perfMemory_windows.cpp revision 2108:de14f1eee390
1/*
2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_windows.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "utilities/exceptions.hpp"
34
35#include <windows.h>
36#include <sys/types.h>
37#include <sys/stat.h>
38#include <errno.h>
39#include <lmcons.h>
40
41typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
42   IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
43   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
44   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
45
46// Standard Memory Implementation Details
47
48// create the PerfData memory region in standard memory.
49//
50static char* create_standard_memory(size_t size) {
51
52  // allocate an aligned chuck of memory
53  char* mapAddress = os::reserve_memory(size);
54
55  if (mapAddress == NULL) {
56    return NULL;
57  }
58
59  // commit memory
60  if (!os::commit_memory(mapAddress, size)) {
61    if (PrintMiscellaneous && Verbose) {
62      warning("Could not commit PerfData memory\n");
63    }
64    os::release_memory(mapAddress, size);
65    return NULL;
66  }
67
68  return mapAddress;
69}
70
71// delete the PerfData memory region
72//
73static void delete_standard_memory(char* addr, size_t size) {
74
75  // there are no persistent external resources to cleanup for standard
76  // memory. since DestroyJavaVM does not support unloading of the JVM,
77  // cleanup of the memory resource is not performed. The memory will be
78  // reclaimed by the OS upon termination of the process.
79  //
80  return;
81
82}
83
84// save the specified memory region to the given file
85//
86static void save_memory_to_file(char* addr, size_t size) {
87
88  const char* destfile = PerfMemory::get_perfdata_file_path();
89  assert(destfile[0] != '\0', "invalid Perfdata file path");
90
91  int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
92                   _S_IREAD|_S_IWRITE);
93
94  if (fd == OS_ERR) {
95    if (PrintMiscellaneous && Verbose) {
96      warning("Could not create Perfdata save file: %s: %s\n",
97              destfile, strerror(errno));
98    }
99  } else {
100    for (size_t remaining = size; remaining > 0;) {
101
102      int nbytes = ::_write(fd, addr, (unsigned int)remaining);
103      if (nbytes == OS_ERR) {
104        if (PrintMiscellaneous && Verbose) {
105          warning("Could not write Perfdata save file: %s: %s\n",
106                  destfile, strerror(errno));
107        }
108        break;
109      }
110
111      remaining -= (size_t)nbytes;
112      addr += nbytes;
113    }
114
115    int result = ::_close(fd);
116    if (PrintMiscellaneous && Verbose) {
117      if (result == OS_ERR) {
118        warning("Could not close %s: %s\n", destfile, strerror(errno));
119      }
120    }
121  }
122
123  FREE_C_HEAP_ARRAY(char, destfile);
124}
125
126// Shared Memory Implementation Details
127
128// Note: the win32 shared memory implementation uses two objects to represent
129// the shared memory: a windows kernel based file mapping object and a backing
130// store file. On windows, the name space for shared memory is a kernel
131// based name space that is disjoint from other win32 name spaces. Since Java
132// is unaware of this name space, a parallel file system based name space is
133// maintained, which provides a common file system based shared memory name
134// space across the supported platforms and one that Java apps can deal with
135// through simple file apis.
136//
137// For performance and resource cleanup reasons, it is recommended that the
138// user specific directory and the backing store file be stored in either a
139// RAM based file system or a local disk based file system. Network based
140// file systems are not recommended for performance reasons. In addition,
141// use of SMB network based file systems may result in unsuccesful cleanup
142// of the disk based resource on exit of the VM. The Windows TMP and TEMP
143// environement variables, as used by the GetTempPath() Win32 API (see
144// os::get_temp_directory() in os_win32.cpp), control the location of the
145// user specific directory and the shared memory backing store file.
146
147static HANDLE sharedmem_fileMapHandle = NULL;
148static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
149static char*  sharedmem_fileName = NULL;
150
151// return the user specific temporary directory name.
152//
153// the caller is expected to free the allocated memory.
154//
155static char* get_user_tmp_dir(const char* user) {
156
157  const char* tmpdir = os::get_temp_directory();
158  const char* perfdir = PERFDATA_NAME;
159  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
160  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
161
162  // construct the path name to user specific tmp directory
163  _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
164
165  return dirname;
166}
167
168// convert the given file name into a process id. if the file
169// does not meet the file naming constraints, return 0.
170//
171static int filename_to_pid(const char* filename) {
172
173  // a filename that doesn't begin with a digit is not a
174  // candidate for conversion.
175  //
176  if (!isdigit(*filename)) {
177    return 0;
178  }
179
180  // check if file name can be converted to an integer without
181  // any leftover characters.
182  //
183  char* remainder = NULL;
184  errno = 0;
185  int pid = (int)strtol(filename, &remainder, 10);
186
187  if (errno != 0) {
188    return 0;
189  }
190
191  // check for left over characters. If any, then the filename is
192  // not a candidate for conversion.
193  //
194  if (remainder != NULL && *remainder != '\0') {
195    return 0;
196  }
197
198  // successful conversion, return the pid
199  return pid;
200}
201
202// check if the given path is considered a secure directory for
203// the backing store files. Returns true if the directory exists
204// and is considered a secure location. Returns false if the path
205// is a symbolic link or if an error occurred.
206//
207static bool is_directory_secure(const char* path) {
208
209  DWORD fa;
210
211  fa = GetFileAttributes(path);
212  if (fa == 0xFFFFFFFF) {
213    DWORD lasterror = GetLastError();
214    if (lasterror == ERROR_FILE_NOT_FOUND) {
215      return false;
216    }
217    else {
218      // unexpected error, declare the path insecure
219      if (PrintMiscellaneous && Verbose) {
220        warning("could not get attributes for file %s: ",
221                " lasterror = %d\n", path, lasterror);
222      }
223      return false;
224    }
225  }
226
227  if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
228    // we don't accept any redirection for the user specific directory
229    // so declare the path insecure. This may be too conservative,
230    // as some types of reparse points might be acceptable, but it
231    // is probably more secure to avoid these conditions.
232    //
233    if (PrintMiscellaneous && Verbose) {
234      warning("%s is a reparse point\n", path);
235    }
236    return false;
237  }
238
239  if (fa & FILE_ATTRIBUTE_DIRECTORY) {
240    // this is the expected case. Since windows supports symbolic
241    // links to directories only, not to files, there is no need
242    // to check for open write permissions on the directory. If the
243    // directory has open write permissions, any files deposited that
244    // are not expected will be removed by the cleanup code.
245    //
246    return true;
247  }
248  else {
249    // this is either a regular file or some other type of file,
250    // any of which are unexpected and therefore insecure.
251    //
252    if (PrintMiscellaneous && Verbose) {
253      warning("%s is not a directory, file attributes = "
254              INTPTR_FORMAT "\n", path, fa);
255    }
256    return false;
257  }
258}
259
260// return the user name for the owner of this process
261//
262// the caller is expected to free the allocated memory.
