os_bsd_x86.cpp revision 4093:12285410684f
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_bsd.inline.hpp"
36#include "os_share_bsd.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <errno.h>
61# include <dlfcn.h>
62# include <stdlib.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <pthread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/utsname.h>
70# include <sys/socket.h>
71# include <sys/wait.h>
72# include <pwd.h>
73# include <poll.h>
74#ifndef __OpenBSD__
75# include <ucontext.h>
76#endif
77
78#if !defined(__APPLE__) && !defined(__NetBSD__)
79# include <pthread_np.h>
80#endif
81
82#ifdef AMD64
83#define SPELL_REG_SP "rsp"
84#define SPELL_REG_FP "rbp"
85#else
86#define SPELL_REG_SP "esp"
87#define SPELL_REG_FP "ebp"
88#endif // AMD64
89
90#ifdef __FreeBSD__
91# define context_trapno uc_mcontext.mc_trapno
92# ifdef AMD64
93#  define context_pc uc_mcontext.mc_rip
94#  define context_sp uc_mcontext.mc_rsp
95#  define context_fp uc_mcontext.mc_rbp
96#  define context_rip uc_mcontext.mc_rip
97#  define context_rsp uc_mcontext.mc_rsp
98#  define context_rbp uc_mcontext.mc_rbp
99#  define context_rax uc_mcontext.mc_rax
100#  define context_rbx uc_mcontext.mc_rbx
101#  define context_rcx uc_mcontext.mc_rcx
102#  define context_rdx uc_mcontext.mc_rdx
103#  define context_rsi uc_mcontext.mc_rsi
104#  define context_rdi uc_mcontext.mc_rdi
105#  define context_r8  uc_mcontext.mc_r8
106#  define context_r9  uc_mcontext.mc_r9
107#  define context_r10 uc_mcontext.mc_r10
108#  define context_r11 uc_mcontext.mc_r11
109#  define context_r12 uc_mcontext.mc_r12
110#  define context_r13 uc_mcontext.mc_r13
111#  define context_r14 uc_mcontext.mc_r14
112#  define context_r15 uc_mcontext.mc_r15
113#  define context_flags uc_mcontext.mc_flags
114#  define context_err uc_mcontext.mc_err
115# else
116#  define context_pc uc_mcontext.mc_eip
117#  define context_sp uc_mcontext.mc_esp
118#  define context_fp uc_mcontext.mc_ebp
119#  define context_eip uc_mcontext.mc_eip
120#  define context_esp uc_mcontext.mc_esp
121#  define context_eax uc_mcontext.mc_eax
122#  define context_ebx uc_mcontext.mc_ebx
123#  define context_ecx uc_mcontext.mc_ecx
124#  define context_edx uc_mcontext.mc_edx
125#  define context_ebp uc_mcontext.mc_ebp
126#  define context_esi uc_mcontext.mc_esi
127#  define context_edi uc_mcontext.mc_edi
128#  define context_eflags uc_mcontext.mc_eflags
129#  define context_trapno uc_mcontext.mc_trapno
130# endif
131#endif
132
133#ifdef __APPLE__
134# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
135  // 10.5 UNIX03 member name prefixes
136  #define DU3_PREFIX(s, m) __ ## s.__ ## m
137# else
138  #define DU3_PREFIX(s, m) s ## . ## m
139# endif
140
141# ifdef AMD64
142#  define context_pc context_rip
143#  define context_sp context_rsp
144#  define context_fp context_rbp
145#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
146#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
147#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
148#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
149#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
150#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
151#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
152#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
153#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
154#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
155#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
156#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
157#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
158#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
159#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
160#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
161#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
162#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
163#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
164#  define context_err uc_mcontext->DU3_PREFIX(es,err)
165# else
166#  define context_pc context_eip
167#  define context_sp context_esp
168#  define context_fp context_ebp
169#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
170#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
171#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
172#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
173#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
174#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
175#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
176#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
177#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
178#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
179#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
