codeBuffer.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "compiler/disassembler.hpp"
28#include "memory/gcLocker.hpp"
29#include "oops/methodData.hpp"
30#include "oops/oop.inline.hpp"
31#include "utilities/copy.hpp"
32#include "utilities/xmlstream.hpp"
33
34// The structure of a CodeSection:
35//
36//    _start ->           +----------------+
37//                        | machine code...|
38//    _end ->             |----------------|
39//                        |                |
40//                        |    (empty)     |
41//                        |                |
42//                        |                |
43//                        +----------------+
44//    _limit ->           |                |
45//
46//    _locs_start ->      +----------------+
47//                        |reloc records...|
48//                        |----------------|
49//    _locs_end ->        |                |
50//                        |                |
51//                        |    (empty)     |
52//                        |                |
53//                        |                |
54//                        +----------------+
55//    _locs_limit ->      |                |
56// The _end (resp. _limit) pointer refers to the first
57// unused (resp. unallocated) byte.
58
59// The structure of the CodeBuffer while code is being accumulated:
60//
61//    _total_start ->    \
62//    _insts._start ->              +----------------+
63//                                  |                |
64//                                  |     Code       |
65//                                  |                |
66//    _stubs._start ->              |----------------|
67//                                  |                |
68//                                  |    Stubs       | (also handlers for deopt/exception)
69//                                  |                |
70//    _consts._start ->             |----------------|
71//                                  |                |
72//                                  |   Constants    |
73//                                  |                |
74//                                  +----------------+
75//    + _total_size ->              |                |
76//
77// When the code and relocations are copied to the code cache,
78// the empty parts of each section are removed, and everything
79// is copied into contiguous locations.
80
81typedef CodeBuffer::csize_t csize_t;  // file-local definition
82
83// External buffer, in a predefined CodeBlob.
84// Important: The code_start must be taken exactly, and not realigned.
85CodeBuffer::CodeBuffer(CodeBlob* blob) {
86  initialize_misc("static buffer");
87  initialize(blob->content_begin(), blob->content_size());
88  verify_section_allocation();
89}
90
91void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
92  // Compute maximal alignment.
93  int align = _insts.alignment();
94  // Always allow for empty slop around each section.
95  int slop = (int) CodeSection::end_slop();
96
97  assert(blob() == NULL, "only once");
98  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
99  if (blob() == NULL) {
100    // The assembler constructor will throw a fatal on an empty CodeBuffer.
101    return;  // caller must test this
102  }
103
104  // Set up various pointers into the blob.
105  initialize(_total_start, _total_size);
106
107  assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
108
109  pd_initialize();
110
111  if (locs_size != 0) {
112    _insts.initialize_locs(locs_size / sizeof(relocInfo));
113  }
114
115  verify_section_allocation();
116}
117
118
119CodeBuffer::~CodeBuffer() {
120  verify_section_allocation();
121
122  // If we allocate our code buffer from the CodeCache
123  // via a BufferBlob, and it's not permanent, then
124  // free the BufferBlob.
125  // The rest of the memory will be freed when the ResourceObj
126  // is released.
127  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
128    // Previous incarnations of this buffer are held live, so that internal
129    // addresses constructed before expansions will not be confused.
130    cb->free_blob();
131  }
132
133  // free any overflow storage
134  delete _overflow_arena;
135
136#ifdef ASSERT
137  // Save allocation type to execute assert in ~ResourceObj()
138  // which is called after this destructor.
139  assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
140  ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
141  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
142  ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
143#endif
144}
145
146void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
147  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
148  DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
149  _oop_recorder = r;
150}
151
152void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
153  assert(cs != &_insts, "insts is the memory provider, not the consumer");
154  csize_t slop = CodeSection::end_slop();  // margin between sections
155  int align = cs->alignment();
156  assert(is_power_of_2(align), "sanity");
157  address start  = _insts._start;
158  address limit  = _insts._limit;
159  address middle = limit - size;
160  middle -= (intptr_t)middle & (align-1);  // align the division point downward
161  guarantee(middle - slop > start, "need enough space to divide up");
162  _insts._limit = middle - slop;  // subtract desired space, plus slop
163  cs->initialize(middle, limit - middle);
164  assert(cs->start() == middle, "sanity");
165  assert(cs->limit() == limit,  "sanity");
166  // give it some relocations to start with, if the main section has them
167  if (_insts.has_locs())  cs->initialize_locs(1);
168}
169
170void CodeBuffer::freeze_section(CodeSection* cs) {
171  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
172  csize_t frozen_size = cs->size();
173  if (next_cs != NULL) {
174    frozen_size = next_cs->align_at_start(frozen_size);
175  }
176  address old_limit = cs->limit();
177  address new_limit = cs->start() + frozen_size;
178  relocInfo* old_locs_limit = cs->locs_limit();
179  relocInfo* new_locs_limit = cs->locs_end();
180  // Patch the limits.
