perfMemory_windows.cpp revision 1875:0b33f0736406
1/*
2 * Copyright (c) 2001, 2007, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_perfMemory_windows.cpp.incl"
27
28#include <windows.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <errno.h>
32#include <lmcons.h>
33
34typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
35   IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
36   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
37   IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
38
39// Standard Memory Implementation Details
40
41// create the PerfData memory region in standard memory.
42//
43static char* create_standard_memory(size_t size) {
44
45  // allocate an aligned chuck of memory
46  char* mapAddress = os::reserve_memory(size);
47
48  if (mapAddress == NULL) {
49    return NULL;
50  }
51
52  // commit memory
53  if (!os::commit_memory(mapAddress, size)) {
54    if (PrintMiscellaneous && Verbose) {
55      warning("Could not commit PerfData memory\n");
56    }
57    os::release_memory(mapAddress, size);
58    return NULL;
59  }
60
61  return mapAddress;
62}
63
64// delete the PerfData memory region
65//
66static void delete_standard_memory(char* addr, size_t size) {
67
68  // there are no persistent external resources to cleanup for standard
69  // memory. since DestroyJavaVM does not support unloading of the JVM,
70  // cleanup of the memory resource is not performed. The memory will be
71  // reclaimed by the OS upon termination of the process.
72  //
73  return;
74
75}
76
77// save the specified memory region to the given file
78//
79static void save_memory_to_file(char* addr, size_t size) {
80
81  const char* destfile = PerfMemory::get_perfdata_file_path();
82  assert(destfile[0] != '\0', "invalid Perfdata file path");
83
84  int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
85                   _S_IREAD|_S_IWRITE);
86
87  if (fd == OS_ERR) {
88    if (PrintMiscellaneous && Verbose) {
89      warning("Could not create Perfdata save file: %s: %s\n",
90              destfile, strerror(errno));
91    }
92  } else {
93    for (size_t remaining = size; remaining > 0;) {
94
95      int nbytes = ::_write(fd, addr, (unsigned int)remaining);
96      if (nbytes == OS_ERR) {
97        if (PrintMiscellaneous && Verbose) {
98          warning("Could not write Perfdata save file: %s: %s\n",
99                  destfile, strerror(errno));
100        }
101        break;
102      }
103
104      remaining -= (size_t)nbytes;
105      addr += nbytes;
106    }
107
108    int result = ::_close(fd);
109    if (PrintMiscellaneous && Verbose) {
110      if (result == OS_ERR) {
111        warning("Could not close %s: %s\n", destfile, strerror(errno));
112      }
113    }
114  }
115
116  FREE_C_HEAP_ARRAY(char, destfile);
117}
118
119// Shared Memory Implementation Details
120
121// Note: the win32 shared memory implementation uses two objects to represent
122// the shared memory: a windows kernel based file mapping object and a backing
123// store file. On windows, the name space for shared memory is a kernel
124// based name space that is disjoint from other win32 name spaces. Since Java
125// is unaware of this name space, a parallel file system based name space is
126// maintained, which provides a common file system based shared memory name
127// space across the supported platforms and one that Java apps can deal with
128// through simple file apis.
129//
130// For performance and resource cleanup reasons, it is recommended that the
131// user specific directory and the backing store file be stored in either a
132// RAM based file system or a local disk based file system. Network based
133// file systems are not recommended for performance reasons. In addition,
134// use of SMB network based file systems may result in unsuccesful cleanup
135// of the disk based resource on exit of the VM. The Windows TMP and TEMP
136// environement variables, as used by the GetTempPath() Win32 API (see
137// os::get_temp_directory() in os_win32.cpp), control the location of the
138// user specific directory and the shared memory backing store file.
139
140static HANDLE sharedmem_fileMapHandle = NULL;
141static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
142static char*  sharedmem_fileName = NULL;
143
144// return the user specific temporary directory name.
145//
146// the caller is expected to free the allocated memory.
147//
148static char* get_user_tmp_dir(const char* user) {
149
150  const char* tmpdir = os::get_temp_directory();
151  const char* perfdir = PERFDATA_NAME;
152  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
153  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
154
155  // construct the path name to user specific tmp directory
156  _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
157
158  return dirname;
159}
160
161// convert the given file name into a process id. if the file
162// does not meet the file naming constraints, return 0.
163//
164static int filename_to_pid(const char* filename) {
165
166  // a filename that doesn't begin with a digit is not a
167  // candidate for conversion.
168  //
169  if (!isdigit(*filename)) {
170    return 0;
171  }
172
173  // check if file name can be converted to an integer without
174  // any leftover characters.
175  //
176  char* remainder = NULL;
177  errno = 0;
178  int pid = (int)strtol(filename, &remainder, 10);
179
180  if (errno != 0) {
181    return 0;
182  }
183
184  // check for left over characters. If any, then the filename is
185  // not a candidate for conversion.
186  //
187  if (remainder != NULL && *remainder != '\0') {
188    return 0;
189  }
190
191  // successful conversion, return the pid
192  return pid;
193}
194
195// check if the given path is considered a secure directory for
196// the backing store files. Returns true if the directory exists
197// and is considered a secure location. Returns false if the path
198// is a symbolic link or if an error occurred.
199//
200static bool is_directory_secure(const char* path) {
201
202  DWORD fa;
203
204  fa = GetFileAttributes(path);
205  if (fa == 0xFFFFFFFF) {
206    DWORD lasterror = GetLastError();
207    if (lasterror == ERROR_FILE_NOT_FOUND) {
208      return false;
209    }
210    else {
211      // unexpected error, declare the path insecure
212      if (PrintMiscellaneous && Verbose) {
213        warning("could not get attributes for file %s: ",
214                " lasterror = %d\n", path, lasterror);
215      }
216      return false;
217    }
218  }
219
220  if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
221    // we don't accept any redirection for the user specific directory
222    // so declare the path insecure. This may be too conservative,
223    // as some types of reparse points might be acceptable, but it
224    // is probably more secure to avoid these conditions.
225    //
226    if (PrintMiscellaneous && Verbose) {
227      warning("%s is a reparse point\n", path);
228    }
229    return false;
230  }
231
232  if (fa & FILE_ATTRIBUTE_DIRECTORY) {
233    // this is the expected case. Since windows supports symbolic
234    // links to directories only, not to files, there is no need
235    // to check for open write permissions on the directory. If the
236    // directory has open write permissions, any files deposited that
237    // are not expected will be removed by the cleanup code.
238    //
239    return true;
240  }
241  else {
242    // this is either a regular file or some other type of file,
243    // any of which are unexpected and therefore insecure.
