c1_LIRGenerator.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRGenerator.cpp.incl"
27
28#ifdef ASSERT
29#define __ gen()->lir(__FILE__, __LINE__)->
30#else
31#define __ gen()->lir()->
32#endif
33
34
35void PhiResolverState::reset(int max_vregs) {
36  // Initialize array sizes
37  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
38  _virtual_operands.trunc_to(0);
39  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
40  _other_operands.trunc_to(0);
41  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
42  _vreg_table.trunc_to(0);
43}
44
45
46
47//--------------------------------------------------------------
48// PhiResolver
49
50// Resolves cycles:
51//
52//  r1 := r2  becomes  temp := r1
53//  r2 := r1           r1 := r2
54//                     r2 := temp
55// and orders moves:
56//
57//  r2 := r3  becomes  r1 := r2
58//  r1 := r2           r2 := r3
59
60PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
61 : _gen(gen)
62 , _state(gen->resolver_state())
63 , _temp(LIR_OprFact::illegalOpr)
64{
65  // reinitialize the shared state arrays
66  _state.reset(max_vregs);
67}
68
69
70void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
71  assert(src->is_valid(), "");
72  assert(dest->is_valid(), "");
73  __ move(src, dest);
74}
75
76
77void PhiResolver::move_temp_to(LIR_Opr dest) {
78  assert(_temp->is_valid(), "");
79  emit_move(_temp, dest);
80  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
81}
82
83
84void PhiResolver::move_to_temp(LIR_Opr src) {
85  assert(_temp->is_illegal(), "");
86  _temp = _gen->new_register(src->type());
87  emit_move(src, _temp);
88}
89
90
91// Traverse assignment graph in depth first order and generate moves in post order
92// ie. two assignments: b := c, a := b start with node c:
93// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
94// Generates moves in this order: move b to a and move c to b
95// ie. cycle a := b, b := a start with node a
96// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
97// Generates moves in this order: move b to temp, move a to b, move temp to a
98void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
99  if (!dest->visited()) {
100    dest->set_visited();
101    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
102      move(dest, dest->destination_at(i));
103    }
104  } else if (!dest->start_node()) {
105    // cylce in graph detected
106    assert(_loop == NULL, "only one loop valid!");
107    _loop = dest;
108    move_to_temp(src->operand());
109    return;
110  } // else dest is a start node
111
112  if (!dest->assigned()) {
113    if (_loop == dest) {
114      move_temp_to(dest->operand());
115      dest->set_assigned();
116    } else if (src != NULL) {
117      emit_move(src->operand(), dest->operand());
118      dest->set_assigned();
119    }
120  }
121}
122
123
124PhiResolver::~PhiResolver() {
125  int i;
126  // resolve any cycles in moves from and to virtual registers
127  for (i = virtual_operands().length() - 1; i >= 0; i --) {
128    ResolveNode* node = virtual_operands()[i];
129    if (!node->visited()) {
130      _loop = NULL;
131      move(NULL, node);
132      node->set_start_node();
133      assert(_temp->is_illegal(), "move_temp_to() call missing");
134    }
135  }
136
137  // generate move for move from non virtual register to abitrary destination
138  for (i = other_operands().length() - 1; i >= 0; i --) {
139    ResolveNode* node = other_operands()[i];
140    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
141      emit_move(node->operand(), node->destination_at(j)->operand());
142    }
143  }
144}
145
146
147ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
148  ResolveNode* node;
149  if (opr->is_virtual()) {
150    int vreg_num = opr->vreg_number();
151    node = vreg_table().at_grow(vreg_num, NULL);
152    assert(node == NULL || node->operand() == opr, "");
153    if (node == NULL) {
154      node = new ResolveNode(opr);
155      vreg_table()[vreg_num] = node;
156    }
157    // Make sure that all virtual operands show up in the list when
158    // they are used as the source of a move.
159    if (source && !virtual_operands().contains(node)) {
160      virtual_operands().append(node);
161    }
162  } else {
163    assert(source, "");
164    node = new ResolveNode(opr);
165    other_operands().append(node);
166  }
167  return node;
168}
169
170
171void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
172  assert(dest->is_virtual(), "");
173  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
174  assert(src->is_valid(), "");
175  assert(dest->is_valid(), "");
176  ResolveNode* source = source_node(src);
177  source->append(destination_node(dest));
178}
179
180
181//--------------------------------------------------------------
182// LIRItem
183
184void LIRItem::set_result(LIR_Opr opr) {
185  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
186  value()->set_operand(opr);
187
188  if (opr->is_virtual()) {
189    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
190  }
191
192  _result = opr;
193}
194
195void LIRItem::load_item() {
196  if (result()->is_illegal()) {
197    // update the items result
198    _result = value()->operand();
199  }
200  if (!result()->is_register()) {
201    LIR_Opr reg = _gen->new_register(value()->type());
202    __ move(result(), reg);
203    if (result()->is_constant()) {
204      _result = reg;
205    } else {
206      set_result(reg);
207    }
208  }
209}
210
211
212void LIRItem::load_for_store(BasicType type) {
213  if (_gen->can_store_as_constant(value(), type)) {
214    _result = value()->operand();
215    if (!_result->is_constant()) {
216      _result = LIR_OprFact::value_type(value()->type());
217    }
218  } else if (type == T_BYTE || type == T_BOOLEAN) {
219    load_byte_item();
220  } else {
221    load_item();
222  }
223}
224
225void LIRItem::load_item_force(LIR_Opr reg) {
226  LIR_Opr r = result();
227  if (r != reg) {
228    if (r->type() != reg->type()) {
229      // moves between different types need an intervening spill slot
230      LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
231      __ move(tmp, reg);
232    } else {
233      __ move(r, reg);
234    }
235    _result = reg;
236  }
237}
238
239ciObject* LIRItem::get_jobject_constant() const {
240  ObjectType* oc = type()->as_ObjectType();
241  if (oc) {
242    return oc->constant_value();
243  }
244  return NULL;
245}
246
247
248jint LIRItem::get_jint_constant() const {
249  assert(is_constant() && value() != NULL, "");
250  assert(type()->as_IntConstant() != NULL, "type check");
251  return type()->as_IntConstant()->value();
252}
253
254
255jint LIRItem::get_address_constant() const {
256  assert(is_constant() && value() != NULL, "");
257  assert(type()->as_AddressConstant() != NULL, "type check");
258  return type()->as_AddressConstant()->value();
259}
260
261
262jfloat LIRItem::get_jfloat_constant() const {
263  assert(is_constant() && value() != NULL, "");
264  assert(type()->as_FloatConstant() != NULL, "type check");
265  return type()->as_FloatConstant()->value();
266}
267
268
269jdouble LIRItem::get_jdouble_constant() const {
270  assert(is_constant() && value() != NULL, "");
271  assert(type()->as_DoubleConstant() != NULL, "type check");
272  return type()->as_DoubleConstant()->value();
273}
274
275
276jlong LIRItem::get_jlong_constant() const {
277  assert(is_constant() && value() != NULL, "");
278  assert(type()->as_LongConstant() != NULL, "type check");
279  return type()->as_LongConstant()->value();
280}
281
282
283
284//--------------------------------------------------------------
285
286
287void LIRGenerator::init() {
288  _bs = Universe::heap()->barrier_set();
289}
290
291
292void LIRGenerator::block_do_prolog(BlockBegin* block) {
293#ifndef PRODUCT
294  if (PrintIRWithLIR) {
295    block->print();
296  }
297#endif
298
299  // set up the list of LIR instructions
300  assert(block->lir() == NULL, "LIR list already computed for this block");
301  _lir = new LIR_List(compilation(), block);
302  block->set_lir(_lir);
303
304  __ branch_destination(block->label());
305
306  if (LIRTraceExecution &&
307      Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
308      !block->is_set(BlockBegin::exception_entry_flag)) {
309    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
310    trace_block_entry(block);
311  }
312}
313
314
315void LIRGenerator::block_do_epilog(BlockBegin* block) {
316#ifndef PRODUCT
317  if (PrintIRWithLIR) {
318    tty->cr();
319  }
320#endif
321
322  // LIR_Opr for unpinned constants shouldn't be referenced by other
323  // blocks so clear them out after processing the block.
324  for (int i = 0; i < _unpinned_constants.length(); i++) {
325    _unpinned_constants.at(i)->clear_operand();
326  }
327  _unpinned_constants.trunc_to(0);
328
329  // clear our any registers for other local constants
330  _constants.trunc_to(0);
331  _reg_for_constants.trunc_to(0);
332}
333
334
335void LIRGenerator::block_do(BlockBegin* block) {
336  CHECK_BAILOUT();
337
338  block_do_prolog(block);
339  set_block(block);
340
341  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
342    if (instr->is_pinned()) do_root(instr);
343  }
344
345  set_block(NULL);
346  block_do_epilog(block);
347}
348
349
350//-------------------------LIRGenerator-----------------------------
351
352// This is where the tree-walk starts; instr must be root;
353void LIRGenerator::do_root(Value instr) {
354  CHECK_BAILOUT();
355
356  InstructionMark im(compilation(), instr);
357
358  assert(instr->is_pinned(), "use only with roots");
359  assert(instr->subst() == instr, "shouldn't have missed substitution");
360
361  instr->visit(this);
362
363  assert(!instr->has_uses() || instr->operand()->is_valid() ||
364         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
365}
366
367
368// This is called for each node in tree; the walk stops if a root is reached
369void LIRGenerator::walk(Value instr) {
370  InstructionMark im(compilation(), instr);
371  //stop walk when encounter a root
372  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
373    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
374  } else {
375    assert(instr->subst() == instr, "shouldn't have missed substitution");
376    instr->visit(this);
377    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
378  }
379}
380
381
382CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
383  int index;
384  Value value;
385  for_each_stack_value(state, index, value) {
386    assert(value->subst() == value, "missed substition");
387    if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
388      walk(value);
389      assert(value->operand()->is_valid(), "must be evaluated now");
390    }
391  }
392  ValueStack* s = state;
393  int bci = x->bci();
394  for_each_state(s) {
395    IRScope* scope = s->scope();
396    ciMethod* method = scope->method();
397
398    MethodLivenessResult liveness = method->liveness_at_bci(bci);
399    if (bci == SynchronizationEntryBCI) {
400      if (x->as_ExceptionObject() || x->as_Throw()) {
401        // all locals are dead on exit from the synthetic unlocker
402        liveness.clear();
403      } else {
404        assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
405      }
406    }
407    if (!liveness.is_valid()) {
408      // Degenerate or breakpointed method.
