codeBuffer.cpp revision 3602:da91efe96a93
11245Shannesw/*
21245Shannesw * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
31245Shannesw * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
41245Shannesw *
51245Shannesw * This code is free software; you can redistribute it and/or modify it
61245Shannesw * under the terms of the GNU General Public License version 2 only, as
71245Shannesw * published by the Free Software Foundation.
81245Shannesw *
91245Shannesw * This code is distributed in the hope that it will be useful, but WITHOUT
101245Shannesw * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
111245Shannesw * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
121245Shannesw * version 2 for more details (a copy is included in the LICENSE file that
131245Shannesw * accompanied this code).
141245Shannesw *
151245Shannesw * You should have received a copy of the GNU General Public License version
161245Shannesw * 2 along with this work; if not, write to the Free Software Foundation,
171245Shannesw * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
181245Shannesw *
191245Shannesw * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
201245Shannesw * or visit www.oracle.com if you need additional information or have any
211245Shannesw * questions.
221245Shannesw *
231245Shannesw */
241245Shannesw
251245Shannesw#include "precompiled.hpp"
261245Shannesw#include "asm/codeBuffer.hpp"
271245Shannesw#include "compiler/disassembler.hpp"
281245Shannesw#include "memory/gcLocker.hpp"
291245Shannesw#include "oops/methodData.hpp"
301643Salanb#include "oops/oop.inline.hpp"
311245Shannesw#include "utilities/copy.hpp"
321245Shannesw#include "utilities/xmlstream.hpp"
331245Shannesw
341245Shannesw// The structure of a CodeSection:
351245Shannesw//
361245Shannesw//    _start ->           +----------------+
371245Shannesw//                        | machine code...|
381245Shannesw//    _end ->             |----------------|
391245Shannesw//                        |                |
401643Salanb//                        |    (empty)     |
411643Salanb//                        |                |
421245Shannesw//                        |                |
431643Salanb//                        +----------------+
441643Salanb//    _limit ->           |                |
451643Salanb//
461643Salanb//    _locs_start ->      +----------------+
471643Salanb//                        |reloc records...|
481643Salanb//                        |----------------|
491643Salanb//    _locs_end ->        |                |
501643Salanb//                        |                |
511643Salanb//                        |    (empty)     |
521643Salanb//                        |                |
531643Salanb//                        |                |
541643Salanb//                        +----------------+
551643Salanb//    _locs_limit ->      |                |
561643Salanb// The _end (resp. _limit) pointer refers to the first
571643Salanb// unused (resp. unallocated) byte.
581643Salanb
591643Salanb// The structure of the CodeBuffer while code is being accumulated:
601643Salanb//
611245Shannesw//    _total_start ->    \
621245Shannesw//    _insts._start ->              +----------------+
631245Shannesw//                                  |                |
641245Shannesw//                                  |     Code       |
651245Shannesw//                                  |                |
661245Shannesw//    _stubs._start ->              |----------------|
671245Shannesw//                                  |                |
681245Shannesw//                                  |    Stubs       | (also handlers for deopt/exception)
691245Shannesw//                                  |                |
701245Shannesw//    _consts._start ->             |----------------|
711245Shannesw//                                  |                |
721643Salanb//                                  |   Constants    |
731643Salanb//                                  |                |
741245Shannesw//                                  +----------------+
751245Shannesw//    + _total_size ->              |                |
761643Salanb//
771245Shannesw// When the code and relocations are copied to the code cache,
781245Shannesw// the empty parts of each section are removed, and everything
791245Shannesw// is copied into contiguous locations.
801245Shannesw
811245Shanneswtypedef CodeBuffer::csize_t csize_t;  // file-local definition
821245Shannesw
831245Shannesw// External buffer, in a predefined CodeBlob.
841245Shannesw// Important: The code_start must be taken exactly, and not realigned.
851245ShanneswCodeBuffer::CodeBuffer(CodeBlob* blob) {
861571Shannesw  initialize_misc("static buffer");
871643Salanb  initialize(blob->content_begin(), blob->content_size());
881245Shannesw  verify_section_allocation();
891245Shannesw}
901245Shannesw
911245Shanneswvoid CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
921245Shannesw  // Compute maximal alignment.
931245Shannesw  int align = _insts.alignment();
941245Shannesw  // Always allow for empty slop around each section.
951245Shannesw  int slop = (int) CodeSection::end_slop();
961245Shannesw
971245Shannesw  assert(blob() == NULL, "only once");
981245Shannesw  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
991245Shannesw  if (blob() == NULL) {
1001245Shannesw    // The assembler constructor will throw a fatal on an empty CodeBuffer.
1011245Shannesw    return;  // caller must test this
1021245Shannesw  }
1031245Shannesw
1041245Shannesw  // Set up various pointers into the blob.