244    //
245    if (PrintMiscellaneous && Verbose) {
246      warning("%s is not a directory, file attributes = "
247              INTPTR_FORMAT "\n", path, fa);
248    }
249    return false;
250  }
251}
252
253// return the user name for the owner of this process
254//
255// the caller is expected to free the allocated memory.
256//
257static char* get_user_name() {
258
259  /* get the user name. This code is adapted from code found in
260   * the jdk in src/windows/native/java/lang/java_props_md.c
261   * java_props_md.c  1.29 02/02/06. According to the original
262   * source, the call to GetUserName is avoided because of a resulting
263   * increase in footprint of 100K.
264   */
265  char* user = getenv("USERNAME");
266  char buf[UNLEN+1];
267  DWORD buflen = sizeof(buf);
268  if (user == NULL || strlen(user) == 0) {
269    if (GetUserName(buf, &buflen)) {
270      user = buf;
271    }
272    else {
273      return NULL;
274    }
275  }
276
277  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
278  strcpy(user_name, user);
279
280  return user_name;
281}
282
283// return the name of the user that owns the process identified by vmid.
284//
285// This method uses a slow directory search algorithm to find the backing
286// store file for the specified vmid and returns the user name, as determined
287// by the user name suffix of the hsperfdata_<username> directory name.
288//
289// the caller is expected to free the allocated memory.
290//
291static char* get_user_name_slow(int vmid) {
292
293  // directory search
294  char* oldest_user = NULL;
295  time_t oldest_ctime = 0;
296
297  const char* tmpdirname = os::get_temp_directory();
298
299  DIR* tmpdirp = os::opendir(tmpdirname);
300
301  if (tmpdirp == NULL) {
302    return NULL;
303  }
304
305  // for each entry in the directory that matches the pattern hsperfdata_*,
306  // open the directory and check if the file for the given vmid exists.
307  // The file with the expected name and the latest creation date is used
308  // to determine the user name for the process id.
309  //
310  struct dirent* dentry;
311  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
312  errno = 0;
313  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
314
315    // check if the directory entry is a hsperfdata file
316    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
317      continue;
318    }
319
320    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
321                              strlen(tmpdirname) + strlen(dentry->d_name) + 2);
322    strcpy(usrdir_name, tmpdirname);
323    strcat(usrdir_name, "\\");
324    strcat(usrdir_name, dentry->d_name);
325
326    DIR* subdirp = os::opendir(usrdir_name);
327
328    if (subdirp == NULL) {
329      FREE_C_HEAP_ARRAY(char, usrdir_name);
330      continue;
331    }
332
333    // Since we don't create the backing store files in directories
334    // pointed to by symbolic links, we also don't follow them when
335    // looking for the files. We check for a symbolic link after the
336    // call to opendir in order to eliminate a small window where the
337    // symlink can be exploited.
338    //
339    if (!is_directory_secure(usrdir_name)) {
340      FREE_C_HEAP_ARRAY(char, usrdir_name);
341      os::closedir(subdirp);
342      continue;
343    }
344
345    struct dirent* udentry;
346    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
347    errno = 0;
348    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
349
350      if (filename_to_pid(udentry->d_name) == vmid) {
351        struct stat statbuf;
352
353        char* filename = NEW_C_HEAP_ARRAY(char,
354                            strlen(usrdir_name) + strlen(udentry->d_name) + 2);
355
356        strcpy(filename, usrdir_name);
357        strcat(filename, "\\");
358        strcat(filename, udentry->d_name);
359
360        if (::stat(filename, &statbuf) == OS_ERR) {
361           FREE_C_HEAP_ARRAY(char, filename);
362           continue;
363        }
364
365        // skip over files that are not regular files.
366        if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
367          FREE_C_HEAP_ARRAY(char, filename);
368          continue;
369        }
370
371        // compare and save filename with latest creation time
372        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
373
374          if (statbuf.st_ctime > oldest_ctime) {
375            char* user = strchr(dentry->d_name, '_') + 1;
376
377            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
378            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
379
380            strcpy(oldest_user, user);
381            oldest_ctime = statbuf.st_ctime;
382          }
383        }
384
385        FREE_C_HEAP_ARRAY(char, filename);
386      }
387    }
388    os::closedir(subdirp);
389    FREE_C_HEAP_ARRAY(char, udbuf);
390    FREE_C_HEAP_ARRAY(char, usrdir_name);
391  }
392  os::closedir(tmpdirp);
393  FREE_C_HEAP_ARRAY(char, tdbuf);
394
395  return(oldest_user);
396}
397
398// return the name of the user that owns the process identified by vmid.
399//
400// note: this method should only be used via the Perf native methods.
401// There are various costs to this method and limiting its use to the
402// Perf native methods limits the impact to monitoring applications only.
403//
404static char* get_user_name(int vmid) {
405
406  // A fast implementation is not provided at this time. It's possible
407  // to provide a fast process id to user name mapping function using
408  // the win32 apis, but the default ACL for the process object only
409  // allows processes with the same owner SID to acquire the process
410  // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
411  // to have the JVM change the ACL for the process object to allow arbitrary
412  // users to access the process handle and the process security token.
413  // The security ramifications need to be studied before providing this
414  // mechanism.
415  //
416  return get_user_name_slow(vmid);
417}
418
419// return the name of the shared memory file mapping object for the
420// named shared memory region for the given user name and vmid.
421//
422// The file mapping object's name is not the file name. It is a name
423// in a separate name space.
424//
425// the caller is expected to free the allocated memory.
426//
427static char *get_sharedmem_objectname(const char* user, int vmid) {
428
429  // construct file mapping object's name, add 3 for two '_' and a
430  // null terminator.
431  int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
432
433  // the id is converted to an unsigned value here because win32 allows
434  // negative process ids. However, OpenFileMapping API complains
435  // about a name containing a '-' characters.
436  //
437  nbytes += UINT_CHARS;
438  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
439  _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
440
441  return name;
442}
443
444// return the file name of the backing store file for the named
445// shared memory region for the given user name and vmid.
446//
447// the caller is expected to free the allocated memory.
448//
449static char* get_sharedmem_filename(const char* dirname, int vmid) {
450
451  // add 2 for the file separator and a null terminator.
452  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
453
454  char* name = NEW_C_HEAP_ARRAY(char, nbytes);
455  _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
456
457  return name;
458}
459
460// remove file
461//
462// this method removes the file with the given file name.
463//
464// Note: if the indicated file is on an SMB network file system, this
465// method may be unsuccessful in removing the file.
