os_linux_zero.cpp revision 1010:354d3184f6b2
1/*
2 * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * Copyright 2007, 2008 Red Hat, Inc.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 */
25
26// do not include precompiled header file
27#include "incls/_os_linux_zero.cpp.incl"
28
29address os::current_stack_pointer() {
30  address dummy = (address) &dummy;
31  return dummy;
32}
33
34frame os::get_sender_for_C_frame(frame* fr) {
35  ShouldNotCallThis();
36}
37
38frame os::current_frame() {
39  // The only thing that calls this is the stack printing code in
40  // VMError::report:
41  //   - Step 110 (printing stack bounds) uses the sp in the frame
42  //     to determine the amount of free space on the stack.  We
43  //     set the sp to a close approximation of the real value in
44  //     order to allow this step to complete.
45  //   - Step 120 (printing native stack) tries to walk the stack.
46  //     The frame we create has a NULL pc, which is ignored as an
47  //     invalid frame.
48  frame dummy = frame();
49  dummy.set_sp((intptr_t *) current_stack_pointer());
50  return dummy;
51}
52
53char* os::non_memory_address_word() {
54  // Must never look like an address returned by reserve_memory,
55  // even in its subfields (as defined by the CPU immediate fields,
56  // if the CPU splits constants across multiple instructions).
57#ifdef SPARC
58  // On SPARC, 0 != %hi(any real address), because there is no
59  // allocation in the first 1Kb of the virtual address space.
60  return (char *) 0;
61#else
62  // This is the value for x86; works pretty well for PPC too.
63  return (char *) -1;
64#endif // SPARC
65}
66
67void os::initialize_thread() {
68  // Nothing to do.
69}
70
71address os::Linux::ucontext_get_pc(ucontext_t* uc) {
72  ShouldNotCallThis();
73}
74
75ExtendedPC os::fetch_frame_from_context(void* ucVoid,
76                                        intptr_t** ret_sp,
77                                        intptr_t** ret_fp) {
78  ShouldNotCallThis();
79}
80
81frame os::fetch_frame_from_context(void* ucVoid) {
82  ShouldNotCallThis();
83}
84
85extern "C" int
86JVM_handle_linux_signal(int sig,
87                        siginfo_t* info,
88                        void* ucVoid,
89                        int abort_if_unrecognized) {
90  ucontext_t* uc = (ucontext_t*) ucVoid;
91
92  Thread* t = ThreadLocalStorage::get_thread_slow();
93
94  SignalHandlerMark shm(t);
95
96  // Note: it's not uncommon that JNI code uses signal/sigset to
97  // install then restore certain signal handler (e.g. to temporarily
98  // block SIGPIPE, or have a SIGILL handler when detecting CPU
99  // type). When that happens, JVM_handle_linux_signal() might be
100  // invoked with junk info/ucVoid. To avoid unnecessary crash when
101  // libjsig is not preloaded, try handle signals that do not require
102  // siginfo/ucontext first.
103
104  if (sig == SIGPIPE || sig == SIGXFSZ) {
105    // allow chained handler to go first
106    if (os::Linux::chained_handler(sig, info, ucVoid)) {
107      return true;
108    } else {
109      if (PrintMiscellaneous && (WizardMode || Verbose)) {
110        char buf[64];
111        warning("Ignoring %s - see bugs 4229104 or 646499219",
112                os::exception_name(sig, buf, sizeof(buf)));
113      }
114      return true;
115    }
116  }
117
118  JavaThread* thread = NULL;
119  VMThread* vmthread = NULL;
120  if (os::Linux::signal_handlers_are_installed) {
121    if (t != NULL ){
122      if(t->is_Java_thread()) {
123        thread = (JavaThread*)t;
124      }
125      else if(t->is_VM_thread()){
126        vmthread = (VMThread *)t;
127      }
128    }
129  }
130
131  if (info != NULL && thread != NULL) {
132    // Handle ALL stack overflow variations here
133    if (sig == SIGSEGV) {
134      address addr = (address) info->si_addr;
135
136      // check if fault address is within thread stack
137      if (addr < thread->stack_base() &&
138          addr >= thread->stack_base() - thread->stack_size()) {
139        // stack overflow
140        if (thread->in_stack_yellow_zone(addr)) {
141          thread->disable_stack_yellow_zone();
142          ShouldNotCallThis();
143        }
144        else if (thread->in_stack_red_zone(addr)) {
145          thread->disable_stack_red_zone();
146          ShouldNotCallThis();
147        }
148        else {
149          // Accessing stack address below sp may cause SEGV if
150          // current thread has MAP_GROWSDOWN stack. This should
151          // only happen when current thread was created by user
152          // code with MAP_GROWSDOWN flag and then attached to VM.
