively updated the value.
918            nmethod* nm = CodeCache::find_nmethod(instr_pc);
919            assert(nm != NULL, "invalid nmethod_pc");
920            RelocIterator oops(nm, copy_buff, copy_buff + 1);
921            bool found = false;
922            while (oops.next() && !found) {
923              if (oops.type() == relocInfo::oop_type) {
924                oop_Relocation* r = oops.oop_reloc();
925                oop* oop_adr = r->oop_addr();
926                *oop_adr = load_klass();
927                r->fix_oop_relocation();
928                found = true;
929              }
930            }
931            assert(found, "the oop must exist!");
932#endif
933
934          }
935        } else {
936          ShouldNotReachHere();
937        }
938        if (do_patch) {
939          // replace instructions
940          // first replace the tail, then the call
941#ifdef ARM
942          if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
943            copy_buff -= *byte_count;
944            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
945            n_copy2->set_data((intx) (load_klass()), instr_pc);
946          }
947#endif
948
949          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
950            address ptr = copy_buff + i;
951            int a_byte = (*ptr) & 0xFF;
952            address dst = instr_pc + i;
953            *(unsigned char*)dst = (unsigned char) a_byte;
954          }
955          ICache::invalidate_range(instr_pc, *byte_count);
956          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
957
958          if (stub_id == Runtime1::load_klass_patching_id) {
959            // update relocInfo to oop
960            nmethod* nm = CodeCache::find_nmethod(instr_pc);
961            assert(nm != NULL, "invalid nmethod_pc");
962
963            // The old patch site is now a move instruction so update
964            // the reloc info so that it will get updated during
965            // future GCs.
966            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
967            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
968                                                     relocInfo::none, relocInfo::oop_type);
969#ifdef SPARC
970            // Sparc takes two relocations for an oop so update the second one.
971            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
972            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
973            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
974                                                     relocInfo::none, relocInfo::oop_type);
975#endif
976#ifdef PPC
977          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
978            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
979            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
980          }
981#endif
982          }
983
984        } else {
985          ICache::invalidate_range(copy_buff, *byte_count);
986          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
987        }
988      }
989    }
990  }
991JRT_END
992
993//
994// Entry point for compiled code. We want to patch a nmethod.
995// We don't do a normal VM transition here because we want to
996// know after the patching is complete and any safepoint(s) are taken
997// if the calling nmethod was deoptimized. We do this by calling a
998// helper method which does the normal VM transition and when it
999// completes we can check for deoptimization. This simplifies the
1000// assembly code in the cpu directories.
1001//
1002int Runtime1::move_klass_patching(JavaThread* thread) {
1003//
1004// NOTE: we are still in Java
1005//
1006  Thread* THREAD = thread;
1007  debug_only(NoHandleMark nhm;)
1008  {
1009    // Enter VM mode
1010
1011    ResetNoHandleMark rnhm;
1012    patch_code(thread, load_klass_patching_id);
1013  }
1014  // Back in JAVA, use no oops DON'T safepoint
1015
1016  // Return true if calling code is deoptimized
1017
1018  return caller_is_deopted();
1019}
1020
1021//
1022// Entry point for compiled code. We want to patch a nmethod.
1023// We don't do a normal VM transition here because we want to
1024// know after the patching is complete and any safepoint(s) are taken
1025// if the calling nmethod was deoptimized. We do this by calling a
1026// helper method which does the normal VM transition and when it
1027// completes we can check for deoptimization. This simplifies the
1028// assembly code in the cpu directories.
1029//
1030
1031int Runtime1::access_field_patching(JavaThread* thread) {
1032//
1033// NOTE: we are still in Java
1034//
1035  Thread* THREAD = thread;
1036  debug_only(NoHandleMark nhm;)
1037  {
1038    // Enter VM mode
1039
1040    ResetNoHandleMark rnhm;
1041    patch_code(thread, access_field_patching_id);
1042  }
1043  // Back in JAVA, use no oops DON'T safepoint
1044
1045  // Return true if calling code is deoptimized
1046
1047  return caller_is_deopted();
1048JRT_END
1049
1050
1051JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1052  // for now we just print out the block id
1053  tty->print("%d ", block_id);
1054JRT_END
1055
1056
1057// Array copy return codes.