466//
467static void remove_file(const char* dirname, const char* filename) {
468
469  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
470  char* path = NEW_C_HEAP_ARRAY(char, nbytes);
471
472  strcpy(path, dirname);
473  strcat(path, "\\");
474  strcat(path, filename);
475
476  if (::unlink(path) == OS_ERR) {
477    if (PrintMiscellaneous && Verbose) {
478      if (errno != ENOENT) {
479        warning("Could not unlink shared memory backing"
480                " store file %s : %s\n", path, strerror(errno));
481      }
482    }
483  }
484
485  FREE_C_HEAP_ARRAY(char, path);
486}
487
488// returns true if the process represented by pid is alive, otherwise
489// returns false. the validity of the result is only accurate if the
490// target process is owned by the same principal that owns this process.
491// this method should not be used if to test the status of an otherwise
492// arbitrary process unless it is know that this process has the appropriate
493// privileges to guarantee a result valid.
494//
495static bool is_alive(int pid) {
496
497  HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
498  if (ph == NULL) {
499    // the process does not exist.
500    if (PrintMiscellaneous && Verbose) {
501      DWORD lastError = GetLastError();
502      if (lastError != ERROR_INVALID_PARAMETER) {
503        warning("OpenProcess failed: %d\n", GetLastError());
504      }
505    }
506    return false;
507  }
508
509  DWORD exit_status;
510  if (!GetExitCodeProcess(ph, &exit_status)) {
511    if (PrintMiscellaneous && Verbose) {
512      warning("GetExitCodeProcess failed: %d\n", GetLastError());
513    }
514    CloseHandle(ph);
515    return false;
516  }
517
518  CloseHandle(ph);
519  return (exit_status == STILL_ACTIVE) ? true : false;
520}
521
522// check if the file system is considered secure for the backing store files
523//
524static bool is_filesystem_secure(const char* path) {
525
526  char root_path[MAX_PATH];
527  char fs_type[MAX_PATH];
528
529  if (PerfBypassFileSystemCheck) {
530    if (PrintMiscellaneous && Verbose) {
531      warning("bypassing file system criteria checks for %s\n", path);
532    }
533    return true;
534  }
535
536  char* first_colon = strchr((char *)path, ':');
537  if (first_colon == NULL) {
538    if (PrintMiscellaneous && Verbose) {
539      warning("expected device specifier in path: %s\n", path);
540    }
541    return false;
542  }
543
544  size_t len = (size_t)(first_colon - path);
545  assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
546  strncpy(root_path, path, len + 1);
547  root_path[len + 1] = '\\';
548  root_path[len + 2] = '\0';
549
550  // check that we have something like "C:\" or "AA:\"
551  assert(strlen(root_path) >= 3, "device specifier too short");
552  assert(strchr(root_path, ':') != NULL, "bad device specifier format");
553  assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
554
555  DWORD maxpath;
556  DWORD flags;
557
558  if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
559                            &flags, fs_type, MAX_PATH)) {
560    // we can't get information about the volume, so assume unsafe.
561    if (PrintMiscellaneous && Verbose) {
562      warning("could not get device information for %s: "
563              " path = %s: lasterror = %d\n",
564              root_path, path, GetLastError());
565    }
566    return false;
567  }
568
569  if ((flags & FS_PERSISTENT_ACLS) == 0) {
570    // file system doesn't support ACLs, declare file system unsafe
571    if (PrintMiscellaneous && Verbose) {
572      warning("file system type %s on device %s does not support"
573              " ACLs\n", fs_type, root_path);
574    }
575    return false;
576  }
577
578  if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
579    // file system is compressed, declare file system unsafe
580    if (PrintMiscellaneous && Verbose) {
581      warning("file system type %s on device %s is compressed\n",
582              fs_type, root_path);
583    }
584    return false;
585  }
586
587  return true;
588}
589
590// cleanup stale shared memory resources
591//
592// This method attempts to remove all stale shared memory files in
593// the named user temporary directory. It scans the named directory
594// for files matching the pattern ^$[0-9]*$. For each file found, the
595// process id is extracted from the file name and a test is run to
596// determine if the process is alive. If the process is not alive,
597// any stale file resources are removed.
598//
599static void cleanup_sharedmem_resources(const char* dirname) {
600
601  // open the user temp directory
602  DIR* dirp = os::opendir(dirname);
603
604  if (dirp == NULL) {
605    // directory doesn't exist, so there is nothing to cleanup
606    return;
607  }
608
609  if (!is_directory_secure(dirname)) {
610    // the directory is not secure, don't attempt any cleanup
611    return;
612  }
613
614  // for each entry in the directory that matches the expected file
615  // name pattern, determine if the file resources are stale and if
616  // so, remove the file resources. Note, instrumented HotSpot processes
617  // for this user may start and/or terminate during this search and
618  // remove or create new files in this directory. The behavior of this
619  // loop under these conditions is dependent upon the implementation of
620  // opendir/readdir.
621  //
622  struct dirent* entry;
623  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
624  errno = 0;
625  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
626
627    int pid = filename_to_pid(entry->d_name);
628
629    if (pid == 0) {
630
631      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
632
633        // attempt to remove all unexpected files, except "." and ".."
634        remove_file(dirname, entry->d_name);
635      }
636
637      errno = 0;
638      continue;
639    }
640
641    // we now have a file name that converts to a valid integer
642    // that could represent a process id . if this process id
643    // matches the current process id or the process is not running,
644    // then remove the stale file resources.
645    //
646    // process liveness is detected by checking the exit status
647    // of the process. if the process id is valid and the exit status
648    // indicates that it is still running, the file file resources
649    // are not removed. If the process id is invalid, or if we don't
650    // have permissions to check the process status, or if the process
651    // id is valid and the process has terminated, the the file resources
652    // are assumed to be stale and are removed.
653    //
654    if (pid == os::current_process_id() || !is_alive(pid)) {
655
656      // we can only remove the file resources. Any mapped views
657      // of the file can only be unmapped by the processes that
658      // opened those views and the file mapping object will not
659      // get removed until all views are unmapped.
660      //
661      remove_file(dirname, entry->d_name);
662    }
663    errno = 0;
664  }
665  os::closedir(dirp);
666  FREE_C_HEAP_ARRAY(char, dbuf);
667}
668
669// create a file mapping object with the requested name, and size
670// from the file represented by the given Handle object
671//
672static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
673
674  DWORD lowSize = (DWORD)size;
675  DWORD highSize = 0;
676  HANDLE fmh = NULL;
677
678  // Create a file mapping object with the given name. This function
679  // will grow the file to the specified size.
680  //
681  fmh = CreateFileMapping(
682               fh,                 /* HANDLE file handle for backing store */
683               fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
684               PAGE_READWRITE,     /* DWORD protections */
685               highSize,           /* DWORD High word of max size */
686               lowSize,            /* DWORD Low word of max size */
687               name);              /* LPCTSTR name for object */
688
689  if (fmh == NULL) {
690    if (PrintMiscellaneous && Verbose) {
691      warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
692    }
693    return NULL;
694  }
695
696  if (GetLastError() == ERROR_ALREADY_EXISTS) {
697
698    // a stale file mapping object was encountered. This object may be
699    // owned by this or some other user and cannot be removed until
700    // the other processes either exit or close their mapping objects
701    // and/or mapped views of this mapping object.
