dfa.cpp revision 628:7bb995fbd3c0
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// DFA.CPP - Method definitions for outputting the matcher DFA from ADLC
26#include "adlc.hpp"
27
28//---------------------------Switches for debugging output---------------------
29static bool debug_output   = false;
30static bool debug_output1  = false;    // top level chain rules
31
32//---------------------------Access to internals of class State----------------
33static const char *sLeft   = "_kids[0]";
34static const char *sRight  = "_kids[1]";
35
36//---------------------------DFA productions-----------------------------------
37static const char *dfa_production           = "DFA_PRODUCTION";
38static const char *dfa_production_set_valid = "DFA_PRODUCTION__SET_VALID";
39
40//---------------------------Production State----------------------------------
41static const char *knownInvalid = "knownInvalid";    // The result does NOT have a rule defined
42static const char *knownValid   = "knownValid";      // The result must be produced by a rule
43static const char *unknownValid = "unknownValid";    // Unknown (probably due to a child or predicate constraint)
44
45static const char *noConstraint  = "noConstraint";   // No constraints seen so far
46static const char *hasConstraint = "hasConstraint";  // Within the first constraint
47
48
49//------------------------------Production------------------------------------
50// Track the status of productions for a particular result
51class Production {
52public:
53  const char *_result;
54  const char *_constraint;
55  const char *_valid;
56  Expr       *_cost_lb;            // Cost lower bound for this production
57  Expr       *_cost_ub;            // Cost upper bound for this production
58
59public:
60  Production(const char *result, const char *constraint, const char *valid);
61  ~Production() {};
62
63  void        initialize();        // reset to be an empty container
64
65  const char   *valid()  const { return _valid; }
66  Expr       *cost_lb()  const { return (Expr *)_cost_lb;  }
67  Expr       *cost_ub()  const { return (Expr *)_cost_ub;  }
68
69  void print();
70};
71
72
73//------------------------------ProductionState--------------------------------
74// Track the status of all production rule results
75// Reset for each root opcode (e.g., Op_RegI, Op_AddI, ...)
76class ProductionState {
77private:
78  Dict _production;    // map result of production, char*, to information or NULL
79  const char *_constraint;
80
81public:
82  // cmpstr does string comparisions.  hashstr computes a key.
83  ProductionState(Arena *arena) : _production(cmpstr, hashstr, arena) { initialize(); };
84  ~ProductionState() { };
85
86  void        initialize();                // reset local and dictionary state
87
88  const char *constraint();
89  void    set_constraint(const char *constraint); // currently working inside of constraints
90
91  const char *valid(const char *result);   // unknownValid, or status for this production
92  void    set_valid(const char *result);   // if not constrained, set status to knownValid
93
94  Expr           *cost_lb(const char *result);
95  Expr           *cost_ub(const char *result);
96  void    set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check);
97
98  // Return the Production associated with the result,
99  // or create a new Production and insert it into the dictionary.
100  Production *getProduction(const char *result);
101
102  void print();
103
104private:
105    // Disable public use of constructor, copy-ctor,  ...
106  ProductionState( )                         : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  };
107  ProductionState( const ProductionState & ) : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  }; // Deep-copy
108};
109
110
111//---------------------------Helper Functions----------------------------------
112// cost_check template:
113// 1)      if (STATE__NOT_YET_VALID(EBXREGI) || _cost[EBXREGI] > c) {
114// 2)        DFA_PRODUCTION__SET_VALID(EBXREGI, cmovI_memu_rule, c)
115// 3)      }
116//
117static void cost_check(FILE *fp, const char *spaces,
118                       const char *arrayIdx, const Expr *cost, const char *rule, ProductionState &status) {
119  bool state_check               = false;  // true if this production needs to check validity
120  bool cost_check                = false;  // true if this production needs to check cost
121  bool cost_is_above_upper_bound = false;  // true if this production is unnecessary due to high cost
122  bool cost_is_below_lower_bound = false;  // true if this production replaces a higher cost production
123
124  // Get information about this production
125  const Expr *previous_ub = status.cost_ub(arrayIdx);
126  if( !previous_ub->is_unknown() ) {
127    if( previous_ub->less_than_or_equal(cost) ) {
128      cost_is_above_upper_bound = true;
129      if( debug_output ) { fprintf(fp, "// Previous rule with lower cost than: %s === %s_rule costs %s\n", arrayIdx, rule, cost->as_string()); }
130    }
131  }
132
133  const Expr *previous_lb = status.cost_lb(arrayIdx);
134  if( !previous_lb->is_unknown() ) {
135    if( cost->less_than_or_equal(previous_lb) ) {
136      cost_is_below_lower_bound = true;
137      if( debug_output ) { fprintf(fp, "// Previous rule with higher cost\n"); }
138    }
139  }
140
141  // line 1)
142  // Check for validity and compare to other match costs
143  const char *validity_check = status.valid(arrayIdx);
144  if( validity_check == unknownValid ) {
145    fprintf(fp, "%sif (STATE__NOT_YET_VALID(%s) || _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
146    state_check = true;
147    cost_check  = true;
148  }
149  else if( validity_check == knownInvalid ) {
150    if( debug_output ) { fprintf(fp, "%s// %s KNOWN_INVALID \n",  spaces, arrayIdx); }
151  }
152  else if( validity_check == knownValid ) {
153    if( cost_is_above_upper_bound ) {
154      // production cost is known to be too high.