181  cs->_limit = new_limit;
182  cs->_locs_limit = new_locs_limit;
183  cs->_frozen = true;
184  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
185    // Give remaining buffer space to the following section.
186    next_cs->initialize(new_limit, old_limit - new_limit);
187    next_cs->initialize_shared_locs(new_locs_limit,
188                                    old_locs_limit - new_locs_limit);
189  }
190}
191
192void CodeBuffer::set_blob(BufferBlob* blob) {
193  _blob = blob;
194  if (blob != NULL) {
195    address start = blob->content_begin();
196    address end   = blob->content_end();
197    // Round up the starting address.
198    int align = _insts.alignment();
199    start += (-(intptr_t)start) & (align-1);
200    _total_start = start;
201    _total_size  = end - start;
202  } else {
203#ifdef ASSERT
204    // Clean out dangling pointers.
205    _total_start    = badAddress;
206    _consts._start  = _consts._end  = badAddress;
207    _insts._start   = _insts._end   = badAddress;
208    _stubs._start   = _stubs._end   = badAddress;
209#endif //ASSERT
210  }
211}
212
213void CodeBuffer::free_blob() {
214  if (_blob != NULL) {
215    BufferBlob::free(_blob);
216    set_blob(NULL);
217  }
218}
219
220const char* CodeBuffer::code_section_name(int n) {
221#ifdef PRODUCT
222  return NULL;
223#else //PRODUCT
224  switch (n) {
225  case SECT_CONSTS:            return "consts";
226  case SECT_INSTS:             return "insts";
227  case SECT_STUBS:             return "stubs";
228  default:                     return NULL;
229  }
230#endif //PRODUCT
231}
232
233int CodeBuffer::section_index_of(address addr) const {
234  for (int n = 0; n < (int)SECT_LIMIT; n++) {
235    const CodeSection* cs = code_section(n);
236    if (cs->allocates(addr))  return n;
237  }
238  return SECT_NONE;
239}
240
241int CodeBuffer::locator(address addr) const {
242  for (int n = 0; n < (int)SECT_LIMIT; n++) {
243    const CodeSection* cs = code_section(n);
244    if (cs->allocates(addr)) {
245      return locator(addr - cs->start(), n);
246    }
247  }
248  return -1;
249}
250
251address CodeBuffer::locator_address(int locator) const {
252  if (locator < 0)  return NULL;
253  address start = code_section(locator_sect(locator))->start();
254  return start + locator_pos(locator);
255}
256
257bool CodeBuffer::is_backward_branch(Label& L) {
258  return L.is_bound() && insts_end() <= locator_address(L.loc());
259}
260
261address CodeBuffer::decode_begin() {
262  address begin = _insts.start();
263  if (_decode_begin != NULL && _decode_begin > begin)
264    begin = _decode_begin;
265  return begin;
266}
267
268
269GrowableArray<int>* CodeBuffer::create_patch_overflow() {
270  if (_overflow_arena == NULL) {
271    _overflow_arena = new (mtCode) Arena();
272  }
273  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
274}
275
276
277// Helper function for managing labels and their target addresses.
278// Returns a sensible address, and if it is not the label's final
279// address, notes the dependency (at 'branch_pc') on the label.
280address CodeSection::target(Label& L, address branch_pc) {
281  if (L.is_bound()) {
282    int loc = L.loc();
283    if (index() == CodeBuffer::locator_sect(loc)) {
284      return start() + CodeBuffer::locator_pos(loc);
285    } else {
286      return outer()->locator_address(loc);
287    }
288  } else {
289    assert(allocates2(branch_pc), "sanity");
290    address base = start();
291    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
292    L.add_patch_at(outer(), patch_loc);
293
294    // Need to return a pc, doesn't matter what it is since it will be
295    // replaced during resolution later.
296    // Don't return NULL or badAddress, since branches shouldn't overflow.
297    // Don't return base either because that could overflow displacements
298    // for shorter branches.  It will get checked when bound.
299    return branch_pc;
300  }
301}
302
303void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
304  Relocation* reloc = spec.reloc();
305  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
306  if (rtype == relocInfo::none)  return;
307
308  // The assertion below has been adjusted, to also work for
309  // relocation for fixup.  Sometimes we want to put relocation
310  // information for the next instruction, since it will be patched
311  // with a call.
