os_linux.cpp revision 7882:694f5e5bb982
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/macros.hpp"
72#include "utilities/vmError.hpp"
73
74// put OS-includes here
75# include <sys/types.h>
76# include <sys/mman.h>
77# include <sys/stat.h>
78# include <sys/select.h>
79# include <pthread.h>
80# include <signal.h>
81# include <errno.h>
82# include <dlfcn.h>
83# include <stdio.h>
84# include <unistd.h>
85# include <sys/resource.h>
86# include <pthread.h>
87# include <sys/stat.h>
88# include <sys/time.h>
89# include <sys/times.h>
90# include <sys/utsname.h>
91# include <sys/socket.h>
92# include <sys/wait.h>
93# include <pwd.h>
94# include <poll.h>
95# include <semaphore.h>
96# include <fcntl.h>
97# include <string.h>
98# include <syscall.h>
99# include <sys/sysinfo.h>
100# include <gnu/libc-version.h>
101# include <sys/ipc.h>
102# include <sys/shm.h>
103# include <link.h>
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107
108PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
109
110// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
111// getrusage() is prepared to handle the associated failure.
112#ifndef RUSAGE_THREAD
113  #define RUSAGE_THREAD   (1)               /* only the calling thread */
114#endif
115
116#define MAX_PATH    (2 * K)
117
118#define MAX_SECS 100000000
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Linux::_physical_memory = 0;
127
128address   os::Linux::_initial_thread_stack_bottom = NULL;
129uintptr_t os::Linux::_initial_thread_stack_size   = 0;
130
131int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
133int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
134Mutex* os::Linux::_createThread_lock = NULL;
135pthread_t os::Linux::_main_thread;
136int os::Linux::_page_size = -1;
137const int os::Linux::_vm_default_page_size = (8 * K);
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143pthread_condattr_t os::Linux::_condattr[1];
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161// Used to protect dlsym() calls
162static pthread_mutex_t dl_mutex;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187////////////////////////////////////////////////////////////////////////////////
188// environment support
189
190bool os::getenv(const char* name, char* buf, int len) {
191  const char* val = ::getenv(name);
192  if (val != NULL && strlen(val) < (size_t)len) {
193    strcpy(buf, val);
194    return true;
195  }
196  if (len > 0) buf[0] = 0;  // return a null string
197  return false;
198}
199
200
201// Return true if user is running as root.
202
203bool os::have_special_privileges() {
204  static bool init = false;
205  static bool privileges = false;
206  if (!init) {
207    privileges = (getuid() != geteuid()) || (getgid() != getegid());
208    init = true;
209  }
210  return privileges;
211}
212
213
214#ifndef SYS_gettid
215// i386: 224, ia64: 1105, amd64: 186, sparc 143
216  #ifdef __ia64__
217    #define SYS_gettid 1105
218  #elif __i386__
219    #define SYS_gettid 224
220  #elif __amd64__
221    #define SYS_gettid 186
222  #elif __sparc__
223    #define SYS_gettid 143
224  #else
225    #error define gettid for the arch
226  #endif
227#endif
228
229// Cpu architecture string
230#if   defined(ZERO)
231static char cpu_arch[] = ZERO_LIBARCH;
232#elif defined(IA64)
233static char cpu_arch[] = "ia64";
234#elif defined(IA32)
235static char cpu_arch[] = "i386";
236#elif defined(AMD64)
237static char cpu_arch[] = "amd64";
238#elif defined(ARM)
239static char cpu_arch[] = "arm";
240#elif defined(PPC32)
241static char cpu_arch[] = "ppc";
242#elif defined(PPC64)
243static char cpu_arch[] = "ppc64";
244#elif defined(SPARC)
245  #ifdef _LP64
246static char cpu_arch[] = "sparcv9";
247  #else
248static char cpu_arch[] = "sparc";
249  #endif
250#elif defined(AARCH64)
251static char cpu_arch[] = "aarch64";
252#else
253  #error Add appropriate cpu_arch setting
254#endif
255
256
257// pid_t gettid()
258//
259// Returns the kernel thread id of the currently running thread. Kernel
260// thread id is used to access /proc.
261//
262// (Note that getpid() on LinuxThreads returns kernel thread id too; but
263// on NPTL, it returns the same pid for all threads, as required by POSIX.)
264//
265pid_t os::Linux::gettid() {
266  int rslt = syscall(SYS_gettid);
267  if (rslt == -1) {
268    // old kernel, no NPTL support
269    return getpid();
270  } else {
271    return (pid_t)rslt;
272  }
273}
274
275// Most versions of linux have a bug where the number of processors are
276// determined by looking at the /proc file system.  In a chroot environment,
277// the system call returns 1.  This causes the VM to act as if it is
278// a single processor and elide locking (see is_MP() call).
