os_windows.cpp revision 8550:b8a3be10a4ed
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
26#define _WIN32_WINNT 0x0600
27
28// no precompiled headers
29#include "classfile/classLoader.hpp"
30#include "classfile/systemDictionary.hpp"
31#include "classfile/vmSymbols.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/compileBroker.hpp"
35#include "compiler/disassembler.hpp"
36#include "interpreter/interpreter.hpp"
37#include "jvm_windows.h"
38#include "memory/allocation.inline.hpp"
39#include "memory/filemap.hpp"
40#include "mutex_windows.inline.hpp"
41#include "oops/oop.inline.hpp"
42#include "os_share_windows.hpp"
43#include "os_windows.inline.hpp"
44#include "prims/jniFastGetField.hpp"
45#include "prims/jvm.h"
46#include "prims/jvm_misc.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.inline.hpp"
49#include "runtime/extendedPC.hpp"
50#include "runtime/globals.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/mutexLocker.hpp"
55#include "runtime/objectMonitor.hpp"
56#include "runtime/orderAccess.inline.hpp"
57#include "runtime/osThread.hpp"
58#include "runtime/perfMemory.hpp"
59#include "runtime/sharedRuntime.hpp"
60#include "runtime/statSampler.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/thread.inline.hpp"
63#include "runtime/threadCritical.hpp"
64#include "runtime/timer.hpp"
65#include "runtime/vm_version.hpp"
66#include "services/attachListener.hpp"
67#include "services/memTracker.hpp"
68#include "services/runtimeService.hpp"
69#include "utilities/decoder.hpp"
70#include "utilities/defaultStream.hpp"
71#include "utilities/events.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/vmError.hpp"
74
75#ifdef _DEBUG
76#include <crtdbg.h>
77#endif
78
79
80#include <windows.h>
81#include <sys/types.h>
82#include <sys/stat.h>
83#include <sys/timeb.h>
84#include <objidl.h>
85#include <shlobj.h>
86
87#include <malloc.h>
88#include <signal.h>
89#include <direct.h>
90#include <errno.h>
91#include <fcntl.h>
92#include <io.h>
93#include <process.h>              // For _beginthreadex(), _endthreadex()
94#include <imagehlp.h>             // For os::dll_address_to_function_name
95// for enumerating dll libraries
96#include <vdmdbg.h>
97
98// for timer info max values which include all bits
99#define ALL_64_BITS CONST64(-1)
100
101// For DLL loading/load error detection
102// Values of PE COFF
103#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
104#define IMAGE_FILE_SIGNATURE_LENGTH 4
105
106static HANDLE main_process;
107static HANDLE main_thread;
108static int    main_thread_id;
109
110static FILETIME process_creation_time;
111static FILETIME process_exit_time;
112static FILETIME process_user_time;
113static FILETIME process_kernel_time;
114
115#ifdef _M_IA64
116  #define __CPU__ ia64
117#else
118  #ifdef _M_AMD64
119    #define __CPU__ amd64
120  #else
121    #define __CPU__ i486
122  #endif
123#endif
124
125// save DLL module handle, used by GetModuleFileName
126
127HINSTANCE vm_lib_handle;
128
129BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
130  switch (reason) {
131  case DLL_PROCESS_ATTACH:
132    vm_lib_handle = hinst;
133    if (ForceTimeHighResolution) {
134      timeBeginPeriod(1L);
135    }
136    break;
137  case DLL_PROCESS_DETACH:
138    if (ForceTimeHighResolution) {
139      timeEndPeriod(1L);
140    }
141    break;
142  default:
143    break;
144  }
145  return true;
146}
147
148static inline double fileTimeAsDouble(FILETIME* time) {
149  const double high  = (double) ((unsigned int) ~0);
150  const double split = 10000000.0;
151  double result = (time->dwLowDateTime / split) +
152                   time->dwHighDateTime * (high/split);
153  return result;
154}
155
156// Implementation of os
157
158bool os::unsetenv(const char* name) {
159  assert(name != NULL, "Null pointer");
160  return (SetEnvironmentVariable(name, NULL) == TRUE);
161}
162
163// No setuid programs under Windows.
164bool os::have_special_privileges() {
165  return false;
166}
167
168
169// This method is  a periodic task to check for misbehaving JNI applications
170// under CheckJNI, we can add any periodic checks here.
171// For Windows at the moment does nothing
172void os::run_periodic_checks() {
173  return;
174}
175
176// previous UnhandledExceptionFilter, if there is one
177static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
178
179LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
180
181void os::init_system_properties_values() {
182  // sysclasspath, java_home, dll_dir
183  {
184    char *home_path;
185    char *dll_path;
186    char *pslash;
187    char *bin = "\\bin";
188    char home_dir[MAX_PATH + 1];
189    char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
190
191    if (alt_home_dir != NULL)  {
192      strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
193      home_dir[MAX_PATH] = '\0';
194    } else {
195      os::jvm_path(home_dir, sizeof(home_dir));
196      // Found the full path to jvm.dll.
197      // Now cut the path to <java_home>/jre if we can.
198      *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
199      pslash = strrchr(home_dir, '\\');
200      if (pslash != NULL) {
201        *pslash = '\0';                   // get rid of \{client|server}
202        pslash = strrchr(home_dir, '\\');
203        if (pslash != NULL) {
204          *pslash = '\0';                 // get rid of \bin
205        }
206      }
207    }
208
209    home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
210    if (home_path == NULL) {
211      return;
212    }
213    strcpy(home_path, home_dir);
214    Arguments::set_java_home(home_path);
215    FREE_C_HEAP_ARRAY(char, home_path);
216
217    dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
218                                mtInternal);
219    if (dll_path == NULL) {
220      return;
221    }
222    strcpy(dll_path, home_dir);
223    strcat(dll_path, bin);
224    Arguments::set_dll_dir(dll_path);
225    FREE_C_HEAP_ARRAY(char, dll_path);
226
227    if (!set_boot_path('\\', ';')) {
228      return;
229    }
230  }
231
232// library_path
233#define EXT_DIR "\\lib\\ext"
234#define BIN_DIR "\\bin"
235#define PACKAGE_DIR "\\Sun\\Java"
236  {
237    // Win32 library search order (See the documentation for LoadLibrary):
238    //
239    // 1. The directory from which application is loaded.
240    // 2. The system wide Java Extensions directory (Java only)
241    // 3. System directory (GetSystemDirectory)
242    // 4. Windows directory (GetWindowsDirectory)
243    // 5. The PATH environment variable
244    // 6. The current directory
245
246    char *library_path;
247    char tmp[MAX_PATH];
248    char *path_str = ::getenv("PATH");
249
250    library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
251                                    sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
252
253    library_path[0] = '\0';
254
255    GetModuleFileName(NULL, tmp, sizeof(tmp));
256    *(strrchr(tmp, '\\')) = '\0';
257    strcat(library_path, tmp);
258
259    GetWindowsDirectory(tmp, sizeof(tmp));
260    strcat(library_path, ";");
261    strcat(library_path, tmp);
262    strcat(library_path, PACKAGE_DIR BIN_DIR);
263
264    GetSystemDirectory(tmp, sizeof(tmp));
265    strcat(library_path, ";");
266    strcat(library_path, tmp);
267
268    GetWindowsDirectory(tmp, sizeof(tmp));
269    strcat(library_path, ";");
270    strcat(library_path, tmp);
271
272    if (path_str) {
273      strcat(library_path, ";");
274      strcat(library_path, path_str);
275    }
276
277    strcat(library_path, ";.");
278
279    Arguments::set_library_path(library_path);
280    FREE_C_HEAP_ARRAY(char, library_path);
281  }
282
283  // Default extensions directory
284  {
285    char path[MAX_PATH];
286    char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
287    GetWindowsDirectory(path, MAX_PATH);
288    sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
289            path, PACKAGE_DIR, EXT_DIR);
290    Arguments::set_ext_dirs(buf);
291  }
292  #undef EXT_DIR
293  #undef BIN_DIR
294  #undef PACKAGE_DIR
295
296#ifndef _WIN64
297  // set our UnhandledExceptionFilter and save any previous one
298  prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
299#endif
300
301  // Done
302  return;
303}
304
305void os::breakpoint() {
306  DebugBreak();
307}
308
309// Invoked from the BREAKPOINT Macro
310extern "C" void breakpoint() {
311  os::breakpoint();
312}
313
314// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
315// So far, this method is only used by Native Memory Tracking, which is
316// only supported on Windows XP or later.
317//
318int os::get_native_stack(address* stack, int frames, int toSkip) {
319#ifdef _NMT_NOINLINE_
320  toSkip++;
321#endif
322  int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
323                                                       (PVOID*)stack, NULL);
324  for (int index = captured; index < frames; index ++) {
325    stack[index] = NULL;
326  }
327  return captured;
328}
329
330
331// os::current_stack_base()
332//
333//   Returns the base of the stack, which is the stack's
334//   starting address.  This function must be called
335//   while running on the stack of the thread being queried.
336
337address os::current_stack_base() {
338  MEMORY_BASIC_INFORMATION minfo;
339  address stack_bottom;
340  size_t stack_size;
341
342  VirtualQuery(&minfo, &minfo, sizeof(minfo));
343  stack_bottom =  (address)minfo.AllocationBase;
344  stack_size = minfo.RegionSize;
345
346  // Add up the sizes of all the regions with the same
347  // AllocationBase.
348  while (1) {
349    VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
350    if (stack_bottom == (address)minfo.AllocationBase) {
351      stack_size += minfo.RegionSize;
352    } else {
353      break;
354    }
355  }
356
357#ifdef _M_IA64
358  // IA64 has memory and register stacks
359  //
360  // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
361  // at thread creation (1MB backing store growing upwards, 1MB memory stack
362  // growing downwards, 2MB summed up)
363  //
364  // ...
365  // ------- top of stack (high address) -----
366  // |
367  // |      1MB
368  // |      Backing Store (Register Stack)
369  // |
370  // |         / \
371  // |          |
372  // |          |
373  // |          |
374  // ------------------------ stack base -----
375  // |      1MB
376  // |      Memory Stack
377  // |
378  // |          |
379  // |          |
380  // |          |
381  // |         \ /
382  // |
383  // ----- bottom of stack (low address) -----
384  // ...
385
386  stack_size = stack_size / 2;
387#endif
388  return stack_bottom + stack_size;
389}
390
391size_t os::current_stack_size() {
392  size_t sz;
393  MEMORY_BASIC_INFORMATION minfo;
394  VirtualQuery(&minfo, &minfo, sizeof(minfo));
395  sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
396  return sz;
397}
398
399struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
400  const struct tm* time_struct_ptr = localtime(clock);
401  if (time_struct_ptr != NULL) {
402    *res = *time_struct_ptr;
403    return res;
404  }
405  return NULL;
406}
407
408LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
409
410// Thread start routine for all new Java threads
411static unsigned __stdcall java_start(Thread* thread) {
412  // Try to randomize the cache line index of hot stack frames.
413  // This helps when threads of the same stack traces evict each other's
414  // cache lines. The threads can be either from the same JVM instance, or
415  // from different JVM instances. The benefit is especially true for
416  // processors with hyperthreading technology.
417  static int counter = 0;
418  int pid = os::current_process_id();
419  _alloca(((pid ^ counter++) & 7) * 128);
420
421  OSThread* osthr = thread->osthread();
422  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
423
424  if (UseNUMA) {
425    int lgrp_id = os::numa_get_group_id();
426    if (lgrp_id != -1) {
427      thread->set_lgrp_id(lgrp_id);
428    }
429  }
430
431  // Diagnostic code to investigate JDK-6573254
432  int res = 30115;  // non-java thread
433  if (thread->is_Java_thread()) {
434    res = 20115;    // java thread
435  }
436
437  // Install a win32 structured exception handler around every thread created
438  // by VM, so VM can generate error dump when an exception occurred in non-
439  // Java thread (e.g. VM thread).
440  __try {
441    thread->run();
442  } __except(topLevelExceptionFilter(
443                                     (_EXCEPTION_POINTERS*)_exception_info())) {
444    // Nothing to do.
445  }
446
447  // One less thread is executing
448  // When the VMThread gets here, the main thread may have already exited
449  // which frees the CodeHeap containing the Atomic::add code
450  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
451    Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
452  }
453
454  // Thread must not return from exit_process_or_thread(), but if it does,
455  // let it proceed to exit normally
456  return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
457}
458
459static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
460                                  int thread_id) {
461  // Allocate the OSThread object
462  OSThread* osthread = new OSThread(NULL, NULL);
463  if (osthread == NULL) return NULL;
464
465  // Initialize support for Java interrupts
466  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
467  if (interrupt_event == NULL) {
468    delete osthread;
469    return NULL;
470  }
471  osthread->set_interrupt_event(interrupt_event);
472
473  // Store info on the Win32 thread into the OSThread
474  osthread->set_thread_handle(thread_handle);
475  osthread->set_thread_id(thread_id);
476
477  if (UseNUMA) {
478    int lgrp_id = os::numa_get_group_id();
479    if (lgrp_id != -1) {
480      thread->set_lgrp_id(lgrp_id);
481    }
482  }
483
484  // Initial thread state is INITIALIZED, not SUSPENDED
485  osthread->set_state(INITIALIZED);
486
487  return osthread;
488}
489
490
491bool os::create_attached_thread(JavaThread* thread) {
492#ifdef ASSERT
493  thread->verify_not_published();
494#endif
495  HANDLE thread_h;
496  if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
497                       &thread_h, THREAD_ALL_ACCESS, false, 0)) {
498    fatal("DuplicateHandle failed\n");
499  }
500  OSThread* osthread = create_os_thread(thread, thread_h,
501                                        (int)current_thread_id());
502  if (osthread == NULL) {
503    return false;
504  }
505
506  // Initial thread state is RUNNABLE
507  osthread->set_state(RUNNABLE);
508
509  thread->set_osthread(osthread);
510  return true;
511}
512
513bool os::create_main_thread(JavaThread* thread) {
514#ifdef ASSERT
515  thread->verify_not_published();
516#endif
517  if (_starting_thread == NULL) {
518    _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
519    if (_starting_thread == NULL) {
520      return false;
521    }
522  }
523
524  // The primordial thread is runnable from the start)
525  _starting_thread->set_state(RUNNABLE);
526
527  thread->set_osthread(_starting_thread);
528  return true;
529}
530
531// Allocate and initialize a new OSThread
532bool os::create_thread(Thread* thread, ThreadType thr_type,
533                       size_t stack_size) {
534  unsigned thread_id;
535
536  // Allocate the OSThread object
537  OSThread* osthread = new OSThread(NULL, NULL);
538  if (osthread == NULL) {
539    return false;
540  }
541
542  // Initialize support for Java interrupts
543  HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
544  if (interrupt_event == NULL) {
545    delete osthread;
546    return NULL;
547  }
548  osthread->set_interrupt_event(interrupt_event);
549  osthread->set_interrupted(false);
550
551  thread->set_osthread(osthread);
552
553  if (stack_size == 0) {
554    switch (thr_type) {
555    case os::java_thread:
556      // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
557      if (JavaThread::stack_size_at_create() > 0) {
558        stack_size = JavaThread::stack_size_at_create();
559      }
560      break;
561    case os::compiler_thread:
562      if (CompilerThreadStackSize > 0) {
563        stack_size = (size_t)(CompilerThreadStackSize * K);
564        break;
565      } // else fall through:
566        // use VMThreadStackSize if CompilerThreadStackSize is not defined
567    case os::vm_thread:
568    case os::pgc_thread:
569    case os::cgc_thread:
570    case os::watcher_thread:
571      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
572      break;
573    }
574  }
575
576  // Create the Win32 thread
577  //
578  // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
579  // does not specify stack size. Instead, it specifies the size of
580  // initially committed space. The stack size is determined by
581  // PE header in the executable. If the committed "stack_size" is larger
582  // than default value in the PE header, the stack is rounded up to the
583  // nearest multiple of 1MB. For example if the launcher has default
584  // stack size of 320k, specifying any size less than 320k does not
585  // affect the actual stack size at all, it only affects the initial
586  // commitment. On the other hand, specifying 'stack_size' larger than
587  // default value may cause significant increase in memory usage, because
588  // not only the stack space will be rounded up to MB, but also the
589  // entire space is committed upfront.
590  //
591  // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
592  // for CreateThread() that can treat 'stack_size' as stack size. However we
593  // are not supposed to call CreateThread() directly according to MSDN
594  // document because JVM uses C runtime library. The good news is that the
595  // flag appears to work with _beginthredex() as well.
596
597#ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
598  #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
599#endif
600
601  HANDLE thread_handle =
602    (HANDLE)_beginthreadex(NULL,
603                           (unsigned)stack_size,
604                           (unsigned (__stdcall *)(void*)) java_start,
605                           thread,
606                           CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
607                           &thread_id);
608  if (thread_handle == NULL) {
609    // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
610    // without the flag.
611    thread_handle =
612      (HANDLE)_beginthreadex(NULL,
613                             (unsigned)stack_size,
614                             (unsigned (__stdcall *)(void*)) java_start,
615                             thread,
616                             CREATE_SUSPENDED,
617                             &thread_id);
618  }
619  if (thread_handle == NULL) {
620    // Need to clean up stuff we've allocated so far
621    CloseHandle(osthread->interrupt_event());
622    thread->set_osthread(NULL);
623    delete osthread;
624    return NULL;
625  }
626
627  Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
628
629  // Store info on the Win32 thread into the OSThread
630  osthread->set_thread_handle(thread_handle);
631  osthread->set_thread_id(thread_id);
632
633  // Initial thread state is INITIALIZED, not SUSPENDED
634  osthread->set_state(INITIALIZED);
635
636  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
637  return true;
638}
639
640
641// Free Win32 resources related to the OSThread
642void os::free_thread(OSThread* osthread) {
643  assert(osthread != NULL, "osthread not set");
644  CloseHandle(osthread->thread_handle());
645  CloseHandle(osthread->interrupt_event());
646  delete osthread;
647}
648
649static jlong first_filetime;
650static jlong initial_performance_count;
651static jlong performance_frequency;
652
653
654jlong as_long(LARGE_INTEGER x) {
655  jlong result = 0; // initialization to avoid warning
656  set_high(&result, x.HighPart);
657  set_low(&result, x.LowPart);
658  return result;
659}
660
661
662jlong os::elapsed_counter() {
663  LARGE_INTEGER count;
664  if (win32::_has_performance_count) {
665    QueryPerformanceCounter(&count);
666    return as_long(count) - initial_performance_count;
667  } else {
668    FILETIME wt;
669    GetSystemTimeAsFileTime(&wt);
670    return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
671  }
672}
673
674
675jlong os::elapsed_frequency() {
676  if (win32::_has_performance_count) {
677    return performance_frequency;
678  } else {
679    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
680    return 10000000;
681  }
682}
683
684
685julong os::available_memory() {
686  return win32::available_memory();
687}
688
689julong os::win32::available_memory() {
690  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
691  // value if total memory is larger than 4GB
692  MEMORYSTATUSEX ms;
693  ms.dwLength = sizeof(ms);
694  GlobalMemoryStatusEx(&ms);
695
696  return (julong)ms.ullAvailPhys;
697}
698
699julong os::physical_memory() {
700  return win32::physical_memory();
701}
702
703bool os::has_allocatable_memory_limit(julong* limit) {
704  MEMORYSTATUSEX ms;
705  ms.dwLength = sizeof(ms);
706  GlobalMemoryStatusEx(&ms);
707#ifdef _LP64
708  *limit = (julong)ms.ullAvailVirtual;
709  return true;
710#else
711  // Limit to 1400m because of the 2gb address space wall
712  *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
713  return true;
714#endif
715}
716
717// VC6 lacks DWORD_PTR
718#if _MSC_VER < 1300
719typedef UINT_PTR DWORD_PTR;
720#endif
721
722int os::active_processor_count() {
723  DWORD_PTR lpProcessAffinityMask = 0;
724  DWORD_PTR lpSystemAffinityMask = 0;
725  int proc_count = processor_count();
726  if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
727      GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
728    // Nof active processors is number of bits in process affinity mask
729    int bitcount = 0;
730    while (lpProcessAffinityMask != 0) {
731      lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
732      bitcount++;
733    }
734    return bitcount;
735  } else {
736    return proc_count;
737  }
738}
739
740void os::set_native_thread_name(const char *name) {
741
742  // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
743  //
744  // Note that unfortunately this only works if the process
745  // is already attached to a debugger; debugger must observe
746  // the exception below to show the correct name.
747
748  const DWORD MS_VC_EXCEPTION = 0x406D1388;
749  struct {
750    DWORD dwType;     // must be 0x1000
751    LPCSTR szName;    // pointer to name (in user addr space)
752    DWORD dwThreadID; // thread ID (-1=caller thread)
753    DWORD dwFlags;    // reserved for future use, must be zero
754  } info;
755
756  info.dwType = 0x1000;
757  info.szName = name;
758  info.dwThreadID = -1;
759  info.dwFlags = 0;
760
761  __try {
762    RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
763  } __except(EXCEPTION_CONTINUE_EXECUTION) {}
764}
765
766bool os::distribute_processes(uint length, uint* distribution) {
767  // Not yet implemented.
768  return false;
769}
770
771bool os::bind_to_processor(uint processor_id) {
772  // Not yet implemented.