312  assert(start() <= at && at <= end()+1,
313         "cannot relocate data outside code boundaries");
314
315  if (!has_locs()) {
316    // no space for relocation information provided => code cannot be
317    // relocated.  Make sure that relocate is only called with rtypes
318    // that can be ignored for this kind of code.
319    assert(rtype == relocInfo::none              ||
320           rtype == relocInfo::runtime_call_type ||
321           rtype == relocInfo::internal_word_type||
322           rtype == relocInfo::section_word_type ||
323           rtype == relocInfo::external_word_type,
324           "code needs relocation information");
325    // leave behind an indication that we attempted a relocation
326    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
327    return;
328  }
329
330  // Advance the point, noting the offset we'll have to record.
331  csize_t offset = at - locs_point();
332  set_locs_point(at);
333
334  // Test for a couple of overflow conditions; maybe expand the buffer.
335  relocInfo* end = locs_end();
336  relocInfo* req = end + relocInfo::length_limit;
337  // Check for (potential) overflow
338  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
339    req += (uint)offset / (uint)relocInfo::offset_limit();
340    if (req >= locs_limit()) {
341      // Allocate or reallocate.
342      expand_locs(locs_count() + (req - end));
343      // reload pointer
344      end = locs_end();
345    }
346  }
347
348  // If the offset is giant, emit filler relocs, of type 'none', but
349  // each carrying the largest possible offset, to advance the locs_point.
350  while (offset >= relocInfo::offset_limit()) {
351    assert(end < locs_limit(), "adjust previous paragraph of code");
352    *end++ = filler_relocInfo();
353    offset -= filler_relocInfo().addr_offset();
354  }
355
356  // If it's a simple reloc with no data, we'll just write (rtype | offset).
357  (*end) = relocInfo(rtype, offset, format);
358
359  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
360  end->initialize(this, reloc);
361}
362
363void CodeSection::initialize_locs(int locs_capacity) {
364  assert(_locs_start == NULL, "only one locs init step, please");
365  // Apply a priori lower limits to relocation size:
366  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
367  if (locs_capacity < min_locs)  locs_capacity = min_locs;
368  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
369  _locs_start    = locs_start;
370  _locs_end      = locs_start;
371  _locs_limit    = locs_start + locs_capacity;
372  _locs_own      = true;
373}
374
375void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
376  assert(_locs_start == NULL, "do this before locs are allocated");
377  // Internal invariant:  locs buf must be fully aligned.
378  // See copy_relocations_to() below.
379  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
380    ++buf; --length;
381  }
382  if (length > 0) {
383    _locs_start = buf;
384    _locs_end   = buf;
385    _locs_limit = buf + length;
386    _locs_own   = false;
387  }
388}
389
390void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
391  int lcount = source_cs->locs_count();
392  if (lcount != 0) {
393    initialize_shared_locs(source_cs->locs_start(), lcount);
394    _locs_end = _locs_limit = _locs_start + lcount;
395    assert(is_allocated(), "must have copied code already");
396    set_locs_point(start() + source_cs->locs_point_off());
397  }
398  assert(this->locs_count() == source_cs->locs_count(), "sanity");
399}
400
401void CodeSection::expand_locs(int new_capacity) {
402  if (_locs_start == NULL) {
403    initialize_locs(new_capacity);
404    return;
405  } else {
406    int old_count    = locs_count();
407    int old_capacity = locs_capacity();
408    if (new_capacity < old_capacity * 2)
409      new_capacity = old_capacity * 2;
410    relocInfo* locs_start;
411    if (_locs_own) {
412      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
413    } else {
414      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
415      Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
416      _locs_own = true;
417    }
418    _locs_start    = locs_start;
419    _locs_end      = locs_start + old_count;
420    _locs_limit    = locs_start + new_capacity;
421  }
422}
423
424
425/// Support for emitting the code to its final location.
426/// The pattern is the same for all functions.
427/// We iterate over all the sections, padding each to alignment.
428
429csize_t CodeBuffer::total_content_size() const {
430  csize_t size_so_far = 0;
431  for (int n = 0; n < (int)SECT_LIMIT; n++) {
432    const CodeSection* cs = code_section(n);
433    if (cs->is_empty())  continue;  // skip trivial section
434    size_so_far = cs->align_at_start(size_so_far);
435    size_so_far += cs->size();
436  }
437  return size_so_far;
438}
439
440void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
441  address buf = dest->_total_start;
442  csize_t buf_offset = 0;
443  assert(dest->_total_size >= total_content_size(), "must be big enough");
444
445  {
446    // not sure why this is here, but why not...