155      return;
156    } else if( cost_is_below_lower_bound ) {
157      // production will unconditionally overwrite a previous production that had higher cost
158    } else {
159      fprintf(fp, "%sif ( /* %s KNOWN_VALID || */ _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
160      cost_check  = true;
161    }
162  }
163
164  // line 2)
165  // no need to set State vector if our state is knownValid
166  const char *production = (validity_check == knownValid) ? dfa_production : dfa_production_set_valid;
167  fprintf(fp, "%s  %s(%s, %s_rule, %s)", spaces, production, arrayIdx, rule, cost->as_string() );
168  if( validity_check == knownValid ) {
169    if( cost_is_below_lower_bound ) { fprintf(fp, "\t  // overwrites higher cost rule"); }
170   }
171   fprintf(fp, "\n");
172
173  // line 3)
174  if( cost_check || state_check ) {
175    fprintf(fp, "%s}\n", spaces);
176  }
177
178  status.set_cost_bounds(arrayIdx, cost, state_check, cost_check);
179
180  // Update ProductionState
181  if( validity_check != knownValid ) {
182    // set State vector if not previously known
183    status.set_valid(arrayIdx);
184  }
185}
186
187
188//---------------------------child_test----------------------------------------
189// Example:
190//   STATE__VALID_CHILD(_kids[0], FOO) &&  STATE__VALID_CHILD(_kids[1], BAR)
191// Macro equivalent to: _kids[0]->valid(FOO) && _kids[1]->valid(BAR)
192//
193static void child_test(FILE *fp, MatchList &mList) {
194  if( mList._lchild )           // If left child, check it
195    fprintf(fp, "STATE__VALID_CHILD(_kids[0], %s)", ArchDesc::getMachOperEnum(mList._lchild));
196  if( mList._lchild && mList._rchild )      // If both, add the "&&"
197    fprintf(fp, " && " );
198  if( mList._rchild )           // If right child, check it
199    fprintf(fp, "STATE__VALID_CHILD(_kids[1], %s)", ArchDesc::getMachOperEnum(mList._rchild));
200}
201
202//---------------------------calc_cost-----------------------------------------
203// Example:
204//           unsigned int c = _kids[0]->_cost[FOO] + _kids[1]->_cost[BAR] + 5;
205//
206Expr *ArchDesc::calc_cost(FILE *fp, const char *spaces, MatchList &mList, ProductionState &status) {
207  fprintf(fp, "%sunsigned int c = ", spaces);
208  Expr *c = new Expr("0");
209  if (mList._lchild ) {                   // If left child, add it in
210    sprintf(Expr::buffer(), "_kids[0]->_cost[%s]", ArchDesc::getMachOperEnum(mList._lchild));
211    c->add(Expr::buffer());
212}
213  if (mList._rchild) {                    // If right child, add it in
214    sprintf(Expr::buffer(), "_kids[1]->_cost[%s]", ArchDesc::getMachOperEnum(mList._rchild));
215    c->add(Expr::buffer());
216  }
217  // Add in cost of this rule
218  const char *mList_cost = mList.get_cost();
219  c->add(mList_cost, *this);
220
221  fprintf(fp, "%s;\n", c->as_string());
222  c->set_external_name("c");
223  return c;
224}
225
226
227//---------------------------gen_match-----------------------------------------
228void ArchDesc::gen_match(FILE *fp, MatchList &mList, ProductionState &status, Dict &operands_chained_from) {
229  const char *spaces4 = "    ";
230  const char *spaces6 = "      ";
231
232  fprintf(fp, "%s", spaces4);
233  // Only generate child tests if this is not a leaf node
234  bool has_child_constraints = mList._lchild || mList._rchild;
235  const char *predicate_test        = mList.get_pred();
236  if( has_child_constraints || predicate_test ) {
237    // Open the child-and-predicate-test braces
238    fprintf(fp, "if( ");
239    status.set_constraint(hasConstraint);
240    child_test(fp, mList);
241    // Only generate predicate test if one exists for this match
242    if( predicate_test ) {
243      if( has_child_constraints ) { fprintf(fp," &&\n"); }
244      fprintf(fp, "%s  %s", spaces6, predicate_test);
245    }
246    // End of outer tests
247    fprintf(fp," ) ");
248  } else {
249    // No child or predicate test needed
250    status.set_constraint(noConstraint);
251  }
252
253  // End of outer tests
254  fprintf(fp,"{\n");
255
256  // Calculate cost of this match
257  const Expr *cost = calc_cost(fp, spaces6, mList, status);
258  // Check against other match costs, and update cost & rule vectors
259  cost_check(fp, spaces6, ArchDesc::getMachOperEnum(mList._resultStr), cost, mList._opcode, status);
260
261  // If this is a member of an operand class, update the class cost & rule
262  expand_opclass( fp, spaces6, cost, mList._resultStr, status);
263
264  // Check if this rule should be used to generate the chains as well.