773  return false;
774}
775
776void os::win32::initialize_performance_counter() {
777  LARGE_INTEGER count;
778  if (QueryPerformanceFrequency(&count)) {
779    win32::_has_performance_count = 1;
780    performance_frequency = as_long(count);
781    QueryPerformanceCounter(&count);
782    initial_performance_count = as_long(count);
783  } else {
784    win32::_has_performance_count = 0;
785    FILETIME wt;
786    GetSystemTimeAsFileTime(&wt);
787    first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
788  }
789}
790
791
792double os::elapsedTime() {
793  return (double) elapsed_counter() / (double) elapsed_frequency();
794}
795
796
797// Windows format:
798//   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
799// Java format:
800//   Java standards require the number of milliseconds since 1/1/1970
801
802// Constant offset - calculated using offset()
803static jlong  _offset   = 116444736000000000;
804// Fake time counter for reproducible results when debugging
805static jlong  fake_time = 0;
806
807#ifdef ASSERT
808// Just to be safe, recalculate the offset in debug mode
809static jlong _calculated_offset = 0;
810static int   _has_calculated_offset = 0;
811
812jlong offset() {
813  if (_has_calculated_offset) return _calculated_offset;
814  SYSTEMTIME java_origin;
815  java_origin.wYear          = 1970;
816  java_origin.wMonth         = 1;
817  java_origin.wDayOfWeek     = 0; // ignored
818  java_origin.wDay           = 1;
819  java_origin.wHour          = 0;
820  java_origin.wMinute        = 0;
821  java_origin.wSecond        = 0;
822  java_origin.wMilliseconds  = 0;
823  FILETIME jot;
824  if (!SystemTimeToFileTime(&java_origin, &jot)) {
825    fatal(err_msg("Error = %d\nWindows error", GetLastError()));
826  }
827  _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
828  _has_calculated_offset = 1;
829  assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
830  return _calculated_offset;
831}
832#else
833jlong offset() {
834  return _offset;
835}
836#endif
837
838jlong windows_to_java_time(FILETIME wt) {
839  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
840  return (a - offset()) / 10000;
841}
842
843// Returns time ticks in (10th of micro seconds)
844jlong windows_to_time_ticks(FILETIME wt) {
845  jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
846  return (a - offset());
847}
848
849FILETIME java_to_windows_time(jlong l) {
850  jlong a = (l * 10000) + offset();
851  FILETIME result;
852  result.dwHighDateTime = high(a);
853  result.dwLowDateTime  = low(a);
854  return result;
855}
856
857bool os::supports_vtime() { return true; }
858bool os::enable_vtime() { return false; }
859bool os::vtime_enabled() { return false; }
860
861double os::elapsedVTime() {
862  FILETIME created;
863  FILETIME exited;
864  FILETIME kernel;
865  FILETIME user;
866  if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
867    // the resolution of windows_to_java_time() should be sufficient (ms)
868    return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
869  } else {
870    return elapsedTime();
871  }
872}
873
874jlong os::javaTimeMillis() {
875  if (UseFakeTimers) {
876    return fake_time++;
877  } else {
878    FILETIME wt;
879    GetSystemTimeAsFileTime(&wt);
880    return windows_to_java_time(wt);
881  }
882}
883
884void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
885  FILETIME wt;
886  GetSystemTimeAsFileTime(&wt);
887  jlong ticks = windows_to_time_ticks(wt); // 10th of micros
888  jlong secs = jlong(ticks / 10000000); // 10000 * 1000
889  seconds = secs;
890  nanos = jlong(ticks - (secs*10000000)) * 100;
891}
892
893jlong os::javaTimeNanos() {
894  if (!win32::_has_performance_count) {
895    return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
896  } else {
897    LARGE_INTEGER current_count;
898    QueryPerformanceCounter(&current_count);
899    double current = as_long(current_count);
900    double freq = performance_frequency;
901    jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
902    return time;
903  }
904}
905
906void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
907  if (!win32::_has_performance_count) {
908    // javaTimeMillis() doesn't have much percision,
909    // but it is not going to wrap -- so all 64 bits
910    info_ptr->max_value = ALL_64_BITS;
911
912    // this is a wall clock timer, so may skip
913    info_ptr->may_skip_backward = true;
914    info_ptr->may_skip_forward = true;
915  } else {
916    jlong freq = performance_frequency;
917    if (freq < NANOSECS_PER_SEC) {
918      // the performance counter is 64 bits and we will
919      // be multiplying it -- so no wrap in 64 bits
920      info_ptr->max_value = ALL_64_BITS;
921    } else if (freq > NANOSECS_PER_SEC) {
922      // use the max value the counter can reach to
923      // determine the max value which could be returned
924      julong max_counter = (julong)ALL_64_BITS;
925      info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
926    } else {
927      // the performance counter is 64 bits and we will
928      // be using it directly -- so no wrap in 64 bits
929      info_ptr->max_value = ALL_64_BITS;
930    }
931
932    // using a counter, so no skipping
933    info_ptr->may_skip_backward = false;
934    info_ptr->may_skip_forward = false;
935  }
936  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
937}
938
939char* os::local_time_string(char *buf, size_t buflen) {
940  SYSTEMTIME st;
941  GetLocalTime(&st);
942  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
943               st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
944  return buf;
945}
946
947bool os::getTimesSecs(double* process_real_time,
948                      double* process_user_time,
949                      double* process_system_time) {
950  HANDLE h_process = GetCurrentProcess();
951  FILETIME create_time, exit_time, kernel_time, user_time;
952  BOOL result = GetProcessTimes(h_process,
953                                &create_time,
954                                &exit_time,
955                                &kernel_time,
956                                &user_time);
957  if (result != 0) {
958    FILETIME wt;
959    GetSystemTimeAsFileTime(&wt);
960    jlong rtc_millis = windows_to_java_time(wt);
961    jlong user_millis = windows_to_java_time(user_time);
962    jlong system_millis = windows_to_java_time(kernel_time);
963    *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
964    *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
965    *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
966    return true;
967  } else {
968    return false;
969  }
970}
971
972void os::shutdown() {
973  // allow PerfMemory to attempt cleanup of any persistent resources
974  perfMemory_exit();
975
976  // flush buffered output, finish log files
977  ostream_abort();
978
979  // Check for abort hook
980  abort_hook_t abort_hook = Arguments::abort_hook();
981  if (abort_hook != NULL) {
982    abort_hook();
983  }
984}
985
986
987static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
988                                         PMINIDUMP_EXCEPTION_INFORMATION,
989                                         PMINIDUMP_USER_STREAM_INFORMATION,
990                                         PMINIDUMP_CALLBACK_INFORMATION);
991
992static HANDLE dumpFile = NULL;
993
994// Check if dump file can be created.
995void os::check_dump_limit(char* buffer, size_t buffsz) {
996  bool status = true;
997  if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
998    jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
999    status = false;
1000  }
1001
1002#ifndef ASSERT
1003  if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1004    jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1005    status = false;
1006  }
1007#endif
1008
1009  if (status) {
1010    const char* cwd = get_current_directory(NULL, 0);
1011    int pid = current_process_id();
1012    if (cwd != NULL) {
1013      jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1014    } else {
1015      jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1016    }
1017
1018    if (dumpFile == NULL &&
1019       (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1020                 == INVALID_HANDLE_VALUE) {
1021      jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1022      status = false;
1023    }
1024  }
1025  VMError::record_coredump_status(buffer, status);
1026}
1027
1028void os::abort(bool dump_core, void* siginfo, void* context) {
1029  HINSTANCE dbghelp;
1030  EXCEPTION_POINTERS ep;
1031  MINIDUMP_EXCEPTION_INFORMATION mei;
1032  MINIDUMP_EXCEPTION_INFORMATION* pmei;
1033
1034  HANDLE hProcess = GetCurrentProcess();
1035  DWORD processId = GetCurrentProcessId();
1036  MINIDUMP_TYPE dumpType;
1037
1038  shutdown();
1039  if (!dump_core || dumpFile == NULL) {
1040    if (dumpFile != NULL) {
1041      CloseHandle(dumpFile);
1042    }
1043    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1044  }
1045
1046  dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1047
1048  if (dbghelp == NULL) {
1049    jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1050    CloseHandle(dumpFile);
1051    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1052  }
1053
1054  _MiniDumpWriteDump =
1055      CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1056                                    PMINIDUMP_EXCEPTION_INFORMATION,
1057                                    PMINIDUMP_USER_STREAM_INFORMATION,
1058                                    PMINIDUMP_CALLBACK_INFORMATION),
1059                                    GetProcAddress(dbghelp,
1060                                    "MiniDumpWriteDump"));
1061
1062  if (_MiniDumpWriteDump == NULL) {
1063    jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1064    CloseHandle(dumpFile);
1065    win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1066  }
1067
1068  dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1069
1070  // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1071  // API_VERSION_NUMBER 11 or higher contains the ones we want though
1072#if API_VERSION_NUMBER >= 11
1073  dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1074                             MiniDumpWithUnloadedModules);
1075#endif
1076
1077  if (siginfo != NULL && context != NULL) {
1078    ep.ContextRecord = (PCONTEXT) context;
1079    ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1080
1081    mei.ThreadId = GetCurrentThreadId();
1082    mei.ExceptionPointers = &ep;
1083    pmei = &mei;
1084  } else {
1085    pmei = NULL;
1086  }
1087
1088  // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1089  // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1090  if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1091      _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1092    jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1093  }
1094  CloseHandle(dumpFile);
1095  win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1096}
1097
1098// Die immediately, no exit hook, no abort hook, no cleanup.
1099void os::die() {
1100  win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1101}
1102
1103// Directory routines copied from src/win32/native/java/io/dirent_md.c
1104//  * dirent_md.c       1.15 00/02/02
1105//
1106// The declarations for DIR and struct dirent are in jvm_win32.h.
1107
1108// Caller must have already run dirname through JVM_NativePath, which removes
1109// duplicate slashes and converts all instances of '/' into '\\'.
1110
1111DIR * os::opendir(const char *dirname) {
1112  assert(dirname != NULL, "just checking");   // hotspot change
1113  DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1114  DWORD fattr;                                // hotspot change
1115  char alt_dirname[4] = { 0, 0, 0, 0 };
1116
1117  if (dirp == 0) {
1118    errno = ENOMEM;
1119    return 0;
1120  }
1121
1122  // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1123  // as a directory in FindFirstFile().  We detect this case here and
1124  // prepend the current drive name.
1125  //
1126  if (dirname[1] == '\0' && dirname[0] == '\\') {
1127    alt_dirname[0] = _getdrive() + 'A' - 1;
1128    alt_dirname[1] = ':';
1129    alt_dirname[2] = '\\';
1130    alt_dirname[3] = '\0';
1131    dirname = alt_dirname;
1132  }
1133
1134  dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1135  if (dirp->path == 0) {
1136    free(dirp);
1137    errno = ENOMEM;
1138    return 0;
1139  }
1140  strcpy(dirp->path, dirname);
1141
1142  fattr = GetFileAttributes(dirp->path);
1143  if (fattr == 0xffffffff) {
1144    free(dirp->path);
1145    free(dirp);
1146    errno = ENOENT;
1147    return 0;
1148  } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1149    free(dirp->path);
1150    free(dirp);
1151    errno = ENOTDIR;
1152    return 0;
1153  }
1154
1155  // Append "*.*", or possibly "\\*.*", to path
1156  if (dirp->path[1] == ':' &&
1157      (dirp->path[2] == '\0' ||
1158      (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1159    // No '\\' needed for cases like "Z:" or "Z:\"
1160    strcat(dirp->path, "*.*");
1161  } else {
1162    strcat(dirp->path, "\\*.*");
1163  }
1164
1165  dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1166  if (dirp->handle == INVALID_HANDLE_VALUE) {
1167    if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1168      free(dirp->path);
1169      free(dirp);
1170      errno = EACCES;
1171      return 0;
1172    }
1173  }
1174  return dirp;
1175}
1176
1177// parameter dbuf unused on Windows
1178struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1179  assert(dirp != NULL, "just checking");      // hotspot change
1180  if (dirp->handle == INVALID_HANDLE_VALUE) {
1181    return 0;
1182  }
1183
1184  strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1185
1186  if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1187    if (GetLastError() == ERROR_INVALID_HANDLE) {
1188      errno = EBADF;
1189      return 0;
1190    }
1191    FindClose(dirp->handle);
1192    dirp->handle = INVALID_HANDLE_VALUE;
1193  }
1194
1195  return &dirp->dirent;
1196}
1197
1198int os::closedir(DIR *dirp) {
1199  assert(dirp != NULL, "just checking");      // hotspot change
1200  if (dirp->handle != INVALID_HANDLE_VALUE) {
1201    if (!FindClose(dirp->handle)) {
1202      errno = EBADF;
1203      return -1;
1204    }
1205    dirp->handle = INVALID_HANDLE_VALUE;
1206  }
1207  free(dirp->path);
1208  free(dirp);
1209  return 0;
1210}
1211
1212// This must be hard coded because it's the system's temporary
1213// directory not the java application's temp directory, ala java.io.tmpdir.
1214const char* os::get_temp_directory() {
1215  static char path_buf[MAX_PATH];
1216  if (GetTempPath(MAX_PATH, path_buf) > 0) {
1217    return path_buf;
1218  } else {
1219    path_buf[0] = '\0';
1220    return path_buf;
1221  }
1222}
1223
1224static bool file_exists(const char* filename) {
1225  if (filename == NULL || strlen(filename) == 0) {
1226    return false;
1227  }
1228  return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1229}
1230
1231bool os::dll_build_name(char *buffer, size_t buflen,
1232                        const char* pname, const char* fname) {
1233  bool retval = false;
1234  const size_t pnamelen = pname ? strlen(pname) : 0;
1235  const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1236
1237  // Return error on buffer overflow.
1238  if (pnamelen + strlen(fname) + 10 > buflen) {
1239    return retval;
1240  }
1241
1242  if (pnamelen == 0) {
1243    jio_snprintf(buffer, buflen, "%s.dll", fname);
1244    retval = true;
1245  } else if (c == ':' || c == '\\') {
1246    jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1247    retval = true;
1248  } else if (strchr(pname, *os::path_separator()) != NULL) {
1249    int n;
1250    char** pelements = split_path(pname, &n);
1251    if (pelements == NULL) {
1252      return false;
1253    }
1254    for (int i = 0; i < n; i++) {
1255      char* path = pelements[i];
1256      // Really shouldn't be NULL, but check can't hurt
1257      size_t plen = (path == NULL) ? 0 : strlen(path);
1258      if (plen == 0) {
1259        continue; // skip the empty path values
1260      }
1261      const char lastchar = path[plen - 1];
1262      if (lastchar == ':' || lastchar == '\\') {
1263        jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1264      } else {
1265        jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1266      }
1267      if (file_exists(buffer)) {
1268        retval = true;
1269        break;
1270      }
1271    }
1272    // release the storage
1273    for (int i = 0; i < n; i++) {
1274      if (pelements[i] != NULL) {
1275        FREE_C_HEAP_ARRAY(char, pelements[i]);
1276      }
1277    }
1278    if (pelements != NULL) {
1279      FREE_C_HEAP_ARRAY(char*, pelements);
1280    }
1281  } else {
1282    jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1283    retval = true;
1284  }
1285  return retval;
1286}
1287
1288// Needs to be in os specific directory because windows requires another
1289// header file <direct.h>
1290const char* os::get_current_directory(char *buf, size_t buflen) {
1291  int n = static_cast<int>(buflen);
1292  if (buflen > INT_MAX)  n = INT_MAX;
1293  return _getcwd(buf, n);
1294}
1295
1296//-----------------------------------------------------------
1297// Helper functions for fatal error handler
1298#ifdef _WIN64
1299// Helper routine which returns true if address in
1300// within the NTDLL address space.
1301//
1302static bool _addr_in_ntdll(address addr) {
1303  HMODULE hmod;
1304  MODULEINFO minfo;
1305
1306  hmod = GetModuleHandle("NTDLL.DLL");
1307  if (hmod == NULL) return false;
1308  if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1309                                          &minfo, sizeof(MODULEINFO))) {
1310    return false;
1311  }
1312
1313  if ((addr >= minfo.lpBaseOfDll) &&
1314      (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1315    return true;
1316  } else {
1317    return false;
1318  }
1319}
1320#endif
1321
1322struct _modinfo {
1323  address addr;
1324  char*   full_path;   // point to a char buffer
1325  int     buflen;      // size of the buffer
1326  address base_addr;
1327};
1328
1329static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1330                                  address top_address, void * param) {
1331  struct _modinfo *pmod = (struct _modinfo *)param;
1332  if (!pmod) return -1;
1333
1334  if (base_addr   <= pmod->addr &&
1335      top_address > pmod->addr) {
1336    // if a buffer is provided, copy path name to the buffer
1337    if (pmod->full_path) {
1338      jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1339    }
1340    pmod->base_addr = base_addr;
1341    return 1;
1342  }
1343  return 0;
1344}
1345
1346bool os::dll_address_to_library_name(address addr, char* buf,
1347                                     int buflen, int* offset) {
1348  // buf is not optional, but offset is optional
1349  assert(buf != NULL, "sanity check");
1350
1351// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1352//       return the full path to the DLL file, sometimes it returns path
1353//       to the corresponding PDB file (debug info); sometimes it only
1354//       returns partial path, which makes life painful.
1355
1356  struct _modinfo mi;
1357  mi.addr      = addr;
1358  mi.full_path = buf;
1359  mi.buflen    = buflen;
1360  if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1361    // buf already contains path name
1362    if (offset) *offset = addr - mi.base_addr;
1363    return true;
1364  }
1365
1366  buf[0] = '\0';
1367  if (offset) *offset = -1;
1368  return false;
1369}
1370
1371bool os::dll_address_to_function_name(address addr, char *buf,
1372                                      int buflen, int *offset,
1373                                      bool demangle) {
1374  // buf is not optional, but offset is optional
1375  assert(buf != NULL, "sanity check");
1376
1377  if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1378    return true;
1379  }
1380  if (offset != NULL)  *offset  = -1;
1381  buf[0] = '\0';
1382  return false;
1383}
1384
1385// save the start and end address of jvm.dll into param[0] and param[1]
1386static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1387                           address top_address, void * param) {
1388  if (!param) return -1;
1389
1390  if (base_addr   <= (address)_locate_jvm_dll &&
1391      top_address > (address)_locate_jvm_dll) {
1392    ((address*)param)[0] = base_addr;
1393    ((address*)param)[1] = top_address;
1394    return 1;
1395  }
1396  return 0;
1397}
1398
1399address vm_lib_location[2];    // start and end address of jvm.dll
1400
1401// check if addr is inside jvm.dll
1402bool os::address_is_in_vm(address addr) {
1403  if (!vm_lib_location[0] || !vm_lib_location[1]) {
1404    if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1405      assert(false, "Can't find jvm module.");
1406      return false;
1407    }
1408  }
1409
1410  return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1411}
1412
1413// print module info; param is outputStream*
1414static int _print_module(const char* fname, address base_address,
1415                         address top_address, void* param) {
1416  if (!param) return -1;
1417
1418  outputStream* st = (outputStream*)param;
1419
1420  st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1421  return 0;
1422}
1423
1424// Loads .dll/.so and
1425// in case of error it checks if .dll/.so was built for the
1426// same architecture as Hotspot is running on
1427void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1428  void * result = LoadLibrary(name);
1429  if (result != NULL) {
1430    return result;
1431  }
1432
1433  DWORD errcode = GetLastError();
1434  if (errcode == ERROR_MOD_NOT_FOUND) {
1435    strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1436    ebuf[ebuflen - 1] = '\0';
1437    return NULL;
1438  }
1439
1440  // Parsing dll below
1441  // If we can read dll-info and find that dll was built
1442  // for an architecture other than Hotspot is running in
1443  // - then print to buffer "DLL was built for a different architecture"
1444  // else call os::lasterror to obtain system error message
1445
1446  // Read system error message into ebuf
1447  // It may or may not be overwritten below (in the for loop and just above)
1448  lasterror(ebuf, (size_t) ebuflen);
1449  ebuf[ebuflen - 1] = '\0';
1450  int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1451  if (fd < 0) {
1452    return NULL;
1453  }
1454
1455  uint32_t signature_offset;
1456  uint16_t lib_arch = 0;
1457  bool failed_to_get_lib_arch =
1458    ( // Go to position 3c in the dll
1459     (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1460     ||
1461     // Read location of signature
1462     (sizeof(signature_offset) !=
1463     (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1464     ||
1465     // Go to COFF File Header in dll
1466     // that is located after "signature" (4 bytes long)
1467     (os::seek_to_file_offset(fd,
1468     signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1469     ||
1470     // Read field that contains code of architecture
1471     // that dll was built for
1472     (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1473    );
1474
1475  ::close(fd);
1476  if (failed_to_get_lib_arch) {
1477    // file i/o error - report os::lasterror(...) msg
1478    return NULL;
1479  }
1480
1481  typedef struct {
1482    uint16_t arch_code;
1483    char* arch_name;
1484  } arch_t;
1485
1486  static const arch_t arch_array[] = {
1487    {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1488    {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1489    {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1490  };
1491#if   (defined _M_IA64)
1492  static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1493#elif (defined _M_AMD64)
1494  static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1495#elif (defined _M_IX86)
1496  static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1497#else
1498  #error Method os::dll_load requires that one of following \
1499         is defined :_M_IA64,_M_AMD64 or _M_IX86
1500#endif
1501
1502
1503  // Obtain a string for printf operation
1504  // lib_arch_str shall contain string what platform this .dll was built for
1505  // running_arch_str shall string contain what platform Hotspot was built for
1506  char *running_arch_str = NULL, *lib_arch_str = NULL;
1507  for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1508    if (lib_arch == arch_array[i].arch_code) {
1509      lib_arch_str = arch_array[i].arch_name;
1510    }
1511    if (running_arch == arch_array[i].arch_code) {
1512      running_arch_str = arch_array[i].arch_name;
1513    }
1514  }
1515
1516  assert(running_arch_str,
1517         "Didn't find running architecture code in arch_array");
1518
1519  // If the architecture is right
1520  // but some other error took place - report os::lasterror(...) msg
1521  if (lib_arch == running_arch) {
1522    return NULL;
1523  }
1524
1525  if (lib_arch_str != NULL) {
1526    ::_snprintf(ebuf, ebuflen - 1,
1527                "Can't load %s-bit .dll on a %s-bit platform",
1528                lib_arch_str, running_arch_str);
1529  } else {
1530    // don't know what architecture this dll was build for
1531    ::_snprintf(ebuf, ebuflen - 1,
1532                "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1533                lib_arch, running_arch_str);
1534  }
1535
1536  return NULL;
1537}
1538
1539void os::print_dll_info(outputStream *st) {
1540  st->print_cr("Dynamic libraries:");
1541  get_loaded_modules_info(_print_module, (void *)st);
1542}
1543
1544int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1545  HANDLE   hProcess;
1546
1547# define MAX_NUM_MODULES 128
1548  HMODULE     modules[MAX_NUM_MODULES];
1549  static char filename[MAX_PATH];
1550  int         result = 0;
1551
1552  if (!os::PSApiDll::PSApiAvailable()) {
1553    return 0;
1554  }
1555
1556  int pid = os::current_process_id();
1557  hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1558                         FALSE, pid);
1559  if (hProcess == NULL) return 0;
1560
1561  DWORD size_needed;
1562  if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1563                                        sizeof(modules), &size_needed)) {
1564    CloseHandle(hProcess);
1565    return 0;
1566  }
1567
1568  // number of modules that are currently loaded
1569  int num_modules = size_needed / sizeof(HMODULE);
1570
1571  for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1572    // Get Full pathname:
1573    if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1574                                           filename, sizeof(filename))) {
1575      filename[0] = '\0';
1576    }
1577
1578    MODULEINFO modinfo;
1579    if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1580                                            &modinfo, sizeof(modinfo))) {
1581      modinfo.lpBaseOfDll = NULL;
1582      modinfo.SizeOfImage = 0;
1583    }
1584
1585    // Invoke callback function
1586    result = callback(filename, (address)modinfo.lpBaseOfDll,
1587                      (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1588    if (result) break;
1589  }
1590
1591  CloseHandle(hProcess);
1592  return result;
1593}
1594
1595void os::print_os_info_brief(outputStream* st) {
1596  os::print_os_info(st);
1597}
1598
1599void os::print_os_info(outputStream* st) {
1600#ifdef ASSERT
1601  char buffer[1024];
1602  DWORD size = sizeof(buffer);
1603  st->print(" HostName: ");
1604  if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1605    st->print("%s", buffer);
1606  } else {
1607    st->print("N/A");
1608  }
1609#endif
1610  st->print(" OS:");
1611  os::win32::print_windows_version(st);
1612}
1613
1614void os::win32::print_windows_version(outputStream* st) {
1615  OSVERSIONINFOEX osvi;
1616  VS_FIXEDFILEINFO *file_info;
1617  TCHAR kernel32_path[MAX_PATH];
1618  UINT len, ret;
1619
1620  // Use the GetVersionEx information to see if we're on a server or
1621  // workstation edition of Windows. Starting with Windows 8.1 we can't
1622  // trust the OS version information returned by this API.