447    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
448    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
449  }
450
451  const CodeSection* prev_cs      = NULL;
452  CodeSection*       prev_dest_cs = NULL;
453
454  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
455    // figure compact layout of each section
456    const CodeSection* cs = code_section(n);
457    csize_t csize = cs->size();
458
459    CodeSection* dest_cs = dest->code_section(n);
460    if (!cs->is_empty()) {
461      // Compute initial padding; assign it to the previous non-empty guy.
462      // Cf. figure_expanded_capacities.
463      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
464      if (padding != 0) {
465        buf_offset += padding;
466        assert(prev_dest_cs != NULL, "sanity");
467        prev_dest_cs->_limit += padding;
468      }
469      #ifdef ASSERT
470      if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
471        // Make sure the ends still match up.
472        // This is important because a branch in a frozen section
473        // might target code in a following section, via a Label,
474        // and without a relocation record.  See Label::patch_instructions.
475        address dest_start = buf+buf_offset;
476        csize_t start2start = cs->start() - prev_cs->start();
477        csize_t dest_start2start = dest_start - prev_dest_cs->start();
478        assert(start2start == dest_start2start, "cannot stretch frozen sect");
479      }
480      #endif //ASSERT
481      prev_dest_cs = dest_cs;
482      prev_cs      = cs;
483    }
484
485    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
486    dest_cs->initialize(buf+buf_offset, csize);
487    dest_cs->set_end(buf+buf_offset+csize);
488    assert(dest_cs->is_allocated(), "must always be allocated");
489    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
490
491    buf_offset += csize;
492  }
493
494  // Done calculating sections; did it come out to the right end?
495  assert(buf_offset == total_content_size(), "sanity");
496  dest->verify_section_allocation();
497}
498
499// Append an oop reference that keeps the class alive.
500static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
501  oop cl = k->klass_holder();
502  if (cl != NULL && !oops->contains(cl)) {
503    oops->append(cl);
504  }
505}
506
507void CodeBuffer::finalize_oop_references(methodHandle mh) {
508  No_Safepoint_Verifier nsv;
509
510  GrowableArray<oop> oops;
511
512  // Make sure that immediate metadata records something in the OopRecorder
513  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
514    // pull code out of each section
515    CodeSection* cs = code_section(n);
516    if (cs->is_empty())  continue;  // skip trivial section
517    RelocIterator iter(cs);
518    while (iter.next()) {
519      if (iter.type() == relocInfo::metadata_type) {
520        metadata_Relocation* md = iter.metadata_reloc();
521        if (md->metadata_is_immediate()) {
522          Metadata* m = md->metadata_value();
523          if (oop_recorder()->is_real(m)) {
524            if (m->is_methodData()) {
525              m = ((MethodData*)m)->method();
526            }
527            if (m->is_method()) {
528              m = ((Method*)m)->method_holder();
529            }
530            if (m->is_klass()) {
531              append_oop_references(&oops, (Klass*)m);
532            } else {
533              // XXX This will currently occur for MDO which don't
534              // have a backpointer.  This has to be fixed later.
535              m->print();
536              ShouldNotReachHere();
537            }
538          }
539        }
540      }
541    }
542  }
543
544  if (!oop_recorder()->is_unused()) {
545    for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
546      Metadata* m = oop_recorder()->metadata_at(i);
547      if (oop_recorder()->is_real(m)) {
548        if (m->is_methodData()) {
549          m = ((MethodData*)m)->method();
550        }
551        if (m->is_method()) {
552          m = ((Method*)m)->method_holder();
553        }
554        if (m->is_klass()) {
555          append_oop_references(&oops, (Klass*)m);
556        } else {
557          m->print();
558          ShouldNotReachHere();
559        }
560      }
561    }
562
563  }
564
565  // Add the class loader of Method* for the nmethod itself
566  append_oop_references(&oops, mh->method_holder());
567
568  // Add any oops that we've found
569  Thread* thread = Thread::current();
570  for (int i = 0; i < oops.length(); i++) {
571    oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
572  }
573}
574
575
576
577csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
578  csize_t size_so_far = 0;
579  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
580    const CodeSection* cur_cs = code_section(n);
581    if (!cur_cs->is_empty()) {
582      size_so_far = cur_cs->align_at_start(size_so_far);
583    }
584    if (cur_cs->index() == cs->index()) {
585      return size_so_far;
586    }
587    size_so_far += cur_cs->size();
588  }
589  ShouldNotReachHere();
590  return -1;
591}
592
593csize_t CodeBuffer::total_relocation_size() const {
594  csize_t lsize = copy_relocations_to(NULL);  // dry run only
595  csize_t csize = total_content_size();
596  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
597  return (csize_t) align_size_up(total, HeapWordSize);
598}
599
600csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
601  address buf = NULL;
602  csize_t buf_offset = 0;
603  csize_t buf_limit = 0;
604  if (dest != NULL) {
605    buf = (address)dest->relocation_begin();
606    buf_limit = (address)dest->relocation_end() - buf;
607    assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
608    assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
609  }
610  // if dest == NULL, this is just the sizing pass
611
612  csize_t code_end_so_far = 0;
613  csize_t code_point_so_far = 0;
614  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
615    // pull relocs out of each section
616    const CodeSection* cs = code_section(n);
617    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
618    if (cs->is_empty())  continue;  // skip trivial section
619    relocInfo* lstart = cs->locs_start();
620    relocInfo* lend   = cs->locs_end();
621    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
622    csize_t    csize  = cs->size();
623    code_end_so_far = cs->align_at_start(code_end_so_far);
624
625    if (lsize > 0) {
626      // Figure out how to advance the combined relocation point
627      // first to the beginning of this section.
