perfMemory_linux.cpp revision 4829:e95fc50106cf
1/*
2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_linux.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/perfMemory.hpp"
33#include "services/memTracker.hpp"
34#include "utilities/exceptions.hpp"
35
36// put OS-includes here
37# include <sys/types.h>
38# include <sys/mman.h>
39# include <errno.h>
40# include <stdio.h>
41# include <unistd.h>
42# include <sys/stat.h>
43# include <signal.h>
44# include <pwd.h>
45
46static char* backing_store_file_name = NULL;  // name of the backing store
47                                              // file, if successfully created.
48
49// Standard Memory Implementation Details
50
51// create the PerfData memory region in standard memory.
52//
53static char* create_standard_memory(size_t size) {
54
55  // allocate an aligned chuck of memory
56  char* mapAddress = os::reserve_memory(size);
57
58  if (mapAddress == NULL) {
59    return NULL;
60  }
61
62  // commit memory
63  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
64    if (PrintMiscellaneous && Verbose) {
65      warning("Could not commit PerfData memory\n");
66    }
67    os::release_memory(mapAddress, size);
68    return NULL;
69  }
70
71  return mapAddress;
72}
73
74// delete the PerfData memory region
75//
76static void delete_standard_memory(char* addr, size_t size) {
77
78  // there are no persistent external resources to cleanup for standard
79  // memory. since DestroyJavaVM does not support unloading of the JVM,
80  // cleanup of the memory resource is not performed. The memory will be
81  // reclaimed by the OS upon termination of the process.
82  //
83  return;
84}
85
86// save the specified memory region to the given file
87//
88// Note: this function might be called from signal handler (by os::abort()),
89// don't allocate heap memory.
90//
91static void save_memory_to_file(char* addr, size_t size) {
92
93 const char* destfile = PerfMemory::get_perfdata_file_path();
94 assert(destfile[0] != '\0', "invalid PerfData file path");
95
96  int result;
97
98  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
99              result);;
100  if (result == OS_ERR) {
101    if (PrintMiscellaneous && Verbose) {
102      warning("Could not create Perfdata save file: %s: %s\n",
103              destfile, strerror(errno));
104    }
105  } else {
106    int fd = result;
107
108    for (size_t remaining = size; remaining > 0;) {
109
110      RESTARTABLE(::write(fd, addr, remaining), result);
111      if (result == OS_ERR) {
112        if (PrintMiscellaneous && Verbose) {
113          warning("Could not write Perfdata save file: %s: %s\n",
114                  destfile, strerror(errno));
115        }
116        break;
117      }
118
119      remaining -= (size_t)result;
120      addr += result;
121    }
122
123    result = ::close(fd);
124    if (PrintMiscellaneous && Verbose) {
125      if (result == OS_ERR) {
126        warning("Could not close %s: %s\n", destfile, strerror(errno));
127      }
128    }
129  }
130  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
131}
132
133
134// Shared Memory Implementation Details
135
136// Note: the solaris and linux shared memory implementation uses the mmap
137// interface with a backing store file to implement named shared memory.
138// Using the file system as the name space for shared memory allows a
139// common name space to be supported across a variety of platforms. It
140// also provides a name space that Java applications can deal with through
141// simple file apis.
142//
143// The solaris and linux implementations store the backing store file in
144// a user specific temporary directory located in the /tmp file system,
145// which is always a local file system and is sometimes a RAM based file
146// system.
147
148// return the user specific temporary directory name.
149//
150// the caller is expected to free the allocated memory.
151//
152static char* get_user_tmp_dir(const char* user) {
153
154  const char* tmpdir = os::get_temp_directory();
155  const char* perfdir = PERFDATA_NAME;
156  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
157  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
158
159  // construct the path name to user specific tmp directory
160  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
161
162  return dirname;
163}
164
165// convert the given file name into a process id. if the file
166// does not meet the file naming constraints, return 0.