265  const char *rule = /* set rule to "Invalid" for internal operands */
266    strcmp(mList._opcode,mList._resultStr) ? mList._opcode : "Invalid";
267
268  // If this rule produces an operand which has associated chain rules,
269  // update the operands with the chain rule + this rule cost & this rule.
270  chain_rule(fp, spaces6, mList._resultStr, cost, rule, operands_chained_from, status);
271
272  // Close the child-and-predicate-test braces
273  fprintf(fp, "    }\n");
274
275}
276
277
278//---------------------------expand_opclass------------------------------------
279// Chain from one result_type to all other members of its operand class
280void ArchDesc::expand_opclass(FILE *fp, const char *indent, const Expr *cost,
281                              const char *result_type, ProductionState &status) {
282  const Form *form = _globalNames[result_type];
283  OperandForm *op = form ? form->is_operand() : NULL;
284  if( op && op->_classes.count() > 0 ) {
285    if( debug_output ) { fprintf(fp, "// expand operand classes for operand: %s \n", (char *)op->_ident  ); } // %%%%% Explanation
286    // Iterate through all operand classes which include this operand
287    op->_classes.reset();
288    const char *oclass;
289    // Expr *cCost = new Expr(cost);
290    while( (oclass = op->_classes.iter()) != NULL )
291      // Check against other match costs, and update cost & rule vectors
292      cost_check(fp, indent, ArchDesc::getMachOperEnum(oclass), cost, result_type, status);
293  }
294}
295
296//---------------------------chain_rule----------------------------------------
297// Starting at 'operand', check if we know how to automatically generate other results
298void ArchDesc::chain_rule(FILE *fp, const char *indent, const char *operand,
299     const Expr *icost, const char *irule, Dict &operands_chained_from,  ProductionState &status) {
300
301  // Check if we have already generated chains from this starting point
302  if( operands_chained_from[operand] != NULL ) {
303    return;
304  } else {
305    operands_chained_from.Insert( operand, operand);
306  }
307  if( debug_output ) { fprintf(fp, "// chain rules starting from: %s  and  %s \n", (char *)operand, (char *)irule); } // %%%%% Explanation
308
309  ChainList *lst = (ChainList *)_chainRules[operand];
310  if (lst) {
311    // printf("\nChain from <%s> at cost #%s\n",operand, icost ? icost : "_");
312    const char *result, *cost, *rule;
313    for(lst->reset(); (lst->iter(result,cost,rule)) == true; ) {
314      // Do not generate operands that are already available
315      if( operands_chained_from[result] != NULL ) {
316        continue;
317      } else {
318        // Compute the cost for previous match + chain_rule_cost
319        // total_cost = icost + cost;
320        Expr *total_cost = icost->clone();  // icost + cost
321        total_cost->add(cost, *this);
322
323        // Check for transitive chain rules
324        Form *form = (Form *)_globalNames[rule];
325        if ( ! form->is_instruction()) {
326          // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
327          // Check against other match costs, and update cost & rule vectors
328          const char *reduce_rule = strcmp(irule,"Invalid") ? irule : rule;
329          cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, reduce_rule, status);
330          chain_rule(fp, indent, result, total_cost, irule, operands_chained_from, status);
331        } else {
332          // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
333          // Check against other match costs, and update cost & rule vectors
334          cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, rule, status);
335          chain_rule(fp, indent, result, total_cost, rule, operands_chained_from, status);
336        }
337
338        // If this is a member of an operand class, update class cost & rule
339        expand_opclass( fp, indent, total_cost, result, status );
340      }
341    }
342  }
343}
344
345//---------------------------prune_matchlist-----------------------------------
346// Check for duplicate entries in a matchlist, and prune out the higher cost
347// entry.
348void ArchDesc::prune_matchlist(Dict &minimize, MatchList &mlist) {
349
350}
351
352//---------------------------buildDFA------------------------------------------
353// DFA is a large switch with case statements for each ideal opcode encountered
354// in any match rule in the ad file.  Each case has a series of if's to handle
355// the match or fail decisions.  The matches test the cost function of that
356// rule, and prune any cases which are higher cost for the same reduction.
357// In order to generate the DFA we walk the table of ideal opcode/MatchList
358// pairs generated by the ADLC front end to build the contents of the case
359// statements (a series of if statements).
360void ArchDesc::buildDFA(FILE* fp) {
361  int i;
362  // Remember operands that are the starting points for chain rules.
363  // Prevent cycles by checking if we have already generated chain.
364  Dict operands_chained_from(cmpstr, hashstr, Form::arena);
365
366  // Hash inputs to match rules so that final DFA contains only one entry for
367  // each match pattern which is the low cost entry.