263//
264static char* get_user_name() {
265
266  /* get the user name. This code is adapted from code found in
267   * the jdk in src/windows/native/java/lang/java_props_md.c
268   * java_props_md.c  1.29 02/02/06. According to the original
269   * source, the call to GetUserName is avoided because of a resulting
270   * increase in footprint of 100K.
271   */
272  char* user = getenv("USERNAME");
273  char buf[UNLEN+1];
274  DWORD buflen = sizeof(buf);
275  if (user == NULL || strlen(user) == 0) {
276    if (GetUserName(buf, &buflen)) {
277      user = buf;
278    }
279    else {
280      return NULL;
281    }
282  }
283
284  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
285  strcpy(user_name, user);
286
287  return user_name;
288}
289
290// return the name of the user that owns the process identified by vmid.
291//
292// This method uses a slow directory search algorithm to find the backing
293// store file for the specified vmid and returns the user name, as determined
294// by the user name suffix of the hsperfdata_<username> directory name.
295//
296// the caller is expected to free the allocated memory.
297//
298static char* get_user_name_slow(int vmid) {
299
300  // directory search
301  char* latest_user = NULL;
302  time_t latest_ctime = 0;
303
304  const char* tmpdirname = os::get_temp_directory();
305
306  DIR* tmpdirp = os::opendir(tmpdirname);
307
308  if (tmpdirp == NULL) {
309    return NULL;
310  }
311
312  // for each entry in the directory that matches the pattern hsperfdata_*,
313  // open the directory and check if the file for the given vmid exists.
314  // The file with the expected name and the latest creation date is used
315  // to determine the user name for the process id.
316  //
317  struct dirent* dentry;
318  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
319  errno = 0;
320  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
321
322    // check if the directory entry is a hsperfdata file
323    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
324      continue;
325    }
326
327    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
328                              strlen(tmpdirname) + strlen(dentry->d_name) + 2);
329    strcpy(usrdir_name, tmpdirname);
330    strcat(usrdir_name, "\\");
331    strcat(usrdir_name, dentry->d_name);
332
333    DIR* subdirp = os::opendir(usrdir_name);
334
335    if (subdirp == NULL) {
336      FREE_C_HEAP_ARRAY(char, usrdir_name);
337      continue;
338    }
339
340    // Since we don't create the backing store files in directories
341    // pointed to by symbolic links, we also don't follow them when
342    // looking for the files. We check for a symbolic link after the
343    // call to opendir in order to eliminate a small window where the
344    // symlink can be exploited.
345    //
346    if (!is_directory_secure(usrdir_name)) {
347      FREE_C_HEAP_ARRAY(char, usrdir_name);
348      os::closedir(subdirp);
349      continue;
350    }
351
352    struct dirent* udentry;
353    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
354    errno = 0;
355    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
356
357      if (filename_to_pid(udentry->d_name) == vmid) {
358        struct stat statbuf;
359
360        char* filename = NEW_C_HEAP_ARRAY(char,
361                            strlen(usrdir_name) + strlen(udentry->d_name) + 2);
362
363        strcpy(filename, usrdir_name);
364        strcat(filename, "\\");
365        strcat(filename, udentry->d_name);
366
367        if (::stat(filename, &statbuf) == OS_ERR) {
368           FREE_C_HEAP_ARRAY(char, filename);
369           continue;
370        }
371
372        // skip over files that are not regular files.
373        if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
374          FREE_C_HEAP_ARRAY(char, filename);
375          continue;
376        }
377
378        // If we found a matching file with a newer creation time, then
379        // save the user name. The newer creation time indicates that
380        // we found a newer incarnation of the process associated with
381        // vmid. Due to the way that Windows recycles pids and the fact
382        // that we can't delete the file from the file system namespace
383        // until last close, it is possible for there to be more than
384        // one hsperfdata file with a name matching vmid (diff users).
385        //
386        // We no longer ignore hsperfdata files where (st_size == 0).
387        // In this function, all we're trying to do is determine the
388        // name of the user that owns the process associated with vmid
389        // so the size doesn't matter. Very rarely, we have observed
390        // hsperfdata files where (st_size == 0) and the st_size field
391        // later becomes the expected value.
392        //
393        if (statbuf.st_ctime > latest_ctime) {
394          char* user = strchr(dentry->d_name, '_') + 1;
395
396          if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user);
397          latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
398
399          strcpy(latest_user, user);
400          latest_ctime = statbuf.st_ctime;
401        }
402
403        FREE_C_HEAP_ARRAY(char, filename);
404      }
405    }
406    os::closedir(subdirp);
407    FREE_C_HEAP_ARRAY(char, udbuf);
408    FREE_C_HEAP_ARRAY(char, usrdir_name);
409  }
410  os::closedir(tmpdirp);
411  FREE_C_HEAP_ARRAY(char, tdbuf);
412
413  return(latest_user);
414}
415
416// return the name of the user that owns the process identified by vmid.
417//
418// note: this method should only be used via the Perf native methods.
419// There are various costs to this method and limiting its use to the
420// Perf native methods limits the impact to monitoring applications only.
421//
422static char* get_user_name(int vmid) {
423
424  // A fast implementation is not provided at this time. It's possible
425  // to provide a fast process id to user name mapping function using
426  // the win32 apis, but the default ACL for the process object only
427  // allows processes with the same owner SID to acquire the process
428  // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
429  // to have the JVM change the ACL for the process object to allow arbitrary
430  // users to access the process handle and the process security token.
431  // The security ramifications need to be studied before providing this
432  // mechanism.
433  //
434  return get_user_name_slow(vmid);
435}
436
437// return the name of the shared memory file mapping object for the
438// named shared memory region for the given user name and vmid.
439//
440// The file mapping object's name is not the file name. It is a name
441// in a separate name space.
442//
443// the caller is expected to free the allocated memory.
444//
445static char *get_sharedmem_objectname(const char* user, int vmid) {
446
447  // construct file mapping object's name, add 3 for two '_' and a
448  // null terminator.
449  int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
450
451  // the id is converted to an unsigned value here because win32 allows
452  // negative process ids. However, OpenFileMapping API complains
453  // about a name containing a '-' characters.
454  //
455  nbytes += UINT_CHARS;
456  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
457  _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
458
459  return name;
460}
461
462// return the file name of the backing store file for the named
463// shared memory region for the given user name and vmid.
464//
465// the caller is expected to free the allocated memory.
466//
467static char* get_sharedmem_filename(const char* dirname, int vmid) {
468
469  // add 2 for the file separator and a null terminator.
470  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
471
472  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
473  _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
474
475  return name;
476}
477
478// remove file
479//
480// this method removes the file with the given file name.
481//
482// Note: if the indicated file is on an SMB network file system, this
483// method may be unsuccessful in removing the file.