628      // We'll insert one or more filler relocs to span that gap.
629      // (Don't bother to improve this by editing the first reloc's offset.)
630      csize_t new_code_point = code_end_so_far;
631      for (csize_t jump;
632           code_point_so_far < new_code_point;
633           code_point_so_far += jump) {
634        jump = new_code_point - code_point_so_far;
635        relocInfo filler = filler_relocInfo();
636        if (jump >= filler.addr_offset()) {
637          jump = filler.addr_offset();
638        } else {  // else shrink the filler to fit
639          filler = relocInfo(relocInfo::none, jump);
640        }
641        if (buf != NULL) {
642          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
643          *(relocInfo*)(buf+buf_offset) = filler;
644        }
645        buf_offset += sizeof(filler);
646      }
647
648      // Update code point and end to skip past this section:
649      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
650      assert(code_point_so_far <= last_code_point, "sanity");
651      code_point_so_far = last_code_point; // advance past this guy's relocs
652    }
653    code_end_so_far += csize;  // advance past this guy's instructions too
654
655    // Done with filler; emit the real relocations:
656    if (buf != NULL && lsize != 0) {
657      assert(buf_offset + lsize <= buf_limit, "target in bounds");
658      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
659      if (buf_offset % HeapWordSize == 0) {
660        // Use wordwise copies if possible:
661        Copy::disjoint_words((HeapWord*)lstart,
662                             (HeapWord*)(buf+buf_offset),
663                             (lsize + HeapWordSize-1) / HeapWordSize);
664      } else {
665        Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
666      }
667    }
668    buf_offset += lsize;
669  }
670
671  // Align end of relocation info in target.
672  while (buf_offset % HeapWordSize != 0) {
673    if (buf != NULL) {
674      relocInfo padding = relocInfo(relocInfo::none, 0);
675      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
676      *(relocInfo*)(buf+buf_offset) = padding;
677    }
678    buf_offset += sizeof(relocInfo);
679  }
680
681  assert(code_end_so_far == total_content_size(), "sanity");
682
683  // Account for index:
684  if (buf != NULL) {
685    RelocIterator::create_index(dest->relocation_begin(),
686                                buf_offset / sizeof(relocInfo),
687                                dest->relocation_end());
688  }
689
690  return buf_offset;
691}
692
693void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
694#ifndef PRODUCT
695  if (PrintNMethods && (WizardMode || Verbose)) {
696    tty->print("done with CodeBuffer:");
697    ((CodeBuffer*)this)->print();
698  }
699#endif //PRODUCT
700
701  CodeBuffer dest(dest_blob);
702  assert(dest_blob->content_size() >= total_content_size(), "good sizing");
703  this->compute_final_layout(&dest);
704  relocate_code_to(&dest);
705
706  // transfer strings and comments from buffer to blob
707  dest_blob->set_strings(_strings);
708
709  // Done moving code bytes; were they the right size?
710  assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
711
712  // Flush generated code
713  ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
714}
715
716// Move all my code into another code buffer.  Consult applicable
717// relocs to repair embedded addresses.  The layout in the destination
718// CodeBuffer is different to the source CodeBuffer: the destination
719// CodeBuffer gets the final layout (consts, insts, stubs in order of
720// ascending address).
721void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
722  address dest_end = dest->_total_start + dest->_total_size;
723  address dest_filled = NULL;
724  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
725    // pull code out of each section
726    const CodeSection* cs = code_section(n);
727    if (cs->is_empty())  continue;  // skip trivial section
728    CodeSection* dest_cs = dest->code_section(n);
729    assert(cs->size() == dest_cs->size(), "sanity");
730    csize_t usize = dest_cs->size();
731    csize_t wsize = align_size_up(usize, HeapWordSize);
732    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
733    // Copy the code as aligned machine words.