368  Dict minimize(cmpstr, hashstr, Form::arena);
369
370  // Track status of dfa for each resulting production
371  // reset for each ideal root.
372  ProductionState status(Form::arena);
373
374  // Output the start of the DFA method into the output file
375
376  fprintf(fp, "\n");
377  fprintf(fp, "//------------------------- Source -----------------------------------------\n");
378  // Do not put random source code into the DFA.
379  // If there are constants which need sharing, put them in "source_hpp" forms.
380  // _source.output(fp);
381  fprintf(fp, "\n");
382  fprintf(fp, "//------------------------- Attributes -------------------------------------\n");
383  _attributes.output(fp);
384  fprintf(fp, "\n");
385  fprintf(fp, "//------------------------- Macros -----------------------------------------\n");
386  // #define DFA_PRODUCTION(result, rule, cost)\
387  //   _cost[ (result) ] = cost; _rule[ (result) ] = rule;
388  fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production);
389  fprintf(fp, "  _cost[ (result) ] = cost; _rule[ (result) ] = rule;\n");
390  fprintf(fp, "\n");
391
392  // #define DFA_PRODUCTION__SET_VALID(result, rule, cost)\
393  //     DFA_PRODUCTION( (result), (rule), (cost) ); STATE__SET_VALID( (result) );
394  fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production_set_valid);
395  fprintf(fp, "  %s( (result), (rule), (cost) ); STATE__SET_VALID( (result) );\n", dfa_production);
396  fprintf(fp, "\n");
397
398  fprintf(fp, "//------------------------- DFA --------------------------------------------\n");
399
400  fprintf(fp,
401"// DFA is a large switch with case statements for each ideal opcode encountered\n"
402"// in any match rule in the ad file.  Each case has a series of if's to handle\n"
403"// the match or fail decisions.  The matches test the cost function of that\n"
404"// rule, and prune any cases which are higher cost for the same reduction.\n"
405"// In order to generate the DFA we walk the table of ideal opcode/MatchList\n"
406"// pairs generated by the ADLC front end to build the contents of the case\n"
407"// statements (a series of if statements).\n"
408);
409  fprintf(fp, "\n");
410  fprintf(fp, "\n");
411  if (_dfa_small) {
412    // Now build the individual routines just like the switch entries in large version
413    // Iterate over the table of MatchLists, start at first valid opcode of 1
414    for (i = 1; i < _last_opcode; i++) {
415      if (_mlistab[i] == NULL) continue;
416      // Generate the routine header statement for this opcode
417      fprintf(fp, "void  State::_sub_Op_%s(const Node *n){\n", NodeClassNames[i]);
418      // Generate body. Shared for both inline and out-of-line version
419      gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
420      // End of routine
421      fprintf(fp, "}\n");
422    }
423  }
424  fprintf(fp, "bool State::DFA");
425  fprintf(fp, "(int opcode, const Node *n) {\n");
426  fprintf(fp, "  switch(opcode) {\n");
427
428  // Iterate over the table of MatchLists, start at first valid opcode of 1
429  for (i = 1; i < _last_opcode; i++) {
430    if (_mlistab[i] == NULL) continue;
431    // Generate the case statement for this opcode
432    if (_dfa_small) {
433      fprintf(fp, "  case Op_%s: { _sub_Op_%s(n);\n", NodeClassNames[i], NodeClassNames[i]);
434    } else {
435      fprintf(fp, "  case Op_%s: {\n", NodeClassNames[i]);
436      // Walk the list, compacting it
437      gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
438    }
439    // Print the "break"
440    fprintf(fp, "    break;\n");
441    fprintf(fp, "  }\n");
442  }
443
444  // Generate the default case for switch(opcode)
445  fprintf(fp, "  \n");
446  fprintf(fp, "  default:\n");
447  fprintf(fp, "    tty->print(\"Default case invoked for: \\n\");\n");
448  fprintf(fp, "    tty->print(\"   opcode  = %cd, \\\"%cs\\\"\\n\", opcode, NodeClassNames[opcode]);\n", '%', '%');
449  fprintf(fp, "    return false;\n");
450  fprintf(fp, "  }\n");
451
452  // Return status, indicating a successful match.
453  fprintf(fp, "  return true;\n");
454  // Generate the closing brace for method Matcher::DFA
455  fprintf(fp, "}\n");
456  Expr::check_buffers();
457}
458
459
460class dfa_shared_preds {
461  enum { count = 4 };
462
463  static bool        _found[count];
464  static const char* _type [count];
465  static const char* _var  [count];
466  static const char* _pred [count];
467
468  static void check_index(int index) { assert( 0 <= index && index < count, "Invalid index"); }
469
470  // Confirm that this is a separate sub-expression.
471  // Only need to catch common cases like " ... && shared ..."
