os_linux_x86.cpp revision 11120:f2916653b884
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_linux.inline.hpp"
37#include "os_share_linux.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "services/memTracker.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56
57// put OS-includes here
58# include <sys/types.h>
59# include <sys/mman.h>
60# include <pthread.h>
61# include <signal.h>
62# include <errno.h>
63# include <dlfcn.h>
64# include <stdlib.h>
65# include <stdio.h>
66# include <unistd.h>
67# include <sys/resource.h>
68# include <pthread.h>
69# include <sys/stat.h>
70# include <sys/time.h>
71# include <sys/utsname.h>
72# include <sys/socket.h>
73# include <sys/wait.h>
74# include <pwd.h>
75# include <poll.h>
76# include <ucontext.h>
77# include <fpu_control.h>
78
79#ifdef AMD64
80#define REG_SP REG_RSP
81#define REG_PC REG_RIP
82#define REG_FP REG_RBP
83#define SPELL_REG_SP "rsp"
84#define SPELL_REG_FP "rbp"
85#else
86#define REG_SP REG_UESP
87#define REG_PC REG_EIP
88#define REG_FP REG_EBP
89#define SPELL_REG_SP "esp"
90#define SPELL_REG_FP "ebp"
91#endif // AMD64
92
93address os::current_stack_pointer() {
94#ifdef SPARC_WORKS
95  register void *esp;
96  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
97  return (address) ((char*)esp + sizeof(long)*2);
98#elif defined(__clang__)
99  intptr_t* esp;
100  __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
101  return (address) esp;
102#else
103  register void *esp __asm__ (SPELL_REG_SP);
104  return (address) esp;
105#endif
106}
107
108char* os::non_memory_address_word() {
109  // Must never look like an address returned by reserve_memory,
110  // even in its subfields (as defined by the CPU immediate fields,
111  // if the CPU splits constants across multiple instructions).
112
113  return (char*) -1;
114}
115
116void os::initialize_thread(Thread* thr) {
117// Nothing to do.
118}
119
120address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
121  return (address)uc->uc_mcontext.gregs[REG_PC];
122}
123
124void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
125  uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
126}
127
128intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
129  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
130}
131
132intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
133  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
134}
135
136// For Forte Analyzer AsyncGetCallTrace profiling support - thread
137// is currently interrupted by SIGPROF.
138// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
139// frames. Currently we don't do that on Linux, so it's the same as
140// os::fetch_frame_from_context().
141// This method is also used for stack overflow signal handling.
142ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
143  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
144
145  assert(thread != NULL, "just checking");
146  assert(ret_sp != NULL, "just checking");
147  assert(ret_fp != NULL, "just checking");
148
149  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
150}
151
152ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
153                    intptr_t** ret_sp, intptr_t** ret_fp) {
154
155  ExtendedPC  epc;
156  const ucontext_t* uc = (const ucontext_t*)ucVoid;
157
158  if (uc != NULL) {
159    epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
160    if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
161    if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
162  } else {
163    // construct empty ExtendedPC for return value checking
164    epc = ExtendedPC(NULL);
165    if (ret_sp) *ret_sp = (intptr_t *)NULL;
166    if (ret_fp) *ret_fp = (intptr_t *)NULL;
167  }
168
169  return epc;
170}
171
172frame os::fetch_frame_from_context(const void* ucVoid) {
173  intptr_t* sp;
174  intptr_t* fp;
175  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
176  return frame(sp, fp, epc.pc());
177}
178
179frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
180  intptr_t* sp;
181  intptr_t* fp;
182  ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
183  return frame(sp, fp, epc.pc());
184}
185
186bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
187  address pc = (address) os::Linux::ucontext_get_pc(uc);
188  if (Interpreter::contains(pc)) {
189    // interpreter performs stack banging after the fixed frame header has
190    // been generated while the compilers perform it before. To maintain
191    // semantic consistency between interpreted and compiled frames, the
192    // method returns the Java sender of the current frame.
