perfMemory_linux.cpp revision 10627:1537c752a7f5
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/oop.inline.hpp"
30#include "os_linux.inline.hpp"
31#include "runtime/handles.inline.hpp"
32#include "runtime/os.hpp"
33#include "runtime/perfMemory.hpp"
34#include "services/memTracker.hpp"
35#include "utilities/exceptions.hpp"
36
37// put OS-includes here
38# include <sys/types.h>
39# include <sys/mman.h>
40# include <errno.h>
41# include <stdio.h>
42# include <unistd.h>
43# include <sys/stat.h>
44# include <signal.h>
45# include <pwd.h>
46
47static char* backing_store_file_name = NULL;  // name of the backing store
48                                              // file, if successfully created.
49
50// Standard Memory Implementation Details
51
52// create the PerfData memory region in standard memory.
53//
54static char* create_standard_memory(size_t size) {
55
56  // allocate an aligned chuck of memory
57  char* mapAddress = os::reserve_memory(size);
58
59  if (mapAddress == NULL) {
60    return NULL;
61  }
62
63  // commit memory
64  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
65    if (PrintMiscellaneous && Verbose) {
66      warning("Could not commit PerfData memory\n");
67    }
68    os::release_memory(mapAddress, size);
69    return NULL;
70  }
71
72  return mapAddress;
73}
74
75// delete the PerfData memory region
76//
77static void delete_standard_memory(char* addr, size_t size) {
78
79  // there are no persistent external resources to cleanup for standard
80  // memory. since DestroyJavaVM does not support unloading of the JVM,
81  // cleanup of the memory resource is not performed. The memory will be
82  // reclaimed by the OS upon termination of the process.
83  //
84  return;
85}
86
87// save the specified memory region to the given file
88//
89// Note: this function might be called from signal handler (by os::abort()),
90// don't allocate heap memory.
91//
92static void save_memory_to_file(char* addr, size_t size) {
93
94 const char* destfile = PerfMemory::get_perfdata_file_path();
95 assert(destfile[0] != '\0', "invalid PerfData file path");
96
97  int result;
98
99  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
100              result);;
101  if (result == OS_ERR) {
102    if (PrintMiscellaneous && Verbose) {
103      warning("Could not create Perfdata save file: %s: %s\n",
104              destfile, os::strerror(errno));
105    }
106  } else {
107    int fd = result;
108
109    for (size_t remaining = size; remaining > 0;) {
110
111      RESTARTABLE(::write(fd, addr, remaining), result);
112      if (result == OS_ERR) {
113        if (PrintMiscellaneous && Verbose) {
114          warning("Could not write Perfdata save file: %s: %s\n",
115                  destfile, os::strerror(errno));
116        }
117        break;
118      }
119
120      remaining -= (size_t)result;
121      addr += result;
122    }
123
124    result = ::close(fd);
125    if (PrintMiscellaneous && Verbose) {
126      if (result == OS_ERR) {
127        warning("Could not close %s: %s\n", destfile, os::strerror(errno));
128      }
129    }
130  }
131  FREE_C_HEAP_ARRAY(char, destfile);
132}
133
134
135// Shared Memory Implementation Details
136
137// Note: the solaris and linux shared memory implementation uses the mmap
138// interface with a backing store file to implement named shared memory.
139// Using the file system as the name space for shared memory allows a
140// common name space to be supported across a variety of platforms. It
141// also provides a name space that Java applications can deal with through
142// simple file apis.
143//
144// The solaris and linux implementations store the backing store file in
145// a user specific temporary directory located in the /tmp file system,
146// which is always a local file system and is sometimes a RAM based file
147// system.
148
149// return the user specific temporary directory name.
150//
151// the caller is expected to free the allocated memory.
152//
153static char* get_user_tmp_dir(const char* user) {
154
155  const char* tmpdir = os::get_temp_directory();
156  const char* perfdir = PERFDATA_NAME;
157  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
158  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
159
160  // construct the path name to user specific tmp directory
161  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
162
163  return dirname;
164}
165
166// convert the given file name into a process id. if the file
167// does not meet the file naming constraints, return 0.
168//
169static pid_t filename_to_pid(const char* filename) {
170
171  // a filename that doesn't begin with a digit is not a
172  // candidate for conversion.
173  //
174  if (!isdigit(*filename)) {
175    return 0;
176  }
177
178  // check if file name can be converted to an integer without
179  // any leftover characters.
180  //
181  char* remainder = NULL;
182  errno = 0;
183  pid_t pid = (pid_t)strtol(filename, &remainder, 10);
184
185  if (errno != 0) {
186    return 0;
187  }
188
189  // check for left over characters. If any, then the filename is
190  // not a candidate for conversion.