1623  ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1624  osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1625  if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1626    st->print_cr("Call to GetVersionEx failed");
1627    return;
1628  }
1629  bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1630
1631  // Get the full path to \Windows\System32\kernel32.dll and use that for
1632  // determining what version of Windows we're running on.
1633  len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1634  ret = GetSystemDirectory(kernel32_path, len);
1635  if (ret == 0 || ret > len) {
1636    st->print_cr("Call to GetSystemDirectory failed");
1637    return;
1638  }
1639  strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1640
1641  DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1642  if (version_size == 0) {
1643    st->print_cr("Call to GetFileVersionInfoSize failed");
1644    return;
1645  }
1646
1647  LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1648  if (version_info == NULL) {
1649    st->print_cr("Failed to allocate version_info");
1650    return;
1651  }
1652
1653  if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1654    os::free(version_info);
1655    st->print_cr("Call to GetFileVersionInfo failed");
1656    return;
1657  }
1658
1659  if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1660    os::free(version_info);
1661    st->print_cr("Call to VerQueryValue failed");
1662    return;
1663  }
1664
1665  int major_version = HIWORD(file_info->dwProductVersionMS);
1666  int minor_version = LOWORD(file_info->dwProductVersionMS);
1667  int build_number = HIWORD(file_info->dwProductVersionLS);
1668  int build_minor = LOWORD(file_info->dwProductVersionLS);
1669  int os_vers = major_version * 1000 + minor_version;
1670  os::free(version_info);
1671
1672  st->print(" Windows ");
1673  switch (os_vers) {
1674
1675  case 6000:
1676    if (is_workstation) {
1677      st->print("Vista");
1678    } else {
1679      st->print("Server 2008");
1680    }
1681    break;
1682
1683  case 6001:
1684    if (is_workstation) {
1685      st->print("7");
1686    } else {
1687      st->print("Server 2008 R2");
1688    }
1689    break;
1690
1691  case 6002:
1692    if (is_workstation) {
1693      st->print("8");
1694    } else {
1695      st->print("Server 2012");
1696    }
1697    break;
1698
1699  case 6003:
1700    if (is_workstation) {
1701      st->print("8.1");
1702    } else {
1703      st->print("Server 2012 R2");
1704    }
1705    break;
1706
1707  case 10000:
1708    if (is_workstation) {
1709      st->print("10");
1710    } else {
1711      // The server version name of Windows 10 is not known at this time
1712      st->print("%d.%d", major_version, minor_version);
1713    }
1714    break;
1715
1716  default:
1717    // Unrecognized windows, print out its major and minor versions
1718    st->print("%d.%d", major_version, minor_version);
1719    break;
1720  }
1721
1722  // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1723  // find out whether we are running on 64 bit processor or not
1724  SYSTEM_INFO si;
1725  ZeroMemory(&si, sizeof(SYSTEM_INFO));
1726  os::Kernel32Dll::GetNativeSystemInfo(&si);
1727  if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1728    st->print(" , 64 bit");
1729  }
1730
1731  st->print(" Build %d", build_number);
1732  st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1733  st->cr();
1734}
1735
1736void os::pd_print_cpu_info(outputStream* st) {
1737  // Nothing to do for now.
1738}
1739
1740void os::print_memory_info(outputStream* st) {
1741  st->print("Memory:");
1742  st->print(" %dk page", os::vm_page_size()>>10);
1743
1744  // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1745  // value if total memory is larger than 4GB
1746  MEMORYSTATUSEX ms;
1747  ms.dwLength = sizeof(ms);
1748  GlobalMemoryStatusEx(&ms);
1749
1750  st->print(", physical %uk", os::physical_memory() >> 10);
1751  st->print("(%uk free)", os::available_memory() >> 10);
1752
1753  st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1754  st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1755  st->cr();
1756}
1757
1758void os::print_siginfo(outputStream *st, void *siginfo) {
1759  EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1760  st->print("siginfo:");
1761  st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1762
1763  if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1764      er->NumberParameters >= 2) {
1765    switch (er->ExceptionInformation[0]) {
1766    case 0: st->print(", reading address"); break;
1767    case 1: st->print(", writing address"); break;
1768    default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1769                       er->ExceptionInformation[0]);
1770    }
1771    st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1772  } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1773             er->NumberParameters >= 2 && UseSharedSpaces) {
1774    FileMapInfo* mapinfo = FileMapInfo::current_info();
1775    if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1776      st->print("\n\nError accessing class data sharing archive."       \
1777                " Mapped file inaccessible during execution, "          \
1778                " possible disk/network problem.");
1779    }
1780  } else {
1781    int num = er->NumberParameters;
1782    if (num > 0) {
1783      st->print(", ExceptionInformation=");
1784      for (int i = 0; i < num; i++) {
1785        st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1786      }
1787    }
1788  }
1789  st->cr();
1790}
1791
1792void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1793  // do nothing
1794}
1795
1796static char saved_jvm_path[MAX_PATH] = {0};
1797
1798// Find the full path to the current module, jvm.dll
1799void os::jvm_path(char *buf, jint buflen) {
1800  // Error checking.
1801  if (buflen < MAX_PATH) {
1802    assert(false, "must use a large-enough buffer");
1803    buf[0] = '\0';
1804    return;
1805  }
1806  // Lazy resolve the path to current module.
1807  if (saved_jvm_path[0] != 0) {
1808    strcpy(buf, saved_jvm_path);
1809    return;
1810  }
1811
1812  buf[0] = '\0';
1813  if (Arguments::sun_java_launcher_is_altjvm()) {
1814    // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1815    // for a JAVA_HOME environment variable and fix up the path so it
1816    // looks like jvm.dll is installed there (append a fake suffix
1817    // hotspot/jvm.dll).
1818    char* java_home_var = ::getenv("JAVA_HOME");
1819    if (java_home_var != NULL && java_home_var[0] != 0 &&
1820        strlen(java_home_var) < (size_t)buflen) {
1821      strncpy(buf, java_home_var, buflen);
1822
1823      // determine if this is a legacy image or modules image
1824      // modules image doesn't have "jre" subdirectory
1825      size_t len = strlen(buf);
1826      char* jrebin_p = buf + len;
1827      jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1828      if (0 != _access(buf, 0)) {
1829        jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1830      }
1831      len = strlen(buf);
1832      jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1833    }
1834  }
1835
1836  if (buf[0] == '\0') {
1837    GetModuleFileName(vm_lib_handle, buf, buflen);
1838  }
1839  strncpy(saved_jvm_path, buf, MAX_PATH);
1840  saved_jvm_path[MAX_PATH - 1] = '\0';
1841}
1842
1843
1844void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1845#ifndef _WIN64
1846  st->print("_");
1847#endif
1848}
1849
1850
1851void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1852#ifndef _WIN64
1853  st->print("@%d", args_size  * sizeof(int));
1854#endif
1855}
1856
1857// This method is a copy of JDK's sysGetLastErrorString
1858// from src/windows/hpi/src/system_md.c
1859
1860size_t os::lasterror(char* buf, size_t len) {
1861  DWORD errval;
1862
1863  if ((errval = GetLastError()) != 0) {
1864    // DOS error
1865    size_t n = (size_t)FormatMessage(
1866                                     FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1867                                     NULL,
1868                                     errval,
1869                                     0,
1870                                     buf,
1871                                     (DWORD)len,
1872                                     NULL);
1873    if (n > 3) {
1874      // Drop final '.', CR, LF
1875      if (buf[n - 1] == '\n') n--;
1876      if (buf[n - 1] == '\r') n--;
1877      if (buf[n - 1] == '.') n--;
1878      buf[n] = '\0';
1879    }
1880    return n;
1881  }
1882
1883  if (errno != 0) {
1884    // C runtime error that has no corresponding DOS error code
1885    const char* s = strerror(errno);
1886    size_t n = strlen(s);
1887    if (n >= len) n = len - 1;
1888    strncpy(buf, s, n);
1889    buf[n] = '\0';
1890    return n;
1891  }
1892
1893  return 0;
1894}
1895
1896int os::get_last_error() {
1897  DWORD error = GetLastError();
1898  if (error == 0) {
1899    error = errno;
1900  }
1901  return (int)error;
1902}
1903
1904// sun.misc.Signal
1905// NOTE that this is a workaround for an apparent kernel bug where if
1906// a signal handler for SIGBREAK is installed then that signal handler
1907// takes priority over the console control handler for CTRL_CLOSE_EVENT.
1908// See bug 4416763.
1909static void (*sigbreakHandler)(int) = NULL;
1910
1911static void UserHandler(int sig, void *siginfo, void *context) {
1912  os::signal_notify(sig);
1913  // We need to reinstate the signal handler each time...
1914  os::signal(sig, (void*)UserHandler);
1915}
1916
1917void* os::user_handler() {
1918  return (void*) UserHandler;
1919}
1920
1921void* os::signal(int signal_number, void* handler) {
1922  if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1923    void (*oldHandler)(int) = sigbreakHandler;
1924    sigbreakHandler = (void (*)(int)) handler;
1925    return (void*) oldHandler;
1926  } else {
1927    return (void*)::signal(signal_number, (void (*)(int))handler);
1928  }
1929}
1930
1931void os::signal_raise(int signal_number) {
1932  raise(signal_number);
1933}
1934
1935// The Win32 C runtime library maps all console control events other than ^C
1936// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1937// logoff, and shutdown events.  We therefore install our own console handler
1938// that raises SIGTERM for the latter cases.
1939//
1940static BOOL WINAPI consoleHandler(DWORD event) {
1941  switch (event) {
1942  case CTRL_C_EVENT:
1943    if (is_error_reported()) {
1944      // Ctrl-C is pressed during error reporting, likely because the error
1945      // handler fails to abort. Let VM die immediately.
1946      os::die();
1947    }
1948
1949    os::signal_raise(SIGINT);
1950    return TRUE;
1951    break;
1952  case CTRL_BREAK_EVENT:
1953    if (sigbreakHandler != NULL) {
1954      (*sigbreakHandler)(SIGBREAK);
1955    }
1956    return TRUE;
1957    break;
1958  case CTRL_LOGOFF_EVENT: {
1959    // Don't terminate JVM if it is running in a non-interactive session,
1960    // such as a service process.
1961    USEROBJECTFLAGS flags;
1962    HANDLE handle = GetProcessWindowStation();
1963    if (handle != NULL &&
1964        GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1965        sizeof(USEROBJECTFLAGS), NULL)) {
1966      // If it is a non-interactive session, let next handler to deal
1967      // with it.
1968      if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1969        return FALSE;
1970      }
1971    }
1972  }
1973  case CTRL_CLOSE_EVENT:
1974  case CTRL_SHUTDOWN_EVENT:
1975    os::signal_raise(SIGTERM);
1976    return TRUE;
1977    break;
1978  default:
1979    break;
1980  }
1981  return FALSE;
1982}
1983
1984// The following code is moved from os.cpp for making this
1985// code platform specific, which it is by its very nature.
1986
1987// Return maximum OS signal used + 1 for internal use only
1988// Used as exit signal for signal_thread
1989int os::sigexitnum_pd() {
1990  return NSIG;
1991}
1992
1993// a counter for each possible signal value, including signal_thread exit signal
1994static volatile jint pending_signals[NSIG+1] = { 0 };
1995static HANDLE sig_sem = NULL;
1996
1997void os::signal_init_pd() {
1998  // Initialize signal structures
1999  memset((void*)pending_signals, 0, sizeof(pending_signals));
2000
2001  sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2002
2003  // Programs embedding the VM do not want it to attempt to receive
2004  // events like CTRL_LOGOFF_EVENT, which are used to implement the
2005  // shutdown hooks mechanism introduced in 1.3.  For example, when
2006  // the VM is run as part of a Windows NT service (i.e., a servlet
2007  // engine in a web server), the correct behavior is for any console
2008  // control handler to return FALSE, not TRUE, because the OS's
2009  // "final" handler for such events allows the process to continue if
2010  // it is a service (while terminating it if it is not a service).
2011  // To make this behavior uniform and the mechanism simpler, we
2012  // completely disable the VM's usage of these console events if -Xrs
2013  // (=ReduceSignalUsage) is specified.  This means, for example, that
2014  // the CTRL-BREAK thread dump mechanism is also disabled in this
2015  // case.  See bugs 4323062, 4345157, and related bugs.
2016
2017  if (!ReduceSignalUsage) {
2018    // Add a CTRL-C handler
2019    SetConsoleCtrlHandler(consoleHandler, TRUE);
2020  }
2021}
2022
2023void os::signal_notify(int signal_number) {
2024  BOOL ret;
2025  if (sig_sem != NULL) {
2026    Atomic::inc(&pending_signals[signal_number]);
2027    ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2028    assert(ret != 0, "ReleaseSemaphore() failed");
2029  }
2030}
2031
2032static int check_pending_signals(bool wait_for_signal) {
2033  DWORD ret;
2034  while (true) {
2035    for (int i = 0; i < NSIG + 1; i++) {
2036      jint n = pending_signals[i];
2037      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2038        return i;
2039      }
2040    }
2041    if (!wait_for_signal) {
2042      return -1;
2043    }
2044
2045    JavaThread *thread = JavaThread::current();
2046
2047    ThreadBlockInVM tbivm(thread);
2048
2049    bool threadIsSuspended;
2050    do {
2051      thread->set_suspend_equivalent();
2052      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2053      ret = ::WaitForSingleObject(sig_sem, INFINITE);
2054      assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2055
2056      // were we externally suspended while we were waiting?
2057      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2058      if (threadIsSuspended) {
2059        // The semaphore has been incremented, but while we were waiting
2060        // another thread suspended us. We don't want to continue running
2061        // while suspended because that would surprise the thread that
2062        // suspended us.
2063        ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2064        assert(ret != 0, "ReleaseSemaphore() failed");
2065
2066        thread->java_suspend_self();
2067      }
2068    } while (threadIsSuspended);
2069  }
2070}
2071
2072int os::signal_lookup() {
2073  return check_pending_signals(false);
2074}
2075
2076int os::signal_wait() {
2077  return check_pending_signals(true);
2078}
2079
2080// Implicit OS exception handling
2081
2082LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2083                      address handler) {
2084  JavaThread* thread = JavaThread::current();
2085  // Save pc in thread
2086#ifdef _M_IA64
2087  // Do not blow up if no thread info available.
2088  if (thread) {
2089    // Saving PRECISE pc (with slot information) in thread.
2090    uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2091    // Convert precise PC into "Unix" format
2092    precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2093    thread->set_saved_exception_pc((address)precise_pc);
2094  }
2095  // Set pc to handler
2096  exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2097  // Clear out psr.ri (= Restart Instruction) in order to continue
2098  // at the beginning of the target bundle.
2099  exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2100  assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2101#else
2102  #ifdef _M_AMD64
2103  // Do not blow up if no thread info available.
2104  if (thread) {
2105    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2106  }
2107  // Set pc to handler
2108  exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2109  #else
2110  // Do not blow up if no thread info available.
2111  if (thread) {
2112    thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2113  }
2114  // Set pc to handler
2115  exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2116  #endif
2117#endif
2118
2119  // Continue the execution
2120  return EXCEPTION_CONTINUE_EXECUTION;
2121}
2122
2123
2124// Used for PostMortemDump
2125extern "C" void safepoints();
2126extern "C" void find(int x);
2127extern "C" void events();
2128
2129// According to Windows API documentation, an illegal instruction sequence should generate
2130// the 0xC000001C exception code. However, real world experience shows that occasionnaly
2131// the execution of an illegal instruction can generate the exception code 0xC000001E. This
2132// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2133
2134#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2135
2136// From "Execution Protection in the Windows Operating System" draft 0.35
2137// Once a system header becomes available, the "real" define should be
2138// included or copied here.
2139#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2140
2141// Handle NAT Bit consumption on IA64.
2142#ifdef _M_IA64
2143  #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2144#endif
2145
2146// Windows Vista/2008 heap corruption check
2147#define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2148
2149#define def_excpt(val) #val, val
2150
2151struct siglabel {
2152  char *name;
2153  int   number;
2154};
2155
2156// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2157// C++ compiler contain this error code. Because this is a compiler-generated
2158// error, the code is not listed in the Win32 API header files.
2159// The code is actually a cryptic mnemonic device, with the initial "E"
2160// standing for "exception" and the final 3 bytes (0x6D7363) representing the
2161// ASCII values of "msc".
2162
2163#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2164
2165
2166struct siglabel exceptlabels[] = {
2167    def_excpt(EXCEPTION_ACCESS_VIOLATION),
2168    def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2169    def_excpt(EXCEPTION_BREAKPOINT),
2170    def_excpt(EXCEPTION_SINGLE_STEP),
2171    def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2172    def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2173    def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2174    def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2175    def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2176    def_excpt(EXCEPTION_FLT_OVERFLOW),
2177    def_excpt(EXCEPTION_FLT_STACK_CHECK),
2178    def_excpt(EXCEPTION_FLT_UNDERFLOW),
2179    def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2180    def_excpt(EXCEPTION_INT_OVERFLOW),
2181    def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2182    def_excpt(EXCEPTION_IN_PAGE_ERROR),
2183    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2184    def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2185    def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2186    def_excpt(EXCEPTION_STACK_OVERFLOW),
2187    def_excpt(EXCEPTION_INVALID_DISPOSITION),
2188    def_excpt(EXCEPTION_GUARD_PAGE),
2189    def_excpt(EXCEPTION_INVALID_HANDLE),
2190    def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2191    def_excpt(EXCEPTION_HEAP_CORRUPTION),
2192#ifdef _M_IA64
2193    def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2194#endif
2195    NULL, 0
2196};
2197
2198const char* os::exception_name(int exception_code, char *buf, size_t size) {
2199  for (int i = 0; exceptlabels[i].name != NULL; i++) {
2200    if (exceptlabels[i].number == exception_code) {
2201      jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2202      return buf;
2203    }
2204  }
2205
2206  return NULL;
2207}
2208
2209//-----------------------------------------------------------------------------
2210LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2211  // handle exception caused by idiv; should only happen for -MinInt/-1
2212  // (division by zero is handled explicitly)
2213#ifdef _M_IA64
2214  assert(0, "Fix Handle_IDiv_Exception");
2215#else
2216  #ifdef  _M_AMD64
2217  PCONTEXT ctx = exceptionInfo->ContextRecord;
2218  address pc = (address)ctx->Rip;
2219  assert(pc[0] == 0xF7, "not an idiv opcode");
2220  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2221  assert(ctx->Rax == min_jint, "unexpected idiv exception");
2222  // set correct result values and continue after idiv instruction
2223  ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2224  ctx->Rax = (DWORD)min_jint;      // result
2225  ctx->Rdx = (DWORD)0;             // remainder
2226  // Continue the execution
2227  #else
2228  PCONTEXT ctx = exceptionInfo->ContextRecord;
2229  address pc = (address)ctx->Eip;
2230  assert(pc[0] == 0xF7, "not an idiv opcode");
2231  assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2232  assert(ctx->Eax == min_jint, "unexpected idiv exception");
2233  // set correct result values and continue after idiv instruction
2234  ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2235  ctx->Eax = (DWORD)min_jint;      // result
2236  ctx->Edx = (DWORD)0;             // remainder
2237  // Continue the execution
2238  #endif
2239#endif
2240  return EXCEPTION_CONTINUE_EXECUTION;
2241}
2242
2243//-----------------------------------------------------------------------------
2244LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2245  PCONTEXT ctx = exceptionInfo->ContextRecord;
2246#ifndef  _WIN64
2247  // handle exception caused by native method modifying control word
2248  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2249
2250  switch (exception_code) {
2251  case EXCEPTION_FLT_DENORMAL_OPERAND:
2252  case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2253  case EXCEPTION_FLT_INEXACT_RESULT:
2254  case EXCEPTION_FLT_INVALID_OPERATION:
2255  case EXCEPTION_FLT_OVERFLOW:
2256  case EXCEPTION_FLT_STACK_CHECK:
2257  case EXCEPTION_FLT_UNDERFLOW:
2258    jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2259    if (fp_control_word != ctx->FloatSave.ControlWord) {
2260      // Restore FPCW and mask out FLT exceptions
2261      ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2262      // Mask out pending FLT exceptions
2263      ctx->FloatSave.StatusWord &=  0xffffff00;
2264      return EXCEPTION_CONTINUE_EXECUTION;
2265    }
2266  }
2267
2268  if (prev_uef_handler != NULL) {
2269    // We didn't handle this exception so pass it to the previous
2270    // UnhandledExceptionFilter.