279static bool unsafe_chroot_detected = false;
280static const char *unstable_chroot_error = "/proc file system not found.\n"
281                     "Java may be unstable running multithreaded in a chroot "
282                     "environment on Linux when /proc filesystem is not mounted.";
283
284void os::Linux::initialize_system_info() {
285  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
286  if (processor_count() == 1) {
287    pid_t pid = os::Linux::gettid();
288    char fname[32];
289    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
290    FILE *fp = fopen(fname, "r");
291    if (fp == NULL) {
292      unsafe_chroot_detected = true;
293    } else {
294      fclose(fp);
295    }
296  }
297  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
298  assert(processor_count() > 0, "linux error");
299}
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
335  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
336#else
337  #define DEFAULT_LIBPATH "/lib:/usr/lib"
338#endif
339
340// Base path of extensions installed on the system.
341#define SYS_EXT_DIR     "/usr/java/packages"
342#define EXTENSIONS_DIR  "/lib/ext"
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    pslash = strrchr(buf, '/');
360    if (pslash != NULL) {
361      *pslash = '\0';            // Get rid of /libjvm.so.
362    }
363    pslash = strrchr(buf, '/');
364    if (pslash != NULL) {
365      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
366    }
367    Arguments::set_dll_dir(buf);
368
369    if (pslash != NULL) {
370      pslash = strrchr(buf, '/');
371      if (pslash != NULL) {
372        *pslash = '\0';          // Get rid of /<arch>.
373        pslash = strrchr(buf, '/');
374        if (pslash != NULL) {
375          *pslash = '\0';        // Get rid of /lib.
376        }
377      }
378    }
379    Arguments::set_java_home(buf);
380    set_boot_path('/', ':');
381  }
382
383  // Where to look for native libraries.
384  //
385  // Note: Due to a legacy implementation, most of the library path
386  // is set in the launcher. This was to accomodate linking restrictions
387  // on legacy Linux implementations (which are no longer supported).
388  // Eventually, all the library path setting will be done here.
389  //
390  // However, to prevent the proliferation of improperly built native
391  // libraries, the new path component /usr/java/packages is added here.
392  // Eventually, all the library path setting will be done here.
393  {
394    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
395    // should always exist (until the legacy problem cited above is
396    // addressed).
397    const char *v = ::getenv("LD_LIBRARY_PATH");
398    const char *v_colon = ":";
399    if (v == NULL) { v = ""; v_colon = ""; }
400    // That's +1 for the colon and +1 for the trailing '\0'.
401    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
402                                                     strlen(v) + 1 +
403                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
404                                                     mtInternal);
405    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
406    Arguments::set_library_path(ld_library_path);
407    FREE_C_HEAP_ARRAY(char, ld_library_path);
408  }
409
410  // Extensions directories.
411  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
412  Arguments::set_ext_dirs(buf);
413
414  FREE_C_HEAP_ARRAY(char, buf);
415
416#undef DEFAULT_LIBPATH
417#undef SYS_EXT_DIR
418#undef EXTENSIONS_DIR
419}
420
421////////////////////////////////////////////////////////////////////////////////
422// breakpoint support
423
424void os::breakpoint() {
425  BREAKPOINT;
426}
427
428extern "C" void breakpoint() {
429  // use debugger to set breakpoint here
430}
431
432////////////////////////////////////////////////////////////////////////////////
433// signal support
434
435debug_only(static bool signal_sets_initialized = false);
436static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
437
438bool os::Linux::is_sig_ignored(int sig) {
439  struct sigaction oact;
440  sigaction(sig, (struct sigaction*)NULL, &oact);
441  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
442                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
443  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
444    return true;
445  } else {
446    return false;
447  }
448}
449
450void os::Linux::signal_sets_init() {
451  // Should also have an assertion stating we are still single-threaded.
452  assert(!signal_sets_initialized, "Already initialized");
453  // Fill in signals that are necessarily unblocked for all threads in
454  // the VM. Currently, we unblock the following signals:
455  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
456  //                         by -Xrs (=ReduceSignalUsage));
457  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
458  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
459  // the dispositions or masks wrt these signals.
460  // Programs embedding the VM that want to use the above signals for their
461  // own purposes must, at this time, use the "-Xrs" option to prevent
462  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
463  // (See bug 4345157, and other related bugs).
464  // In reality, though, unblocking these signals is really a nop, since
465  // these signals are not blocked by default.
466  sigemptyset(&unblocked_sigs);
467  sigemptyset(&allowdebug_blocked_sigs);
468  sigaddset(&unblocked_sigs, SIGILL);
469  sigaddset(&unblocked_sigs, SIGSEGV);
470  sigaddset(&unblocked_sigs, SIGBUS);
471  sigaddset(&unblocked_sigs, SIGFPE);
472#if defined(PPC64)
473  sigaddset(&unblocked_sigs, SIGTRAP);
474#endif
475  sigaddset(&unblocked_sigs, SR_signum);
476
477  if (!ReduceSignalUsage) {
478    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
479      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
480      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
481    }
482    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
483      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
484      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
485    }
486    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
487      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
488      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
489    }
490  }
491  // Fill in signals that are blocked by all but the VM thread.