191  //
192  if (remainder != NULL && *remainder != '\0') {
193    return 0;
194  }
195
196  // successful conversion, return the pid
197  return pid;
198}
199
200
201// Check if the given statbuf is considered a secure directory for
202// the backing store files. Returns true if the directory is considered
203// a secure location. Returns false if the statbuf is a symbolic link or
204// if an error occurred.
205//
206static bool is_statbuf_secure(struct stat *statp) {
207  if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
208    // The path represents a link or some non-directory file type,
209    // which is not what we expected. Declare it insecure.
210    //
211    return false;
212  }
213  // We have an existing directory, check if the permissions are safe.
214  //
215  if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
216    // The directory is open for writing and could be subjected
217    // to a symlink or a hard link attack. Declare it insecure.
218    //
219    return false;
220  }
221  // If user is not root then see if the uid of the directory matches the effective uid of the process.
222  uid_t euid = geteuid();
223  if ((euid != 0) && (statp->st_uid != euid)) {
224    // The directory was not created by this user, declare it insecure.
225    //
226    return false;
227  }
228  return true;
229}
230
231
232// Check if the given path is considered a secure directory for
233// the backing store files. Returns true if the directory exists
234// and is considered a secure location. Returns false if the path
235// is a symbolic link or if an error occurred.
236//
237static bool is_directory_secure(const char* path) {
238  struct stat statbuf;
239  int result = 0;
240
241  RESTARTABLE(::lstat(path, &statbuf), result);
242  if (result == OS_ERR) {
243    return false;
244  }
245
246  // The path exists, see if it is secure.
247  return is_statbuf_secure(&statbuf);
248}
249
250
251// Check if the given directory file descriptor is considered a secure
252// directory for the backing store files. Returns true if the directory
253// exists and is considered a secure location. Returns false if the path
254// is a symbolic link or if an error occurred.
255//
256static bool is_dirfd_secure(int dir_fd) {
257  struct stat statbuf;
258  int result = 0;
259
260  RESTARTABLE(::fstat(dir_fd, &statbuf), result);
261  if (result == OS_ERR) {
262    return false;
263  }
264
265  // The path exists, now check its mode.
266  return is_statbuf_secure(&statbuf);
267}
268
269
270// Check to make sure fd1 and fd2 are referencing the same file system object.
271//
272static bool is_same_fsobject(int fd1, int fd2) {
273  struct stat statbuf1;
274  struct stat statbuf2;
275  int result = 0;
276
277  RESTARTABLE(::fstat(fd1, &statbuf1), result);
278  if (result == OS_ERR) {
279    return false;
280  }
281  RESTARTABLE(::fstat(fd2, &statbuf2), result);
282  if (result == OS_ERR) {
283    return false;
284  }
285
286  if ((statbuf1.st_ino == statbuf2.st_ino) &&
287      (statbuf1.st_dev == statbuf2.st_dev)) {
288    return true;
289  } else {
290    return false;
291  }
292}
293
294
295// Open the directory of the given path and validate it.
296// Return a DIR * of the open directory.
297//
298static DIR *open_directory_secure(const char* dirname) {
299  // Open the directory using open() so that it can be verified
300  // to be secure by calling is_dirfd_secure(), opendir() and then check
301  // to see if they are the same file system object.  This method does not
302  // introduce a window of opportunity for the directory to be attacked that
303  // calling opendir() and is_directory_secure() does.
304  int result;
305  DIR *dirp = NULL;
306  RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
307  if (result == OS_ERR) {
308    if (PrintMiscellaneous && Verbose) {
309      if (errno == ELOOP) {
310        warning("directory %s is a symlink and is not secure\n", dirname);
311      } else {
312        warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
313      }
314    }
315    return dirp;
316  }
317  int fd = result;
318
319  // Determine if the open directory is secure.
320  if (!is_dirfd_secure(fd)) {
321    // The directory is not a secure directory.
322    os::close(fd);
323    return dirp;
324  }
325
326  // Open the directory.
327  dirp = ::opendir(dirname);
328  if (dirp == NULL) {
329    // The directory doesn't exist, close fd and return.
330    os::close(fd);
331    return dirp;
332  }
333
334  // Check to make sure fd and dirp are referencing the same file system object.
335  if (!is_same_fsobject(fd, dirfd(dirp))) {
336    // The directory is not secure.