472  // and avoid hazardous ones like "...->shared"
473  static bool valid_loc(char *pred, char *shared) {
474    // start of predicate is valid
475    if( shared == pred ) return true;
476
477    // Check previous character and recurse if needed
478    char *prev = shared - 1;
479    char c  = *prev;
480    switch( c ) {
481    case ' ':
482    case '\n':
483      return dfa_shared_preds::valid_loc(pred, prev);
484    case '!':
485    case '(':
486    case '<':
487    case '=':
488      return true;
489    case '"':  // such as: #line 10 "myfile.ad"\n mypredicate
490      return true;
491    case '|':
492      if( prev != pred && *(prev-1) == '|' ) return true;
493    case '&':
494      if( prev != pred && *(prev-1) == '&' ) return true;
495    default:
496      return false;
497    }
498
499    return false;
500  }
501
502public:
503
504  static bool        found(int index){ check_index(index); return _found[index]; }
505  static void    set_found(int index, bool val) { check_index(index); _found[index] = val; }
506  static void  reset_found() {
507    for( int i = 0; i < count; ++i ) { _found[i] = false; }
508  };
509
510  static const char* type(int index) { check_index(index); return _type[index]; }
511  static const char* var (int index) { check_index(index); return _var [index];  }
512  static const char* pred(int index) { check_index(index); return _pred[index]; }
513
514  // Check each predicate in the MatchList for common sub-expressions
515  static void cse_matchlist(MatchList *matchList) {
516    for( MatchList *mList = matchList; mList != NULL; mList = mList->get_next() ) {
517      Predicate* predicate = mList->get_pred_obj();
518      char*      pred      = mList->get_pred();
519      if( pred != NULL ) {
520        for(int index = 0; index < count; ++index ) {
521          const char *shared_pred      = dfa_shared_preds::pred(index);
522          const char *shared_pred_var  = dfa_shared_preds::var(index);
523          bool result = dfa_shared_preds::cse_predicate(predicate, shared_pred, shared_pred_var);
524          if( result ) dfa_shared_preds::set_found(index, true);
525        }
526      }
527    }
528  }
529
530  // If the Predicate contains a common sub-expression, replace the Predicate's
531  // string with one that uses the variable name.
532  static bool cse_predicate(Predicate* predicate, const char *shared_pred, const char *shared_pred_var) {
533    bool result = false;
534    char *pred = predicate->_pred;
535    if( pred != NULL ) {
536      char *new_pred = pred;
537      for( char *shared_pred_loc = strstr(new_pred, shared_pred);
538      shared_pred_loc != NULL && dfa_shared_preds::valid_loc(new_pred,shared_pred_loc);
539      shared_pred_loc = strstr(new_pred, shared_pred) ) {
540        // Do not modify the original predicate string, it is shared
541        if( new_pred == pred ) {
542          new_pred = strdup(pred);
543          shared_pred_loc = strstr(new_pred, shared_pred);
544        }
545        // Replace shared_pred with variable name
546        strncpy(shared_pred_loc, shared_pred_var, strlen(shared_pred_var));
547      }
548      // Install new predicate
549      if( new_pred != pred ) {
550        predicate->_pred = new_pred;
551        result = true;
552      }
553    }
554    return result;
555  }
556
557  // Output the hoisted common sub-expression if we found it in predicates
558  static void generate_cse(FILE *fp) {
559    for(int j = 0; j < count; ++j ) {
560      if( dfa_shared_preds::found(j) ) {
561        const char *shared_pred_type = dfa_shared_preds::type(j);
562        const char *shared_pred_var  = dfa_shared_preds::var(j);
563        const char *shared_pred      = dfa_shared_preds::pred(j);
564        fprintf(fp, "    %s %s = %s;\n", shared_pred_type, shared_pred_var, shared_pred);
565      }
566    }
567  }
568};
569// shared predicates, _var and _pred entry should be the same length
570bool         dfa_shared_preds::_found[dfa_shared_preds::count]
571  = { false, false, false, false };
572const char*  dfa_shared_preds::_type[dfa_shared_preds::count]
573  = { "int", "jlong", "intptr_t", "bool" };
574const char*  dfa_shared_preds::_var [dfa_shared_preds::count]
575  = { "_n_get_int__", "_n_get_long__", "_n_get_intptr_t__", "Compile__current____select_24_bit_instr__" };
576const char*  dfa_shared_preds::_pred[dfa_shared_preds::count]
577  = { "n->get_int()", "n->get_long()", "n->get_intptr_t()", "Compile::current()->select_24_bit_instr()" };
578
579
580void ArchDesc::gen_dfa_state_body(FILE* fp, Dict &minimize, ProductionState &status, Dict &operands_chained_from, int i) {
581  // Start the body of each Op_XXX sub-dfa with a clean state.
582  status.initialize();
583
584  // Walk the list, compacting it
585  MatchList* mList = _mlistab[i];
586  do {
587    // Hash each entry using inputs as key and pointer as data.
588    // If there is already an entry, keep the one with lower cost, and
589    // remove the other one from the list.
