perfMemory_windows.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_windows.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "utilities/exceptions.hpp"
34
35#include <windows.h>
36#include <sys/types.h>
37#include <sys/stat.h>
38#include <errno.h>
39#include <lmcons.h>
40
41typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
42   IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
43   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
44   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
45
46// Standard Memory Implementation Details
47
48// create the PerfData memory region in standard memory.
49//
50static char* create_standard_memory(size_t size) {
51
52  // allocate an aligned chuck of memory
53  char* mapAddress = os::reserve_memory(size);
54
55  if (mapAddress == NULL) {
56    return NULL;
57  }
58
59  // commit memory
60  if (!os::commit_memory(mapAddress, size)) {
61    if (PrintMiscellaneous && Verbose) {
62      warning("Could not commit PerfData memory\n");
63    }
64    os::release_memory(mapAddress, size);
65    return NULL;
66  }
67
68  return mapAddress;
69}
70
71// delete the PerfData memory region
72//
73static void delete_standard_memory(char* addr, size_t size) {
74
75  // there are no persistent external resources to cleanup for standard
76  // memory. since DestroyJavaVM does not support unloading of the JVM,
77  // cleanup of the memory resource is not performed. The memory will be
78  // reclaimed by the OS upon termination of the process.
79  //
80  return;
81
82}
83
84// save the specified memory region to the given file
85//
86static void save_memory_to_file(char* addr, size_t size) {
87
88  const char* destfile = PerfMemory::get_perfdata_file_path();
89  assert(destfile[0] != '\0', "invalid Perfdata file path");
90
91  int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
92                   _S_IREAD|_S_IWRITE);
93
94  if (fd == OS_ERR) {
95    if (PrintMiscellaneous && Verbose) {
96      warning("Could not create Perfdata save file: %s: %s\n",
97              destfile, strerror(errno));
98    }
99  } else {
100    for (size_t remaining = size; remaining > 0;) {
101
102      int nbytes = ::_write(fd, addr, (unsigned int)remaining);
103      if (nbytes == OS_ERR) {
104        if (PrintMiscellaneous && Verbose) {
105          warning("Could not write Perfdata save file: %s: %s\n",
106                  destfile, strerror(errno));
107        }
108        break;
109      }
110
111      remaining -= (size_t)nbytes;
112      addr += nbytes;
113    }
114
115    int result = ::_close(fd);
116    if (PrintMiscellaneous && Verbose) {
117      if (result == OS_ERR) {
118        warning("Could not close %s: %s\n", destfile, strerror(errno));
119      }
120    }
121  }
122
123  FREE_C_HEAP_ARRAY(char, destfile);
124}
125
126// Shared Memory Implementation Details
127
128// Note: the win32 shared memory implementation uses two objects to represent
129// the shared memory: a windows kernel based file mapping object and a backing
130// store file. On windows, the name space for shared memory is a kernel
131// based name space that is disjoint from other win32 name spaces. Since Java
132// is unaware of this name space, a parallel file system based name space is
133// maintained, which provides a common file system based shared memory name
134// space across the supported platforms and one that Java apps can deal with
135// through simple file apis.
136//
137// For performance and resource cleanup reasons, it is recommended that the
138// user specific directory and the backing store file be stored in either a
139// RAM based file system or a local disk based file system. Network based
140// file systems are not recommended for performance reasons. In addition,
141// use of SMB network based file systems may result in unsuccesful cleanup
142// of the disk based resource on exit of the VM. The Windows TMP and TEMP
143// environement variables, as used by the GetTempPath() Win32 API (see
144// os::get_temp_directory() in os_win32.cpp), control the location of the
145// user specific directory and the shared memory backing store file.
146
147static HANDLE sharedmem_fileMapHandle = NULL;
148static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
149static char*  sharedmem_fileName = NULL;
150
151// return the user specific temporary directory name.
152//
153// the caller is expected to free the allocated memory.
154//
155static char* get_user_tmp_dir(const char* user) {
156
157  const char* tmpdir = os::get_temp_directory();
158  const char* perfdir = PERFDATA_NAME;
159  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
160  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
161
162  // construct the path name to user specific tmp directory
163  _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
164
165  return dirname;
166}
167
168// convert the given file name into a process id. if the file
169// does not meet the file naming constraints, return 0.
170//
171static int filename_to_pid(const char* filename) {
172
173  // a filename that doesn't begin with a digit is not a
174  // candidate for conversion.
175  //
176  if (!isdigit(*filename)) {
177    return 0;
178  }
179
180  // check if file name can be converted to an integer without
181  // any leftover characters.
182  //
183  char* remainder = NULL;
184  errno = 0;
185  int pid = (int)strtol(filename, &remainder, 10);
186
187  if (errno != 0) {
188    return 0;
189  }
190
191  // check for left over characters. If any, then the filename is
192  // not a candidate for conversion.
193  //
194  if (remainder != NULL && *remainder != '\0') {
195    return 0;
196  }
197
198  // successful conversion, return the pid
199  return pid;
200}
201
202// check if the given path is considered a secure directory for
203// the backing store files. Returns true if the directory exists
204// and is considered a secure location. Returns false if the path
205// is a symbolic link or if an error occurred.
206//
207static bool is_directory_secure(const char* path) {
208
209  DWORD fa;
210
211  fa = GetFileAttributes(path);
212  if (fa == 0xFFFFFFFF) {
213    DWORD lasterror = GetLastError();
214    if (lasterror == ERROR_FILE_NOT_FOUND) {
215      return false;
216    }
217    else {
218      // unexpected error, declare the path insecure
219      if (PrintMiscellaneous && Verbose) {
220        warning("could not get attributes for file %s: ",
221                " lasterror = %d\n", path, lasterror);
222      }
223      return false;
224    }
225  }
226
227  if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
228    // we don't accept any redirection for the user specific directory
229    // so declare the path insecure. This may be too conservative,
230    // as some types of reparse points might be acceptable, but it
231    // is probably more secure to avoid these conditions.
232    //
233    if (PrintMiscellaneous && Verbose) {
234      warning("%s is a reparse point\n", path);
235    }
236    return false;
237  }
238
239  if (fa & FILE_ATTRIBUTE_DIRECTORY) {
240    // this is the expected case. Since windows supports symbolic
241    // links to directories only, not to files, there is no need
242    // to check for open write permissions on the directory. If the
243    // directory has open write permissions, any files deposited that
244    // are not expected will be removed by the cleanup code.
245    //
246    return true;
247  }
248  else {
249    // this is either a regular file or some other type of file,
250    // any of which are unexpected and therefore insecure.