167//
168static pid_t filename_to_pid(const char* filename) {
169
170  // a filename that doesn't begin with a digit is not a
171  // candidate for conversion.
172  //
173  if (!isdigit(*filename)) {
174    return 0;
175  }
176
177  // check if file name can be converted to an integer without
178  // any leftover characters.
179  //
180  char* remainder = NULL;
181  errno = 0;
182  pid_t pid = (pid_t)strtol(filename, &remainder, 10);
183
184  if (errno != 0) {
185    return 0;
186  }
187
188  // check for left over characters. If any, then the filename is
189  // not a candidate for conversion.
190  //
191  if (remainder != NULL && *remainder != '\0') {
192    return 0;
193  }
194
195  // successful conversion, return the pid
196  return pid;
197}
198
199
200// check if the given path is considered a secure directory for
201// the backing store files. Returns true if the directory exists
202// and is considered a secure location. Returns false if the path
203// is a symbolic link or if an error occurred.
204//
205static bool is_directory_secure(const char* path) {
206  struct stat statbuf;
207  int result = 0;
208
209  RESTARTABLE(::lstat(path, &statbuf), result);
210  if (result == OS_ERR) {
211    return false;
212  }
213
214  // the path exists, now check it's mode
215  if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
216    // the path represents a link or some non-directory file type,
217    // which is not what we expected. declare it insecure.
218    //
219    return false;
220  }
221  else {
222    // we have an existing directory, check if the permissions are safe.
223    //
224    if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
225      // the directory is open for writing and could be subjected
226      // to a symlnk attack. declare it insecure.
227      //
228      return false;
229    }
230  }
231  return true;
232}
233
234
235// return the user name for the given user id
236//
237// the caller is expected to free the allocated memory.
238//
239static char* get_user_name(uid_t uid) {
240
241  struct passwd pwent;
242
243  // determine the max pwbuf size from sysconf, and hardcode
244  // a default if this not available through sysconf.
245  //
246  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
247  if (bufsize == -1)
248    bufsize = 1024;
249
250  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
251
252  // POSIX interface to getpwuid_r is used on LINUX
253  struct passwd* p;
254  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
255
256  if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
257    if (PrintMiscellaneous && Verbose) {
258      if (result != 0) {
259        warning("Could not retrieve passwd entry: %s\n",
260                strerror(result));
261      }
262      else if (p == NULL) {
263        // this check is added to protect against an observed problem
264        // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
265        // indicating success, but has p == NULL. This was observed when
266        // inserting a file descriptor exhaustion fault prior to the call
267        // getpwuid_r() call. In this case, error is set to the appropriate
268        // error condition, but this is undocumented behavior. This check
269        // is safe under any condition, but the use of errno in the output
270        // message may result in an erroneous message.
271        // Bug Id 89052 was opened with RedHat.
272        //
273        warning("Could not retrieve passwd entry: %s\n",
274                strerror(errno));
275      }
276      else {
277        warning("Could not determine user name: %s\n",
278                p->pw_name == NULL ? "pw_name = NULL" :
279                                     "pw_name zero length");
280      }
281    }
282    FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
283    return NULL;
284  }
285
286  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
287  strcpy(user_name, p->pw_name);
288
289  FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
290  return user_name;
291}
292
293// return the name of the user that owns the process identified by vmid.
294//
295// This method uses a slow directory search algorithm to find the backing
296// store file for the specified vmid and returns the user name, as determined
297// by the user name suffix of the hsperfdata_<username> directory name.
298//
299// the caller is expected to free the allocated memory.
300//
301static char* get_user_name_slow(int vmid, TRAPS) {
302
303  // short circuit the directory search if the process doesn't even exist.
304  if (kill(vmid, 0) == OS_ERR) {
305    if (errno == ESRCH) {
306      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
307                  "Process not found");
308    }
309    else /* EPERM */ {
310      THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
311    }
312  }
313
314  // directory search
315  char* oldest_user = NULL;
316  time_t oldest_ctime = 0;
317
318  const char* tmpdirname = os::get_temp_directory();
319
320  DIR* tmpdirp = os::opendir(tmpdirname);
321
322  if (tmpdirp == NULL) {
323    return NULL;
324  }
325
326  // for each entry in the directory that matches the pattern hsperfdata_*,
327  // open the directory and check if the file for the given vmid exists.