590    prune_matchlist(minimize, *mList);
591    // Iterate
592    mList = mList->get_next();
593  } while(mList != NULL);
594
595  // Hoist previously specified common sub-expressions out of predicates
596  dfa_shared_preds::reset_found();
597  dfa_shared_preds::cse_matchlist(_mlistab[i]);
598  dfa_shared_preds::generate_cse(fp);
599
600  mList = _mlistab[i];
601
602  // Walk the list again, generating code
603  do {
604    // Each match can generate its own chains
605    operands_chained_from.Clear();
606    gen_match(fp, *mList, status, operands_chained_from);
607    mList = mList->get_next();
608  } while(mList != NULL);
609  // Fill in any chain rules which add instructions
610  // These can generate their own chains as well.
611  operands_chained_from.Clear();  //
612  if( debug_output1 ) { fprintf(fp, "// top level chain rules for: %s \n", (char *)NodeClassNames[i]); } // %%%%% Explanation
613  const Expr *zeroCost = new Expr("0");
614  chain_rule(fp, "   ", (char *)NodeClassNames[i], zeroCost, "Invalid",
615             operands_chained_from, status);
616}
617
618
619
620//------------------------------Expr------------------------------------------
621Expr *Expr::_unknown_expr = NULL;
622char  Expr::string_buffer[STRING_BUFFER_LENGTH];
623char  Expr::external_buffer[STRING_BUFFER_LENGTH];
624bool  Expr::_init_buffers = Expr::init_buffers();
625
626Expr::Expr() {
627  _external_name = NULL;
628  _expr          = "Invalid_Expr";
629  _min_value     = Expr::Max;
630  _max_value     = Expr::Zero;
631}
632Expr::Expr(const char *cost) {
633  _external_name = NULL;
634
635  int intval = 0;
636  if( cost == NULL ) {
637    _expr = "0";
638    _min_value = Expr::Zero;
639    _max_value = Expr::Zero;
640  }
641  else if( ADLParser::is_int_token(cost, intval) ) {
642    _expr = cost;
643    _min_value = intval;
644    _max_value = intval;
645  }
646  else {
647    assert( strcmp(cost,"0") != 0, "Recognize string zero as an int");
648    _expr = cost;
649    _min_value = Expr::Zero;
650    _max_value = Expr::Max;
651  }
652}
653
654Expr::Expr(const char *name, const char *expression, int min_value, int max_value) {
655  _external_name = name;
656  _expr          = expression ? expression : name;
657  _min_value     = min_value;
658  _max_value     = max_value;
659  assert(_min_value >= 0 && _min_value <= Expr::Max, "value out of range");
660  assert(_max_value >= 0 && _max_value <= Expr::Max, "value out of range");
661}
662
663Expr *Expr::clone() const {
664  Expr *cost = new Expr();
665  cost->_external_name = _external_name;
666  cost->_expr          = _expr;
667  cost->_min_value     = _min_value;
668  cost->_max_value     = _max_value;
669
670  return cost;
671}
672
673void Expr::add(const Expr *c) {
674  // Do not update fields until all computation is complete
675  const char *external  = compute_external(this, c);
676  const char *expr      = compute_expr(this, c);
677  int         min_value = compute_min (this, c);
678  int         max_value = compute_max (this, c);
679
680  _external_name = external;
681  _expr      = expr;
682  _min_value = min_value;
683  _max_value = max_value;
684}
685
686void Expr::add(const char *c) {
687  Expr *cost = new Expr(c);
688  add(cost);
689}
690
691void Expr::add(const char *c, ArchDesc &AD) {
692  const Expr *e = AD.globalDefs()[c];
693  if( e != NULL ) {
694    // use the value of 'c' defined in <arch>.ad
695    add(e);
696  } else {
697    Expr *cost = new Expr(c);
698    add(cost);
699  }
700}
701
702const char *Expr::compute_external(const Expr *c1, const Expr *c2) {
703  const char * result = NULL;
704
705  // Preserve use of external name which has a zero value
706  if( c1->_external_name != NULL ) {
707    sprintf( string_buffer, "%s", c1->as_string());
708    if( !c2->is_zero() ) {
709      strcat( string_buffer, "+");
710      strcat( string_buffer, c2->as_string());
711    }
712    result = strdup(string_buffer);
713  }
714  else if( c2->_external_name != NULL ) {
715    if( !c1->is_zero() ) {
716      sprintf( string_buffer, "%s", c1->as_string());
717      strcat( string_buffer, " + ");
718    } else {
719      string_buffer[0] = '\0';
720    }
721    strcat( string_buffer, c2->_external_name );
722    result = strdup(string_buffer);
723  }
724  return result;
725}
726
727const char *Expr::compute_expr(const Expr *c1, const Expr *c2) {
728  if( !c1->is_zero() ) {
729    sprintf( string_buffer, "%s", c1->_expr);
730    if( !c2->is_zero() ) {
731      strcat( string_buffer, "+");
732      strcat( string_buffer, c2->_expr);
733    }
734  }
735  else if( !c2->is_zero() ) {
736    sprintf( string_buffer, "%s", c2->_expr);
737  }
738  else {
739    sprintf( string_buffer, "0");
740  }
741  char *cost = strdup(string_buffer);
742
743  return cost;
744}
745
746int Expr::compute_min(const Expr *c1, const Expr *c2) {
747  int result = c1->_min_value + c2->_min_value;
748  assert( result >= 0, "Invalid cost computation");
749
750  return result;