484//
485static void remove_file(const char* dirname, const char* filename) {
486
487  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
488  char* path = NEW_C_HEAP_ARRAY(char, nbytes);
489
490  strcpy(path, dirname);
491  strcat(path, "\\");
492  strcat(path, filename);
493
494  if (::unlink(path) == OS_ERR) {
495    if (PrintMiscellaneous && Verbose) {
496      if (errno != ENOENT) {
497        warning("Could not unlink shared memory backing"
498                " store file %s : %s\n", path, strerror(errno));
499      }
500    }
501  }
502
503  FREE_C_HEAP_ARRAY(char, path);
504}
505
506// returns true if the process represented by pid is alive, otherwise
507// returns false. the validity of the result is only accurate if the
508// target process is owned by the same principal that owns this process.
509// this method should not be used if to test the status of an otherwise
510// arbitrary process unless it is know that this process has the appropriate
511// privileges to guarantee a result valid.
512//
513static bool is_alive(int pid) {
514
515  HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
516  if (ph == NULL) {
517    // the process does not exist.
518    if (PrintMiscellaneous && Verbose) {
519      DWORD lastError = GetLastError();
520      if (lastError != ERROR_INVALID_PARAMETER) {
521        warning("OpenProcess failed: %d\n", GetLastError());
522      }
523    }
524    return false;
525  }
526
527  DWORD exit_status;
528  if (!GetExitCodeProcess(ph, &exit_status)) {
529    if (PrintMiscellaneous && Verbose) {
530      warning("GetExitCodeProcess failed: %d\n", GetLastError());
531    }
532    CloseHandle(ph);
533    return false;
534  }
535
536  CloseHandle(ph);
537  return (exit_status == STILL_ACTIVE) ? true : false;
538}
539
540// check if the file system is considered secure for the backing store files
541//
542static bool is_filesystem_secure(const char* path) {
543
544  char root_path[MAX_PATH];
545  char fs_type[MAX_PATH];
546
547  if (PerfBypassFileSystemCheck) {
548    if (PrintMiscellaneous && Verbose) {
549      warning("bypassing file system criteria checks for %s\n", path);
550    }
551    return true;
552  }
553
554  char* first_colon = strchr((char *)path, ':');
555  if (first_colon == NULL) {
556    if (PrintMiscellaneous && Verbose) {
557      warning("expected device specifier in path: %s\n", path);
558    }
559    return false;
560  }
561
562  size_t len = (size_t)(first_colon - path);
563  assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
564  strncpy(root_path, path, len + 1);
565  root_path[len + 1] = '\\';
566  root_path[len + 2] = '\0';
567
568  // check that we have something like "C:\" or "AA:\"
569  assert(strlen(root_path) >= 3, "device specifier too short");
570  assert(strchr(root_path, ':') != NULL, "bad device specifier format");
571  assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
572
573  DWORD maxpath;
574  DWORD flags;
575
576  if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
577                            &flags, fs_type, MAX_PATH)) {
578    // we can't get information about the volume, so assume unsafe.
579    if (PrintMiscellaneous && Verbose) {
580      warning("could not get device information for %s: "
581              " path = %s: lasterror = %d\n",
582              root_path, path, GetLastError());
583    }
584    return false;
585  }
586
587  if ((flags & FS_PERSISTENT_ACLS) == 0) {
588    // file system doesn't support ACLs, declare file system unsafe
589    if (PrintMiscellaneous && Verbose) {
590      warning("file system type %s on device %s does not support"
591              " ACLs\n", fs_type, root_path);
592    }
593    return false;
594  }
595
596  if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
597    // file system is compressed, declare file system unsafe
598    if (PrintMiscellaneous && Verbose) {
599      warning("file system type %s on device %s is compressed\n",
600              fs_type, root_path);
601    }
602    return false;
603  }
604
605  return true;
606}
607
608// cleanup stale shared memory resources
609//
610// This method attempts to remove all stale shared memory files in
611// the named user temporary directory. It scans the named directory
612// for files matching the pattern ^$[0-9]*$. For each file found, the
613// process id is extracted from the file name and a test is run to
614// determine if the process is alive. If the process is not alive,
615// any stale file resources are removed.
616//
617static void cleanup_sharedmem_resources(const char* dirname) {
618
619  // open the user temp directory
620  DIR* dirp = os::opendir(dirname);
621
622  if (dirp == NULL) {
623    // directory doesn't exist, so there is nothing to cleanup
624    return;
625  }
626
627  if (!is_directory_secure(dirname)) {
628    // the directory is not secure, don't attempt any cleanup
629    return;
630  }
631
632  // for each entry in the directory that matches the expected file
633  // name pattern, determine if the file resources are stale and if
634  // so, remove the file resources. Note, instrumented HotSpot processes
635  // for this user may start and/or terminate during this search and
636  // remove or create new files in this directory. The behavior of this
637  // loop under these conditions is dependent upon the implementation of
638  // opendir/readdir.
639  //
640  struct dirent* entry;
641  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
642  errno = 0;
643  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
644
645    int pid = filename_to_pid(entry->d_name);
646
647    if (pid == 0) {
648
649      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
650
651        // attempt to remove all unexpected files, except "." and ".."
652        remove_file(dirname, entry->d_name);
653      }
654
655      errno = 0;
656      continue;
657    }
658
659    // we now have a file name that converts to a valid integer
660    // that could represent a process id . if this process id
661    // matches the current process id or the process is not running,
662    // then remove the stale file resources.
663    //
664    // process liveness is detected by checking the exit status
665    // of the process. if the process id is valid and the exit status
666    // indicates that it is still running, the file file resources
667    // are not removed. If the process id is invalid, or if we don't
668    // have permissions to check the process status, or if the process
669    // id is valid and the process has terminated, the the file resources
670    // are assumed to be stale and are removed.
671    //
672    if (pid == os::current_process_id() || !is_alive(pid)) {
673
674      // we can only remove the file resources. Any mapped views
675      // of the file can only be unmapped by the processes that
676      // opened those views and the file mapping object will not
677      // get removed until all views are unmapped.
678      //
679      remove_file(dirname, entry->d_name);
680    }
681    errno = 0;
682  }
683  os::closedir(dirp);
684  FREE_C_HEAP_ARRAY(char, dbuf);
685}
686
687// create a file mapping object with the requested name, and size
688// from the file represented by the given Handle object
689//
690static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
691
692  DWORD lowSize = (DWORD)size;
693  DWORD highSize = 0;
694  HANDLE fmh = NULL;
695
696  // Create a file mapping object with the given name. This function
697  // will grow the file to the specified size.
698  //
699  fmh = CreateFileMapping(
700               fh,                 /* HANDLE file handle for backing store */
701               fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
702               PAGE_READWRITE,     /* DWORD protections */
703               highSize,           /* DWORD High word of max size */
704               lowSize,            /* DWORD Low word of max size */
705               name);              /* LPCTSTR name for object */
706
707  if (fmh == NULL) {
708    if (PrintMiscellaneous && Verbose) {
709      warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
710    }
711    return NULL;
712  }
713
714  if (GetLastError() == ERROR_ALREADY_EXISTS) {
715
716    // a stale file mapping object was encountered. This object may be
717    // owned by this or some other user and cannot be removed until
718    // the other processes either exit or close their mapping objects
719    // and/or mapped views of this mapping object.