1051245Shannesw  initialize(_total_start, _total_size);
1061245Shannesw
1071245Shannesw  assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
1081245Shannesw
1091245Shannesw  pd_initialize();
1101245Shannesw
1111245Shannesw  if (locs_size != 0) {
1121245Shannesw    _insts.initialize_locs(locs_size / sizeof(relocInfo));
1131245Shannesw  }
1141245Shannesw
115  verify_section_allocation();
116}
117
118
119CodeBuffer::~CodeBuffer() {
120  verify_section_allocation();
121
122  // If we allocate our code buffer from the CodeCache
123  // via a BufferBlob, and it's not permanent, then
124  // free the BufferBlob.
125  // The rest of the memory will be freed when the ResourceObj
126  // is released.
127  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
128    // Previous incarnations of this buffer are held live, so that internal
129    // addresses constructed before expansions will not be confused.
130    cb->free_blob();
131  }
132
133  // free any overflow storage
134  delete _overflow_arena;
135
136#ifdef ASSERT
137  // Save allocation type to execute assert in ~ResourceObj()
138  // which is called after this destructor.
139  assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
140  ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
141  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
142  ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
143#endif
144}
145
146void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
147  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
148  DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
149  _oop_recorder = r;
150}
151
152void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
153  assert(cs != &_insts, "insts is the memory provider, not the consumer");
154  csize_t slop = CodeSection::end_slop();  // margin between sections
155  int align = cs->alignment();
156  assert(is_power_of_2(align), "sanity");
157  address start  = _insts._start;
158  address limit  = _insts._limit;
159  address middle = limit - size;
160  middle -= (intptr_t)middle & (align-1);  // align the division point downward
161  guarantee(middle - slop > start, "need enough space to divide up");
162  _insts._limit = middle - slop;  // subtract desired space, plus slop
163  cs->initialize(middle, limit - middle);
164  assert(cs->start() == middle, "sanity");
165  assert(cs->limit() == limit,  "sanity");
166  // give it some relocations to start with, if the main section has them
167  if (_insts.has_locs())  cs->initialize_locs(1);
168}
169
170void CodeBuffer::freeze_section(CodeSection* cs) {
171  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
172  csize_t frozen_size = cs->size();
173  if (next_cs != NULL) {
174    frozen_size = next_cs->align_at_start(frozen_size);
175  }
176  address old_limit = cs->limit();
177  address new_limit = cs->start() + frozen_size;
178  relocInfo* old_locs_limit = cs->locs_limit();
179  relocInfo* new_locs_limit = cs->locs_end();
180  // Patch the limits.
181  cs->_limit = new_limit;
182  cs->_locs_limit = new_locs_limit;
183  cs->_frozen = true;
184  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
185    // Give remaining buffer space to the following section.
186    next_cs->initialize(new_limit, old_limit - new_limit);
187    next_cs->initialize_shared_locs(new_locs_limit,
188                                    old_locs_limit - new_locs_limit);
189  }
190}
191
192void CodeBuffer::set_blob(BufferBlob* blob) {
193  _blob = blob;
194  if (blob != NULL) {
195    address start = blob->content_begin();
196    address end   = blob->content_end();
197    // Round up the starting address.
198    int align = _insts.alignment();
199    start += (-(intptr_t)start) & (align-1);
200    _total_start = start;
201    _total_size  = end - start;
202  } else {
203#ifdef ASSERT
204    // Clean out dangling pointers.
205    _total_start    = badAddress;
206    _consts._start  = _consts._end  = badAddress;
207    _insts._start   = _insts._end   = badAddress;
208    _stubs._start   = _stubs._end   = badAddress;
209#endif //ASSERT
210  }
211}
212
213void CodeBuffer::free_blob() {
214  if (_blob != NULL) {
215    BufferBlob::free(_blob);
216    set_blob(NULL);
217  }
218}
219
220const char* CodeBuffer::code_section_name(int n) {
221#ifdef PRODUCT
222  return NULL;
223#else //PRODUCT
224  switch (n) {
225  case SECT_CONSTS:            return "consts";
226  case SECT_INSTS:             return "insts";
227  case SECT_STUBS:             return "stubs";
228  default:                     return NULL;
229  }
230#endif //PRODUCT
231}
232
233int CodeBuffer::section_index_of(address addr) const {
234  for (int n = 0; n < (int)SECT_LIMIT; n++) {
235    const CodeSection* cs = code_section(n);
236    if (cs->allocates(addr))  return n;
237  }
238  return SECT_NONE;
239}
240
241int CodeBuffer::locator(address addr) const {
242  for (int n = 0; n < (int)SECT_LIMIT; n++) {
243    const CodeSection* cs = code_section(n);
244    if (cs->allocates(addr)) {
245      return locator(addr - cs->start(), n);
246    }
247  }
248  return -1;
249}
250
251address CodeBuffer::locator_address(int locator) const {
252  if (locator < 0)  return NULL;
253  address start = code_section(locator_sect(locator))->start();
254  return start + locator_pos(locator);
255}
256
257address CodeBuffer::decode_begin() {
258  address begin = _insts.start();
259  if (_decode_begin != NULL && _decode_begin > begin)
260    begin = _decode_begin;
261  return begin;
262}
263
264
265GrowableArray<int>* CodeBuffer::create_patch_overflow() {
266  if (_overflow_arena == NULL) {
267    _overflow_arena = new (mtCode) Arena();
268  }
269  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
270}
271
272
273// Helper function for managing labels and their target addresses.
