perfMemory_windows.cpp revision 7192:795fc0cef7c9
155714Skris/*
255714Skris * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
355714Skris * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
455714Skris *
555714Skris * This code is free software; you can redistribute it and/or modify it
655714Skris * under the terms of the GNU General Public License version 2 only, as
755714Skris * published by the Free Software Foundation.
855714Skris *
955714Skris * This code is distributed in the hope that it will be useful, but WITHOUT
1055714Skris * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1155714Skris * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1255714Skris * version 2 for more details (a copy is included in the LICENSE file that
1355714Skris * accompanied this code).
1455714Skris *
1555714Skris * You should have received a copy of the GNU General Public License version
1655714Skris * 2 along with this work; if not, write to the Free Software Foundation,
1755714Skris * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1855714Skris *
1955714Skris * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2055714Skris * or visit www.oracle.com if you need additional information or have any
2155714Skris * questions.
2255714Skris *
2355714Skris */
2455714Skris
2555714Skris#include "precompiled.hpp"
2655714Skris#include "classfile/vmSymbols.hpp"
2755714Skris#include "memory/allocation.inline.hpp"
2855714Skris#include "memory/resourceArea.hpp"
2955714Skris#include "oops/oop.inline.hpp"
3055714Skris#include "os_windows.inline.hpp"
3155714Skris#include "runtime/handles.inline.hpp"
3255714Skris#include "runtime/os.hpp"
3355714Skris#include "runtime/perfMemory.hpp"
3455714Skris#include "services/memTracker.hpp"
3555714Skris#include "utilities/exceptions.hpp"
3655714Skris
3755714Skris#include <windows.h>
3855714Skris#include <sys/types.h>
3955714Skris#include <sys/stat.h>
4055714Skris#include <errno.h>
4155714Skris#include <lmcons.h>
4255714Skris
4355714Skristypedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
4455714Skris   IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
4555714Skris   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
4655714Skris   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
4755714Skris
4855714Skris// Standard Memory Implementation Details
4955714Skris
5055714Skris// create the PerfData memory region in standard memory.
5155714Skris//
5255714Skrisstatic char* create_standard_memory(size_t size) {
5355714Skris
5455714Skris  // allocate an aligned chuck of memory
5555714Skris  char* mapAddress = os::reserve_memory(size);
5655714Skris
5755714Skris  if (mapAddress == NULL) {
58238405Sjkim    return NULL;
59238405Sjkim  }
60238405Sjkim
61238405Sjkim  // commit memory
62238405Sjkim  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
63238405Sjkim    if (PrintMiscellaneous && Verbose) {
64238405Sjkim      warning("Could not commit PerfData memory\n");
65238405Sjkim    }
66238405Sjkim    os::release_memory(mapAddress, size);
67238405Sjkim    return NULL;
68238405Sjkim  }
69238405Sjkim
70238405Sjkim  return mapAddress;
71238405Sjkim}
72238405Sjkim
73238405Sjkim// delete the PerfData memory region
74238405Sjkim//
75238405Sjkimstatic void delete_standard_memory(char* addr, size_t size) {
76238405Sjkim
77238405Sjkim  // there are no persistent external resources to cleanup for standard
78238405Sjkim  // memory. since DestroyJavaVM does not support unloading of the JVM,
79238405Sjkim  // cleanup of the memory resource is not performed. The memory will be
80238405Sjkim  // reclaimed by the OS upon termination of the process.
81238405Sjkim  //
82238405Sjkim  return;
83238405Sjkim
84238405Sjkim}
85238405Sjkim
86238405Sjkim// save the specified memory region to the given file
87238405Sjkim//
88238405Sjkimstatic void save_memory_to_file(char* addr, size_t size) {
89238405Sjkim
90238405Sjkim  const char* destfile = PerfMemory::get_perfdata_file_path();
91238405Sjkim  assert(destfile[0] != '\0', "invalid Perfdata file path");
92238405Sjkim
93238405Sjkim  int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
94238405Sjkim                   _S_IREAD|_S_IWRITE);
95238405Sjkim
96238405Sjkim  if (fd == OS_ERR) {
97238405Sjkim    if (PrintMiscellaneous && Verbose) {
98238405Sjkim      warning("Could not create Perfdata save file: %s: %s\n",
99238405Sjkim              destfile, strerror(errno));
100238405Sjkim    }
101238405Sjkim  } else {
102238405Sjkim    for (size_t remaining = size; remaining > 0;) {
103238405Sjkim
104238405Sjkim      int nbytes = ::_write(fd, addr, (unsigned int)remaining);
105238405Sjkim      if (nbytes == OS_ERR) {
106238405Sjkim        if (PrintMiscellaneous && Verbose) {
107238405Sjkim          warning("Could not write Perfdata save file: %s: %s\n",
108238405Sjkim                  destfile, strerror(errno));
109238405Sjkim        }
110238405Sjkim        break;
11155714Skris      }
11255714Skris
11355714Skris      remaining -= (size_t)nbytes;
11455714Skris      addr += nbytes;
115160814Ssimon    }
116160814Ssimon
117109998Smarkm    int result = ::_close(fd);
11868651Skris    if (PrintMiscellaneous && Verbose) {
11968651Skris      if (result == OS_ERR) {
12068651Skris        warning("Could not close %s: %s\n", destfile, strerror(errno));
12168651Skris      }
122160814Ssimon    }
123109998Smarkm  }
12468651Skris
12568651Skris  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
126109998Smarkm}
12768651Skris
12868651Skris// Shared Memory Implementation Details
12968651Skris
13055714Skris// Note: the win32 shared memory implementation uses two objects to represent
13155714Skris// the shared memory: a windows kernel based file mapping object and a backing
13255714Skris// store file. On windows, the name space for shared memory is a kernel
13355714Skris// based name space that is disjoint from other win32 name spaces. Since Java
134109998Smarkm// is unaware of this name space, a parallel file system based name space is
13555714Skris// maintained, which provides a common file system based shared memory name
13655714Skris// space across the supported platforms and one that Java apps can deal with
13755714Skris// through simple file apis.
13855714Skris//
13955714Skris// For performance and resource cleanup reasons, it is recommended that the
14055714Skris// user specific directory and the backing store file be stored in either a
14155714Skris// RAM based file system or a local disk based file system. Network based
14255714Skris// file systems are not recommended for performance reasons. In addition,
14355714Skris// use of SMB network based file systems may result in unsuccesful cleanup
14455714Skris// of the disk based resource on exit of the VM. The Windows TMP and TEMP
145160814Ssimon// environement variables, as used by the GetTempPath() Win32 API (see
146160814Ssimon// os::get_temp_directory() in os_win32.cpp), control the location of the
14755714Skris// user specific directory and the shared memory backing store file.
14855714Skris
14955714Skrisstatic HANDLE sharedmem_fileMapHandle = NULL;
150238405Sjkimstatic HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
151160814Ssimonstatic char*  sharedmem_fileName = NULL;
15255714Skris
15355714Skris// return the user specific temporary directory name.
15455714Skris//
15555714Skris// the caller is expected to free the allocated memory.
15655714Skris//
15755714Skrisstatic char* get_user_tmp_dir(const char* user) {
15855714Skris
15955714Skris  const char* tmpdir = os::get_temp_directory();
16055714Skris  const char* perfdir = PERFDATA_NAME;
16155714Skris  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
16255714Skris  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
16355714Skris
16455714Skris  // construct the path name to user specific tmp directory
16555714Skris  _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
16655714Skris
16755714Skris  return dirname;
16855714Skris}
16955714Skris
17055714Skris// convert the given file name into a process id. if the file
17155714Skris// does not meet the file naming constraints, return 0.