193    *fr = os::fetch_frame_from_ucontext(thread, uc);
194    if (!fr->is_first_java_frame()) {
195      assert(fr->safe_for_sender(thread), "Safety check");
196      *fr = fr->java_sender();
197    }
198  } else {
199    // more complex code with compiled code
200    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
201    CodeBlob* cb = CodeCache::find_blob(pc);
202    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
203      // Not sure where the pc points to, fallback to default
204      // stack overflow handling
205      return false;
206    } else {
207      // in compiled code, the stack banging is performed just after the return pc
208      // has been pushed on the stack
209      intptr_t* fp = os::Linux::ucontext_get_fp(uc);
210      intptr_t* sp = os::Linux::ucontext_get_sp(uc);
211      *fr = frame(sp + 1, fp, (address)*sp);
212      if (!fr->is_java_frame()) {
213        assert(fr->safe_for_sender(thread), "Safety check");
214        assert(!fr->is_first_frame(), "Safety check");
215        *fr = fr->java_sender();
216      }
217    }
218  }
219  assert(fr->is_java_frame(), "Safety check");
220  return true;
221}
222
223// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
224// turned off by -fomit-frame-pointer,
225frame os::get_sender_for_C_frame(frame* fr) {
226  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
227}
228
229intptr_t* _get_previous_fp() {
230#ifdef SPARC_WORKS
231  register intptr_t **ebp;
232  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
233#elif defined(__clang__)
234  intptr_t **ebp;
235  __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
236#else
237  register intptr_t **ebp __asm__ (SPELL_REG_FP);
238#endif
239  return (intptr_t*) *ebp;   // we want what it points to.
240}
241
242
243frame os::current_frame() {
244  intptr_t* fp = _get_previous_fp();
245  frame myframe((intptr_t*)os::current_stack_pointer(),
246                (intptr_t*)fp,
247                CAST_FROM_FN_PTR(address, os::current_frame));
248  if (os::is_first_C_frame(&myframe)) {
249    // stack is not walkable
250    return frame();
251  } else {
252    return os::get_sender_for_C_frame(&myframe);
253  }
254}
255
256// Utility functions
257
258// From IA32 System Programming Guide
259enum {
260  trap_page_fault = 0xE
261};
262
263extern "C" JNIEXPORT int
264JVM_handle_linux_signal(int sig,
265                        siginfo_t* info,
266                        void* ucVoid,
267                        int abort_if_unrecognized) {
268  ucontext_t* uc = (ucontext_t*) ucVoid;
269
270  Thread* t = Thread::current_or_null_safe();
271
272  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
273  // (no destructors can be run)
274  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
275
276  SignalHandlerMark shm(t);
277
278  // Note: it's not uncommon that JNI code uses signal/sigset to install
279  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
280  // or have a SIGILL handler when detecting CPU type). When that happens,
281  // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
282  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
283  // that do not require siginfo/ucontext first.
284
285  if (sig == SIGPIPE || sig == SIGXFSZ) {
286    // allow chained handler to go first
287    if (os::Linux::chained_handler(sig, info, ucVoid)) {
288      return true;
289    } else {
290      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
291      return true;
292    }
293  }
294
295  JavaThread* thread = NULL;
296  VMThread* vmthread = NULL;
297  if (os::Linux::signal_handlers_are_installed) {
298    if (t != NULL ){
299      if(t->is_Java_thread()) {
300        thread = (JavaThread*)t;
301      }
302      else if(t->is_VM_thread()){
303        vmthread = (VMThread *)t;
304      }
305    }
306  }
307/*
308  NOTE: does not seem to work on linux.
309  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
310    // can't decode this kind of signal
311    info = NULL;
312  } else {
313    assert(sig == info->si_signo, "bad siginfo");
314  }
315*/
316  // decide if this trap can be handled by a stub
317  address stub = NULL;
318
319  address pc          = NULL;
320
321  //%note os_trap_1
322  if (info != NULL && uc != NULL && thread != NULL) {
323    pc = (address) os::Linux::ucontext_get_pc(uc);
324
325    if (StubRoutines::is_safefetch_fault(pc)) {
326      os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
327      return 1;
328    }
329
330#ifndef AMD64
331    // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
332    // This can happen in any running code (currently more frequently in
333    // interpreter code but has been seen in compiled code)
334    if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
335      fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
336            "to unstable signal handling in this distribution.");
337    }
338#endif // AMD64
339
340    // Handle ALL stack overflow variations here
341    if (sig == SIGSEGV) {
342      address addr = (address) info->si_addr;
343
344      // check if fault address is within thread stack
345      if (thread->on_local_stack(addr)) {
346        // stack overflow
347        if (thread->in_stack_yellow_reserved_zone(addr)) {
348          if (thread->thread_state() == _thread_in_Java) {
349            if (thread->in_stack_reserved_zone(addr)) {
350              frame fr;
351              if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
352                assert(fr.is_java_frame(), "Must be a Java frame");
353                frame activation =
354                  SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
355                if (activation.sp() != NULL) {
356                  thread->disable_stack_reserved_zone();
357                  if (activation.is_interpreted_frame()) {
358                    thread->set_reserved_stack_activation((address)(
359                      activation.fp() + frame::interpreter_frame_initial_sp_offset));
360                  } else {
361                    thread->set_reserved_stack_activation((address)activation.unextended_sp());
362                  }
363                  return 1;
364                }
365              }
366            }
367            // Throw a stack overflow exception.  Guard pages will be reenabled
368            // while unwinding the stack.