720    //
721    if (PrintMiscellaneous && Verbose) {
722      warning("file mapping already exists, lasterror = %d\n", GetLastError());
723    }
724
725    CloseHandle(fmh);
726    return NULL;
727  }
728
729  return fmh;
730}
731
732
733// method to free the given security descriptor and the contained
734// access control list.
735//
736static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
737
738  BOOL success, exists, isdefault;
739  PACL pACL;
740
741  if (pSD != NULL) {
742
743    // get the access control list from the security descriptor
744    success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
745
746    // if an ACL existed and it was not a default acl, then it must
747    // be an ACL we enlisted. free the resources.
748    //
749    if (success && exists && pACL != NULL && !isdefault) {
750      FREE_C_HEAP_ARRAY(char, pACL);
751    }
752
753    // free the security descriptor
754    FREE_C_HEAP_ARRAY(char, pSD);
755  }
756}
757
758// method to free up a security attributes structure and any
759// contained security descriptors and ACL
760//
761static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
762
763  if (lpSA != NULL) {
764    // free the contained security descriptor and the ACL
765    free_security_desc(lpSA->lpSecurityDescriptor);
766    lpSA->lpSecurityDescriptor = NULL;
767
768    // free the security attributes structure
769    FREE_C_HEAP_ARRAY(char, lpSA);
770  }
771}
772
773// get the user SID for the process indicated by the process handle
774//
775static PSID get_user_sid(HANDLE hProcess) {
776
777  HANDLE hAccessToken;
778  PTOKEN_USER token_buf = NULL;
779  DWORD rsize = 0;
780
781  if (hProcess == NULL) {
782    return NULL;
783  }
784
785  // get the process token
786  if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
787    if (PrintMiscellaneous && Verbose) {
788      warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
789    }
790    return NULL;
791  }
792
793  // determine the size of the token structured needed to retrieve
794  // the user token information from the access token.
795  //
796  if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
797    DWORD lasterror = GetLastError();
798    if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
799      if (PrintMiscellaneous && Verbose) {
800        warning("GetTokenInformation failure: lasterror = %d,"
801                " rsize = %d\n", lasterror, rsize);
802      }
803      CloseHandle(hAccessToken);
804      return NULL;
805    }
806  }
807
808  token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
809
810  // get the user token information
811  if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
812    if (PrintMiscellaneous && Verbose) {
813      warning("GetTokenInformation failure: lasterror = %d,"
814              " rsize = %d\n", GetLastError(), rsize);
815    }
816    FREE_C_HEAP_ARRAY(char, token_buf);
817    CloseHandle(hAccessToken);
818    return NULL;
819  }
820
821  DWORD nbytes = GetLengthSid(token_buf->User.Sid);
822  PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
823
824  if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
825    if (PrintMiscellaneous && Verbose) {
826      warning("GetTokenInformation failure: lasterror = %d,"
827              " rsize = %d\n", GetLastError(), rsize);
828    }
829    FREE_C_HEAP_ARRAY(char, token_buf);
830    FREE_C_HEAP_ARRAY(char, pSID);
831    CloseHandle(hAccessToken);
832    return NULL;
833  }
834
835  // close the access token.
836  CloseHandle(hAccessToken);
837  FREE_C_HEAP_ARRAY(char, token_buf);
838
839  return pSID;
840}
841
842// structure used to consolidate access control entry information
843//
844typedef struct ace_data {
845  PSID pSid;      // SID of the ACE
846  DWORD mask;     // mask for the ACE
847} ace_data_t;
848
849
850// method to add an allow access control entry with the access rights
851// indicated in mask for the principal indicated in SID to the given
852// security descriptor. Much of the DACL handling was adapted from
853// the example provided here:
854//      http://support.microsoft.com/kb/102102/EN-US/
855//
856
857static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
858                           ace_data_t aces[], int ace_count) {
859  PACL newACL = NULL;
860  PACL oldACL = NULL;
861
862  if (pSD == NULL) {
863    return false;
864  }
865
866  BOOL exists, isdefault;
867
868  // retrieve any existing access control list.
869  if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
870    if (PrintMiscellaneous && Verbose) {
871      warning("GetSecurityDescriptor failure: lasterror = %d \n",
872              GetLastError());
873    }
874    return false;
875  }
876
877  // get the size of the DACL
878  ACL_SIZE_INFORMATION aclinfo;
879
880  // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
881  // while oldACL is NULL for some case.
882  if (oldACL == NULL) {
883    exists = FALSE;
884  }
885
886  if (exists) {
887    if (!GetAclInformation(oldACL, &aclinfo,
888                           sizeof(ACL_SIZE_INFORMATION),
889                           AclSizeInformation)) {
890      if (PrintMiscellaneous && Verbose) {
891        warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
892        return false;
893      }
894    }
895  } else {
896    aclinfo.AceCount = 0; // assume NULL DACL
897    aclinfo.AclBytesFree = 0;
898    aclinfo.AclBytesInUse = sizeof(ACL);
899  }
900
901  // compute the size needed for the new ACL
902  // initial size of ACL is sum of the following:
903  //   * size of ACL structure.
904  //   * size of each ACE structure that ACL is to contain minus the sid
905  //     sidStart member (DWORD) of the ACE.
906  //   * length of the SID that each ACE is to contain.
907  DWORD newACLsize = aclinfo.AclBytesInUse +
908                        (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
909  for (int i = 0; i < ace_count; i++) {
910     assert(aces[i].pSid != 0, "pSid should not be 0");
911     newACLsize += GetLengthSid(aces[i].pSid);
912  }
913
914  // create the new ACL
915  newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
916
917  if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
918    if (PrintMiscellaneous && Verbose) {
919      warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
920    }
921    FREE_C_HEAP_ARRAY(char, newACL);
922    return false;
923  }
924
925  unsigned int ace_index = 0;
926  // copy any existing ACEs from the old ACL (if any) to the new ACL.
927  if (aclinfo.AceCount != 0) {
928    while (ace_index < aclinfo.AceCount) {
929      LPVOID ace;
930      if (!GetAce(oldACL, ace_index, &ace)) {
931        if (PrintMiscellaneous && Verbose) {
932          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
933        }
934        FREE_C_HEAP_ARRAY(char, newACL);
935        return false;
936      }
937      if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
938        // this is an inherited, allowed ACE; break from loop so we can
939        // add the new access allowed, non-inherited ACE in the correct
940        // position, immediately following all non-inherited ACEs.
941        break;
942      }
943
944      // determine if the SID of this ACE matches any of the SIDs
945      // for which we plan to set ACEs.