337    os::close(fd);
338    os::closedir(dirp);
339    dirp = NULL;
340    return dirp;
341  }
342
343  // Close initial open now that we know directory is secure
344  os::close(fd);
345
346  return dirp;
347}
348
349// NOTE: The code below uses fchdir(), open() and unlink() because
350// fdopendir(), openat() and unlinkat() are not supported on all
351// versions.  Once the support for fdopendir(), openat() and unlinkat()
352// is available on all supported versions the code can be changed
353// to use these functions.
354
355// Open the directory of the given path, validate it and set the
356// current working directory to it.
357// Return a DIR * of the open directory and the saved cwd fd.
358//
359static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
360
361  // Open the directory.
362  DIR* dirp = open_directory_secure(dirname);
363  if (dirp == NULL) {
364    // Directory doesn't exist or is insecure, so there is nothing to cleanup.
365    return dirp;
366  }
367  int fd = dirfd(dirp);
368
369  // Open a fd to the cwd and save it off.
370  int result;
371  RESTARTABLE(::open(".", O_RDONLY), result);
372  if (result == OS_ERR) {
373    *saved_cwd_fd = -1;
374  } else {
375    *saved_cwd_fd = result;
376  }
377
378  // Set the current directory to dirname by using the fd of the directory and
379  // handle errors, otherwise shared memory files will be created in cwd.
380  result = fchdir(fd);
381  if (result == OS_ERR) {
382    if (PrintMiscellaneous && Verbose) {
383      warning("could not change to directory %s", dirname);
384    }
385    if (*saved_cwd_fd != -1) {
386      ::close(*saved_cwd_fd);
387      *saved_cwd_fd = -1;
388    }
389    // Close the directory.
390    os::closedir(dirp);
391    return NULL;
392  } else {
393    return dirp;
394  }
395}
396
397// Close the directory and restore the current working directory.
398//
399static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
400
401  int result;
402  // If we have a saved cwd change back to it and close the fd.
403  if (saved_cwd_fd != -1) {
404    result = fchdir(saved_cwd_fd);
405    ::close(saved_cwd_fd);
406  }
407
408  // Close the directory.
409  os::closedir(dirp);
410}
411
412// Check if the given file descriptor is considered a secure.
413//
414static bool is_file_secure(int fd, const char *filename) {
415
416  int result;
417  struct stat statbuf;
418
419  // Determine if the file is secure.
420  RESTARTABLE(::fstat(fd, &statbuf), result);
421  if (result == OS_ERR) {
422    if (PrintMiscellaneous && Verbose) {
423      warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
424    }
425    return false;
426  }
427  if (statbuf.st_nlink > 1) {
428    // A file with multiple links is not expected.
429    if (PrintMiscellaneous && Verbose) {
430      warning("file %s has multiple links\n", filename);
431    }
432    return false;
433  }
434  return true;
435}
436
437
438// return the user name for the given user id
439//
440// the caller is expected to free the allocated memory.
441//
442static char* get_user_name(uid_t uid) {
443
444  struct passwd pwent;
445
446  // determine the max pwbuf size from sysconf, and hardcode
447  // a default if this not available through sysconf.
448  //
449  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
450  if (bufsize == -1)
451    bufsize = 1024;
452
453  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
454
455  // POSIX interface to getpwuid_r is used on LINUX
456  struct passwd* p;
457  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
458
459  if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
460    if (PrintMiscellaneous && Verbose) {
461      if (result != 0) {
462        warning("Could not retrieve passwd entry: %s\n",
463                os::strerror(result));
464      }
465      else if (p == NULL) {
466        // this check is added to protect against an observed problem
467        // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
468        // indicating success, but has p == NULL. This was observed when
469        // inserting a file descriptor exhaustion fault prior to the call
470        // getpwuid_r() call. In this case, error is set to the appropriate
471        // error condition, but this is undocumented behavior. This check
472        // is safe under any condition, but the use of errno in the output
473        // message may result in an erroneous message.
474        // Bug Id 89052 was opened with RedHat.
475        //
476        warning("Could not retrieve passwd entry: %s\n",
477                os::strerror(errno));
478      }
479      else {
480        warning("Could not determine user name: %s\n",
481                p->pw_name == NULL ? "pw_name = NULL" :
482                                     "pw_name zero length");
483      }
484    }
485    FREE_C_HEAP_ARRAY(char, pwbuf);
486    return NULL;
487  }
488
489  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
490  strcpy(user_name, p->pw_name);
491
492  FREE_C_HEAP_ARRAY(char, pwbuf);
493  return user_name;
494}
495
496// return the name of the user that owns the process identified by vmid.
497//
498// This method uses a slow directory search algorithm to find the backing
499// store file for the specified vmid and returns the user name, as determined
500// by the user name suffix of the hsperfdata_<username> directory name.
501//
502// the caller is expected to free the allocated memory.