409      bailout("Degenerate or breakpointed method");
410    } else {
411      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
412      for_each_local_value(s, index, value) {
413        assert(value->subst() == value, "missed substition");
414        if (liveness.at(index) && !value->type()->is_illegal()) {
415          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
416            walk(value);
417            assert(value->operand()->is_valid(), "must be evaluated now");
418          }
419        } else {
420          // NULL out this local so that linear scan can assume that all non-NULL values are live.
421          s->invalidate_local(index);
422        }
423      }
424    }
425    bci = scope->caller_bci();
426  }
427
428  return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
429}
430
431
432CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
433  return state_for(x, x->lock_stack());
434}
435
436
437void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
438  if (!obj->is_loaded() || PatchALot) {
439    assert(info != NULL, "info must be set if class is not loaded");
440    __ oop2reg_patch(NULL, r, info);
441  } else {
442    // no patching needed
443    __ oop2reg(obj->constant_encoding(), r);
444  }
445}
446
447
448void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
449                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
450  CodeStub* stub = new RangeCheckStub(range_check_info, index);
451  if (index->is_constant()) {
452    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
453                index->as_jint(), null_check_info);
454    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
455  } else {
456    cmp_reg_mem(lir_cond_aboveEqual, index, array,
457                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
458    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
459  }
460}
461
462
463void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
464  CodeStub* stub = new RangeCheckStub(info, index, true);
465  if (index->is_constant()) {
466    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
467    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
468  } else {
469    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
470                java_nio_Buffer::limit_offset(), T_INT, info);
471    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
472  }
473  __ move(index, result);
474}
475
476
477// increment a counter returning the incremented value
478LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
479  LIR_Address* counter = new LIR_Address(base, offset, T_INT);
480  LIR_Opr result = new_register(T_INT);
481  __ load(counter, result);
482  __ add(result, LIR_OprFact::intConst(increment), result);
483  __ store(result, counter);
484  return result;
485}
486
487
488void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
489  LIR_Opr result_op = result;
490  LIR_Opr left_op   = left;
491  LIR_Opr right_op  = right;
492
493  if (TwoOperandLIRForm && left_op != result_op) {
494    assert(right_op != result_op, "malformed");
495    __ move(left_op, result_op);
496    left_op = result_op;
497  }
498
499  switch(code) {
500    case Bytecodes::_dadd:
501    case Bytecodes::_fadd:
502    case Bytecodes::_ladd:
503    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
504    case Bytecodes::_fmul:
505    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
506
507    case Bytecodes::_dmul:
508      {
509        if (is_strictfp) {
510          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
511        } else {
512          __ mul(left_op, right_op, result_op); break;
513        }
514      }
515      break;
516
517    case Bytecodes::_imul:
518      {
519        bool    did_strength_reduce = false;
520
521        if (right->is_constant()) {
522          int c = right->as_jint();
523          if (is_power_of_2(c)) {
524            // do not need tmp here
525            __ shift_left(left_op, exact_log2(c), result_op);
526            did_strength_reduce = true;
527          } else {
528            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
529          }
530        }
531        // we couldn't strength reduce so just emit the multiply
532        if (!did_strength_reduce) {
533          __ mul(left_op, right_op, result_op);
534        }
535      }
536      break;
537
538    case Bytecodes::_dsub:
539    case Bytecodes::_fsub:
540    case Bytecodes::_lsub:
541    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
542
543    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
544    // ldiv and lrem are implemented with a direct runtime call
545
546    case Bytecodes::_ddiv:
547      {
548        if (is_strictfp) {
549          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
550        } else {
551          __ div (left_op, right_op, result_op); break;
552        }
553      }
554      break;
555
556    case Bytecodes::_drem:
557    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
558
559    default: ShouldNotReachHere();
560  }
561}
562
563
564void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
565  arithmetic_op(code, result, left, right, false, tmp);
566}
567
568
569void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
570  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
571}
572
573
574void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
575  arithmetic_op(code, result, left, right, is_strictfp, tmp);
576}
577
578
579void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
580  if (TwoOperandLIRForm && value != result_op) {
581    assert(count != result_op, "malformed");
582    __ move(value, result_op);
583    value = result_op;
584  }
585
586  assert(count->is_constant() || count->is_register(), "must be");
587  switch(code) {
588  case Bytecodes::_ishl:
589  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
590  case Bytecodes::_ishr:
591  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
592  case Bytecodes::_iushr:
593  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
594  default: ShouldNotReachHere();
595  }
596}
597
598
599void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
600  if (TwoOperandLIRForm && left_op != result_op) {
601    assert(right_op != result_op, "malformed");
602    __ move(left_op, result_op);
603    left_op = result_op;
604  }
605
606  switch(code) {
607    case Bytecodes::_iand:
608    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
609
610    case Bytecodes::_ior:
611    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
612
613    case Bytecodes::_ixor:
614    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
615
616    default: ShouldNotReachHere();
617  }
618}
619
620
621void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
622  if (!GenerateSynchronizationCode) return;
623  // for slow path, use debug info for state after successful locking
624  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
625  __ load_stack_address_monitor(monitor_no, lock);
626  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
627  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
628}
629
630
631void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
632  if (!GenerateSynchronizationCode) return;
633  // setup registers
634  LIR_Opr hdr = lock;
635  lock = new_hdr;
636  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
637  __ load_stack_address_monitor(monitor_no, lock);
638  __ unlock_object(hdr, object, lock, slow_path);
639}
640
641
642void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
643  jobject2reg_with_patching(klass_reg, klass, info);
644  // If klass is not loaded we do not know if the klass has finalizers:
645  if (UseFastNewInstance && klass->is_loaded()
646      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
647
648    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
649
650    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
651
652    assert(klass->is_loaded(), "must be loaded");
653    // allocate space for instance
654    assert(klass->size_helper() >= 0, "illegal instance size");
655    const int instance_size = align_object_size(klass->size_helper());
656    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
657                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
658  } else {
659    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
660    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
661    __ branch_destination(slow_path->continuation());
662  }
663}
664
665
666static bool is_constant_zero(Instruction* inst) {
667  IntConstant* c = inst->type()->as_IntConstant();
668  if (c) {
669    return (c->value() == 0);
670  }
671  return false;
672}
673
674
675static bool positive_constant(Instruction* inst) {
676  IntConstant* c = inst->type()->as_IntConstant();
677  if (c) {
678    return (c->value() >= 0);
679  }
680  return false;
681}
682
683
684static ciArrayKlass* as_array_klass(ciType* type) {
685  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
686    return (ciArrayKlass*)type;
687  } else {
688    return NULL;
689  }
690}
691
692void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
693  Instruction* src     = x->argument_at(0);
694  Instruction* src_pos = x->argument_at(1);
695  Instruction* dst     = x->argument_at(2);
696  Instruction* dst_pos = x->argument_at(3);
697  Instruction* length  = x->argument_at(4);
698
699  // first try to identify the likely type of the arrays involved
700  ciArrayKlass* expected_type = NULL;
701  bool is_exact = false;
702  {
703    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
704    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
705    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
706    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
707    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
708      // the types exactly match so the type is fully known
709      is_exact = true;
710      expected_type = src_exact_type;
711    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
712      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
713      ciArrayKlass* src_type = NULL;
714      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
715        src_type = (ciArrayKlass*) src_exact_type;
716      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
717        src_type = (ciArrayKlass*) src_declared_type;
718      }
719      if (src_type != NULL) {
720        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
721          is_exact = true;
722          expected_type = dst_type;
723        }
724      }
725    }
726    // at least pass along a good guess
727    if (expected_type == NULL) expected_type = dst_exact_type;
728    if (expected_type == NULL) expected_type = src_declared_type;
729    if (expected_type == NULL) expected_type = dst_declared_type;
730  }
731
732  // if a probable array type has been identified, figure out if any
733  // of the required checks for a fast case can be elided.
734  int flags = LIR_OpArrayCopy::all_flags;
735  if (expected_type != NULL) {
736    // try to skip null checks
737    if (src->as_NewArray() != NULL)
738      flags &= ~LIR_OpArrayCopy::src_null_check;
739    if (dst->as_NewArray() != NULL)
740      flags &= ~LIR_OpArrayCopy::dst_null_check;
741
742    // check from incoming constant values
743    if (positive_constant(src_pos))
744      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
745    if (positive_constant(dst_pos))
746      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
747    if (positive_constant(length))
748      flags &= ~LIR_OpArrayCopy::length_positive_check;
749
750    // see if the range check can be elided, which might also imply
751    // that src or dst is non-null.