734    // This may also include an uninitialized partial word at the end.
735    Copy::disjoint_words((HeapWord*)cs->start(),
736                         (HeapWord*)dest_cs->start(),
737                         wsize / HeapWordSize);
738
739    if (dest->blob() == NULL) {
740      // Destination is a final resting place, not just another buffer.
741      // Normalize uninitialized bytes in the final padding.
742      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
743                          Assembler::code_fill_byte());
744    }
745    // Keep track of the highest filled address
746    dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
747
748    assert(cs->locs_start() != (relocInfo*)badAddress,
749           "this section carries no reloc storage, but reloc was attempted");
750
751    // Make the new code copy use the old copy's relocations:
752    dest_cs->initialize_locs_from(cs);
753  }
754
755  // Do relocation after all sections are copied.
756  // This is necessary if the code uses constants in stubs, which are
757  // relocated when the corresponding instruction in the code (e.g., a
758  // call) is relocated. Stubs are placed behind the main code
759  // section, so that section has to be copied before relocating.
760  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
761    // pull code out of each section
762    const CodeSection* cs = code_section(n);
763    if (cs->is_empty()) continue;  // skip trivial section
764    CodeSection* dest_cs = dest->code_section(n);
765    { // Repair the pc relative information in the code after the move
766      RelocIterator iter(dest_cs);
767      while (iter.next()) {
768        iter.reloc()->fix_relocation_after_move(this, dest);
769      }
770    }
771  }
772
773  if (dest->blob() == NULL && dest_filled != NULL) {
774    // Destination is a final resting place, not just another buffer.
775    // Normalize uninitialized bytes in the final padding.
776    Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
777                        Assembler::code_fill_byte());
778
779  }
780}
781
782csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
783                                               csize_t amount,
784                                               csize_t* new_capacity) {
785  csize_t new_total_cap = 0;
786
787  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
788    const CodeSection* sect = code_section(n);
789
790    if (!sect->is_empty()) {
791      // Compute initial padding; assign it to the previous section,
792      // even if it's empty (e.g. consts section can be empty).
793      // Cf. compute_final_layout
794      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
795      if (padding != 0) {
796        new_total_cap += padding;
797        assert(n - 1 >= SECT_FIRST, "sanity");
798        new_capacity[n - 1] += padding;
799      }
800    }
801
802    csize_t exp = sect->size();  // 100% increase
803    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
804    if (sect == which_cs) {
805      if (exp < amount)  exp = amount;
806      if (StressCodeBuffers)  exp = amount;  // expand only slightly
807    } else if (n == SECT_INSTS) {
808      // scale down inst increases to a more modest 25%
809      exp = 4*K + ((exp - 4*K) >> 2);
810      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
811    } else if (sect->is_empty()) {
812      // do not grow an empty secondary section
813      exp = 0;
814    }
815    // Allow for inter-section slop:
816    exp += CodeSection::end_slop();
817    csize_t new_cap = sect->size() + exp;
818    if (new_cap < sect->capacity()) {
819      // No need to expand after all.
820      new_cap = sect->capacity();
821    }
822    new_capacity[n] = new_cap;
823    new_total_cap += new_cap;
824  }
825
826  return new_total_cap;
827}
828
829void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
830#ifndef PRODUCT
831  if (PrintNMethods && (WizardMode || Verbose)) {
832    tty->print("expanding CodeBuffer:");
833    this->print();
834  }
835
836  if (StressCodeBuffers && blob() != NULL) {
837    static int expand_count = 0;
838    if (expand_count >= 0)  expand_count += 1;
839    if (expand_count > 100 && is_power_of_2(expand_count)) {
840      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
841      // simulate an occasional allocation failure:
842      free_blob();
843    }
844  }
845#endif //PRODUCT
846
847  // Resizing must be allowed
848  {
849    if (blob() == NULL)  return;  // caller must check for blob == NULL
850    for (int n = 0; n < (int)SECT_LIMIT; n++) {
851      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
852    }
853  }
854
855  // Figure new capacity for each section.
856  csize_t new_capacity[SECT_LIMIT];
857  csize_t new_total_cap
858    = figure_expanded_capacities(which_cs, amount, new_capacity);
859
860  // Create a new (temporary) code buffer to hold all the new data
861  CodeBuffer cb(name(), new_total_cap, 0);
862  if (cb.blob() == NULL) {
863    // Failed to allocate in code cache.
864    free_blob();
865    return;
866  }
867
868  // Create an old code buffer to remember which addresses used to go where.
869  // This will be useful when we do final assembly into the code cache,
870  // because we will need to know how to warp any internal address that
871  // has been created at any time in this CodeBuffer's past.