702    //
703    if (PrintMiscellaneous && Verbose) {
704      warning("file mapping already exists, lasterror = %d\n", GetLastError());
705    }
706
707    CloseHandle(fmh);
708    return NULL;
709  }
710
711  return fmh;
712}
713
714
715// method to free the given security descriptor and the contained
716// access control list.
717//
718static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
719
720  BOOL success, exists, isdefault;
721  PACL pACL;
722
723  if (pSD != NULL) {
724
725    // get the access control list from the security descriptor
726    success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
727
728    // if an ACL existed and it was not a default acl, then it must
729    // be an ACL we enlisted. free the resources.
730    //
731    if (success && exists && pACL != NULL && !isdefault) {
732      FREE_C_HEAP_ARRAY(char, pACL);
733    }
734
735    // free the security descriptor
736    FREE_C_HEAP_ARRAY(char, pSD);
737  }
738}
739
740// method to free up a security attributes structure and any
741// contained security descriptors and ACL
742//
743static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
744
745  if (lpSA != NULL) {
746    // free the contained security descriptor and the ACL
747    free_security_desc(lpSA->lpSecurityDescriptor);
748    lpSA->lpSecurityDescriptor = NULL;
749
750    // free the security attributes structure
751    FREE_C_HEAP_ARRAY(char, lpSA);
752  }
753}
754
755// get the user SID for the process indicated by the process handle
756//
757static PSID get_user_sid(HANDLE hProcess) {
758
759  HANDLE hAccessToken;
760  PTOKEN_USER token_buf = NULL;
761  DWORD rsize = 0;
762
763  if (hProcess == NULL) {
764    return NULL;
765  }
766
767  // get the process token
768  if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
769    if (PrintMiscellaneous && Verbose) {
770      warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
771    }
772    return NULL;
773  }
774
775  // determine the size of the token structured needed to retrieve
776  // the user token information from the access token.
777  //
778  if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
779    DWORD lasterror = GetLastError();
780    if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
781      if (PrintMiscellaneous && Verbose) {
782        warning("GetTokenInformation failure: lasterror = %d,"
783                " rsize = %d\n", lasterror, rsize);
784      }
785      CloseHandle(hAccessToken);
786      return NULL;
787    }
788  }
789
790  token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
791
792  // get the user token information
793  if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
794    if (PrintMiscellaneous && Verbose) {
795      warning("GetTokenInformation failure: lasterror = %d,"
796              " rsize = %d\n", GetLastError(), rsize);
797    }
798    FREE_C_HEAP_ARRAY(char, token_buf);
799    CloseHandle(hAccessToken);
800    return NULL;
801  }
802
803  DWORD nbytes = GetLengthSid(token_buf->User.Sid);
804  PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
805
806  if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
807    if (PrintMiscellaneous && Verbose) {
808      warning("GetTokenInformation failure: lasterror = %d,"
809              " rsize = %d\n", GetLastError(), rsize);
810    }
811    FREE_C_HEAP_ARRAY(char, token_buf);
812    FREE_C_HEAP_ARRAY(char, pSID);
813    CloseHandle(hAccessToken);
814    return NULL;
815  }
816
817  // close the access token.
818  CloseHandle(hAccessToken);
819  FREE_C_HEAP_ARRAY(char, token_buf);
820
821  return pSID;
822}
823
824// structure used to consolidate access control entry information
825//
826typedef struct ace_data {
827  PSID pSid;      // SID of the ACE
828  DWORD mask;     // mask for the ACE
829} ace_data_t;
830
831
832// method to add an allow access control entry with the access rights
833// indicated in mask for the principal indicated in SID to the given
834// security descriptor. Much of the DACL handling was adapted from
835// the example provided here:
836//      http://support.microsoft.com/kb/102102/EN-US/
837//
838
839static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
840                           ace_data_t aces[], int ace_count) {
841  PACL newACL = NULL;
842  PACL oldACL = NULL;
843
844  if (pSD == NULL) {
845    return false;
846  }
847
848  BOOL exists, isdefault;
849
850  // retrieve any existing access control list.
851  if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
852    if (PrintMiscellaneous && Verbose) {
853      warning("GetSecurityDescriptor failure: lasterror = %d \n",
854              GetLastError());
855    }
856    return false;
857  }
858
859  // get the size of the DACL
860  ACL_SIZE_INFORMATION aclinfo;
861
862  // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
863  // while oldACL is NULL for some case.
864  if (oldACL == NULL) {
865    exists = FALSE;
866  }
867
868  if (exists) {
869    if (!GetAclInformation(oldACL, &aclinfo,
870                           sizeof(ACL_SIZE_INFORMATION),
871                           AclSizeInformation)) {
872      if (PrintMiscellaneous && Verbose) {
873        warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
874        return false;
875      }
876    }
877  } else {
878    aclinfo.AceCount = 0; // assume NULL DACL
879    aclinfo.AclBytesFree = 0;
880    aclinfo.AclBytesInUse = sizeof(ACL);
881  }
882
883  // compute the size needed for the new ACL
884  // initial size of ACL is sum of the following:
885  //   * size of ACL structure.
886  //   * size of each ACE structure that ACL is to contain minus the sid
887  //     sidStart member (DWORD) of the ACE.
888  //   * length of the SID that each ACE is to contain.
889  DWORD newACLsize = aclinfo.AclBytesInUse +
890                        (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
891  for (int i = 0; i < ace_count; i++) {
892     assert(aces[i].pSid != 0, "pSid should not be 0");
893     newACLsize += GetLengthSid(aces[i].pSid);
894  }
895
896  // create the new ACL
897  newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
898
899  if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
900    if (PrintMiscellaneous && Verbose) {
901      warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
902    }
903    FREE_C_HEAP_ARRAY(char, newACL);
904    return false;
905  }
906
907  unsigned int ace_index = 0;
908  // copy any existing ACEs from the old ACL (if any) to the new ACL.
909  if (aclinfo.AceCount != 0) {
910    while (ace_index < aclinfo.AceCount) {
911      LPVOID ace;
912      if (!GetAce(oldACL, ace_index, &ace)) {
913        if (PrintMiscellaneous && Verbose) {
914          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
915        }
916        FREE_C_HEAP_ARRAY(char, newACL);
917        return false;
918      }
919      if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
920        // this is an inherited, allowed ACE; break from loop so we can
921        // add the new access allowed, non-inherited ACE in the correct
922        // position, immediately following all non-inherited ACEs.