274// Returns a sensible address, and if it is not the label's final
275// address, notes the dependency (at 'branch_pc') on the label.
276address CodeSection::target(Label& L, address branch_pc) {
277  if (L.is_bound()) {
278    int loc = L.loc();
279    if (index() == CodeBuffer::locator_sect(loc)) {
280      return start() + CodeBuffer::locator_pos(loc);
281    } else {
282      return outer()->locator_address(loc);
283    }
284  } else {
285    assert(allocates2(branch_pc), "sanity");
286    address base = start();
287    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
288    L.add_patch_at(outer(), patch_loc);
289
290    // Need to return a pc, doesn't matter what it is since it will be
291    // replaced during resolution later.
292    // Don't return NULL or badAddress, since branches shouldn't overflow.
293    // Don't return base either because that could overflow displacements
294    // for shorter branches.  It will get checked when bound.
295    return branch_pc;
296  }
297}
298
299void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
300  Relocation* reloc = spec.reloc();
301  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
302  if (rtype == relocInfo::none)  return;
303
304  // The assertion below has been adjusted, to also work for
305  // relocation for fixup.  Sometimes we want to put relocation
306  // information for the next instruction, since it will be patched
307  // with a call.
308  assert(start() <= at && at <= end()+1,
309         "cannot relocate data outside code boundaries");
310
311  if (!has_locs()) {
312    // no space for relocation information provided => code cannot be
313    // relocated.  Make sure that relocate is only called with rtypes
314    // that can be ignored for this kind of code.
315    assert(rtype == relocInfo::none              ||
316           rtype == relocInfo::runtime_call_type ||
317           rtype == relocInfo::internal_word_type||
318           rtype == relocInfo::section_word_type ||
319           rtype == relocInfo::external_word_type,
320           "code needs relocation information");
321    // leave behind an indication that we attempted a relocation
322    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
323    return;
324  }
325
326  // Advance the point, noting the offset we'll have to record.
327  csize_t offset = at - locs_point();
328  set_locs_point(at);
329
330  // Test for a couple of overflow conditions; maybe expand the buffer.
331  relocInfo* end = locs_end();
332  relocInfo* req = end + relocInfo::length_limit;
333  // Check for (potential) overflow
334  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
335    req += (uint)offset / (uint)relocInfo::offset_limit();
336    if (req >= locs_limit()) {
337      // Allocate or reallocate.
338      expand_locs(locs_count() + (req - end));
339      // reload pointer
340      end = locs_end();
341    }
342  }
343
344  // If the offset is giant, emit filler relocs, of type 'none', but
345  // each carrying the largest possible offset, to advance the locs_point.
346  while (offset >= relocInfo::offset_limit()) {
347    assert(end < locs_limit(), "adjust previous paragraph of code");
348    *end++ = filler_relocInfo();
349    offset -= filler_relocInfo().addr_offset();
350  }
351
352  // If it's a simple reloc with no data, we'll just write (rtype | offset).
353  (*end) = relocInfo(rtype, offset, format);
354
355  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
356  end->initialize(this, reloc);
357}
358
359void CodeSection::initialize_locs(int locs_capacity) {
360  assert(_locs_start == NULL, "only one locs init step, please");
361  // Apply a priori lower limits to relocation size:
362  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
363  if (locs_capacity < min_locs)  locs_capacity = min_locs;
364  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
365  _locs_start    = locs_start;
366  _locs_end      = locs_start;
367  _locs_limit    = locs_start + locs_capacity;
368  _locs_own      = true;
369}
370
371void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
372  assert(_locs_start == NULL, "do this before locs are allocated");
373  // Internal invariant:  locs buf must be fully aligned.
374  // See copy_relocations_to() below.