872  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
873  bxp->take_over_code_from(this);  // remember the old undersized blob
874  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
875  bxp->_before_expand = this->_before_expand;
876  this->_before_expand = bxp;
877
878  // Give each section its required (expanded) capacity.
879  for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
880    CodeSection* cb_sect   = cb.code_section(n);
881    CodeSection* this_sect = code_section(n);
882    if (new_capacity[n] == 0)  continue;  // already nulled out
883    if (n != SECT_INSTS) {
884      cb.initialize_section_size(cb_sect, new_capacity[n]);
885    }
886    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
887    address cb_start = cb_sect->start();
888    cb_sect->set_end(cb_start + this_sect->size());
889    if (this_sect->mark() == NULL) {
890      cb_sect->clear_mark();
891    } else {
892      cb_sect->set_mark(cb_start + this_sect->mark_off());
893    }
894  }
895
896  // Move all the code and relocations to the new blob:
897  relocate_code_to(&cb);
898
899  // Copy the temporary code buffer into the current code buffer.
900  // Basically, do {*this = cb}, except for some control information.
901  this->take_over_code_from(&cb);
902  cb.set_blob(NULL);
903
904  // Zap the old code buffer contents, to avoid mistakenly using them.
905  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
906                                 badCodeHeapFreeVal));
907
908  _decode_begin = NULL;  // sanity
909
910  // Make certain that the new sections are all snugly inside the new blob.
911  verify_section_allocation();
912
913#ifndef PRODUCT
914  if (PrintNMethods && (WizardMode || Verbose)) {
915    tty->print("expanded CodeBuffer:");
916    this->print();
917  }
918#endif //PRODUCT
919}
920
921void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
922  // Must already have disposed of the old blob somehow.
923  assert(blob() == NULL, "must be empty");
924#ifdef ASSERT
925
926#endif
927  // Take the new blob away from cb.
928  set_blob(cb->blob());
929  // Take over all the section pointers.
930  for (int n = 0; n < (int)SECT_LIMIT; n++) {
931    CodeSection* cb_sect   = cb->code_section(n);
932    CodeSection* this_sect = code_section(n);
933    this_sect->take_over_code_from(cb_sect);
934  }
935  _overflow_arena = cb->_overflow_arena;
936  // Make sure the old cb won't try to use it or free it.
937  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
938}
939
940void CodeBuffer::verify_section_allocation() {
941  address tstart = _total_start;
942  if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
943  address tend   = tstart + _total_size;
944  if (_blob != NULL) {
945
946    guarantee(tstart >= _blob->content_begin(), "sanity");
947    guarantee(tend   <= _blob->content_end(),   "sanity");
948  }
949  // Verify disjointness.
950  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
951    CodeSection* sect = code_section(n);
952    if (!sect->is_allocated() || sect->is_empty())  continue;
953    guarantee((intptr_t)sect->start() % sect->alignment() == 0
954           || sect->is_empty() || _blob == NULL,
955           "start is aligned");
956    for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
957      CodeSection* other = code_section(m);
958      if (!other->is_allocated() || other == sect)  continue;
959      guarantee(!other->contains(sect->start()    ), "sanity");
960      // limit is an exclusive address and can be the start of another
961      // section.
962      guarantee(!other->contains(sect->limit() - 1), "sanity");
963    }
964    guarantee(sect->end() <= tend, "sanity");
965    guarantee(sect->end() <= sect->limit(), "sanity");
966  }
967}
968
969void CodeBuffer::log_section_sizes(const char* name) {
970  if (xtty != NULL) {
971    ttyLocker ttyl;
972    // log info about buffer usage
973    xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
974    for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
975      CodeSection* sect = code_section(n);
976      if (!sect->is_allocated() || sect->is_empty())  continue;
977      xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
978                     n, sect->limit() - sect->start(), sect->limit() - sect->end());
979    }
980    xtty->print_cr("</blob>");
981  }
982}
983
984#ifndef PRODUCT
985
986void CodeSection::dump() {
987  address ptr = start();
988  for (csize_t step; ptr < end(); ptr += step) {
989    step = end() - ptr;
990    if (step > jintSize * 4)  step = jintSize * 4;
991    tty->print(INTPTR_FORMAT ": ", p2i(ptr));
992    while (step > 0) {
993      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
994      ptr += jintSize;
995    }
996    tty->cr();
997  }
998}
999
1000
1001void CodeSection::decode() {
1002  Disassembler::decode(start(), end());
1003}
1004
1005