369            thread->disable_stack_yellow_reserved_zone();
370            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
371          } else {
372            // Thread was in the vm or native code.  Return and try to finish.
373            thread->disable_stack_yellow_reserved_zone();
374            return 1;
375          }
376        } else if (thread->in_stack_red_zone(addr)) {
377          // Fatal red zone violation.  Disable the guard pages and fall through
378          // to handle_unexpected_exception way down below.
379          thread->disable_stack_red_zone();
380          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
381
382          // This is a likely cause, but hard to verify. Let's just print
383          // it as a hint.
384          tty->print_raw_cr("Please check if any of your loaded .so files has "
385                            "enabled executable stack (see man page execstack(8))");
386        } else {
387          // Accessing stack address below sp may cause SEGV if current
388          // thread has MAP_GROWSDOWN stack. This should only happen when
389          // current thread was created by user code with MAP_GROWSDOWN flag
390          // and then attached to VM. See notes in os_linux.cpp.
391          if (thread->osthread()->expanding_stack() == 0) {
392             thread->osthread()->set_expanding_stack();
393             if (os::Linux::manually_expand_stack(thread, addr)) {
394               thread->osthread()->clear_expanding_stack();
395               return 1;
396             }
397             thread->osthread()->clear_expanding_stack();
398          } else {
399             fatal("recursive segv. expanding stack.");
400          }
401        }
402      }
403    }
404
405    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
406      // Verify that OS save/restore AVX registers.
407      stub = VM_Version::cpuinfo_cont_addr();
408    }
409
410    if (thread->thread_state() == _thread_in_Java) {
411      // Java thread running in Java code => find exception handler if any
412      // a fault inside compiled code, the interpreter, or a stub
413
414      if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
415        stub = SharedRuntime::get_poll_stub(pc);
416      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
417        // BugId 4454115: A read from a MappedByteBuffer can fault
418        // here if the underlying file has been truncated.
419        // Do not crash the VM in such a case.
420        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
421        CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
422        if (nm != NULL && nm->has_unsafe_access()) {
423          address next_pc = Assembler::locate_next_instruction(pc);
424          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
425        }
426      }
427      else
428
429#ifdef AMD64
430      if (sig == SIGFPE  &&
431          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
432        stub =
433          SharedRuntime::
434          continuation_for_implicit_exception(thread,
435                                              pc,
436                                              SharedRuntime::
437                                              IMPLICIT_DIVIDE_BY_ZERO);
438#else
439      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
440        // HACK: si_code does not work on linux 2.2.12-20!!!
441        int op = pc[0];
442        if (op == 0xDB) {
443          // FIST
444          // TODO: The encoding of D2I in i486.ad can cause an exception
445          // prior to the fist instruction if there was an invalid operation
446          // pending. We want to dismiss that exception. From the win_32
447          // side it also seems that if it really was the fist causing
448          // the exception that we do the d2i by hand with different
449          // rounding. Seems kind of weird.
450          // NOTE: that we take the exception at the NEXT floating point instruction.
451          assert(pc[0] == 0xDB, "not a FIST opcode");
452          assert(pc[1] == 0x14, "not a FIST opcode");
453          assert(pc[2] == 0x24, "not a FIST opcode");
454          return true;
455        } else if (op == 0xF7) {
456          // IDIV
457          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
458        } else {
459          // TODO: handle more cases if we are using other x86 instructions
460          //   that can generate SIGFPE signal on linux.