752    ArrayLength* al = length->as_ArrayLength();
753    if (al != NULL) {
754      if (al->array() == src) {
755        // it's the length of the source array
756        flags &= ~LIR_OpArrayCopy::length_positive_check;
757        flags &= ~LIR_OpArrayCopy::src_null_check;
758        if (is_constant_zero(src_pos))
759          flags &= ~LIR_OpArrayCopy::src_range_check;
760      }
761      if (al->array() == dst) {
762        // it's the length of the destination array
763        flags &= ~LIR_OpArrayCopy::length_positive_check;
764        flags &= ~LIR_OpArrayCopy::dst_null_check;
765        if (is_constant_zero(dst_pos))
766          flags &= ~LIR_OpArrayCopy::dst_range_check;
767      }
768    }
769    if (is_exact) {
770      flags &= ~LIR_OpArrayCopy::type_check;
771    }
772  }
773
774  if (src == dst) {
775    // moving within a single array so no type checks are needed
776    if (flags & LIR_OpArrayCopy::type_check) {
777      flags &= ~LIR_OpArrayCopy::type_check;
778    }
779  }
780  *flagsp = flags;
781  *expected_typep = (ciArrayKlass*)expected_type;
782}
783
784
785LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
786  assert(opr->is_register(), "why spill if item is not register?");
787
788  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
789    LIR_Opr result = new_register(T_FLOAT);
790    set_vreg_flag(result, must_start_in_memory);
791    assert(opr->is_register(), "only a register can be spilled");
792    assert(opr->value_type()->is_float(), "rounding only for floats available");
793    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
794    return result;
795  }
796  return opr;
797}
798
799
800LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
801  assert(type2size[t] == type2size[value->type()], "size mismatch");
802  if (!value->is_register()) {
803    // force into a register
804    LIR_Opr r = new_register(value->type());
805    __ move(value, r);
806    value = r;
807  }
808
809  // create a spill location
810  LIR_Opr tmp = new_register(t);
811  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
812
813  // move from register to spill
814  __ move(value, tmp);
815  return tmp;
816}
817
818
819void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
820  if (if_instr->should_profile()) {
821    ciMethod* method = if_instr->profiled_method();
822    assert(method != NULL, "method should be set if branch is profiled");
823    ciMethodData* md = method->method_data();
824    if (md == NULL) {
825      bailout("out of memory building methodDataOop");
826      return;
827    }
828    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
829    assert(data != NULL, "must have profiling data");
830    assert(data->is_BranchData(), "need BranchData for two-way branches");
831    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
832    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
833    LIR_Opr md_reg = new_register(T_OBJECT);
834    __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
835    LIR_Opr data_offset_reg = new_register(T_INT);
836    __ cmove(lir_cond(cond),
837             LIR_OprFact::intConst(taken_count_offset),
838             LIR_OprFact::intConst(not_taken_count_offset),
839             data_offset_reg);
840    LIR_Opr data_reg = new_register(T_INT);
841    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
842    __ move(LIR_OprFact::address(data_addr), data_reg);
843    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
844    // Use leal instead of add to avoid destroying condition codes on x86
845    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
846    __ move(data_reg, LIR_OprFact::address(data_addr));
847  }
848}
849
850
851// Phi technique:
852// This is about passing live values from one basic block to the other.
853// In code generated with Java it is rather rare that more than one
854// value is on the stack from one basic block to the other.
855// We optimize our technique for efficient passing of one value
856// (of type long, int, double..) but it can be extended.
857// When entering or leaving a basic block, all registers and all spill
858// slots are release and empty. We use the released registers
859// and spill slots to pass the live values from one block
860// to the other. The topmost value, i.e., the value on TOS of expression
861// stack is passed in registers. All other values are stored in spilling
862// area. Every Phi has an index which designates its spill slot
863// At exit of a basic block, we fill the register(s) and spill slots.
864// At entry of a basic block, the block_prolog sets up the content of phi nodes
865// and locks necessary registers and spilling slots.
866
867
868// move current value to referenced phi function
869void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
870  Phi* phi = sux_val->as_Phi();
871  // cur_val can be null without phi being null in conjunction with inlining
872  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
873    LIR_Opr operand = cur_val->operand();
874    if (cur_val->operand()->is_illegal()) {
875      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
876             "these can be produced lazily");
877      operand = operand_for_instruction(cur_val);
878    }
879    resolver->move(operand, operand_for_instruction(phi));
880  }
881}
882
883
884// Moves all stack values into their PHI position
885void LIRGenerator::move_to_phi(ValueStack* cur_state) {
886  BlockBegin* bb = block();
887  if (bb->number_of_sux() == 1) {
888    BlockBegin* sux = bb->sux_at(0);
889    assert(sux->number_of_preds() > 0, "invalid CFG");
890
891    // a block with only one predecessor never has phi functions
892    if (sux->number_of_preds() > 1) {
893      int max_phis = cur_state->stack_size() + cur_state->locals_size();
894      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
895
896      ValueStack* sux_state = sux->state();
897      Value sux_value;
898      int index;
899
900      for_each_stack_value(sux_state, index, sux_value) {
901        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
902      }
903
904      // Inlining may cause the local state not to match up, so walk up
905      // the caller state until we get to the same scope as the
906      // successor and then start processing from there.
907      while (cur_state->scope() != sux_state->scope()) {
908        cur_state = cur_state->caller_state();
909        assert(cur_state != NULL, "scopes don't match up");
910      }
911
912      for_each_local_value(sux_state, index, sux_value) {
913        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
914      }
915
916      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
917    }
918  }
919}
920
921
922LIR_Opr LIRGenerator::new_register(BasicType type) {
923  int vreg = _virtual_register_number;
924  // add a little fudge factor for the bailout, since the bailout is
925  // only checked periodically.  This gives a few extra registers to
926  // hand out before we really run out, which helps us keep from
927  // tripping over assertions.
928  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
929    bailout("out of virtual registers");
930    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
931      // wrap it around
932      _virtual_register_number = LIR_OprDesc::vreg_base;
933    }
934  }
935  _virtual_register_number += 1;
936  if (type == T_ADDRESS) type = T_INT;
937  return LIR_OprFact::virtual_register(vreg, type);
938}
939
940
941// Try to lock using register in hint
942LIR_Opr LIRGenerator::rlock(Value instr) {
943  return new_register(instr->type());
944}
945
946
947// does an rlock and sets result
948LIR_Opr LIRGenerator::rlock_result(Value x) {
949  LIR_Opr reg = rlock(x);
950  set_result(x, reg);
951  return reg;
952}
953
954
955// does an rlock and sets result
956LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
957  LIR_Opr reg;
958  switch (type) {
959  case T_BYTE:
960  case T_BOOLEAN:
961    reg = rlock_byte(type);
962    break;
963  default:
964    reg = rlock(x);
965    break;
966  }
967
968  set_result(x, reg);
969  return reg;
970}
971
972
973//---------------------------------------------------------------------
974ciObject* LIRGenerator::get_jobject_constant(Value value) {
975  ObjectType* oc = value->type()->as_ObjectType();
976  if (oc) {
977    return oc->constant_value();
978  }
979  return NULL;
980}
981
982
983void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
984  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
985  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
986
987  // no moves are created for phi functions at the begin of exception
988  // handlers, so assign operands manually here
989  for_each_phi_fun(block(), phi,
990                   operand_for_instruction(phi));
991
992  LIR_Opr thread_reg = getThreadPointer();
993  __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
994          exceptionOopOpr());
995  __ move(LIR_OprFact::oopConst(NULL),
996          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
997  __ move(LIR_OprFact::oopConst(NULL),
998          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
999
1000  LIR_Opr result = new_register(T_OBJECT);
1001  __ move(exceptionOopOpr(), result);
1002  set_result(x, result);
1003}
1004
1005
1006//----------------------------------------------------------------------
1007//----------------------------------------------------------------------
1008//----------------------------------------------------------------------
1009//----------------------------------------------------------------------
1010//                        visitor functions
1011//----------------------------------------------------------------------
1012//----------------------------------------------------------------------
1013//----------------------------------------------------------------------
1014//----------------------------------------------------------------------
1015
1016void LIRGenerator::do_Phi(Phi* x) {
1017  // phi functions are never visited directly
1018  ShouldNotReachHere();
1019}
1020
1021
1022// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1023void LIRGenerator::do_Constant(Constant* x) {
1024  if (x->state() != NULL) {
1025    // Any constant with a ValueStack requires patching so emit the patch here
1026    LIR_Opr reg = rlock_result(x);
1027    CodeEmitInfo* info = state_for(x, x->state());
1028    __ oop2reg_patch(NULL, reg, info);
1029  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1030    if (!x->is_pinned()) {
1031      // unpinned constants are handled specially so that they can be
1032      // put into registers when they are used multiple times within a
1033      // block.  After the block completes their operand will be
1034      // cleared so that other blocks can't refer to that register.
1035      set_result(x, load_constant(x));
1036    } else {
1037      LIR_Opr res = x->operand();
1038      if (!res->is_valid()) {
1039        res = LIR_OprFact::value_type(x->type());
1040      }
1041      if (res->is_constant()) {
1042        LIR_Opr reg = rlock_result(x);
1043        __ move(res, reg);
1044      } else {
1045        set_result(x, res);
1046      }
1047    }
1048  } else {
1049    set_result(x, LIR_OprFact::value_type(x->type()));
1050  }
1051}
1052
1053
1054void LIRGenerator::do_Local(Local* x) {
1055  // operand_for_instruction has the side effect of setting the result
1056  // so there's no need to do it here.