180# endif
181#endif
182
183#ifdef __OpenBSD__
184# define context_trapno sc_trapno
185# ifdef AMD64
186#  define context_pc sc_rip
187#  define context_sp sc_rsp
188#  define context_fp sc_rbp
189#  define context_rip sc_rip
190#  define context_rsp sc_rsp
191#  define context_rbp sc_rbp
192#  define context_rax sc_rax
193#  define context_rbx sc_rbx
194#  define context_rcx sc_rcx
195#  define context_rdx sc_rdx
196#  define context_rsi sc_rsi
197#  define context_rdi sc_rdi
198#  define context_r8  sc_r8
199#  define context_r9  sc_r9
200#  define context_r10 sc_r10
201#  define context_r11 sc_r11
202#  define context_r12 sc_r12
203#  define context_r13 sc_r13
204#  define context_r14 sc_r14
205#  define context_r15 sc_r15
206#  define context_flags sc_rflags
207#  define context_err sc_err
208# else
209#  define context_pc sc_eip
210#  define context_sp sc_esp
211#  define context_fp sc_ebp
212#  define context_eip sc_eip
213#  define context_esp sc_esp
214#  define context_eax sc_eax
215#  define context_ebx sc_ebx
216#  define context_ecx sc_ecx
217#  define context_edx sc_edx
218#  define context_ebp sc_ebp
219#  define context_esi sc_esi
220#  define context_edi sc_edi
221#  define context_eflags sc_eflags
222#  define context_trapno sc_trapno
223# endif
224#endif
225
226#ifdef __NetBSD__
227# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
228# ifdef AMD64
229#  define __register_t __greg_t
230#  define context_pc uc_mcontext.__gregs[_REG_RIP]
231#  define context_sp uc_mcontext.__gregs[_REG_URSP]
232#  define context_fp uc_mcontext.__gregs[_REG_RBP]
233#  define context_rip uc_mcontext.__gregs[_REG_RIP]
234#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
235#  define context_rax uc_mcontext.__gregs[_REG_RAX]
236#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
237#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
238#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
239#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
240#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
241#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
242#  define context_r8  uc_mcontext.__gregs[_REG_R8]
243#  define context_r9  uc_mcontext.__gregs[_REG_R9]
244#  define context_r10 uc_mcontext.__gregs[_REG_R10]
245#  define context_r11 uc_mcontext.__gregs[_REG_R11]
246#  define context_r12 uc_mcontext.__gregs[_REG_R12]
247#  define context_r13 uc_mcontext.__gregs[_REG_R13]
248#  define context_r14 uc_mcontext.__gregs[_REG_R14]
249#  define context_r15 uc_mcontext.__gregs[_REG_R15]
250#  define context_flags uc_mcontext.__gregs[_REG_RFL]
251#  define context_err uc_mcontext.__gregs[_REG_ERR]
252# else
253#  define context_pc uc_mcontext.__gregs[_REG_EIP]
254#  define context_sp uc_mcontext.__gregs[_REG_UESP]
255#  define context_fp uc_mcontext.__gregs[_REG_EBP]
256#  define context_eip uc_mcontext.__gregs[_REG_EIP]
257#  define context_esp uc_mcontext.__gregs[_REG_UESP]
258#  define context_eax uc_mcontext.__gregs[_REG_EAX]
259#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
260#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
261#  define context_edx uc_mcontext.__gregs[_REG_EDX]
262#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
263#  define context_esi uc_mcontext.__gregs[_REG_ESI]
264#  define context_edi uc_mcontext.__gregs[_REG_EDI]
265#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
266#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
267# endif
268#endif
269
270address os::current_stack_pointer() {
271#if defined(__clang__) || defined(__llvm__)
272  register void *esp;
273  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
274  return (address) esp;
275#elif defined(SPARC_WORKS)
276  register void *esp;
277  __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
278  return (address) ((char*)esp + sizeof(long)*2);
279#else
280  register void *esp __asm__ (SPELL_REG_SP);
281  return (address) esp;
282#endif
283}
284
285char* os::non_memory_address_word() {
286  // Must never look like an address returned by reserve_memory,
287  // even in its subfields (as defined by the CPU immediate fields,
288  // if the CPU splits constants across multiple instructions).
289
290  return (char*) -1;
291}
292
293void os::initialize_thread(Thread* thr) {
294// Nothing to do.
295}
296
297address os::Bsd::ucontext_get_pc(ucontext_t * uc) {
298  return (address)uc->context_pc;
299}
300
301intptr_t* os::Bsd::ucontext_get_sp(ucontext_t * uc) {
302  return (intptr_t*)uc->context_sp;
303}
304
305intptr_t* os::Bsd::ucontext_get_fp(ucontext_t * uc) {
306  return (intptr_t*)uc->context_fp;
307}
308
309// For Forte Analyzer AsyncGetCallTrace profiling support - thread
310// is currently interrupted by SIGPROF.