375  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
376    ++buf; --length;
377  }
378  if (length > 0) {
379    _locs_start = buf;
380    _locs_end   = buf;
381    _locs_limit = buf + length;
382    _locs_own   = false;
383  }
384}
385
386void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
387  int lcount = source_cs->locs_count();
388  if (lcount != 0) {
389    initialize_shared_locs(source_cs->locs_start(), lcount);
390    _locs_end = _locs_limit = _locs_start + lcount;
391    assert(is_allocated(), "must have copied code already");
392    set_locs_point(start() + source_cs->locs_point_off());
393  }
394  assert(this->locs_count() == source_cs->locs_count(), "sanity");
395}
396
397void CodeSection::expand_locs(int new_capacity) {
398  if (_locs_start == NULL) {
399    initialize_locs(new_capacity);
400    return;
401  } else {
402    int old_count    = locs_count();
403    int old_capacity = locs_capacity();
404    if (new_capacity < old_capacity * 2)
405      new_capacity = old_capacity * 2;
406    relocInfo* locs_start;
407    if (_locs_own) {
408      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
409    } else {
410      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
411      Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
412      _locs_own = true;
413    }
414    _locs_start    = locs_start;
415    _locs_end      = locs_start + old_count;
416    _locs_limit    = locs_start + new_capacity;
417  }
418}
419
420
421/// Support for emitting the code to its final location.
422/// The pattern is the same for all functions.
423/// We iterate over all the sections, padding each to alignment.
424
425csize_t CodeBuffer::total_content_size() const {
426  csize_t size_so_far = 0;
427  for (int n = 0; n < (int)SECT_LIMIT; n++) {
428    const CodeSection* cs = code_section(n);
429    if (cs->is_empty())  continue;  // skip trivial section
430    size_so_far = cs->align_at_start(size_so_far);
431    size_so_far += cs->size();
432  }
433  return size_so_far;
434}
435
436void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
437  address buf = dest->_total_start;
438  csize_t buf_offset = 0;
439  assert(dest->_total_size >= total_content_size(), "must be big enough");
440
441  {
442    // not sure why this is here, but why not...
443    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
444    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
445  }
446
447  const CodeSection* prev_cs      = NULL;
448  CodeSection*       prev_dest_cs = NULL;
449
450  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
451    // figure compact layout of each section
452    const CodeSection* cs = code_section(n);
453    csize_t csize = cs->size();
454
455    CodeSection* dest_cs = dest->code_section(n);
456    if (!cs->is_empty()) {
457      // Compute initial padding; assign it to the previous non-empty guy.
458      // Cf. figure_expanded_capacities.
459      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
460      if (padding != 0) {
461        buf_offset += padding;
462        assert(prev_dest_cs != NULL, "sanity");
463        prev_dest_cs->_limit += padding;
464      }
465      #ifdef ASSERT
466      if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
467        // Make sure the ends still match up.
468        // This is important because a branch in a frozen section
469        // might target code in a following section, via a Label,
470        // and without a relocation record.  See Label::patch_instructions.
471        address dest_start = buf+buf_offset;
472        csize_t start2start = cs->start() - prev_cs->start();
473        csize_t dest_start2start = dest_start - prev_dest_cs->start();
474        assert(start2start == dest_start2start, "cannot stretch frozen sect");
475      }
476      #endif //ASSERT
477      prev_dest_cs = dest_cs;
478      prev_cs      = cs;
479    }
480
481    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
482    dest_cs->initialize(buf+buf_offset, csize);
483    dest_cs->set_end(buf+buf_offset+csize);
484    assert(dest_cs->is_allocated(), "must always be allocated");
485    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
486
487    buf_offset += csize;
488  }
489
490  // Done calculating sections; did it come out to the right end?
491  assert(buf_offset == total_content_size(), "sanity");
492  dest->verify_section_allocation();
493}
494
495void CodeBuffer::finalize_oop_references(methodHandle mh) {
496  No_Safepoint_Verifier nsv;
497
498  GrowableArray<oop> oops;
499
500  // Make sure that immediate metadata records something in the OopRecorder
501  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
502    // pull code out of each section
503    CodeSection* cs = code_section(n);
504    if (cs->is_empty())  continue;  // skip trivial section
505    RelocIterator iter(cs);
506    while (iter.next()) {
507      if (iter.type() == relocInfo::metadata_type) {
508        metadata_Relocation* md = iter.metadata_reloc();
509        if (md->metadata_is_immediate()) {
510          Metadata* m = md->metadata_value();
511          if (oop_recorder()->is_real(m)) {
512            oop o = NULL;
513            if (m->is_methodData()) {
514              m = ((MethodData*)m)->method();
515            }
516            if (m->is_method()) {
517              m = ((Method*)m)->method_holder();
518            }
519            if (m->is_klass()) {
520              o = ((Klass*)m)->class_loader();
521            } else {
522              // XXX This will currently occur for MDO which don't
523              // have a backpointer.  This has to be fixed later.