492  sigemptyset(&vm_sigs);
493  if (!ReduceSignalUsage) {
494    sigaddset(&vm_sigs, BREAK_SIGNAL);
495  }
496  debug_only(signal_sets_initialized = true);
497
498}
499
500// These are signals that are unblocked while a thread is running Java.
501// (For some reason, they get blocked by default.)
502sigset_t* os::Linux::unblocked_signals() {
503  assert(signal_sets_initialized, "Not initialized");
504  return &unblocked_sigs;
505}
506
507// These are the signals that are blocked while a (non-VM) thread is
508// running Java. Only the VM thread handles these signals.
509sigset_t* os::Linux::vm_signals() {
510  assert(signal_sets_initialized, "Not initialized");
511  return &vm_sigs;
512}
513
514// These are signals that are blocked during cond_wait to allow debugger in
515sigset_t* os::Linux::allowdebug_blocked_signals() {
516  assert(signal_sets_initialized, "Not initialized");
517  return &allowdebug_blocked_sigs;
518}
519
520void os::Linux::hotspot_sigmask(Thread* thread) {
521
522  //Save caller's signal mask before setting VM signal mask
523  sigset_t caller_sigmask;
524  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
525
526  OSThread* osthread = thread->osthread();
527  osthread->set_caller_sigmask(caller_sigmask);
528
529  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
530
531  if (!ReduceSignalUsage) {
532    if (thread->is_VM_thread()) {
533      // Only the VM thread handles BREAK_SIGNAL ...
534      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
535    } else {
536      // ... all other threads block BREAK_SIGNAL
537      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
538    }
539  }
540}
541
542//////////////////////////////////////////////////////////////////////////////
543// detecting pthread library
544
545void os::Linux::libpthread_init() {
546  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
547  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
548  // generic name for earlier versions.
549  // Define macros here so we can build HotSpot on old systems.
550#ifndef _CS_GNU_LIBC_VERSION
551  #define _CS_GNU_LIBC_VERSION 2
552#endif
553#ifndef _CS_GNU_LIBPTHREAD_VERSION
554  #define _CS_GNU_LIBPTHREAD_VERSION 3
555#endif
556
557  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
558  if (n > 0) {
559    char *str = (char *)malloc(n, mtInternal);
560    confstr(_CS_GNU_LIBC_VERSION, str, n);
561    os::Linux::set_glibc_version(str);
562  } else {
563    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
564    static char _gnu_libc_version[32];
565    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
566                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
567    os::Linux::set_glibc_version(_gnu_libc_version);
568  }
569
570  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
571  if (n > 0) {
572    char *str = (char *)malloc(n, mtInternal);
573    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
574    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
575    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
576    // is the case. LinuxThreads has a hard limit on max number of threads.
577    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
578    // On the other hand, NPTL does not have such a limit, sysconf()
579    // will return -1 and errno is not changed. Check if it is really NPTL.
580    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
581        strstr(str, "NPTL") &&
582        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
583      free(str);
584      os::Linux::set_libpthread_version("linuxthreads");
585    } else {
586      os::Linux::set_libpthread_version(str);
587    }
588  } else {
589    // glibc before 2.3.2 only has LinuxThreads.
590    os::Linux::set_libpthread_version("linuxthreads");
591  }
592
593  if (strstr(libpthread_version(), "NPTL")) {
594    os::Linux::set_is_NPTL();
595  } else {
596    os::Linux::set_is_LinuxThreads();
597  }
598
599  // LinuxThreads have two flavors: floating-stack mode, which allows variable
600  // stack size; and fixed-stack mode. NPTL is always floating-stack.
601  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
602    os::Linux::set_is_floating_stack();
603  }
604}
605
606/////////////////////////////////////////////////////////////////////////////
607// thread stack
608
609// Force Linux kernel to expand current thread stack. If "bottom" is close
610// to the stack guard, caller should block all signals.
611//
612// MAP_GROWSDOWN:
613//   A special mmap() flag that is used to implement thread stacks. It tells
614//   kernel that the memory region should extend downwards when needed. This
615//   allows early versions of LinuxThreads to only mmap the first few pages
616//   when creating a new thread. Linux kernel will automatically expand thread
617//   stack as needed (on page faults).
618//
619//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
620//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
621//   region, it's hard to tell if the fault is due to a legitimate stack
622//   access or because of reading/writing non-exist memory (e.g. buffer
623//   overrun). As a rule, if the fault happens below current stack pointer,
624//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
625//   application (see Linux kernel fault.c).
626//
627//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
628//   stack overflow detection.
629//
630//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
631//   not use this flag. However, the stack of initial thread is not created
632//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
633//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
634//   and then attach the thread to JVM.