172109998Smarkm//
17355714Skrisstatic int filename_to_pid(const char* filename) {
17455714Skris
17555714Skris  // a filename that doesn't begin with a digit is not a
176109998Smarkm  // candidate for conversion.
17755714Skris  //
178109998Smarkm  if (!isdigit(*filename)) {
179109998Smarkm    return 0;
180109998Smarkm  }
181109998Smarkm
182109998Smarkm  // check if file name can be converted to an integer without
18355714Skris  // any leftover characters.
18455714Skris  //
18555714Skris  char* remainder = NULL;
18655714Skris  errno = 0;
18759191Skris  int pid = (int)strtol(filename, &remainder, 10);
18868651Skris
189109998Smarkm  if (errno != 0) {
190109998Smarkm    return 0;
191109998Smarkm  }
192109998Smarkm
193160814Ssimon  // check for left over characters. If any, then the filename is
194160814Ssimon  // not a candidate for conversion.
195160814Ssimon  //
196194206Ssimon  if (remainder != NULL && *remainder != '\0') {
197194206Ssimon    return 0;
198238405Sjkim  }
199238405Sjkim
200238405Sjkim  // successful conversion, return the pid
20155714Skris  return pid;
20255714Skris}
20355714Skris
204109998Smarkm// check if the given path is considered a secure directory for
205109998Smarkm// the backing store files. Returns true if the directory exists
206109998Smarkm// and is considered a secure location. Returns false if the path
207109998Smarkm// is a symbolic link or if an error occurred.
208109998Smarkm//
209109998Smarkmstatic bool is_directory_secure(const char* path) {
210109998Smarkm
211109998Smarkm  DWORD fa;
212109998Smarkm
213109998Smarkm  fa = GetFileAttributes(path);
214109998Smarkm  if (fa == 0xFFFFFFFF) {
215109998Smarkm    DWORD lasterror = GetLastError();
216109998Smarkm    if (lasterror == ERROR_FILE_NOT_FOUND) {
217109998Smarkm      return false;
218109998Smarkm    }
219109998Smarkm    else {
220109998Smarkm      // unexpected error, declare the path insecure
221109998Smarkm      if (PrintMiscellaneous && Verbose) {
222109998Smarkm        warning("could not get attributes for file %s: ",
223109998Smarkm                " lasterror = %d\n", path, lasterror);
224109998Smarkm      }
225109998Smarkm      return false;
226109998Smarkm    }
227109998Smarkm  }
228109998Smarkm
229160814Ssimon  if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
230160814Ssimon    // we don't accept any redirection for the user specific directory
231160814Ssimon    // so declare the path insecure. This may be too conservative,
232194206Ssimon    // as some types of reparse points might be acceptable, but it
233194206Ssimon    // is probably more secure to avoid these conditions.
234238405Sjkim    //
235238405Sjkim    if (PrintMiscellaneous && Verbose) {
236194206Ssimon      warning("%s is a reparse point\n", path);
23755714Skris    }
23855714Skris    return false;
23955714Skris  }
24055714Skris
24155714Skris  if (fa & FILE_ATTRIBUTE_DIRECTORY) {
24255714Skris    // this is the expected case. Since windows supports symbolic
24355714Skris    // links to directories only, not to files, there is no need
24455714Skris    // to check for open write permissions on the directory. If the
24555714Skris    // directory has open write permissions, any files deposited that
24655714Skris    // are not expected will be removed by the cleanup code.
24755714Skris    //
248109998Smarkm    return true;
24959191Skris  }
25055714Skris  else {
25155714Skris    // this is either a regular file or some other type of file,
25255714Skris    // any of which are unexpected and therefore insecure.
25355714Skris    //
25455714Skris    if (PrintMiscellaneous && Verbose) {
25555714Skris      warning("%s is not a directory, file attributes = "
25655714Skris              INTPTR_FORMAT "\n", path, fa);
25755714Skris    }
25855714Skris    return false;
25955714Skris  }
260109998Smarkm}
26155714Skris
262109998Smarkm// return the user name for the owner of this process
26355714Skris//
264109998Smarkm// the caller is expected to free the allocated memory.
265109998Smarkm//
266109998Smarkmstatic char* get_user_name() {
267109998Smarkm
268109998Smarkm  /* get the user name. This code is adapted from code found in
269109998Smarkm   * the jdk in src/windows/native/java/lang/java_props_md.c
270109998Smarkm   * java_props_md.c  1.29 02/02/06. According to the original
271109998Smarkm   * source, the call to GetUserName is avoided because of a resulting
272109998Smarkm   * increase in footprint of 100K.
273109998Smarkm   */
274109998Smarkm  char* user = getenv("USERNAME");
275109998Smarkm  char buf[UNLEN+1];
276109998Smarkm  DWORD buflen = sizeof(buf);
277109998Smarkm  if (user == NULL || strlen(user) == 0) {
278109998Smarkm    if (GetUserName(buf, &buflen)) {
279109998Smarkm      user = buf;
280109998Smarkm    }
281109998Smarkm    else {
282109998Smarkm      return NULL;
283109998Smarkm    }
284109998Smarkm  }
285109998Smarkm
286109998Smarkm  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
287109998Smarkm  strcpy(user_name, user);
288109998Smarkm
289160814Ssimon  return user_name;
290160814Ssimon}
291160814Ssimon
292238405Sjkim// return the name of the user that owns the process identified by vmid.
29355714Skris//
294109998Smarkm// This method uses a slow directory search algorithm to find the backing
295109998Smarkm// store file for the specified vmid and returns the user name, as determined
296109998Smarkm// by the user name suffix of the hsperfdata_<username> directory name.
297109998Smarkm//
298109998Smarkm// the caller is expected to free the allocated memory.
299109998Smarkm//
300109998Smarkmstatic char* get_user_name_slow(int vmid) {
30155714Skris
302109998Smarkm  // directory search
30355714Skris  char* latest_user = NULL;
30455714Skris  time_t latest_ctime = 0;
30555714Skris
306109998Smarkm  const char* tmpdirname = os::get_temp_directory();
307160814Ssimon
30855714Skris  DIR* tmpdirp = os::opendir(tmpdirname);
309109998Smarkm
310109998Smarkm  if (tmpdirp == NULL) {
311109998Smarkm    return NULL;
312109998Smarkm  }
31355714Skris
31455714Skris  // for each entry in the directory that matches the pattern hsperfdata_*,
31555714Skris  // open the directory and check if the file for the given vmid exists.
31655714Skris  // The file with the expected name and the latest creation date is used
31755714Skris  // to determine the user name for the process id.
31855714Skris  //
31955714Skris  struct dirent* dentry;
32055714Skris  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
32155714Skris  errno = 0;
322109998Smarkm  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
32355714Skris
32455714Skris    // check if the directory entry is a hsperfdata file
32555714Skris    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
326109998Smarkm      continue;
32755714Skris    }
32855714Skris
32955714Skris    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
330109998Smarkm        strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
331109998Smarkm    strcpy(usrdir_name, tmpdirname);
332109998Smarkm    strcat(usrdir_name, "\\");
333109998Smarkm    strcat(usrdir_name, dentry->d_name);
33455714Skris
33555714Skris    DIR* subdirp = os::opendir(usrdir_name);
33668651Skris
33755714Skris    if (subdirp == NULL) {
33855714Skris      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
33955714Skris      continue;
340109998Smarkm    }
341109998Smarkm
342109998Smarkm    // Since we don't create the backing store files in directories
34355714Skris    // pointed to by symbolic links, we also don't follow them when
34455714Skris    // looking for the files. We check for a symbolic link after the
345109998Smarkm    // call to opendir in order to eliminate a small window where the
34655714Skris    // symlink can be exploited.