311// os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
312// frames. Currently we don't do that on Bsd, so it's the same as
313// os::fetch_frame_from_context().
314ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
315  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
316
317  assert(thread != NULL, "just checking");
318  assert(ret_sp != NULL, "just checking");
319  assert(ret_fp != NULL, "just checking");
320
321  return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
322}
323
324ExtendedPC os::fetch_frame_from_context(void* ucVoid,
325                    intptr_t** ret_sp, intptr_t** ret_fp) {
326
327  ExtendedPC  epc;
328  ucontext_t* uc = (ucontext_t*)ucVoid;
329
330  if (uc != NULL) {
331    epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
332    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
333    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
334  } else {
335    // construct empty ExtendedPC for return value checking
336    epc = ExtendedPC(NULL);
337    if (ret_sp) *ret_sp = (intptr_t *)NULL;
338    if (ret_fp) *ret_fp = (intptr_t *)NULL;
339  }
340
341  return epc;
342}
343
344frame os::fetch_frame_from_context(void* ucVoid) {
345  intptr_t* sp;
346  intptr_t* fp;
347  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
348  return frame(sp, fp, epc.pc());
349}
350
351// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
352// turned off by -fomit-frame-pointer,
353frame os::get_sender_for_C_frame(frame* fr) {
354  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
355}
356
357intptr_t* _get_previous_fp() {
358#if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
359  register intptr_t **ebp;
360  __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
361#else
362  register intptr_t **ebp __asm__ (SPELL_REG_FP);
363#endif
364  return (intptr_t*) *ebp;   // we want what it points to.
365}
366
367
368frame os::current_frame() {
369  intptr_t* fp = _get_previous_fp();
370  frame myframe((intptr_t*)os::current_stack_pointer(),
371                (intptr_t*)fp,
372                CAST_FROM_FN_PTR(address, os::current_frame));
373  if (os::is_first_C_frame(&myframe)) {
374    // stack is not walkable
375    return frame();
376  } else {
377    return os::get_sender_for_C_frame(&myframe);
378  }
379}
380
381// Utility functions
382
383// From IA32 System Programming Guide
384enum {
385  trap_page_fault = 0xE
386};
387
388extern "C" void Fetch32PFI () ;
389extern "C" void Fetch32Resume () ;
390#ifdef AMD64
391extern "C" void FetchNPFI () ;
392extern "C" void FetchNResume () ;
393#endif // AMD64
394
395extern "C" JNIEXPORT int
396JVM_handle_bsd_signal(int sig,
397                        siginfo_t* info,
398                        void* ucVoid,
399                        int abort_if_unrecognized) {
400  ucontext_t* uc = (ucontext_t*) ucVoid;
401
402  Thread* t = ThreadLocalStorage::get_thread_slow();
403
404  SignalHandlerMark shm(t);
405
406  // Note: it's not uncommon that JNI code uses signal/sigset to install
407  // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
408  // or have a SIGILL handler when detecting CPU type). When that happens,
409  // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
410  // avoid unnecessary crash when libjsig is not preloaded, try handle signals
411  // that do not require siginfo/ucontext first.
412
413  if (sig == SIGPIPE || sig == SIGXFSZ) {
414    // allow chained handler to go first
415    if (os::Bsd::chained_handler(sig, info, ucVoid)) {
416      return true;
417    } else {
418      if (PrintMiscellaneous && (WizardMode || Verbose)) {
419        char buf[64];
420        warning("Ignoring %s - see bugs 4229104 or 646499219",
421                os::exception_name(sig, buf, sizeof(buf)));
422      }
423      return true;
424    }
425  }
426
427  JavaThread* thread = NULL;
428  VMThread* vmthread = NULL;
429  if (os::Bsd::signal_handlers_are_installed) {
430    if (t != NULL ){
431      if(t->is_Java_thread()) {
432        thread = (JavaThread*)t;
433      }
434      else if(t->is_VM_thread()){
435        vmthread = (VMThread *)t;