946      int matches = 0;
947      for (int i = 0; i < ace_count; i++) {
948        if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
949          matches++;
950          break;
951        }
952      }
953
954      // if there are no SID matches, then add this existing ACE to the new ACL
955      if (matches == 0) {
956        if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
957                    ((PACE_HEADER)ace)->AceSize)) {
958          if (PrintMiscellaneous && Verbose) {
959            warning("AddAce failure: lasterror = %d \n", GetLastError());
960          }
961          FREE_C_HEAP_ARRAY(char, newACL);
962          return false;
963        }
964      }
965      ace_index++;
966    }
967  }
968
969  // add the passed-in access control entries to the new ACL
970  for (int i = 0; i < ace_count; i++) {
971    if (!AddAccessAllowedAce(newACL, ACL_REVISION,
972                             aces[i].mask, aces[i].pSid)) {
973      if (PrintMiscellaneous && Verbose) {
974        warning("AddAccessAllowedAce failure: lasterror = %d \n",
975                GetLastError());
976      }
977      FREE_C_HEAP_ARRAY(char, newACL);
978      return false;
979    }
980  }
981
982  // now copy the rest of the inherited ACEs from the old ACL
983  if (aclinfo.AceCount != 0) {
984    // picking up at ace_index, where we left off in the
985    // previous ace_index loop
986    while (ace_index < aclinfo.AceCount) {
987      LPVOID ace;
988      if (!GetAce(oldACL, ace_index, &ace)) {
989        if (PrintMiscellaneous && Verbose) {
990          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
991        }
992        FREE_C_HEAP_ARRAY(char, newACL);
993        return false;
994      }
995      if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
996                  ((PACE_HEADER)ace)->AceSize)) {
997        if (PrintMiscellaneous && Verbose) {
998          warning("AddAce failure: lasterror = %d \n", GetLastError());
999        }
1000        FREE_C_HEAP_ARRAY(char, newACL);
1001        return false;
1002      }
1003      ace_index++;
1004    }
1005  }
1006
1007  // add the new ACL to the security descriptor.
1008  if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
1009    if (PrintMiscellaneous && Verbose) {
1010      warning("SetSecurityDescriptorDacl failure:"
1011              " lasterror = %d \n", GetLastError());
1012    }
1013    FREE_C_HEAP_ARRAY(char, newACL);
1014    return false;
1015  }
1016
1017  // if running on windows 2000 or later, set the automatic inheritance
1018  // control flags.
1019  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1020  _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1021       GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1022                      "SetSecurityDescriptorControl");
1023
1024  if (_SetSecurityDescriptorControl != NULL) {
1025    // We do not want to further propagate inherited DACLs, so making them
1026    // protected prevents that.
1027    if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1028                                            SE_DACL_PROTECTED)) {
1029      if (PrintMiscellaneous && Verbose) {
1030        warning("SetSecurityDescriptorControl failure:"
1031                " lasterror = %d \n", GetLastError());
1032      }
1033      FREE_C_HEAP_ARRAY(char, newACL);
1034      return false;
1035    }
1036  }
1037   // Note, the security descriptor maintains a reference to the newACL, not
1038   // a copy of it. Therefore, the newACL is not freed here. It is freed when
1039   // the security descriptor containing its reference is freed.
1040   //
1041   return true;
1042}
1043
1044// method to create a security attributes structure, which contains a
1045// security descriptor and an access control list comprised of 0 or more
1046// access control entries. The method take an array of ace_data structures
1047// that indicate the ACE to be added to the security descriptor.
1048//
1049// the caller must free the resources associated with the security
1050// attributes structure created by this method by calling the
1051// free_security_attr() method.
1052//
1053static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1054
1055  // allocate space for a security descriptor
1056  PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1057                         NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
1058
1059  // initialize the security descriptor
1060  if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1061    if (PrintMiscellaneous && Verbose) {
1062      warning("InitializeSecurityDescriptor failure: "
1063              "lasterror = %d \n", GetLastError());
1064    }
1065    free_security_desc(pSD);
1066    return NULL;
1067  }
1068
1069  // add the access control entries
1070  if (!add_allow_aces(pSD, aces, count)) {
1071    free_security_desc(pSD);
1072    return NULL;
1073  }
1074
1075  // allocate and initialize the security attributes structure and
1076  // return it to the caller.
1077  //
1078  LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1079                            NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
1080  lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1081  lpSA->lpSecurityDescriptor = pSD;
1082  lpSA->bInheritHandle = FALSE;
1083
1084  return(lpSA);
1085}
1086
1087// method to create a security attributes structure with a restrictive
1088// access control list that creates a set access rights for the user/owner
1089// of the securable object and a separate set access rights for everyone else.
1090// also provides for full access rights for the administrator group.
1091//
1092// the caller must free the resources associated with the security
1093// attributes structure created by this method by calling the
1094// free_security_attr() method.
1095//
1096
1097static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1098                                DWORD umask, DWORD emask, DWORD amask) {
1099
1100  ace_data_t aces[3];
1101
1102  // initialize the user ace data
1103  aces[0].pSid = get_user_sid(GetCurrentProcess());
1104  aces[0].mask = umask;
1105
1106  if (aces[0].pSid == 0)
1107    return NULL;
1108
1109  // get the well known SID for BUILTIN\Administrators
1110  PSID administratorsSid = NULL;
1111  SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1112
1113  if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1114           SECURITY_BUILTIN_DOMAIN_RID,
1115           DOMAIN_ALIAS_RID_ADMINS,
1116           0, 0, 0, 0, 0, 0, &administratorsSid)) {
1117
1118    if (PrintMiscellaneous && Verbose) {
1119      warning("AllocateAndInitializeSid failure: "
1120              "lasterror = %d \n", GetLastError());
1121    }
1122    return NULL;
1123  }
1124
1125  // initialize the ace data for administrator group
1126  aces[1].pSid = administratorsSid;
1127  aces[1].mask = amask;
1128
1129  // get the well known SID for the universal Everybody
1130  PSID everybodySid = NULL;
1131  SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1132
1133  if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1134           0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1135
1136    if (PrintMiscellaneous && Verbose) {
1137      warning("AllocateAndInitializeSid failure: "
1138              "lasterror = %d \n", GetLastError());
1139    }
1140    return NULL;
1141  }
1142
1143  // initialize the ace data for everybody else.
1144  aces[2].pSid = everybodySid;
1145  aces[2].mask = emask;
1146
1147  // create a security attributes structure with access control
1148  // entries as initialized above.
1149  LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1150  FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1151  FreeSid(everybodySid);
1152  FreeSid(administratorsSid);
1153  return(lpSA);
1154}
1155
1156
1157// method to create the security attributes structure for restricting
1158// access to the user temporary directory.
1159//
1160// the caller must free the resources associated with the security
1161// attributes structure created by this method by calling the
1162// free_security_attr() method.
1163//
1164static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1165
1166  // create full access rights for the user/owner of the directory
1167  // and read-only access rights for everybody else. This is
1168  // effectively equivalent to UNIX 755 permissions on a directory.