1058enum {
1059  ac_failed = -1, // arraycopy failed
1060  ac_ok = 0       // arraycopy succeeded
1061};
1062
1063
1064// Below length is the # elements copied.
1065template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1066                                          oopDesc* dst, T* dst_addr,
1067                                          int length) {
1068
1069  // For performance reasons, we assume we are using a card marking write
1070  // barrier. The assert will fail if this is not the case.
1071  // Note that we use the non-virtual inlineable variant of write_ref_array.
1072  BarrierSet* bs = Universe::heap()->barrier_set();
1073  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1074  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1075  if (src == dst) {
1076    // same object, no check
1077    bs->write_ref_array_pre(dst_addr, length);
1078    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1079    bs->write_ref_array((HeapWord*)dst_addr, length);
1080    return ac_ok;
1081  } else {
1082    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1083    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1084    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1085      // Elements are guaranteed to be subtypes, so no check necessary
1086      bs->write_ref_array_pre(dst_addr, length);
1087      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1088      bs->write_ref_array((HeapWord*)dst_addr, length);
1089      return ac_ok;
1090    }
1091  }
1092  return ac_failed;
1093}
1094
1095// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1096// and we did not copy anything
1097JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1098#ifndef PRODUCT
1099  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1100#endif
1101
1102  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1103  if (!dst->is_array() || !src->is_array()) return ac_failed;
1104  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1105  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1106
1107  if (length == 0) return ac_ok;
1108  if (src->is_typeArray()) {
1109    const klassOop klass_oop = src->klass();
1110    if (klass_oop != dst->klass()) return ac_failed;
1111    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1112    const int l2es = klass->log2_element_size();
1113    const int ihs = klass->array_header_in_bytes() / wordSize;
1114    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1115    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1116    // Potential problem: memmove is not guaranteed to be word atomic
1117    // Revisit in Merlin
1118    memmove(dst_addr, src_addr, length << l2es);
1119    return ac_ok;
1120  } else if (src->is_objArray() && dst->is_objArray()) {
1121    if (UseCompressedOops) {  // will need for tiered
1122      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1123      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1124      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1125    } else {
1126      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1127      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1128      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1129    }
1130  }
1131  return ac_failed;
1132JRT_END
1133
1134
1135JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1136#ifndef PRODUCT
1137  _primitive_arraycopy_cnt++;
1138#endif
1139
1140  if (length == 0) return;
1141  // Not guaranteed to be word atomic, but that doesn't matter
1142  // for anything but an oop array, which is covered by oop_arraycopy.
1143  Copy::conjoint_jbytes(src, dst, length);
1144JRT_END
1145
1146JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1147#ifndef PRODUCT
1148  _oop_arraycopy_cnt++;
1149#endif
1150
1151  if (num == 0) return;
1152  BarrierSet* bs = Universe::heap()->barrier_set();
1153  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1154  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1155  if (UseCompressedOops) {
1156    bs->write_ref_array_pre((narrowOop*)dst, num);
1157  } else {
1158    bs->write_ref_array_pre((oop*)dst, num);
1159  }
1160  Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1161  bs->write_ref_array(dst, num);
1162JRT_END
1163
1164
1165#ifndef PRODUCT
1166void Runtime1::print_statistics() {
1167  tty->print_cr("C1 Runtime statistics:");
1168  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1169  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1170  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1171  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1172  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1173  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1174  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1175  tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
1176  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1177
1178  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1179  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1180  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1181  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1182  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1183  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1184  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1185
1186  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1187  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1188  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1189  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1190  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1191  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1192  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1193  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1194
1195  SharedRuntime::print_ic_miss_histogram();
1196  tty->cr();
1197}
1198#endif // PRODUCT
1199