436      }
437    }
438  }
439/*
440  NOTE: does not seem to work on bsd.
441  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
442    // can't decode this kind of signal
443    info = NULL;
444  } else {
445    assert(sig == info->si_signo, "bad siginfo");
446  }
447*/
448  // decide if this trap can be handled by a stub
449  address stub = NULL;
450
451  address pc          = NULL;
452
453  //%note os_trap_1
454  if (info != NULL && uc != NULL && thread != NULL) {
455    pc = (address) os::Bsd::ucontext_get_pc(uc);
456
457    if (pc == (address) Fetch32PFI) {
458       uc->context_pc = intptr_t(Fetch32Resume) ;
459       return 1 ;
460    }
461#ifdef AMD64
462    if (pc == (address) FetchNPFI) {
463       uc->context_pc = intptr_t (FetchNResume) ;
464       return 1 ;
465    }
466#endif // AMD64
467
468    // Handle ALL stack overflow variations here
469    if (sig == SIGSEGV || sig == SIGBUS) {
470      address addr = (address) info->si_addr;
471
472      // check if fault address is within thread stack
473      if (addr < thread->stack_base() &&
474          addr >= thread->stack_base() - thread->stack_size()) {
475        // stack overflow
476        if (thread->in_stack_yellow_zone(addr)) {
477          thread->disable_stack_yellow_zone();
478          if (thread->thread_state() == _thread_in_Java) {
479            // Throw a stack overflow exception.  Guard pages will be reenabled
480            // while unwinding the stack.
481            stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
482          } else {
483            // Thread was in the vm or native code.  Return and try to finish.
484            return 1;
485          }
486        } else if (thread->in_stack_red_zone(addr)) {
487          // Fatal red zone violation.  Disable the guard pages and fall through
488          // to handle_unexpected_exception way down below.
489          thread->disable_stack_red_zone();
490          tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
491        }
492      }
493    }
494
495    // We test if stub is already set (by the stack overflow code
496    // above) so it is not overwritten by the code that follows. This
497    // check is not required on other platforms, because on other
498    // platforms we check for SIGSEGV only or SIGBUS only, where here
499    // we have to check for both SIGSEGV and SIGBUS.
500    if (thread->thread_state() == _thread_in_Java && stub == NULL) {
501      // Java thread running in Java code => find exception handler if any
502      // a fault inside compiled code, the interpreter, or a stub
503
504      if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
505        stub = SharedRuntime::get_poll_stub(pc);
506#if defined(__APPLE__)
507      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
508      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
509      // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
510      // being called, so only do so if the implicit NULL check is not necessary.
511      } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
512#else
513      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
514#endif
515        // BugId 4454115: A read from a MappedByteBuffer can fault
516        // here if the underlying file has been truncated.
517        // Do not crash the VM in such a case.
518        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
519        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
520        if (nm != NULL && nm->has_unsafe_access()) {
521          stub = StubRoutines::handler_for_unsafe_access();
522        }
523      }
524      else
525
526#ifdef AMD64
527      if (sig == SIGFPE  &&
528          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
529        stub =
530          SharedRuntime::
531          continuation_for_implicit_exception(thread,
532                                              pc,
533                                              SharedRuntime::
534                                              IMPLICIT_DIVIDE_BY_ZERO);
535#ifdef __APPLE__
536      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
537        int op = pc[0];
538
539        // Skip REX
540        if ((pc[0] & 0xf0) == 0x40) {
541          op = pc[1];
542        } else {
543          op = pc[0];
544        }
545
546        // Check for IDIV
547        if (op == 0xF7) {
548          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
549        } else {
550          // TODO: handle more cases if we are using other x86 instructions
551          //   that can generate SIGFPE signal.
552          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
553          fatal("please update this code.");
554        }
555#endif /* __APPLE__ */
556
557#else
558      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
559        // HACK: si_code does not work on bsd 2.2.12-20!!!
560        int op = pc[0];
561        if (op == 0xDB) {
562          // FIST
563          // TODO: The encoding of D2I in i486.ad can cause an exception
564          // prior to the fist instruction if there was an invalid operation
565          // pending. We want to dismiss that exception. From the win_32
566          // side it also seems that if it really was the fist causing
567          // the exception that we do the d2i by hand with different
568          // rounding. Seems kind of weird.
569          // NOTE: that we take the exception at the NEXT floating point instruction.
570          assert(pc[0] == 0xDB, "not a FIST opcode");
571          assert(pc[1] == 0x14, "not a FIST opcode");
572          assert(pc[2] == 0x24, "not a FIST opcode");
573          return true;
574        } else if (op == 0xF7) {
575          // IDIV
576          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
577        } else {
578          // TODO: handle more cases if we are using other x86 instructions
579          //   that can generate SIGFPE signal on bsd.