1169  //
1170  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1171  DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1172  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1173
1174  return make_user_everybody_admin_security_attr(umask, emask, amask);
1175}
1176
1177// method to create the security attributes structure for restricting
1178// access to the shared memory backing store file.
1179//
1180// the caller must free the resources associated with the security
1181// attributes structure created by this method by calling the
1182// free_security_attr() method.
1183//
1184static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1185
1186  // create extensive access rights for the user/owner of the file
1187  // and attribute read-only access rights for everybody else. This
1188  // is effectively equivalent to UNIX 600 permissions on a file.
1189  //
1190  DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1191  DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1192                 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1193  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1194
1195  return make_user_everybody_admin_security_attr(umask, emask, amask);
1196}
1197
1198// method to create the security attributes structure for restricting
1199// access to the name shared memory file mapping object.
1200//
1201// the caller must free the resources associated with the security
1202// attributes structure created by this method by calling the
1203// free_security_attr() method.
1204//
1205static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1206
1207  // create extensive access rights for the user/owner of the shared
1208  // memory object and attribute read-only access rights for everybody
1209  // else. This is effectively equivalent to UNIX 600 permissions on
1210  // on the shared memory object.
1211  //
1212  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1213  DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1214  DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1215
1216  return make_user_everybody_admin_security_attr(umask, emask, amask);
1217}
1218
1219// make the user specific temporary directory
1220//
1221static bool make_user_tmp_dir(const char* dirname) {
1222
1223
1224  LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1225  if (pDirSA == NULL) {
1226    return false;
1227  }
1228
1229
1230  // create the directory with the given security attributes
1231  if (!CreateDirectory(dirname, pDirSA)) {
1232    DWORD lasterror = GetLastError();
1233    if (lasterror == ERROR_ALREADY_EXISTS) {
1234      // The directory already exists and was probably created by another
1235      // JVM instance. However, this could also be the result of a
1236      // deliberate symlink. Verify that the existing directory is safe.
1237      //
1238      if (!is_directory_secure(dirname)) {
1239        // directory is not secure
1240        if (PrintMiscellaneous && Verbose) {
1241          warning("%s directory is insecure\n", dirname);
1242        }
1243        return false;
1244      }
1245      // The administrator should be able to delete this directory.
1246      // But the directory created by previous version of JVM may not
1247      // have permission for administrators to delete this directory.
1248      // So add full permission to the administrator. Also setting new
1249      // DACLs might fix the corrupted the DACLs.
1250      SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1251      if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1252        if (PrintMiscellaneous && Verbose) {
1253          lasterror = GetLastError();
1254          warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1255                                                        dirname, lasterror);
1256        }
1257      }
1258    }
1259    else {
1260      if (PrintMiscellaneous && Verbose) {
1261        warning("CreateDirectory failed: %d\n", GetLastError());
1262      }
1263      return false;
1264    }
1265  }
1266
1267  // free the security attributes structure
1268  free_security_attr(pDirSA);
1269
1270  return true;
1271}
1272
1273// create the shared memory resources
1274//
1275// This function creates the shared memory resources. This includes
1276// the backing store file and the file mapping shared memory object.
1277//
1278static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1279
1280  HANDLE fh = INVALID_HANDLE_VALUE;
1281  HANDLE fmh = NULL;
1282
1283
1284  // create the security attributes for the backing store file
1285  LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1286  if (lpFileSA == NULL) {
1287    return NULL;
1288  }
1289
1290  // create the security attributes for the shared memory object
1291  LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1292  if (lpSmoSA == NULL) {
1293    free_security_attr(lpFileSA);
1294    return NULL;
1295  }
1296
1297  // create the user temporary directory
1298  if (!make_user_tmp_dir(dirname)) {
1299    // could not make/find the directory or the found directory
1300    // was not secure
1301    return NULL;
1302  }
1303
1304  // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1305  // file to be deleted by the last process that closes its handle to
1306  // the file. This is important as the apis do not allow a terminating
1307  // JVM being monitored by another process to remove the file name.
1308  //
1309  // the FILE_SHARE_DELETE share mode is valid only in winnt
1310  //
1311  fh = CreateFile(
1312             filename,                   /* LPCTSTR file name */
1313
1314             GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1315
1316             (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1317             FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1318                                          * open operations allowed
1319                                          */
1320             lpFileSA,                   /* LPSECURITY security attributes */
1321             CREATE_ALWAYS,              /* DWORD creation disposition
1322                                          * create file, if it already
1323                                          * exists, overwrite it.
1324                                          */
1325             FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1326
1327             NULL);                      /* HANDLE template file access */
1328
1329  free_security_attr(lpFileSA);
1330
1331  if (fh == INVALID_HANDLE_VALUE) {
1332    DWORD lasterror = GetLastError();
1333    if (PrintMiscellaneous && Verbose) {
1334      warning("could not create file %s: %d\n", filename, lasterror);
1335    }
1336    return NULL;
1337  }
1338
1339  // try to create the file mapping
1340  fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1341
1342  free_security_attr(lpSmoSA);
1343
1344  if (fmh == NULL) {
1345    // closing the file handle here will decrement the reference count
1346    // on the file. When all processes accessing the file close their
1347    // handle to it, the reference count will decrement to 0 and the
1348    // OS will delete the file. These semantics are requested by the
1349    // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1350    CloseHandle(fh);
1351    fh = NULL;
1352    return NULL;
1353  } else {
1354    // We created the file mapping, but rarely the size of the
1355    // backing store file is reported as zero (0) which can cause
1356    // failures when trying to use the hsperfdata file.
1357    struct stat statbuf;
1358    int ret_code = ::stat(filename, &statbuf);
1359    if (ret_code == OS_ERR) {
1360      if (PrintMiscellaneous && Verbose) {
1361        warning("Could not get status information from file %s: %s\n",
1362            filename, strerror(errno));
1363      }
1364      CloseHandle(fmh);
1365      CloseHandle(fh);
1366      fh = NULL;
1367      fmh = NULL;
1368      return NULL;
1369    }
1370
1371    // We could always call FlushFileBuffers() but the Microsoft
1372    // docs indicate that it is considered expensive so we only
1373    // call it when we observe the size as zero (0).
1374    if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
1375      DWORD lasterror = GetLastError();
1376      if (PrintMiscellaneous && Verbose) {
1377        warning("could not flush file %s: %d\n", filename, lasterror);
1378      }
1379      CloseHandle(fmh);
1380      CloseHandle(fh);
1381      fh = NULL;
1382      fmh = NULL;
1383      return NULL;
1384    }
1385  }
1386
1387  // the file has been successfully created and the file mapping
1388  // object has been created.
1389  sharedmem_fileHandle = fh;
1390  sharedmem_fileName = strdup(filename);
1391
1392  return fmh;
1393}
1394
1395// open the shared memory object for the given vmid.