347238405Sjkim    //
34855714Skris    if (!is_directory_secure(usrdir_name)) {
349238405Sjkim      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
35055714Skris      os::closedir(subdirp);
351109998Smarkm      continue;
35259191Skris    }
35359191Skris
35459191Skris    struct dirent* udentry;
35555714Skris    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
356238405Sjkim    errno = 0;
357238405Sjkim    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
35855714Skris
359238405Sjkim      if (filename_to_pid(udentry->d_name) == vmid) {
36055714Skris        struct stat statbuf;
36155714Skris
362109998Smarkm        char* filename = NEW_C_HEAP_ARRAY(char,
363238405Sjkim           strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
364238405Sjkim
365238405Sjkim        strcpy(filename, usrdir_name);
36655714Skris        strcat(filename, "\\");
36755714Skris        strcat(filename, udentry->d_name);
36868651Skris
36955714Skris        if (::stat(filename, &statbuf) == OS_ERR) {
370160814Ssimon           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
371160814Ssimon           continue;
372160814Ssimon        }
373160814Ssimon
374160814Ssimon        // skip over files that are not regular files.
375109998Smarkm        if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
376109998Smarkm          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
377109998Smarkm          continue;
378109998Smarkm        }
379109998Smarkm
380109998Smarkm        // If we found a matching file with a newer creation time, then
381109998Smarkm        // save the user name. The newer creation time indicates that
38255714Skris        // we found a newer incarnation of the process associated with
38355714Skris        // vmid. Due to the way that Windows recycles pids and the fact
38455714Skris        // that we can't delete the file from the file system namespace
38555714Skris        // until last close, it is possible for there to be more than
38655714Skris        // one hsperfdata file with a name matching vmid (diff users).
387        //
388        // We no longer ignore hsperfdata files where (st_size == 0).
389        // In this function, all we're trying to do is determine the
390        // name of the user that owns the process associated with vmid
391        // so the size doesn't matter. Very rarely, we have observed
392        // hsperfdata files where (st_size == 0) and the st_size field
393        // later becomes the expected value.
394        //
395        if (statbuf.st_ctime > latest_ctime) {
396          char* user = strchr(dentry->d_name, '_') + 1;
397
398          if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
399          latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
400
401          strcpy(latest_user, user);
402          latest_ctime = statbuf.st_ctime;
403        }
404
405        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
406      }
407    }
408    os::closedir(subdirp);
409    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
410    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
411  }
412  os::closedir(tmpdirp);
413  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
414
415  return(latest_user);
416}
417
418// return the name of the user that owns the process identified by vmid.
419//
420// note: this method should only be used via the Perf native methods.
421// There are various costs to this method and limiting its use to the
422// Perf native methods limits the impact to monitoring applications only.
423//
424static char* get_user_name(int vmid) {
425
426  // A fast implementation is not provided at this time. It's possible
427  // to provide a fast process id to user name mapping function using
428  // the win32 apis, but the default ACL for the process object only
429  // allows processes with the same owner SID to acquire the process
430  // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
431  // to have the JVM change the ACL for the process object to allow arbitrary
432  // users to access the process handle and the process security token.
433  // The security ramifications need to be studied before providing this
434  // mechanism.
435  //
436  return get_user_name_slow(vmid);
437}
438
439// return the name of the shared memory file mapping object for the
440// named shared memory region for the given user name and vmid.
441//
442// The file mapping object's name is not the file name. It is a name
443// in a separate name space.
444//
445// the caller is expected to free the allocated memory.
446//
447static char *get_sharedmem_objectname(const char* user, int vmid) {
448
449  // construct file mapping object's name, add 3 for two '_' and a
450  // null terminator.
451  int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
452
453  // the id is converted to an unsigned value here because win32 allows
454  // negative process ids. However, OpenFileMapping API complains
455  // about a name containing a '-' characters.
456  //
457  nbytes += UINT_CHARS;
458  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
459  _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
460
461  return name;
462}
463
464// return the file name of the backing store file for the named
465// shared memory region for the given user name and vmid.
466//
467// the caller is expected to free the allocated memory.
468//
469static char* get_sharedmem_filename(const char* dirname, int vmid) {
470
471  // add 2 for the file separator and a null terminator.
472  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
473
474  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
475  _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
476
477  return name;
478}
479
480// remove file
481//
482// this method removes the file with the given file name.
483//
484// Note: if the indicated file is on an SMB network file system, this
485// method may be unsuccessful in removing the file.
486//
487static void remove_file(const char* dirname, const char* filename) {
488
489  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
490  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
491
492  strcpy(path, dirname);
493  strcat(path, "\\");
494  strcat(path, filename);
495
496  if (::unlink(path) == OS_ERR) {
497    if (PrintMiscellaneous && Verbose) {
498      if (errno != ENOENT) {
499        warning("Could not unlink shared memory backing"
500                " store file %s : %s\n", path, strerror(errno));
501      }
502    }
503  }
504
505  FREE_C_HEAP_ARRAY(char, path, mtInternal);
506}
507
508// returns true if the process represented by pid is alive, otherwise
509// returns false. the validity of the result is only accurate if the
510// target process is owned by the same principal that owns this process.
511// this method should not be used if to test the status of an otherwise
512// arbitrary process unless it is know that this process has the appropriate
513// privileges to guarantee a result valid.
514//
515static bool is_alive(int pid) {
516
517  HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
518  if (ph == NULL) {
519    // the process does not exist.
520    if (PrintMiscellaneous && Verbose) {
521      DWORD lastError = GetLastError();
522      if (lastError != ERROR_INVALID_PARAMETER) {
523        warning("OpenProcess failed: %d\n", GetLastError());
524      }
525    }
526    return false;
527  }
528
529  DWORD exit_status;
530  if (!GetExitCodeProcess(ph, &exit_status)) {
531    if (PrintMiscellaneous && Verbose) {
532      warning("GetExitCodeProcess failed: %d\n", GetLastError());
533    }
534    CloseHandle(ph);
535    return false;
536  }
537
538  CloseHandle(ph);
539  return (exit_status == STILL_ACTIVE) ? true : false;
540}
541
542// check if the file system is considered secure for the backing store files
543//
544static bool is_filesystem_secure(const char* path) {
545
546  char root_path[MAX_PATH];
547  char fs_type[MAX_PATH];
548
549  if (PerfBypassFileSystemCheck) {
550    if (PrintMiscellaneous && Verbose) {
551      warning("bypassing file system criteria checks for %s\n", path);
552    }
553    return true;
554  }
555
556  char* first_colon = strchr((char *)path, ':');
557  if (first_colon == NULL) {
558    if (PrintMiscellaneous && Verbose) {
559      warning("expected device specifier in path: %s\n", path);
560    }
561    return false;
562  }
563
564  size_t len = (size_t)(first_colon - path);
565  assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
566  strncpy(root_path, path, len + 1);
567  root_path[len + 1] = '\\';
568  root_path[len + 2] = '\0';
569
570  // check that we have something like "C:\" or "AA:\"
571  assert(strlen(root_path) >= 3, "device specifier too short");
572  assert(strchr(root_path, ':') != NULL, "bad device specifier format");
573  assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
574
575  DWORD maxpath;
576  DWORD flags;
577
578  if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
579                            &flags, fs_type, MAX_PATH)) {
580    // we can't get information about the volume, so assume unsafe.