580          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
581          fatal("please update this code.");
582        }
583#endif // AMD64
584      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
585               !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
586          // Determination of interpreter/vtable stub/compiled code null exception
587          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
588      }
589    } else if (thread->thread_state() == _thread_in_vm &&
590               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
591               thread->doing_unsafe_access()) {
592        stub = StubRoutines::handler_for_unsafe_access();
593    }
594
595    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
596    // and the heap gets shrunk before the field access.
597    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
598      address addr = JNI_FastGetField::find_slowcase_pc(pc);
599      if (addr != (address)-1) {
600        stub = addr;
601      }
602    }
603
604    // Check to see if we caught the safepoint code in the
605    // process of write protecting the memory serialization page.
606    // It write enables the page immediately after protecting it
607    // so we can just return to retry the write.
608    if ((sig == SIGSEGV || sig == SIGBUS) &&
609        os::is_memory_serialize_page(thread, (address) info->si_addr)) {
610      // Block current thread until the memory serialize page permission restored.
611      os::block_on_serialize_page_trap();
612      return true;
613    }
614  }
615
616#ifndef AMD64
617  // Execution protection violation
618  //
619  // This should be kept as the last step in the triage.  We don't
620  // have a dedicated trap number for a no-execute fault, so be
621  // conservative and allow other handlers the first shot.
622  //
623  // Note: We don't test that info->si_code == SEGV_ACCERR here.
624  // this si_code is so generic that it is almost meaningless; and
625  // the si_code for this condition may change in the future.
626  // Furthermore, a false-positive should be harmless.
627  if (UnguardOnExecutionViolation > 0 &&
628      (sig == SIGSEGV || sig == SIGBUS) &&
629      uc->context_trapno == trap_page_fault) {
630    int page_size = os::vm_page_size();
631    address addr = (address) info->si_addr;
632    address pc = os::Bsd::ucontext_get_pc(uc);
633    // Make sure the pc and the faulting address are sane.
634    //
635    // If an instruction spans a page boundary, and the page containing
636    // the beginning of the instruction is executable but the following
637    // page is not, the pc and the faulting address might be slightly
638    // different - we still want to unguard the 2nd page in this case.
639    //
640    // 15 bytes seems to be a (very) safe value for max instruction size.
641    bool pc_is_near_addr =
642      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
643    bool instr_spans_page_boundary =
644      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
645                       (intptr_t) page_size) > 0);
646
647    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
648      static volatile address last_addr =
649        (address) os::non_memory_address_word();
650
651      // In conservative mode, don't unguard unless the address is in the VM
652      if (addr != last_addr &&
653          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
654
655        // Set memory to RWX and retry
656        address page_start =
657          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
658        bool res = os::protect_memory((char*) page_start, page_size,
659                                      os::MEM_PROT_RWX);
660
661        if (PrintMiscellaneous && Verbose) {
662          char buf[256];
663          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
664                       "at " INTPTR_FORMAT
665                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
666                       page_start, (res ? "success" : "failed"), errno);
667          tty->print_raw_cr(buf);
668        }
669        stub = pc;
670
671        // Set last_addr so if we fault again at the same address, we don't end
672        // up in an endless loop.
673        //
674        // There are two potential complications here.  Two threads trapping at
675        // the same address at the same time could cause one of the threads to
676        // think it already unguarded, and abort the VM.  Likely very rare.
677        //
678        // The other race involves two threads alternately trapping at
679        // different addresses and failing to unguard the page, resulting in
680        // an endless loop.  This condition is probably even more unlikely than
681        // the first.
682        //
683        // Although both cases could be avoided by using locks or thread local
684        // last_addr, these solutions are unnecessary complication: this
685        // handler is a best-effort safety net, not a complete solution.  It is
686        // disabled by default and should only be used as a workaround in case
687        // we missed any no-execute-unsafe VM code.