503//
504static char* get_user_name_slow(int vmid, TRAPS) {
505
506  // short circuit the directory search if the process doesn't even exist.
507  if (kill(vmid, 0) == OS_ERR) {
508    if (errno == ESRCH) {
509      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
510                  "Process not found");
511    }
512    else /* EPERM */ {
513      THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
514    }
515  }
516
517  // directory search
518  char* oldest_user = NULL;
519  time_t oldest_ctime = 0;
520
521  const char* tmpdirname = os::get_temp_directory();
522
523  // open the temp directory
524  DIR* tmpdirp = os::opendir(tmpdirname);
525
526  if (tmpdirp == NULL) {
527    // Cannot open the directory to get the user name, return.
528    return NULL;
529  }
530
531  // for each entry in the directory that matches the pattern hsperfdata_*,
532  // open the directory and check if the file for the given vmid exists.
533  // The file with the expected name and the latest creation date is used
534  // to determine the user name for the process id.
535  //
536  struct dirent* dentry;
537  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
538  errno = 0;
539  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
540
541    // check if the directory entry is a hsperfdata file
542    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
543      continue;
544    }
545
546    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
547                     strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
548    strcpy(usrdir_name, tmpdirname);
549    strcat(usrdir_name, "/");
550    strcat(usrdir_name, dentry->d_name);
551
552    // open the user directory
553    DIR* subdirp = open_directory_secure(usrdir_name);
554
555    if (subdirp == NULL) {
556      FREE_C_HEAP_ARRAY(char, usrdir_name);
557      continue;
558    }
559
560    // Since we don't create the backing store files in directories
561    // pointed to by symbolic links, we also don't follow them when
562    // looking for the files. We check for a symbolic link after the
563    // call to opendir in order to eliminate a small window where the
564    // symlink can be exploited.
565    //
566    if (!is_directory_secure(usrdir_name)) {
567      FREE_C_HEAP_ARRAY(char, usrdir_name);
568      os::closedir(subdirp);
569      continue;
570    }
571
572    struct dirent* udentry;
573    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
574    errno = 0;
575    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
576
577      if (filename_to_pid(udentry->d_name) == vmid) {
578        struct stat statbuf;
579        int result;
580
581        char* filename = NEW_C_HEAP_ARRAY(char,
582                   strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
583
584        strcpy(filename, usrdir_name);
585        strcat(filename, "/");
586        strcat(filename, udentry->d_name);
587
588        // don't follow symbolic links for the file
589        RESTARTABLE(::lstat(filename, &statbuf), result);
590        if (result == OS_ERR) {
591           FREE_C_HEAP_ARRAY(char, filename);
592           continue;
593        }
594
595        // skip over files that are not regular files.
596        if (!S_ISREG(statbuf.st_mode)) {
597          FREE_C_HEAP_ARRAY(char, filename);
598          continue;
599        }
600
601        // compare and save filename with latest creation time
602        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
603
604          if (statbuf.st_ctime > oldest_ctime) {
605            char* user = strchr(dentry->d_name, '_') + 1;
606
607            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
608            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
609
610            strcpy(oldest_user, user);
611            oldest_ctime = statbuf.st_ctime;
612          }
613        }
614
615        FREE_C_HEAP_ARRAY(char, filename);
616      }
617    }
618    os::closedir(subdirp);
619    FREE_C_HEAP_ARRAY(char, udbuf);
620    FREE_C_HEAP_ARRAY(char, usrdir_name);
621  }
622  os::closedir(tmpdirp);
623  FREE_C_HEAP_ARRAY(char, tdbuf);
624
625  return(oldest_user);
626}
627
628// return the name of the user that owns the JVM indicated by the given vmid.
629//
630static char* get_user_name(int vmid, TRAPS) {
631  return get_user_name_slow(vmid, THREAD);
632}
633
634// return the file name of the backing store file for the named
635// shared memory region for the given user name and vmid.
636//
637// the caller is expected to free the allocated memory.
638//
639static char* get_sharedmem_filename(const char* dirname, int vmid) {
640
641  // add 2 for the file separator and a null terminator.
642  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
643
644  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
645  snprintf(name, nbytes, "%s/%d", dirname, vmid);
646
647  return name;
648}
649
650
651// remove file
652//
653// this method removes the file specified by the given path
654//
655static void remove_file(const char* path) {
656
657  int result;
658
659  // if the file is a directory, the following unlink will fail. since
660  // we don't expect to find directories in the user temp directory, we
661  // won't try to handle this situation. even if accidentially or
662  // maliciously planted, the directory's presence won't hurt anything.