328  // The file with the expected name and the latest creation date is used
329  // to determine the user name for the process id.
330  //
331  struct dirent* dentry;
332  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
333  errno = 0;
334  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
335
336    // check if the directory entry is a hsperfdata file
337    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
338      continue;
339    }
340
341    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
342                     strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
343    strcpy(usrdir_name, tmpdirname);
344    strcat(usrdir_name, "/");
345    strcat(usrdir_name, dentry->d_name);
346
347    DIR* subdirp = os::opendir(usrdir_name);
348
349    if (subdirp == NULL) {
350      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
351      continue;
352    }
353
354    // Since we don't create the backing store files in directories
355    // pointed to by symbolic links, we also don't follow them when
356    // looking for the files. We check for a symbolic link after the
357    // call to opendir in order to eliminate a small window where the
358    // symlink can be exploited.
359    //
360    if (!is_directory_secure(usrdir_name)) {
361      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
362      os::closedir(subdirp);
363      continue;
364    }
365
366    struct dirent* udentry;
367    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
368    errno = 0;
369    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
370
371      if (filename_to_pid(udentry->d_name) == vmid) {
372        struct stat statbuf;
373        int result;
374
375        char* filename = NEW_C_HEAP_ARRAY(char,
376                   strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
377
378        strcpy(filename, usrdir_name);
379        strcat(filename, "/");
380        strcat(filename, udentry->d_name);
381
382        // don't follow symbolic links for the file
383        RESTARTABLE(::lstat(filename, &statbuf), result);
384        if (result == OS_ERR) {
385           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
386           continue;
387        }
388
389        // skip over files that are not regular files.
390        if (!S_ISREG(statbuf.st_mode)) {
391          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
392          continue;
393        }
394
395        // compare and save filename with latest creation time
396        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
397
398          if (statbuf.st_ctime > oldest_ctime) {
399            char* user = strchr(dentry->d_name, '_') + 1;
400
401            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
402            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
403
404            strcpy(oldest_user, user);
405            oldest_ctime = statbuf.st_ctime;
406          }
407        }
408
409        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
410      }
411    }
412    os::closedir(subdirp);
413    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
414    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
415  }
416  os::closedir(tmpdirp);
417  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
418
419  return(oldest_user);
420}
421
422// return the name of the user that owns the JVM indicated by the given vmid.
423//
424static char* get_user_name(int vmid, TRAPS) {
425  return get_user_name_slow(vmid, CHECK_NULL);
426}
427
428// return the file name of the backing store file for the named
429// shared memory region for the given user name and vmid.
430//
431// the caller is expected to free the allocated memory.
432//
433static char* get_sharedmem_filename(const char* dirname, int vmid) {
434
435  // add 2 for the file separator and a null terminator.
436  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
437
438  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
439  snprintf(name, nbytes, "%s/%d", dirname, vmid);
440
441  return name;
442}
443
444
445// remove file
446//
447// this method removes the file specified by the given path
448//
449static void remove_file(const char* path) {
450
451  int result;
452
453  // if the file is a directory, the following unlink will fail. since
454  // we don't expect to find directories in the user temp directory, we
455  // won't try to handle this situation. even if accidentially or
456  // maliciously planted, the directory's presence won't hurt anything.
457  //
458  RESTARTABLE(::unlink(path), result);
459  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
460    if (errno != ENOENT) {
461      warning("Could not unlink shared memory backing"
462              " store file %s : %s\n", path, strerror(errno));
463    }
464  }
465}
466
467
468// remove file
469//
470// this method removes the file with the given file name in the
471// named directory.