1057  operand_for_instruction(x);
1058}
1059
1060
1061void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1062  Unimplemented();
1063}
1064
1065
1066void LIRGenerator::do_Return(Return* x) {
1067  if (compilation()->env()->dtrace_method_probes()) {
1068    BasicTypeList signature;
1069    signature.append(T_INT);    // thread
1070    signature.append(T_OBJECT); // methodOop
1071    LIR_OprList* args = new LIR_OprList();
1072    args->append(getThreadPointer());
1073    LIR_Opr meth = new_register(T_OBJECT);
1074    __ oop2reg(method()->constant_encoding(), meth);
1075    args->append(meth);
1076    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1077  }
1078
1079  if (x->type()->is_void()) {
1080    __ return_op(LIR_OprFact::illegalOpr);
1081  } else {
1082    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1083    LIRItem result(x->result(), this);
1084
1085    result.load_item_force(reg);
1086    __ return_op(result.result());
1087  }
1088  set_no_result(x);
1089}
1090
1091
1092// Example: object.getClass ()
1093void LIRGenerator::do_getClass(Intrinsic* x) {
1094  assert(x->number_of_arguments() == 1, "wrong type");
1095
1096  LIRItem rcvr(x->argument_at(0), this);
1097  rcvr.load_item();
1098  LIR_Opr result = rlock_result(x);
1099
1100  // need to perform the null check on the rcvr
1101  CodeEmitInfo* info = NULL;
1102  if (x->needs_null_check()) {
1103    info = state_for(x, x->state()->copy_locks());
1104  }
1105  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1106  __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1107                          klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1108}
1109
1110
1111// Example: Thread.currentThread()
1112void LIRGenerator::do_currentThread(Intrinsic* x) {
1113  assert(x->number_of_arguments() == 0, "wrong type");
1114  LIR_Opr reg = rlock_result(x);
1115  __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1116}
1117
1118
1119void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1120  assert(x->number_of_arguments() == 1, "wrong type");
1121  LIRItem receiver(x->argument_at(0), this);
1122
1123  receiver.load_item();
1124  BasicTypeList signature;
1125  signature.append(T_OBJECT); // receiver
1126  LIR_OprList* args = new LIR_OprList();
1127  args->append(receiver.result());
1128  CodeEmitInfo* info = state_for(x, x->state());
1129  call_runtime(&signature, args,
1130               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1131               voidType, info);
1132
1133  set_no_result(x);
1134}
1135
1136
1137//------------------------local access--------------------------------------
1138
1139LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1140  if (x->operand()->is_illegal()) {
1141    Constant* c = x->as_Constant();
1142    if (c != NULL) {
1143      x->set_operand(LIR_OprFact::value_type(c->type()));
1144    } else {
1145      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1146      // allocate a virtual register for this local or phi
1147      x->set_operand(rlock(x));
1148      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1149    }
1150  }
1151  return x->operand();
1152}
1153
1154
1155Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1156  if (opr->is_virtual()) {
1157    return instruction_for_vreg(opr->vreg_number());
1158  }
1159  return NULL;
1160}
1161
1162
1163Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1164  if (reg_num < _instruction_for_operand.length()) {
1165    return _instruction_for_operand.at(reg_num);
1166  }
1167  return NULL;
1168}
1169
1170
1171void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1172  if (_vreg_flags.size_in_bits() == 0) {
1173    BitMap2D temp(100, num_vreg_flags);
1174    temp.clear();
1175    _vreg_flags = temp;
1176  }
1177  _vreg_flags.at_put_grow(vreg_num, f, true);
1178}
1179
1180bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1181  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1182    return false;
1183  }
1184  return _vreg_flags.at(vreg_num, f);
1185}
1186
1187
1188// Block local constant handling.  This code is useful for keeping
1189// unpinned constants and constants which aren't exposed in the IR in
1190// registers.  Unpinned Constant instructions have their operands
1191// cleared when the block is finished so that other blocks can't end
1192// up referring to their registers.
1193
1194LIR_Opr LIRGenerator::load_constant(Constant* x) {
1195  assert(!x->is_pinned(), "only for unpinned constants");
1196  _unpinned_constants.append(x);
1197  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1198}
1199
1200
1201LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1202  BasicType t = c->type();
1203  for (int i = 0; i < _constants.length(); i++) {
1204    LIR_Const* other = _constants.at(i);
1205    if (t == other->type()) {
1206      switch (t) {
1207      case T_INT:
1208      case T_FLOAT:
1209        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1210        break;
1211      case T_LONG:
1212      case T_DOUBLE:
1213        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1214        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1215        break;
1216      case T_OBJECT:
1217        if (c->as_jobject() != other->as_jobject()) continue;
1218        break;
1219      }
1220      return _reg_for_constants.at(i);
1221    }
1222  }
1223
1224  LIR_Opr result = new_register(t);
1225  __ move((LIR_Opr)c, result);
1226  _constants.append(c);
1227  _reg_for_constants.append(result);
1228  return result;
1229}
1230
1231// Various barriers
1232
1233void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1234  // Do the pre-write barrier, if any.
1235  switch (_bs->kind()) {
1236#ifndef SERIALGC
1237    case BarrierSet::G1SATBCT:
1238    case BarrierSet::G1SATBCTLogging:
1239      G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1240      break;
1241#endif // SERIALGC
1242    case BarrierSet::CardTableModRef:
1243    case BarrierSet::CardTableExtension:
1244      // No pre barriers
1245      break;
1246    case BarrierSet::ModRef:
1247    case BarrierSet::Other:
1248      // No pre barriers
1249      break;
1250    default      :
1251      ShouldNotReachHere();
1252
1253  }
1254}
1255
1256void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1257  switch (_bs->kind()) {
1258#ifndef SERIALGC
1259    case BarrierSet::G1SATBCT:
1260    case BarrierSet::G1SATBCTLogging:
1261      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1262      break;
1263#endif // SERIALGC
1264    case BarrierSet::CardTableModRef:
1265    case BarrierSet::CardTableExtension:
1266      CardTableModRef_post_barrier(addr,  new_val);
1267      break;
1268    case BarrierSet::ModRef:
1269    case BarrierSet::Other:
1270      // No post barriers
1271      break;
1272    default      :
1273      ShouldNotReachHere();
1274    }
1275}
1276
1277////////////////////////////////////////////////////////////////////////
1278#ifndef SERIALGC
1279
1280void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1281  if (G1DisablePreBarrier) return;
1282
1283  // First we test whether marking is in progress.
1284  BasicType flag_type;
1285  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1286    flag_type = T_INT;
1287  } else {
1288    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1289              "Assumption");
1290    flag_type = T_BYTE;
1291  }
1292  LIR_Opr thrd = getThreadPointer();
1293  LIR_Address* mark_active_flag_addr =
1294    new LIR_Address(thrd,
1295                    in_bytes(JavaThread::satb_mark_queue_offset() +
1296                             PtrQueue::byte_offset_of_active()),
1297                    flag_type);
1298  // Read the marking-in-progress flag.
1299  LIR_Opr flag_val = new_register(T_INT);
1300  __ load(mark_active_flag_addr, flag_val);
1301
1302  LabelObj* start_store = new LabelObj();
1303
1304  LIR_PatchCode pre_val_patch_code =
1305    patch ? lir_patch_normal : lir_patch_none;
1306
1307  LIR_Opr pre_val = new_register(T_OBJECT);
1308
1309  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1310  if (!addr_opr->is_address()) {
1311    assert(addr_opr->is_register(), "must be");
1312    addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, 0, T_OBJECT));
1313  }
1314  CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1315                                        info);
1316  __ branch(lir_cond_notEqual, T_INT, slow);
1317  __ branch_destination(slow->continuation());
1318}
1319
1320void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1321  if (G1DisablePostBarrier) return;
1322
1323  // If the "new_val" is a constant NULL, no barrier is necessary.
1324  if (new_val->is_constant() &&
1325      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1326
1327  if (!new_val->is_register()) {
1328    LIR_Opr new_val_reg = new_pointer_register();
1329    if (new_val->is_constant()) {
1330      __ move(new_val, new_val_reg);
1331    } else {
1332      __ leal(new_val, new_val_reg);
1333    }
1334    new_val = new_val_reg;
1335  }
1336  assert(new_val->is_register(), "must be a register at this point");
1337
1338  if (addr->is_address()) {
1339    LIR_Address* address = addr->as_address_ptr();
1340    LIR_Opr ptr = new_pointer_register();
1341    if (!address->index()->is_valid() && address->disp() == 0) {
1342      __ move(address->base(), ptr);
1343    } else {
1344      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1345      __ leal(addr, ptr);
1346    }
1347    addr = ptr;
1348  }
1349  assert(addr->is_register(), "must be a register at this point");
1350
1351  LIR_Opr xor_res = new_pointer_register();
1352  LIR_Opr xor_shift_res = new_pointer_register();
1353
1354  if (TwoOperandLIRForm ) {
1355    __ move(addr, xor_res);
1356    __ logical_xor(xor_res, new_val, xor_res);
1357    __ move(xor_res, xor_shift_res);
1358    __ unsigned_shift_right(xor_shift_res,
1359                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1360                            xor_shift_res,
1361                            LIR_OprDesc::illegalOpr());
1362  } else {
1363    __ logical_xor(addr, new_val, xor_res);
1364    __ unsigned_shift_right(xor_res,
1365                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1366                            xor_shift_res,
1367                            LIR_OprDesc::illegalOpr());
1368  }
1369
1370  if (!new_val->is_register()) {
1371    LIR_Opr new_val_reg = new_pointer_register();
1372    __ leal(new_val, new_val_reg);
1373    new_val = new_val_reg;
1374  }
1375  assert(new_val->is_register(), "must be a register at this point");
1376
1377  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1378
1379  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1380  __ branch(lir_cond_notEqual, T_INT, slow);
1381  __ branch_destination(slow->continuation());
1382}
1383
1384#endif // SERIALGC
1385////////////////////////////////////////////////////////////////////////
1386
1387void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1388
1389  assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1390  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1391  if (addr->is_address()) {
1392    LIR_Address* address = addr->as_address_ptr();
1393    LIR_Opr ptr = new_register(T_OBJECT);
1394    if (!address->index()->is_valid() && address->disp() == 0) {
1395      __ move(address->base(), ptr);
1396    } else {
1397      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1398      __ leal(addr, ptr);
1399    }
1400    addr = ptr;
1401  }
1402  assert(addr->is_register(), "must be a register at this point");
1403
1404  LIR_Opr tmp = new_pointer_register();
1405  if (TwoOperandLIRForm) {
1406    __ move(addr, tmp);
1407    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1408  } else {
1409    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1410  }
1411  if (can_inline_as_constant(card_table_base)) {
1412    __ move(LIR_OprFact::intConst(0),
1413              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1414  } else {
1415    __ move(LIR_OprFact::intConst(0),
1416              new LIR_Address(tmp, load_constant(card_table_base),
1417                              T_BYTE));
1418  }
1419}
1420
1421
1422//------------------------field access--------------------------------------
1423
1424// Comment copied form templateTable_i486.cpp
1425// ----------------------------------------------------------------------------
1426// Volatile variables demand their effects be made known to all CPU's in
1427// order.  Store buffers on most chips allow reads & writes to reorder; the
1428// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1429// memory barrier (i.e., it's not sufficient that the interpreter does not
1430// reorder volatile references, the hardware also must not reorder them).
1431//
1432// According to the new Java Memory Model (JMM):
1433// (1) All volatiles are serialized wrt to each other.
1434// ALSO reads & writes act as aquire & release, so:
1435// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1436// the read float up to before the read.  It's OK for non-volatile memory refs
1437// that happen before the volatile read to float down below it.
1438// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1439// that happen BEFORE the write float down to after the write.  It's OK for
1440// non-volatile memory refs that happen after the volatile write to float up
1441// before it.