524              m->print();
525              ShouldNotReachHere();
526            }
527            if (o != NULL && oops.find(o) == -1) {
528              oops.append(o);
529            }
530          }
531        }
532      }
533    }
534  }
535
536  if (!oop_recorder()->is_unused()) {
537    for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
538      Metadata* m = oop_recorder()->metadata_at(i);
539      if (oop_recorder()->is_real(m)) {
540        oop o = NULL;
541        if (m->is_methodData()) {
542          m = ((MethodData*)m)->method();
543        }
544        if (m->is_method()) {
545          m = ((Method*)m)->method_holder();
546        }
547        if (m->is_klass()) {
548          o = ((Klass*)m)->class_loader();
549        } else {
550          m->print();
551          ShouldNotReachHere();
552        }
553        if (o != NULL && oops.find(o) == -1) {
554          oops.append(o);
555        }
556      }
557    }
558
559  }
560
561  // Add the class loader of Method* for the nmethod itself
562  oop cl = mh->method_holder()->class_loader();
563  if (cl != NULL) {
564    oops.append(cl);
565  }
566
567  // Add any oops that we've found
568  Thread* thread = Thread::current();
569  for (int i = 0; i < oops.length(); i++) {
570    oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
571  }
572}
573
574
575
576csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
577  csize_t size_so_far = 0;
578  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
579    const CodeSection* cur_cs = code_section(n);
580    if (!cur_cs->is_empty()) {
581      size_so_far = cur_cs->align_at_start(size_so_far);
582    }
583    if (cur_cs->index() == cs->index()) {
584      return size_so_far;
585    }
586    size_so_far += cur_cs->size();
587  }
588  ShouldNotReachHere();
589  return -1;
590}
591
592csize_t CodeBuffer::total_relocation_size() const {
593  csize_t lsize = copy_relocations_to(NULL);  // dry run only
594  csize_t csize = total_content_size();
595  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
596  return (csize_t) align_size_up(total, HeapWordSize);
597}
598
599csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
600  address buf = NULL;
601  csize_t buf_offset = 0;
602  csize_t buf_limit = 0;
603  if (dest != NULL) {
604    buf = (address)dest->relocation_begin();
605    buf_limit = (address)dest->relocation_end() - buf;
606    assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
607    assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
608  }
609  // if dest == NULL, this is just the sizing pass
610
611  csize_t code_end_so_far = 0;
612  csize_t code_point_so_far = 0;
613  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
614    // pull relocs out of each section
615    const CodeSection* cs = code_section(n);
616    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
617    if (cs->is_empty())  continue;  // skip trivial section
618    relocInfo* lstart = cs->locs_start();
619    relocInfo* lend   = cs->locs_end();
620    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
621    csize_t    csize  = cs->size();
622    code_end_so_far = cs->align_at_start(code_end_so_far);
623
624    if (lsize > 0) {
625      // Figure out how to advance the combined relocation point
626      // first to the beginning of this section.
627      // We'll insert one or more filler relocs to span that gap.
628      // (Don't bother to improve this by editing the first reloc's offset.)
629      csize_t new_code_point = code_end_so_far;
630      for (csize_t jump;
631           code_point_so_far < new_code_point;
632           code_point_so_far += jump) {
633        jump = new_code_point - code_point_so_far;
634        relocInfo filler = filler_relocInfo();
635        if (jump >= filler.addr_offset()) {
636          jump = filler.addr_offset();
637        } else {  // else shrink the filler to fit
638          filler = relocInfo(relocInfo::none, jump);
639        }
640        if (buf != NULL) {
641          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
642          *(relocInfo*)(buf+buf_offset) = filler;
643        }
644        buf_offset += sizeof(filler);
645      }
646
647      // Update code point and end to skip past this section:
648      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
649      assert(code_point_so_far <= last_code_point, "sanity");
650      code_point_so_far = last_code_point; // advance past this guy's relocs
651    }
652    code_end_so_far += csize;  // advance past this guy's instructions too
653
654    // Done with filler; emit the real relocations:
655    if (buf != NULL && lsize != 0) {
656      assert(buf_offset + lsize <= buf_limit, "target in bounds");
657      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
658      if (buf_offset % HeapWordSize == 0) {
659        // Use wordwise copies if possible:
660        Copy::disjoint_words((HeapWord*)lstart,
661                             (HeapWord*)(buf+buf_offset),
662                             (lsize + HeapWordSize-1) / HeapWordSize);
663      } else {
664        Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
665      }
666    }
667    buf_offset += lsize;
668  }
669
670  // Align end of relocation info in target.