472//
473static void remove_file(const char* dirname, const char* filename) {
474
475  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
476  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
477
478  strcpy(path, dirname);
479  strcat(path, "/");
480  strcat(path, filename);
481
482  remove_file(path);
483
484  FREE_C_HEAP_ARRAY(char, path, mtInternal);
485}
486
487
488// cleanup stale shared memory resources
489//
490// This method attempts to remove all stale shared memory files in
491// the named user temporary directory. It scans the named directory
492// for files matching the pattern ^$[0-9]*$. For each file found, the
493// process id is extracted from the file name and a test is run to
494// determine if the process is alive. If the process is not alive,
495// any stale file resources are removed.
496//
497static void cleanup_sharedmem_resources(const char* dirname) {
498
499  // open the user temp directory
500  DIR* dirp = os::opendir(dirname);
501
502  if (dirp == NULL) {
503    // directory doesn't exist, so there is nothing to cleanup
504    return;
505  }
506
507  if (!is_directory_secure(dirname)) {
508    // the directory is not a secure directory
509    return;
510  }
511
512  // for each entry in the directory that matches the expected file
513  // name pattern, determine if the file resources are stale and if
514  // so, remove the file resources. Note, instrumented HotSpot processes
515  // for this user may start and/or terminate during this search and
516  // remove or create new files in this directory. The behavior of this
517  // loop under these conditions is dependent upon the implementation of
518  // opendir/readdir.
519  //
520  struct dirent* entry;
521  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
522  errno = 0;
523  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
524
525    pid_t pid = filename_to_pid(entry->d_name);
526
527    if (pid == 0) {
528
529      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
530
531        // attempt to remove all unexpected files, except "." and ".."
532        remove_file(dirname, entry->d_name);
533      }
534
535      errno = 0;
536      continue;
537    }
538
539    // we now have a file name that converts to a valid integer
540    // that could represent a process id . if this process id
541    // matches the current process id or the process is not running,
542    // then remove the stale file resources.
543    //
544    // process liveness is detected by sending signal number 0 to
545    // the process id (see kill(2)). if kill determines that the
546    // process does not exist, then the file resources are removed.
547    // if kill determines that that we don't have permission to
548    // signal the process, then the file resources are assumed to
549    // be stale and are removed because the resources for such a
550    // process should be in a different user specific directory.
551    //
552    if ((pid == os::current_process_id()) ||
553        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
554
555        remove_file(dirname, entry->d_name);
556    }
557    errno = 0;
558  }
559  os::closedir(dirp);
560  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
561}
562
563// make the user specific temporary directory. Returns true if
564// the directory exists and is secure upon return. Returns false
565// if the directory exists but is either a symlink, is otherwise
566// insecure, or if an error occurred.
567//
568static bool make_user_tmp_dir(const char* dirname) {
569
570  // create the directory with 0755 permissions. note that the directory
571  // will be owned by euid::egid, which may not be the same as uid::gid.
572  //
573  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
574    if (errno == EEXIST) {
575      // The directory already exists and was probably created by another
576      // JVM instance. However, this could also be the result of a
577      // deliberate symlink. Verify that the existing directory is safe.
578      //
579      if (!is_directory_secure(dirname)) {
580        // directory is not secure
581        if (PrintMiscellaneous && Verbose) {
582          warning("%s directory is insecure\n", dirname);
583        }
584        return false;
585      }
586    }
587    else {
588      // we encountered some other failure while attempting
589      // to create the directory
590      //
591      if (PrintMiscellaneous && Verbose) {
592        warning("could not create directory %s: %s\n",
593                dirname, strerror(errno));
594      }
595      return false;
596    }
597  }
598  return true;
599}
600
601// create the shared memory file resources
602//
603// This method creates the shared memory file with the given size
604// This method also creates the user specific temporary directory, if
605// it does not yet exist.