663  //
664  RESTARTABLE(::unlink(path), result);
665  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
666    if (errno != ENOENT) {
667      warning("Could not unlink shared memory backing"
668              " store file %s : %s\n", path, os::strerror(errno));
669    }
670  }
671}
672
673
674// cleanup stale shared memory resources
675//
676// This method attempts to remove all stale shared memory files in
677// the named user temporary directory. It scans the named directory
678// for files matching the pattern ^$[0-9]*$. For each file found, the
679// process id is extracted from the file name and a test is run to
680// determine if the process is alive. If the process is not alive,
681// any stale file resources are removed.
682//
683static void cleanup_sharedmem_resources(const char* dirname) {
684
685  int saved_cwd_fd;
686  // open the directory
687  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
688  if (dirp == NULL) {
689    // directory doesn't exist or is insecure, so there is nothing to cleanup
690    return;
691  }
692
693  // for each entry in the directory that matches the expected file
694  // name pattern, determine if the file resources are stale and if
695  // so, remove the file resources. Note, instrumented HotSpot processes
696  // for this user may start and/or terminate during this search and
697  // remove or create new files in this directory. The behavior of this
698  // loop under these conditions is dependent upon the implementation of
699  // opendir/readdir.
700  //
701  struct dirent* entry;
702  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
703
704  errno = 0;
705  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
706
707    pid_t pid = filename_to_pid(entry->d_name);
708
709    if (pid == 0) {
710
711      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
712        // attempt to remove all unexpected files, except "." and ".."
713        unlink(entry->d_name);
714      }
715
716      errno = 0;
717      continue;
718    }
719
720    // we now have a file name that converts to a valid integer
721    // that could represent a process id . if this process id
722    // matches the current process id or the process is not running,
723    // then remove the stale file resources.
724    //
725    // process liveness is detected by sending signal number 0 to
726    // the process id (see kill(2)). if kill determines that the
727    // process does not exist, then the file resources are removed.
728    // if kill determines that that we don't have permission to
729    // signal the process, then the file resources are assumed to
730    // be stale and are removed because the resources for such a
731    // process should be in a different user specific directory.
732    //
733    if ((pid == os::current_process_id()) ||
734        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
735        unlink(entry->d_name);
736    }
737    errno = 0;
738  }
739
740  // close the directory and reset the current working directory
741  close_directory_secure_cwd(dirp, saved_cwd_fd);
742
743  FREE_C_HEAP_ARRAY(char, dbuf);
744}
745
746// make the user specific temporary directory. Returns true if
747// the directory exists and is secure upon return. Returns false
748// if the directory exists but is either a symlink, is otherwise
749// insecure, or if an error occurred.
750//
751static bool make_user_tmp_dir(const char* dirname) {
752
753  // create the directory with 0755 permissions. note that the directory
754  // will be owned by euid::egid, which may not be the same as uid::gid.
755  //
756  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
757    if (errno == EEXIST) {
758      // The directory already exists and was probably created by another
759      // JVM instance. However, this could also be the result of a
760      // deliberate symlink. Verify that the existing directory is safe.
761      //
762      if (!is_directory_secure(dirname)) {
763        // directory is not secure
764        if (PrintMiscellaneous && Verbose) {
765          warning("%s directory is insecure\n", dirname);
766        }
767        return false;
768      }
769    }
770    else {
771      // we encountered some other failure while attempting
772      // to create the directory
773      //
774      if (PrintMiscellaneous && Verbose) {
775        warning("could not create directory %s: %s\n",
776                dirname, os::strerror(errno));
777      }
778      return false;
779    }
780  }
781  return true;
782}
783
784// create the shared memory file resources
785//
786// This method creates the shared memory file with the given size
787// This method also creates the user specific temporary directory, if
788// it does not yet exist.
789//
790static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
791
792  // make the user temporary directory
793  if (!make_user_tmp_dir(dirname)) {
794    // could not make/find the directory or the found directory
795    // was not secure
796    return -1;
797  }
798
799  int saved_cwd_fd;
800  // open the directory and set the current working directory to it
801  DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
802  if (dirp == NULL) {
803    // Directory doesn't exist or is insecure, so cannot create shared
804    // memory file.
805    return -1;
806  }
807
808  // Open the filename in the current directory.
809  // Cannot use O_TRUNC here; truncation of an existing file has to happen
810  // after the is_file_secure() check below.