1006void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1007  _strings.add_comment(offset, comment);
1008}
1009
1010const char* CodeBuffer::code_string(const char* str) {
1011  return _strings.add_string(str);
1012}
1013
1014class CodeString: public CHeapObj<mtCode> {
1015 private:
1016  friend class CodeStrings;
1017  const char * _string;
1018  CodeString*  _next;
1019  intptr_t     _offset;
1020
1021  ~CodeString() {
1022    assert(_next == NULL, "wrong interface for freeing list");
1023    os::free((void*)_string, mtCode);
1024  }
1025
1026  bool is_comment() const { return _offset >= 0; }
1027
1028 public:
1029  CodeString(const char * string, intptr_t offset = -1)
1030    : _next(NULL), _offset(offset) {
1031    _string = os::strdup(string, mtCode);
1032  }
1033
1034  const char * string() const { return _string; }
1035  intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1036  CodeString* next()    const { return _next; }
1037
1038  void set_next(CodeString* next) { _next = next; }
1039
1040  CodeString* first_comment() {
1041    if (is_comment()) {
1042      return this;
1043    } else {
1044      return next_comment();
1045    }
1046  }
1047  CodeString* next_comment() const {
1048    CodeString* s = _next;
1049    while (s != NULL && !s->is_comment()) {
1050      s = s->_next;
1051    }
1052    return s;
1053  }
1054};
1055
1056CodeString* CodeStrings::find(intptr_t offset) const {
1057  CodeString* a = _strings->first_comment();
1058  while (a != NULL && a->offset() != offset) {
1059    a = a->next_comment();
1060  }
1061  return a;
1062}
1063
1064// Convenience for add_comment.
1065CodeString* CodeStrings::find_last(intptr_t offset) const {
1066  CodeString* a = find(offset);
1067  if (a != NULL) {
1068    CodeString* c = NULL;
1069    while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1070      a = c;
1071    }
1072  }
1073  return a;
1074}
1075
1076void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1077  CodeString* c      = new CodeString(comment, offset);
1078  CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1079
1080  if (inspos) {
1081    // insert after already existing comments with same offset
1082    c->set_next(inspos->next());
1083    inspos->set_next(c);
1084  } else {
1085    // no comments with such offset, yet. Insert before anything else.
1086    c->set_next(_strings);
1087    _strings = c;
1088  }
1089}
1090
1091void CodeStrings::assign(CodeStrings& other) {
1092  _strings = other._strings;
1093}
1094
1095void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1096  if (_strings != NULL) {
1097    CodeString* c = find(offset);
1098    while (c && c->offset() == offset) {
1099      stream->bol();
1100      stream->print("  ;; ");
1101      stream->print_cr("%s", c->string());
1102      c = c->next_comment();
1103    }
1104  }
1105}
1106
1107
1108void CodeStrings::free() {
1109  CodeString* n = _strings;
1110  while (n) {
1111    // unlink the node from the list saving a pointer to the next
1112    CodeString* p = n->next();
1113    n->set_next(NULL);
1114    delete n;
1115    n = p;
1116  }
1117  _strings = NULL;
1118}
1119
1120const char* CodeStrings::add_string(const char * string) {
1121  CodeString* s = new CodeString(string);
1122  s->set_next(_strings);
1123  _strings = s;
1124  assert(s->string() != NULL, "should have a string");
1125  return s->string();
1126}
1127
1128void CodeBuffer::decode() {
1129  ttyLocker ttyl;
1130  Disassembler::decode(decode_begin(), insts_end());
1131  _decode_begin = insts_end();
1132}
1133
1134
1135void CodeBuffer::skip_decode() {
1136  _decode_begin = insts_end();
1137}
1138
1139
1140void CodeBuffer::decode_all() {
1141  ttyLocker ttyl;
1142  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1143    // dump contents of each section
1144    CodeSection* cs = code_section(n);
1145    tty->print_cr("! %s:", code_section_name(n));
1146    if (cs != consts())
1147      cs->decode();
1148    else
1149      cs->dump();
1150  }
1151}
1152
1153
1154void CodeSection::print(const char* name) {
1155  csize_t locs_size = locs_end() - locs_start();
1156  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1157                name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1158                is_frozen()? " [frozen]": "");
1159  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1160                name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1161  if (PrintRelocations) {
1162    RelocIterator iter(this);
1163    iter.print();
1164  }
1165}
1166
1167void CodeBuffer::print() {
1168  if (this == NULL) {
1169    tty->print_cr("NULL CodeBuffer pointer");
1170    return;
1171  }
1172
1173  tty->print_cr("CodeBuffer:");
1174  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1175    // print each section
1176    CodeSection* cs = code_section(n);
1177    cs->print(code_section_name(n));
1178  }
1179}
1180
1181#endif // PRODUCT
1182