251    //
252    if (PrintMiscellaneous && Verbose) {
253      warning("%s is not a directory, file attributes = "
254              INTPTR_FORMAT "\n", path, fa);
255    }
256    return false;
257  }
258}
259
260// return the user name for the owner of this process
261//
262// the caller is expected to free the allocated memory.
263//
264static char* get_user_name() {
265
266  /* get the user name. This code is adapted from code found in
267   * the jdk in src/windows/native/java/lang/java_props_md.c
268   * java_props_md.c  1.29 02/02/06. According to the original
269   * source, the call to GetUserName is avoided because of a resulting
270   * increase in footprint of 100K.
271   */
272  char* user = getenv("USERNAME");
273  char buf[UNLEN+1];
274  DWORD buflen = sizeof(buf);
275  if (user == NULL || strlen(user) == 0) {
276    if (GetUserName(buf, &buflen)) {
277      user = buf;
278    }
279    else {
280      return NULL;
281    }
282  }
283
284  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
285  strcpy(user_name, user);
286
287  return user_name;
288}
289
290// return the name of the user that owns the process identified by vmid.
291//
292// This method uses a slow directory search algorithm to find the backing
293// store file for the specified vmid and returns the user name, as determined
294// by the user name suffix of the hsperfdata_<username> directory name.
295//
296// the caller is expected to free the allocated memory.
297//
298static char* get_user_name_slow(int vmid) {
299
300  // directory search
301  char* oldest_user = NULL;
302  time_t oldest_ctime = 0;
303
304  const char* tmpdirname = os::get_temp_directory();
305
306  DIR* tmpdirp = os::opendir(tmpdirname);
307
308  if (tmpdirp == NULL) {
309    return NULL;
310  }
311
312  // for each entry in the directory that matches the pattern hsperfdata_*,
313  // open the directory and check if the file for the given vmid exists.
314  // The file with the expected name and the latest creation date is used
315  // to determine the user name for the process id.
316  //
317  struct dirent* dentry;
318  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
319  errno = 0;
320  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
321
322    // check if the directory entry is a hsperfdata file
323    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
324      continue;
325    }
326
327    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
328                              strlen(tmpdirname) + strlen(dentry->d_name) + 2);
329    strcpy(usrdir_name, tmpdirname);
330    strcat(usrdir_name, "\\");
331    strcat(usrdir_name, dentry->d_name);
332
333    DIR* subdirp = os::opendir(usrdir_name);
334
335    if (subdirp == NULL) {
336      FREE_C_HEAP_ARRAY(char, usrdir_name);
337      continue;
338    }
339
340    // Since we don't create the backing store files in directories
341    // pointed to by symbolic links, we also don't follow them when
342    // looking for the files. We check for a symbolic link after the
343    // call to opendir in order to eliminate a small window where the
344    // symlink can be exploited.
345    //
346    if (!is_directory_secure(usrdir_name)) {
347      FREE_C_HEAP_ARRAY(char, usrdir_name);
348      os::closedir(subdirp);
349      continue;
350    }
351
352    struct dirent* udentry;
353    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
354    errno = 0;
355    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
356
357      if (filename_to_pid(udentry->d_name) == vmid) {
358        struct stat statbuf;
359
360        char* filename = NEW_C_HEAP_ARRAY(char,
361                            strlen(usrdir_name) + strlen(udentry->d_name) + 2);
362
363        strcpy(filename, usrdir_name);
364        strcat(filename, "\\");
365        strcat(filename, udentry->d_name);
366
367        if (::stat(filename, &statbuf) == OS_ERR) {
368           FREE_C_HEAP_ARRAY(char, filename);
369           continue;
370        }
371
372        // skip over files that are not regular files.
373        if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
374          FREE_C_HEAP_ARRAY(char, filename);
375          continue;
376        }
377
378        // compare and save filename with latest creation time
379        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
380
381          if (statbuf.st_ctime > oldest_ctime) {
382            char* user = strchr(dentry->d_name, '_') + 1;
383
384            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
385            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
386
387            strcpy(oldest_user, user);
388            oldest_ctime = statbuf.st_ctime;
389          }
390        }
391
392        FREE_C_HEAP_ARRAY(char, filename);
393      }
394    }
395    os::closedir(subdirp);
396    FREE_C_HEAP_ARRAY(char, udbuf);
397    FREE_C_HEAP_ARRAY(char, usrdir_name);
398  }
399  os::closedir(tmpdirp);
400  FREE_C_HEAP_ARRAY(char, tdbuf);
401
402  return(oldest_user);
403}
404
405// return the name of the user that owns the process identified by vmid.
406//
407// note: this method should only be used via the Perf native methods.
408// There are various costs to this method and limiting its use to the
409// Perf native methods limits the impact to monitoring applications only.
410//
411static char* get_user_name(int vmid) {
412
413  // A fast implementation is not provided at this time. It's possible
414  // to provide a fast process id to user name mapping function using
415  // the win32 apis, but the default ACL for the process object only
416  // allows processes with the same owner SID to acquire the process
417  // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
418  // to have the JVM change the ACL for the process object to allow arbitrary
419  // users to access the process handle and the process security token.
420  // The security ramifications need to be studied before providing this
421  // mechanism.
422  //
423  return get_user_name_slow(vmid);
424}
425
426// return the name of the shared memory file mapping object for the
427// named shared memory region for the given user name and vmid.
428//
429// The file mapping object's name is not the file name. It is a name
430// in a separate name space.
431//
432// the caller is expected to free the allocated memory.
433//
434static char *get_sharedmem_objectname(const char* user, int vmid) {
435
436  // construct file mapping object's name, add 3 for two '_' and a
437  // null terminator.
438  int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
439
440  // the id is converted to an unsigned value here because win32 allows
441  // negative process ids. However, OpenFileMapping API complains
442  // about a name containing a '-' characters.
443  //
444  nbytes += UINT_CHARS;
445  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
446  _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
447
448  return name;
449}
450
451// return the file name of the backing store file for the named
452// shared memory region for the given user name and vmid.
453//
454// the caller is expected to free the allocated memory.
455//
456static char* get_sharedmem_filename(const char* dirname, int vmid) {
457
458  // add 2 for the file separator and a null terminator.
459  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
460
461  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
462  _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
463
464  return name;
465}
466
467// remove file
468//
469// this method removes the file with the given file name.
470//
471// Note: if the indicated file is on an SMB network file system, this
472// method may be unsuccessful in removing the file.
473//
474static void remove_file(const char* dirname, const char* filename) {
475
476  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
477  char* path = NEW_C_HEAP_ARRAY(char, nbytes);
478
479  strcpy(path, dirname);
480  strcat(path, "\\");
481  strcat(path, filename);
482
483  if (::unlink(path) == OS_ERR) {
484    if (PrintMiscellaneous && Verbose) {
485      if (errno != ENOENT) {
486        warning("Could not unlink shared memory backing"
487                " store file %s : %s\n", path, strerror(errno));
488      }
489    }
490  }
491
492  FREE_C_HEAP_ARRAY(char, path);
493}
494
495// returns true if the process represented by pid is alive, otherwise
496// returns false. the validity of the result is only accurate if the
497// target process is owned by the same principal that owns this process.