635//
636// To get around the problem and allow stack banging on Linux, we need to
637// manually expand thread stack after receiving the SIGSEGV.
638//
639// There are two ways to expand thread stack to address "bottom", we used
640// both of them in JVM before 1.5:
641//   1. adjust stack pointer first so that it is below "bottom", and then
642//      touch "bottom"
643//   2. mmap() the page in question
644//
645// Now alternate signal stack is gone, it's harder to use 2. For instance,
646// if current sp is already near the lower end of page 101, and we need to
647// call mmap() to map page 100, it is possible that part of the mmap() frame
648// will be placed in page 100. When page 100 is mapped, it is zero-filled.
649// That will destroy the mmap() frame and cause VM to crash.
650//
651// The following code works by adjusting sp first, then accessing the "bottom"
652// page to force a page fault. Linux kernel will then automatically expand the
653// stack mapping.
654//
655// _expand_stack_to() assumes its frame size is less than page size, which
656// should always be true if the function is not inlined.
657
658#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
659  #define NOINLINE
660#else
661  #define NOINLINE __attribute__ ((noinline))
662#endif
663
664static void _expand_stack_to(address bottom) NOINLINE;
665
666static void _expand_stack_to(address bottom) {
667  address sp;
668  size_t size;
669  volatile char *p;
670
671  // Adjust bottom to point to the largest address within the same page, it
672  // gives us a one-page buffer if alloca() allocates slightly more memory.
673  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
674  bottom += os::Linux::page_size() - 1;
675
676  // sp might be slightly above current stack pointer; if that's the case, we
677  // will alloca() a little more space than necessary, which is OK. Don't use
678  // os::current_stack_pointer(), as its result can be slightly below current
679  // stack pointer, causing us to not alloca enough to reach "bottom".
680  sp = (address)&sp;
681
682  if (sp > bottom) {
683    size = sp - bottom;
684    p = (volatile char *)alloca(size);
685    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
686    p[0] = '\0';
687  }
688}
689
690bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
691  assert(t!=NULL, "just checking");
692  assert(t->osthread()->expanding_stack(), "expand should be set");
693  assert(t->stack_base() != NULL, "stack_base was not initialized");
694
695  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
696    sigset_t mask_all, old_sigset;
697    sigfillset(&mask_all);
698    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
699    _expand_stack_to(addr);
700    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
701    return true;
702  }
703  return false;
704}
705
706//////////////////////////////////////////////////////////////////////////////
707// create new thread
708
709static address highest_vm_reserved_address();
710
711// check if it's safe to start a new thread
712static bool _thread_safety_check(Thread* thread) {
713  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
714    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
715    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
716    //   allocated (MAP_FIXED) from high address space. Every thread stack
717    //   occupies a fixed size slot (usually 2Mbytes, but user can change
718    //   it to other values if they rebuild LinuxThreads).
719    //
720    // Problem with MAP_FIXED is that mmap() can still succeed even part of
721    // the memory region has already been mmap'ed. That means if we have too
722    // many threads and/or very large heap, eventually thread stack will
723    // collide with heap.
724    //
725    // Here we try to prevent heap/stack collision by comparing current
726    // stack bottom with the highest address that has been mmap'ed by JVM
727    // plus a safety margin for memory maps created by native code.
728    //
729    // This feature can be disabled by setting ThreadSafetyMargin to 0
730    //
731    if (ThreadSafetyMargin > 0) {
732      address stack_bottom = os::current_stack_base() - os::current_stack_size();
733
734      // not safe if our stack extends below the safety margin
735      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
736    } else {
737      return true;
738    }
739  } else {
740    // Floating stack LinuxThreads or NPTL:
741    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
742    //   there's not enough space left, pthread_create() will fail. If we come
743    //   here, that means enough space has been reserved for stack.
744    return true;
745  }
746}
747
748// Thread start routine for all newly created threads
749static void *java_start(Thread *thread) {
750  // Try to randomize the cache line index of hot stack frames.
751  // This helps when threads of the same stack traces evict each other's
752  // cache lines. The threads can be either from the same JVM instance, or
753  // from different JVM instances. The benefit is especially true for
754  // processors with hyperthreading technology.