461          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
462          fatal("please update this code.");
463        }
464#endif // AMD64
465      } else if (sig == SIGSEGV &&
466               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
467          // Determination of interpreter/vtable stub/compiled code null exception
468          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
469      }
470    } else if (thread->thread_state() == _thread_in_vm &&
471               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
472               thread->doing_unsafe_access()) {
473        address next_pc = Assembler::locate_next_instruction(pc);
474        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
475    }
476
477    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
478    // and the heap gets shrunk before the field access.
479    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
480      address addr = JNI_FastGetField::find_slowcase_pc(pc);
481      if (addr != (address)-1) {
482        stub = addr;
483      }
484    }
485
486    // Check to see if we caught the safepoint code in the
487    // process of write protecting the memory serialization page.
488    // It write enables the page immediately after protecting it
489    // so we can just return to retry the write.
490    if ((sig == SIGSEGV) &&
491        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
492      // Block current thread until the memory serialize page permission restored.
493      os::block_on_serialize_page_trap();
494      return true;
495    }
496  }
497
498#ifndef AMD64
499  // Execution protection violation
500  //
501  // This should be kept as the last step in the triage.  We don't
502  // have a dedicated trap number for a no-execute fault, so be
503  // conservative and allow other handlers the first shot.
504  //
505  // Note: We don't test that info->si_code == SEGV_ACCERR here.
506  // this si_code is so generic that it is almost meaningless; and
507  // the si_code for this condition may change in the future.
508  // Furthermore, a false-positive should be harmless.
509  if (UnguardOnExecutionViolation > 0 &&
510      (sig == SIGSEGV || sig == SIGBUS) &&
511      uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
512    int page_size = os::vm_page_size();
513    address addr = (address) info->si_addr;
514    address pc = os::Linux::ucontext_get_pc(uc);
515    // Make sure the pc and the faulting address are sane.
516    //
517    // If an instruction spans a page boundary, and the page containing
518    // the beginning of the instruction is executable but the following
519    // page is not, the pc and the faulting address might be slightly
520    // different - we still want to unguard the 2nd page in this case.
521    //
522    // 15 bytes seems to be a (very) safe value for max instruction size.
523    bool pc_is_near_addr =
524      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
525    bool instr_spans_page_boundary =
526      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
527                       (intptr_t) page_size) > 0);
528
529    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
530      static volatile address last_addr =
531        (address) os::non_memory_address_word();
532
533      // In conservative mode, don't unguard unless the address is in the VM
534      if (addr != last_addr &&
535          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
536
537        // Set memory to RWX and retry
538        address page_start =
539          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
540        bool res = os::protect_memory((char*) page_start, page_size,
541                                      os::MEM_PROT_RWX);
542
543        log_debug(os)("Execution protection violation "
544                      "at " INTPTR_FORMAT
545                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
546                      p2i(page_start), (res ? "success" : "failed"), errno);
547        stub = pc;
548
549        // Set last_addr so if we fault again at the same address, we don't end
550        // up in an endless loop.
551        //
552        // There are two potential complications here.  Two threads trapping at
553        // the same address at the same time could cause one of the threads to
554        // think it already unguarded, and abort the VM.  Likely very rare.
555        //
556        // The other race involves two threads alternately trapping at
557        // different addresses and failing to unguard the page, resulting in
558        // an endless loop.  This condition is probably even more unlikely than
559        // the first.
560        //
561        // Although both cases could be avoided by using locks or thread local
562        // last_addr, these solutions are unnecessary complication: this
563        // handler is a best-effort safety net, not a complete solution.  It is
564        // disabled by default and should only be used as a workaround in case
565        // we missed any no-execute-unsafe VM code.