2271    return (prev_uef_handler)(exceptionInfo);
2272  }
2273#else // !_WIN64
2274  // On Windows, the mxcsr control bits are non-volatile across calls
2275  // See also CR 6192333
2276  //
2277  jint MxCsr = INITIAL_MXCSR;
2278  // we can't use StubRoutines::addr_mxcsr_std()
2279  // because in Win64 mxcsr is not saved there
2280  if (MxCsr != ctx->MxCsr) {
2281    ctx->MxCsr = MxCsr;
2282    return EXCEPTION_CONTINUE_EXECUTION;
2283  }
2284#endif // !_WIN64
2285
2286  return EXCEPTION_CONTINUE_SEARCH;
2287}
2288
2289static inline void report_error(Thread* t, DWORD exception_code,
2290                                address addr, void* siginfo, void* context) {
2291  VMError err(t, exception_code, addr, siginfo, context);
2292  err.report_and_die();
2293
2294  // If UseOsErrorReporting, this will return here and save the error file
2295  // somewhere where we can find it in the minidump.
2296}
2297
2298//-----------------------------------------------------------------------------
2299LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2300  if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2301  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2302#ifdef _M_IA64
2303  // On Itanium, we need the "precise pc", which has the slot number coded
2304  // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2305  address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2306  // Convert the pc to "Unix format", which has the slot number coded
2307  // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2308  // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2309  // information is saved in the Unix format.
2310  address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2311#else
2312  #ifdef _M_AMD64
2313  address pc = (address) exceptionInfo->ContextRecord->Rip;
2314  #else
2315  address pc = (address) exceptionInfo->ContextRecord->Eip;
2316  #endif
2317#endif
2318  Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2319
2320  // Handle SafeFetch32 and SafeFetchN exceptions.
2321  if (StubRoutines::is_safefetch_fault(pc)) {
2322    return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2323  }
2324
2325#ifndef _WIN64
2326  // Execution protection violation - win32 running on AMD64 only
2327  // Handled first to avoid misdiagnosis as a "normal" access violation;
2328  // This is safe to do because we have a new/unique ExceptionInformation
2329  // code for this condition.
2330  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2331    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2332    int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2333    address addr = (address) exceptionRecord->ExceptionInformation[1];
2334
2335    if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2336      int page_size = os::vm_page_size();
2337
2338      // Make sure the pc and the faulting address are sane.
2339      //
2340      // If an instruction spans a page boundary, and the page containing
2341      // the beginning of the instruction is executable but the following
2342      // page is not, the pc and the faulting address might be slightly
2343      // different - we still want to unguard the 2nd page in this case.
2344      //
2345      // 15 bytes seems to be a (very) safe value for max instruction size.
2346      bool pc_is_near_addr =
2347        (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2348      bool instr_spans_page_boundary =
2349        (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2350                         (intptr_t) page_size) > 0);
2351
2352      if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2353        static volatile address last_addr =
2354          (address) os::non_memory_address_word();
2355
2356        // In conservative mode, don't unguard unless the address is in the VM
2357        if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2358            (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2359
2360          // Set memory to RWX and retry
2361          address page_start =
2362            (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2363          bool res = os::protect_memory((char*) page_start, page_size,
2364                                        os::MEM_PROT_RWX);
2365
2366          if (PrintMiscellaneous && Verbose) {
2367            char buf[256];
2368            jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2369                         "at " INTPTR_FORMAT
2370                         ", unguarding " INTPTR_FORMAT ": %s", addr,
2371                         page_start, (res ? "success" : strerror(errno)));
2372            tty->print_raw_cr(buf);
2373          }
2374
2375          // Set last_addr so if we fault again at the same address, we don't
2376          // end up in an endless loop.
2377          //
2378          // There are two potential complications here.  Two threads trapping
2379          // at the same address at the same time could cause one of the
2380          // threads to think it already unguarded, and abort the VM.  Likely
2381          // very rare.
2382          //
2383          // The other race involves two threads alternately trapping at
2384          // different addresses and failing to unguard the page, resulting in
2385          // an endless loop.  This condition is probably even more unlikely
2386          // than the first.
2387          //
2388          // Although both cases could be avoided by using locks or thread
2389          // local last_addr, these solutions are unnecessary complication:
2390          // this handler is a best-effort safety net, not a complete solution.
2391          // It is disabled by default and should only be used as a workaround
2392          // in case we missed any no-execute-unsafe VM code.
2393
2394          last_addr = addr;
2395
2396          return EXCEPTION_CONTINUE_EXECUTION;
2397        }
2398      }
2399
2400      // Last unguard failed or not unguarding
2401      tty->print_raw_cr("Execution protection violation");
2402      report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2403                   exceptionInfo->ContextRecord);
2404      return EXCEPTION_CONTINUE_SEARCH;
2405    }
2406  }
2407#endif // _WIN64
2408
2409  // Check to see if we caught the safepoint code in the
2410  // process of write protecting the memory serialization page.
2411  // It write enables the page immediately after protecting it
2412  // so just return.
2413  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2414    JavaThread* thread = (JavaThread*) t;
2415    PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2416    address addr = (address) exceptionRecord->ExceptionInformation[1];
2417    if (os::is_memory_serialize_page(thread, addr)) {
2418      // Block current thread until the memory serialize page permission restored.
2419      os::block_on_serialize_page_trap();
2420      return EXCEPTION_CONTINUE_EXECUTION;
2421    }
2422  }
2423
2424  if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2425      VM_Version::is_cpuinfo_segv_addr(pc)) {
2426    // Verify that OS save/restore AVX registers.
2427    return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2428  }
2429
2430  if (t != NULL && t->is_Java_thread()) {
2431    JavaThread* thread = (JavaThread*) t;
2432    bool in_java = thread->thread_state() == _thread_in_Java;
2433
2434    // Handle potential stack overflows up front.
2435    if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2436      if (os::uses_stack_guard_pages()) {
2437#ifdef _M_IA64
2438        // Use guard page for register stack.
2439        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2440        address addr = (address) exceptionRecord->ExceptionInformation[1];
2441        // Check for a register stack overflow on Itanium
2442        if (thread->addr_inside_register_stack_red_zone(addr)) {
2443          // Fatal red zone violation happens if the Java program
2444          // catches a StackOverflow error and does so much processing
2445          // that it runs beyond the unprotected yellow guard zone. As
2446          // a result, we are out of here.
2447          fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2448        } else if(thread->addr_inside_register_stack(addr)) {
2449          // Disable the yellow zone which sets the state that
2450          // we've got a stack overflow problem.
2451          if (thread->stack_yellow_zone_enabled()) {
2452            thread->disable_stack_yellow_zone();
2453          }
2454          // Give us some room to process the exception.
2455          thread->disable_register_stack_guard();
2456          // Tracing with +Verbose.
2457          if (Verbose) {
2458            tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2459            tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2460            tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2461            tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2462                          thread->register_stack_base(),
2463                          thread->register_stack_base() + thread->stack_size());
2464          }
2465
2466          // Reguard the permanent register stack red zone just to be sure.
2467          // We saw Windows silently disabling this without telling us.
2468          thread->enable_register_stack_red_zone();
2469
2470          return Handle_Exception(exceptionInfo,
2471                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2472        }
2473#endif
2474        if (thread->stack_yellow_zone_enabled()) {
2475          // Yellow zone violation.  The o/s has unprotected the first yellow
2476          // zone page for us.  Note:  must call disable_stack_yellow_zone to
2477          // update the enabled status, even if the zone contains only one page.
2478          thread->disable_stack_yellow_zone();
2479          // If not in java code, return and hope for the best.
2480          return in_java
2481              ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2482              :  EXCEPTION_CONTINUE_EXECUTION;
2483        } else {
2484          // Fatal red zone violation.
2485          thread->disable_stack_red_zone();
2486          tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2487          report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2488                       exceptionInfo->ContextRecord);
2489          return EXCEPTION_CONTINUE_SEARCH;
2490        }
2491      } else if (in_java) {
2492        // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2493        // a one-time-only guard page, which it has released to us.  The next
2494        // stack overflow on this thread will result in an ACCESS_VIOLATION.
2495        return Handle_Exception(exceptionInfo,
2496                                SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2497      } else {
2498        // Can only return and hope for the best.  Further stack growth will
2499        // result in an ACCESS_VIOLATION.
2500        return EXCEPTION_CONTINUE_EXECUTION;
2501      }
2502    } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2503      // Either stack overflow or null pointer exception.
2504      if (in_java) {
2505        PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2506        address addr = (address) exceptionRecord->ExceptionInformation[1];
2507        address stack_end = thread->stack_base() - thread->stack_size();
2508        if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2509          // Stack overflow.
2510          assert(!os::uses_stack_guard_pages(),
2511                 "should be caught by red zone code above.");
2512          return Handle_Exception(exceptionInfo,
2513                                  SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2514        }
2515        // Check for safepoint polling and implicit null
2516        // We only expect null pointers in the stubs (vtable)
2517        // the rest are checked explicitly now.
2518        CodeBlob* cb = CodeCache::find_blob(pc);
2519        if (cb != NULL) {
2520          if (os::is_poll_address(addr)) {
2521            address stub = SharedRuntime::get_poll_stub(pc);
2522            return Handle_Exception(exceptionInfo, stub);
2523          }
2524        }
2525        {
2526#ifdef _WIN64
2527          // If it's a legal stack address map the entire region in
2528          //
2529          PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2530          address addr = (address) exceptionRecord->ExceptionInformation[1];
2531          if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2532            addr = (address)((uintptr_t)addr &
2533                             (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2534            os::commit_memory((char *)addr, thread->stack_base() - addr,
2535                              !ExecMem);
2536            return EXCEPTION_CONTINUE_EXECUTION;
2537          } else
2538#endif
2539          {
2540            // Null pointer exception.
2541#ifdef _M_IA64
2542            // Process implicit null checks in compiled code. Note: Implicit null checks
2543            // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2544            if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2545              CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2546              // Handle implicit null check in UEP method entry
2547              if (cb && (cb->is_frame_complete_at(pc) ||
2548                         (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2549                if (Verbose) {
2550                  intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2551                  tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2552                  tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2553                  tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2554                                *(bundle_start + 1), *bundle_start);
2555                }
2556                return Handle_Exception(exceptionInfo,
2557                                        SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2558              }
2559            }
2560
2561            // Implicit null checks were processed above.  Hence, we should not reach
2562            // here in the usual case => die!
2563            if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2564            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2565                         exceptionInfo->ContextRecord);
2566            return EXCEPTION_CONTINUE_SEARCH;
2567
2568#else // !IA64
2569
2570            // Windows 98 reports faulting addresses incorrectly
2571            if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2572                !os::win32::is_nt()) {
2573              address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2574              if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2575            }
2576            report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2577                         exceptionInfo->ContextRecord);
2578            return EXCEPTION_CONTINUE_SEARCH;
2579#endif
2580          }
2581        }
2582      }
2583
2584#ifdef _WIN64
2585      // Special care for fast JNI field accessors.
2586      // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2587      // in and the heap gets shrunk before the field access.
2588      if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2589        address addr = JNI_FastGetField::find_slowcase_pc(pc);
2590        if (addr != (address)-1) {
2591          return Handle_Exception(exceptionInfo, addr);
2592        }
2593      }
2594#endif
2595
2596      // Stack overflow or null pointer exception in native code.
2597      report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2598                   exceptionInfo->ContextRecord);
2599      return EXCEPTION_CONTINUE_SEARCH;
2600    } // /EXCEPTION_ACCESS_VIOLATION
2601    // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2602#if defined _M_IA64
2603    else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2604              exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2605      M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2606
2607      // Compiled method patched to be non entrant? Following conditions must apply:
2608      // 1. must be first instruction in bundle
2609      // 2. must be a break instruction with appropriate code
2610      if ((((uint64_t) pc & 0x0F) == 0) &&
2611          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2612        return Handle_Exception(exceptionInfo,
2613                                (address)SharedRuntime::get_handle_wrong_method_stub());
2614      }
2615    } // /EXCEPTION_ILLEGAL_INSTRUCTION
2616#endif
2617
2618
2619    if (in_java) {
2620      switch (exception_code) {
2621      case EXCEPTION_INT_DIVIDE_BY_ZERO:
2622        return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2623
2624      case EXCEPTION_INT_OVERFLOW:
2625        return Handle_IDiv_Exception(exceptionInfo);
2626
2627      } // switch
2628    }
2629    if (((thread->thread_state() == _thread_in_Java) ||
2630         (thread->thread_state() == _thread_in_native)) &&
2631         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2632      LONG result=Handle_FLT_Exception(exceptionInfo);
2633      if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2634    }
2635  }
2636
2637  if (exception_code != EXCEPTION_BREAKPOINT) {
2638    report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2639                 exceptionInfo->ContextRecord);
2640  }
2641  return EXCEPTION_CONTINUE_SEARCH;
2642}
2643
2644#ifndef _WIN64
2645// Special care for fast JNI accessors.
2646// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2647// the heap gets shrunk before the field access.
2648// Need to install our own structured exception handler since native code may
2649// install its own.
2650LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2651  DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2652  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2653    address pc = (address) exceptionInfo->ContextRecord->Eip;
2654    address addr = JNI_FastGetField::find_slowcase_pc(pc);
2655    if (addr != (address)-1) {
2656      return Handle_Exception(exceptionInfo, addr);
2657    }
2658  }
2659  return EXCEPTION_CONTINUE_SEARCH;
2660}
2661
2662#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2663  Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2664                                                     jobject obj,           \
2665                                                     jfieldID fieldID) {    \
2666    __try {                                                                 \
2667      return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2668                                                                 obj,       \
2669                                                                 fieldID);  \
2670    } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2671                                              _exception_info())) {         \
2672    }                                                                       \
2673    return 0;                                                               \
2674  }
2675
2676DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2677DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2678DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2679DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2680DEFINE_FAST_GETFIELD(jint,     int,    Int)
2681DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2682DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2683DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2684
2685address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2686  switch (type) {
2687  case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2688  case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2689  case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2690  case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2691  case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2692  case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2693  case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2694  case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2695  default:        ShouldNotReachHere();
2696  }
2697  return (address)-1;
2698}
2699#endif
2700
2701// Virtual Memory
2702
2703int os::vm_page_size() { return os::win32::vm_page_size(); }
2704int os::vm_allocation_granularity() {
2705  return os::win32::vm_allocation_granularity();
2706}
2707
2708// Windows large page support is available on Windows 2003. In order to use
2709// large page memory, the administrator must first assign additional privilege
2710// to the user:
2711//   + select Control Panel -> Administrative Tools -> Local Security Policy
2712//   + select Local Policies -> User Rights Assignment
2713//   + double click "Lock pages in memory", add users and/or groups
2714//   + reboot
2715// Note the above steps are needed for administrator as well, as administrators
2716// by default do not have the privilege to lock pages in memory.
2717//
2718// Note about Windows 2003: although the API supports committing large page
2719// memory on a page-by-page basis and VirtualAlloc() returns success under this
2720// scenario, I found through experiment it only uses large page if the entire
2721// memory region is reserved and committed in a single VirtualAlloc() call.
2722// This makes Windows large page support more or less like Solaris ISM, in
2723// that the entire heap must be committed upfront. This probably will change
2724// in the future, if so the code below needs to be revisited.
2725
2726#ifndef MEM_LARGE_PAGES
2727  #define MEM_LARGE_PAGES 0x20000000
2728#endif
2729
2730static HANDLE    _hProcess;
2731static HANDLE    _hToken;
2732
2733// Container for NUMA node list info
2734class NUMANodeListHolder {
2735 private:
2736  int *_numa_used_node_list;  // allocated below
2737  int _numa_used_node_count;
2738
2739  void free_node_list() {
2740    if (_numa_used_node_list != NULL) {
2741      FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2742    }
2743  }
2744
2745 public:
2746  NUMANodeListHolder() {
2747    _numa_used_node_count = 0;
2748    _numa_used_node_list = NULL;
2749    // do rest of initialization in build routine (after function pointers are set up)
2750  }
2751
2752  ~NUMANodeListHolder() {
2753    free_node_list();
2754  }
2755
2756  bool build() {
2757    DWORD_PTR proc_aff_mask;
2758    DWORD_PTR sys_aff_mask;
2759    if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2760    ULONG highest_node_number;
2761    if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2762    free_node_list();
2763    _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2764    for (unsigned int i = 0; i <= highest_node_number; i++) {
2765      ULONGLONG proc_mask_numa_node;
2766      if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2767      if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2768        _numa_used_node_list[_numa_used_node_count++] = i;
2769      }
2770    }
2771    return (_numa_used_node_count > 1);
2772  }
2773
2774  int get_count() { return _numa_used_node_count; }
2775  int get_node_list_entry(int n) {
2776    // for indexes out of range, returns -1
2777    return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2778  }
2779
2780} numa_node_list_holder;
2781
2782
2783
2784static size_t _large_page_size = 0;
2785
2786static bool resolve_functions_for_large_page_init() {
2787  return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2788    os::Advapi32Dll::AdvapiAvailable();
2789}
2790
2791static bool request_lock_memory_privilege() {
2792  _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2793                          os::current_process_id());
2794
2795  LUID luid;
2796  if (_hProcess != NULL &&
2797      os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2798      os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2799
2800    TOKEN_PRIVILEGES tp;
2801    tp.PrivilegeCount = 1;
2802    tp.Privileges[0].Luid = luid;
2803    tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2804
2805    // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2806    // privilege. Check GetLastError() too. See MSDN document.
2807    if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2808        (GetLastError() == ERROR_SUCCESS)) {
2809      return true;
2810    }
2811  }
2812
2813  return false;
2814}
2815
2816static void cleanup_after_large_page_init() {
2817  if (_hProcess) CloseHandle(_hProcess);
2818  _hProcess = NULL;
2819  if (_hToken) CloseHandle(_hToken);
2820  _hToken = NULL;
2821}
2822
2823static bool numa_interleaving_init() {
2824  bool success = false;
2825  bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2826
2827  // print a warning if UseNUMAInterleaving flag is specified on command line
2828  bool warn_on_failure = use_numa_interleaving_specified;
2829#define WARN(msg) if (warn_on_failure) { warning(msg); }
2830
2831  // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2832  size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2833  NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2834
2835  if (os::Kernel32Dll::NumaCallsAvailable()) {
2836    if (numa_node_list_holder.build()) {
2837      if (PrintMiscellaneous && Verbose) {
2838        tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2839        for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2840          tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2841        }
2842        tty->print("\n");
2843      }
2844      success = true;
2845    } else {
2846      WARN("Process does not cover multiple NUMA nodes.");
2847    }
2848  } else {
2849    WARN("NUMA Interleaving is not supported by the operating system.");
2850  }
2851  if (!success) {
2852    if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2853  }
2854  return success;
2855#undef WARN
2856}
2857
2858// this routine is used whenever we need to reserve a contiguous VA range
2859// but we need to make separate VirtualAlloc calls for each piece of the range
2860// Reasons for doing this:
2861//  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2862//  * UseNUMAInterleaving requires a separate node for each piece
2863static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2864                                         DWORD prot,
2865                                         bool should_inject_error = false) {
2866  char * p_buf;
2867  // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2868  size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2869  size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2870
2871  // first reserve enough address space in advance since we want to be
2872  // able to break a single contiguous virtual address range into multiple
2873  // large page commits but WS2003 does not allow reserving large page space
2874  // so we just use 4K pages for reserve, this gives us a legal contiguous
2875  // address space. then we will deallocate that reservation, and re alloc
2876  // using large pages
2877  const size_t size_of_reserve = bytes + chunk_size;
2878  if (bytes > size_of_reserve) {
2879    // Overflowed.
2880    return NULL;
2881  }
2882  p_buf = (char *) VirtualAlloc(addr,
2883                                size_of_reserve,  // size of Reserve
2884                                MEM_RESERVE,
2885                                PAGE_READWRITE);
2886  // If reservation failed, return NULL
2887  if (p_buf == NULL) return NULL;
2888  MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2889  os::release_memory(p_buf, bytes + chunk_size);
2890
2891  // we still need to round up to a page boundary (in case we are using large pages)
2892  // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2893  // instead we handle this in the bytes_to_rq computation below
2894  p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2895
2896  // now go through and allocate one chunk at a time until all bytes are
2897  // allocated
2898  size_t  bytes_remaining = bytes;
2899  // An overflow of align_size_up() would have been caught above
2900  // in the calculation of size_of_reserve.
2901  char * next_alloc_addr = p_buf;
2902  HANDLE hProc = GetCurrentProcess();
2903
2904#ifdef ASSERT
2905  // Variable for the failure injection
2906  long ran_num = os::random();
2907  size_t fail_after = ran_num % bytes;
2908#endif
2909
2910  int count=0;
2911  while (bytes_remaining) {
2912    // select bytes_to_rq to get to the next chunk_size boundary
2913
2914    size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2915    // Note allocate and commit
2916    char * p_new;
2917
2918#ifdef ASSERT
2919    bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2920#else
2921    const bool inject_error_now = false;
2922#endif
2923
2924    if (inject_error_now) {
2925      p_new = NULL;
2926    } else {
2927      if (!UseNUMAInterleaving) {
2928        p_new = (char *) VirtualAlloc(next_alloc_addr,
2929                                      bytes_to_rq,
2930                                      flags,
2931                                      prot);
2932      } else {
2933        // get the next node to use from the used_node_list
2934        assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2935        DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2936        p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2937                                                            next_alloc_addr,
2938                                                            bytes_to_rq,
2939                                                            flags,
2940                                                            prot,
2941                                                            node);
2942      }
2943    }
2944
2945    if (p_new == NULL) {
2946      // Free any allocated pages
2947      if (next_alloc_addr > p_buf) {
2948        // Some memory was committed so release it.
2949        size_t bytes_to_release = bytes - bytes_remaining;
2950        // NMT has yet to record any individual blocks, so it
2951        // need to create a dummy 'reserve' record to match
2952        // the release.