671  while (buf_offset % HeapWordSize != 0) {
672    if (buf != NULL) {
673      relocInfo padding = relocInfo(relocInfo::none, 0);
674      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
675      *(relocInfo*)(buf+buf_offset) = padding;
676    }
677    buf_offset += sizeof(relocInfo);
678  }
679
680  assert(code_end_so_far == total_content_size(), "sanity");
681
682  // Account for index:
683  if (buf != NULL) {
684    RelocIterator::create_index(dest->relocation_begin(),
685                                buf_offset / sizeof(relocInfo),
686                                dest->relocation_end());
687  }
688
689  return buf_offset;
690}
691
692void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
693#ifndef PRODUCT
694  if (PrintNMethods && (WizardMode || Verbose)) {
695    tty->print("done with CodeBuffer:");
696    ((CodeBuffer*)this)->print();
697  }
698#endif //PRODUCT
699
700  CodeBuffer dest(dest_blob);
701  assert(dest_blob->content_size() >= total_content_size(), "good sizing");
702  this->compute_final_layout(&dest);
703  relocate_code_to(&dest);
704
705  // transfer comments from buffer to blob
706  dest_blob->set_comments(_comments);
707
708  // Done moving code bytes; were they the right size?
709  assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
710
711  // Flush generated code
712  ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
713}
714
715// Move all my code into another code buffer.  Consult applicable
716// relocs to repair embedded addresses.  The layout in the destination
717// CodeBuffer is different to the source CodeBuffer: the destination
718// CodeBuffer gets the final layout (consts, insts, stubs in order of
719// ascending address).
720void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
721  address dest_end = dest->_total_start + dest->_total_size;
722  address dest_filled = NULL;
723  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
724    // pull code out of each section
725    const CodeSection* cs = code_section(n);
726    if (cs->is_empty())  continue;  // skip trivial section
727    CodeSection* dest_cs = dest->code_section(n);
728    assert(cs->size() == dest_cs->size(), "sanity");
729    csize_t usize = dest_cs->size();
730    csize_t wsize = align_size_up(usize, HeapWordSize);
731    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
732    // Copy the code as aligned machine words.
733    // This may also include an uninitialized partial word at the end.
734    Copy::disjoint_words((HeapWord*)cs->start(),
735                         (HeapWord*)dest_cs->start(),
736                         wsize / HeapWordSize);
737
738    if (dest->blob() == NULL) {
739      // Destination is a final resting place, not just another buffer.
740      // Normalize uninitialized bytes in the final padding.
741      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
742                          Assembler::code_fill_byte());
743    }
744    // Keep track of the highest filled address
745    dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
746
747    assert(cs->locs_start() != (relocInfo*)badAddress,
748           "this section carries no reloc storage, but reloc was attempted");
749
750    // Make the new code copy use the old copy's relocations:
751    dest_cs->initialize_locs_from(cs);
752
753    { // Repair the pc relative information in the code after the move
754      RelocIterator iter(dest_cs);
755      while (iter.next()) {
756        iter.reloc()->fix_relocation_after_move(this, dest);
757      }
758    }
759  }
760
761  if (dest->blob() == NULL) {
762    // Destination is a final resting place, not just another buffer.
763    // Normalize uninitialized bytes in the final padding.
764    Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
765                        Assembler::code_fill_byte());
766
767  }
768}
769
770csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
771                                               csize_t amount,
772                                               csize_t* new_capacity) {
773  csize_t new_total_cap = 0;
774
775  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
776    const CodeSection* sect = code_section(n);
777
778    if (!sect->is_empty()) {
779      // Compute initial padding; assign it to the previous section,
780      // even if it's empty (e.g. consts section can be empty).
781      // Cf. compute_final_layout
782      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
783      if (padding != 0) {
784        new_total_cap += padding;
785        assert(n - 1 >= SECT_FIRST, "sanity");
786        new_capacity[n - 1] += padding;
787      }
788    }
789
790    csize_t exp = sect->size();  // 100% increase
791    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
792    if (sect == which_cs) {
793      if (exp < amount)  exp = amount;
794      if (StressCodeBuffers)  exp = amount;  // expand only slightly
795    } else if (n == SECT_INSTS) {
796      // scale down inst increases to a more modest 25%
797      exp = 4*K + ((exp - 4*K) >> 2);
798      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
799    } else if (sect->is_empty()) {
800      // do not grow an empty secondary section
801      exp = 0;
802    }
803    // Allow for inter-section slop:
804    exp += CodeSection::end_slop();
805    csize_t new_cap = sect->size() + exp;
806    if (new_cap < sect->capacity()) {
807      // No need to expand after all.
808      new_cap = sect->capacity();
809    }
810    new_capacity[n] = new_cap;
811    new_total_cap += new_cap;
812  }
813
814  return new_total_cap;
815}
816
817void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
818#ifndef PRODUCT
819  if (PrintNMethods && (WizardMode || Verbose)) {
820    tty->print("expanding CodeBuffer:");
821    this->print();
822  }
823
824  if (StressCodeBuffers && blob() != NULL) {
825    static int expand_count = 0;
826    if (expand_count >= 0)  expand_count += 1;
827    if (expand_count > 100 && is_power_of_2(expand_count)) {
828      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
829      // simulate an occasional allocation failure:
830      free_blob();
831    }
832  }
833#endif //PRODUCT
834
835  // Resizing must be allowed
836  {
837    if (blob() == NULL)  return;  // caller must check for blob == NULL
838    for (int n = 0; n < (int)SECT_LIMIT; n++) {
839      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
840    }
841  }
842
843  // Figure new capacity for each section.