153          // See notes in os_linux.cpp.
154          if (thread->osthread()->expanding_stack() == 0) {
155            thread->osthread()->set_expanding_stack();
156            if (os::Linux::manually_expand_stack(thread, addr)) {
157              thread->osthread()->clear_expanding_stack();
158              return true;
159            }
160            thread->osthread()->clear_expanding_stack();
161          }
162          else {
163            fatal("recursive segv. expanding stack.");
164          }
165        }
166      }
167    }
168
169    /*if (thread->thread_state() == _thread_in_Java) {
170      ShouldNotCallThis();
171    }
172    else*/ if (thread->thread_state() == _thread_in_vm &&
173               sig == SIGBUS && thread->doing_unsafe_access()) {
174      ShouldNotCallThis();
175    }
176
177    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
178    // kicks in and the heap gets shrunk before the field access.
179    /*if (sig == SIGSEGV || sig == SIGBUS) {
180      address addr = JNI_FastGetField::find_slowcase_pc(pc);
181      if (addr != (address)-1) {
182        stub = addr;
183      }
184    }*/
185
186    // Check to see if we caught the safepoint code in the process
187    // of write protecting the memory serialization page.  It write
188    // enables the page immediately after protecting it so we can
189    // just return to retry the write.
190    if (sig == SIGSEGV &&
191        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
192      // Block current thread until permission is restored.
193      os::block_on_serialize_page_trap();
194      return true;
195    }
196  }
197
198  // signal-chaining
199  if (os::Linux::chained_handler(sig, info, ucVoid)) {
200     return true;
201  }
202
203  if (!abort_if_unrecognized) {
204    // caller wants another chance, so give it to him
205    return false;
206  }
207
208#ifndef PRODUCT
209  if (sig == SIGSEGV) {
210    fatal("\n#"
211          "\n#    /--------------------\\"
212          "\n#    | segmentation fault |"
213          "\n#    \\---\\ /--------------/"
214          "\n#        /"
215          "\n#    [-]        |\\_/|    "
216          "\n#    (+)=C      |o o|__  "
217          "\n#    | |        =-*-=__\\ "
218          "\n#    OOO        c_c_(___)");
219  }
220#endif // !PRODUCT
221
222  const char *fmt = "caught unhandled signal %d";
223  char buf[64];
224
225  sprintf(buf, fmt, sig);
226  fatal(buf);
227}
228
229void os::Linux::init_thread_fpu_state(void) {
230  // Nothing to do
231}
232
233int os::Linux::get_fpu_control_word() {
234  ShouldNotCallThis();
235}
236
237void os::Linux::set_fpu_control_word(int fpu) {
238  ShouldNotCallThis();
239}
240
241bool os::is_allocatable(size_t bytes) {
242  ShouldNotCallThis();
243}
244
245///////////////////////////////////////////////////////////////////////////////
246// thread stack
247
248size_t os::Linux::min_stack_allowed = 64 * K;
249
250bool os::Linux::supports_variable_stack_size() {
251  return true;
252}
253
254size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
255#ifdef _LP64
256  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
257#else
258  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
259#endif // _LP64
260  return s;
261}
262
263size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
264  // Only enable glibc guard pages for non-Java threads
265  // (Java threads have HotSpot guard pages)
266  return (thr_type == java_thread ? 0 : page_size());
267}
268
269static void current_stack_region(address *bottom, size_t *size) {
270  pthread_attr_t attr;
271  int res = pthread_getattr_np(pthread_self(), &attr);
272  if (res != 0) {
273    if (res == ENOMEM) {
274      vm_exit_out_of_memory(0, "pthread_getattr_np");
275    }
276    else {
277      fatal1("pthread_getattr_np failed with errno = %d", res);
278    }
279  }
280
281  address stack_bottom;
282  size_t stack_bytes;
283  res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
284  if (res != 0) {
285    fatal1("pthread_attr_getstack failed with errno = %d", res);
286  }
287  address stack_top = stack_bottom + stack_bytes;
288
289  // The block of memory returned by pthread_attr_getstack() includes
290  // guard pages where present.  We need to trim these off.
291  size_t page_bytes = os::Linux::page_size();
292  assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
293
294  size_t guard_bytes;
295  res = pthread_attr_getguardsize(&attr, &guard_bytes);
296  if (res != 0) {
297    fatal1("pthread_attr_getguardsize failed with errno = %d", res);
298  }
299  int guard_pages = align_size_up(guard_bytes, page_bytes) / page_bytes;
300  assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
301
302#ifdef IA64
303  // IA64 has two stacks sharing the same area of memory, a normal
304  // stack growing downwards and a register stack growing upwards.