2953        MemTracker::record_virtual_memory_reserve((address)p_buf,
2954                                                  bytes_to_release, CALLER_PC);
2955        os::release_memory(p_buf, bytes_to_release);
2956      }
2957#ifdef ASSERT
2958      if (should_inject_error) {
2959        if (TracePageSizes && Verbose) {
2960          tty->print_cr("Reserving pages individually failed.");
2961        }
2962      }
2963#endif
2964      return NULL;
2965    }
2966
2967    bytes_remaining -= bytes_to_rq;
2968    next_alloc_addr += bytes_to_rq;
2969    count++;
2970  }
2971  // Although the memory is allocated individually, it is returned as one.
2972  // NMT records it as one block.
2973  if ((flags & MEM_COMMIT) != 0) {
2974    MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2975  } else {
2976    MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2977  }
2978
2979  // made it this far, success
2980  return p_buf;
2981}
2982
2983
2984
2985void os::large_page_init() {
2986  if (!UseLargePages) return;
2987
2988  // print a warning if any large page related flag is specified on command line
2989  bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2990                         !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2991  bool success = false;
2992
2993#define WARN(msg) if (warn_on_failure) { warning(msg); }
2994  if (resolve_functions_for_large_page_init()) {
2995    if (request_lock_memory_privilege()) {
2996      size_t s = os::Kernel32Dll::GetLargePageMinimum();
2997      if (s) {
2998#if defined(IA32) || defined(AMD64)
2999        if (s > 4*M || LargePageSizeInBytes > 4*M) {
3000          WARN("JVM cannot use large pages bigger than 4mb.");
3001        } else {
3002#endif
3003          if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3004            _large_page_size = LargePageSizeInBytes;
3005          } else {
3006            _large_page_size = s;
3007          }
3008          success = true;
3009#if defined(IA32) || defined(AMD64)
3010        }
3011#endif
3012      } else {
3013        WARN("Large page is not supported by the processor.");
3014      }
3015    } else {
3016      WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3017    }
3018  } else {
3019    WARN("Large page is not supported by the operating system.");
3020  }
3021#undef WARN
3022
3023  const size_t default_page_size = (size_t) vm_page_size();
3024  if (success && _large_page_size > default_page_size) {
3025    _page_sizes[0] = _large_page_size;
3026    _page_sizes[1] = default_page_size;
3027    _page_sizes[2] = 0;
3028  }
3029
3030  cleanup_after_large_page_init();
3031  UseLargePages = success;
3032}
3033
3034// On win32, one cannot release just a part of reserved memory, it's an
3035// all or nothing deal.  When we split a reservation, we must break the
3036// reservation into two reservations.
3037void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3038                                  bool realloc) {
3039  if (size > 0) {
3040    release_memory(base, size);
3041    if (realloc) {
3042      reserve_memory(split, base);
3043    }
3044    if (size != split) {
3045      reserve_memory(size - split, base + split);
3046    }
3047  }
3048}
3049
3050// Multiple threads can race in this code but it's not possible to unmap small sections of
3051// virtual space to get requested alignment, like posix-like os's.
3052// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3053char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3054  assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3055         "Alignment must be a multiple of allocation granularity (page size)");
3056  assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3057
3058  size_t extra_size = size + alignment;
3059  assert(extra_size >= size, "overflow, size is too large to allow alignment");
3060
3061  char* aligned_base = NULL;
3062
3063  do {
3064    char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3065    if (extra_base == NULL) {
3066      return NULL;
3067    }
3068    // Do manual alignment
3069    aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3070
3071    os::release_memory(extra_base, extra_size);
3072
3073    aligned_base = os::reserve_memory(size, aligned_base);
3074
3075  } while (aligned_base == NULL);
3076
3077  return aligned_base;
3078}
3079
3080char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3081  assert((size_t)addr % os::vm_allocation_granularity() == 0,
3082         "reserve alignment");
3083  assert(bytes % os::vm_page_size() == 0, "reserve page size");
3084  char* res;
3085  // note that if UseLargePages is on, all the areas that require interleaving
3086  // will go thru reserve_memory_special rather than thru here.
3087  bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3088  if (!use_individual) {
3089    res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3090  } else {
3091    elapsedTimer reserveTimer;
3092    if (Verbose && PrintMiscellaneous) reserveTimer.start();
3093    // in numa interleaving, we have to allocate pages individually
3094    // (well really chunks of NUMAInterleaveGranularity size)
3095    res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3096    if (res == NULL) {
3097      warning("NUMA page allocation failed");
3098    }
3099    if (Verbose && PrintMiscellaneous) {
3100      reserveTimer.stop();
3101      tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3102                    reserveTimer.milliseconds(), reserveTimer.ticks());
3103    }
3104  }
3105  assert(res == NULL || addr == NULL || addr == res,
3106         "Unexpected address from reserve.");
3107
3108  return res;
3109}
3110
3111// Reserve memory at an arbitrary address, only if that area is
3112// available (and not reserved for something else).
3113char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3114  // Windows os::reserve_memory() fails of the requested address range is
3115  // not avilable.
3116  return reserve_memory(bytes, requested_addr);
3117}
3118
3119size_t os::large_page_size() {
3120  return _large_page_size;
3121}
3122
3123bool os::can_commit_large_page_memory() {
3124  // Windows only uses large page memory when the entire region is reserved
3125  // and committed in a single VirtualAlloc() call. This may change in the
3126  // future, but with Windows 2003 it's not possible to commit on demand.
3127  return false;
3128}
3129
3130bool os::can_execute_large_page_memory() {
3131  return true;
3132}
3133
3134char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3135                                 bool exec) {
3136  assert(UseLargePages, "only for large pages");
3137
3138  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3139    return NULL; // Fallback to small pages.
3140  }
3141
3142  const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3143  const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3144
3145  // with large pages, there are two cases where we need to use Individual Allocation
3146  // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3147  // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3148  if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3149    if (TracePageSizes && Verbose) {
3150      tty->print_cr("Reserving large pages individually.");
3151    }
3152    char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3153    if (p_buf == NULL) {
3154      // give an appropriate warning message
3155      if (UseNUMAInterleaving) {
3156        warning("NUMA large page allocation failed, UseLargePages flag ignored");
3157      }
3158      if (UseLargePagesIndividualAllocation) {
3159        warning("Individually allocated large pages failed, "
3160                "use -XX:-UseLargePagesIndividualAllocation to turn off");
3161      }
3162      return NULL;
3163    }
3164
3165    return p_buf;
3166
3167  } else {
3168    if (TracePageSizes && Verbose) {
3169      tty->print_cr("Reserving large pages in a single large chunk.");
3170    }
3171    // normal policy just allocate it all at once
3172    DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3173    char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3174    if (res != NULL) {
3175      MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3176    }
3177
3178    return res;
3179  }
3180}
3181
3182bool os::release_memory_special(char* base, size_t bytes) {
3183  assert(base != NULL, "Sanity check");
3184  return release_memory(base, bytes);
3185}
3186
3187void os::print_statistics() {
3188}
3189
3190static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3191  int err = os::get_last_error();
3192  char buf[256];
3193  size_t buf_len = os::lasterror(buf, sizeof(buf));
3194  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3195          ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3196          exec, buf_len != 0 ? buf : "<no_error_string>", err);
3197}
3198
3199bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3200  if (bytes == 0) {
3201    // Don't bother the OS with noops.
3202    return true;
3203  }
3204  assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3205  assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3206  // Don't attempt to print anything if the OS call fails. We're
3207  // probably low on resources, so the print itself may cause crashes.
3208
3209  // unless we have NUMAInterleaving enabled, the range of a commit
3210  // is always within a reserve covered by a single VirtualAlloc
3211  // in that case we can just do a single commit for the requested size
3212  if (!UseNUMAInterleaving) {
3213    if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3214      NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3215      return false;
3216    }
3217    if (exec) {
3218      DWORD oldprot;
3219      // Windows doc says to use VirtualProtect to get execute permissions
3220      if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3221        NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3222        return false;
3223      }
3224    }
3225    return true;
3226  } else {
3227
3228    // when NUMAInterleaving is enabled, the commit might cover a range that
3229    // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3230    // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3231    // returns represents the number of bytes that can be committed in one step.
3232    size_t bytes_remaining = bytes;
3233    char * next_alloc_addr = addr;
3234    while (bytes_remaining > 0) {
3235      MEMORY_BASIC_INFORMATION alloc_info;
3236      VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3237      size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3238      if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3239                       PAGE_READWRITE) == NULL) {
3240        NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3241                                            exec);)
3242        return false;
3243      }
3244      if (exec) {
3245        DWORD oldprot;
3246        if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3247                            PAGE_EXECUTE_READWRITE, &oldprot)) {
3248          NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3249                                              exec);)
3250          return false;
3251        }
3252      }
3253      bytes_remaining -= bytes_to_rq;
3254      next_alloc_addr += bytes_to_rq;
3255    }
3256  }
3257  // if we made it this far, return true
3258  return true;
3259}
3260
3261bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3262                          bool exec) {
3263  // alignment_hint is ignored on this OS
3264  return pd_commit_memory(addr, size, exec);
3265}
3266
3267void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3268                                  const char* mesg) {
3269  assert(mesg != NULL, "mesg must be specified");
3270  if (!pd_commit_memory(addr, size, exec)) {
3271    warn_fail_commit_memory(addr, size, exec);
3272    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3273  }
3274}
3275
3276void os::pd_commit_memory_or_exit(char* addr, size_t size,
3277                                  size_t alignment_hint, bool exec,
3278                                  const char* mesg) {
3279  // alignment_hint is ignored on this OS
3280  pd_commit_memory_or_exit(addr, size, exec, mesg);
3281}
3282
3283bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3284  if (bytes == 0) {
3285    // Don't bother the OS with noops.
3286    return true;
3287  }
3288  assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3289  assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3290  return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3291}
3292
3293bool os::pd_release_memory(char* addr, size_t bytes) {
3294  return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3295}
3296
3297bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3298  return os::commit_memory(addr, size, !ExecMem);
3299}
3300
3301bool os::remove_stack_guard_pages(char* addr, size_t size) {
3302  return os::uncommit_memory(addr, size);
3303}
3304
3305// Set protections specified
3306bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3307                        bool is_committed) {
3308  unsigned int p = 0;
3309  switch (prot) {
3310  case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3311  case MEM_PROT_READ: p = PAGE_READONLY; break;
3312  case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3313  case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3314  default:
3315    ShouldNotReachHere();
3316  }
3317
3318  DWORD old_status;
3319
3320  // Strange enough, but on Win32 one can change protection only for committed
3321  // memory, not a big deal anyway, as bytes less or equal than 64K
3322  if (!is_committed) {
3323    commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3324                          "cannot commit protection page");
3325  }
3326  // One cannot use os::guard_memory() here, as on Win32 guard page
3327  // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3328  //
3329  // Pages in the region become guard pages. Any attempt to access a guard page
3330  // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3331  // the guard page status. Guard pages thus act as a one-time access alarm.
3332  return VirtualProtect(addr, bytes, p, &old_status) != 0;
3333}
3334
3335bool os::guard_memory(char* addr, size_t bytes) {
3336  DWORD old_status;
3337  return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3338}
3339
3340bool os::unguard_memory(char* addr, size_t bytes) {
3341  DWORD old_status;
3342  return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3343}
3344
3345void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3346void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3347void os::numa_make_global(char *addr, size_t bytes)    { }
3348void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3349bool os::numa_topology_changed()                       { return false; }
3350size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3351int os::numa_get_group_id()                            { return 0; }
3352size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3353  if (numa_node_list_holder.get_count() == 0 && size > 0) {
3354    // Provide an answer for UMA systems
3355    ids[0] = 0;
3356    return 1;
3357  } else {
3358    // check for size bigger than actual groups_num
3359    size = MIN2(size, numa_get_groups_num());
3360    for (int i = 0; i < (int)size; i++) {
3361      ids[i] = numa_node_list_holder.get_node_list_entry(i);
3362    }
3363    return size;
3364  }
3365}
3366
3367bool os::get_page_info(char *start, page_info* info) {
3368  return false;
3369}
3370
3371char *os::scan_pages(char *start, char* end, page_info* page_expected,
3372                     page_info* page_found) {
3373  return end;
3374}
3375
3376char* os::non_memory_address_word() {
3377  // Must never look like an address returned by reserve_memory,
3378  // even in its subfields (as defined by the CPU immediate fields,
3379  // if the CPU splits constants across multiple instructions).
3380  return (char*)-1;
3381}
3382
3383#define MAX_ERROR_COUNT 100
3384#define SYS_THREAD_ERROR 0xffffffffUL
3385
3386void os::pd_start_thread(Thread* thread) {
3387  DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3388  // Returns previous suspend state:
3389  // 0:  Thread was not suspended
3390  // 1:  Thread is running now
3391  // >1: Thread is still suspended.
3392  assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3393}
3394
3395class HighResolutionInterval : public CHeapObj<mtThread> {
3396  // The default timer resolution seems to be 10 milliseconds.
3397  // (Where is this written down?)
3398  // If someone wants to sleep for only a fraction of the default,
3399  // then we set the timer resolution down to 1 millisecond for
3400  // the duration of their interval.
3401  // We carefully set the resolution back, since otherwise we
3402  // seem to incur an overhead (3%?) that we don't need.
3403  // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3404  // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3405  // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3406  // timeBeginPeriod() if the relative error exceeded some threshold.
3407  // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3408  // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3409  // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3410  // resolution timers running.
3411 private:
3412  jlong resolution;
3413 public:
3414  HighResolutionInterval(jlong ms) {
3415    resolution = ms % 10L;
3416    if (resolution != 0) {
3417      MMRESULT result = timeBeginPeriod(1L);
3418    }
3419  }
3420  ~HighResolutionInterval() {
3421    if (resolution != 0) {
3422      MMRESULT result = timeEndPeriod(1L);
3423    }
3424    resolution = 0L;
3425  }
3426};
3427
3428int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3429  jlong limit = (jlong) MAXDWORD;
3430
3431  while (ms > limit) {
3432    int res;
3433    if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3434      return res;
3435    }
3436    ms -= limit;
3437  }
3438
3439  assert(thread == Thread::current(), "thread consistency check");
3440  OSThread* osthread = thread->osthread();
3441  OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3442  int result;
3443  if (interruptable) {
3444    assert(thread->is_Java_thread(), "must be java thread");
3445    JavaThread *jt = (JavaThread *) thread;
3446    ThreadBlockInVM tbivm(jt);
3447
3448    jt->set_suspend_equivalent();
3449    // cleared by handle_special_suspend_equivalent_condition() or
3450    // java_suspend_self() via check_and_wait_while_suspended()
3451
3452    HANDLE events[1];
3453    events[0] = osthread->interrupt_event();
3454    HighResolutionInterval *phri=NULL;
3455    if (!ForceTimeHighResolution) {
3456      phri = new HighResolutionInterval(ms);
3457    }
3458    if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3459      result = OS_TIMEOUT;
3460    } else {
3461      ResetEvent(osthread->interrupt_event());
3462      osthread->set_interrupted(false);
3463      result = OS_INTRPT;
3464    }
3465    delete phri; //if it is NULL, harmless
3466
3467    // were we externally suspended while we were waiting?
3468    jt->check_and_wait_while_suspended();
3469  } else {
3470    assert(!thread->is_Java_thread(), "must not be java thread");
3471    Sleep((long) ms);
3472    result = OS_TIMEOUT;
3473  }
3474  return result;
3475}
3476
3477// Short sleep, direct OS call.
3478//
3479// ms = 0, means allow others (if any) to run.
3480//
3481void os::naked_short_sleep(jlong ms) {
3482  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3483  Sleep(ms);
3484}
3485
3486// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3487void os::infinite_sleep() {
3488  while (true) {    // sleep forever ...
3489    Sleep(100000);  // ... 100 seconds at a time
3490  }
3491}
3492
3493typedef BOOL (WINAPI * STTSignature)(void);
3494
3495void os::naked_yield() {
3496  // Use either SwitchToThread() or Sleep(0)
3497  // Consider passing back the return value from SwitchToThread().
3498  if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3499    SwitchToThread();
3500  } else {
3501    Sleep(0);
3502  }
3503}
3504
3505// Win32 only gives you access to seven real priorities at a time,
3506// so we compress Java's ten down to seven.  It would be better
3507// if we dynamically adjusted relative priorities.
3508
3509int os::java_to_os_priority[CriticalPriority + 1] = {
3510  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3511  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3512  THREAD_PRIORITY_LOWEST,                       // 2
3513  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3514  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3515  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3516  THREAD_PRIORITY_NORMAL,                       // 6
3517  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3518  THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3519  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3520  THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3521  THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3522};
3523
3524int prio_policy1[CriticalPriority + 1] = {
3525  THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3526  THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3527  THREAD_PRIORITY_LOWEST,                       // 2
3528  THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3529  THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3530  THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3531  THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3532  THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3533  THREAD_PRIORITY_HIGHEST,                      // 8
3534  THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3535  THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3536  THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3537};
3538
3539static int prio_init() {
3540  // If ThreadPriorityPolicy is 1, switch tables
3541  if (ThreadPriorityPolicy == 1) {
3542    int i;
3543    for (i = 0; i < CriticalPriority + 1; i++) {
3544      os::java_to_os_priority[i] = prio_policy1[i];
3545    }
3546  }
3547  if (UseCriticalJavaThreadPriority) {
3548    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3549  }
3550  return 0;
3551}
3552
3553OSReturn os::set_native_priority(Thread* thread, int priority) {
3554  if (!UseThreadPriorities) return OS_OK;
3555  bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3556  return ret ? OS_OK : OS_ERR;
3557}
3558
3559OSReturn os::get_native_priority(const Thread* const thread,
3560                                 int* priority_ptr) {
3561  if (!UseThreadPriorities) {
3562    *priority_ptr = java_to_os_priority[NormPriority];
3563    return OS_OK;
3564  }
3565  int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3566  if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3567    assert(false, "GetThreadPriority failed");
3568    return OS_ERR;
3569  }
3570  *priority_ptr = os_prio;
3571  return OS_OK;
3572}
3573
3574
3575// Hint to the underlying OS that a task switch would not be good.
3576// Void return because it's a hint and can fail.
3577void os::hint_no_preempt() {}
3578
3579void os::interrupt(Thread* thread) {
3580  assert(!thread->is_Java_thread() || Thread::current() == thread ||
3581         Threads_lock->owned_by_self(),
3582         "possibility of dangling Thread pointer");
3583
3584  OSThread* osthread = thread->osthread();
3585  osthread->set_interrupted(true);
3586  // More than one thread can get here with the same value of osthread,
3587  // resulting in multiple notifications.  We do, however, want the store
3588  // to interrupted() to be visible to other threads before we post
3589  // the interrupt event.
3590  OrderAccess::release();
3591  SetEvent(osthread->interrupt_event());
3592  // For JSR166:  unpark after setting status
3593  if (thread->is_Java_thread()) {
3594    ((JavaThread*)thread)->parker()->unpark();
3595  }
3596
3597  ParkEvent * ev = thread->_ParkEvent;
3598  if (ev != NULL) ev->unpark();
3599}
3600
3601
3602bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3603  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3604         "possibility of dangling Thread pointer");
3605
3606  OSThread* osthread = thread->osthread();
3607  // There is no synchronization between the setting of the interrupt
3608  // and it being cleared here. It is critical - see 6535709 - that
3609  // we only clear the interrupt state, and reset the interrupt event,
3610  // if we are going to report that we were indeed interrupted - else
3611  // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3612  // depending on the timing. By checking thread interrupt event to see
3613  // if the thread gets real interrupt thus prevent spurious wakeup.
3614  bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3615  if (interrupted && clear_interrupted) {
3616    osthread->set_interrupted(false);
3617    ResetEvent(osthread->interrupt_event());
3618  } // Otherwise leave the interrupted state alone
3619
3620  return interrupted;
3621}
3622
3623// Get's a pc (hint) for a running thread. Currently used only for profiling.
3624ExtendedPC os::get_thread_pc(Thread* thread) {
3625  CONTEXT context;
3626  context.ContextFlags = CONTEXT_CONTROL;
3627  HANDLE handle = thread->osthread()->thread_handle();
3628#ifdef _M_IA64
3629  assert(0, "Fix get_thread_pc");
3630  return ExtendedPC(NULL);
3631#else
3632  if (GetThreadContext(handle, &context)) {
3633#ifdef _M_AMD64
3634    return ExtendedPC((address) context.Rip);
3635#else
3636    return ExtendedPC((address) context.Eip);
3637#endif
3638  } else {
3639    return ExtendedPC(NULL);
3640  }
3641#endif
3642}
3643
3644// GetCurrentThreadId() returns DWORD
3645intx os::current_thread_id()  { return GetCurrentThreadId(); }
3646
3647static int _initial_pid = 0;
3648
3649int os::current_process_id() {
3650  return (_initial_pid ? _initial_pid : _getpid());
3651}
3652
3653int    os::win32::_vm_page_size              = 0;
3654int    os::win32::_vm_allocation_granularity = 0;
3655int    os::win32::_processor_type            = 0;
3656// Processor level is not available on non-NT systems, use vm_version instead
3657int    os::win32::_processor_level           = 0;
3658julong os::win32::_physical_memory           = 0;
3659size_t os::win32::_default_stack_size        = 0;
3660
3661intx          os::win32::_os_thread_limit    = 0;
3662volatile intx os::win32::_os_thread_count    = 0;
3663
3664bool   os::win32::_is_nt                     = false;
3665bool   os::win32::_is_windows_2003           = false;
3666bool   os::win32::_is_windows_server         = false;
3667
3668// 6573254
3669// Currently, the bug is observed across all the supported Windows releases,
3670// including the latest one (as of this writing - Windows Server 2012 R2)
3671bool   os::win32::_has_exit_bug              = true;
3672bool   os::win32::_has_performance_count     = 0;
3673
3674void os::win32::initialize_system_info() {
3675  SYSTEM_INFO si;
3676  GetSystemInfo(&si);
3677  _vm_page_size    = si.dwPageSize;
3678  _vm_allocation_granularity = si.dwAllocationGranularity;
3679  _processor_type  = si.dwProcessorType;
3680  _processor_level = si.wProcessorLevel;
3681  set_processor_count(si.dwNumberOfProcessors);
3682
3683  MEMORYSTATUSEX ms;
3684  ms.dwLength = sizeof(ms);
3685
3686  // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3687  // dwMemoryLoad (% of memory in use)
3688  GlobalMemoryStatusEx(&ms);
3689  _physical_memory = ms.ullTotalPhys;
3690
3691  OSVERSIONINFOEX oi;
3692  oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3693  GetVersionEx((OSVERSIONINFO*)&oi);
3694  switch (oi.dwPlatformId) {
3695  case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3696  case VER_PLATFORM_WIN32_NT:
3697    _is_nt = true;
3698    {
3699      int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3700      if (os_vers == 5002) {
3701        _is_windows_2003 = true;
3702      }
3703      if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3704          oi.wProductType == VER_NT_SERVER) {
3705        _is_windows_server = true;
3706      }
3707    }
3708    break;
3709  default: fatal("Unknown platform");
3710  }
3711
3712  _default_stack_size = os::current_stack_size();
3713  assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3714  assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3715         "stack size not a multiple of page size");
3716
3717  initialize_performance_counter();
3718
3719  // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3720  // known to deadlock the system, if the VM issues to thread operations with
3721  // a too high frequency, e.g., such as changing the priorities.