755  static int counter = 0;
756  int pid = os::current_process_id();
757  alloca(((pid ^ counter++) & 7) * 128);
758
759  ThreadLocalStorage::set_thread(thread);
760
761  OSThread* osthread = thread->osthread();
762  Monitor* sync = osthread->startThread_lock();
763
764  // non floating stack LinuxThreads needs extra check, see above
765  if (!_thread_safety_check(thread)) {
766    // notify parent thread
767    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
768    osthread->set_state(ZOMBIE);
769    sync->notify_all();
770    return NULL;
771  }
772
773  // thread_id is kernel thread id (similar to Solaris LWP id)
774  osthread->set_thread_id(os::Linux::gettid());
775
776  if (UseNUMA) {
777    int lgrp_id = os::numa_get_group_id();
778    if (lgrp_id != -1) {
779      thread->set_lgrp_id(lgrp_id);
780    }
781  }
782  // initialize signal mask for this thread
783  os::Linux::hotspot_sigmask(thread);
784
785  // initialize floating point control register
786  os::Linux::init_thread_fpu_state();
787
788  // handshaking with parent thread
789  {
790    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
791
792    // notify parent thread
793    osthread->set_state(INITIALIZED);
794    sync->notify_all();
795
796    // wait until os::start_thread()
797    while (osthread->get_state() == INITIALIZED) {
798      sync->wait(Mutex::_no_safepoint_check_flag);
799    }
800  }
801
802  // call one more level start routine
803  thread->run();
804
805  return 0;
806}
807
808bool os::create_thread(Thread* thread, ThreadType thr_type,
809                       size_t stack_size) {
810  assert(thread->osthread() == NULL, "caller responsible");
811
812  // Allocate the OSThread object
813  OSThread* osthread = new OSThread(NULL, NULL);
814  if (osthread == NULL) {
815    return false;
816  }
817
818  // set the correct thread state
819  osthread->set_thread_type(thr_type);
820
821  // Initial state is ALLOCATED but not INITIALIZED
822  osthread->set_state(ALLOCATED);
823
824  thread->set_osthread(osthread);
825
826  // init thread attributes
827  pthread_attr_t attr;
828  pthread_attr_init(&attr);
829  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
830
831  // stack size
832  if (os::Linux::supports_variable_stack_size()) {
833    // calculate stack size if it's not specified by caller
834    if (stack_size == 0) {
835      stack_size = os::Linux::default_stack_size(thr_type);
836
837      switch (thr_type) {
838      case os::java_thread:
839        // Java threads use ThreadStackSize which default value can be
840        // changed with the flag -Xss
841        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
842        stack_size = JavaThread::stack_size_at_create();
843        break;
844      case os::compiler_thread:
845        if (CompilerThreadStackSize > 0) {
846          stack_size = (size_t)(CompilerThreadStackSize * K);
847          break;
848        } // else fall through:
849          // use VMThreadStackSize if CompilerThreadStackSize is not defined
850      case os::vm_thread:
851      case os::pgc_thread:
852      case os::cgc_thread:
853      case os::watcher_thread:
854        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
855        break;
856      }
857    }
858
859    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
860    pthread_attr_setstacksize(&attr, stack_size);
861  } else {
862    // let pthread_create() pick the default value.
863  }
864
865  // glibc guard page
866  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
867
868  ThreadState state;
869
870  {
871    // Serialize thread creation if we are running with fixed stack LinuxThreads
872    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
873    if (lock) {
874      os::Linux::createThread_lock()->lock_without_safepoint_check();
875    }
876
877    pthread_t tid;
878    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
879
880    pthread_attr_destroy(&attr);
881
882    if (ret != 0) {
883      if (PrintMiscellaneous && (Verbose || WizardMode)) {
884        perror("pthread_create()");
885      }
886      // Need to clean up stuff we've allocated so far
887      thread->set_osthread(NULL);
888      delete osthread;
889      if (lock) os::Linux::createThread_lock()->unlock();
890      return false;
891    }
892
893    // Store pthread info into the OSThread
894    osthread->set_pthread_id(tid);
895
896    // Wait until child thread is either initialized or aborted
897    {
898      Monitor* sync_with_child = osthread->startThread_lock();
899      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
900      while ((state = osthread->get_state()) == ALLOCATED) {
901        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
902      }
903    }
904
905    if (lock) {
906      os::Linux::createThread_lock()->unlock();
907    }
908  }
909
910  // Aborted due to thread limit being reached
911  if (state == ZOMBIE) {
912    thread->set_osthread(NULL);
913    delete osthread;
914    return false;
915  }
916
917  // The thread is returned suspended (in state INITIALIZED),
918  // and is started higher up in the call chain
919  assert(state == INITIALIZED, "race condition");
920  return true;
921}
922
923/////////////////////////////////////////////////////////////////////////////
924// attach existing thread
925
926// bootstrap the main thread
927bool os::create_main_thread(JavaThread* thread) {
928  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
929  return create_attached_thread(thread);
930}
931
932bool os::create_attached_thread(JavaThread* thread) {
933#ifdef ASSERT
934  thread->verify_not_published();
935#endif
936
937  // Allocate the OSThread object
938  OSThread* osthread = new OSThread(NULL, NULL);
939
940  if (osthread == NULL) {
941    return false;
942  }
943
944  // Store pthread info into the OSThread
945  osthread->set_thread_id(os::Linux::gettid());
946  osthread->set_pthread_id(::pthread_self());
947
948  // initialize floating point control register
949  os::Linux::init_thread_fpu_state();
950
951  // Initial thread state is RUNNABLE
952  osthread->set_state(RUNNABLE);
953
954  thread->set_osthread(osthread);
955
956  if (UseNUMA) {
957    int lgrp_id = os::numa_get_group_id();
958    if (lgrp_id != -1) {
959      thread->set_lgrp_id(lgrp_id);
960    }
961  }
962
963  if (os::Linux::is_initial_thread()) {
964    // If current thread is initial thread, its stack is mapped on demand,
965    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
966    // the entire stack region to avoid SEGV in stack banging.