606//
607static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
608
609  // make the user temporary directory
610  if (!make_user_tmp_dir(dirname)) {
611    // could not make/find the directory or the found directory
612    // was not secure
613    return -1;
614  }
615
616  int result;
617
618  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
619  if (result == OS_ERR) {
620    if (PrintMiscellaneous && Verbose) {
621      warning("could not create file %s: %s\n", filename, strerror(errno));
622    }
623    return -1;
624  }
625
626  // save the file descriptor
627  int fd = result;
628
629  // set the file size
630  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
631  if (result == OS_ERR) {
632    if (PrintMiscellaneous && Verbose) {
633      warning("could not set shared memory file size: %s\n", strerror(errno));
634    }
635    ::close(fd);
636    return -1;
637  }
638
639  // Verify that we have enough disk space for this file.
640  // We'll get random SIGBUS crashes on memory accesses if
641  // we don't.
642
643  for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
644    int zero_int = 0;
645    result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
646    if (result == -1 ) break;
647    RESTARTABLE(::write(fd, &zero_int, 1), result);
648    if (result != 1) {
649      if (errno == ENOSPC) {
650        warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
651      }
652      break;
653    }
654  }
655
656  if (result != -1) {
657    return fd;
658  } else {
659    ::close(fd);
660    return -1;
661  }
662}
663
664// open the shared memory file for the given user and vmid. returns
665// the file descriptor for the open file or -1 if the file could not
666// be opened.
667//
668static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
669
670  // open the file
671  int result;
672  RESTARTABLE(::open(filename, oflags), result);
673  if (result == OS_ERR) {
674    if (errno == ENOENT) {
675      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
676                  "Process not found", OS_ERR);
677    }
678    else if (errno == EACCES) {
679      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
680                  "Permission denied", OS_ERR);
681    }
682    else {
683      THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
684    }
685  }
686
687  return result;
688}
689
690// create a named shared memory region. returns the address of the
691// memory region on success or NULL on failure. A return value of
692// NULL will ultimately disable the shared memory feature.
693//
694// On Solaris and Linux, the name space for shared memory objects
695// is the file system name space.
696//
697// A monitoring application attaching to a JVM does not need to know
698// the file system name of the shared memory object. However, it may
699// be convenient for applications to discover the existence of newly
700// created and terminating JVMs by watching the file system name space
701// for files being created or removed.
702//
703static char* mmap_create_shared(size_t size) {
704
705  int result;
706  int fd;
707  char* mapAddress;
708
709  int vmid = os::current_process_id();
710
711  char* user_name = get_user_name(geteuid());
712
713  if (user_name == NULL)
714    return NULL;
715
716  char* dirname = get_user_tmp_dir(user_name);
717  char* filename = get_sharedmem_filename(dirname, vmid);
718
719  // cleanup any stale shared memory files
720  cleanup_sharedmem_resources(dirname);
721
722  assert(((size > 0) && (size % os::vm_page_size() == 0)),
723         "unexpected PerfMemory region size");
724
725  fd = create_sharedmem_resources(dirname, filename, size);
726
727  FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
728  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
729
730  if (fd == -1) {
731    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
732    return NULL;
733  }
734
735  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
736
737  result = ::close(fd);
738  assert(result != OS_ERR, "could not close file");
739
740  if (mapAddress == MAP_FAILED) {
741    if (PrintMiscellaneous && Verbose) {
742      warning("mmap failed -  %s\n", strerror(errno));
743    }
744    remove_file(filename);
745    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
746    return NULL;
747  }
748
749  // save the file name for use in delete_shared_memory()
750  backing_store_file_name = filename;
751
752  // clear the shared memory region
753  (void)::memset((void*) mapAddress, 0, size);
754
755  // it does not go through os api, the operation has to record from here
756  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
757  MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
758
759  return mapAddress;
760}
761
762// release a named shared memory region
763//
764static void unmap_shared(char* addr, size_t bytes) {
765  os::release_memory(addr, bytes);
766}
767
768// create the PerfData memory region in shared memory.
769//
770static char* create_shared_memory(size_t size) {
771
772  // create the shared memory region.