811  int result;
812  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
813  if (result == OS_ERR) {
814    if (PrintMiscellaneous && Verbose) {
815      if (errno == ELOOP) {
816        warning("file %s is a symlink and is not secure\n", filename);
817      } else {
818        warning("could not create file %s: %s\n", filename, os::strerror(errno));
819      }
820    }
821    // close the directory and reset the current working directory
822    close_directory_secure_cwd(dirp, saved_cwd_fd);
823
824    return -1;
825  }
826  // close the directory and reset the current working directory
827  close_directory_secure_cwd(dirp, saved_cwd_fd);
828
829  // save the file descriptor
830  int fd = result;
831
832  // check to see if the file is secure
833  if (!is_file_secure(fd, filename)) {
834    ::close(fd);
835    return -1;
836  }
837
838  // truncate the file to get rid of any existing data
839  RESTARTABLE(::ftruncate(fd, (off_t)0), result);
840  if (result == OS_ERR) {
841    if (PrintMiscellaneous && Verbose) {
842      warning("could not truncate shared memory file: %s\n", os::strerror(errno));
843    }
844    ::close(fd);
845    return -1;
846  }
847  // set the file size
848  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
849  if (result == OS_ERR) {
850    if (PrintMiscellaneous && Verbose) {
851      warning("could not set shared memory file size: %s\n", os::strerror(errno));
852    }
853    ::close(fd);
854    return -1;
855  }
856
857  // Verify that we have enough disk space for this file.
858  // We'll get random SIGBUS crashes on memory accesses if
859  // we don't.
860
861  for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
862    int zero_int = 0;
863    result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
864    if (result == -1 ) break;
865    RESTARTABLE(::write(fd, &zero_int, 1), result);
866    if (result != 1) {
867      if (errno == ENOSPC) {
868        warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
869      }
870      break;
871    }
872  }
873
874  if (result != -1) {
875    return fd;
876  } else {
877    ::close(fd);
878    return -1;
879  }
880}
881
882// open the shared memory file for the given user and vmid. returns
883// the file descriptor for the open file or -1 if the file could not
884// be opened.
885//
886static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
887
888  // open the file
889  int result;
890  RESTARTABLE(::open(filename, oflags), result);
891  if (result == OS_ERR) {
892    if (errno == ENOENT) {
893      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
894                  "Process not found", OS_ERR);
895    }
896    else if (errno == EACCES) {
897      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
898                  "Permission denied", OS_ERR);
899    }
900    else {
901      THROW_MSG_(vmSymbols::java_io_IOException(), os::strerror(errno), OS_ERR);
902    }
903  }
904  int fd = result;
905
906  // check to see if the file is secure
907  if (!is_file_secure(fd, filename)) {
908    ::close(fd);
909    return -1;
910  }
911
912  return fd;
913}
914
915// create a named shared memory region. returns the address of the
916// memory region on success or NULL on failure. A return value of
917// NULL will ultimately disable the shared memory feature.
918//
919// On Solaris and Linux, the name space for shared memory objects
920// is the file system name space.
921//
922// A monitoring application attaching to a JVM does not need to know
923// the file system name of the shared memory object. However, it may
924// be convenient for applications to discover the existence of newly
925// created and terminating JVMs by watching the file system name space
926// for files being created or removed.
927//
928static char* mmap_create_shared(size_t size) {
929
930  int result;
931  int fd;
932  char* mapAddress;
933
934  int vmid = os::current_process_id();
935
936  char* user_name = get_user_name(geteuid());
937
938  if (user_name == NULL)
939    return NULL;
940
941  char* dirname = get_user_tmp_dir(user_name);
942  char* filename = get_sharedmem_filename(dirname, vmid);
943  // get the short filename
944  char* short_filename = strrchr(filename, '/');
945  if (short_filename == NULL) {
946    short_filename = filename;
947  } else {
948    short_filename++;
949  }
950
951  // cleanup any stale shared memory files
952  cleanup_sharedmem_resources(dirname);
953
954  assert(((size > 0) && (size % os::vm_page_size() == 0)),
955         "unexpected PerfMemory region size");
956
957  fd = create_sharedmem_resources(dirname, short_filename, size);
958
959  FREE_C_HEAP_ARRAY(char, user_name);
960  FREE_C_HEAP_ARRAY(char, dirname);
961
962  if (fd == -1) {
963    FREE_C_HEAP_ARRAY(char, filename);
964    return NULL;
965  }
966
967  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
968
969  result = ::close(fd);
970  assert(result != OS_ERR, "could not close file");
971
972  if (mapAddress == MAP_FAILED) {
973    if (PrintMiscellaneous && Verbose) {
974      warning("mmap failed -  %s\n", os::strerror(errno));
975    }
976    remove_file(filename);
977    FREE_C_HEAP_ARRAY(char, filename);
978    return NULL;
979  }
980
981  // save the file name for use in delete_shared_memory()
982  backing_store_file_name = filename;
983
984  // clear the shared memory region
985  (void)::memset((void*) mapAddress, 0, size);
986
987  // it does not go through os api, the operation has to record from here
988  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
989
990  return mapAddress;
991}
992
993// release a named shared memory region
994//
995static void unmap_shared(char* addr, size_t bytes) {
996  os::release_memory(addr, bytes);
997}
998
999// create the PerfData memory region in shared memory.