967    // It is also useful to get around the heap-stack-gap problem on SuSE
968    // kernel (see 4821821 for details). We first expand stack to the top
969    // of yellow zone, then enable stack yellow zone (order is significant,
970    // enabling yellow zone first will crash JVM on SuSE Linux), so there
971    // is no gap between the last two virtual memory regions.
972
973    JavaThread *jt = (JavaThread *)thread;
974    address addr = jt->stack_yellow_zone_base();
975    assert(addr != NULL, "initialization problem?");
976    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
977
978    osthread->set_expanding_stack();
979    os::Linux::manually_expand_stack(jt, addr);
980    osthread->clear_expanding_stack();
981  }
982
983  // initialize signal mask for this thread
984  // and save the caller's signal mask
985  os::Linux::hotspot_sigmask(thread);
986
987  return true;
988}
989
990void os::pd_start_thread(Thread* thread) {
991  OSThread * osthread = thread->osthread();
992  assert(osthread->get_state() != INITIALIZED, "just checking");
993  Monitor* sync_with_child = osthread->startThread_lock();
994  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
995  sync_with_child->notify();
996}
997
998// Free Linux resources related to the OSThread
999void os::free_thread(OSThread* osthread) {
1000  assert(osthread != NULL, "osthread not set");
1001
1002  if (Thread::current()->osthread() == osthread) {
1003    // Restore caller's signal mask
1004    sigset_t sigmask = osthread->caller_sigmask();
1005    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1006  }
1007
1008  delete osthread;
1009}
1010
1011//////////////////////////////////////////////////////////////////////////////
1012// thread local storage
1013
1014// Restore the thread pointer if the destructor is called. This is in case
1015// someone from JNI code sets up a destructor with pthread_key_create to run
1016// detachCurrentThread on thread death. Unless we restore the thread pointer we
1017// will hang or crash. When detachCurrentThread is called the key will be set
1018// to null and we will not be called again. If detachCurrentThread is never
1019// called we could loop forever depending on the pthread implementation.
1020static void restore_thread_pointer(void* p) {
1021  Thread* thread = (Thread*) p;
1022  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1023}
1024
1025int os::allocate_thread_local_storage() {
1026  pthread_key_t key;
1027  int rslt = pthread_key_create(&key, restore_thread_pointer);
1028  assert(rslt == 0, "cannot allocate thread local storage");
1029  return (int)key;
1030}
1031
1032// Note: This is currently not used by VM, as we don't destroy TLS key
1033// on VM exit.
1034void os::free_thread_local_storage(int index) {
1035  int rslt = pthread_key_delete((pthread_key_t)index);
1036  assert(rslt == 0, "invalid index");
1037}
1038
1039void os::thread_local_storage_at_put(int index, void* value) {
1040  int rslt = pthread_setspecific((pthread_key_t)index, value);
1041  assert(rslt == 0, "pthread_setspecific failed");
1042}
1043
1044extern "C" Thread* get_thread() {
1045  return ThreadLocalStorage::thread();
1046}
1047
1048//////////////////////////////////////////////////////////////////////////////
1049// initial thread
1050
1051// Check if current thread is the initial thread, similar to Solaris thr_main.
1052bool os::Linux::is_initial_thread(void) {
1053  char dummy;
1054  // If called before init complete, thread stack bottom will be null.
1055  // Can be called if fatal error occurs before initialization.
1056  if (initial_thread_stack_bottom() == NULL) return false;
1057  assert(initial_thread_stack_bottom() != NULL &&
1058         initial_thread_stack_size()   != 0,
1059         "os::init did not locate initial thread's stack region");
1060  if ((address)&dummy >= initial_thread_stack_bottom() &&
1061      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1062    return true;
1063  } else {
1064    return false;
1065  }
1066}
1067
1068// Find the virtual memory area that contains addr
1069static bool find_vma(address addr, address* vma_low, address* vma_high) {
1070  FILE *fp = fopen("/proc/self/maps", "r");
1071  if (fp) {
1072    address low, high;
1073    while (!feof(fp)) {
1074      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1075        if (low <= addr && addr < high) {
1076          if (vma_low)  *vma_low  = low;
1077          if (vma_high) *vma_high = high;
1078          fclose(fp);
1079          return true;
1080        }
1081      }
1082      for (;;) {
1083        int ch = fgetc(fp);
1084        if (ch == EOF || ch == (int)'\n') break;
1085      }
1086    }
1087    fclose(fp);
1088  }
1089  return false;
1090}
1091
1092// Locate initial thread stack. This special handling of initial thread stack
1093// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1094// bogus value for initial thread.