498// this method should not be used if to test the status of an otherwise
499// arbitrary process unless it is know that this process has the appropriate
500// privileges to guarantee a result valid.
501//
502static bool is_alive(int pid) {
503
504  HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
505  if (ph == NULL) {
506    // the process does not exist.
507    if (PrintMiscellaneous && Verbose) {
508      DWORD lastError = GetLastError();
509      if (lastError != ERROR_INVALID_PARAMETER) {
510        warning("OpenProcess failed: %d\n", GetLastError());
511      }
512    }
513    return false;
514  }
515
516  DWORD exit_status;
517  if (!GetExitCodeProcess(ph, &exit_status)) {
518    if (PrintMiscellaneous && Verbose) {
519      warning("GetExitCodeProcess failed: %d\n", GetLastError());
520    }
521    CloseHandle(ph);
522    return false;
523  }
524
525  CloseHandle(ph);
526  return (exit_status == STILL_ACTIVE) ? true : false;
527}
528
529// check if the file system is considered secure for the backing store files
530//
531static bool is_filesystem_secure(const char* path) {
532
533  char root_path[MAX_PATH];
534  char fs_type[MAX_PATH];
535
536  if (PerfBypassFileSystemCheck) {
537    if (PrintMiscellaneous && Verbose) {
538      warning("bypassing file system criteria checks for %s\n", path);
539    }
540    return true;
541  }
542
543  char* first_colon = strchr((char *)path, ':');
544  if (first_colon == NULL) {
545    if (PrintMiscellaneous && Verbose) {
546      warning("expected device specifier in path: %s\n", path);
547    }
548    return false;
549  }
550
551  size_t len = (size_t)(first_colon - path);
552  assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
553  strncpy(root_path, path, len + 1);
554  root_path[len + 1] = '\\';
555  root_path[len + 2] = '\0';
556
557  // check that we have something like "C:\" or "AA:\"
558  assert(strlen(root_path) >= 3, "device specifier too short");
559  assert(strchr(root_path, ':') != NULL, "bad device specifier format");
560  assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
561
562  DWORD maxpath;
563  DWORD flags;
564
565  if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
566                            &flags, fs_type, MAX_PATH)) {
567    // we can't get information about the volume, so assume unsafe.
568    if (PrintMiscellaneous && Verbose) {
569      warning("could not get device information for %s: "
570              " path = %s: lasterror = %d\n",
571              root_path, path, GetLastError());
572    }
573    return false;
574  }
575
576  if ((flags & FS_PERSISTENT_ACLS) == 0) {
577    // file system doesn't support ACLs, declare file system unsafe
578    if (PrintMiscellaneous && Verbose) {
579      warning("file system type %s on device %s does not support"
580              " ACLs\n", fs_type, root_path);
581    }
582    return false;
583  }
584
585  if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
586    // file system is compressed, declare file system unsafe
587    if (PrintMiscellaneous && Verbose) {
588      warning("file system type %s on device %s is compressed\n",
589              fs_type, root_path);
590    }
591    return false;
592  }
593
594  return true;
595}
596
597// cleanup stale shared memory resources
598//
599// This method attempts to remove all stale shared memory files in
600// the named user temporary directory. It scans the named directory
601// for files matching the pattern ^$[0-9]*$. For each file found, the
602// process id is extracted from the file name and a test is run to
603// determine if the process is alive. If the process is not alive,
604// any stale file resources are removed.
605//
606static void cleanup_sharedmem_resources(const char* dirname) {
607
608  // open the user temp directory
609  DIR* dirp = os::opendir(dirname);
610
611  if (dirp == NULL) {
612    // directory doesn't exist, so there is nothing to cleanup
613    return;
614  }
615
616  if (!is_directory_secure(dirname)) {
617    // the directory is not secure, don't attempt any cleanup
618    return;
619  }
620
621  // for each entry in the directory that matches the expected file
622  // name pattern, determine if the file resources are stale and if
623  // so, remove the file resources. Note, instrumented HotSpot processes
624  // for this user may start and/or terminate during this search and
625  // remove or create new files in this directory. The behavior of this
626  // loop under these conditions is dependent upon the implementation of
627  // opendir/readdir.
628  //
629  struct dirent* entry;
630  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
631  errno = 0;
632  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
633
634    int pid = filename_to_pid(entry->d_name);
635
636    if (pid == 0) {
637
638      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
639
640        // attempt to remove all unexpected files, except "." and ".."
641        remove_file(dirname, entry->d_name);
642      }
643
644      errno = 0;
645      continue;
646    }
647
648    // we now have a file name that converts to a valid integer
649    // that could represent a process id . if this process id
650    // matches the current process id or the process is not running,
651    // then remove the stale file resources.
652    //
653    // process liveness is detected by checking the exit status
654    // of the process. if the process id is valid and the exit status
655    // indicates that it is still running, the file file resources
656    // are not removed. If the process id is invalid, or if we don't
657    // have permissions to check the process status, or if the process
658    // id is valid and the process has terminated, the the file resources
659    // are assumed to be stale and are removed.
660    //
661    if (pid == os::current_process_id() || !is_alive(pid)) {
662
663      // we can only remove the file resources. Any mapped views
664      // of the file can only be unmapped by the processes that
665      // opened those views and the file mapping object will not
666      // get removed until all views are unmapped.
667      //
668      remove_file(dirname, entry->d_name);
669    }
670    errno = 0;
671  }
672  os::closedir(dirp);
673  FREE_C_HEAP_ARRAY(char, dbuf);
674}
675
676// create a file mapping object with the requested name, and size
677// from the file represented by the given Handle object
678//
679static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
680
681  DWORD lowSize = (DWORD)size;
682  DWORD highSize = 0;
683  HANDLE fmh = NULL;
684
685  // Create a file mapping object with the given name. This function
686  // will grow the file to the specified size.
687  //
688  fmh = CreateFileMapping(
689               fh,                 /* HANDLE file handle for backing store */
690               fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
691               PAGE_READWRITE,     /* DWORD protections */
692               highSize,           /* DWORD High word of max size */
693               lowSize,            /* DWORD Low word of max size */
694               name);              /* LPCTSTR name for object */
695
696  if (fmh == NULL) {
697    if (PrintMiscellaneous && Verbose) {
698      warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
699    }
700    return NULL;
701  }
702
703  if (GetLastError() == ERROR_ALREADY_EXISTS) {
704
705    // a stale file mapping object was encountered. This object may be
706    // owned by this or some other user and cannot be removed until
707    // the other processes either exit or close their mapping objects
708    // and/or mapped views of this mapping object.