1442//
1443// We only put in barriers around volatile refs (they are expensive), not
1444// _between_ memory refs (that would require us to track the flavor of the
1445// previous memory refs).  Requirements (2) and (3) require some barriers
1446// before volatile stores and after volatile loads.  These nearly cover
1447// requirement (1) but miss the volatile-store-volatile-load case.  This final
1448// case is placed after volatile-stores although it could just as well go
1449// before volatile-loads.
1450
1451
1452void LIRGenerator::do_StoreField(StoreField* x) {
1453  bool needs_patching = x->needs_patching();
1454  bool is_volatile = x->field()->is_volatile();
1455  BasicType field_type = x->field_type();
1456  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1457
1458  CodeEmitInfo* info = NULL;
1459  if (needs_patching) {
1460    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1461    info = state_for(x, x->state_before());
1462  } else if (x->needs_null_check()) {
1463    NullCheck* nc = x->explicit_null_check();
1464    if (nc == NULL) {
1465      info = state_for(x, x->lock_stack());
1466    } else {
1467      info = state_for(nc);
1468    }
1469  }
1470
1471
1472  LIRItem object(x->obj(), this);
1473  LIRItem value(x->value(),  this);
1474
1475  object.load_item();
1476
1477  if (is_volatile || needs_patching) {
1478    // load item if field is volatile (fewer special cases for volatiles)
1479    // load item if field not initialized
1480    // load item if field not constant
1481    // because of code patching we cannot inline constants
1482    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1483      value.load_byte_item();
1484    } else  {
1485      value.load_item();
1486    }
1487  } else {
1488    value.load_for_store(field_type);
1489  }
1490
1491  set_no_result(x);
1492
1493  if (PrintNotLoaded && needs_patching) {
1494    tty->print_cr("   ###class not loaded at store_%s bci %d",
1495                  x->is_static() ?  "static" : "field", x->bci());
1496  }
1497
1498  if (x->needs_null_check() &&
1499      (needs_patching ||
1500       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1501    // emit an explicit null check because the offset is too large
1502    __ null_check(object.result(), new CodeEmitInfo(info));
1503  }
1504
1505  LIR_Address* address;
1506  if (needs_patching) {
1507    // we need to patch the offset in the instruction so don't allow
1508    // generate_address to try to be smart about emitting the -1.
1509    // Otherwise the patching code won't know how to find the
1510    // instruction to patch.
1511    address = new LIR_Address(object.result(), max_jint, field_type);
1512  } else {
1513    address = generate_address(object.result(), x->offset(), field_type);
1514  }
1515
1516  if (is_volatile && os::is_MP()) {
1517    __ membar_release();
1518  }
1519
1520  if (is_oop) {
1521    // Do the pre-write barrier, if any.
1522    pre_barrier(LIR_OprFact::address(address),
1523                needs_patching,
1524                (info ? new CodeEmitInfo(info) : NULL));
1525  }
1526
1527  if (is_volatile) {
1528    assert(!needs_patching && x->is_loaded(),
1529           "how do we know it's volatile if it's not loaded");
1530    volatile_field_store(value.result(), address, info);
1531  } else {
1532    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1533    __ store(value.result(), address, info, patch_code);
1534  }
1535
1536  if (is_oop) {
1537    // Store to object so mark the card of the header
1538    post_barrier(object.result(), value.result());
1539  }
1540
1541  if (is_volatile && os::is_MP()) {
1542    __ membar();
1543  }
1544}
1545
1546
1547void LIRGenerator::do_LoadField(LoadField* x) {
1548  bool needs_patching = x->needs_patching();
1549  bool is_volatile = x->field()->is_volatile();
1550  BasicType field_type = x->field_type();
1551
1552  CodeEmitInfo* info = NULL;
1553  if (needs_patching) {
1554    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1555    info = state_for(x, x->state_before());
1556  } else if (x->needs_null_check()) {
1557    NullCheck* nc = x->explicit_null_check();
1558    if (nc == NULL) {
1559      info = state_for(x, x->lock_stack());
1560    } else {
1561      info = state_for(nc);
1562    }
1563  }
1564
1565  LIRItem object(x->obj(), this);
1566
1567  object.load_item();
1568
1569  if (PrintNotLoaded && needs_patching) {
1570    tty->print_cr("   ###class not loaded at load_%s bci %d",
1571                  x->is_static() ?  "static" : "field", x->bci());
1572  }
1573
1574  if (x->needs_null_check() &&
1575      (needs_patching ||
1576       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1577    // emit an explicit null check because the offset is too large
1578    __ null_check(object.result(), new CodeEmitInfo(info));
1579  }
1580
1581  LIR_Opr reg = rlock_result(x, field_type);
1582  LIR_Address* address;
1583  if (needs_patching) {
1584    // we need to patch the offset in the instruction so don't allow
1585    // generate_address to try to be smart about emitting the -1.
1586    // Otherwise the patching code won't know how to find the
1587    // instruction to patch.
1588    address = new LIR_Address(object.result(), max_jint, field_type);
1589  } else {
1590    address = generate_address(object.result(), x->offset(), field_type);
1591  }
1592
1593  if (is_volatile) {
1594    assert(!needs_patching && x->is_loaded(),
1595           "how do we know it's volatile if it's not loaded");
1596    volatile_field_load(address, reg, info);
1597  } else {
1598    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1599    __ load(address, reg, info, patch_code);
1600  }
1601
1602  if (is_volatile && os::is_MP()) {
1603    __ membar_acquire();
1604  }
1605}
1606
1607
1608//------------------------java.nio.Buffer.checkIndex------------------------
1609
1610// int java.nio.Buffer.checkIndex(int)
1611void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1612  // NOTE: by the time we are in checkIndex() we are guaranteed that
1613  // the buffer is non-null (because checkIndex is package-private and
1614  // only called from within other methods in the buffer).
1615  assert(x->number_of_arguments() == 2, "wrong type");
1616  LIRItem buf  (x->argument_at(0), this);
1617  LIRItem index(x->argument_at(1), this);
1618  buf.load_item();
1619  index.load_item();
1620
1621  LIR_Opr result = rlock_result(x);
1622  if (GenerateRangeChecks) {
1623    CodeEmitInfo* info = state_for(x);
1624    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1625    if (index.result()->is_constant()) {
1626      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1627      __ branch(lir_cond_belowEqual, T_INT, stub);
1628    } else {
1629      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1630                  java_nio_Buffer::limit_offset(), T_INT, info);
1631      __ branch(lir_cond_aboveEqual, T_INT, stub);
1632    }
1633    __ move(index.result(), result);
1634  } else {
1635    // Just load the index into the result register
1636    __ move(index.result(), result);
1637  }
1638}
1639
1640
1641//------------------------array access--------------------------------------
1642
1643
1644void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1645  LIRItem array(x->array(), this);
1646  array.load_item();
1647  LIR_Opr reg = rlock_result(x);
1648
1649  CodeEmitInfo* info = NULL;
1650  if (x->needs_null_check()) {
1651    NullCheck* nc = x->explicit_null_check();
1652    if (nc == NULL) {
1653      info = state_for(x);
1654    } else {
1655      info = state_for(nc);
1656    }
1657  }
1658  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1659}
1660
1661
1662void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1663  bool use_length = x->length() != NULL;
1664  LIRItem array(x->array(), this);
1665  LIRItem index(x->index(), this);
1666  LIRItem length(this);
1667  bool needs_range_check = true;
1668
1669  if (use_length) {
1670    needs_range_check = x->compute_needs_range_check();
1671    if (needs_range_check) {
1672      length.set_instruction(x->length());
1673      length.load_item();
1674    }
1675  }
1676
1677  array.load_item();
1678  if (index.is_constant() && can_inline_as_constant(x->index())) {
1679    // let it be a constant
1680    index.dont_load_item();
1681  } else {
1682    index.load_item();
1683  }
1684
1685  CodeEmitInfo* range_check_info = state_for(x);
1686  CodeEmitInfo* null_check_info = NULL;
1687  if (x->needs_null_check()) {
1688    NullCheck* nc = x->explicit_null_check();
1689    if (nc != NULL) {
1690      null_check_info = state_for(nc);
1691    } else {
1692      null_check_info = range_check_info;
1693    }
1694  }
1695
1696  // emit array address setup early so it schedules better
1697  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1698
1699  if (GenerateRangeChecks && needs_range_check) {
1700    if (use_length) {
1701      // TODO: use a (modified) version of array_range_check that does not require a
1702      //       constant length to be loaded to a register
1703      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1704      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1705    } else {
1706      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1707      // The range check performs the null check, so clear it out for the load
1708      null_check_info = NULL;
1709    }
1710  }
1711
1712  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1713}
1714
1715
1716void LIRGenerator::do_NullCheck(NullCheck* x) {
1717  if (x->can_trap()) {
1718    LIRItem value(x->obj(), this);
1719    value.load_item();
1720    CodeEmitInfo* info = state_for(x);
1721    __ null_check(value.result(), info);
1722  }
1723}
1724
1725
1726void LIRGenerator::do_Throw(Throw* x) {
1727  LIRItem exception(x->exception(), this);
1728  exception.load_item();
1729  set_no_result(x);
1730  LIR_Opr exception_opr = exception.result();
1731  CodeEmitInfo* info = state_for(x, x->state());
1732
1733#ifndef PRODUCT
1734  if (PrintC1Statistics) {
1735    increment_counter(Runtime1::throw_count_address());
1736  }
1737#endif
1738
1739  // check if the instruction has an xhandler in any of the nested scopes
1740  bool unwind = false;
1741  if (info->exception_handlers()->length() == 0) {
1742    // this throw is not inside an xhandler
1743    unwind = true;
1744  } else {
1745    // get some idea of the throw type
1746    bool type_is_exact = true;
1747    ciType* throw_type = x->exception()->exact_type();
1748    if (throw_type == NULL) {
1749      type_is_exact = false;
1750      throw_type = x->exception()->declared_type();
1751    }
1752    if (throw_type != NULL && throw_type->is_instance_klass()) {
1753      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1754      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1755    }
1756  }
1757
1758  // do null check before moving exception oop into fixed register
1759  // to avoid a fixed interval with an oop during the null check.