1095void os::Linux::capture_initial_stack(size_t max_size) {
1096  // stack size is the easy part, get it from RLIMIT_STACK
1097  size_t stack_size;
1098  struct rlimit rlim;
1099  getrlimit(RLIMIT_STACK, &rlim);
1100  stack_size = rlim.rlim_cur;
1101
1102  // 6308388: a bug in ld.so will relocate its own .data section to the
1103  //   lower end of primordial stack; reduce ulimit -s value a little bit
1104  //   so we won't install guard page on ld.so's data section.
1105  stack_size -= 2 * page_size();
1106
1107  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1108  //   7.1, in both cases we will get 2G in return value.
1109  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1110  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1111  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1112  //   in case other parts in glibc still assumes 2M max stack size.
1113  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1114  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1115  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1116    stack_size = 2 * K * K IA64_ONLY(*2);
1117  }
1118  // Try to figure out where the stack base (top) is. This is harder.
1119  //
1120  // When an application is started, glibc saves the initial stack pointer in
1121  // a global variable "__libc_stack_end", which is then used by system
1122  // libraries. __libc_stack_end should be pretty close to stack top. The
1123  // variable is available since the very early days. However, because it is
1124  // a private interface, it could disappear in the future.
1125  //
1126  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1127  // to __libc_stack_end, it is very close to stack top, but isn't the real
1128  // stack top. Note that /proc may not exist if VM is running as a chroot
1129  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1130  // /proc/<pid>/stat could change in the future (though unlikely).
1131  //
1132  // We try __libc_stack_end first. If that doesn't work, look for
1133  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1134  // as a hint, which should work well in most cases.
1135
1136  uintptr_t stack_start;
1137
1138  // try __libc_stack_end first
1139  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1140  if (p && *p) {
1141    stack_start = *p;
1142  } else {
1143    // see if we can get the start_stack field from /proc/self/stat
1144    FILE *fp;
1145    int pid;
1146    char state;
1147    int ppid;
1148    int pgrp;
1149    int session;
1150    int nr;
1151    int tpgrp;
1152    unsigned long flags;
1153    unsigned long minflt;
1154    unsigned long cminflt;
1155    unsigned long majflt;
1156    unsigned long cmajflt;
1157    unsigned long utime;
1158    unsigned long stime;
1159    long cutime;
1160    long cstime;
1161    long prio;
1162    long nice;
1163    long junk;
1164    long it_real;
1165    uintptr_t start;
1166    uintptr_t vsize;
1167    intptr_t rss;
1168    uintptr_t rsslim;
1169    uintptr_t scodes;
1170    uintptr_t ecode;
1171    int i;
1172
1173    // Figure what the primordial thread stack base is. Code is inspired
1174    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1175    // followed by command name surrounded by parentheses, state, etc.
1176    char stat[2048];
1177    int statlen;
1178
1179    fp = fopen("/proc/self/stat", "r");
1180    if (fp) {
1181      statlen = fread(stat, 1, 2047, fp);
1182      stat[statlen] = '\0';
1183      fclose(fp);
1184
1185      // Skip pid and the command string. Note that we could be dealing with
1186      // weird command names, e.g. user could decide to rename java launcher
1187      // to "java 1.4.2 :)", then the stat file would look like
1188      //                1234 (java 1.4.2 :)) R ... ...
1189      // We don't really need to know the command string, just find the last
1190      // occurrence of ")" and then start parsing from there. See bug 4726580.
1191      char * s = strrchr(stat, ')');
1192
1193      i = 0;
1194      if (s) {
1195        // Skip blank chars
1196        do { s++; } while (s && isspace(*s));
1197
1198#define _UFM UINTX_FORMAT
1199#define _DFM INTX_FORMAT
1200
1201        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1202        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1203        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1204                   &state,          // 3  %c
1205                   &ppid,           // 4  %d
1206                   &pgrp,           // 5  %d
1207                   &session,        // 6  %d
1208                   &nr,             // 7  %d
1209                   &tpgrp,          // 8  %d
1210                   &flags,          // 9  %lu
1211                   &minflt,         // 10 %lu
1212                   &cminflt,        // 11 %lu
1213                   &majflt,         // 12 %lu
1214                   &cmajflt,        // 13 %lu
1215                   &utime,          // 14 %lu
1216                   &stime,          // 15 %lu
1217                   &cutime,         // 16 %ld
1218                   &cstime,         // 17 %ld
1219                   &prio,           // 18 %ld
1220                   &nice,           // 19 %ld
1221                   &junk,           // 20 %ld
1222                   &it_real,        // 21 %ld
1223                   &start,          // 22 UINTX_FORMAT
1224                   &vsize,          // 23 UINTX_FORMAT
1225                   &rss,            // 24 INTX_FORMAT
1226                   &rsslim,         // 25 UINTX_FORMAT
1227                   &scodes,         // 26 UINTX_FORMAT
1228                   &ecode,          // 27 UINTX_FORMAT
1229                   &stack_start);   // 28 UINTX_FORMAT
1230      }
1231
1232#undef _UFM
1233#undef _DFM
1234
1235      if (i != 28 - 2) {
1236        assert(false, "Bad conversion from /proc/self/stat");
1237        // product mode - assume we are the initial thread, good luck in the
1238        // embedded case.