1000//
1001static char* create_shared_memory(size_t size) {
1002
1003  // create the shared memory region.
1004  return mmap_create_shared(size);
1005}
1006
1007// delete the shared PerfData memory region
1008//
1009static void delete_shared_memory(char* addr, size_t size) {
1010
1011  // cleanup the persistent shared memory resources. since DestroyJavaVM does
1012  // not support unloading of the JVM, unmapping of the memory resource is
1013  // not performed. The memory will be reclaimed by the OS upon termination of
1014  // the process. The backing store file is deleted from the file system.
1015
1016  assert(!PerfDisableSharedMem, "shouldn't be here");
1017
1018  if (backing_store_file_name != NULL) {
1019    remove_file(backing_store_file_name);
1020    // Don't.. Free heap memory could deadlock os::abort() if it is called
1021    // from signal handler. OS will reclaim the heap memory.
1022    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1023    backing_store_file_name = NULL;
1024  }
1025}
1026
1027// return the size of the file for the given file descriptor
1028// or 0 if it is not a valid size for a shared memory file
1029//
1030static size_t sharedmem_filesize(int fd, TRAPS) {
1031
1032  struct stat statbuf;
1033  int result;
1034
1035  RESTARTABLE(::fstat(fd, &statbuf), result);
1036  if (result == OS_ERR) {
1037    if (PrintMiscellaneous && Verbose) {
1038      warning("fstat failed: %s\n", os::strerror(errno));
1039    }
1040    THROW_MSG_0(vmSymbols::java_io_IOException(),
1041                "Could not determine PerfMemory size");
1042  }
1043
1044  if ((statbuf.st_size == 0) ||
1045     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1046    THROW_MSG_0(vmSymbols::java_lang_Exception(),
1047                "Invalid PerfMemory size");
1048  }
1049
1050  return (size_t)statbuf.st_size;
1051}
1052
1053// attach to a named shared memory region.
1054//
1055static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1056
1057  char* mapAddress;
1058  int result;
1059  int fd;
1060  size_t size = 0;
1061  const char* luser = NULL;
1062
1063  int mmap_prot;
1064  int file_flags;
1065
1066  ResourceMark rm;
1067
1068  // map the high level access mode to the appropriate permission
1069  // constructs for the file and the shared memory mapping.
1070  if (mode == PerfMemory::PERF_MODE_RO) {
1071    mmap_prot = PROT_READ;
1072    file_flags = O_RDONLY | O_NOFOLLOW;
1073  }
1074  else if (mode == PerfMemory::PERF_MODE_RW) {
1075#ifdef LATER
1076    mmap_prot = PROT_READ | PROT_WRITE;
1077    file_flags = O_RDWR | O_NOFOLLOW;
1078#else
1079    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1080              "Unsupported access mode");
1081#endif
1082  }
1083  else {
1084    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1085              "Illegal access mode");
1086  }
1087
1088  if (user == NULL || strlen(user) == 0) {
1089    luser = get_user_name(vmid, CHECK);
1090  }
1091  else {
1092    luser = user;
1093  }
1094
1095  if (luser == NULL) {
1096    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1097              "Could not map vmid to user Name");
1098  }
1099
1100  char* dirname = get_user_tmp_dir(luser);
1101
1102  // since we don't follow symbolic links when creating the backing
1103  // store file, we don't follow them when attaching either.
1104  //
1105  if (!is_directory_secure(dirname)) {
1106    FREE_C_HEAP_ARRAY(char, dirname);
1107    if (luser != user) {
1108      FREE_C_HEAP_ARRAY(char, luser);
1109    }
1110    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1111              "Process not found");
1112  }
1113
1114  char* filename = get_sharedmem_filename(dirname, vmid);
1115
1116  // copy heap memory to resource memory. the open_sharedmem_file
1117  // method below need to use the filename, but could throw an
1118  // exception. using a resource array prevents the leak that
1119  // would otherwise occur.