581    if (PrintMiscellaneous && Verbose) {
582      warning("could not get device information for %s: "
583              " path = %s: lasterror = %d\n",
584              root_path, path, GetLastError());
585    }
586    return false;
587  }
588
589  if ((flags & FS_PERSISTENT_ACLS) == 0) {
590    // file system doesn't support ACLs, declare file system unsafe
591    if (PrintMiscellaneous && Verbose) {
592      warning("file system type %s on device %s does not support"
593              " ACLs\n", fs_type, root_path);
594    }
595    return false;
596  }
597
598  if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
599    // file system is compressed, declare file system unsafe
600    if (PrintMiscellaneous && Verbose) {
601      warning("file system type %s on device %s is compressed\n",
602              fs_type, root_path);
603    }
604    return false;
605  }
606
607  return true;
608}
609
610// cleanup stale shared memory resources
611//
612// This method attempts to remove all stale shared memory files in
613// the named user temporary directory. It scans the named directory
614// for files matching the pattern ^$[0-9]*$. For each file found, the
615// process id is extracted from the file name and a test is run to
616// determine if the process is alive. If the process is not alive,
617// any stale file resources are removed.
618//
619static void cleanup_sharedmem_resources(const char* dirname) {
620
621  // open the user temp directory
622  DIR* dirp = os::opendir(dirname);
623
624  if (dirp == NULL) {
625    // directory doesn't exist, so there is nothing to cleanup
626    return;
627  }
628
629  if (!is_directory_secure(dirname)) {
630    // the directory is not secure, don't attempt any cleanup
631    return;
632  }
633
634  // for each entry in the directory that matches the expected file
635  // name pattern, determine if the file resources are stale and if
636  // so, remove the file resources. Note, instrumented HotSpot processes
637  // for this user may start and/or terminate during this search and
638  // remove or create new files in this directory. The behavior of this
639  // loop under these conditions is dependent upon the implementation of
640  // opendir/readdir.
641  //
642  struct dirent* entry;
643  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
644  errno = 0;
645  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
646
647    int pid = filename_to_pid(entry->d_name);
648
649    if (pid == 0) {
650
651      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
652
653        // attempt to remove all unexpected files, except "." and ".."
654        remove_file(dirname, entry->d_name);
655      }
656
657      errno = 0;
658      continue;
659    }
660
661    // we now have a file name that converts to a valid integer
662    // that could represent a process id . if this process id
663    // matches the current process id or the process is not running,
664    // then remove the stale file resources.
665    //
666    // process liveness is detected by checking the exit status
667    // of the process. if the process id is valid and the exit status
668    // indicates that it is still running, the file file resources
669    // are not removed. If the process id is invalid, or if we don't
670    // have permissions to check the process status, or if the process
671    // id is valid and the process has terminated, the the file resources
672    // are assumed to be stale and are removed.
673    //
674    if (pid == os::current_process_id() || !is_alive(pid)) {
675
676      // we can only remove the file resources. Any mapped views
677      // of the file can only be unmapped by the processes that
678      // opened those views and the file mapping object will not
679      // get removed until all views are unmapped.
680      //
681      remove_file(dirname, entry->d_name);
682    }
683    errno = 0;
684  }
685  os::closedir(dirp);
686  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
687}
688
689// create a file mapping object with the requested name, and size
690// from the file represented by the given Handle object
691//
692static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
693
694  DWORD lowSize = (DWORD)size;
695  DWORD highSize = 0;
696  HANDLE fmh = NULL;
697
698  // Create a file mapping object with the given name. This function
699  // will grow the file to the specified size.
700  //
701  fmh = CreateFileMapping(
702               fh,                 /* HANDLE file handle for backing store */
703               fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
704               PAGE_READWRITE,     /* DWORD protections */
705               highSize,           /* DWORD High word of max size */
706               lowSize,            /* DWORD Low word of max size */
707               name);              /* LPCTSTR name for object */
708
709  if (fmh == NULL) {
710    if (PrintMiscellaneous && Verbose) {
711      warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
712    }
713    return NULL;
714  }
715
716  if (GetLastError() == ERROR_ALREADY_EXISTS) {
717
718    // a stale file mapping object was encountered. This object may be
719    // owned by this or some other user and cannot be removed until
720    // the other processes either exit or close their mapping objects
721    // and/or mapped views of this mapping object.
722    //
723    if (PrintMiscellaneous && Verbose) {
724      warning("file mapping already exists, lasterror = %d\n", GetLastError());
725    }
726
727    CloseHandle(fmh);
728    return NULL;
729  }
730
731  return fmh;
732}
733
734
735// method to free the given security descriptor and the contained
736// access control list.
737//
738static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
739
740  BOOL success, exists, isdefault;
741  PACL pACL;
742
743  if (pSD != NULL) {
744
745    // get the access control list from the security descriptor
746    success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
747
748    // if an ACL existed and it was not a default acl, then it must
749    // be an ACL we enlisted. free the resources.
750    //
751    if (success && exists && pACL != NULL && !isdefault) {
752      FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
753    }
754
755    // free the security descriptor
756    FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
757  }
758}
759
760// method to free up a security attributes structure and any
761// contained security descriptors and ACL
762//
763static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
764
765  if (lpSA != NULL) {
766    // free the contained security descriptor and the ACL
767    free_security_desc(lpSA->lpSecurityDescriptor);
768    lpSA->lpSecurityDescriptor = NULL;
769
770    // free the security attributes structure
771    FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
772  }
773}
774
775// get the user SID for the process indicated by the process handle
776//
777static PSID get_user_sid(HANDLE hProcess) {
778
779  HANDLE hAccessToken;
780  PTOKEN_USER token_buf = NULL;
781  DWORD rsize = 0;
782
783  if (hProcess == NULL) {
784    return NULL;
785  }
786
787  // get the process token
788  if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
789    if (PrintMiscellaneous && Verbose) {
790      warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
791    }
792    return NULL;
793  }
794
795  // determine the size of the token structured needed to retrieve
796  // the user token information from the access token.
797  //
798  if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
799    DWORD lasterror = GetLastError();
800    if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
801      if (PrintMiscellaneous && Verbose) {
802        warning("GetTokenInformation failure: lasterror = %d,"
803                " rsize = %d\n", lasterror, rsize);
804      }
805      CloseHandle(hAccessToken);
806      return NULL;
807    }
808  }
809
810  token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
811
812  // get the user token information
813  if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
814    if (PrintMiscellaneous && Verbose) {
815      warning("GetTokenInformation failure: lasterror = %d,"
816              " rsize = %d\n", GetLastError(), rsize);
817    }
818    FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
819    CloseHandle(hAccessToken);
820    return NULL;
821  }
822
823  DWORD nbytes = GetLengthSid(token_buf->User.Sid);
824  PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
825
826  if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
827    if (PrintMiscellaneous && Verbose) {
828      warning("GetTokenInformation failure: lasterror = %d,"
829              " rsize = %d\n", GetLastError(), rsize);
830    }
831    FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
832    FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
833    CloseHandle(hAccessToken);
834    return NULL;
835  }
836
837  // close the access token.
838  CloseHandle(hAccessToken);
839  FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
840
841  return pSID;
842}
843
844// structure used to consolidate access control entry information
845//
846typedef struct ace_data {
847  PSID pSid;      // SID of the ACE
848  DWORD mask;     // mask for the ACE
849} ace_data_t;
850
851
852// method to add an allow access control entry with the access rights
853// indicated in mask for the principal indicated in SID to the given
854// security descriptor. Much of the DACL handling was adapted from
855// the example provided here:
856//      http://support.microsoft.com/kb/102102/EN-US/
857//
858
859static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
860                           ace_data_t aces[], int ace_count) {
861  PACL newACL = NULL;
862  PACL oldACL = NULL;
863
864  if (pSD == NULL) {
865    return false;
866  }
867
868  BOOL exists, isdefault;
869
870  // retrieve any existing access control list.