1760  // Use a copy of the CodeEmitInfo because debug information is
1761  // different for null_check and throw.
1762  if (GenerateCompilerNullChecks &&
1763      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1764    // if the exception object wasn't created using new then it might be null.
1765    __ null_check(exception_opr, new CodeEmitInfo(info, true));
1766  }
1767
1768  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1769    // we need to go through the exception lookup path to get JVMTI
1770    // notification done
1771    unwind = false;
1772  }
1773
1774  // move exception oop into fixed register
1775  __ move(exception_opr, exceptionOopOpr());
1776
1777  if (unwind) {
1778    __ unwind_exception(exceptionOopOpr());
1779  } else {
1780    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1781  }
1782}
1783
1784
1785void LIRGenerator::do_RoundFP(RoundFP* x) {
1786  LIRItem input(x->input(), this);
1787  input.load_item();
1788  LIR_Opr input_opr = input.result();
1789  assert(input_opr->is_register(), "why round if value is not in a register?");
1790  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1791  if (input_opr->is_single_fpu()) {
1792    set_result(x, round_item(input_opr)); // This code path not currently taken
1793  } else {
1794    LIR_Opr result = new_register(T_DOUBLE);
1795    set_vreg_flag(result, must_start_in_memory);
1796    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1797    set_result(x, result);
1798  }
1799}
1800
1801void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1802  LIRItem base(x->base(), this);
1803  LIRItem idx(this);
1804
1805  base.load_item();
1806  if (x->has_index()) {
1807    idx.set_instruction(x->index());
1808    idx.load_nonconstant();
1809  }
1810
1811  LIR_Opr reg = rlock_result(x, x->basic_type());
1812
1813  int   log2_scale = 0;
1814  if (x->has_index()) {
1815    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1816    log2_scale = x->log2_scale();
1817  }
1818
1819  assert(!x->has_index() || idx.value() == x->index(), "should match");
1820
1821  LIR_Opr base_op = base.result();
1822#ifndef _LP64
1823  if (x->base()->type()->tag() == longTag) {
1824    base_op = new_register(T_INT);
1825    __ convert(Bytecodes::_l2i, base.result(), base_op);
1826  } else {
1827    assert(x->base()->type()->tag() == intTag, "must be");
1828  }
1829#endif
1830
1831  BasicType dst_type = x->basic_type();
1832  LIR_Opr index_op = idx.result();
1833
1834  LIR_Address* addr;
1835  if (index_op->is_constant()) {
1836    assert(log2_scale == 0, "must not have a scale");
1837    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1838  } else {
1839#ifdef X86
1840#ifdef _LP64
1841    if (!index_op->is_illegal() && index_op->type() == T_INT) {
1842      LIR_Opr tmp = new_pointer_register();
1843      __ convert(Bytecodes::_i2l, index_op, tmp);
1844      index_op = tmp;
1845    }
1846#endif
1847    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1848#else
1849    if (index_op->is_illegal() || log2_scale == 0) {
1850#ifdef _LP64
1851      if (!index_op->is_illegal() && index_op->type() == T_INT) {
1852        LIR_Opr tmp = new_pointer_register();
1853        __ convert(Bytecodes::_i2l, index_op, tmp);
1854        index_op = tmp;
1855      }
1856#endif
1857      addr = new LIR_Address(base_op, index_op, dst_type);
1858    } else {
1859      LIR_Opr tmp = new_pointer_register();
1860      __ shift_left(index_op, log2_scale, tmp);
1861      addr = new LIR_Address(base_op, tmp, dst_type);
1862    }
1863#endif
1864  }
1865
1866  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1867    __ unaligned_move(addr, reg);
1868  } else {
1869    __ move(addr, reg);
1870  }
1871}
1872
1873
1874void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1875  int  log2_scale = 0;
1876  BasicType type = x->basic_type();
1877
1878  if (x->has_index()) {
1879    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1880    log2_scale = x->log2_scale();
1881  }
1882
1883  LIRItem base(x->base(), this);
1884  LIRItem value(x->value(), this);
1885  LIRItem idx(this);
1886
1887  base.load_item();
1888  if (x->has_index()) {
1889    idx.set_instruction(x->index());
1890    idx.load_item();
1891  }
1892
1893  if (type == T_BYTE || type == T_BOOLEAN) {
1894    value.load_byte_item();
1895  } else {
1896    value.load_item();
1897  }
1898
1899  set_no_result(x);
1900
1901  LIR_Opr base_op = base.result();
1902#ifndef _LP64
1903  if (x->base()->type()->tag() == longTag) {
1904    base_op = new_register(T_INT);
1905    __ convert(Bytecodes::_l2i, base.result(), base_op);
1906  } else {
1907    assert(x->base()->type()->tag() == intTag, "must be");
1908  }
1909#endif
1910
1911  LIR_Opr index_op = idx.result();
1912  if (log2_scale != 0) {
1913    // temporary fix (platform dependent code without shift on Intel would be better)
1914    index_op = new_pointer_register();
1915#ifdef _LP64
1916    if(idx.result()->type() == T_INT) {
1917      __ convert(Bytecodes::_i2l, idx.result(), index_op);
1918    } else {
1919#endif
1920      __ move(idx.result(), index_op);
1921#ifdef _LP64
1922    }
1923#endif
1924    __ shift_left(index_op, log2_scale, index_op);
1925  }
1926#ifdef _LP64
1927  else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1928    LIR_Opr tmp = new_pointer_register();
1929    __ convert(Bytecodes::_i2l, index_op, tmp);
1930    index_op = tmp;
1931  }
1932#endif
1933
1934  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1935  __ move(value.result(), addr);
1936}
1937
1938
1939void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1940  BasicType type = x->basic_type();
1941  LIRItem src(x->object(), this);
1942  LIRItem off(x->offset(), this);
1943
1944  off.load_item();
1945  src.load_item();
1946
1947  LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1948
1949  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1950  get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1951  if (x->is_volatile() && os::is_MP()) __ membar();
1952}
1953
1954
1955void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1956  BasicType type = x->basic_type();
1957  LIRItem src(x->object(), this);
1958  LIRItem off(x->offset(), this);
1959  LIRItem data(x->value(), this);
1960
1961  src.load_item();
1962  if (type == T_BOOLEAN || type == T_BYTE) {
1963    data.load_byte_item();
1964  } else {
1965    data.load_item();
1966  }
1967  off.load_item();
1968
1969  set_no_result(x);
1970
1971  if (x->is_volatile() && os::is_MP()) __ membar_release();
1972  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
1973}
1974
1975
1976void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
1977  LIRItem src(x->object(), this);
1978  LIRItem off(x->offset(), this);
1979
1980  src.load_item();
1981  if (off.is_constant() && can_inline_as_constant(x->offset())) {
1982    // let it be a constant
1983    off.dont_load_item();
1984  } else {
1985    off.load_item();
1986  }
1987
1988  set_no_result(x);
1989
1990  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
1991  __ prefetch(addr, is_store);
1992}
1993
1994
1995void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
1996  do_UnsafePrefetch(x, false);
1997}
1998
1999
2000void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2001  do_UnsafePrefetch(x, true);
2002}
2003
2004
2005void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2006  int lng = x->length();
2007
2008  for (int i = 0; i < lng; i++) {
2009    SwitchRange* one_range = x->at(i);
2010    int low_key = one_range->low_key();
2011    int high_key = one_range->high_key();
2012    BlockBegin* dest = one_range->sux();
2013    if (low_key == high_key) {
2014      __ cmp(lir_cond_equal, value, low_key);
2015      __ branch(lir_cond_equal, T_INT, dest);
2016    } else if (high_key - low_key == 1) {
2017      __ cmp(lir_cond_equal, value, low_key);
2018      __ branch(lir_cond_equal, T_INT, dest);
2019      __ cmp(lir_cond_equal, value, high_key);
2020      __ branch(lir_cond_equal, T_INT, dest);
2021    } else {
2022      LabelObj* L = new LabelObj();
2023      __ cmp(lir_cond_less, value, low_key);
2024      __ branch(lir_cond_less, L->label());
2025      __ cmp(lir_cond_lessEqual, value, high_key);
2026      __ branch(lir_cond_lessEqual, T_INT, dest);
2027      __ branch_destination(L->label());
2028    }
2029  }
2030  __ jump(default_sux);
2031}
2032
2033
2034SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2035  SwitchRangeList* res = new SwitchRangeList();
2036  int len = x->length();
2037  if (len > 0) {
2038    BlockBegin* sux = x->sux_at(0);
2039    int key = x->lo_key();
2040    BlockBegin* default_sux = x->default_sux();
2041    SwitchRange* range = new SwitchRange(key, sux);
2042    for (int i = 0; i < len; i++, key++) {
2043      BlockBegin* new_sux = x->sux_at(i);
2044      if (sux == new_sux) {
2045        // still in same range
2046        range->set_high_key(key);
2047      } else {
2048        // skip tests which explicitly dispatch to the default
2049        if (sux != default_sux) {
2050          res->append(range);
2051        }
2052        range = new SwitchRange(key, new_sux);
2053      }
2054      sux = new_sux;
2055    }
2056    if (res->length() == 0 || res->last() != range)  res->append(range);
2057  }
2058  return res;
2059}
2060
2061
2062// we expect the keys to be sorted by increasing value
2063SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2064  SwitchRangeList* res = new SwitchRangeList();
2065  int len = x->length();
2066  if (len > 0) {
2067    BlockBegin* default_sux = x->default_sux();
2068    int key = x->key_at(0);
2069    BlockBegin* sux = x->sux_at(0);
2070    SwitchRange* range = new SwitchRange(key, sux);
2071    for (int i = 1; i < len; i++) {
2072      int new_key = x->key_at(i);
2073      BlockBegin* new_sux = x->sux_at(i);
2074      if (key+1 == new_key && sux == new_sux) {
2075        // still in same range
2076        range->set_high_key(new_key);
2077      } else {
2078        // skip tests which explicitly dispatch to the default
2079        if (range->sux() != default_sux) {
2080          res->append(range);
2081        }
2082        range = new SwitchRange(new_key, new_sux);
2083      }
2084      key = new_key;
2085      sux = new_sux;
2086    }
2087    if (res->length() == 0 || res->last() != range)  res->append(range);
2088  }
2089  return res;
2090}
2091
2092
2093void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2094  LIRItem tag(x->tag(), this);
2095  tag.load_item();
2096  set_no_result(x);
2097
2098  if (x->is_safepoint()) {
2099    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2100  }
2101
2102  // move values into phi locations
2103  move_to_phi(x->state());
2104
2105  int lo_key = x->lo_key();
2106  int hi_key = x->hi_key();
2107  int len = x->length();
2108  CodeEmitInfo* info = state_for(x, x->state());
2109  LIR_Opr value = tag.result();
2110  if (UseTableRanges) {
2111    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2112  } else {
2113    for (int i = 0; i < len; i++) {
2114      __ cmp(lir_cond_equal, value, i + lo_key);
2115      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2116    }
2117    __ jump(x->default_sux());
2118  }
2119}
2120
2121
2122void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2123  LIRItem tag(x->tag(), this);
2124  tag.load_item();
2125  set_no_result(x);
2126
2127  if (x->is_safepoint()) {
2128    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2129  }
2130
2131  // move values into phi locations
2132  move_to_phi(x->state());
2133
2134  LIR_Opr value = tag.result();
2135  if (UseTableRanges) {
2136    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2137  } else {
2138    int len = x->length();
2139    for (int i = 0; i < len; i++) {
2140      __ cmp(lir_cond_equal, value, x->key_at(i));
2141      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2142    }
2143    __ jump(x->default_sux());
2144  }
2145}
2146
2147
2148void LIRGenerator::do_Goto(Goto* x) {
2149  set_no_result(x);
2150
2151  if (block()->next()->as_OsrEntry()) {
2152    // need to free up storage used for OSR entry point
2153    LIR_Opr osrBuffer = block()->next()->operand();
2154    BasicTypeList signature;
2155    signature.append(T_INT);
2156    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2157    __ move(osrBuffer, cc->args()->at(0));
2158    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2159                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2160  }
2161
2162  if (x->is_safepoint()) {
2163    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2164
2165    // increment backedge counter if needed
2166    increment_backedge_counter(state_for(x, state));
2167
2168    CodeEmitInfo* safepoint_info = state_for(x, state);
2169    __ safepoint(safepoint_poll_register(), safepoint_info);
2170  }
2171
2172  // emit phi-instruction move after safepoint since this simplifies
2173  // describing the state as the safepoint.