923        break;
924      }
925
926      // determine if the SID of this ACE matches any of the SIDs
927      // for which we plan to set ACEs.
928      int matches = 0;
929      for (int i = 0; i < ace_count; i++) {
930        if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
931          matches++;
932          break;
933        }
934      }
935
936      // if there are no SID matches, then add this existing ACE to the new ACL
937      if (matches == 0) {
938        if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
939                    ((PACE_HEADER)ace)->AceSize)) {
940          if (PrintMiscellaneous && Verbose) {
941            warning("AddAce failure: lasterror = %d \n", GetLastError());
942          }
943          FREE_C_HEAP_ARRAY(char, newACL);
944          return false;
945        }
946      }
947      ace_index++;
948    }
949  }
950
951  // add the passed-in access control entries to the new ACL
952  for (int i = 0; i < ace_count; i++) {
953    if (!AddAccessAllowedAce(newACL, ACL_REVISION,
954                             aces[i].mask, aces[i].pSid)) {
955      if (PrintMiscellaneous && Verbose) {
956        warning("AddAccessAllowedAce failure: lasterror = %d \n",
957                GetLastError());
958      }
959      FREE_C_HEAP_ARRAY(char, newACL);
960      return false;
961    }
962  }
963
964  // now copy the rest of the inherited ACEs from the old ACL
965  if (aclinfo.AceCount != 0) {
966    // picking up at ace_index, where we left off in the
967    // previous ace_index loop
968    while (ace_index < aclinfo.AceCount) {
969      LPVOID ace;
970      if (!GetAce(oldACL, ace_index, &ace)) {
971        if (PrintMiscellaneous && Verbose) {
972          warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
973        }
974        FREE_C_HEAP_ARRAY(char, newACL);
975        return false;
976      }
977      if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
978                  ((PACE_HEADER)ace)->AceSize)) {
979        if (PrintMiscellaneous && Verbose) {
980          warning("AddAce failure: lasterror = %d \n", GetLastError());
981        }
982        FREE_C_HEAP_ARRAY(char, newACL);
983        return false;
984      }
985      ace_index++;
986    }
987  }
988
989  // add the new ACL to the security descriptor.
990  if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
991    if (PrintMiscellaneous && Verbose) {
992      warning("SetSecurityDescriptorDacl failure:"
993              " lasterror = %d \n", GetLastError());
994    }
995    FREE_C_HEAP_ARRAY(char, newACL);
996    return false;
997  }
998
999  // if running on windows 2000 or later, set the automatic inheritance
1000  // control flags.
1001  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1002  _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1003       GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1004                      "SetSecurityDescriptorControl");
1005
1006  if (_SetSecurityDescriptorControl != NULL) {
1007    // We do not want to further propagate inherited DACLs, so making them
1008    // protected prevents that.
1009    if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1010                                            SE_DACL_PROTECTED)) {
1011      if (PrintMiscellaneous && Verbose) {
1012        warning("SetSecurityDescriptorControl failure:"
1013                " lasterror = %d \n", GetLastError());
1014      }
1015      FREE_C_HEAP_ARRAY(char, newACL);
1016      return false;
1017    }
1018  }
1019   // Note, the security descriptor maintains a reference to the newACL, not
1020   // a copy of it. Therefore, the newACL is not freed here. It is freed when
1021   // the security descriptor containing its reference is freed.
1022   //
1023   return true;
1024}
1025
1026// method to create a security attributes structure, which contains a
1027// security descriptor and an access control list comprised of 0 or more
1028// access control entries. The method take an array of ace_data structures
1029// that indicate the ACE to be added to the security descriptor.
1030//
1031// the caller must free the resources associated with the security
1032// attributes structure created by this method by calling the
1033// free_security_attr() method.
1034//
1035static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1036
1037  // allocate space for a security descriptor
1038  PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1039                         NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
1040
1041  // initialize the security descriptor
1042  if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1043    if (PrintMiscellaneous && Verbose) {
1044      warning("InitializeSecurityDescriptor failure: "
1045              "lasterror = %d \n", GetLastError());
1046    }
1047    free_security_desc(pSD);
1048    return NULL;
1049  }
1050
1051  // add the access control entries
1052  if (!add_allow_aces(pSD, aces, count)) {
1053    free_security_desc(pSD);
1054    return NULL;
1055  }
1056
1057  // allocate and initialize the security attributes structure and
1058  // return it to the caller.
1059  //
1060  LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1061                            NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
1062  lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1063  lpSA->lpSecurityDescriptor = pSD;
1064  lpSA->bInheritHandle = FALSE;
1065
1066  return(lpSA);
1067}
1068
1069// method to create a security attributes structure with a restrictive
1070// access control list that creates a set access rights for the user/owner
1071// of the securable object and a separate set access rights for everyone else.
1072// also provides for full access rights for the administrator group.
1073//
1074// the caller must free the resources associated with the security
1075// attributes structure created by this method by calling the
1076// free_security_attr() method.
1077//
1078
1079static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1080                                DWORD umask, DWORD emask, DWORD amask) {
1081
1082  ace_data_t aces[3];
1083
1084  // initialize the user ace data
1085  aces[0].pSid = get_user_sid(GetCurrentProcess());
1086  aces[0].mask = umask;
1087
1088  if (aces[0].pSid == 0)
1089    return NULL;
1090
1091  // get the well known SID for BUILTIN\Administrators
1092  PSID administratorsSid = NULL;
1093  SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1094
1095  if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1096           SECURITY_BUILTIN_DOMAIN_RID,
1097           DOMAIN_ALIAS_RID_ADMINS,
1098           0, 0, 0, 0, 0, 0, &administratorsSid)) {
1099
1100    if (PrintMiscellaneous && Verbose) {
1101      warning("AllocateAndInitializeSid failure: "
1102              "lasterror = %d \n", GetLastError());
1103    }
1104    return NULL;
1105  }
1106
1107  // initialize the ace data for administrator group
1108  aces[1].pSid = administratorsSid;
1109  aces[1].mask = amask;
1110
1111  // get the well known SID for the universal Everybody
1112  PSID everybodySid = NULL;
1113  SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1114
1115  if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1116           0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1117
1118    if (PrintMiscellaneous && Verbose) {
1119      warning("AllocateAndInitializeSid failure: "
1120              "lasterror = %d \n", GetLastError());
1121    }
1122    return NULL;
1123  }
1124
1125  // initialize the ace data for everybody else.
1126  aces[2].pSid = everybodySid;
1127  aces[2].mask = emask;
1128
1129  // create a security attributes structure with access control
1130  // entries as initialized above.