871  if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
872    if (PrintMiscellaneous && Verbose) {
873      warning("GetSecurityDescriptor failure: lasterror = %d \n",
874              GetLastError());
875    }
876    return false;
877  }
878
879  // get the size of the DACL
880  ACL_SIZE_INFORMATION aclinfo;
881
882  // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
883  // while oldACL is NULL for some case.
884  if (oldACL == NULL) {
885    exists = FALSE;
886  }
887
888  if (exists) {
889    if (!GetAclInformation(oldACL, &aclinfo,
890                           sizeof(ACL_SIZE_INFORMATION),
891                           AclSizeInformation)) {
892      if (PrintMiscellaneous && Verbose) {
893        warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
894        return false;
895      }
896    }
897  } else {
898    aclinfo.AceCount = 0; // assume NULL DACL
899    aclinfo.AclBytesFree = 0;
900    aclinfo.AclBytesInUse = sizeof(ACL);
901  }
902
903  // compute the size needed for the new ACL
904  // initial size of ACL is sum of the following:
905  //   * size of ACL structure.
906  //   * size of each ACE structure that ACL is to contain minus the sid
907  //     sidStart member (DWORD) of the ACE.
908  //   * length of the SID that each ACE is to contain.
909  DWORD newACLsize = aclinfo.AclBytesInUse +
910                        (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
911  for (int i = 0; i < ace_count; i++) {
912     assert(aces[i].pSid != 0, "pSid should not be 0");
913     newACLsize += GetLengthSid(aces[i].pSid);
914  }
915
916  // create the new ACL
917  newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
918
919  if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
920    if (PrintMiscellaneous && Verbose) {
921      warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
922    }
923    FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
924    return false;
925  }
926
927  unsigned int ace_index = 0;
928  // copy any existing ACEs from the old ACL (if any) to the new ACL.
929  if (aclinfo.AceCount != 0) {
930    while (ace_index < aclinfo.AceCount) {
931      LPVOID ace;
932      if (!GetAce(oldACL, ace_index, &ace)) {
933        if (PrintMiscellaneous && Verbose) {
934          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
935        }
936        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
937        return false;
938      }
939      if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
940        // this is an inherited, allowed ACE; break from loop so we can
941        // add the new access allowed, non-inherited ACE in the correct
942        // position, immediately following all non-inherited ACEs.
943        break;
944      }
945
946      // determine if the SID of this ACE matches any of the SIDs
947      // for which we plan to set ACEs.
948      int matches = 0;
949      for (int i = 0; i < ace_count; i++) {
950        if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
951          matches++;
952          break;
953        }
954      }
955
956      // if there are no SID matches, then add this existing ACE to the new ACL
957      if (matches == 0) {
958        if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
959                    ((PACE_HEADER)ace)->AceSize)) {
960          if (PrintMiscellaneous && Verbose) {
961            warning("AddAce failure: lasterror = %d \n", GetLastError());
962          }
963          FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
964          return false;
965        }
966      }
967      ace_index++;
968    }
969  }
970
971  // add the passed-in access control entries to the new ACL
972  for (int i = 0; i < ace_count; i++) {
973    if (!AddAccessAllowedAce(newACL, ACL_REVISION,
974                             aces[i].mask, aces[i].pSid)) {
975      if (PrintMiscellaneous && Verbose) {
976        warning("AddAccessAllowedAce failure: lasterror = %d \n",
977                GetLastError());
978      }
979      FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
980      return false;
981    }
982  }
983
984  // now copy the rest of the inherited ACEs from the old ACL
985  if (aclinfo.AceCount != 0) {
986    // picking up at ace_index, where we left off in the
987    // previous ace_index loop
988    while (ace_index < aclinfo.AceCount) {
989      LPVOID ace;
990      if (!GetAce(oldACL, ace_index, &ace)) {
991        if (PrintMiscellaneous && Verbose) {
992          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
993        }
994        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
995        return false;
996      }
997      if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
998                  ((PACE_HEADER)ace)->AceSize)) {
999        if (PrintMiscellaneous && Verbose) {
1000          warning("AddAce failure: lasterror = %d \n", GetLastError());
1001        }
1002        FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1003        return false;
1004      }
1005      ace_index++;
1006    }
1007  }
1008
1009  // add the new ACL to the security descriptor.
1010  if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
1011    if (PrintMiscellaneous && Verbose) {
1012      warning("SetSecurityDescriptorDacl failure:"
1013              " lasterror = %d \n", GetLastError());
1014    }
1015    FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1016    return false;
1017  }
1018
1019  // if running on windows 2000 or later, set the automatic inheritance
1020  // control flags.
1021  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1022  _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1023       GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1024                      "SetSecurityDescriptorControl");
1025
1026  if (_SetSecurityDescriptorControl != NULL) {
1027    // We do not want to further propagate inherited DACLs, so making them
1028    // protected prevents that.
1029    if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1030                                            SE_DACL_PROTECTED)) {
1031      if (PrintMiscellaneous && Verbose) {
1032        warning("SetSecurityDescriptorControl failure:"
1033                " lasterror = %d \n", GetLastError());
1034      }
1035      FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1036      return false;
1037    }
1038  }
1039   // Note, the security descriptor maintains a reference to the newACL, not
1040   // a copy of it. Therefore, the newACL is not freed here. It is freed when
1041   // the security descriptor containing its reference is freed.
1042   //
1043   return true;
1044}
1045
1046// method to create a security attributes structure, which contains a
1047// security descriptor and an access control list comprised of 0 or more
1048// access control entries. The method take an array of ace_data structures
1049// that indicate the ACE to be added to the security descriptor.
1050//
1051// the caller must free the resources associated with the security
1052// attributes structure created by this method by calling the
1053// free_security_attr() method.
1054//
1055static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1056
1057  // allocate space for a security descriptor
1058  PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1059     NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
1060
1061  // initialize the security descriptor
1062  if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1063    if (PrintMiscellaneous && Verbose) {
1064      warning("InitializeSecurityDescriptor failure: "
1065              "lasterror = %d \n", GetLastError());
1066    }
1067    free_security_desc(pSD);
1068    return NULL;
1069  }
1070
1071  // add the access control entries
1072  if (!add_allow_aces(pSD, aces, count)) {
1073    free_security_desc(pSD);
1074    return NULL;
1075  }
1076
1077  // allocate and initialize the security attributes structure and
1078  // return it to the caller.
1079  //
1080  LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1081    NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
1082  lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1083  lpSA->lpSecurityDescriptor = pSD;
1084  lpSA->bInheritHandle = FALSE;
1085
1086  return(lpSA);
1087}
1088
1089// method to create a security attributes structure with a restrictive
1090// access control list that creates a set access rights for the user/owner
1091// of the securable object and a separate set access rights for everyone else.
1092// also provides for full access rights for the administrator group.
1093//
1094// the caller must free the resources associated with the security
1095// attributes structure created by this method by calling the
1096// free_security_attr() method.