688
689        last_addr = addr;
690      }
691    }
692  }
693#endif // !AMD64
694
695  if (stub != NULL) {
696    // save all thread context in case we need to restore it
697    if (thread != NULL) thread->set_saved_exception_pc(pc);
698
699    uc->context_pc = (intptr_t)stub;
700    return true;
701  }
702
703  // signal-chaining
704  if (os::Bsd::chained_handler(sig, info, ucVoid)) {
705     return true;
706  }
707
708  if (!abort_if_unrecognized) {
709    // caller wants another chance, so give it to him
710    return false;
711  }
712
713  if (pc == NULL && uc != NULL) {
714    pc = os::Bsd::ucontext_get_pc(uc);
715  }
716
717  // unmask current signal
718  sigset_t newset;
719  sigemptyset(&newset);
720  sigaddset(&newset, sig);
721  sigprocmask(SIG_UNBLOCK, &newset, NULL);
722
723  VMError err(t, sig, pc, info, ucVoid);
724  err.report_and_die();
725
726  ShouldNotReachHere();
727}
728
729// From solaris_i486.s ported to bsd_i486.s
730extern "C" void fixcw();
731
732void os::Bsd::init_thread_fpu_state(void) {
733#ifndef AMD64
734  // Set fpu to 53 bit precision. This happens too early to use a stub.
735  fixcw();
736#endif // !AMD64
737}
738
739
740// Check that the bsd kernel version is 2.4 or higher since earlier
741// versions do not support SSE without patches.
742bool os::supports_sse() {
743  return true;
744}
745
746bool os::is_allocatable(size_t bytes) {
747#ifdef AMD64
748  // unused on amd64?
749  return true;
750#else
751
752  if (bytes < 2 * G) {
753    return true;
754  }
755
756  char* addr = reserve_memory(bytes, NULL);
757
758  if (addr != NULL) {
759    release_memory(addr, bytes);
760  }
761
762  return addr != NULL;
763#endif // AMD64
764}
765
766////////////////////////////////////////////////////////////////////////////////
767// thread stack
768
769#ifdef AMD64
770size_t os::Bsd::min_stack_allowed  = 64 * K;
771
772// amd64: pthread on amd64 is always in floating stack mode
773bool os::Bsd::supports_variable_stack_size() {  return true; }
774#else
775size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
776
777#ifdef __GNUC__
778#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
779#endif
780
781bool os::Bsd::supports_variable_stack_size() { return true; }
782#endif // AMD64
783
784// return default stack size for thr_type
785size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
786  // default stack size (compiler thread needs larger stack)
787#ifdef AMD64
788  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
789#else
790  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
791#endif // AMD64
792  return s;
793}
794
795size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
796  // Creating guard page is very expensive. Java thread has HotSpot
797  // guard page, only enable glibc guard page for non-Java threads.
798  return (thr_type == java_thread ? 0 : page_size());
799}
800
801// Java thread:
802//
803//   Low memory addresses
804//    +------------------------+
805//    |                        |\  JavaThread created by VM does not have glibc
806//    |    glibc guard page    | - guard, attached Java thread usually has
807//    |                        |/  1 page glibc guard.
808// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
809//    |                        |\
810//    |  HotSpot Guard Pages   | - red and yellow pages
811//    |                        |/
812//    +------------------------+ JavaThread::stack_yellow_zone_base()
813//    |                        |\
814//    |      Normal Stack      | -
815//    |                        |/
816// P2 +------------------------+ Thread::stack_base()
817//
818// Non-Java thread:
819//
820//   Low memory addresses
821//    +------------------------+
822//    |                        |\
823//    |  glibc guard page      | - usually 1 page
824//    |                        |/
825// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
826//    |                        |\
827//    |      Normal Stack      | -
828//    |                        |/
829// P2 +------------------------+ Thread::stack_base()
830//
831// ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
832//    pthread_attr_getstack()
833
834static void current_stack_region(address * bottom, size_t * size) {
835#ifdef __APPLE__
836  pthread_t self = pthread_self();
837  void *stacktop = pthread_get_stackaddr_np(self);
838  *size = pthread_get_stacksize_np(self);
839  *bottom = (address) stacktop - *size;
840#elif defined(__OpenBSD__)
841  stack_t ss;
842  int rslt = pthread_stackseg_np(pthread_self(), &ss);
843
844  if (rslt != 0)
845    fatal(err_msg("pthread_stackseg_np failed with err = %d", rslt));
846
847  *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
848  *size   = ss.ss_size;
849#else
850  pthread_attr_t attr;
851
852  int rslt = pthread_attr_init(&attr);
853
854  // JVM needs to know exact stack location, abort if it fails
855  if (rslt != 0)
856    fatal(err_msg("pthread_attr_init failed with err = %d", rslt));
857
858  rslt = pthread_attr_get_np(pthread_self(), &attr);
859
860  if (rslt != 0)
861    fatal(err_msg("pthread_attr_get_np failed with err = %d", rslt));
862
863  if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
864    pthread_attr_getstacksize(&attr, size) != 0) {
865    fatal("Can not locate current stack attributes!");
866  }
867
868  pthread_attr_destroy(&attr);
869#endif
870  assert(os::current_stack_pointer() >= *bottom &&
871         os::current_stack_pointer() < *bottom + *size, "just checking");
872}
873
874address os::current_stack_base() {