566
567        last_addr = addr;
568      }
569    }
570  }
571#endif // !AMD64
572
573  if (stub != NULL) {
574    // save all thread context in case we need to restore it
575    if (thread != NULL) thread->set_saved_exception_pc(pc);
576
577    os::Linux::ucontext_set_pc(uc, stub);
578    return true;
579  }
580
581  // signal-chaining
582  if (os::Linux::chained_handler(sig, info, ucVoid)) {
583     return true;
584  }
585
586  if (!abort_if_unrecognized) {
587    // caller wants another chance, so give it to him
588    return false;
589  }
590
591  if (pc == NULL && uc != NULL) {
592    pc = os::Linux::ucontext_get_pc(uc);
593  }
594
595  // unmask current signal
596  sigset_t newset;
597  sigemptyset(&newset);
598  sigaddset(&newset, sig);
599  sigprocmask(SIG_UNBLOCK, &newset, NULL);
600
601  VMError::report_and_die(t, sig, pc, info, ucVoid);
602
603  ShouldNotReachHere();
604  return true; // Mute compiler
605}
606
607void os::Linux::init_thread_fpu_state(void) {
608#ifndef AMD64
609  // set fpu to 53 bit precision
610  set_fpu_control_word(0x27f);
611#endif // !AMD64
612}
613
614int os::Linux::get_fpu_control_word(void) {
615#ifdef AMD64
616  return 0;
617#else
618  int fpu_control;
619  _FPU_GETCW(fpu_control);
620  return fpu_control & 0xffff;
621#endif // AMD64
622}
623
624void os::Linux::set_fpu_control_word(int fpu_control) {
625#ifndef AMD64
626  _FPU_SETCW(fpu_control);
627#endif // !AMD64
628}
629
630// Check that the linux kernel version is 2.4 or higher since earlier
631// versions do not support SSE without patches.
632bool os::supports_sse() {
633#ifdef AMD64
634  return true;
635#else
636  struct utsname uts;
637  if( uname(&uts) != 0 ) return false; // uname fails?
638  char *minor_string;
639  int major = strtol(uts.release,&minor_string,10);
640  int minor = strtol(minor_string+1,NULL,10);
641  bool result = (major > 2 || (major==2 && minor >= 4));
642  log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
643               major,minor, result ? "DOES" : "does NOT");
644  return result;
645#endif // AMD64
646}
647
648bool os::is_allocatable(size_t bytes) {
649#ifdef AMD64
650  // unused on amd64?
651  return true;
652#else
653
654  if (bytes < 2 * G) {
655    return true;
656  }
657
658  char* addr = reserve_memory(bytes, NULL);
659
660  if (addr != NULL) {
661    release_memory(addr, bytes);
662  }
663
664  return addr != NULL;
665#endif // AMD64
666}
667
668////////////////////////////////////////////////////////////////////////////////
669// thread stack
670
671#ifdef AMD64
672size_t os::Linux::min_stack_allowed  = 64 * K;
673#else
674size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
675#endif // AMD64
676
677// return default stack size for thr_type
678size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
679  // default stack size (compiler thread needs larger stack)
680#ifdef AMD64
681  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
682#else
683  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
684#endif // AMD64
685  return s;
686}
687
688size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
689  // Creating guard page is very expensive. Java thread has HotSpot
690  // guard page, only enable glibc guard page for non-Java threads.
691  return (thr_type == java_thread ? 0 : page_size());
692}
693
694// Java thread:
695//
696//   Low memory addresses
697//    +------------------------+
698//    |                        |\  JavaThread created by VM does not have glibc
699//    |    glibc guard page    | - guard, attached Java thread usually has
700//    |                        |/  1 page glibc guard.
701// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
702//    |                        |\
703//    |  HotSpot Guard Pages   | - red and yellow pages
704//    |                        |/
705//    +------------------------+ JavaThread::stack_yellow_zone_base()
706//    |                        |\
707//    |      Normal Stack      | -
708//    |                        |/
709// P2 +------------------------+ Thread::stack_base()
710//
711// Non-Java thread:
712//
713//   Low memory addresses
714//    +------------------------+
715//    |                        |\
716//    |  glibc guard page      | - usually 1 page
717//    |                        |/
718// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
719//    |                        |\
720//    |      Normal Stack      | -
721//    |                        |/
722// P2 +------------------------+ Thread::stack_base()
723//
724// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
725//    pthread_attr_getstack()
726
727static void current_stack_region(address * bottom, size_t * size) {
728  if (os::Linux::is_initial_thread()) {
729     // initial thread needs special handling because pthread_getattr_np()
730     // may return bogus value.