773  return mmap_create_shared(size);
774}
775
776// delete the shared PerfData memory region
777//
778static void delete_shared_memory(char* addr, size_t size) {
779
780  // cleanup the persistent shared memory resources. since DestroyJavaVM does
781  // not support unloading of the JVM, unmapping of the memory resource is
782  // not performed. The memory will be reclaimed by the OS upon termination of
783  // the process. The backing store file is deleted from the file system.
784
785  assert(!PerfDisableSharedMem, "shouldn't be here");
786
787  if (backing_store_file_name != NULL) {
788    remove_file(backing_store_file_name);
789    // Don't.. Free heap memory could deadlock os::abort() if it is called
790    // from signal handler. OS will reclaim the heap memory.
791    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
792    backing_store_file_name = NULL;
793  }
794}
795
796// return the size of the file for the given file descriptor
797// or 0 if it is not a valid size for a shared memory file
798//
799static size_t sharedmem_filesize(int fd, TRAPS) {
800
801  struct stat statbuf;
802  int result;
803
804  RESTARTABLE(::fstat(fd, &statbuf), result);
805  if (result == OS_ERR) {
806    if (PrintMiscellaneous && Verbose) {
807      warning("fstat failed: %s\n", strerror(errno));
808    }
809    THROW_MSG_0(vmSymbols::java_io_IOException(),
810                "Could not determine PerfMemory size");
811  }
812
813  if ((statbuf.st_size == 0) ||
814     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
815    THROW_MSG_0(vmSymbols::java_lang_Exception(),
816                "Invalid PerfMemory size");
817  }
818
819  return (size_t)statbuf.st_size;
820}
821
822// attach to a named shared memory region.
823//
824static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
825
826  char* mapAddress;
827  int result;
828  int fd;
829  size_t size = 0;
830  const char* luser = NULL;
831
832  int mmap_prot;
833  int file_flags;
834
835  ResourceMark rm;
836
837  // map the high level access mode to the appropriate permission
838  // constructs for the file and the shared memory mapping.
839  if (mode == PerfMemory::PERF_MODE_RO) {
840    mmap_prot = PROT_READ;
841    file_flags = O_RDONLY;
842  }
843  else if (mode == PerfMemory::PERF_MODE_RW) {
844#ifdef LATER
845    mmap_prot = PROT_READ | PROT_WRITE;
846    file_flags = O_RDWR;
847#else
848    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
849              "Unsupported access mode");
850#endif
851  }
852  else {
853    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
854              "Illegal access mode");
855  }
856
857  if (user == NULL || strlen(user) == 0) {
858    luser = get_user_name(vmid, CHECK);
859  }
860  else {
861    luser = user;
862  }
863
864  if (luser == NULL) {
865    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
866              "Could not map vmid to user Name");
867  }
868
869  char* dirname = get_user_tmp_dir(luser);
870
871  // since we don't follow symbolic links when creating the backing
872  // store file, we don't follow them when attaching either.
873  //
874  if (!is_directory_secure(dirname)) {
875    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
876    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
877              "Process not found");
878  }
879
880  char* filename = get_sharedmem_filename(dirname, vmid);
881
882  // copy heap memory to resource memory. the open_sharedmem_file
883  // method below need to use the filename, but could throw an
884  // exception. using a resource array prevents the leak that
885  // would otherwise occur.