709    //
710    if (PrintMiscellaneous && Verbose) {
711      warning("file mapping already exists, lasterror = %d\n", GetLastError());
712    }
713
714    CloseHandle(fmh);
715    return NULL;
716  }
717
718  return fmh;
719}
720
721
722// method to free the given security descriptor and the contained
723// access control list.
724//
725static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
726
727  BOOL success, exists, isdefault;
728  PACL pACL;
729
730  if (pSD != NULL) {
731
732    // get the access control list from the security descriptor
733    success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
734
735    // if an ACL existed and it was not a default acl, then it must
736    // be an ACL we enlisted. free the resources.
737    //
738    if (success && exists && pACL != NULL && !isdefault) {
739      FREE_C_HEAP_ARRAY(char, pACL);
740    }
741
742    // free the security descriptor
743    FREE_C_HEAP_ARRAY(char, pSD);
744  }
745}
746
747// method to free up a security attributes structure and any
748// contained security descriptors and ACL
749//
750static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
751
752  if (lpSA != NULL) {
753    // free the contained security descriptor and the ACL
754    free_security_desc(lpSA->lpSecurityDescriptor);
755    lpSA->lpSecurityDescriptor = NULL;
756
757    // free the security attributes structure
758    FREE_C_HEAP_ARRAY(char, lpSA);
759  }
760}
761
762// get the user SID for the process indicated by the process handle
763//
764static PSID get_user_sid(HANDLE hProcess) {
765
766  HANDLE hAccessToken;
767  PTOKEN_USER token_buf = NULL;
768  DWORD rsize = 0;
769
770  if (hProcess == NULL) {
771    return NULL;
772  }
773
774  // get the process token
775  if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
776    if (PrintMiscellaneous && Verbose) {
777      warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
778    }
779    return NULL;
780  }
781
782  // determine the size of the token structured needed to retrieve
783  // the user token information from the access token.
784  //
785  if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
786    DWORD lasterror = GetLastError();
787    if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
788      if (PrintMiscellaneous && Verbose) {
789        warning("GetTokenInformation failure: lasterror = %d,"
790                " rsize = %d\n", lasterror, rsize);
791      }
792      CloseHandle(hAccessToken);
793      return NULL;
794    }
795  }
796
797  token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
798
799  // get the user token information
800  if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
801    if (PrintMiscellaneous && Verbose) {
802      warning("GetTokenInformation failure: lasterror = %d,"
803              " rsize = %d\n", GetLastError(), rsize);
804    }
805    FREE_C_HEAP_ARRAY(char, token_buf);
806    CloseHandle(hAccessToken);
807    return NULL;
808  }
809
810  DWORD nbytes = GetLengthSid(token_buf->User.Sid);
811  PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
812
813  if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
814    if (PrintMiscellaneous && Verbose) {
815      warning("GetTokenInformation failure: lasterror = %d,"
816              " rsize = %d\n", GetLastError(), rsize);
817    }
818    FREE_C_HEAP_ARRAY(char, token_buf);
819    FREE_C_HEAP_ARRAY(char, pSID);
820    CloseHandle(hAccessToken);
821    return NULL;
822  }
823
824  // close the access token.
825  CloseHandle(hAccessToken);
826  FREE_C_HEAP_ARRAY(char, token_buf);
827
828  return pSID;
829}
830
831// structure used to consolidate access control entry information
832//
833typedef struct ace_data {
834  PSID pSid;      // SID of the ACE
835  DWORD mask;     // mask for the ACE
836} ace_data_t;
837
838
839// method to add an allow access control entry with the access rights
840// indicated in mask for the principal indicated in SID to the given
841// security descriptor. Much of the DACL handling was adapted from
842// the example provided here:
843//      http://support.microsoft.com/kb/102102/EN-US/
844//
845
846static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
847                           ace_data_t aces[], int ace_count) {
848  PACL newACL = NULL;
849  PACL oldACL = NULL;
850
851  if (pSD == NULL) {
852    return false;
853  }
854
855  BOOL exists, isdefault;
856
857  // retrieve any existing access control list.
858  if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
859    if (PrintMiscellaneous && Verbose) {
860      warning("GetSecurityDescriptor failure: lasterror = %d \n",
861              GetLastError());
862    }
863    return false;
864  }
865
866  // get the size of the DACL
867  ACL_SIZE_INFORMATION aclinfo;
868
869  // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
870  // while oldACL is NULL for some case.
871  if (oldACL == NULL) {
872    exists = FALSE;
873  }
874
875  if (exists) {
876    if (!GetAclInformation(oldACL, &aclinfo,
877                           sizeof(ACL_SIZE_INFORMATION),
878                           AclSizeInformation)) {
879      if (PrintMiscellaneous && Verbose) {
880        warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
881        return false;
882      }
883    }
884  } else {
885    aclinfo.AceCount = 0; // assume NULL DACL
886    aclinfo.AclBytesFree = 0;
887    aclinfo.AclBytesInUse = sizeof(ACL);
888  }
889
890  // compute the size needed for the new ACL
891  // initial size of ACL is sum of the following:
892  //   * size of ACL structure.
893  //   * size of each ACE structure that ACL is to contain minus the sid
894  //     sidStart member (DWORD) of the ACE.
895  //   * length of the SID that each ACE is to contain.
896  DWORD newACLsize = aclinfo.AclBytesInUse +
897                        (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
898  for (int i = 0; i < ace_count; i++) {
899     assert(aces[i].pSid != 0, "pSid should not be 0");
900     newACLsize += GetLengthSid(aces[i].pSid);
901  }
902
903  // create the new ACL
904  newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
905
906  if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
907    if (PrintMiscellaneous && Verbose) {
908      warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
909    }
910    FREE_C_HEAP_ARRAY(char, newACL);
911    return false;
912  }
913
914  unsigned int ace_index = 0;
915  // copy any existing ACEs from the old ACL (if any) to the new ACL.
916  if (aclinfo.AceCount != 0) {
917    while (ace_index < aclinfo.AceCount) {
918      LPVOID ace;
919      if (!GetAce(oldACL, ace_index, &ace)) {
920        if (PrintMiscellaneous && Verbose) {
921          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
922        }
923        FREE_C_HEAP_ARRAY(char, newACL);
924        return false;
925      }
926      if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
927        // this is an inherited, allowed ACE; break from loop so we can
928        // add the new access allowed, non-inherited ACE in the correct
929        // position, immediately following all non-inherited ACEs.