3722  // The 6000 seems to work well - no deadlocks has been notices on the test
3723  // programs that we have seen experience this problem.
3724  if (!os::win32::is_nt()) {
3725    StarvationMonitorInterval = 6000;
3726  }
3727}
3728
3729
3730HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3731                                      int ebuflen) {
3732  char path[MAX_PATH];
3733  DWORD size;
3734  DWORD pathLen = (DWORD)sizeof(path);
3735  HINSTANCE result = NULL;
3736
3737  // only allow library name without path component
3738  assert(strchr(name, '\\') == NULL, "path not allowed");
3739  assert(strchr(name, ':') == NULL, "path not allowed");
3740  if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3741    jio_snprintf(ebuf, ebuflen,
3742                 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3743    return NULL;
3744  }
3745
3746  // search system directory
3747  if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3748    if (size >= pathLen) {
3749      return NULL; // truncated
3750    }
3751    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3752      return NULL; // truncated
3753    }
3754    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3755      return result;
3756    }
3757  }
3758
3759  // try Windows directory
3760  if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3761    if (size >= pathLen) {
3762      return NULL; // truncated
3763    }
3764    if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3765      return NULL; // truncated
3766    }
3767    if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3768      return result;
3769    }
3770  }
3771
3772  jio_snprintf(ebuf, ebuflen,
3773               "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3774  return NULL;
3775}
3776
3777#define EXIT_TIMEOUT 300000 /* 5 minutes */
3778
3779static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3780  InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3781  return TRUE;
3782}
3783
3784int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3785  // Basic approach:
3786  //  - Each exiting thread registers its intent to exit and then does so.
3787  //  - A thread trying to terminate the process must wait for all
3788  //    threads currently exiting to complete their exit.
3789
3790  if (os::win32::has_exit_bug()) {
3791    // The array holds handles of the threads that have started exiting by calling
3792    // _endthreadex().
3793    // Should be large enough to avoid blocking the exiting thread due to lack of
3794    // a free slot.
3795    static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3796    static int handle_count = 0;
3797
3798    static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3799    static CRITICAL_SECTION crit_sect;
3800    static volatile jint process_exiting = 0;
3801    int i, j;
3802    DWORD res;
3803    HANDLE hproc, hthr;
3804
3805    // The first thread that reached this point, initializes the critical section.
3806    if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3807      warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3808    } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3809      EnterCriticalSection(&crit_sect);
3810
3811      if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3812        // Remove from the array those handles of the threads that have completed exiting.
3813        for (i = 0, j = 0; i < handle_count; ++i) {
3814          res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3815          if (res == WAIT_TIMEOUT) {
3816            handles[j++] = handles[i];
3817          } else {
3818            if (res == WAIT_FAILED) {
3819              warning("WaitForSingleObject failed (%u) in %s: %d\n",
3820                      GetLastError(), __FILE__, __LINE__);
3821            }
3822            // Don't keep the handle, if we failed waiting for it.
3823            CloseHandle(handles[i]);
3824          }
3825        }
3826
3827        // If there's no free slot in the array of the kept handles, we'll have to
3828        // wait until at least one thread completes exiting.
3829        if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3830          // Raise the priority of the oldest exiting thread to increase its chances
3831          // to complete sooner.
3832          SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3833          res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3834          if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3835            i = (res - WAIT_OBJECT_0);
3836            handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3837            for (; i < handle_count; ++i) {
3838              handles[i] = handles[i + 1];
3839            }
3840          } else {
3841            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3842                    (res == WAIT_FAILED ? "failed" : "timed out"),
3843                    GetLastError(), __FILE__, __LINE__);
3844            // Don't keep handles, if we failed waiting for them.
3845            for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3846              CloseHandle(handles[i]);
3847            }
3848            handle_count = 0;
3849          }
3850        }
3851
3852        // Store a duplicate of the current thread handle in the array of handles.
3853        hproc = GetCurrentProcess();
3854        hthr = GetCurrentThread();
3855        if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3856                             0, FALSE, DUPLICATE_SAME_ACCESS)) {
3857          warning("DuplicateHandle failed (%u) in %s: %d\n",
3858                  GetLastError(), __FILE__, __LINE__);
3859        } else {
3860          ++handle_count;
3861        }
3862
3863        // The current exiting thread has stored its handle in the array, and now
3864        // should leave the critical section before calling _endthreadex().
3865
3866      } else if (what != EPT_THREAD) {
3867        if (handle_count > 0) {
3868          // Before ending the process, make sure all the threads that had called
3869          // _endthreadex() completed.
3870
3871          // Set the priority level of the current thread to the same value as
3872          // the priority level of exiting threads.
3873          // This is to ensure it will be given a fair chance to execute if
3874          // the timeout expires.
3875          hthr = GetCurrentThread();
3876          SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3877          for (i = 0; i < handle_count; ++i) {
3878            SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3879          }
3880          res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3881          if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3882            warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3883                    (res == WAIT_FAILED ? "failed" : "timed out"),
3884                    GetLastError(), __FILE__, __LINE__);
3885          }
3886          for (i = 0; i < handle_count; ++i) {
3887            CloseHandle(handles[i]);
3888          }
3889          handle_count = 0;
3890        }
3891
3892        OrderAccess::release_store(&process_exiting, 1);
3893      }
3894
3895      LeaveCriticalSection(&crit_sect);
3896    }
3897
3898    if (what == EPT_THREAD) {
3899      while (OrderAccess::load_acquire(&process_exiting) != 0) {
3900        // Some other thread is about to call exit(), so we
3901        // don't let the current thread proceed to _endthreadex()
3902        SuspendThread(GetCurrentThread());
3903        // Avoid busy-wait loop, if SuspendThread() failed.
3904        Sleep(EXIT_TIMEOUT);
3905      }
3906    }
3907  }
3908
3909  // We are here if either
3910  // - there's no 'race at exit' bug on this OS release;
3911  // - initialization of the critical section failed (unlikely);
3912  // - the current thread has stored its handle and left the critical section;
3913  // - the process-exiting thread has raised the flag and left the critical section.
3914  if (what == EPT_THREAD) {
3915    _endthreadex((unsigned)exit_code);
3916  } else if (what == EPT_PROCESS) {
3917    ::exit(exit_code);
3918  } else {
3919    _exit(exit_code);
3920  }
3921
3922  // Should not reach here
3923  return exit_code;
3924}
3925
3926#undef EXIT_TIMEOUT
3927
3928void os::win32::setmode_streams() {
3929  _setmode(_fileno(stdin), _O_BINARY);
3930  _setmode(_fileno(stdout), _O_BINARY);
3931  _setmode(_fileno(stderr), _O_BINARY);
3932}
3933
3934
3935bool os::is_debugger_attached() {
3936  return IsDebuggerPresent() ? true : false;
3937}
3938
3939
3940void os::wait_for_keypress_at_exit(void) {
3941  if (PauseAtExit) {
3942    fprintf(stderr, "Press any key to continue...\n");
3943    fgetc(stdin);
3944  }
3945}
3946
3947
3948int os::message_box(const char* title, const char* message) {
3949  int result = MessageBox(NULL, message, title,
3950                          MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3951  return result == IDYES;
3952}
3953
3954int os::allocate_thread_local_storage() {
3955  return TlsAlloc();
3956}
3957
3958
3959void os::free_thread_local_storage(int index) {
3960  TlsFree(index);
3961}
3962
3963
3964void os::thread_local_storage_at_put(int index, void* value) {
3965  TlsSetValue(index, value);
3966  assert(thread_local_storage_at(index) == value, "Just checking");
3967}
3968
3969
3970void* os::thread_local_storage_at(int index) {
3971  return TlsGetValue(index);
3972}
3973
3974
3975#ifndef PRODUCT
3976#ifndef _WIN64
3977// Helpers to check whether NX protection is enabled
3978int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3979  if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3980      pex->ExceptionRecord->NumberParameters > 0 &&
3981      pex->ExceptionRecord->ExceptionInformation[0] ==
3982      EXCEPTION_INFO_EXEC_VIOLATION) {
3983    return EXCEPTION_EXECUTE_HANDLER;
3984  }
3985  return EXCEPTION_CONTINUE_SEARCH;
3986}
3987
3988void nx_check_protection() {
3989  // If NX is enabled we'll get an exception calling into code on the stack
3990  char code[] = { (char)0xC3 }; // ret
3991  void *code_ptr = (void *)code;
3992  __try {
3993    __asm call code_ptr
3994  } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3995    tty->print_raw_cr("NX protection detected.");
3996  }
3997}
3998#endif // _WIN64
3999#endif // PRODUCT
4000
4001// this is called _before_ the global arguments have been parsed
4002void os::init(void) {
4003  _initial_pid = _getpid();
4004
4005  init_random(1234567);
4006
4007  win32::initialize_system_info();
4008  win32::setmode_streams();
4009  init_page_sizes((size_t) win32::vm_page_size());
4010
4011  // This may be overridden later when argument processing is done.
4012  FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4013                os::win32::is_windows_2003());
4014
4015  // Initialize main_process and main_thread
4016  main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4017  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4018                       &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4019    fatal("DuplicateHandle failed\n");
4020  }
4021  main_thread_id = (int) GetCurrentThreadId();
4022}
4023
4024// To install functions for atexit processing
4025extern "C" {
4026  static void perfMemory_exit_helper() {
4027    perfMemory_exit();
4028  }
4029}
4030
4031static jint initSock();
4032
4033// this is called _after_ the global arguments have been parsed
4034jint os::init_2(void) {
4035  // Allocate a single page and mark it as readable for safepoint polling
4036  address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4037  guarantee(polling_page != NULL, "Reserve Failed for polling page");
4038
4039  address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4040  guarantee(return_page != NULL, "Commit Failed for polling page");
4041
4042  os::set_polling_page(polling_page);
4043
4044#ifndef PRODUCT
4045  if (Verbose && PrintMiscellaneous) {
4046    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4047               (intptr_t)polling_page);
4048  }
4049#endif
4050
4051  if (!UseMembar) {
4052    address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4053    guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4054
4055    return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4056    guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4057
4058    os::set_memory_serialize_page(mem_serialize_page);
4059
4060#ifndef PRODUCT
4061    if (Verbose && PrintMiscellaneous) {
4062      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4063                 (intptr_t)mem_serialize_page);
4064    }
4065#endif
4066  }
4067
4068  // Setup Windows Exceptions
4069
4070  // for debugging float code generation bugs
4071  if (ForceFloatExceptions) {
4072#ifndef  _WIN64
4073    static long fp_control_word = 0;
4074    __asm { fstcw fp_control_word }
4075    // see Intel PPro Manual, Vol. 2, p 7-16
4076    const long precision = 0x20;
4077    const long underflow = 0x10;
4078    const long overflow  = 0x08;
4079    const long zero_div  = 0x04;
4080    const long denorm    = 0x02;
4081    const long invalid   = 0x01;
4082    fp_control_word |= invalid;
4083    __asm { fldcw fp_control_word }
4084#endif
4085  }
4086
4087  // If stack_commit_size is 0, windows will reserve the default size,
4088  // but only commit a small portion of it.
4089  size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4090  size_t default_reserve_size = os::win32::default_stack_size();
4091  size_t actual_reserve_size = stack_commit_size;
4092  if (stack_commit_size < default_reserve_size) {
4093    // If stack_commit_size == 0, we want this too
4094    actual_reserve_size = default_reserve_size;
4095  }
4096
4097  // Check minimum allowable stack size for thread creation and to initialize
4098  // the java system classes, including StackOverflowError - depends on page
4099  // size.  Add a page for compiler2 recursion in main thread.
4100  // Add in 2*BytesPerWord times page size to account for VM stack during
4101  // class initialization depending on 32 or 64 bit VM.
4102  size_t min_stack_allowed =
4103            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4104                     2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4105  if (actual_reserve_size < min_stack_allowed) {
4106    tty->print_cr("\nThe stack size specified is too small, "
4107                  "Specify at least %dk",
4108                  min_stack_allowed / K);
4109    return JNI_ERR;
4110  }
4111
4112  JavaThread::set_stack_size_at_create(stack_commit_size);
4113
4114  // Calculate theoretical max. size of Threads to guard gainst artifical
4115  // out-of-memory situations, where all available address-space has been
4116  // reserved by thread stacks.
4117  assert(actual_reserve_size != 0, "Must have a stack");
4118
4119  // Calculate the thread limit when we should start doing Virtual Memory
4120  // banging. Currently when the threads will have used all but 200Mb of space.
4121  //
4122  // TODO: consider performing a similar calculation for commit size instead
4123  // as reserve size, since on a 64-bit platform we'll run into that more
4124  // often than running out of virtual memory space.  We can use the
4125  // lower value of the two calculations as the os_thread_limit.
4126  size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4127  win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4128
4129  // at exit methods are called in the reverse order of their registration.
4130  // there is no limit to the number of functions registered. atexit does
4131  // not set errno.
4132
4133  if (PerfAllowAtExitRegistration) {
4134    // only register atexit functions if PerfAllowAtExitRegistration is set.
4135    // atexit functions can be delayed until process exit time, which
4136    // can be problematic for embedded VM situations. Embedded VMs should
4137    // call DestroyJavaVM() to assure that VM resources are released.
4138
4139    // note: perfMemory_exit_helper atexit function may be removed in
4140    // the future if the appropriate cleanup code can be added to the
4141    // VM_Exit VMOperation's doit method.
4142    if (atexit(perfMemory_exit_helper) != 0) {
4143      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4144    }
4145  }
4146
4147#ifndef _WIN64
4148  // Print something if NX is enabled (win32 on AMD64)
4149  NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4150#endif
4151
4152  // initialize thread priority policy
4153  prio_init();
4154
4155  if (UseNUMA && !ForceNUMA) {
4156    UseNUMA = false; // We don't fully support this yet
4157  }
4158
4159  if (UseNUMAInterleaving) {
4160    // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4161    bool success = numa_interleaving_init();
4162    if (!success) UseNUMAInterleaving = false;
4163  }
4164
4165  if (initSock() != JNI_OK) {
4166    return JNI_ERR;
4167  }
4168
4169  return JNI_OK;
4170}
4171
4172// Mark the polling page as unreadable
4173void os::make_polling_page_unreadable(void) {
4174  DWORD old_status;
4175  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4176                      PAGE_NOACCESS, &old_status)) {
4177    fatal("Could not disable polling page");
4178  }
4179}
4180
4181// Mark the polling page as readable
4182void os::make_polling_page_readable(void) {
4183  DWORD old_status;
4184  if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4185                      PAGE_READONLY, &old_status)) {
4186    fatal("Could not enable polling page");
4187  }
4188}
4189
4190
4191int os::stat(const char *path, struct stat *sbuf) {
4192  char pathbuf[MAX_PATH];
4193  if (strlen(path) > MAX_PATH - 1) {
4194    errno = ENAMETOOLONG;
4195    return -1;
4196  }
4197  os::native_path(strcpy(pathbuf, path));
4198  int ret = ::stat(pathbuf, sbuf);
4199  if (sbuf != NULL && UseUTCFileTimestamp) {
4200    // Fix for 6539723.  st_mtime returned from stat() is dependent on
4201    // the system timezone and so can return different values for the
4202    // same file if/when daylight savings time changes.  This adjustment
4203    // makes sure the same timestamp is returned regardless of the TZ.
4204    //
4205    // See:
4206    // http://msdn.microsoft.com/library/
4207    //   default.asp?url=/library/en-us/sysinfo/base/
4208    //   time_zone_information_str.asp
4209    // and
4210    // http://msdn.microsoft.com/library/default.asp?url=
4211    //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4212    //
4213    // NOTE: there is a insidious bug here:  If the timezone is changed
4214    // after the call to stat() but before 'GetTimeZoneInformation()', then
4215    // the adjustment we do here will be wrong and we'll return the wrong
4216    // value (which will likely end up creating an invalid class data
4217    // archive).  Absent a better API for this, or some time zone locking
4218    // mechanism, we'll have to live with this risk.
4219    TIME_ZONE_INFORMATION tz;
4220    DWORD tzid = GetTimeZoneInformation(&tz);
4221    int daylightBias =
4222      (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4223    sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4224  }
4225  return ret;
4226}
4227
4228
4229#define FT2INT64(ft) \
4230  ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4231
4232
4233// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4234// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4235// of a thread.
4236//
4237// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4238// the fast estimate available on the platform.
4239
4240// current_thread_cpu_time() is not optimized for Windows yet
4241jlong os::current_thread_cpu_time() {
4242  // return user + sys since the cost is the same
4243  return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4244}
4245
4246jlong os::thread_cpu_time(Thread* thread) {
4247  // consistent with what current_thread_cpu_time() returns.
4248  return os::thread_cpu_time(thread, true /* user+sys */);
4249}
4250
4251jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4252  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4253}
4254
4255jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4256  // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4257  // If this function changes, os::is_thread_cpu_time_supported() should too
4258  if (os::win32::is_nt()) {
4259    FILETIME CreationTime;
4260    FILETIME ExitTime;
4261    FILETIME KernelTime;
4262    FILETIME UserTime;
4263
4264    if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4265                       &ExitTime, &KernelTime, &UserTime) == 0) {
4266      return -1;
4267    } else if (user_sys_cpu_time) {
4268      return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4269    } else {
4270      return FT2INT64(UserTime) * 100;
4271    }
4272  } else {
4273    return (jlong) timeGetTime() * 1000000;
4274  }
4275}
4276
4277void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4278  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4279  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4280  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4281  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4282}
4283
4284void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4285  info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4286  info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4287  info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4288  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4289}
4290
4291bool os::is_thread_cpu_time_supported() {
4292  // see os::thread_cpu_time
4293  if (os::win32::is_nt()) {
4294    FILETIME CreationTime;
4295    FILETIME ExitTime;
4296    FILETIME KernelTime;
4297    FILETIME UserTime;
4298
4299    if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4300                       &KernelTime, &UserTime) == 0) {
4301      return false;
4302    } else {
4303      return true;
4304    }
4305  } else {
4306    return false;
4307  }
4308}
4309
4310// Windows does't provide a loadavg primitive so this is stubbed out for now.
4311// It does have primitives (PDH API) to get CPU usage and run queue length.
4312// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4313// If we wanted to implement loadavg on Windows, we have a few options:
4314//
4315// a) Query CPU usage and run queue length and "fake" an answer by
4316//    returning the CPU usage if it's under 100%, and the run queue
4317//    length otherwise.  It turns out that querying is pretty slow
4318//    on Windows, on the order of 200 microseconds on a fast machine.
4319//    Note that on the Windows the CPU usage value is the % usage
4320//    since the last time the API was called (and the first call
4321//    returns 100%), so we'd have to deal with that as well.
4322//
4323// b) Sample the "fake" answer using a sampling thread and store
4324//    the answer in a global variable.  The call to loadavg would
4325//    just return the value of the global, avoiding the slow query.
4326//
4327// c) Sample a better answer using exponential decay to smooth the
4328//    value.  This is basically the algorithm used by UNIX kernels.
4329//
4330// Note that sampling thread starvation could affect both (b) and (c).
4331int os::loadavg(double loadavg[], int nelem) {
4332  return -1;
4333}
4334
4335
4336// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4337bool os::dont_yield() {
4338  return DontYieldALot;
4339}
4340
4341// This method is a slightly reworked copy of JDK's sysOpen
4342// from src/windows/hpi/src/sys_api_md.c
4343
4344int os::open(const char *path, int oflag, int mode) {
4345  char pathbuf[MAX_PATH];
4346
4347  if (strlen(path) > MAX_PATH - 1) {
4348    errno = ENAMETOOLONG;
4349    return -1;
4350  }
4351  os::native_path(strcpy(pathbuf, path));
4352  return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4353}
4354
4355FILE* os::open(int fd, const char* mode) {
4356  return ::_fdopen(fd, mode);
4357}
4358
4359// Is a (classpath) directory empty?
4360bool os::dir_is_empty(const char* path) {
4361  WIN32_FIND_DATA fd;
4362  HANDLE f = FindFirstFile(path, &fd);
4363  if (f == INVALID_HANDLE_VALUE) {
4364    return true;
4365  }
4366  FindClose(f);
4367  return false;
4368}
4369
4370// create binary file, rewriting existing file if required
4371int os::create_binary_file(const char* path, bool rewrite_existing) {
4372  int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4373  if (!rewrite_existing) {
4374    oflags |= _O_EXCL;
4375  }
4376  return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4377}
4378
4379// return current position of file pointer
4380jlong os::current_file_offset(int fd) {
4381  return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4382}
4383
4384// move file pointer to the specified offset
4385jlong os::seek_to_file_offset(int fd, jlong offset) {
4386  return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4387}
4388
4389
4390jlong os::lseek(int fd, jlong offset, int whence) {
4391  return (jlong) ::_lseeki64(fd, offset, whence);
4392}
4393
4394size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4395  OVERLAPPED ov;
4396  DWORD nread;
4397  BOOL result;
4398
4399  ZeroMemory(&ov, sizeof(ov));
4400  ov.Offset = (DWORD)offset;
4401  ov.OffsetHigh = (DWORD)(offset >> 32);
4402
4403  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4404
4405  result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4406
4407  return result ? nread : 0;
4408}
4409
4410
4411// This method is a slightly reworked copy of JDK's sysNativePath
4412// from src/windows/hpi/src/path_md.c
4413
4414// Convert a pathname to native format.  On win32, this involves forcing all
4415// separators to be '\\' rather than '/' (both are legal inputs, but Win95
4416// sometimes rejects '/') and removing redundant separators.  The input path is
4417// assumed to have been converted into the character encoding used by the local
4418// system.  Because this might be a double-byte encoding, care is taken to
4419// treat double-byte lead characters correctly.