1131  LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1132  FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1133  FreeSid(everybodySid);
1134  FreeSid(administratorsSid);
1135  return(lpSA);
1136}
1137
1138
1139// method to create the security attributes structure for restricting
1140// access to the user temporary directory.
1141//
1142// the caller must free the resources associated with the security
1143// attributes structure created by this method by calling the
1144// free_security_attr() method.
1145//
1146static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1147
1148  // create full access rights for the user/owner of the directory
1149  // and read-only access rights for everybody else. This is
1150  // effectively equivalent to UNIX 755 permissions on a directory.
1151  //
1152  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1153  DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1154  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1155
1156  return make_user_everybody_admin_security_attr(umask, emask, amask);
1157}
1158
1159// method to create the security attributes structure for restricting
1160// access to the shared memory backing store file.
1161//
1162// the caller must free the resources associated with the security
1163// attributes structure created by this method by calling the
1164// free_security_attr() method.
1165//
1166static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1167
1168  // create extensive access rights for the user/owner of the file
1169  // and attribute read-only access rights for everybody else. This
1170  // is effectively equivalent to UNIX 600 permissions on a file.
1171  //
1172  DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1173  DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1174                 FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1175  DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1176
1177  return make_user_everybody_admin_security_attr(umask, emask, amask);
1178}
1179
1180// method to create the security attributes structure for restricting
1181// access to the name shared memory file mapping object.
1182//
1183// the caller must free the resources associated with the security
1184// attributes structure created by this method by calling the
1185// free_security_attr() method.
1186//
1187static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1188
1189  // create extensive access rights for the user/owner of the shared
1190  // memory object and attribute read-only access rights for everybody
1191  // else. This is effectively equivalent to UNIX 600 permissions on
1192  // on the shared memory object.
1193  //
1194  DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1195  DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1196  DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1197
1198  return make_user_everybody_admin_security_attr(umask, emask, amask);
1199}
1200
1201// make the user specific temporary directory
1202//
1203static bool make_user_tmp_dir(const char* dirname) {
1204
1205
1206  LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1207  if (pDirSA == NULL) {
1208    return false;
1209  }
1210
1211
1212  // create the directory with the given security attributes
1213  if (!CreateDirectory(dirname, pDirSA)) {
1214    DWORD lasterror = GetLastError();
1215    if (lasterror == ERROR_ALREADY_EXISTS) {
1216      // The directory already exists and was probably created by another
1217      // JVM instance. However, this could also be the result of a
1218      // deliberate symlink. Verify that the existing directory is safe.
1219      //
1220      if (!is_directory_secure(dirname)) {
1221        // directory is not secure
1222        if (PrintMiscellaneous && Verbose) {
1223          warning("%s directory is insecure\n", dirname);
1224        }
1225        return false;
1226      }
1227      // The administrator should be able to delete this directory.
1228      // But the directory created by previous version of JVM may not
1229      // have permission for administrators to delete this directory.
1230      // So add full permission to the administrator. Also setting new
1231      // DACLs might fix the corrupted the DACLs.
1232      SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1233      if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1234        if (PrintMiscellaneous && Verbose) {
1235          lasterror = GetLastError();
1236          warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1237                                                        dirname, lasterror);
1238        }
1239      }
1240    }
1241    else {
1242      if (PrintMiscellaneous && Verbose) {
1243        warning("CreateDirectory failed: %d\n", GetLastError());
1244      }
1245      return false;
1246    }
1247  }
1248
1249  // free the security attributes structure
1250  free_security_attr(pDirSA);
1251
1252  return true;
1253}
1254
1255// create the shared memory resources
1256//
1257// This function creates the shared memory resources. This includes
1258// the backing store file and the file mapping shared memory object.
1259//
1260static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1261
1262  HANDLE fh = INVALID_HANDLE_VALUE;
1263  HANDLE fmh = NULL;
1264
1265
1266  // create the security attributes for the backing store file
1267  LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1268  if (lpFileSA == NULL) {
1269    return NULL;
1270  }
1271
1272  // create the security attributes for the shared memory object
1273  LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1274  if (lpSmoSA == NULL) {
1275    free_security_attr(lpFileSA);
1276    return NULL;
1277  }
1278
1279  // create the user temporary directory
1280  if (!make_user_tmp_dir(dirname)) {
1281    // could not make/find the directory or the found directory
1282    // was not secure
1283    return NULL;
1284  }
1285
1286  // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1287  // file to be deleted by the last process that closes its handle to
1288  // the file. This is important as the apis do not allow a terminating
1289  // JVM being monitored by another process to remove the file name.
1290  //
1291  // the FILE_SHARE_DELETE share mode is valid only in winnt
1292  //
1293  fh = CreateFile(
1294             filename,                   /* LPCTSTR file name */
1295
1296             GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1297
1298             (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1299             FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1300                                          * open operations allowed
1301                                          */
1302             lpFileSA,                   /* LPSECURITY security attributes */
1303             CREATE_ALWAYS,              /* DWORD creation disposition
1304                                          * create file, if it already
1305                                          * exists, overwrite it.
1306                                          */
1307             FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1308
1309             NULL);                      /* HANDLE template file access */
1310
1311  free_security_attr(lpFileSA);
1312
1313  if (fh == INVALID_HANDLE_VALUE) {
1314    DWORD lasterror = GetLastError();
1315    if (PrintMiscellaneous && Verbose) {
1316      warning("could not create file %s: %d\n", filename, lasterror);
1317    }
1318    return NULL;
1319  }
1320
1321  // try to create the file mapping
1322  fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1323
1324  free_security_attr(lpSmoSA);
1325
1326  if (fmh == NULL) {
1327    // closing the file handle here will decrement the reference count
1328    // on the file. When all processes accessing the file close their
1329    // handle to it, the reference count will decrement to 0 and the
1330    // OS will delete the file. These semantics are requested by the
1331    // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1332    CloseHandle(fh);
1333    fh = NULL;
1334    return NULL;
1335  }
1336
1337  // the file has been successfully created and the file mapping
1338  // object has been created.
1339  sharedmem_fileHandle = fh;
1340  sharedmem_fileName = strdup(filename);
1341
1342  return fmh;
1343}
1344
1345// open the shared memory object for the given vmid.
1346//
1347static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1348
1349  HANDLE fmh;
1350
1351  // open the file mapping with the requested mode
1352  fmh = OpenFileMapping(
1353               ofm_access,       /* DWORD access mode */
1354               FALSE,            /* BOOL inherit flag - Do not allow inherit */
1355               objectname);      /* name for object */
1356
1357  if (fmh == NULL) {
1358    if (PrintMiscellaneous && Verbose) {
1359      warning("OpenFileMapping failed for shared memory object %s:"
1360              " lasterror = %d\n", objectname, GetLastError());
1361    }
1362    THROW_MSG_(vmSymbols::java_lang_Exception(),
1363               "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1364  }
1365
1366  return fmh;;
1367}
1368
1369// create a named shared memory region
1370//
1371// On Win32, a named shared memory object has a name space that
1372// is independent of the file system name space. Shared memory object,
1373// or more precisely, file mapping objects, provide no mechanism to
1374// inquire the size of the memory region. There is also no api to
1375// enumerate the memory regions for various processes.