886  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
887  strcpy(rfilename, filename);
888
889  // free the c heap resources that are no longer needed
890  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
891  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
892  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
893
894  // open the shared memory file for the give vmid
895  fd = open_sharedmem_file(rfilename, file_flags, CHECK);
896  assert(fd != OS_ERR, "unexpected value");
897
898  if (*sizep == 0) {
899    size = sharedmem_filesize(fd, CHECK);
900  } else {
901    size = *sizep;
902  }
903
904  assert(size > 0, "unexpected size <= 0");
905
906  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
907
908  result = ::close(fd);
909  assert(result != OS_ERR, "could not close file");
910
911  if (mapAddress == MAP_FAILED) {
912    if (PrintMiscellaneous && Verbose) {
913      warning("mmap failed: %s\n", strerror(errno));
914    }
915    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
916              "Could not map PerfMemory");
917  }
918
919  // it does not go through os api, the operation has to record from here
920  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
921  MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
922
923  *addr = mapAddress;
924  *sizep = size;
925
926  if (PerfTraceMemOps) {
927    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
928               INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
929  }
930}
931
932
933
934
935// create the PerfData memory region
936//
937// This method creates the memory region used to store performance
938// data for the JVM. The memory may be created in standard or
939// shared memory.
940//
941void PerfMemory::create_memory_region(size_t size) {
942
943  if (PerfDisableSharedMem) {
944    // do not share the memory for the performance data.
945    _start = create_standard_memory(size);
946  }
947  else {
948    _start = create_shared_memory(size);
949    if (_start == NULL) {
950
951      // creation of the shared memory region failed, attempt
952      // to create a contiguous, non-shared memory region instead.
953      //
954      if (PrintMiscellaneous && Verbose) {
955        warning("Reverting to non-shared PerfMemory region.\n");
956      }
957      PerfDisableSharedMem = true;
958      _start = create_standard_memory(size);
959    }
960  }
961
962  if (_start != NULL) _capacity = size;
963
964}
965
966// delete the PerfData memory region
967//
968// This method deletes the memory region used to store performance
969// data for the JVM. The memory region indicated by the <address, size>
970// tuple will be inaccessible after a call to this method.
971//
972void PerfMemory::delete_memory_region() {
973
974  assert((start() != NULL && capacity() > 0), "verify proper state");
975
976  // If user specifies PerfDataSaveFile, it will save the performance data
977  // to the specified file name no matter whether PerfDataSaveToFile is specified
978  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
979  // -XX:+PerfDataSaveToFile.
980  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
981    save_memory_to_file(start(), capacity());
982  }
983
984  if (PerfDisableSharedMem) {
985    delete_standard_memory(start(), capacity());
986  }
987  else {
988    delete_shared_memory(start(), capacity());
989  }
990}
991
992// attach to the PerfData memory region for another JVM
993//
994// This method returns an <address, size> tuple that points to
995// a memory buffer that is kept reasonably synchronized with
996// the PerfData memory region for the indicated JVM. This
997// buffer may be kept in synchronization via shared memory
998// or some other mechanism that keeps the buffer updated.
999//
1000// If the JVM chooses not to support the attachability feature,
1001// this method should throw an UnsupportedOperation exception.
1002//
1003// This implementation utilizes named shared memory to map
1004// the indicated process's PerfData memory region into this JVMs
1005// address space.
1006//
1007void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1008
1009  if (vmid == 0 || vmid == os::current_process_id()) {
1010     *addrp = start();
1011     *sizep = capacity();
1012     return;
1013  }
1014
1015  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1016}
1017
1018// detach from the PerfData memory region of another JVM
1019//
1020// This method detaches the PerfData memory region of another
1021// JVM, specified as an <address, size> tuple of a buffer
1022// in this process's address space. This method may perform
1023// arbitrary actions to accomplish the detachment. The memory
1024// region specified by <address, size> will be inaccessible after
1025// a call to this method.
1026//
1027// If the JVM chooses not to support the attachability feature,
1028// this method should throw an UnsupportedOperation exception.
1029//
1030// This implementation utilizes named shared memory to detach
1031// the indicated process's PerfData memory region from this
1032// process's address space.
1033//
1034void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1035
1036  assert(addr != 0, "address sanity check");
1037  assert(bytes > 0, "capacity sanity check");
1038
1039  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1040    // prevent accidental detachment of this process's PerfMemory region
1041    return;
1042  }
1043
1044  unmap_shared(addr, bytes);
1045}
1046
1047char* PerfMemory::backing_store_filename() {
1048  return backing_store_file_name;
1049}
1050