1097//
1098
1099static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1100                                DWORD umask, DWORD emask, DWORD amask) {
1101
1102  ace_data_t aces[3];
1103
1104  // initialize the user ace data
1105  aces[0].pSid = get_user_sid(GetCurrentProcess());
1106  aces[0].mask = umask;
1107
1108  if (aces[0].pSid == 0)
1109    return NULL;
1110
1111  // get the well known SID for BUILTIN\Administrators
1112  PSID administratorsSid = NULL;
1113  SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1114
1115  if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1116           SECURITY_BUILTIN_DOMAIN_RID,
1117           DOMAIN_ALIAS_RID_ADMINS,
1118           0, 0, 0, 0, 0, 0, &administratorsSid)) {
1119
1120    if (PrintMiscellaneous && Verbose) {
1121      warning("AllocateAndInitializeSid failure: "
1122              "lasterror = %d \n", GetLastError());
1123    }
1124    return NULL;
1125  }
1126
1127  // initialize the ace data for administrator group
1128  aces[1].pSid = administratorsSid;
1129  aces[1].mask = amask;
1130
1131  // get the well known SID for the universal Everybody
1132  PSID everybodySid = NULL;
1133  SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1134
1135  if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1136           0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1137
1138    if (PrintMiscellaneous && Verbose) {
1139      warning("AllocateAndInitializeSid failure: "
1140              "lasterror = %d \n", GetLastError());
1141    }
1142    return NULL;
1143  }
1144
1145  // initialize the ace data for everybody else.
1146  aces[2].pSid = everybodySid;
1147  aces[2].mask = emask;
1148
1149  // create a security attributes structure with access control
1150  // entries as initialized above.
1151  LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1152  FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
1153  FreeSid(everybodySid);
1154  FreeSid(administratorsSid);
1155  return(lpSA);
1156}
1157
1158
1159// method to create the security attributes structure for restricting
1160// access to the user temporary directory.
1161//
1162// the caller must free the resources associated with the security
1163// attributes structure created by this method by calling the
1164// free_security_attr() method.
1165//
1166static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1167
1168  // create full access rights for the user/owner of the directory
1169  // and read-only access rights for everybody else. This is
1170  // effectively equivalent to UNIX 755 permissions on a directory.
1171  //
1172  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1173  DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1174  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1175
1176  return make_user_everybody_admin_security_attr(umask, emask, amask);
1177}
1178
1179// method to create the security attributes structure for restricting
1180// access to the shared memory backing store file.
1181//
1182// the caller must free the resources associated with the security
1183// attributes structure created by this method by calling the
1184// free_security_attr() method.
1185//
1186static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1187
1188  // create extensive access rights for the user/owner of the file
1189  // and attribute read-only access rights for everybody else. This
1190  // is effectively equivalent to UNIX 600 permissions on a file.
1191  //
1192  DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1193  DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1194                 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1195  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1196
1197  return make_user_everybody_admin_security_attr(umask, emask, amask);
1198}
1199
1200// method to create the security attributes structure for restricting
1201// access to the name shared memory file mapping object.
1202//
1203// the caller must free the resources associated with the security
1204// attributes structure created by this method by calling the
1205// free_security_attr() method.
1206//
1207static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1208
1209  // create extensive access rights for the user/owner of the shared
1210  // memory object and attribute read-only access rights for everybody
1211  // else. This is effectively equivalent to UNIX 600 permissions on
1212  // on the shared memory object.
1213  //
1214  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1215  DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1216  DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1217
1218  return make_user_everybody_admin_security_attr(umask, emask, amask);
1219}
1220
1221// make the user specific temporary directory
1222//
1223static bool make_user_tmp_dir(const char* dirname) {
1224
1225
1226  LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1227  if (pDirSA == NULL) {
1228    return false;
1229  }
1230
1231
1232  // create the directory with the given security attributes
1233  if (!CreateDirectory(dirname, pDirSA)) {
1234    DWORD lasterror = GetLastError();
1235    if (lasterror == ERROR_ALREADY_EXISTS) {
1236      // The directory already exists and was probably created by another
1237      // JVM instance. However, this could also be the result of a
1238      // deliberate symlink. Verify that the existing directory is safe.
1239      //
1240      if (!is_directory_secure(dirname)) {
1241        // directory is not secure
1242        if (PrintMiscellaneous && Verbose) {
1243          warning("%s directory is insecure\n", dirname);
1244        }
1245        return false;
1246      }
1247      // The administrator should be able to delete this directory.
1248      // But the directory created by previous version of JVM may not
1249      // have permission for administrators to delete this directory.
1250      // So add full permission to the administrator. Also setting new
1251      // DACLs might fix the corrupted the DACLs.
1252      SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1253      if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1254        if (PrintMiscellaneous && Verbose) {
1255          lasterror = GetLastError();
1256          warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1257                                                        dirname, lasterror);
1258        }
1259      }
1260    }
1261    else {
1262      if (PrintMiscellaneous && Verbose) {
1263        warning("CreateDirectory failed: %d\n", GetLastError());
1264      }
1265      return false;
1266    }
1267  }
1268
1269  // free the security attributes structure
1270  free_security_attr(pDirSA);
1271
1272  return true;
1273}
1274
1275// create the shared memory resources
1276//
1277// This function creates the shared memory resources. This includes
1278// the backing store file and the file mapping shared memory object.
1279//
1280static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1281
1282  HANDLE fh = INVALID_HANDLE_VALUE;
1283  HANDLE fmh = NULL;
1284
1285
1286  // create the security attributes for the backing store file
1287  LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1288  if (lpFileSA == NULL) {
1289    return NULL;
1290  }
1291
1292  // create the security attributes for the shared memory object
1293  LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1294  if (lpSmoSA == NULL) {
1295    free_security_attr(lpFileSA);
1296    return NULL;
1297  }
1298
1299  // create the user temporary directory
1300  if (!make_user_tmp_dir(dirname)) {
1301    // could not make/find the directory or the found directory
1302    // was not secure
1303    return NULL;
1304  }
1305
1306  // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1307  // file to be deleted by the last process that closes its handle to
1308  // the file. This is important as the apis do not allow a terminating
1309  // JVM being monitored by another process to remove the file name.
1310  //
1311  // the FILE_SHARE_DELETE share mode is valid only in winnt
1312  //
1313  fh = CreateFile(
1314             filename,                   /* LPCTSTR file name */
1315
1316             GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1317
1318             (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1319             FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1320                                          * open operations allowed
1321                                          */
1322             lpFileSA,                   /* LPSECURITY security attributes */
1323             CREATE_ALWAYS,              /* DWORD creation disposition
1324                                          * create file, if it already
1325                                          * exists, overwrite it.
1326                                          */
1327             FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1328
1329             NULL);                      /* HANDLE template file access */
1330
1331  free_security_attr(lpFileSA);
1332
1333  if (fh == INVALID_HANDLE_VALUE) {
1334    DWORD lasterror = GetLastError();
1335    if (PrintMiscellaneous && Verbose) {
1336      warning("could not create file %s: %d\n", filename, lasterror);
1337    }
1338    return NULL;
1339  }
1340
1341  // try to create the file mapping
1342  fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1343
1344  free_security_attr(lpSmoSA);
1345
1346  if (fmh == NULL) {
1347    // closing the file handle here will decrement the reference count
1348    // on the file. When all processes accessing the file close their
1349    // handle to it, the reference count will decrement to 0 and the
1350    // OS will delete the file. These semantics are requested by the
1351    // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1352    CloseHandle(fh);
1353    fh = NULL;
1354    return NULL;
1355  } else {
1356    // We created the file mapping, but rarely the size of the
1357    // backing store file is reported as zero (0) which can cause
1358    // failures when trying to use the hsperfdata file.