1376//
1377// This implementation utilizes the shared memory name space in parallel
1378// with the file system name space. This allows us to determine the
1379// size of the shared memory region from the size of the file and it
1380// allows us to provide a common, file system based name space for
1381// shared memory across platforms.
1382//
1383static char* mapping_create_shared(size_t size) {
1384
1385  void *mapAddress;
1386  int vmid = os::current_process_id();
1387
1388  // get the name of the user associated with this process
1389  char* user = get_user_name();
1390
1391  if (user == NULL) {
1392    return NULL;
1393  }
1394
1395  // construct the name of the user specific temporary directory
1396  char* dirname = get_user_tmp_dir(user);
1397
1398  // check that the file system is secure - i.e. it supports ACLs.
1399  if (!is_filesystem_secure(dirname)) {
1400    return NULL;
1401  }
1402
1403  // create the names of the backing store files and for the
1404  // share memory object.
1405  //
1406  char* filename = get_sharedmem_filename(dirname, vmid);
1407  char* objectname = get_sharedmem_objectname(user, vmid);
1408
1409  // cleanup any stale shared memory resources
1410  cleanup_sharedmem_resources(dirname);
1411
1412  assert(((size != 0) && (size % os::vm_page_size() == 0)),
1413         "unexpected PerfMemry region size");
1414
1415  FREE_C_HEAP_ARRAY(char, user);
1416
1417  // create the shared memory resources
1418  sharedmem_fileMapHandle =
1419               create_sharedmem_resources(dirname, filename, objectname, size);
1420
1421  FREE_C_HEAP_ARRAY(char, filename);
1422  FREE_C_HEAP_ARRAY(char, objectname);
1423  FREE_C_HEAP_ARRAY(char, dirname);
1424
1425  if (sharedmem_fileMapHandle == NULL) {
1426    return NULL;
1427  }
1428
1429  // map the file into the address space
1430  mapAddress = MapViewOfFile(
1431                   sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1432                   FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1433                   0,                       /* DWORD High word of offset */
1434                   0,                       /* DWORD Low word of offset */
1435                   (DWORD)size);            /* DWORD Number of bytes to map */
1436
1437  if (mapAddress == NULL) {
1438    if (PrintMiscellaneous && Verbose) {
1439      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1440    }
1441    CloseHandle(sharedmem_fileMapHandle);
1442    sharedmem_fileMapHandle = NULL;
1443    return NULL;
1444  }
1445
1446  // clear the shared memory region
1447  (void)memset(mapAddress, '\0', size);
1448
1449  return (char*) mapAddress;
1450}
1451
1452// this method deletes the file mapping object.
1453//
1454static void delete_file_mapping(char* addr, size_t size) {
1455
1456  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1457  // not support unloading of the JVM, unmapping of the memory resource is not
1458  // performed. The memory will be reclaimed by the OS upon termination of all
1459  // processes mapping the resource. The file mapping handle and the file
1460  // handle are closed here to expedite the remove of the file by the OS. The
1461  // file is not removed directly because it was created with
1462  // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1463  // be unsuccessful.
1464
1465  // close the fileMapHandle. the file mapping will still be retained
1466  // by the OS as long as any other JVM processes has an open file mapping
1467  // handle or a mapped view of the file.
1468  //
1469  if (sharedmem_fileMapHandle != NULL) {
1470    CloseHandle(sharedmem_fileMapHandle);
1471    sharedmem_fileMapHandle = NULL;
1472  }
1473
1474  // close the file handle. This will decrement the reference count on the
1475  // backing store file. When the reference count decrements to 0, the OS
1476  // will delete the file. These semantics apply because the file was
1477  // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1478  //
1479  if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1480    CloseHandle(sharedmem_fileHandle);
1481    sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1482  }
1483}
1484
1485// this method determines the size of the shared memory file
1486//
1487static size_t sharedmem_filesize(const char* filename, TRAPS) {
1488
1489  struct stat statbuf;
1490
1491  // get the file size
1492  //
1493  // on win95/98/me, _stat returns a file size of 0 bytes, but on
1494  // winnt/2k the appropriate file size is returned. support for
1495  // the sharable aspects of performance counters was abandonded
1496  // on the non-nt win32 platforms due to this and other api
1497  // inconsistencies
1498  //
1499  if (::stat(filename, &statbuf) == OS_ERR) {
1500    if (PrintMiscellaneous && Verbose) {
1501      warning("stat %s failed: %s\n", filename, strerror(errno));
1502    }
1503    THROW_MSG_0(vmSymbols::java_io_IOException(),
1504                "Could not determine PerfMemory size");
1505  }
1506
1507  if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1508    if (PrintMiscellaneous && Verbose) {
1509      warning("unexpected file size: size = " SIZE_FORMAT "\n",
1510              statbuf.st_size);
1511    }
1512    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1513                "Invalid PerfMemory size");
1514  }
1515
1516  return statbuf.st_size;
1517}
1518
1519// this method opens a file mapping object and maps the object
1520// into the address space of the process
1521//
1522static void open_file_mapping(const char* user, int vmid,
1523                              PerfMemory::PerfMemoryMode mode,
1524                              char** addrp, size_t* sizep, TRAPS) {
1525
1526  ResourceMark rm;
1527
1528  void *mapAddress = 0;
1529  size_t size;
1530  HANDLE fmh;
1531  DWORD ofm_access;
1532  DWORD mv_access;
1533  const char* luser = NULL;
1534
1535  if (mode == PerfMemory::PERF_MODE_RO) {
1536    ofm_access = FILE_MAP_READ;
1537    mv_access = FILE_MAP_READ;
1538  }
1539  else if (mode == PerfMemory::PERF_MODE_RW) {
1540#ifdef LATER
1541    ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1542    mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1543#else
1544    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1545              "Unsupported access mode");
1546#endif
1547  }
1548  else {
1549    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1550              "Illegal access mode");
1551  }
1552
1553  // if a user name wasn't specified, then find the user name for
1554  // the owner of the target vm.