930        break;
931      }
932
933      // determine if the SID of this ACE matches any of the SIDs
934      // for which we plan to set ACEs.
935      int matches = 0;
936      for (int i = 0; i < ace_count; i++) {
937        if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
938          matches++;
939          break;
940        }
941      }
942
943      // if there are no SID matches, then add this existing ACE to the new ACL
944      if (matches == 0) {
945        if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
946                    ((PACE_HEADER)ace)->AceSize)) {
947          if (PrintMiscellaneous && Verbose) {
948            warning("AddAce failure: lasterror = %d \n", GetLastError());
949          }
950          FREE_C_HEAP_ARRAY(char, newACL);
951          return false;
952        }
953      }
954      ace_index++;
955    }
956  }
957
958  // add the passed-in access control entries to the new ACL
959  for (int i = 0; i < ace_count; i++) {
960    if (!AddAccessAllowedAce(newACL, ACL_REVISION,
961                             aces[i].mask, aces[i].pSid)) {
962      if (PrintMiscellaneous && Verbose) {
963        warning("AddAccessAllowedAce failure: lasterror = %d \n",
964                GetLastError());
965      }
966      FREE_C_HEAP_ARRAY(char, newACL);
967      return false;
968    }
969  }
970
971  // now copy the rest of the inherited ACEs from the old ACL
972  if (aclinfo.AceCount != 0) {
973    // picking up at ace_index, where we left off in the
974    // previous ace_index loop
975    while (ace_index < aclinfo.AceCount) {
976      LPVOID ace;
977      if (!GetAce(oldACL, ace_index, &ace)) {
978        if (PrintMiscellaneous && Verbose) {
979          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
980        }
981        FREE_C_HEAP_ARRAY(char, newACL);
982        return false;
983      }
984      if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
985                  ((PACE_HEADER)ace)->AceSize)) {
986        if (PrintMiscellaneous && Verbose) {
987          warning("AddAce failure: lasterror = %d \n", GetLastError());
988        }
989        FREE_C_HEAP_ARRAY(char, newACL);
990        return false;
991      }
992      ace_index++;
993    }
994  }
995
996  // add the new ACL to the security descriptor.
997  if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
998    if (PrintMiscellaneous && Verbose) {
999      warning("SetSecurityDescriptorDacl failure:"
1000              " lasterror = %d \n", GetLastError());
1001    }
1002    FREE_C_HEAP_ARRAY(char, newACL);
1003    return false;
1004  }
1005
1006  // if running on windows 2000 or later, set the automatic inheritance
1007  // control flags.
1008  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1009  _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1010       GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1011                      "SetSecurityDescriptorControl");
1012
1013  if (_SetSecurityDescriptorControl != NULL) {
1014    // We do not want to further propagate inherited DACLs, so making them
1015    // protected prevents that.
1016    if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1017                                            SE_DACL_PROTECTED)) {
1018      if (PrintMiscellaneous && Verbose) {
1019        warning("SetSecurityDescriptorControl failure:"
1020                " lasterror = %d \n", GetLastError());
1021      }
1022      FREE_C_HEAP_ARRAY(char, newACL);
1023      return false;
1024    }
1025  }
1026   // Note, the security descriptor maintains a reference to the newACL, not
1027   // a copy of it. Therefore, the newACL is not freed here. It is freed when
1028   // the security descriptor containing its reference is freed.
1029   //
1030   return true;
1031}
1032
1033// method to create a security attributes structure, which contains a
1034// security descriptor and an access control list comprised of 0 or more
1035// access control entries. The method take an array of ace_data structures
1036// that indicate the ACE to be added to the security descriptor.
1037//
1038// the caller must free the resources associated with the security
1039// attributes structure created by this method by calling the
1040// free_security_attr() method.
1041//
1042static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1043
1044  // allocate space for a security descriptor
1045  PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1046                         NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
1047
1048  // initialize the security descriptor
1049  if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1050    if (PrintMiscellaneous && Verbose) {
1051      warning("InitializeSecurityDescriptor failure: "
1052              "lasterror = %d \n", GetLastError());
1053    }
1054    free_security_desc(pSD);
1055    return NULL;
1056  }
1057
1058  // add the access control entries
1059  if (!add_allow_aces(pSD, aces, count)) {
1060    free_security_desc(pSD);
1061    return NULL;
1062  }
1063
1064  // allocate and initialize the security attributes structure and
1065  // return it to the caller.
1066  //
1067  LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1068                            NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
1069  lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1070  lpSA->lpSecurityDescriptor = pSD;
1071  lpSA->bInheritHandle = FALSE;
1072
1073  return(lpSA);
1074}
1075
1076// method to create a security attributes structure with a restrictive
1077// access control list that creates a set access rights for the user/owner
1078// of the securable object and a separate set access rights for everyone else.
1079// also provides for full access rights for the administrator group.
1080//
1081// the caller must free the resources associated with the security
1082// attributes structure created by this method by calling the
1083// free_security_attr() method.
1084//
1085
1086static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1087                                DWORD umask, DWORD emask, DWORD amask) {
1088
1089  ace_data_t aces[3];
1090
1091  // initialize the user ace data
1092  aces[0].pSid = get_user_sid(GetCurrentProcess());
1093  aces[0].mask = umask;
1094
1095  if (aces[0].pSid == 0)
1096    return NULL;
1097
1098  // get the well known SID for BUILTIN\Administrators
1099  PSID administratorsSid = NULL;
1100  SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1101
1102  if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1103           SECURITY_BUILTIN_DOMAIN_RID,
1104           DOMAIN_ALIAS_RID_ADMINS,
1105           0, 0, 0, 0, 0, 0, &administratorsSid)) {
1106
1107    if (PrintMiscellaneous && Verbose) {
1108      warning("AllocateAndInitializeSid failure: "
1109              "lasterror = %d \n", GetLastError());
1110    }
1111    return NULL;
1112  }
1113
1114  // initialize the ace data for administrator group
1115  aces[1].pSid = administratorsSid;
1116  aces[1].mask = amask;
1117
1118  // get the well known SID for the universal Everybody
1119  PSID everybodySid = NULL;
1120  SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1121
1122  if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1123           0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1124
1125    if (PrintMiscellaneous && Verbose) {
1126      warning("AllocateAndInitializeSid failure: "
1127              "lasterror = %d \n", GetLastError());
1128    }
1129    return NULL;
1130  }
1131
1132  // initialize the ace data for everybody else.
1133  aces[2].pSid = everybodySid;
1134  aces[2].mask = emask;
1135
1136  // create a security attributes structure with access control
1137  // entries as initialized above.
1138  LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1139  FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1140  FreeSid(everybodySid);
1141  FreeSid(administratorsSid);
1142  return(lpSA);
1143}
1144
1145
1146// method to create the security attributes structure for restricting
1147// access to the user temporary directory.