1359    struct stat statbuf;
1360    int ret_code = ::stat(filename, &statbuf);
1361    if (ret_code == OS_ERR) {
1362      if (PrintMiscellaneous && Verbose) {
1363        warning("Could not get status information from file %s: %s\n",
1364            filename, strerror(errno));
1365      }
1366      CloseHandle(fmh);
1367      CloseHandle(fh);
1368      fh = NULL;
1369      fmh = NULL;
1370      return NULL;
1371    }
1372
1373    // We could always call FlushFileBuffers() but the Microsoft
1374    // docs indicate that it is considered expensive so we only
1375    // call it when we observe the size as zero (0).
1376    if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
1377      DWORD lasterror = GetLastError();
1378      if (PrintMiscellaneous && Verbose) {
1379        warning("could not flush file %s: %d\n", filename, lasterror);
1380      }
1381      CloseHandle(fmh);
1382      CloseHandle(fh);
1383      fh = NULL;
1384      fmh = NULL;
1385      return NULL;
1386    }
1387  }
1388
1389  // the file has been successfully created and the file mapping
1390  // object has been created.
1391  sharedmem_fileHandle = fh;
1392  sharedmem_fileName = os::strdup(filename);
1393
1394  return fmh;
1395}
1396
1397// open the shared memory object for the given vmid.
1398//
1399static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1400
1401  HANDLE fmh;
1402
1403  // open the file mapping with the requested mode
1404  fmh = OpenFileMapping(
1405               ofm_access,       /* DWORD access mode */
1406               FALSE,            /* BOOL inherit flag - Do not allow inherit */
1407               objectname);      /* name for object */
1408
1409  if (fmh == NULL) {
1410    if (PrintMiscellaneous && Verbose) {
1411      warning("OpenFileMapping failed for shared memory object %s:"
1412              " lasterror = %d\n", objectname, GetLastError());
1413    }
1414    THROW_MSG_(vmSymbols::java_lang_Exception(),
1415               "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1416  }
1417
1418  return fmh;;
1419}
1420
1421// create a named shared memory region
1422//
1423// On Win32, a named shared memory object has a name space that
1424// is independent of the file system name space. Shared memory object,
1425// or more precisely, file mapping objects, provide no mechanism to
1426// inquire the size of the memory region. There is also no api to
1427// enumerate the memory regions for various processes.
1428//
1429// This implementation utilizes the shared memory name space in parallel
1430// with the file system name space. This allows us to determine the
1431// size of the shared memory region from the size of the file and it
1432// allows us to provide a common, file system based name space for
1433// shared memory across platforms.
1434//
1435static char* mapping_create_shared(size_t size) {
1436
1437  void *mapAddress;
1438  int vmid = os::current_process_id();
1439
1440  // get the name of the user associated with this process
1441  char* user = get_user_name();
1442
1443  if (user == NULL) {
1444    return NULL;
1445  }
1446
1447  // construct the name of the user specific temporary directory
1448  char* dirname = get_user_tmp_dir(user);
1449
1450  // check that the file system is secure - i.e. it supports ACLs.
1451  if (!is_filesystem_secure(dirname)) {
1452    return NULL;
1453  }
1454
1455  // create the names of the backing store files and for the
1456  // share memory object.
1457  //
1458  char* filename = get_sharedmem_filename(dirname, vmid);
1459  char* objectname = get_sharedmem_objectname(user, vmid);
1460
1461  // cleanup any stale shared memory resources
1462  cleanup_sharedmem_resources(dirname);
1463
1464  assert(((size != 0) && (size % os::vm_page_size() == 0)),
1465         "unexpected PerfMemry region size");
1466
1467  FREE_C_HEAP_ARRAY(char, user, mtInternal);
1468
1469  // create the shared memory resources
1470  sharedmem_fileMapHandle =
1471               create_sharedmem_resources(dirname, filename, objectname, size);
1472
1473  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1474  FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
1475  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1476
1477  if (sharedmem_fileMapHandle == NULL) {
1478    return NULL;
1479  }
1480
1481  // map the file into the address space
1482  mapAddress = MapViewOfFile(
1483                   sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1484                   FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1485                   0,                       /* DWORD High word of offset */
1486                   0,                       /* DWORD Low word of offset */
1487                   (DWORD)size);            /* DWORD Number of bytes to map */
1488
1489  if (mapAddress == NULL) {
1490    if (PrintMiscellaneous && Verbose) {
1491      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1492    }
1493    CloseHandle(sharedmem_fileMapHandle);
1494    sharedmem_fileMapHandle = NULL;
1495    return NULL;
1496  }
1497
1498  // clear the shared memory region
1499  (void)memset(mapAddress, '\0', size);
1500
1501  // it does not go through os api, the operation has to record from here
1502  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1503    size, CURRENT_PC, mtInternal);
1504
1505  return (char*) mapAddress;
1506}
1507
1508// this method deletes the file mapping object.
1509//
1510static void delete_file_mapping(char* addr, size_t size) {
1511
1512  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1513  // not support unloading of the JVM, unmapping of the memory resource is not
1514  // performed. The memory will be reclaimed by the OS upon termination of all
1515  // processes mapping the resource. The file mapping handle and the file
1516  // handle are closed here to expedite the remove of the file by the OS. The
1517  // file is not removed directly because it was created with
1518  // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1519  // be unsuccessful.
1520
1521  // close the fileMapHandle. the file mapping will still be retained
1522  // by the OS as long as any other JVM processes has an open file mapping
1523  // handle or a mapped view of the file.
1524  //
1525  if (sharedmem_fileMapHandle != NULL) {
1526    CloseHandle(sharedmem_fileMapHandle);
1527    sharedmem_fileMapHandle = NULL;
1528  }
1529
1530  // close the file handle. This will decrement the reference count on the
1531  // backing store file. When the reference count decrements to 0, the OS
1532  // will delete the file. These semantics apply because the file was
1533  // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1534  //
1535  if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1536    CloseHandle(sharedmem_fileHandle);
1537    sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1538  }
1539}
1540
1541// this method determines the size of the shared memory file
1542//
1543static size_t sharedmem_filesize(const char* filename, TRAPS) {
1544
1545  struct stat statbuf;
1546
1547  // get the file size
1548  //
1549  // on win95/98/me, _stat returns a file size of 0 bytes, but on
1550  // winnt/2k the appropriate file size is returned. support for
1551  // the sharable aspects of performance counters was abandonded
1552  // on the non-nt win32 platforms due to this and other api
1553  // inconsistencies
1554  //
1555  if (::stat(filename, &statbuf) == OS_ERR) {
1556    if (PrintMiscellaneous && Verbose) {
1557      warning("stat %s failed: %s\n", filename, strerror(errno));
1558    }
1559    THROW_MSG_0(vmSymbols::java_io_IOException(),
1560                "Could not determine PerfMemory size");
1561  }
1562
1563  if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1564    if (PrintMiscellaneous && Verbose) {
1565      warning("unexpected file size: size = " SIZE_FORMAT "\n",
1566              statbuf.st_size);
1567    }
1568    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1569                "Invalid PerfMemory size");
1570  }
1571
1572  return statbuf.st_size;
1573}
1574
1575// this method opens a file mapping object and maps the object
1576// into the address space of the process
1577//
1578static void open_file_mapping(const char* user, int vmid,
1579                              PerfMemory::PerfMemoryMode mode,
1580                              char** addrp, size_t* sizep, TRAPS) {
1581
1582  ResourceMark rm;
1583
1584  void *mapAddress = 0;
1585  size_t size = 0;
1586  HANDLE fmh;
1587  DWORD ofm_access;
1588  DWORD mv_access;
1589  const char* luser = NULL;
1590
1591  if (mode == PerfMemory::PERF_MODE_RO) {
1592    ofm_access = FILE_MAP_READ;
1593    mv_access = FILE_MAP_READ;
1594  }
1595  else if (mode == PerfMemory::PERF_MODE_RW) {
1596#ifdef LATER
1597    ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1598    mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1599#else
1600    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1601              "Unsupported access mode");
1602#endif
1603  }
1604  else {
1605    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1606              "Illegal access mode");
1607  }
1608
1609  // if a user name wasn't specified, then find the user name for
1610  // the owner of the target vm.