305  // Guard pages, if present, are in the centre.  This code splits
306  // the stack in two even without guard pages, though in theory
307  // there's nothing to stop us allocating more to the normal stack
308  // or more to the register stack if one or the other were found
309  // to grow faster.
310  int total_pages = align_size_down(stack_bytes, page_bytes) / page_bytes;
311  stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
312#endif // IA64
313
314  stack_bottom += guard_bytes;
315
316  pthread_attr_destroy(&attr);
317
318  // The initial thread has a growable stack, and the size reported
319  // by pthread_attr_getstack is the maximum size it could possibly
320  // be given what currently mapped.  This can be huge, so we cap it.
321  if (os::Linux::is_initial_thread()) {
322    stack_bytes = stack_top - stack_bottom;
323
324    if (stack_bytes > JavaThread::stack_size_at_create())
325      stack_bytes = JavaThread::stack_size_at_create();
326
327    stack_bottom = stack_top - stack_bytes;
328  }
329
330  assert(os::current_stack_pointer() >= stack_bottom, "should do");
331  assert(os::current_stack_pointer() < stack_top, "should do");
332
333  *bottom = stack_bottom;
334  *size = stack_top - stack_bottom;
335}
336
337address os::current_stack_base() {
338  address bottom;
339  size_t size;
340  current_stack_region(&bottom, &size);
341  return bottom + size;
342}
343
344size_t os::current_stack_size() {
345  // stack size includes normal stack and HotSpot guard pages
346  address bottom;
347  size_t size;
348  current_stack_region(&bottom, &size);
349  return size;
350}
351
352/////////////////////////////////////////////////////////////////////////////
353// helper functions for fatal error handler
354
355void os::print_context(outputStream* st, void* context) {
356  ShouldNotCallThis();
357}
358
359/////////////////////////////////////////////////////////////////////////////
360// Stubs for things that would be in linux_zero.s if it existed.
361// You probably want to disassemble these monkeys to check they're ok.
362
363extern "C" {
364  int SpinPause() {
365  }
366
367  int SafeFetch32(int *adr, int errValue) {
368    int value = errValue;
369    value = *adr;
370    return value;
371  }
372  intptr_t SafeFetchN(intptr_t *adr, intptr_t errValue) {
373    intptr_t value = errValue;
374    value = *adr;
375    return value;
376  }
377
378  void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
379    if (from > to) {
380      jshort *end = from + count;
381      while (from < end)
382        *(to++) = *(from++);
383    }
384    else if (from < to) {
385      jshort *end = from;
386      from += count - 1;
387      to   += count - 1;
388      while (from >= end)
389        *(to--) = *(from--);
390    }
391  }
392  void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
393    if (from > to) {
394      jint *end = from + count;
395      while (from < end)
396        *(to++) = *(from++);
397    }
398    else if (from < to) {
399      jint *end = from;
400      from += count - 1;
401      to   += count - 1;
402      while (from >= end)
403        *(to--) = *(from--);
404    }
405  }
406  void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
407    if (from > to) {
408      jlong *end = from + count;
409      while (from < end)
410        os::atomic_copy64(from++, to++);
411    }
412    else if (from < to) {
413      jlong *end = from;
414      from += count - 1;
415      to   += count - 1;
416      while (from >= end)
417        os::atomic_copy64(from--, to--);
418    }
419  }
420
421  void _Copy_arrayof_conjoint_bytes(HeapWord* from,
422                                    HeapWord* to,
423                                    size_t    count) {
424    ShouldNotCallThis();
425  }
426  void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
427                                      HeapWord* to,
428                                      size_t    count) {
429    ShouldNotCallThis();
430  }
431  void _Copy_arrayof_conjoint_jints(HeapWord* from,
432                                    HeapWord* to,
433                                    size_t    count) {
434    ShouldNotCallThis();
435  }
436  void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
437                                     HeapWord* to,
438                                     size_t    count) {
439    ShouldNotCallThis();
440  }
441};
442
443/////////////////////////////////////////////////////////////////////////////
444// Implementations of atomic operations not supported by processors.
445//  -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
446
447#ifndef _LP64
448extern "C" {
449  long long unsigned int __sync_val_compare_and_swap_8(
450    volatile void *ptr,
451    long long unsigned int oldval,
452    long long unsigned int newval) {
453    ShouldNotCallThis();
454  }
455};
456#endif // !_LP64
457