1148//
1149// the caller must free the resources associated with the security
1150// attributes structure created by this method by calling the
1151// free_security_attr() method.
1152//
1153static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1154
1155  // create full access rights for the user/owner of the directory
1156  // and read-only access rights for everybody else. This is
1157  // effectively equivalent to UNIX 755 permissions on a directory.
1158  //
1159  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1160  DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1161  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1162
1163  return make_user_everybody_admin_security_attr(umask, emask, amask);
1164}
1165
1166// method to create the security attributes structure for restricting
1167// access to the shared memory backing store file.
1168//
1169// the caller must free the resources associated with the security
1170// attributes structure created by this method by calling the
1171// free_security_attr() method.
1172//
1173static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1174
1175  // create extensive access rights for the user/owner of the file
1176  // and attribute read-only access rights for everybody else. This
1177  // is effectively equivalent to UNIX 600 permissions on a file.
1178  //
1179  DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1180  DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1181                 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1182  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1183
1184  return make_user_everybody_admin_security_attr(umask, emask, amask);
1185}
1186
1187// method to create the security attributes structure for restricting
1188// access to the name shared memory file mapping object.
1189//
1190// the caller must free the resources associated with the security
1191// attributes structure created by this method by calling the
1192// free_security_attr() method.
1193//
1194static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1195
1196  // create extensive access rights for the user/owner of the shared
1197  // memory object and attribute read-only access rights for everybody
1198  // else. This is effectively equivalent to UNIX 600 permissions on
1199  // on the shared memory object.
1200  //
1201  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1202  DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1203  DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1204
1205  return make_user_everybody_admin_security_attr(umask, emask, amask);
1206}
1207
1208// make the user specific temporary directory
1209//
1210static bool make_user_tmp_dir(const char* dirname) {
1211
1212
1213  LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1214  if (pDirSA == NULL) {
1215    return false;
1216  }
1217
1218
1219  // create the directory with the given security attributes
1220  if (!CreateDirectory(dirname, pDirSA)) {
1221    DWORD lasterror = GetLastError();
1222    if (lasterror == ERROR_ALREADY_EXISTS) {
1223      // The directory already exists and was probably created by another
1224      // JVM instance. However, this could also be the result of a
1225      // deliberate symlink. Verify that the existing directory is safe.
1226      //
1227      if (!is_directory_secure(dirname)) {
1228        // directory is not secure
1229        if (PrintMiscellaneous && Verbose) {
1230          warning("%s directory is insecure\n", dirname);
1231        }
1232        return false;
1233      }
1234      // The administrator should be able to delete this directory.
1235      // But the directory created by previous version of JVM may not
1236      // have permission for administrators to delete this directory.
1237      // So add full permission to the administrator. Also setting new
1238      // DACLs might fix the corrupted the DACLs.
1239      SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1240      if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1241        if (PrintMiscellaneous && Verbose) {
1242          lasterror = GetLastError();
1243          warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1244                                                        dirname, lasterror);
1245        }
1246      }
1247    }
1248    else {
1249      if (PrintMiscellaneous && Verbose) {
1250        warning("CreateDirectory failed: %d\n", GetLastError());
1251      }
1252      return false;
1253    }
1254  }
1255
1256  // free the security attributes structure
1257  free_security_attr(pDirSA);
1258
1259  return true;
1260}
1261
1262// create the shared memory resources
1263//
1264// This function creates the shared memory resources. This includes
1265// the backing store file and the file mapping shared memory object.
1266//
1267static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1268
1269  HANDLE fh = INVALID_HANDLE_VALUE;
1270  HANDLE fmh = NULL;
1271
1272
1273  // create the security attributes for the backing store file
1274  LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1275  if (lpFileSA == NULL) {
1276    return NULL;
1277  }
1278
1279  // create the security attributes for the shared memory object
1280  LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1281  if (lpSmoSA == NULL) {
1282    free_security_attr(lpFileSA);
1283    return NULL;
1284  }
1285
1286  // create the user temporary directory
1287  if (!make_user_tmp_dir(dirname)) {
1288    // could not make/find the directory or the found directory
1289    // was not secure
1290    return NULL;
1291  }
1292
1293  // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1294  // file to be deleted by the last process that closes its handle to
1295  // the file. This is important as the apis do not allow a terminating
1296  // JVM being monitored by another process to remove the file name.
1297  //
1298  // the FILE_SHARE_DELETE share mode is valid only in winnt
1299  //
1300  fh = CreateFile(
1301             filename,                   /* LPCTSTR file name */
1302
1303             GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1304
1305             (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1306             FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1307                                          * open operations allowed
1308                                          */
1309             lpFileSA,                   /* LPSECURITY security attributes */
1310             CREATE_ALWAYS,              /* DWORD creation disposition
1311                                          * create file, if it already
1312                                          * exists, overwrite it.
1313                                          */
1314             FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1315
1316             NULL);                      /* HANDLE template file access */
1317
1318  free_security_attr(lpFileSA);
1319
1320  if (fh == INVALID_HANDLE_VALUE) {
1321    DWORD lasterror = GetLastError();
1322    if (PrintMiscellaneous && Verbose) {
1323      warning("could not create file %s: %d\n", filename, lasterror);
1324    }
1325    return NULL;
1326  }
1327
1328  // try to create the file mapping
1329  fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1330
1331  free_security_attr(lpSmoSA);
1332
1333  if (fmh == NULL) {
1334    // closing the file handle here will decrement the reference count
1335    // on the file. When all processes accessing the file close their
1336    // handle to it, the reference count will decrement to 0 and the
1337    // OS will delete the file. These semantics are requested by the
1338    // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1339    CloseHandle(fh);
1340    fh = NULL;
1341    return NULL;
1342  }
1343
1344  // the file has been successfully created and the file mapping
1345  // object has been created.
1346  sharedmem_fileHandle = fh;
1347  sharedmem_fileName = strdup(filename);
1348
1349  return fmh;
1350}
1351
1352// open the shared memory object for the given vmid.
1353//
1354static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1355
1356  HANDLE fmh;
1357
1358  // open the file mapping with the requested mode
1359  fmh = OpenFileMapping(
1360               ofm_access,       /* DWORD access mode */
1361               FALSE,            /* BOOL inherit flag - Do not allow inherit */
1362               objectname);      /* name for object */
1363
1364  if (fmh == NULL) {
1365    if (PrintMiscellaneous && Verbose) {
1366      warning("OpenFileMapping failed for shared memory object %s:"
1367              " lasterror = %d\n", objectname, GetLastError());
1368    }
1369    THROW_MSG_(vmSymbols::java_lang_Exception(),
1370               "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1371  }
1372
1373  return fmh;;
1374}
1375
1376// create a named shared memory region
1377//
1378// On Win32, a named shared memory object has a name space that
1379// is independent of the file system name space. Shared memory object,
1380// or more precisely, file mapping objects, provide no mechanism to
1381// inquire the size of the memory region. There is also no api to
1382// enumerate the memory regions for various processes.