751}
752
753int Expr::compute_max(const Expr *c1, const Expr *c2) {
754  int result = c1->_max_value + c2->_max_value;
755  if( result < 0 ) {  // check for overflow
756    result = Expr::Max;
757  }
758
759  return result;
760}
761
762void Expr::print() const {
763  if( _external_name != NULL ) {
764    printf("  %s == (%s) === [%d, %d]\n", _external_name, _expr, _min_value, _max_value);
765  } else {
766    printf("  %s === [%d, %d]\n", _expr, _min_value, _max_value);
767  }
768}
769
770void Expr::print_define(FILE *fp) const {
771  assert( _external_name != NULL, "definition does not have a name");
772  assert( _min_value == _max_value, "Expect user definitions to have constant value");
773  fprintf(fp, "#define  %s  (%s)  \n", _external_name, _expr);
774  fprintf(fp, "// value == %d \n", _min_value);
775}
776
777void Expr::print_assert(FILE *fp) const {
778  assert( _external_name != NULL, "definition does not have a name");
779  assert( _min_value == _max_value, "Expect user definitions to have constant value");
780  fprintf(fp, "  assert( %s == %d, \"Expect (%s) to equal %d\");\n", _external_name, _min_value, _expr, _min_value);
781}
782
783Expr *Expr::get_unknown() {
784  if( Expr::_unknown_expr == NULL ) {
785    Expr::_unknown_expr = new Expr();
786  }
787
788  return Expr::_unknown_expr;
789}
790
791bool Expr::init_buffers() {
792  // Fill buffers with 0
793  for( int i = 0; i < STRING_BUFFER_LENGTH; ++i ) {
794    external_buffer[i] = '\0';
795    string_buffer[i]   = '\0';
796  }
797
798  return true;
799}
800
801bool Expr::check_buffers() {
802  // returns 'true' if buffer use may have overflowed
803  bool ok = true;
804  for( int i = STRING_BUFFER_LENGTH - 100; i < STRING_BUFFER_LENGTH; ++i) {
805    if( external_buffer[i] != '\0' || string_buffer[i]   != '\0' ) {
806      ok = false;
807      assert( false, "Expr:: Buffer overflow");
808    }
809  }
810
811  return ok;
812}
813
814
815//------------------------------ExprDict---------------------------------------
816// Constructor
817ExprDict::ExprDict( CmpKey cmp, Hash hash, Arena *arena )
818  : _expr(cmp, hash, arena), _defines()  {
819}
820ExprDict::~ExprDict() {
821}
822
823// Return # of name-Expr pairs in dict
824int ExprDict::Size(void) const {
825  return _expr.Size();
826}
827
828// define inserts the given key-value pair into the dictionary,
829// and records the name in order for later output, ...
830const Expr  *ExprDict::define(const char *name, Expr *expr) {
831  const Expr *old_expr = (*this)[name];
832  assert(old_expr == NULL, "Implementation does not support redefinition");
833
834  _expr.Insert(name, expr);
835  _defines.addName(name);
836
837  return old_expr;
838}
839
840// Insert inserts the given key-value pair into the dictionary.  The prior
841// value of the key is returned; NULL if the key was not previously defined.
842const Expr  *ExprDict::Insert(const char *name, Expr *expr) {
843  return (Expr*)_expr.Insert((void*)name, (void*)expr);
844}
845
846// Finds the value of a given key; or NULL if not found.
847// The dictionary is NOT changed.
848const Expr  *ExprDict::operator [](const char *name) const {
849  return (Expr*)_expr[name];
850}
851
852void ExprDict::print_defines(FILE *fp) {
853  fprintf(fp, "\n");
854  const char *name = NULL;
855  for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
856    const Expr *expr = (const Expr*)_expr[name];
857    assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
858    expr->print_define(fp);
859  }
860}
861void ExprDict::print_asserts(FILE *fp) {
862  fprintf(fp, "\n");
863  fprintf(fp, "  // Following assertions generated from definition section\n");
864  const char *name = NULL;
865  for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
866    const Expr *expr = (const Expr*)_expr[name];
867    assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
868    expr->print_assert(fp);
869  }
870}
871
872// Print out the dictionary contents as key-value pairs
873static void dumpekey(const void* key)  { fprintf(stdout, "%s", (char*) key); }
874static void dumpexpr(const void* expr) { fflush(stdout); ((Expr*)expr)->print(); }
875
876void ExprDict::dump() {
877  _expr.print(dumpekey, dumpexpr);
878}
879
880
881//------------------------------ExprDict::private------------------------------
882// Disable public use of constructor, copy-ctor, operator =, operator ==
883ExprDict::ExprDict( ) : _expr(cmpkey,hashkey), _defines()  {
884  assert( false, "NotImplemented");
885}
886ExprDict::ExprDict( const ExprDict & ) : _expr(cmpkey,hashkey), _defines() {
887  assert( false, "NotImplemented");
888}
889ExprDict &ExprDict::operator =( const ExprDict &rhs) {
890  assert( false, "NotImplemented");
891  _expr = rhs._expr;
892  return *this;
893}
894// == compares two dictionaries; they must have the same keys (their keys
895// must match using CmpKey) and they must have the same values (pointer
896// comparison).  If so 1 is returned, if not 0 is returned.