4420//
4421// This procedure modifies the given path in place, as the result is never
4422// longer than the original.  There is no error return; this operation always
4423// succeeds.
4424char * os::native_path(char *path) {
4425  char *src = path, *dst = path, *end = path;
4426  char *colon = NULL;  // If a drive specifier is found, this will
4427                       // point to the colon following the drive letter
4428
4429  // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4430  assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4431          && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4432
4433  // Check for leading separators
4434#define isfilesep(c) ((c) == '/' || (c) == '\\')
4435  while (isfilesep(*src)) {
4436    src++;
4437  }
4438
4439  if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4440    // Remove leading separators if followed by drive specifier.  This
4441    // hack is necessary to support file URLs containing drive
4442    // specifiers (e.g., "file://c:/path").  As a side effect,
4443    // "/c:/path" can be used as an alternative to "c:/path".
4444    *dst++ = *src++;
4445    colon = dst;
4446    *dst++ = ':';
4447    src++;
4448  } else {
4449    src = path;
4450    if (isfilesep(src[0]) && isfilesep(src[1])) {
4451      // UNC pathname: Retain first separator; leave src pointed at
4452      // second separator so that further separators will be collapsed
4453      // into the second separator.  The result will be a pathname
4454      // beginning with "\\\\" followed (most likely) by a host name.
4455      src = dst = path + 1;
4456      path[0] = '\\';     // Force first separator to '\\'
4457    }
4458  }
4459
4460  end = dst;
4461
4462  // Remove redundant separators from remainder of path, forcing all
4463  // separators to be '\\' rather than '/'. Also, single byte space
4464  // characters are removed from the end of the path because those
4465  // are not legal ending characters on this operating system.
4466  //
4467  while (*src != '\0') {
4468    if (isfilesep(*src)) {
4469      *dst++ = '\\'; src++;
4470      while (isfilesep(*src)) src++;
4471      if (*src == '\0') {
4472        // Check for trailing separator
4473        end = dst;
4474        if (colon == dst - 2) break;  // "z:\\"
4475        if (dst == path + 1) break;   // "\\"
4476        if (dst == path + 2 && isfilesep(path[0])) {
4477          // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4478          // beginning of a UNC pathname.  Even though it is not, by
4479          // itself, a valid UNC pathname, we leave it as is in order
4480          // to be consistent with the path canonicalizer as well
4481          // as the win32 APIs, which treat this case as an invalid
4482          // UNC pathname rather than as an alias for the root
4483          // directory of the current drive.
4484          break;
4485        }
4486        end = --dst;  // Path does not denote a root directory, so
4487                      // remove trailing separator
4488        break;
4489      }
4490      end = dst;
4491    } else {
4492      if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4493        *dst++ = *src++;
4494        if (*src) *dst++ = *src++;
4495        end = dst;
4496      } else {  // Copy a single-byte character
4497        char c = *src++;
4498        *dst++ = c;
4499        // Space is not a legal ending character
4500        if (c != ' ') end = dst;
4501      }
4502    }
4503  }
4504
4505  *end = '\0';
4506
4507  // For "z:", add "." to work around a bug in the C runtime library
4508  if (colon == dst - 1) {
4509    path[2] = '.';
4510    path[3] = '\0';
4511  }
4512
4513  return path;
4514}
4515
4516// This code is a copy of JDK's sysSetLength
4517// from src/windows/hpi/src/sys_api_md.c
4518
4519int os::ftruncate(int fd, jlong length) {
4520  HANDLE h = (HANDLE)::_get_osfhandle(fd);
4521  long high = (long)(length >> 32);
4522  DWORD ret;
4523
4524  if (h == (HANDLE)(-1)) {
4525    return -1;
4526  }
4527
4528  ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4529  if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4530    return -1;
4531  }
4532
4533  if (::SetEndOfFile(h) == FALSE) {
4534    return -1;
4535  }
4536
4537  return 0;
4538}
4539
4540
4541// This code is a copy of JDK's sysSync
4542// from src/windows/hpi/src/sys_api_md.c
4543// except for the legacy workaround for a bug in Win 98
4544
4545int os::fsync(int fd) {
4546  HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4547
4548  if ((!::FlushFileBuffers(handle)) &&
4549      (GetLastError() != ERROR_ACCESS_DENIED)) {
4550    // from winerror.h
4551    return -1;
4552  }
4553  return 0;
4554}
4555
4556static int nonSeekAvailable(int, long *);
4557static int stdinAvailable(int, long *);
4558
4559#define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4560#define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4561
4562// This code is a copy of JDK's sysAvailable
4563// from src/windows/hpi/src/sys_api_md.c
4564
4565int os::available(int fd, jlong *bytes) {
4566  jlong cur, end;
4567  struct _stati64 stbuf64;
4568
4569  if (::_fstati64(fd, &stbuf64) >= 0) {
4570    int mode = stbuf64.st_mode;
4571    if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4572      int ret;
4573      long lpbytes;
4574      if (fd == 0) {
4575        ret = stdinAvailable(fd, &lpbytes);
4576      } else {
4577        ret = nonSeekAvailable(fd, &lpbytes);
4578      }
4579      (*bytes) = (jlong)(lpbytes);
4580      return ret;
4581    }
4582    if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4583      return FALSE;
4584    } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4585      return FALSE;
4586    } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4587      return FALSE;
4588    }
4589    *bytes = end - cur;
4590    return TRUE;
4591  } else {
4592    return FALSE;
4593  }
4594}
4595
4596// This code is a copy of JDK's nonSeekAvailable
4597// from src/windows/hpi/src/sys_api_md.c
4598
4599static int nonSeekAvailable(int fd, long *pbytes) {
4600  // This is used for available on non-seekable devices
4601  // (like both named and anonymous pipes, such as pipes
4602  //  connected to an exec'd process).
4603  // Standard Input is a special case.
4604  HANDLE han;
4605
4606  if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4607    return FALSE;
4608  }
4609
4610  if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4611    // PeekNamedPipe fails when at EOF.  In that case we
4612    // simply make *pbytes = 0 which is consistent with the
4613    // behavior we get on Solaris when an fd is at EOF.
4614    // The only alternative is to raise an Exception,
4615    // which isn't really warranted.
4616    //
4617    if (::GetLastError() != ERROR_BROKEN_PIPE) {
4618      return FALSE;
4619    }
4620    *pbytes = 0;
4621  }
4622  return TRUE;
4623}
4624
4625#define MAX_INPUT_EVENTS 2000
4626
4627// This code is a copy of JDK's stdinAvailable
4628// from src/windows/hpi/src/sys_api_md.c
4629
4630static int stdinAvailable(int fd, long *pbytes) {
4631  HANDLE han;
4632  DWORD numEventsRead = 0;  // Number of events read from buffer
4633  DWORD numEvents = 0;      // Number of events in buffer
4634  DWORD i = 0;              // Loop index
4635  DWORD curLength = 0;      // Position marker
4636  DWORD actualLength = 0;   // Number of bytes readable
4637  BOOL error = FALSE;       // Error holder
4638  INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4639
4640  if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4641    return FALSE;
4642  }
4643
4644  // Construct an array of input records in the console buffer
4645  error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4646  if (error == 0) {
4647    return nonSeekAvailable(fd, pbytes);
4648  }
4649
4650  // lpBuffer must fit into 64K or else PeekConsoleInput fails
4651  if (numEvents > MAX_INPUT_EVENTS) {
4652    numEvents = MAX_INPUT_EVENTS;
4653  }
4654
4655  lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4656  if (lpBuffer == NULL) {
4657    return FALSE;
4658  }
4659
4660  error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4661  if (error == 0) {
4662    os::free(lpBuffer);
4663    return FALSE;
4664  }
4665
4666  // Examine input records for the number of bytes available
4667  for (i=0; i<numEvents; i++) {
4668    if (lpBuffer[i].EventType == KEY_EVENT) {
4669
4670      KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4671                                      &(lpBuffer[i].Event);
4672      if (keyRecord->bKeyDown == TRUE) {
4673        CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4674        curLength++;
4675        if (*keyPressed == '\r') {
4676          actualLength = curLength;
4677        }
4678      }
4679    }
4680  }
4681
4682  if (lpBuffer != NULL) {
4683    os::free(lpBuffer);
4684  }
4685
4686  *pbytes = (long) actualLength;
4687  return TRUE;
4688}
4689
4690// Map a block of memory.
4691char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4692                        char *addr, size_t bytes, bool read_only,
4693                        bool allow_exec) {
4694  HANDLE hFile;
4695  char* base;
4696
4697  hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4698                     OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4699  if (hFile == NULL) {
4700    if (PrintMiscellaneous && Verbose) {
4701      DWORD err = GetLastError();
4702      tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4703    }
4704    return NULL;
4705  }
4706
4707  if (allow_exec) {
4708    // CreateFileMapping/MapViewOfFileEx can't map executable memory
4709    // unless it comes from a PE image (which the shared archive is not.)
4710    // Even VirtualProtect refuses to give execute access to mapped memory
4711    // that was not previously executable.
4712    //
4713    // Instead, stick the executable region in anonymous memory.  Yuck.
4714    // Penalty is that ~4 pages will not be shareable - in the future
4715    // we might consider DLLizing the shared archive with a proper PE
4716    // header so that mapping executable + sharing is possible.
4717
4718    base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4719                                PAGE_READWRITE);
4720    if (base == NULL) {
4721      if (PrintMiscellaneous && Verbose) {
4722        DWORD err = GetLastError();
4723        tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4724      }
4725      CloseHandle(hFile);
4726      return NULL;
4727    }
4728
4729    DWORD bytes_read;
4730    OVERLAPPED overlapped;
4731    overlapped.Offset = (DWORD)file_offset;
4732    overlapped.OffsetHigh = 0;
4733    overlapped.hEvent = NULL;
4734    // ReadFile guarantees that if the return value is true, the requested
4735    // number of bytes were read before returning.
4736    bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4737    if (!res) {
4738      if (PrintMiscellaneous && Verbose) {
4739        DWORD err = GetLastError();
4740        tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4741      }
4742      release_memory(base, bytes);
4743      CloseHandle(hFile);
4744      return NULL;
4745    }
4746  } else {
4747    HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4748                                    NULL /* file_name */);
4749    if (hMap == NULL) {
4750      if (PrintMiscellaneous && Verbose) {
4751        DWORD err = GetLastError();
4752        tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4753      }
4754      CloseHandle(hFile);
4755      return NULL;
4756    }
4757
4758    DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4759    base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4760                                  (DWORD)bytes, addr);
4761    if (base == NULL) {
4762      if (PrintMiscellaneous && Verbose) {
4763        DWORD err = GetLastError();
4764        tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4765      }
4766      CloseHandle(hMap);
4767      CloseHandle(hFile);
4768      return NULL;
4769    }
4770
4771    if (CloseHandle(hMap) == 0) {
4772      if (PrintMiscellaneous && Verbose) {
4773        DWORD err = GetLastError();
4774        tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4775      }
4776      CloseHandle(hFile);
4777      return base;
4778    }
4779  }
4780
4781  if (allow_exec) {
4782    DWORD old_protect;
4783    DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4784    bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4785
4786    if (!res) {
4787      if (PrintMiscellaneous && Verbose) {
4788        DWORD err = GetLastError();
4789        tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4790      }
4791      // Don't consider this a hard error, on IA32 even if the
4792      // VirtualProtect fails, we should still be able to execute
4793      CloseHandle(hFile);
4794      return base;
4795    }
4796  }
4797
4798  if (CloseHandle(hFile) == 0) {
4799    if (PrintMiscellaneous && Verbose) {
4800      DWORD err = GetLastError();
4801      tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4802    }
4803    return base;
4804  }
4805
4806  return base;
4807}
4808
4809
4810// Remap a block of memory.
4811char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4812                          char *addr, size_t bytes, bool read_only,
4813                          bool allow_exec) {
4814  // This OS does not allow existing memory maps to be remapped so we
4815  // have to unmap the memory before we remap it.
4816  if (!os::unmap_memory(addr, bytes)) {
4817    return NULL;
4818  }
4819
4820  // There is a very small theoretical window between the unmap_memory()
4821  // call above and the map_memory() call below where a thread in native
4822  // code may be able to access an address that is no longer mapped.
4823
4824  return os::map_memory(fd, file_name, file_offset, addr, bytes,
4825                        read_only, allow_exec);
4826}
4827
4828
4829// Unmap a block of memory.
4830// Returns true=success, otherwise false.
4831
4832bool os::pd_unmap_memory(char* addr, size_t bytes) {
4833  BOOL result = UnmapViewOfFile(addr);
4834  if (result == 0) {
4835    if (PrintMiscellaneous && Verbose) {
4836      DWORD err = GetLastError();
4837      tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4838    }
4839    return false;
4840  }
4841  return true;
4842}
4843
4844void os::pause() {
4845  char filename[MAX_PATH];
4846  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4847    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4848  } else {
4849    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4850  }
4851
4852  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4853  if (fd != -1) {
4854    struct stat buf;
4855    ::close(fd);
4856    while (::stat(filename, &buf) == 0) {
4857      Sleep(100);
4858    }
4859  } else {
4860    jio_fprintf(stderr,
4861                "Could not open pause file '%s', continuing immediately.\n", filename);
4862  }
4863}
4864
4865os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4866  assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4867}
4868
4869// See the caveats for this class in os_windows.hpp
4870// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4871// into this method and returns false. If no OS EXCEPTION was raised, returns
4872// true.
4873// The callback is supposed to provide the method that should be protected.
4874//
4875bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4876  assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4877  assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4878         "crash_protection already set?");
4879
4880  bool success = true;
4881  __try {
4882    WatcherThread::watcher_thread()->set_crash_protection(this);
4883    cb.call();
4884  } __except(EXCEPTION_EXECUTE_HANDLER) {
4885    // only for protection, nothing to do
4886    success = false;
4887  }
4888  WatcherThread::watcher_thread()->set_crash_protection(NULL);
4889  return success;
4890}
4891
4892// An Event wraps a win32 "CreateEvent" kernel handle.
4893//
4894// We have a number of choices regarding "CreateEvent" win32 handle leakage:
4895//
4896// 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4897//     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4898//     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4899//     In addition, an unpark() operation might fetch the handle field, but the
4900//     event could recycle between the fetch and the SetEvent() operation.
4901//     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4902//     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4903//     on an stale but recycled handle would be harmless, but in practice this might
4904//     confuse other non-Sun code, so it's not a viable approach.
4905//
4906// 2:  Once a win32 event handle is associated with an Event, it remains associated
4907//     with the Event.  The event handle is never closed.  This could be construed
4908//     as handle leakage, but only up to the maximum # of threads that have been extant
4909//     at any one time.  This shouldn't be an issue, as windows platforms typically
4910//     permit a process to have hundreds of thousands of open handles.
4911//
4912// 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4913//     and release unused handles.
4914//
4915// 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4916//     It's not clear, however, that we wouldn't be trading one type of leak for another.
4917//
4918// 5.  Use an RCU-like mechanism (Read-Copy Update).
4919//     Or perhaps something similar to Maged Michael's "Hazard pointers".
4920//
4921// We use (2).
4922//
4923// TODO-FIXME:
4924// 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4925// 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4926//     to recover from (or at least detect) the dreaded Windows 841176 bug.
4927// 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4928//     into a single win32 CreateEvent() handle.
4929//
4930// Assumption:
4931//    Only one parker can exist on an event, which is why we allocate
4932//    them per-thread. Multiple unparkers can coexist.
4933//
4934// _Event transitions in park()
4935//   -1 => -1 : illegal
4936//    1 =>  0 : pass - return immediately
4937//    0 => -1 : block; then set _Event to 0 before returning
4938//
4939// _Event transitions in unpark()
4940//    0 => 1 : just return
4941//    1 => 1 : just return
4942//   -1 => either 0 or 1; must signal target thread
4943//         That is, we can safely transition _Event from -1 to either
4944//         0 or 1.
4945//
4946// _Event serves as a restricted-range semaphore.
4947//   -1 : thread is blocked, i.e. there is a waiter
4948//    0 : neutral: thread is running or ready,
4949//        could have been signaled after a wait started
4950//    1 : signaled - thread is running or ready
4951//
4952// Another possible encoding of _Event would be with
4953// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4954//
4955
4956int os::PlatformEvent::park(jlong Millis) {
4957  // Transitions for _Event:
4958  //   -1 => -1 : illegal
4959  //    1 =>  0 : pass - return immediately
4960  //    0 => -1 : block; then set _Event to 0 before returning
4961
4962  guarantee(_ParkHandle != NULL , "Invariant");
4963  guarantee(Millis > 0          , "Invariant");
4964
4965  // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4966  // the initial park() operation.
4967  // Consider: use atomic decrement instead of CAS-loop
4968
4969  int v;
4970  for (;;) {
4971    v = _Event;
4972    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4973  }
4974  guarantee((v == 0) || (v == 1), "invariant");
4975  if (v != 0) return OS_OK;
4976
4977  // Do this the hard way by blocking ...
4978  // TODO: consider a brief spin here, gated on the success of recent
4979  // spin attempts by this thread.
4980  //
4981  // We decompose long timeouts into series of shorter timed waits.
4982  // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4983  // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4984  // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4985  // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4986  // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4987  // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4988  // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4989  // for the already waited time.  This policy does not admit any new outcomes.
4990  // In the future, however, we might want to track the accumulated wait time and
4991  // adjust Millis accordingly if we encounter a spurious wakeup.
4992
4993  const int MAXTIMEOUT = 0x10000000;
4994  DWORD rv = WAIT_TIMEOUT;
4995  while (_Event < 0 && Millis > 0) {
4996    DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
4997    if (Millis > MAXTIMEOUT) {
4998      prd = MAXTIMEOUT;
4999    }
5000    rv = ::WaitForSingleObject(_ParkHandle, prd);
5001    assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5002    if (rv == WAIT_TIMEOUT) {
5003      Millis -= prd;
5004    }
5005  }
5006  v = _Event;
5007  _Event = 0;
5008  // see comment at end of os::PlatformEvent::park() below:
5009  OrderAccess::fence();
5010  // If we encounter a nearly simultanous timeout expiry and unpark()
5011  // we return OS_OK indicating we awoke via unpark().
5012  // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5013  return (v >= 0) ? OS_OK : OS_TIMEOUT;
5014}
5015
5016void os::PlatformEvent::park() {
5017  // Transitions for _Event:
5018  //   -1 => -1 : illegal
5019  //    1 =>  0 : pass - return immediately
5020  //    0 => -1 : block; then set _Event to 0 before returning
5021
5022  guarantee(_ParkHandle != NULL, "Invariant");
5023  // Invariant: Only the thread associated with the Event/PlatformEvent
5024  // may call park().
5025  // Consider: use atomic decrement instead of CAS-loop
5026  int v;
5027  for (;;) {
5028    v = _Event;
5029    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5030  }
5031  guarantee((v == 0) || (v == 1), "invariant");
5032  if (v != 0) return;
5033
5034  // Do this the hard way by blocking ...
5035  // TODO: consider a brief spin here, gated on the success of recent
5036  // spin attempts by this thread.
5037  while (_Event < 0) {
5038    DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5039    assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5040  }
5041
5042  // Usually we'll find _Event == 0 at this point, but as
5043  // an optional optimization we clear it, just in case can
5044  // multiple unpark() operations drove _Event up to 1.
5045  _Event = 0;
5046  OrderAccess::fence();
5047  guarantee(_Event >= 0, "invariant");
5048}
5049
5050void os::PlatformEvent::unpark() {
5051  guarantee(_ParkHandle != NULL, "Invariant");
5052
5053  // Transitions for _Event:
5054  //    0 => 1 : just return
5055  //    1 => 1 : just return
5056  //   -1 => either 0 or 1; must signal target thread
5057  //         That is, we can safely transition _Event from -1 to either
5058  //         0 or 1.
5059  // See also: "Semaphores in Plan 9" by Mullender & Cox
5060  //
5061  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5062  // that it will take two back-to-back park() calls for the owning
5063  // thread to block. This has the benefit of forcing a spurious return
5064  // from the first park() call after an unpark() call which will help
5065  // shake out uses of park() and unpark() without condition variables.
5066
5067  if (Atomic::xchg(1, &_Event) >= 0) return;
5068
5069  ::SetEvent(_ParkHandle);
5070}
5071
5072
5073// JSR166
5074// -------------------------------------------------------
5075
5076// The Windows implementation of Park is very straightforward: Basic
5077// operations on Win32 Events turn out to have the right semantics to
5078// use them directly. We opportunistically resuse the event inherited
5079// from Monitor.
5080
5081void Parker::park(bool isAbsolute, jlong time) {
5082  guarantee(_ParkEvent != NULL, "invariant");
5083  // First, demultiplex/decode time arguments
5084  if (time < 0) { // don't wait
5085    return;
5086  } else if (time == 0 && !isAbsolute) {
5087    time = INFINITE;
5088  } else if (isAbsolute) {
5089    time -= os::javaTimeMillis(); // convert to relative time
5090    if (time <= 0) {  // already elapsed
5091      return;
5092    }
5093  } else { // relative
5094    time /= 1000000;  // Must coarsen from nanos to millis
5095    if (time == 0) {  // Wait for the minimal time unit if zero
5096      time = 1;
5097    }
5098  }
5099
5100  JavaThread* thread = (JavaThread*)(Thread::current());
5101  assert(thread->is_Java_thread(), "Must be JavaThread");
5102  JavaThread *jt = (JavaThread *)thread;
5103
5104  // Don't wait if interrupted or already triggered
5105  if (Thread::is_interrupted(thread, false) ||
5106      WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5107    ResetEvent(_ParkEvent);
5108    return;
5109  } else {
5110    ThreadBlockInVM tbivm(jt);
5111    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5112    jt->set_suspend_equivalent();
5113
5114    WaitForSingleObject(_ParkEvent, time);
5115    ResetEvent(_ParkEvent);
5116
5117    // If externally suspended while waiting, re-suspend
5118    if (jt->handle_special_suspend_equivalent_condition()) {
5119      jt->java_suspend_self();
5120    }
5121  }
5122}
5123
5124void Parker::unpark() {
5125  guarantee(_ParkEvent != NULL, "invariant");
5126  SetEvent(_ParkEvent);
5127}
5128
5129// Run the specified command in a separate process. Return its exit value,
5130// or -1 on failure (e.g. can't create a new process).