1396//
1397static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1398
1399  HANDLE fmh;
1400
1401  // open the file mapping with the requested mode
1402  fmh = OpenFileMapping(
1403               ofm_access,       /* DWORD access mode */
1404               FALSE,            /* BOOL inherit flag - Do not allow inherit */
1405               objectname);      /* name for object */
1406
1407  if (fmh == NULL) {
1408    if (PrintMiscellaneous && Verbose) {
1409      warning("OpenFileMapping failed for shared memory object %s:"
1410              " lasterror = %d\n", objectname, GetLastError());
1411    }
1412    THROW_MSG_(vmSymbols::java_lang_Exception(),
1413               "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1414  }
1415
1416  return fmh;;
1417}
1418
1419// create a named shared memory region
1420//
1421// On Win32, a named shared memory object has a name space that
1422// is independent of the file system name space. Shared memory object,
1423// or more precisely, file mapping objects, provide no mechanism to
1424// inquire the size of the memory region. There is also no api to
1425// enumerate the memory regions for various processes.
1426//
1427// This implementation utilizes the shared memory name space in parallel
1428// with the file system name space. This allows us to determine the
1429// size of the shared memory region from the size of the file and it
1430// allows us to provide a common, file system based name space for
1431// shared memory across platforms.
1432//
1433static char* mapping_create_shared(size_t size) {
1434
1435  void *mapAddress;
1436  int vmid = os::current_process_id();
1437
1438  // get the name of the user associated with this process
1439  char* user = get_user_name();
1440
1441  if (user == NULL) {
1442    return NULL;
1443  }
1444
1445  // construct the name of the user specific temporary directory
1446  char* dirname = get_user_tmp_dir(user);
1447
1448  // check that the file system is secure - i.e. it supports ACLs.
1449  if (!is_filesystem_secure(dirname)) {
1450    return NULL;
1451  }
1452
1453  // create the names of the backing store files and for the
1454  // share memory object.
1455  //
1456  char* filename = get_sharedmem_filename(dirname, vmid);
1457  char* objectname = get_sharedmem_objectname(user, vmid);
1458
1459  // cleanup any stale shared memory resources
1460  cleanup_sharedmem_resources(dirname);
1461
1462  assert(((size != 0) && (size % os::vm_page_size() == 0)),
1463         "unexpected PerfMemry region size");
1464
1465  FREE_C_HEAP_ARRAY(char, user);
1466
1467  // create the shared memory resources
1468  sharedmem_fileMapHandle =
1469               create_sharedmem_resources(dirname, filename, objectname, size);
1470
1471  FREE_C_HEAP_ARRAY(char, filename);
1472  FREE_C_HEAP_ARRAY(char, objectname);
1473  FREE_C_HEAP_ARRAY(char, dirname);
1474
1475  if (sharedmem_fileMapHandle == NULL) {
1476    return NULL;
1477  }
1478
1479  // map the file into the address space
1480  mapAddress = MapViewOfFile(
1481                   sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1482                   FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1483                   0,                       /* DWORD High word of offset */
1484                   0,                       /* DWORD Low word of offset */
1485                   (DWORD)size);            /* DWORD Number of bytes to map */
1486
1487  if (mapAddress == NULL) {
1488    if (PrintMiscellaneous && Verbose) {
1489      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1490    }
1491    CloseHandle(sharedmem_fileMapHandle);
1492    sharedmem_fileMapHandle = NULL;
1493    return NULL;
1494  }
1495
1496  // clear the shared memory region
1497  (void)memset(mapAddress, '\0', size);
1498
1499  return (char*) mapAddress;
1500}
1501
1502// this method deletes the file mapping object.
1503//
1504static void delete_file_mapping(char* addr, size_t size) {
1505
1506  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1507  // not support unloading of the JVM, unmapping of the memory resource is not
1508  // performed. The memory will be reclaimed by the OS upon termination of all
1509  // processes mapping the resource. The file mapping handle and the file
1510  // handle are closed here to expedite the remove of the file by the OS. The
1511  // file is not removed directly because it was created with
1512  // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1513  // be unsuccessful.
1514
1515  // close the fileMapHandle. the file mapping will still be retained
1516  // by the OS as long as any other JVM processes has an open file mapping
1517  // handle or a mapped view of the file.
1518  //
1519  if (sharedmem_fileMapHandle != NULL) {
1520    CloseHandle(sharedmem_fileMapHandle);
1521    sharedmem_fileMapHandle = NULL;
1522  }
1523
1524  // close the file handle. This will decrement the reference count on the
1525  // backing store file. When the reference count decrements to 0, the OS
1526  // will delete the file. These semantics apply because the file was
1527  // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1528  //
1529  if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1530    CloseHandle(sharedmem_fileHandle);
1531    sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1532  }
1533}
1534
1535// this method determines the size of the shared memory file
1536//
1537static size_t sharedmem_filesize(const char* filename, TRAPS) {
1538
1539  struct stat statbuf;
1540
1541  // get the file size
1542  //
1543  // on win95/98/me, _stat returns a file size of 0 bytes, but on
1544  // winnt/2k the appropriate file size is returned. support for
1545  // the sharable aspects of performance counters was abandonded
1546  // on the non-nt win32 platforms due to this and other api
1547  // inconsistencies
1548  //
1549  if (::stat(filename, &statbuf) == OS_ERR) {
1550    if (PrintMiscellaneous && Verbose) {
1551      warning("stat %s failed: %s\n", filename, strerror(errno));
1552    }
1553    THROW_MSG_0(vmSymbols::java_io_IOException(),
1554                "Could not determine PerfMemory size");
1555  }
1556
1557  if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1558    if (PrintMiscellaneous && Verbose) {
1559      warning("unexpected file size: size = " SIZE_FORMAT "\n",
1560              statbuf.st_size);
1561    }
1562    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1563                "Invalid PerfMemory size");
1564  }
1565
1566  return statbuf.st_size;
1567}
1568
1569// this method opens a file mapping object and maps the object
1570// into the address space of the process
1571//
1572static void open_file_mapping(const char* user, int vmid,
1573                              PerfMemory::PerfMemoryMode mode,
1574                              char** addrp, size_t* sizep, TRAPS) {
1575
1576  ResourceMark rm;
1577
1578  void *mapAddress = 0;
1579  size_t size;
1580  HANDLE fmh;
1581  DWORD ofm_access;
1582  DWORD mv_access;
1583  const char* luser = NULL;
1584
1585  if (mode == PerfMemory::PERF_MODE_RO) {
1586    ofm_access = FILE_MAP_READ;
1587    mv_access = FILE_MAP_READ;
1588  }
1589  else if (mode == PerfMemory::PERF_MODE_RW) {
1590#ifdef LATER
1591    ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1592    mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1593#else
1594    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1595              "Unsupported access mode");
1596#endif
1597  }
1598  else {
1599    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1600              "Illegal access mode");
1601  }
1602
1603  // if a user name wasn't specified, then find the user name for
1604  // the owner of the target vm.