897bool ExprDict::operator ==(const ExprDict &d) const {
898  assert( false, "NotImplemented");
899  return false;
900}
901
902
903//------------------------------Production-------------------------------------
904Production::Production(const char *result, const char *constraint, const char *valid) {
905  initialize();
906  _result     = result;
907  _constraint = constraint;
908  _valid      = valid;
909}
910
911void Production::initialize() {
912  _result     = NULL;
913  _constraint = NULL;
914  _valid      = knownInvalid;
915  _cost_lb    = Expr::get_unknown();
916  _cost_ub    = Expr::get_unknown();
917}
918
919void Production::print() {
920  printf("%s", (_result     == NULL ? "NULL" : _result ) );
921  printf("%s", (_constraint == NULL ? "NULL" : _constraint ) );
922  printf("%s", (_valid      == NULL ? "NULL" : _valid ) );
923  _cost_lb->print();
924  _cost_ub->print();
925}
926
927
928//------------------------------ProductionState--------------------------------
929void ProductionState::initialize() {
930  _constraint = noConstraint;
931
932  // reset each Production currently in the dictionary
933  DictI iter( &_production );
934  const void *x, *y = NULL;
935  for( ; iter.test(); ++iter) {
936    x = iter._key;
937    y = iter._value;
938    Production *p = (Production*)y;
939    if( p != NULL ) {
940      p->initialize();
941    }
942  }
943}
944
945Production *ProductionState::getProduction(const char *result) {
946  Production *p = (Production *)_production[result];
947  if( p == NULL ) {
948    p = new Production(result, _constraint, knownInvalid);
949    _production.Insert(result, p);
950  }
951
952  return p;
953}
954
955void ProductionState::set_constraint(const char *constraint) {
956  _constraint = constraint;
957}
958
959const char *ProductionState::valid(const char *result) {
960  return getProduction(result)->valid();
961}
962
963void ProductionState::set_valid(const char *result) {
964  Production *p = getProduction(result);
965
966  // Update valid as allowed by current constraints
967  if( _constraint == noConstraint ) {
968    p->_valid = knownValid;
969  } else {
970    if( p->_valid != knownValid ) {
971      p->_valid = unknownValid;
972    }
973  }
974}
975
976Expr *ProductionState::cost_lb(const char *result) {
977  return getProduction(result)->cost_lb();
978}
979
980Expr *ProductionState::cost_ub(const char *result) {
981  return getProduction(result)->cost_ub();
982}
983
984void ProductionState::set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check) {
985  Production *p = getProduction(result);
986
987  if( p->_valid == knownInvalid ) {
988    // Our cost bounds are not unknown, just not defined.
989    p->_cost_lb = cost->clone();
990    p->_cost_ub = cost->clone();
991  } else if (has_state_check || _constraint != noConstraint) {
992    // The production is protected by a condition, so
993    // the cost bounds may expand.
994    // _cost_lb = min(cost, _cost_lb)
995    if( cost->less_than_or_equal(p->_cost_lb) ) {
996      p->_cost_lb = cost->clone();
997    }
998    // _cost_ub = max(cost, _cost_ub)
999    if( p->_cost_ub->less_than_or_equal(cost) ) {
1000      p->_cost_ub = cost->clone();
1001    }
1002  } else if (has_cost_check) {
1003    // The production has no condition check, but does
1004    // have a cost check that could reduce the upper
1005    // and/or lower bound.
1006    // _cost_lb = min(cost, _cost_lb)
1007    if( cost->less_than_or_equal(p->_cost_lb) ) {
1008      p->_cost_lb = cost->clone();
1009    }
1010    // _cost_ub = min(cost, _cost_ub)
1011    if( cost->less_than_or_equal(p->_cost_ub) ) {
1012      p->_cost_ub = cost->clone();
1013    }
1014  } else {
1015    // The costs are unconditionally set.
1016    p->_cost_lb = cost->clone();
1017    p->_cost_ub = cost->clone();
1018  }
1019
1020}
1021
1022// Print out the dictionary contents as key-value pairs
1023static void print_key (const void* key)              { fprintf(stdout, "%s", (char*) key); }
1024static void print_production(const void* production) { fflush(stdout); ((Production*)production)->print(); }
1025
1026void ProductionState::print() {
1027  _production.print(print_key, print_production);
1028}
1029