844  csize_t new_capacity[SECT_LIMIT];
845  csize_t new_total_cap
846    = figure_expanded_capacities(which_cs, amount, new_capacity);
847
848  // Create a new (temporary) code buffer to hold all the new data
849  CodeBuffer cb(name(), new_total_cap, 0);
850  if (cb.blob() == NULL) {
851    // Failed to allocate in code cache.
852    free_blob();
853    return;
854  }
855
856  // Create an old code buffer to remember which addresses used to go where.
857  // This will be useful when we do final assembly into the code cache,
858  // because we will need to know how to warp any internal address that
859  // has been created at any time in this CodeBuffer's past.
860  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
861  bxp->take_over_code_from(this);  // remember the old undersized blob
862  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
863  bxp->_before_expand = this->_before_expand;
864  this->_before_expand = bxp;
865
866  // Give each section its required (expanded) capacity.
867  for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
868    CodeSection* cb_sect   = cb.code_section(n);
869    CodeSection* this_sect = code_section(n);
870    if (new_capacity[n] == 0)  continue;  // already nulled out
871    if (n != SECT_INSTS) {
872      cb.initialize_section_size(cb_sect, new_capacity[n]);
873    }
874    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
875    address cb_start = cb_sect->start();
876    cb_sect->set_end(cb_start + this_sect->size());
877    if (this_sect->mark() == NULL) {
878      cb_sect->clear_mark();
879    } else {
880      cb_sect->set_mark(cb_start + this_sect->mark_off());
881    }
882  }
883
884  // Move all the code and relocations to the new blob:
885  relocate_code_to(&cb);
886
887  // Copy the temporary code buffer into the current code buffer.
888  // Basically, do {*this = cb}, except for some control information.
889  this->take_over_code_from(&cb);
890  cb.set_blob(NULL);
891
892  // Zap the old code buffer contents, to avoid mistakenly using them.
893  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
894                                 badCodeHeapFreeVal));
895
896  _decode_begin = NULL;  // sanity
897
898  // Make certain that the new sections are all snugly inside the new blob.
899  verify_section_allocation();
900
901#ifndef PRODUCT
902  if (PrintNMethods && (WizardMode || Verbose)) {
903    tty->print("expanded CodeBuffer:");
904    this->print();
905  }
906#endif //PRODUCT
907}
908
909void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
910  // Must already have disposed of the old blob somehow.
911  assert(blob() == NULL, "must be empty");
912#ifdef ASSERT
913
914#endif
915  // Take the new blob away from cb.
916  set_blob(cb->blob());
917  // Take over all the section pointers.
918  for (int n = 0; n < (int)SECT_LIMIT; n++) {
919    CodeSection* cb_sect   = cb->code_section(n);
920    CodeSection* this_sect = code_section(n);
921    this_sect->take_over_code_from(cb_sect);
922  }
923  _overflow_arena = cb->_overflow_arena;
924  // Make sure the old cb won't try to use it or free it.
925  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
926}
927
928void CodeBuffer::verify_section_allocation() {
929  address tstart = _total_start;
930  if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
931  address tend   = tstart + _total_size;
932  if (_blob != NULL) {
933
934    guarantee(tstart >= _blob->content_begin(), "sanity");
935    guarantee(tend   <= _blob->content_end(),   "sanity");
936  }
937  // Verify disjointness.
938  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
939    CodeSection* sect = code_section(n);
940    if (!sect->is_allocated() || sect->is_empty())  continue;
941    guarantee((intptr_t)sect->start() % sect->alignment() == 0
942           || sect->is_empty() || _blob == NULL,
943           "start is aligned");
944    for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
945      CodeSection* other = code_section(m);
946      if (!other->is_allocated() || other == sect)  continue;
947      guarantee(!other->contains(sect->start()    ), "sanity");
948      // limit is an exclusive address and can be the start of another
949      // section.