1383//
1384// This implementation utilizes the shared memory name space in parallel
1385// with the file system name space. This allows us to determine the
1386// size of the shared memory region from the size of the file and it
1387// allows us to provide a common, file system based name space for
1388// shared memory across platforms.
1389//
1390static char* mapping_create_shared(size_t size) {
1391
1392  void *mapAddress;
1393  int vmid = os::current_process_id();
1394
1395  // get the name of the user associated with this process
1396  char* user = get_user_name();
1397
1398  if (user == NULL) {
1399    return NULL;
1400  }
1401
1402  // construct the name of the user specific temporary directory
1403  char* dirname = get_user_tmp_dir(user);
1404
1405  // check that the file system is secure - i.e. it supports ACLs.
1406  if (!is_filesystem_secure(dirname)) {
1407    return NULL;
1408  }
1409
1410  // create the names of the backing store files and for the
1411  // share memory object.
1412  //
1413  char* filename = get_sharedmem_filename(dirname, vmid);
1414  char* objectname = get_sharedmem_objectname(user, vmid);
1415
1416  // cleanup any stale shared memory resources
1417  cleanup_sharedmem_resources(dirname);
1418
1419  assert(((size != 0) && (size % os::vm_page_size() == 0)),
1420         "unexpected PerfMemry region size");
1421
1422  FREE_C_HEAP_ARRAY(char, user);
1423
1424  // create the shared memory resources
1425  sharedmem_fileMapHandle =
1426               create_sharedmem_resources(dirname, filename, objectname, size);
1427
1428  FREE_C_HEAP_ARRAY(char, filename);
1429  FREE_C_HEAP_ARRAY(char, objectname);
1430  FREE_C_HEAP_ARRAY(char, dirname);
1431
1432  if (sharedmem_fileMapHandle == NULL) {
1433    return NULL;
1434  }
1435
1436  // map the file into the address space
1437  mapAddress = MapViewOfFile(
1438                   sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1439                   FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1440                   0,                       /* DWORD High word of offset */
1441                   0,                       /* DWORD Low word of offset */
1442                   (DWORD)size);            /* DWORD Number of bytes to map */
1443
1444  if (mapAddress == NULL) {
1445    if (PrintMiscellaneous && Verbose) {
1446      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1447    }
1448    CloseHandle(sharedmem_fileMapHandle);
1449    sharedmem_fileMapHandle = NULL;
1450    return NULL;
1451  }
1452
1453  // clear the shared memory region
1454  (void)memset(mapAddress, '\0', size);
1455
1456  return (char*) mapAddress;
1457}
1458
1459// this method deletes the file mapping object.
1460//
1461static void delete_file_mapping(char* addr, size_t size) {
1462
1463  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1464  // not support unloading of the JVM, unmapping of the memory resource is not
1465  // performed. The memory will be reclaimed by the OS upon termination of all
1466  // processes mapping the resource. The file mapping handle and the file
1467  // handle are closed here to expedite the remove of the file by the OS. The
1468  // file is not removed directly because it was created with
1469  // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1470  // be unsuccessful.
1471
1472  // close the fileMapHandle. the file mapping will still be retained
1473  // by the OS as long as any other JVM processes has an open file mapping
1474  // handle or a mapped view of the file.
1475  //
1476  if (sharedmem_fileMapHandle != NULL) {
1477    CloseHandle(sharedmem_fileMapHandle);
1478    sharedmem_fileMapHandle = NULL;
1479  }
1480
1481  // close the file handle. This will decrement the reference count on the
1482  // backing store file. When the reference count decrements to 0, the OS
1483  // will delete the file. These semantics apply because the file was
1484  // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1485  //
1486  if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1487    CloseHandle(sharedmem_fileHandle);
1488    sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1489  }
1490}
1491
1492// this method determines the size of the shared memory file
1493//
1494static size_t sharedmem_filesize(const char* filename, TRAPS) {
1495
1496  struct stat statbuf;
1497
1498  // get the file size
1499  //
1500  // on win95/98/me, _stat returns a file size of 0 bytes, but on
1501  // winnt/2k the appropriate file size is returned. support for
1502  // the sharable aspects of performance counters was abandonded
1503  // on the non-nt win32 platforms due to this and other api
1504  // inconsistencies
1505  //
1506  if (::stat(filename, &statbuf) == OS_ERR) {
1507    if (PrintMiscellaneous && Verbose) {
1508      warning("stat %s failed: %s\n", filename, strerror(errno));
1509    }
1510    THROW_MSG_0(vmSymbols::java_io_IOException(),
1511                "Could not determine PerfMemory size");
1512  }
1513
1514  if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1515    if (PrintMiscellaneous && Verbose) {
1516      warning("unexpected file size: size = " SIZE_FORMAT "\n",
1517              statbuf.st_size);
1518    }
1519    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1520                "Invalid PerfMemory size");
1521  }
1522
1523  return statbuf.st_size;
1524}
1525
1526// this method opens a file mapping object and maps the object
1527// into the address space of the process
1528//
1529static void open_file_mapping(const char* user, int vmid,
1530                              PerfMemory::PerfMemoryMode mode,
1531                              char** addrp, size_t* sizep, TRAPS) {
1532
1533  ResourceMark rm;
1534
1535  void *mapAddress = 0;
1536  size_t size;
1537  HANDLE fmh;
1538  DWORD ofm_access;
1539  DWORD mv_access;
1540  const char* luser = NULL;
1541
1542  if (mode == PerfMemory::PERF_MODE_RO) {
1543    ofm_access = FILE_MAP_READ;
1544    mv_access = FILE_MAP_READ;
1545  }
1546  else if (mode == PerfMemory::PERF_MODE_RW) {
1547#ifdef LATER
1548    ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1549    mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1550#else
1551    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1552              "Unsupported access mode");
1553#endif
1554  }
1555  else {
1556    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1557              "Illegal access mode");
1558  }
1559
1560  // if a user name wasn't specified, then find the user name for
1561  // the owner of the target vm.