5131int os::fork_and_exec(char* cmd) {
5132  STARTUPINFO si;
5133  PROCESS_INFORMATION pi;
5134
5135  memset(&si, 0, sizeof(si));
5136  si.cb = sizeof(si);
5137  memset(&pi, 0, sizeof(pi));
5138  BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5139                            cmd,    // command line
5140                            NULL,   // process security attribute
5141                            NULL,   // thread security attribute
5142                            TRUE,   // inherits system handles
5143                            0,      // no creation flags
5144                            NULL,   // use parent's environment block
5145                            NULL,   // use parent's starting directory
5146                            &si,    // (in) startup information
5147                            &pi);   // (out) process information
5148
5149  if (rslt) {
5150    // Wait until child process exits.
5151    WaitForSingleObject(pi.hProcess, INFINITE);
5152
5153    DWORD exit_code;
5154    GetExitCodeProcess(pi.hProcess, &exit_code);
5155
5156    // Close process and thread handles.
5157    CloseHandle(pi.hProcess);
5158    CloseHandle(pi.hThread);
5159
5160    return (int)exit_code;
5161  } else {
5162    return -1;
5163  }
5164}
5165
5166//--------------------------------------------------------------------------------------------------
5167// Non-product code
5168
5169static int mallocDebugIntervalCounter = 0;
5170static int mallocDebugCounter = 0;
5171bool os::check_heap(bool force) {
5172  if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5173  if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5174    // Note: HeapValidate executes two hardware breakpoints when it finds something
5175    // wrong; at these points, eax contains the address of the offending block (I think).
5176    // To get to the exlicit error message(s) below, just continue twice.
5177    HANDLE heap = GetProcessHeap();
5178
5179    // If we fail to lock the heap, then gflags.exe has been used
5180    // or some other special heap flag has been set that prevents
5181    // locking. We don't try to walk a heap we can't lock.
5182    if (HeapLock(heap) != 0) {
5183      PROCESS_HEAP_ENTRY phe;
5184      phe.lpData = NULL;
5185      while (HeapWalk(heap, &phe) != 0) {
5186        if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5187            !HeapValidate(heap, 0, phe.lpData)) {
5188          tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5189          tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5190          fatal("corrupted C heap");
5191        }
5192      }
5193      DWORD err = GetLastError();
5194      if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5195        fatal(err_msg("heap walk aborted with error %d", err));
5196      }
5197      HeapUnlock(heap);
5198    }
5199    mallocDebugIntervalCounter = 0;
5200  }
5201  return true;
5202}
5203
5204
5205bool os::find(address addr, outputStream* st) {
5206  // Nothing yet
5207  return false;
5208}
5209
5210LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5211  DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5212
5213  if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5214    JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5215    PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5216    address addr = (address) exceptionRecord->ExceptionInformation[1];
5217
5218    if (os::is_memory_serialize_page(thread, addr)) {
5219      return EXCEPTION_CONTINUE_EXECUTION;
5220    }
5221  }
5222
5223  return EXCEPTION_CONTINUE_SEARCH;
5224}
5225
5226// We don't build a headless jre for Windows
5227bool os::is_headless_jre() { return false; }
5228
5229static jint initSock() {
5230  WSADATA wsadata;
5231
5232  if (!os::WinSock2Dll::WinSock2Available()) {
5233    jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5234                ::GetLastError());
5235    return JNI_ERR;
5236  }
5237
5238  if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5239    jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5240                ::GetLastError());
5241    return JNI_ERR;
5242  }
5243  return JNI_OK;
5244}
5245
5246struct hostent* os::get_host_by_name(char* name) {
5247  return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5248}
5249
5250int os::socket_close(int fd) {
5251  return ::closesocket(fd);
5252}
5253
5254int os::socket(int domain, int type, int protocol) {
5255  return ::socket(domain, type, protocol);
5256}
5257
5258int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5259  return ::connect(fd, him, len);
5260}
5261
5262int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5263  return ::recv(fd, buf, (int)nBytes, flags);
5264}
5265
5266int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5267  return ::send(fd, buf, (int)nBytes, flags);
5268}
5269
5270int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5271  return ::send(fd, buf, (int)nBytes, flags);
5272}
5273
5274// WINDOWS CONTEXT Flags for THREAD_SAMPLING
5275#if defined(IA32)
5276  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5277#elif defined (AMD64)
5278  #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5279#endif
5280
5281// returns true if thread could be suspended,
5282// false otherwise
5283static bool do_suspend(HANDLE* h) {
5284  if (h != NULL) {
5285    if (SuspendThread(*h) != ~0) {
5286      return true;
5287    }
5288  }
5289  return false;
5290}
5291
5292// resume the thread
5293// calling resume on an active thread is a no-op
5294static void do_resume(HANDLE* h) {
5295  if (h != NULL) {
5296    ResumeThread(*h);
5297  }
5298}
5299
5300// retrieve a suspend/resume context capable handle
5301// from the tid. Caller validates handle return value.
5302void get_thread_handle_for_extended_context(HANDLE* h,
5303                                            OSThread::thread_id_t tid) {
5304  if (h != NULL) {
5305    *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5306  }
5307}
5308
5309// Thread sampling implementation
5310//
5311void os::SuspendedThreadTask::internal_do_task() {
5312  CONTEXT    ctxt;
5313  HANDLE     h = NULL;
5314
5315  // get context capable handle for thread
5316  get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5317
5318  // sanity
5319  if (h == NULL || h == INVALID_HANDLE_VALUE) {
5320    return;
5321  }
5322
5323  // suspend the thread
5324  if (do_suspend(&h)) {
5325    ctxt.ContextFlags = sampling_context_flags;
5326    // get thread context
5327    GetThreadContext(h, &ctxt);
5328    SuspendedThreadTaskContext context(_thread, &ctxt);
5329    // pass context to Thread Sampling impl
5330    do_task(context);
5331    // resume thread
5332    do_resume(&h);
5333  }
5334
5335  // close handle
5336  CloseHandle(h);
5337}
5338
5339
5340// Kernel32 API
5341typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5342typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5343typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5344typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5345typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5346
5347GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5348VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5349GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5350GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5351RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5352
5353
5354BOOL                        os::Kernel32Dll::initialized = FALSE;
5355SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5356  assert(initialized && _GetLargePageMinimum != NULL,
5357         "GetLargePageMinimumAvailable() not yet called");
5358  return _GetLargePageMinimum();
5359}
5360
5361BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5362  if (!initialized) {
5363    initialize();
5364  }
5365  return _GetLargePageMinimum != NULL;
5366}
5367
5368BOOL os::Kernel32Dll::NumaCallsAvailable() {
5369  if (!initialized) {
5370    initialize();
5371  }
5372  return _VirtualAllocExNuma != NULL;
5373}
5374
5375LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5376                                           SIZE_T bytes, DWORD flags,
5377                                           DWORD prot, DWORD node) {
5378  assert(initialized && _VirtualAllocExNuma != NULL,
5379         "NUMACallsAvailable() not yet called");
5380
5381  return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5382}
5383
5384BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5385  assert(initialized && _GetNumaHighestNodeNumber != NULL,
5386         "NUMACallsAvailable() not yet called");
5387
5388  return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5389}
5390
5391BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5392                                               PULONGLONG proc_mask) {
5393  assert(initialized && _GetNumaNodeProcessorMask != NULL,
5394         "NUMACallsAvailable() not yet called");
5395
5396  return _GetNumaNodeProcessorMask(node, proc_mask);
5397}
5398
5399USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5400                                                 ULONG FrameToCapture,
5401                                                 PVOID* BackTrace,
5402                                                 PULONG BackTraceHash) {
5403  if (!initialized) {
5404    initialize();
5405  }
5406
5407  if (_RtlCaptureStackBackTrace != NULL) {
5408    return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5409                                     BackTrace, BackTraceHash);
5410  } else {
5411    return 0;
5412  }
5413}
5414
5415void os::Kernel32Dll::initializeCommon() {
5416  if (!initialized) {
5417    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5418    assert(handle != NULL, "Just check");
5419    _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5420    _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5421    _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5422    _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5423    _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5424    initialized = TRUE;
5425  }
5426}
5427
5428
5429
5430#ifndef JDK6_OR_EARLIER
5431
5432void os::Kernel32Dll::initialize() {
5433  initializeCommon();
5434}
5435
5436
5437// Kernel32 API
5438inline BOOL os::Kernel32Dll::SwitchToThread() {
5439  return ::SwitchToThread();
5440}
5441
5442inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5443  return true;
5444}
5445
5446// Help tools
5447inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5448  return true;
5449}
5450
5451inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5452                                                        DWORD th32ProcessId) {
5453  return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5454}
5455
5456inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5457                                           LPMODULEENTRY32 lpme) {
5458  return ::Module32First(hSnapshot, lpme);
5459}
5460
5461inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5462                                          LPMODULEENTRY32 lpme) {
5463  return ::Module32Next(hSnapshot, lpme);
5464}
5465
5466inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5467  ::GetNativeSystemInfo(lpSystemInfo);
5468}
5469
5470// PSAPI API
5471inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5472                                             HMODULE *lpModule, DWORD cb,
5473                                             LPDWORD lpcbNeeded) {
5474  return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5475}
5476
5477inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5478                                               HMODULE hModule,
5479                                               LPTSTR lpFilename,
5480                                               DWORD nSize) {
5481  return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5482}
5483
5484inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5485                                               HMODULE hModule,
5486                                               LPMODULEINFO lpmodinfo,
5487                                               DWORD cb) {
5488  return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5489}
5490
5491inline BOOL os::PSApiDll::PSApiAvailable() {
5492  return true;
5493}
5494
5495
5496// WinSock2 API
5497inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5498                                        LPWSADATA lpWSAData) {
5499  return ::WSAStartup(wVersionRequested, lpWSAData);
5500}
5501
5502inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5503  return ::gethostbyname(name);
5504}
5505
5506inline BOOL os::WinSock2Dll::WinSock2Available() {
5507  return true;
5508}
5509
5510// Advapi API
5511inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5512                                                   BOOL DisableAllPrivileges,
5513                                                   PTOKEN_PRIVILEGES NewState,
5514                                                   DWORD BufferLength,
5515                                                   PTOKEN_PRIVILEGES PreviousState,
5516                                                   PDWORD ReturnLength) {
5517  return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5518                                 BufferLength, PreviousState, ReturnLength);
5519}
5520
5521inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5522                                              DWORD DesiredAccess,
5523                                              PHANDLE TokenHandle) {
5524  return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5525}
5526
5527inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5528                                                  LPCTSTR lpName,
5529                                                  PLUID lpLuid) {
5530  return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5531}
5532
5533inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5534  return true;
5535}
5536
5537void* os::get_default_process_handle() {
5538  return (void*)GetModuleHandle(NULL);
5539}
5540
5541// Builds a platform dependent Agent_OnLoad_<lib_name> function name
5542// which is used to find statically linked in agents.
5543// Additionally for windows, takes into account __stdcall names.
5544// Parameters:
5545//            sym_name: Symbol in library we are looking for
5546//            lib_name: Name of library to look in, NULL for shared libs.
5547//            is_absolute_path == true if lib_name is absolute path to agent
5548//                                     such as "C:/a/b/L.dll"
5549//            == false if only the base name of the library is passed in
5550//               such as "L"
5551char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5552                                    bool is_absolute_path) {
5553  char *agent_entry_name;
5554  size_t len;
5555  size_t name_len;
5556  size_t prefix_len = strlen(JNI_LIB_PREFIX);
5557  size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5558  const char *start;
5559
5560  if (lib_name != NULL) {
5561    len = name_len = strlen(lib_name);
5562    if (is_absolute_path) {
5563      // Need to strip path, prefix and suffix
5564      if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5565        lib_name = ++start;
5566      } else {
5567        // Need to check for drive prefix
5568        if ((start = strchr(lib_name, ':')) != NULL) {
5569          lib_name = ++start;
5570        }
5571      }
5572      if (len <= (prefix_len + suffix_len)) {
5573        return NULL;
5574      }
5575      lib_name += prefix_len;
5576      name_len = strlen(lib_name) - suffix_len;
5577    }
5578  }
5579  len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5580  agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5581  if (agent_entry_name == NULL) {
5582    return NULL;
5583  }
5584  if (lib_name != NULL) {
5585    const char *p = strrchr(sym_name, '@');
5586    if (p != NULL && p != sym_name) {
5587      // sym_name == _Agent_OnLoad@XX
5588      strncpy(agent_entry_name, sym_name, (p - sym_name));
5589      agent_entry_name[(p-sym_name)] = '\0';
5590      // agent_entry_name == _Agent_OnLoad
5591      strcat(agent_entry_name, "_");
5592      strncat(agent_entry_name, lib_name, name_len);
5593      strcat(agent_entry_name, p);
5594      // agent_entry_name == _Agent_OnLoad_lib_name@XX
5595    } else {
5596      strcpy(agent_entry_name, sym_name);
5597      strcat(agent_entry_name, "_");
5598      strncat(agent_entry_name, lib_name, name_len);
5599    }
5600  } else {
5601    strcpy(agent_entry_name, sym_name);
5602  }
5603  return agent_entry_name;
5604}
5605
5606#else
5607// Kernel32 API
5608typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5609typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5610typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5611typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5612typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5613
5614SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5615CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5616Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5617Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5618GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5619
5620void os::Kernel32Dll::initialize() {
5621  if (!initialized) {
5622    HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5623    assert(handle != NULL, "Just check");
5624
5625    _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5626    _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5627      ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5628    _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5629    _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5630    _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5631    initializeCommon();  // resolve the functions that always need resolving
5632
5633    initialized = TRUE;
5634  }
5635}
5636
5637BOOL os::Kernel32Dll::SwitchToThread() {
5638  assert(initialized && _SwitchToThread != NULL,
5639         "SwitchToThreadAvailable() not yet called");
5640  return _SwitchToThread();
5641}
5642
5643
5644BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5645  if (!initialized) {
5646    initialize();
5647  }
5648  return _SwitchToThread != NULL;
5649}
5650
5651// Help tools
5652BOOL os::Kernel32Dll::HelpToolsAvailable() {
5653  if (!initialized) {
5654    initialize();
5655  }
5656  return _CreateToolhelp32Snapshot != NULL &&
5657         _Module32First != NULL &&
5658         _Module32Next != NULL;
5659}
5660
5661HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5662                                                 DWORD th32ProcessId) {
5663  assert(initialized && _CreateToolhelp32Snapshot != NULL,
5664         "HelpToolsAvailable() not yet called");
5665
5666  return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5667}
5668
5669BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5670  assert(initialized && _Module32First != NULL,
5671         "HelpToolsAvailable() not yet called");
5672
5673  return _Module32First(hSnapshot, lpme);
5674}
5675
5676inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5677                                          LPMODULEENTRY32 lpme) {
5678  assert(initialized && _Module32Next != NULL,
5679         "HelpToolsAvailable() not yet called");
5680
5681  return _Module32Next(hSnapshot, lpme);
5682}
5683
5684
5685BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5686  if (!initialized) {
5687    initialize();
5688  }
5689  return _GetNativeSystemInfo != NULL;
5690}
5691
5692void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5693  assert(initialized && _GetNativeSystemInfo != NULL,
5694         "GetNativeSystemInfoAvailable() not yet called");
5695
5696  _GetNativeSystemInfo(lpSystemInfo);
5697}
5698
5699// PSAPI API
5700
5701
5702typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5703typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5704typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5705
5706EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5707GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5708GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5709BOOL                    os::PSApiDll::initialized = FALSE;
5710
5711void os::PSApiDll::initialize() {
5712  if (!initialized) {
5713    HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5714    if (handle != NULL) {
5715      _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5716                                                                    "EnumProcessModules");
5717      _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5718                                                                      "GetModuleFileNameExA");
5719      _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5720                                                                        "GetModuleInformation");
5721    }
5722    initialized = TRUE;
5723  }
5724}
5725
5726
5727
5728BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5729                                      DWORD cb, LPDWORD lpcbNeeded) {
5730  assert(initialized && _EnumProcessModules != NULL,
5731         "PSApiAvailable() not yet called");
5732  return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5733}
5734
5735DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5736                                        LPTSTR lpFilename, DWORD nSize) {
5737  assert(initialized && _GetModuleFileNameEx != NULL,
5738         "PSApiAvailable() not yet called");
5739  return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5740}
5741
5742BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5743                                        LPMODULEINFO lpmodinfo, DWORD cb) {
5744  assert(initialized && _GetModuleInformation != NULL,
5745         "PSApiAvailable() not yet called");
5746  return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5747}
5748
5749BOOL os::PSApiDll::PSApiAvailable() {
5750  if (!initialized) {
5751    initialize();
5752  }
5753  return _EnumProcessModules != NULL &&
5754    _GetModuleFileNameEx != NULL &&
5755    _GetModuleInformation != NULL;
5756}
5757
5758
5759// WinSock2 API
5760typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5761typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5762
5763WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5764gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5765BOOL             os::WinSock2Dll::initialized = FALSE;
5766
5767void os::WinSock2Dll::initialize() {
5768  if (!initialized) {
5769    HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5770    if (handle != NULL) {
5771      _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5772      _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5773    }
5774    initialized = TRUE;
5775  }
5776}
5777
5778
5779BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5780  assert(initialized && _WSAStartup != NULL,
5781         "WinSock2Available() not yet called");
5782  return _WSAStartup(wVersionRequested, lpWSAData);
5783}
5784
5785struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5786  assert(initialized && _gethostbyname != NULL,
5787         "WinSock2Available() not yet called");
5788  return _gethostbyname(name);
5789}
5790
5791BOOL os::WinSock2Dll::WinSock2Available() {
5792  if (!initialized) {
5793    initialize();
5794  }
5795  return _WSAStartup != NULL &&
5796    _gethostbyname != NULL;
5797}
5798
5799typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5800typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5801typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5802
5803AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5804OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5805LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5806BOOL                     os::Advapi32Dll::initialized = FALSE;
5807
5808void os::Advapi32Dll::initialize() {
5809  if (!initialized) {
5810    HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5811    if (handle != NULL) {
5812      _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5813                                                                          "AdjustTokenPrivileges");
5814      _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5815                                                                "OpenProcessToken");
5816      _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5817                                                                        "LookupPrivilegeValueA");
5818    }
5819    initialized = TRUE;
5820  }
5821}
5822
5823BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5824                                            BOOL DisableAllPrivileges,
5825                                            PTOKEN_PRIVILEGES NewState,
5826                                            DWORD BufferLength,
5827                                            PTOKEN_PRIVILEGES PreviousState,
5828                                            PDWORD ReturnLength) {
5829  assert(initialized && _AdjustTokenPrivileges != NULL,
5830         "AdvapiAvailable() not yet called");
5831  return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5832                                BufferLength, PreviousState, ReturnLength);
5833}
5834
5835BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5836                                       DWORD DesiredAccess,
5837                                       PHANDLE TokenHandle) {
5838  assert(initialized && _OpenProcessToken != NULL,
5839         "AdvapiAvailable() not yet called");
5840  return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5841}
5842
5843BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5844                                           LPCTSTR lpName, PLUID lpLuid) {
5845  assert(initialized && _LookupPrivilegeValue != NULL,
5846         "AdvapiAvailable() not yet called");
5847  return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5848}
5849
5850BOOL os::Advapi32Dll::AdvapiAvailable() {
5851  if (!initialized) {
5852    initialize();
5853  }
5854  return _AdjustTokenPrivileges != NULL &&
5855    _OpenProcessToken != NULL &&
5856    _LookupPrivilegeValue != NULL;
5857}
5858
5859#endif
5860
5861#ifndef PRODUCT
5862
5863// test the code path in reserve_memory_special() that tries to allocate memory in a single
5864// contiguous memory block at a particular address.
5865// The test first tries to find a good approximate address to allocate at by using the same
5866// method to allocate some memory at any address. The test then tries to allocate memory in
5867// the vicinity (not directly after it to avoid possible by-chance use of that location)
5868// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5869// the previously allocated memory is available for allocation. The only actual failure
5870// that is reported is when the test tries to allocate at a particular location but gets a
5871// different valid one. A NULL return value at this point is not considered an error but may
5872// be legitimate.
5873// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5874void TestReserveMemorySpecial_test() {
5875  if (!UseLargePages) {
5876    if (VerboseInternalVMTests) {
5877      gclog_or_tty->print("Skipping test because large pages are disabled");
5878    }
5879    return;
5880  }
5881  // save current value of globals
5882  bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5883  bool old_use_numa_interleaving = UseNUMAInterleaving;
5884
5885  // set globals to make sure we hit the correct code path
5886  UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5887
5888  // do an allocation at an address selected by the OS to get a good one.
5889  const size_t large_allocation_size = os::large_page_size() * 4;
5890  char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5891  if (result == NULL) {
5892    if (VerboseInternalVMTests) {
5893      gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5894                          large_allocation_size);
5895    }
5896  } else {
5897    os::release_memory_special(result, large_allocation_size);
5898
5899    // allocate another page within the recently allocated memory area which seems to be a good location. At least
5900    // we managed to get it once.
5901    const size_t expected_allocation_size = os::large_page_size();
5902    char* expected_location = result + os::large_page_size();
5903    char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5904    if (actual_location == NULL) {
5905      if (VerboseInternalVMTests) {
5906        gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5907                            expected_location, large_allocation_size);
5908      }
5909    } else {
5910      // release memory
5911      os::release_memory_special(actual_location, expected_allocation_size);
5912      // only now check, after releasing any memory to avoid any leaks.
5913      assert(actual_location == expected_location,
5914             err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5915             expected_location, expected_allocation_size, actual_location));
5916    }
5917  }
5918
5919  // restore globals
5920  UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5921  UseNUMAInterleaving = old_use_numa_interleaving;
5922}
5923#endif // PRODUCT
5924