1611  if (user == NULL || strlen(user) == 0) {
1612    luser = get_user_name(vmid);
1613  }
1614  else {
1615    luser = user;
1616  }
1617
1618  if (luser == NULL) {
1619    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1620              "Could not map vmid to user name");
1621  }
1622
1623  // get the names for the resources for the target vm
1624  char* dirname = get_user_tmp_dir(luser);
1625
1626  // since we don't follow symbolic links when creating the backing
1627  // store file, we also don't following them when attaching
1628  //
1629  if (!is_directory_secure(dirname)) {
1630    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1631    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1632              "Process not found");
1633  }
1634
1635  char* filename = get_sharedmem_filename(dirname, vmid);
1636  char* objectname = get_sharedmem_objectname(luser, vmid);
1637
1638  // copy heap memory to resource memory. the objectname and
1639  // filename are passed to methods that may throw exceptions.
1640  // using resource arrays for these names prevents the leaks
1641  // that would otherwise occur.
1642  //
1643  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1644  char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1645  strcpy(rfilename, filename);
1646  strcpy(robjectname, objectname);
1647
1648  // free the c heap resources that are no longer needed
1649  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1650  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1651  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1652  FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
1653
1654  if (*sizep == 0) {
1655    size = sharedmem_filesize(rfilename, CHECK);
1656  } else {
1657    size = *sizep;
1658  }
1659
1660  assert(size > 0, "unexpected size <= 0");
1661
1662  // Open the file mapping object with the given name
1663  fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1664
1665  assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1666
1667  // map the entire file into the address space
1668  mapAddress = MapViewOfFile(
1669                 fmh,             /* HANDLE Handle of file mapping object */
1670                 mv_access,       /* DWORD access flags */
1671                 0,               /* DWORD High word of offset */
1672                 0,               /* DWORD Low word of offset */
1673                 size);           /* DWORD Number of bytes to map */
1674
1675  if (mapAddress == NULL) {
1676    if (PrintMiscellaneous && Verbose) {
1677      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1678    }
1679    CloseHandle(fmh);
1680    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1681              "Could not map PerfMemory");
1682  }
1683
1684  // it does not go through os api, the operation has to record from here
1685  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
1686    CURRENT_PC, mtInternal);
1687
1688
1689  *addrp = (char*)mapAddress;
1690  *sizep = size;
1691
1692  // File mapping object can be closed at this time without
1693  // invalidating the mapped view of the file
1694  CloseHandle(fmh);
1695
1696  if (PerfTraceMemOps) {
1697    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1698               INTPTR_FORMAT "\n", size, vmid, mapAddress);
1699  }
1700}
1701
1702// this method unmaps the the mapped view of the the
1703// file mapping object.
1704//
1705static void remove_file_mapping(char* addr) {
1706
1707  // the file mapping object was closed in open_file_mapping()
1708  // after the file map view was created. We only need to
1709  // unmap the file view here.
1710  UnmapViewOfFile(addr);
1711}
1712
1713// create the PerfData memory region in shared memory.
1714static char* create_shared_memory(size_t size) {
1715
1716  return mapping_create_shared(size);
1717}
1718
1719// release a named, shared memory region
1720//
1721void delete_shared_memory(char* addr, size_t size) {
1722
1723  delete_file_mapping(addr, size);
1724}
1725
1726
1727
1728
1729// create the PerfData memory region
1730//
1731// This method creates the memory region used to store performance
1732// data for the JVM. The memory may be created in standard or
1733// shared memory.
1734//
1735void PerfMemory::create_memory_region(size_t size) {
1736
1737  if (PerfDisableSharedMem || !os::win32::is_nt()) {
1738    // do not share the memory for the performance data.
1739    PerfDisableSharedMem = true;
1740    _start = create_standard_memory(size);
1741  }
1742  else {
1743    _start = create_shared_memory(size);
1744    if (_start == NULL) {
1745
1746      // creation of the shared memory region failed, attempt
1747      // to create a contiguous, non-shared memory region instead.
1748      //
1749      if (PrintMiscellaneous && Verbose) {
1750        warning("Reverting to non-shared PerfMemory region.\n");
1751      }
1752      PerfDisableSharedMem = true;
1753      _start = create_standard_memory(size);
1754    }
1755  }
1756
1757  if (_start != NULL) _capacity = size;
1758
1759}
1760
1761// delete the PerfData memory region
1762//
1763// This method deletes the memory region used to store performance
1764// data for the JVM. The memory region indicated by the <address, size>
1765// tuple will be inaccessible after a call to this method.
1766//
1767void PerfMemory::delete_memory_region() {
1768
1769  assert((start() != NULL && capacity() > 0), "verify proper state");
1770
1771  // If user specifies PerfDataSaveFile, it will save the performance data
1772  // to the specified file name no matter whether PerfDataSaveToFile is specified
1773  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1774  // -XX:+PerfDataSaveToFile.
1775  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1776    save_memory_to_file(start(), capacity());
1777  }
1778
1779  if (PerfDisableSharedMem) {
1780    delete_standard_memory(start(), capacity());
1781  }
1782  else {
1783    delete_shared_memory(start(), capacity());
1784  }
1785}
1786
1787// attach to the PerfData memory region for another JVM
1788//
1789// This method returns an <address, size> tuple that points to
1790// a memory buffer that is kept reasonably synchronized with
1791// the PerfData memory region for the indicated JVM. This
1792// buffer may be kept in synchronization via shared memory
1793// or some other mechanism that keeps the buffer updated.
1794//
1795// If the JVM chooses not to support the attachability feature,
1796// this method should throw an UnsupportedOperation exception.
1797//
1798// This implementation utilizes named shared memory to map
1799// the indicated process's PerfData memory region into this JVMs
1800// address space.
1801//
1802void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1803                        char** addrp, size_t* sizep, TRAPS) {
1804
1805  if (vmid == 0 || vmid == os::current_process_id()) {
1806     *addrp = start();
1807     *sizep = capacity();
1808     return;
1809  }
1810
1811  open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1812}
1813
1814// detach from the PerfData memory region of another JVM
1815//
1816// This method detaches the PerfData memory region of another
1817// JVM, specified as an <address, size> tuple of a buffer
1818// in this process's address space. This method may perform
1819// arbitrary actions to accomplish the detachment. The memory
1820// region specified by <address, size> will be inaccessible after
1821// a call to this method.
1822//
1823// If the JVM chooses not to support the attachability feature,
1824// this method should throw an UnsupportedOperation exception.
1825//
1826// This implementation utilizes named shared memory to detach
1827// the indicated process's PerfData memory region from this
1828// process's address space.
1829//
1830void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1831
1832  assert(addr != 0, "address sanity check");
1833  assert(bytes > 0, "capacity sanity check");
1834
1835  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1836    // prevent accidental detachment of this process's PerfMemory region
1837    return;
1838  }
1839
1840  if (MemTracker::tracking_level() > NMT_minimal) {
1841    // it does not go through os api, the operation has to record from here
1842    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1843    remove_file_mapping(addr);
1844    tkr.record((address)addr, bytes);
1845  } else {
1846    remove_file_mapping(addr);
1847  }
1848}
1849