1562  if (user == NULL || strlen(user) == 0) {
1563    luser = get_user_name(vmid);
1564  }
1565  else {
1566    luser = user;
1567  }
1568
1569  if (luser == NULL) {
1570    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1571              "Could not map vmid to user name");
1572  }
1573
1574  // get the names for the resources for the target vm
1575  char* dirname = get_user_tmp_dir(luser);
1576
1577  // since we don't follow symbolic links when creating the backing
1578  // store file, we also don't following them when attaching
1579  //
1580  if (!is_directory_secure(dirname)) {
1581    FREE_C_HEAP_ARRAY(char, dirname);
1582    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1583              "Process not found");
1584  }
1585
1586  char* filename = get_sharedmem_filename(dirname, vmid);
1587  char* objectname = get_sharedmem_objectname(luser, vmid);
1588
1589  // copy heap memory to resource memory. the objectname and
1590  // filename are passed to methods that may throw exceptions.
1591  // using resource arrays for these names prevents the leaks
1592  // that would otherwise occur.
1593  //
1594  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1595  char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1596  strcpy(rfilename, filename);
1597  strcpy(robjectname, objectname);
1598
1599  // free the c heap resources that are no longer needed
1600  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1601  FREE_C_HEAP_ARRAY(char, dirname);
1602  FREE_C_HEAP_ARRAY(char, filename);
1603  FREE_C_HEAP_ARRAY(char, objectname);
1604
1605  if (*sizep == 0) {
1606    size = sharedmem_filesize(rfilename, CHECK);
1607    assert(size != 0, "unexpected size");
1608  }
1609
1610  // Open the file mapping object with the given name
1611  fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1612
1613  assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1614
1615  // map the entire file into the address space
1616  mapAddress = MapViewOfFile(
1617                 fmh,             /* HANDLE Handle of file mapping object */
1618                 mv_access,       /* DWORD access flags */
1619                 0,               /* DWORD High word of offset */
1620                 0,               /* DWORD Low word of offset */
1621                 size);           /* DWORD Number of bytes to map */
1622
1623  if (mapAddress == NULL) {
1624    if (PrintMiscellaneous && Verbose) {
1625      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1626    }
1627    CloseHandle(fmh);
1628    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1629              "Could not map PerfMemory");
1630  }
1631
1632  *addrp = (char*)mapAddress;
1633  *sizep = size;
1634
1635  // File mapping object can be closed at this time without
1636  // invalidating the mapped view of the file
1637  CloseHandle(fmh);
1638
1639  if (PerfTraceMemOps) {
1640    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1641               INTPTR_FORMAT "\n", size, vmid, mapAddress);
1642  }
1643}
1644
1645// this method unmaps the the mapped view of the the
1646// file mapping object.
1647//
1648static void remove_file_mapping(char* addr) {
1649
1650  // the file mapping object was closed in open_file_mapping()
1651  // after the file map view was created. We only need to
1652  // unmap the file view here.
1653  UnmapViewOfFile(addr);
1654}
1655
1656// create the PerfData memory region in shared memory.
1657static char* create_shared_memory(size_t size) {
1658
1659  return mapping_create_shared(size);
1660}
1661
1662// release a named, shared memory region
1663//
1664void delete_shared_memory(char* addr, size_t size) {
1665
1666  delete_file_mapping(addr, size);
1667}
1668
1669
1670
1671
1672// create the PerfData memory region
1673//
1674// This method creates the memory region used to store performance
1675// data for the JVM. The memory may be created in standard or
1676// shared memory.
1677//
1678void PerfMemory::create_memory_region(size_t size) {
1679
1680  if (PerfDisableSharedMem || !os::win32::is_nt()) {
1681    // do not share the memory for the performance data.
1682    PerfDisableSharedMem = true;
1683    _start = create_standard_memory(size);
1684  }
1685  else {
1686    _start = create_shared_memory(size);
1687    if (_start == NULL) {
1688
1689      // creation of the shared memory region failed, attempt
1690      // to create a contiguous, non-shared memory region instead.
1691      //
1692      if (PrintMiscellaneous && Verbose) {
1693        warning("Reverting to non-shared PerfMemory region.\n");
1694      }
1695      PerfDisableSharedMem = true;
1696      _start = create_standard_memory(size);
1697    }
1698  }
1699
1700  if (_start != NULL) _capacity = size;
1701
1702}
1703
1704// delete the PerfData memory region
1705//
1706// This method deletes the memory region used to store performance
1707// data for the JVM. The memory region indicated by the <address, size>
1708// tuple will be inaccessible after a call to this method.
1709//
1710void PerfMemory::delete_memory_region() {
1711
1712  assert((start() != NULL && capacity() > 0), "verify proper state");
1713
1714  // If user specifies PerfDataSaveFile, it will save the performance data
1715  // to the specified file name no matter whether PerfDataSaveToFile is specified
1716  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1717  // -XX:+PerfDataSaveToFile.
1718  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1719    save_memory_to_file(start(), capacity());
1720  }
1721
1722  if (PerfDisableSharedMem) {
1723    delete_standard_memory(start(), capacity());
1724  }
1725  else {
1726    delete_shared_memory(start(), capacity());
1727  }
1728}
1729
1730// attach to the PerfData memory region for another JVM
1731//
1732// This method returns an <address, size> tuple that points to
1733// a memory buffer that is kept reasonably synchronized with
1734// the PerfData memory region for the indicated JVM. This
1735// buffer may be kept in synchronization via shared memory
1736// or some other mechanism that keeps the buffer updated.
1737//
1738// If the JVM chooses not to support the attachability feature,
1739// this method should throw an UnsupportedOperation exception.
1740//
1741// This implementation utilizes named shared memory to map
1742// the indicated process's PerfData memory region into this JVMs
1743// address space.
1744//
1745void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1746                        char** addrp, size_t* sizep, TRAPS) {
1747
1748  if (vmid == 0 || vmid == os::current_process_id()) {
1749     *addrp = start();
1750     *sizep = capacity();
1751     return;
1752  }
1753
1754  open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1755}
1756
1757// detach from the PerfData memory region of another JVM
1758//
1759// This method detaches the PerfData memory region of another
1760// JVM, specified as an <address, size> tuple of a buffer
1761// in this process's address space. This method may perform
1762// arbitrary actions to accomplish the detachment. The memory
1763// region specified by <address, size> will be inaccessible after
1764// a call to this method.
1765//
1766// If the JVM chooses not to support the attachability feature,
1767// this method should throw an UnsupportedOperation exception.
1768//
1769// This implementation utilizes named shared memory to detach
1770// the indicated process's PerfData memory region from this
1771// process's address space.
1772//
1773void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1774
1775  assert(addr != 0, "address sanity check");
1776  assert(bytes > 0, "capacity sanity check");
1777
1778  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1779    // prevent accidental detachment of this process's PerfMemory region
1780    return;
1781  }
1782
1783  remove_file_mapping(addr);
1784}
1785
1786char* PerfMemory::backing_store_filename() {
1787  return sharedmem_fileName;
1788}
1789