1555  if (user == NULL || strlen(user) == 0) {
1556    luser = get_user_name(vmid);
1557  }
1558  else {
1559    luser = user;
1560  }
1561
1562  if (luser == NULL) {
1563    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1564              "Could not map vmid to user name");
1565  }
1566
1567  // get the names for the resources for the target vm
1568  char* dirname = get_user_tmp_dir(luser);
1569
1570  // since we don't follow symbolic links when creating the backing
1571  // store file, we also don't following them when attaching
1572  //
1573  if (!is_directory_secure(dirname)) {
1574    FREE_C_HEAP_ARRAY(char, dirname);
1575    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1576              "Process not found");
1577  }
1578
1579  char* filename = get_sharedmem_filename(dirname, vmid);
1580  char* objectname = get_sharedmem_objectname(luser, vmid);
1581
1582  // copy heap memory to resource memory. the objectname and
1583  // filename are passed to methods that may throw exceptions.
1584  // using resource arrays for these names prevents the leaks
1585  // that would otherwise occur.
1586  //
1587  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1588  char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1589  strcpy(rfilename, filename);
1590  strcpy(robjectname, objectname);
1591
1592  // free the c heap resources that are no longer needed
1593  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1594  FREE_C_HEAP_ARRAY(char, dirname);
1595  FREE_C_HEAP_ARRAY(char, filename);
1596  FREE_C_HEAP_ARRAY(char, objectname);
1597
1598  if (*sizep == 0) {
1599    size = sharedmem_filesize(rfilename, CHECK);
1600    assert(size != 0, "unexpected size");
1601  }
1602
1603  // Open the file mapping object with the given name
1604  fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1605
1606  assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1607
1608  // map the entire file into the address space
1609  mapAddress = MapViewOfFile(
1610                 fmh,             /* HANDLE Handle of file mapping object */
1611                 mv_access,       /* DWORD access flags */
1612                 0,               /* DWORD High word of offset */
1613                 0,               /* DWORD Low word of offset */
1614                 size);           /* DWORD Number of bytes to map */
1615
1616  if (mapAddress == NULL) {
1617    if (PrintMiscellaneous && Verbose) {
1618      warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1619    }
1620    CloseHandle(fmh);
1621    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1622              "Could not map PerfMemory");
1623  }
1624
1625  *addrp = (char*)mapAddress;
1626  *sizep = size;
1627
1628  // File mapping object can be closed at this time without
1629  // invalidating the mapped view of the file
1630  CloseHandle(fmh);
1631
1632  if (PerfTraceMemOps) {
1633    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1634               INTPTR_FORMAT "\n", size, vmid, mapAddress);
1635  }
1636}
1637
1638// this method unmaps the the mapped view of the the
1639// file mapping object.
1640//
1641static void remove_file_mapping(char* addr) {
1642
1643  // the file mapping object was closed in open_file_mapping()
1644  // after the file map view was created. We only need to
1645  // unmap the file view here.
1646  UnmapViewOfFile(addr);
1647}
1648
1649// create the PerfData memory region in shared memory.
1650static char* create_shared_memory(size_t size) {
1651
1652  return mapping_create_shared(size);
1653}
1654
1655// release a named, shared memory region
1656//
1657void delete_shared_memory(char* addr, size_t size) {
1658
1659  delete_file_mapping(addr, size);
1660}
1661
1662
1663
1664
1665// create the PerfData memory region
1666//
1667// This method creates the memory region used to store performance
1668// data for the JVM. The memory may be created in standard or
1669// shared memory.
1670//
1671void PerfMemory::create_memory_region(size_t size) {
1672
1673  if (PerfDisableSharedMem || !os::win32::is_nt()) {
1674    // do not share the memory for the performance data.
1675    PerfDisableSharedMem = true;
1676    _start = create_standard_memory(size);
1677  }
1678  else {
1679    _start = create_shared_memory(size);
1680    if (_start == NULL) {
1681
1682      // creation of the shared memory region failed, attempt
1683      // to create a contiguous, non-shared memory region instead.
1684      //
1685      if (PrintMiscellaneous && Verbose) {
1686        warning("Reverting to non-shared PerfMemory region.\n");
1687      }
1688      PerfDisableSharedMem = true;
1689      _start = create_standard_memory(size);
1690    }
1691  }
1692
1693  if (_start != NULL) _capacity = size;
1694
1695}
1696
1697// delete the PerfData memory region
1698//
1699// This method deletes the memory region used to store performance
1700// data for the JVM. The memory region indicated by the <address, size>
1701// tuple will be inaccessible after a call to this method.
1702//
1703void PerfMemory::delete_memory_region() {
1704
1705  assert((start() != NULL && capacity() > 0), "verify proper state");
1706
1707  // If user specifies PerfDataSaveFile, it will save the performance data
1708  // to the specified file name no matter whether PerfDataSaveToFile is specified
1709  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1710  // -XX:+PerfDataSaveToFile.
1711  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1712    save_memory_to_file(start(), capacity());
1713  }
1714
1715  if (PerfDisableSharedMem) {
1716    delete_standard_memory(start(), capacity());
1717  }
1718  else {
1719    delete_shared_memory(start(), capacity());
1720  }
1721}
1722
1723// attach to the PerfData memory region for another JVM
1724//
1725// This method returns an <address, size> tuple that points to
1726// a memory buffer that is kept reasonably synchronized with
1727// the PerfData memory region for the indicated JVM. This
1728// buffer may be kept in synchronization via shared memory
1729// or some other mechanism that keeps the buffer updated.
1730//
1731// If the JVM chooses not to support the attachability feature,
1732// this method should throw an UnsupportedOperation exception.
1733//
1734// This implementation utilizes named shared memory to map
1735// the indicated process's PerfData memory region into this JVMs
1736// address space.
1737//
1738void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1739                        char** addrp, size_t* sizep, TRAPS) {
1740
1741  if (vmid == 0 || vmid == os::current_process_id()) {
1742     *addrp = start();
1743     *sizep = capacity();
1744     return;
1745  }
1746
1747  open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1748}
1749
1750// detach from the PerfData memory region of another JVM
1751//
1752// This method detaches the PerfData memory region of another
1753// JVM, specified as an <address, size> tuple of a buffer
1754// in this process's address space. This method may perform
1755// arbitrary actions to accomplish the detachment. The memory
1756// region specified by <address, size> will be inaccessible after
1757// a call to this method.
1758//
1759// If the JVM chooses not to support the attachability feature,
1760// this method should throw an UnsupportedOperation exception.
1761//
1762// This implementation utilizes named shared memory to detach
1763// the indicated process's PerfData memory region from this
1764// process's address space.
1765//
1766void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1767
1768  assert(addr != 0, "address sanity check");
1769  assert(bytes > 0, "capacity sanity check");
1770
1771  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1772    // prevent accidental detachment of this process's PerfMemory region
1773    return;
1774  }
1775
1776  remove_file_mapping(addr);
1777}
1778
1779char* PerfMemory::backing_store_filename() {
1780  return sharedmem_fileName;
1781}
1782