1605  if (user == NULL || strlen(user) == 0) {
1606    luser = get_user_name(vmid);
1607  }
1608  else {
1609    luser = user;
1610  }
1611
1612  if (luser == NULL) {
1613    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1614              "Could not map vmid to user name");
1615  }
1616
1617  // get the names for the resources for the target vm
1618  char* dirname = get_user_tmp_dir(luser);
1619
1620  // since we don't follow symbolic links when creating the backing
1621  // store file, we also don't following them when attaching
1622  //
1623  if (!is_directory_secure(dirname)) {
1624    FREE_C_HEAP_ARRAY(char, dirname);
1625    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1626              "Process not found");
1627  }
1628
1629  char* filename = get_sharedmem_filename(dirname, vmid);
1630  char* objectname = get_sharedmem_objectname(luser, vmid);
1631
1632  // copy heap memory to resource memory. the objectname and
1633  // filename are passed to methods that may throw exceptions.
1634  // using resource arrays for these names prevents the leaks
1635  // that would otherwise occur.
1636  //
1637  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1638  char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1639  strcpy(rfilename, filename);
1640  strcpy(robjectname, objectname);
1641
1642  // free the c heap resources that are no longer needed
1643  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1644  FREE_C_HEAP_ARRAY(char, dirname);
1645  FREE_C_HEAP_ARRAY(char, filename);
1646  FREE_C_HEAP_ARRAY(char, objectname);
1647
1648  if (*sizep == 0) {
1649    size = sharedmem_filesize(rfilename, CHECK);
1650    assert(size != 0, "unexpected size");
1651  }
1652
1653  // Open the file mapping object with the given name
1654  fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1655
1656  assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1657
1658  // map the entire file into the address space
1659  mapAddress = MapViewOfFile(
1660                 fmh,             /* HANDLE Handle of file mapping object */
1661                 mv_access,       /* DWORD access flags */
1662                 0,               /* DWORD High word of offset */
1663                 0,               /* DWORD Low word of offset */
1664                 size);           /* DWORD Number of bytes to map */
1665
1666  if (mapAddress == NULL) {
1667    if (PrintMiscellaneous && Verbose) {
1668      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1669    }
1670    CloseHandle(fmh);
1671    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1672              "Could not map PerfMemory");
1673  }
1674
1675  *addrp = (char*)mapAddress;
1676  *sizep = size;
1677
1678  // File mapping object can be closed at this time without
1679  // invalidating the mapped view of the file
1680  CloseHandle(fmh);
1681
1682  if (PerfTraceMemOps) {
1683    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1684               INTPTR_FORMAT "\n", size, vmid, mapAddress);
1685  }
1686}
1687
1688// this method unmaps the the mapped view of the the
1689// file mapping object.
1690//
1691static void remove_file_mapping(char* addr) {
1692
1693  // the file mapping object was closed in open_file_mapping()
1694  // after the file map view was created. We only need to
1695  // unmap the file view here.
1696  UnmapViewOfFile(addr);
1697}
1698
1699// create the PerfData memory region in shared memory.
1700static char* create_shared_memory(size_t size) {
1701
1702  return mapping_create_shared(size);
1703}
1704
1705// release a named, shared memory region
1706//
1707void delete_shared_memory(char* addr, size_t size) {
1708
1709  delete_file_mapping(addr, size);
1710}
1711
1712
1713
1714
1715// create the PerfData memory region
1716//
1717// This method creates the memory region used to store performance
1718// data for the JVM. The memory may be created in standard or
1719// shared memory.
1720//
1721void PerfMemory::create_memory_region(size_t size) {
1722
1723  if (PerfDisableSharedMem || !os::win32::is_nt()) {
1724    // do not share the memory for the performance data.
1725    PerfDisableSharedMem = true;
1726    _start = create_standard_memory(size);
1727  }
1728  else {
1729    _start = create_shared_memory(size);
1730    if (_start == NULL) {
1731
1732      // creation of the shared memory region failed, attempt
1733      // to create a contiguous, non-shared memory region instead.
1734      //
1735      if (PrintMiscellaneous && Verbose) {
1736        warning("Reverting to non-shared PerfMemory region.\n");
1737      }
1738      PerfDisableSharedMem = true;
1739      _start = create_standard_memory(size);
1740    }
1741  }
1742
1743  if (_start != NULL) _capacity = size;
1744
1745}
1746
1747// delete the PerfData memory region
1748//
1749// This method deletes the memory region used to store performance
1750// data for the JVM. The memory region indicated by the <address, size>
1751// tuple will be inaccessible after a call to this method.
1752//
1753void PerfMemory::delete_memory_region() {
1754
1755  assert((start() != NULL && capacity() > 0), "verify proper state");
1756
1757  // If user specifies PerfDataSaveFile, it will save the performance data
1758  // to the specified file name no matter whether PerfDataSaveToFile is specified
1759  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1760  // -XX:+PerfDataSaveToFile.
1761  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1762    save_memory_to_file(start(), capacity());
1763  }
1764
1765  if (PerfDisableSharedMem) {
1766    delete_standard_memory(start(), capacity());
1767  }
1768  else {
1769    delete_shared_memory(start(), capacity());
1770  }
1771}
1772
1773// attach to the PerfData memory region for another JVM
1774//
1775// This method returns an <address, size> tuple that points to
1776// a memory buffer that is kept reasonably synchronized with
1777// the PerfData memory region for the indicated JVM. This
1778// buffer may be kept in synchronization via shared memory
1779// or some other mechanism that keeps the buffer updated.
1780//
1781// If the JVM chooses not to support the attachability feature,
1782// this method should throw an UnsupportedOperation exception.
1783//
1784// This implementation utilizes named shared memory to map
1785// the indicated process's PerfData memory region into this JVMs
1786// address space.
1787//
1788void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1789                        char** addrp, size_t* sizep, TRAPS) {
1790
1791  if (vmid == 0 || vmid == os::current_process_id()) {
1792     *addrp = start();
1793     *sizep = capacity();
1794     return;
1795  }
1796
1797  open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1798}
1799
1800// detach from the PerfData memory region of another JVM
1801//
1802// This method detaches the PerfData memory region of another
1803// JVM, specified as an <address, size> tuple of a buffer
1804// in this process's address space. This method may perform
1805// arbitrary actions to accomplish the detachment. The memory
1806// region specified by <address, size> will be inaccessible after
1807// a call to this method.
1808//
1809// If the JVM chooses not to support the attachability feature,
1810// this method should throw an UnsupportedOperation exception.
1811//
1812// This implementation utilizes named shared memory to detach
1813// the indicated process's PerfData memory region from this
1814// process's address space.
1815//
1816void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1817
1818  assert(addr != 0, "address sanity check");
1819  assert(bytes > 0, "capacity sanity check");
1820
1821  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1822    // prevent accidental detachment of this process's PerfMemory region
1823    return;
1824  }
1825
1826  remove_file_mapping(addr);
1827}
1828
1829char* PerfMemory::backing_store_filename() {
1830  return sharedmem_fileName;
1831}
1832