2174  move_to_phi(x->state());
2175
2176  __ jump(x->default_sux());
2177}
2178
2179
2180void LIRGenerator::do_Base(Base* x) {
2181  __ std_entry(LIR_OprFact::illegalOpr);
2182  // Emit moves from physical registers / stack slots to virtual registers
2183  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2184  IRScope* irScope = compilation()->hir()->top_scope();
2185  int java_index = 0;
2186  for (int i = 0; i < args->length(); i++) {
2187    LIR_Opr src = args->at(i);
2188    assert(!src->is_illegal(), "check");
2189    BasicType t = src->type();
2190
2191    // Types which are smaller than int are passed as int, so
2192    // correct the type which passed.
2193    switch (t) {
2194    case T_BYTE:
2195    case T_BOOLEAN:
2196    case T_SHORT:
2197    case T_CHAR:
2198      t = T_INT;
2199      break;
2200    }
2201
2202    LIR_Opr dest = new_register(t);
2203    __ move(src, dest);
2204
2205    // Assign new location to Local instruction for this local
2206    Local* local = x->state()->local_at(java_index)->as_Local();
2207    assert(local != NULL, "Locals for incoming arguments must have been created");
2208    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2209    local->set_operand(dest);
2210    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2211    java_index += type2size[t];
2212  }
2213
2214  if (compilation()->env()->dtrace_method_probes()) {
2215    BasicTypeList signature;
2216    signature.append(T_INT);    // thread
2217    signature.append(T_OBJECT); // methodOop
2218    LIR_OprList* args = new LIR_OprList();
2219    args->append(getThreadPointer());
2220    LIR_Opr meth = new_register(T_OBJECT);
2221    __ oop2reg(method()->constant_encoding(), meth);
2222    args->append(meth);
2223    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2224  }
2225
2226  if (method()->is_synchronized()) {
2227    LIR_Opr obj;
2228    if (method()->is_static()) {
2229      obj = new_register(T_OBJECT);
2230      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2231    } else {
2232      Local* receiver = x->state()->local_at(0)->as_Local();
2233      assert(receiver != NULL, "must already exist");
2234      obj = receiver->operand();
2235    }
2236    assert(obj->is_valid(), "must be valid");
2237
2238    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2239      LIR_Opr lock = new_register(T_INT);
2240      __ load_stack_address_monitor(0, lock);
2241
2242      CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
2243      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2244
2245      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2246      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2247    }
2248  }
2249
2250  // increment invocation counters if needed
2251  increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
2252
2253  // all blocks with a successor must end with an unconditional jump
2254  // to the successor even if they are consecutive
2255  __ jump(x->default_sux());
2256}
2257
2258
2259void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2260  // construct our frame and model the production of incoming pointer
2261  // to the OSR buffer.
2262  __ osr_entry(LIR_Assembler::osrBufferPointer());
2263  LIR_Opr result = rlock_result(x);
2264  __ move(LIR_Assembler::osrBufferPointer(), result);
2265}
2266
2267
2268void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2269  int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2270  for (; i < args->length(); i++) {
2271    LIRItem* param = args->at(i);
2272    LIR_Opr loc = arg_list->at(i);
2273    if (loc->is_register()) {
2274      param->load_item_force(loc);
2275    } else {
2276      LIR_Address* addr = loc->as_address_ptr();
2277      param->load_for_store(addr->type());
2278      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2279        __ unaligned_move(param->result(), addr);
2280      } else {
2281        __ move(param->result(), addr);
2282      }
2283    }
2284  }
2285
2286  if (x->has_receiver()) {
2287    LIRItem* receiver = args->at(0);
2288    LIR_Opr loc = arg_list->at(0);
2289    if (loc->is_register()) {
2290      receiver->load_item_force(loc);
2291    } else {
2292      assert(loc->is_address(), "just checking");
2293      receiver->load_for_store(T_OBJECT);
2294      __ move(receiver->result(), loc);
2295    }
2296  }
2297}
2298
2299
2300// Visits all arguments, returns appropriate items without loading them
2301LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2302  LIRItemList* argument_items = new LIRItemList();
2303  if (x->has_receiver()) {
2304    LIRItem* receiver = new LIRItem(x->receiver(), this);
2305    argument_items->append(receiver);
2306  }
2307  if (x->is_invokedynamic()) {
2308    // Insert a dummy for the synthetic MethodHandle argument.
2309    argument_items->append(NULL);
2310  }
2311  int idx = x->has_receiver() ? 1 : 0;
2312  for (int i = 0; i < x->number_of_arguments(); i++) {
2313    LIRItem* param = new LIRItem(x->argument_at(i), this);
2314    argument_items->append(param);
2315    idx += (param->type()->is_double_word() ? 2 : 1);
2316  }
2317  return argument_items;
2318}
2319
2320
2321// The invoke with receiver has following phases:
2322//   a) traverse and load/lock receiver;
2323//   b) traverse all arguments -> item-array (invoke_visit_argument)
2324//   c) push receiver on stack
2325//   d) load each of the items and push on stack
2326//   e) unlock receiver
2327//   f) move receiver into receiver-register %o0
2328//   g) lock result registers and emit call operation
2329//
2330// Before issuing a call, we must spill-save all values on stack
2331// that are in caller-save register. "spill-save" moves thos registers
2332// either in a free callee-save register or spills them if no free
2333// callee save register is available.
2334//
2335// The problem is where to invoke spill-save.
2336// - if invoked between e) and f), we may lock callee save
2337//   register in "spill-save" that destroys the receiver register
2338//   before f) is executed
2339// - if we rearange the f) to be earlier, by loading %o0, it
2340//   may destroy a value on the stack that is currently in %o0
2341//   and is waiting to be spilled
2342// - if we keep the receiver locked while doing spill-save,
2343//   we cannot spill it as it is spill-locked
2344//
2345void LIRGenerator::do_Invoke(Invoke* x) {
2346  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2347
2348  LIR_OprList* arg_list = cc->args();
2349  LIRItemList* args = invoke_visit_arguments(x);
2350  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2351
2352  // setup result register
2353  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2354  if (x->type() != voidType) {
2355    result_register = result_register_for(x->type());
2356  }
2357
2358  CodeEmitInfo* info = state_for(x, x->state());
2359
2360  // invokedynamics can deoptimize.
2361  CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2362
2363  invoke_load_arguments(x, args, arg_list);
2364
2365  if (x->has_receiver()) {
2366    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2367    receiver = args->at(0)->result();
2368  }
2369
2370  // emit invoke code
2371  bool optimized = x->target_is_loaded() && x->target_is_final();
2372  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2373
2374  switch (x->code()) {
2375    case Bytecodes::_invokestatic:
2376      __ call_static(x->target(), result_register,
2377                     SharedRuntime::get_resolve_static_call_stub(),
2378                     arg_list, info);
2379      break;
2380    case Bytecodes::_invokespecial:
2381    case Bytecodes::_invokevirtual:
2382    case Bytecodes::_invokeinterface:
2383      // for final target we still produce an inline cache, in order
2384      // to be able to call mixed mode
2385      if (x->code() == Bytecodes::_invokespecial || optimized) {
2386        __ call_opt_virtual(x->target(), receiver, result_register,
2387                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2388                            arg_list, info);
2389      } else if (x->vtable_index() < 0) {
2390        __ call_icvirtual(x->target(), receiver, result_register,
2391                          SharedRuntime::get_resolve_virtual_call_stub(),
2392                          arg_list, info);
2393      } else {
2394        int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2395        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2396        __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
2397      }
2398      break;
2399    case Bytecodes::_invokedynamic: {
2400      ciBytecodeStream bcs(x->scope()->method());
2401      bcs.force_bci(x->bci());
2402      assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2403      ciCPCache* cpcache = bcs.get_cpcache();
2404
2405      // Get CallSite offset from constant pool cache pointer.