875  address bottom;
876  size_t size;
877  current_stack_region(&bottom, &size);
878  return (bottom + size);
879}
880
881size_t os::current_stack_size() {
882  // stack size includes normal stack and HotSpot guard pages
883  address bottom;
884  size_t size;
885  current_stack_region(&bottom, &size);
886  return size;
887}
888
889/////////////////////////////////////////////////////////////////////////////
890// helper functions for fatal error handler
891
892void os::print_context(outputStream *st, void *context) {
893  if (context == NULL) return;
894
895  ucontext_t *uc = (ucontext_t*)context;
896  st->print_cr("Registers:");
897#ifdef AMD64
898  st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
899  st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
900  st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
901  st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
902  st->cr();
903  st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
904  st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
905  st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
906  st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
907  st->cr();
908  st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
909  st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
910  st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
911  st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
912  st->cr();
913  st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
914  st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
915  st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
916  st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
917  st->cr();
918  st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
919  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
920  st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
921  st->cr();
922  st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
923#else
924  st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
925  st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
926  st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
927  st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
928  st->cr();
929  st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
930  st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
931  st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
932  st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
933  st->cr();
934  st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
935  st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
936#endif // AMD64
937  st->cr();
938  st->cr();
939
940  intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
941  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
942  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
943  st->cr();
944
945  // Note: it may be unsafe to inspect memory near pc. For example, pc may
946  // point to garbage if entry point in an nmethod is corrupted. Leave
947  // this at the end, and hope for the best.
948  address pc = os::Bsd::ucontext_get_pc(uc);
949  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
950  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
951}
952
953void os::print_register_info(outputStream *st, void *context) {
954  if (context == NULL) return;
955
956  ucontext_t *uc = (ucontext_t*)context;
957
958  st->print_cr("Register to memory mapping:");
959  st->cr();
960
961  // this is horrendously verbose but the layout of the registers in the
962  // context does not match how we defined our abstract Register set, so
963  // we can't just iterate through the gregs area
964
965  // this is only for the "general purpose" registers
966
967#ifdef AMD64
968  st->print("RAX="); print_location(st, uc->context_rax);
969  st->print("RBX="); print_location(st, uc->context_rbx);
970  st->print("RCX="); print_location(st, uc->context_rcx);
971  st->print("RDX="); print_location(st, uc->context_rdx);
972  st->print("RSP="); print_location(st, uc->context_rsp);
973  st->print("RBP="); print_location(st, uc->context_rbp);
974  st->print("RSI="); print_location(st, uc->context_rsi);
975  st->print("RDI="); print_location(st, uc->context_rdi);
976  st->print("R8 ="); print_location(st, uc->context_r8);
977  st->print("R9 ="); print_location(st, uc->context_r9);
978  st->print("R10="); print_location(st, uc->context_r10);
979  st->print("R11="); print_location(st, uc->context_r11);
980  st->print("R12="); print_location(st, uc->context_r12);
981  st->print("R13="); print_location(st, uc->context_r13);
982  st->print("R14="); print_location(st, uc->context_r14);
983  st->print("R15="); print_location(st, uc->context_r15);
984#else
985  st->print("EAX="); print_location(st, uc->context_eax);
986  st->print("EBX="); print_location(st, uc->context_ebx);
987  st->print("ECX="); print_location(st, uc->context_ecx);
988  st->print("EDX="); print_location(st, uc->context_edx);
989  st->print("ESP="); print_location(st, uc->context_esp);
990  st->print("EBP="); print_location(st, uc->context_ebp);
991  st->print("ESI="); print_location(st, uc->context_esi);
992  st->print("EDI="); print_location(st, uc->context_edi);
993#endif // AMD64
994
995  st->cr();
996}
997
998void os::setup_fpu() {
999#ifndef AMD64
1000  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1001  __asm__ volatile (  "fldcw (%0)" :
1002                      : "r" (fpu_cntrl) : "memory");
1003#endif // !AMD64
1004}
1005
1006#ifndef PRODUCT
1007void os::verify_stack_alignment() {
1008}
1009#endif
1010