950      guarantee(!other->contains(sect->limit() - 1), "sanity");
951    }
952    guarantee(sect->end() <= tend, "sanity");
953    guarantee(sect->end() <= sect->limit(), "sanity");
954  }
955}
956
957void CodeBuffer::log_section_sizes(const char* name) {
958  if (xtty != NULL) {
959    // log info about buffer usage
960    xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
961    for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
962      CodeSection* sect = code_section(n);
963      if (!sect->is_allocated() || sect->is_empty())  continue;
964      xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
965                     n, sect->limit() - sect->start(), sect->limit() - sect->end());
966    }
967    xtty->print_cr("</blob>");
968  }
969}
970
971#ifndef PRODUCT
972
973void CodeSection::dump() {
974  address ptr = start();
975  for (csize_t step; ptr < end(); ptr += step) {
976    step = end() - ptr;
977    if (step > jintSize * 4)  step = jintSize * 4;
978    tty->print(PTR_FORMAT ": ", ptr);
979    while (step > 0) {
980      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
981      ptr += jintSize;
982    }
983    tty->cr();
984  }
985}
986
987
988void CodeSection::decode() {
989  Disassembler::decode(start(), end());
990}
991
992
993void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
994  _comments.add_comment(offset, comment);
995}
996
997class CodeComment: public CHeapObj<mtCode> {
998 private:
999  friend class CodeComments;
1000  intptr_t     _offset;
1001  const char * _comment;
1002  CodeComment* _next;
1003
1004  ~CodeComment() {
1005    assert(_next == NULL, "wrong interface for freeing list");
1006    os::free((void*)_comment, mtCode);
1007  }
1008
1009 public:
1010  CodeComment(intptr_t offset, const char * comment) {
1011    _offset = offset;
1012    _comment = os::strdup(comment, mtCode);
1013    _next = NULL;
1014  }
1015
1016  intptr_t     offset()  const { return _offset;  }
1017  const char * comment() const { return _comment; }
1018  CodeComment* next()          { return _next; }
1019
1020  void set_next(CodeComment* next) { _next = next; }
1021
1022  CodeComment* find(intptr_t offset) {
1023    CodeComment* a = this;
1024    while (a != NULL && a->_offset != offset) {
1025      a = a->_next;
1026    }
1027    return a;
1028  }
1029};
1030
1031
1032void CodeComments::add_comment(intptr_t offset, const char * comment) {
1033  CodeComment* c = new CodeComment(offset, comment);
1034  CodeComment* insert = NULL;
1035  if (_comments != NULL) {
1036    CodeComment* c = _comments->find(offset);
1037    insert = c;
1038    while (c && c->offset() == offset) {
1039      insert = c;
1040      c = c->next();
1041    }
1042  }
1043  if (insert) {
1044    // insert after comments with same offset
1045    c->set_next(insert->next());
1046    insert->set_next(c);
1047  } else {
1048    c->set_next(_comments);
1049    _comments = c;
1050  }
1051}
1052
1053
1054void CodeComments::assign(CodeComments& other) {
1055  assert(_comments == NULL, "don't overwrite old value");
1056  _comments = other._comments;
1057}
1058
1059
1060void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
1061  if (_comments != NULL) {
1062    CodeComment* c = _comments->find(offset);
1063    while (c && c->offset() == offset) {
1064      stream->bol();
1065      stream->print("  ;; ");
1066      stream->print_cr(c->comment());
1067      c = c->next();
1068    }
1069  }
1070}
1071
1072
1073void CodeComments::free() {
1074  CodeComment* n = _comments;
1075  while (n) {
1076    // unlink the node from the list saving a pointer to the next
1077    CodeComment* p = n->_next;
1078    n->_next = NULL;
1079    delete n;
1080    n = p;
1081  }
1082  _comments = NULL;
1083}
1084
1085
1086
1087void CodeBuffer::decode() {
1088  Disassembler::decode(decode_begin(), insts_end());
1089  _decode_begin = insts_end();
1090}
1091
1092
1093void CodeBuffer::skip_decode() {
1094  _decode_begin = insts_end();
1095}
1096
1097
1098void CodeBuffer::decode_all() {
1099  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1100    // dump contents of each section
1101    CodeSection* cs = code_section(n);
1102    tty->print_cr("! %s:", code_section_name(n));
1103    if (cs != consts())
1104      cs->decode();
1105    else
1106      cs->dump();
1107  }
1108}
1109
1110
1111void CodeSection::print(const char* name) {
1112  csize_t locs_size = locs_end() - locs_start();
1113  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1114                name, start(), end(), limit(), size(), capacity(),
1115                is_frozen()? " [frozen]": "");
1116  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1117                name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1118  if (PrintRelocations) {
1119    RelocIterator iter(this);
1120    iter.print();
1121  }
1122}
1123
1124void CodeBuffer::print() {
1125  if (this == NULL) {
1126    tty->print_cr("NULL CodeBuffer pointer");
1127    return;
1128  }
1129
1130  tty->print_cr("CodeBuffer:");
1131  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1132    // print each section
1133    CodeSection* cs = code_section(n);
1134    cs->print(code_section_name(n));
1135  }
1136}
1137
1138#endif // PRODUCT
1139