731     *bottom = os::Linux::initial_thread_stack_bottom();
732     *size   = os::Linux::initial_thread_stack_size();
733  } else {
734     pthread_attr_t attr;
735
736     int rslt = pthread_getattr_np(pthread_self(), &attr);
737
738     // JVM needs to know exact stack location, abort if it fails
739     if (rslt != 0) {
740       if (rslt == ENOMEM) {
741         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
742       } else {
743         fatal("pthread_getattr_np failed with errno = %d", rslt);
744       }
745     }
746
747     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
748         fatal("Can not locate current stack attributes!");
749     }
750
751     pthread_attr_destroy(&attr);
752
753  }
754  assert(os::current_stack_pointer() >= *bottom &&
755         os::current_stack_pointer() < *bottom + *size, "just checking");
756}
757
758address os::current_stack_base() {
759  address bottom;
760  size_t size;
761  current_stack_region(&bottom, &size);
762  return (bottom + size);
763}
764
765size_t os::current_stack_size() {
766  // stack size includes normal stack and HotSpot guard pages
767  address bottom;
768  size_t size;
769  current_stack_region(&bottom, &size);
770  return size;
771}
772
773/////////////////////////////////////////////////////////////////////////////
774// helper functions for fatal error handler
775
776void os::print_context(outputStream *st, const void *context) {
777  if (context == NULL) return;
778
779  const ucontext_t *uc = (const ucontext_t*)context;
780  st->print_cr("Registers:");
781#ifdef AMD64
782  st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
783  st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
784  st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
785  st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
786  st->cr();
787  st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
788  st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
789  st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
790  st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
791  st->cr();
792  st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
793  st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
794  st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
795  st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
796  st->cr();
797  st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
798  st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
799  st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
800  st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
801  st->cr();
802  st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
803  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
804  st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
805  st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
806  st->cr();
807  st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
808#else
809  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
810  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
811  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
812  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
813  st->cr();
814  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
815  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
816  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
817  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
818  st->cr();
819  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
820  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
821  st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
822#endif // AMD64
823  st->cr();
824  st->cr();
825
826  intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
827  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
828  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
829  st->cr();
830
831  // Note: it may be unsafe to inspect memory near pc. For example, pc may
832  // point to garbage if entry point in an nmethod is corrupted. Leave
833  // this at the end, and hope for the best.
834  address pc = os::Linux::ucontext_get_pc(uc);
835  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
836  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
837}
838
839void os::print_register_info(outputStream *st, const void *context) {
840  if (context == NULL) return;
841
842  const ucontext_t *uc = (const ucontext_t*)context;
843
844  st->print_cr("Register to memory mapping:");
845  st->cr();
846
847  // this is horrendously verbose but the layout of the registers in the
848  // context does not match how we defined our abstract Register set, so
849  // we can't just iterate through the gregs area
850
851  // this is only for the "general purpose" registers
852
853#ifdef AMD64
854  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
855  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
856  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
857  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
858  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
859  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
860  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
861  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
862  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
863  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
864  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
865  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
866  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
867  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
868  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
869  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
870#else
871  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
872  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
873  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
874  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
875  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
876  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
877  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
878  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
879#endif // AMD64
880
881  st->cr();
882}
883
884void os::setup_fpu() {
885#ifndef AMD64
886  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
887  __asm__ volatile (  "fldcw (%0)" :
888                      : "r" (fpu_cntrl) : "memory");
889#endif // !AMD64
890}
891
892#ifndef PRODUCT
893void os::verify_stack_alignment() {
894#ifdef AMD64
895  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
896#endif
897}
898#endif
899
900
901/*
902 * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
903 * updates (JDK-8023956).
904 */
905void os::workaround_expand_exec_shield_cs_limit() {
906#if defined(IA32)
907  size_t page_size = os::vm_page_size();
908  /*
909   * Take the highest VA the OS will give us and exec
910   *
911   * Although using -(pagesz) as mmap hint works on newer kernel as you would
912   * think, older variants affected by this work-around don't (search forward only).
913   *
914   * On the affected distributions, we understand the memory layout to be:
915   *
916   *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
917   *
918   * A few pages south main stack will do it.
919   *
920   * If we are embedded in an app other than launcher (initial != main stack),
921   * we don't have much control or understanding of the address space, just let it slide.
922   */
923  char* hint = (char*)(Linux::initial_thread_stack_bottom() -
924                       (JavaThread::stack_guard_zone_size() + page_size));
925  char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
926  if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
927    return; // No matter, we tried, best effort.
928  }
929
930  MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
931
932  log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
933
934  // Some code to exec: the 'ret' instruction
935  codebuf[0] = 0xC3;
936
937  // Call the code in the codebuf
938  __asm__ volatile("call *%0" : : "r"(codebuf));
939
940  // keep the page mapped so CS limit isn't reduced.
941#endif
942}
943
944int os::extra_bang_size_in_bytes() {
945  // JDK-8050147 requires the full cache line bang for x86.
946  return VM_Version::L1_line_size();
947}
948