2406      int index = bcs.get_method_index();
2407      size_t call_site_offset = cpcache->get_f1_offset(index);
2408
2409      // If this invokedynamic call site hasn't been executed yet in
2410      // the interpreter, the CallSite object in the constant pool
2411      // cache is still null and we need to deoptimize.
2412      if (cpcache->is_f1_null_at(index)) {
2413        // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2414        // clone all handlers.  This is handled transparently in other
2415        // places by the CodeEmitInfo cloning logic but is handled
2416        // specially here because a stub isn't being used.
2417        x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2418
2419        DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2420        __ jump(deopt_stub);
2421      }
2422
2423      // Use the receiver register for the synthetic MethodHandle
2424      // argument.
2425      receiver = LIR_Assembler::receiverOpr();
2426      LIR_Opr tmp = new_register(objectType);
2427
2428      // Load CallSite object from constant pool cache.
2429      __ oop2reg(cpcache->constant_encoding(), tmp);
2430      __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2431
2432      // Load target MethodHandle from CallSite object.
2433      __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2434
2435      __ call_dynamic(x->target(), receiver, result_register,
2436                      SharedRuntime::get_resolve_opt_virtual_call_stub(),
2437                      arg_list, info);
2438      break;
2439    }
2440    default:
2441      ShouldNotReachHere();
2442      break;
2443  }
2444
2445  if (x->type()->is_float() || x->type()->is_double()) {
2446    // Force rounding of results from non-strictfp when in strictfp
2447    // scope (or when we don't know the strictness of the callee, to
2448    // be safe.)
2449    if (method()->is_strict()) {
2450      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2451        result_register = round_item(result_register);
2452      }
2453    }
2454  }
2455
2456  if (result_register->is_valid()) {
2457    LIR_Opr result = rlock_result(x);
2458    __ move(result_register, result);
2459  }
2460}
2461
2462
2463void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2464  assert(x->number_of_arguments() == 1, "wrong type");
2465  LIRItem value       (x->argument_at(0), this);
2466  LIR_Opr reg = rlock_result(x);
2467  value.load_item();
2468  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2469  __ move(tmp, reg);
2470}
2471
2472
2473
2474// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2475void LIRGenerator::do_IfOp(IfOp* x) {
2476#ifdef ASSERT
2477  {
2478    ValueTag xtag = x->x()->type()->tag();
2479    ValueTag ttag = x->tval()->type()->tag();
2480    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2481    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2482    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2483  }
2484#endif
2485
2486  LIRItem left(x->x(), this);
2487  LIRItem right(x->y(), this);
2488  left.load_item();
2489  if (can_inline_as_constant(right.value())) {
2490    right.dont_load_item();
2491  } else {
2492    right.load_item();
2493  }
2494
2495  LIRItem t_val(x->tval(), this);
2496  LIRItem f_val(x->fval(), this);
2497  t_val.dont_load_item();
2498  f_val.dont_load_item();
2499  LIR_Opr reg = rlock_result(x);
2500
2501  __ cmp(lir_cond(x->cond()), left.result(), right.result());
2502  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2503}
2504
2505
2506void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2507  switch (x->id()) {
2508  case vmIntrinsics::_intBitsToFloat      :
2509  case vmIntrinsics::_doubleToRawLongBits :
2510  case vmIntrinsics::_longBitsToDouble    :
2511  case vmIntrinsics::_floatToRawIntBits   : {
2512    do_FPIntrinsics(x);
2513    break;
2514  }
2515
2516  case vmIntrinsics::_currentTimeMillis: {
2517    assert(x->number_of_arguments() == 0, "wrong type");
2518    LIR_Opr reg = result_register_for(x->type());
2519    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2520                         reg, new LIR_OprList());
2521    LIR_Opr result = rlock_result(x);
2522    __ move(reg, result);
2523    break;
2524  }
2525
2526  case vmIntrinsics::_nanoTime: {
2527    assert(x->number_of_arguments() == 0, "wrong type");
2528    LIR_Opr reg = result_register_for(x->type());
2529    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2530                         reg, new LIR_OprList());
2531    LIR_Opr result = rlock_result(x);
2532    __ move(reg, result);
2533    break;
2534  }
2535
2536  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2537  case vmIntrinsics::_getClass:       do_getClass(x);      break;
2538  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2539
2540  case vmIntrinsics::_dlog:           // fall through
2541  case vmIntrinsics::_dlog10:         // fall through
2542  case vmIntrinsics::_dabs:           // fall through
2543  case vmIntrinsics::_dsqrt:          // fall through
2544  case vmIntrinsics::_dtan:           // fall through
2545  case vmIntrinsics::_dsin :          // fall through
2546  case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2547  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2548
2549  // java.nio.Buffer.checkIndex
2550  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2551
2552  case vmIntrinsics::_compareAndSwapObject:
2553    do_CompareAndSwap(x, objectType);
2554    break;
2555  case vmIntrinsics::_compareAndSwapInt:
2556    do_CompareAndSwap(x, intType);
2557    break;
2558  case vmIntrinsics::_compareAndSwapLong:
2559    do_CompareAndSwap(x, longType);
2560    break;
2561
2562    // sun.misc.AtomicLongCSImpl.attemptUpdate
2563  case vmIntrinsics::_attemptUpdate:
2564    do_AttemptUpdate(x);
2565    break;
2566
2567  default: ShouldNotReachHere(); break;
2568  }
2569}
2570
2571
2572void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2573  // Need recv in a temporary register so it interferes with the other temporaries
2574  LIR_Opr recv = LIR_OprFact::illegalOpr;
2575  LIR_Opr mdo = new_register(T_OBJECT);
2576  LIR_Opr tmp = new_register(T_INT);
2577  if (x->recv() != NULL) {
2578    LIRItem value(x->recv(), this);
2579    value.load_item();
2580    recv = new_register(T_OBJECT);
2581    __ move(value.result(), recv);
2582  }
2583  __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2584}
2585
2586
2587void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
2588  LIRItem mdo(x->mdo(), this);
2589  mdo.load_item();
2590
2591  increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
2592}
2593
2594
2595LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2596  LIRItemList args(1);
2597  LIRItem value(arg1, this);
2598  args.append(&value);
2599  BasicTypeList signature;
2600  signature.append(as_BasicType(arg1->type()));
2601
2602  return call_runtime(&signature, &args, entry, result_type, info);
2603}
2604
2605
2606LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2607  LIRItemList args(2);
2608  LIRItem value1(arg1, this);
2609  LIRItem value2(arg2, this);
2610  args.append(&value1);
2611  args.append(&value2);
2612  BasicTypeList signature;
2613  signature.append(as_BasicType(arg1->type()));
2614  signature.append(as_BasicType(arg2->type()));
2615
2616  return call_runtime(&signature, &args, entry, result_type, info);
2617}
2618
2619
2620LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2621                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2622  // get a result register
2623  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2624  LIR_Opr result = LIR_OprFact::illegalOpr;
2625  if (result_type->tag() != voidTag) {
2626    result = new_register(result_type);
2627    phys_reg = result_register_for(result_type);
2628  }
2629
2630  // move the arguments into the correct location
2631  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2632  assert(cc->length() == args->length(), "argument mismatch");
2633  for (int i = 0; i < args->length(); i++) {
2634    LIR_Opr arg = args->at(i);
2635    LIR_Opr loc = cc->at(i);
2636    if (loc->is_register()) {
2637      __ move(arg, loc);
2638    } else {
2639      LIR_Address* addr = loc->as_address_ptr();
2640//           if (!can_store_as_constant(arg)) {
2641//             LIR_Opr tmp = new_register(arg->type());
2642//             __ move(arg, tmp);
2643//             arg = tmp;
2644//           }
2645      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2646        __ unaligned_move(arg, addr);
2647      } else {
2648        __ move(arg, addr);
2649      }
2650    }
2651  }
2652
2653  if (info) {
2654    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2655  } else {
2656    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2657  }
2658  if (result->is_valid()) {
2659    __ move(phys_reg, result);
2660  }
2661  return result;
2662}
2663
2664
2665LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2666                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2667  // get a result register
2668  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2669  LIR_Opr result = LIR_OprFact::illegalOpr;
2670  if (result_type->tag() != voidTag) {
2671    result = new_register(result_type);
2672    phys_reg = result_register_for(result_type);
2673  }
2674
2675  // move the arguments into the correct location
2676  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2677
2678  assert(cc->length() == args->length(), "argument mismatch");
2679  for (int i = 0; i < args->length(); i++) {
2680    LIRItem* arg = args->at(i);
2681    LIR_Opr loc = cc->at(i);
2682    if (loc->is_register()) {
2683      arg->load_item_force(loc);
2684    } else {
2685      LIR_Address* addr = loc->as_address_ptr();
2686      arg->load_for_store(addr->type());
2687      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2688        __ unaligned_move(arg->result(), addr);
2689      } else {
2690        __ move(arg->result(), addr);
2691      }
2692    }
2693  }
2694
2695  if (info) {
2696    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2697  } else {
2698    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2699  }
2700  if (result->is_valid()) {
2701    __ move(phys_reg, result);
2702  }
2703  return result;
2704}
2705
2706
2707
2708void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
2709#ifdef TIERED
2710  if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
2711      (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
2712    int limit = InvocationCounter::Tier1InvocationLimit;
2713    int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
2714                          InvocationCounter::counter_offset());
2715    if (backedge) {
2716      limit = InvocationCounter::Tier1BackEdgeLimit;
2717      offset = in_bytes(methodOopDesc::backedge_counter_offset() +
2718                        InvocationCounter::counter_offset());
2719    }
2720
2721    LIR_Opr meth = new_register(T_OBJECT);
2722    __ oop2reg(method()->constant_encoding(), meth);
2723    LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
2724    __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
2725    CodeStub* overflow = new CounterOverflowStub(info, info->bci());
2726    __ branch(lir_cond_aboveEqual, T_INT, overflow);
2727    __ branch_destination(overflow->continuation());
2728  }
2729#endif
2730}
2731