1120  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1121  strcpy(rfilename, filename);
1122
1123  // free the c heap resources that are no longer needed
1124  if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1125  FREE_C_HEAP_ARRAY(char, dirname);
1126  FREE_C_HEAP_ARRAY(char, filename);
1127
1128  // open the shared memory file for the give vmid
1129  fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1130
1131  if (fd == OS_ERR) {
1132    return;
1133  }
1134
1135  if (HAS_PENDING_EXCEPTION) {
1136    ::close(fd);
1137    return;
1138  }
1139
1140  if (*sizep == 0) {
1141    size = sharedmem_filesize(fd, CHECK);
1142  } else {
1143    size = *sizep;
1144  }
1145
1146  assert(size > 0, "unexpected size <= 0");
1147
1148  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1149
1150  result = ::close(fd);
1151  assert(result != OS_ERR, "could not close file");
1152
1153  if (mapAddress == MAP_FAILED) {
1154    if (PrintMiscellaneous && Verbose) {
1155      warning("mmap failed: %s\n", os::strerror(errno));
1156    }
1157    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1158              "Could not map PerfMemory");
1159  }
1160
1161  // it does not go through os api, the operation has to record from here
1162  MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1163
1164  *addr = mapAddress;
1165  *sizep = size;
1166
1167  if (PerfTraceMemOps) {
1168    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1169               INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
1170  }
1171}
1172
1173
1174
1175
1176// create the PerfData memory region
1177//
1178// This method creates the memory region used to store performance
1179// data for the JVM. The memory may be created in standard or
1180// shared memory.
1181//
1182void PerfMemory::create_memory_region(size_t size) {
1183
1184  if (PerfDisableSharedMem) {
1185    // do not share the memory for the performance data.
1186    _start = create_standard_memory(size);
1187  }
1188  else {
1189    _start = create_shared_memory(size);
1190    if (_start == NULL) {
1191
1192      // creation of the shared memory region failed, attempt
1193      // to create a contiguous, non-shared memory region instead.
1194      //
1195      if (PrintMiscellaneous && Verbose) {
1196        warning("Reverting to non-shared PerfMemory region.\n");
1197      }
1198      PerfDisableSharedMem = true;
1199      _start = create_standard_memory(size);
1200    }
1201  }
1202
1203  if (_start != NULL) _capacity = size;
1204
1205}
1206
1207// delete the PerfData memory region
1208//
1209// This method deletes the memory region used to store performance
1210// data for the JVM. The memory region indicated by the <address, size>
1211// tuple will be inaccessible after a call to this method.
1212//
1213void PerfMemory::delete_memory_region() {
1214
1215  assert((start() != NULL && capacity() > 0), "verify proper state");
1216
1217  // If user specifies PerfDataSaveFile, it will save the performance data
1218  // to the specified file name no matter whether PerfDataSaveToFile is specified
1219  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1220  // -XX:+PerfDataSaveToFile.
1221  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1222    save_memory_to_file(start(), capacity());
1223  }
1224
1225  if (PerfDisableSharedMem) {
1226    delete_standard_memory(start(), capacity());
1227  }
1228  else {
1229    delete_shared_memory(start(), capacity());
1230  }
1231}
1232
1233// attach to the PerfData memory region for another JVM
1234//
1235// This method returns an <address, size> tuple that points to
1236// a memory buffer that is kept reasonably synchronized with
1237// the PerfData memory region for the indicated JVM. This
1238// buffer may be kept in synchronization via shared memory
1239// or some other mechanism that keeps the buffer updated.
1240//
1241// If the JVM chooses not to support the attachability feature,
1242// this method should throw an UnsupportedOperation exception.
1243//
1244// This implementation utilizes named shared memory to map
1245// the indicated process's PerfData memory region into this JVMs
1246// address space.
1247//
1248void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1249
1250  if (vmid == 0 || vmid == os::current_process_id()) {
1251     *addrp = start();
1252     *sizep = capacity();
1253     return;
1254  }
1255
1256  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1257}
1258
1259// detach from the PerfData memory region of another JVM
1260//
1261// This method detaches the PerfData memory region of another
1262// JVM, specified as an <address, size> tuple of a buffer
1263// in this process's address space. This method may perform
1264// arbitrary actions to accomplish the detachment. The memory
1265// region specified by <address, size> will be inaccessible after
1266// a call to this method.
1267//
1268// If the JVM chooses not to support the attachability feature,
1269// this method should throw an UnsupportedOperation exception.
1270//
1271// This implementation utilizes named shared memory to detach
1272// the indicated process's PerfData memory region from this
1273// process's address space.
1274//
1275void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1276
1277  assert(addr != 0, "address sanity check");
1278  assert(bytes > 0, "capacity sanity check");
1279
1280  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1281    // prevent accidental detachment of this process's PerfMemory region
1282    return;
1283  }
1284
1285  unmap_shared(addr, bytes);
1286}
1287