1239        warning("Can't detect initial thread stack location - bad conversion");
1240        stack_start = (uintptr_t) &rlim;
1241      }
1242    } else {
1243      // For some reason we can't open /proc/self/stat (for example, running on
1244      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1245      // most cases, so don't abort:
1246      warning("Can't detect initial thread stack location - no /proc/self/stat");
1247      stack_start = (uintptr_t) &rlim;
1248    }
1249  }
1250
1251  // Now we have a pointer (stack_start) very close to the stack top, the
1252  // next thing to do is to figure out the exact location of stack top. We
1253  // can find out the virtual memory area that contains stack_start by
1254  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1255  // and its upper limit is the real stack top. (again, this would fail if
1256  // running inside chroot, because /proc may not exist.)
1257
1258  uintptr_t stack_top;
1259  address low, high;
1260  if (find_vma((address)stack_start, &low, &high)) {
1261    // success, "high" is the true stack top. (ignore "low", because initial
1262    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1263    stack_top = (uintptr_t)high;
1264  } else {
1265    // failed, likely because /proc/self/maps does not exist
1266    warning("Can't detect initial thread stack location - find_vma failed");
1267    // best effort: stack_start is normally within a few pages below the real
1268    // stack top, use it as stack top, and reduce stack size so we won't put
1269    // guard page outside stack.
1270    stack_top = stack_start;
1271    stack_size -= 16 * page_size();
1272  }
1273
1274  // stack_top could be partially down the page so align it
1275  stack_top = align_size_up(stack_top, page_size());
1276
1277  if (max_size && stack_size > max_size) {
1278    _initial_thread_stack_size = max_size;
1279  } else {
1280    _initial_thread_stack_size = stack_size;
1281  }
1282
1283  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1284  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1285}
1286
1287////////////////////////////////////////////////////////////////////////////////
1288// time support
1289
1290// Time since start-up in seconds to a fine granularity.
1291// Used by VMSelfDestructTimer and the MemProfiler.
1292double os::elapsedTime() {
1293
1294  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1295}
1296
1297jlong os::elapsed_counter() {
1298  return javaTimeNanos() - initial_time_count;
1299}
1300
1301jlong os::elapsed_frequency() {
1302  return NANOSECS_PER_SEC; // nanosecond resolution
1303}
1304
1305bool os::supports_vtime() { return true; }
1306bool os::enable_vtime()   { return false; }
1307bool os::vtime_enabled()  { return false; }
1308
1309double os::elapsedVTime() {
1310  struct rusage usage;
1311  int retval = getrusage(RUSAGE_THREAD, &usage);
1312  if (retval == 0) {
1313    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1314  } else {
1315    // better than nothing, but not much
1316    return elapsedTime();
1317  }
1318}
1319
1320jlong os::javaTimeMillis() {
1321  timeval time;
1322  int status = gettimeofday(&time, NULL);
1323  assert(status != -1, "linux error");
1324  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1325}
1326
1327#ifndef CLOCK_MONOTONIC
1328  #define CLOCK_MONOTONIC (1)
1329#endif
1330
1331void os::Linux::clock_init() {
1332  // we do dlopen's in this particular order due to bug in linux
1333  // dynamical loader (see 6348968) leading to crash on exit
1334  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1335  if (handle == NULL) {
1336    handle = dlopen("librt.so", RTLD_LAZY);
1337  }
1338
1339  if (handle) {
1340    int (*clock_getres_func)(clockid_t, struct timespec*) =
1341           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1342    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1343           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1344    if (clock_getres_func && clock_gettime_func) {
1345      // See if monotonic clock is supported by the kernel. Note that some
1346      // early implementations simply return kernel jiffies (updated every
1347      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1348      // for nano time (though the monotonic property is still nice to have).
1349      // It's fixed in newer kernels, however clock_getres() still returns
1350      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1351      // resolution for now. Hopefully as people move to new kernels, this
1352      // won't be a problem.
1353      struct timespec res;
1354      struct timespec tp;
1355      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1356          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1357        // yes, monotonic clock is supported
1358        _clock_gettime = clock_gettime_func;
1359        return;
1360      } else {
1361        // close librt if there is no monotonic clock
1362        dlclose(handle);
1363      }
1364    }
1365  }
1366  warning("No monotonic clock was available - timed services may " \
1367          "be adversely affected if the time-of-day clock changes");
1368}
1369
1370#ifndef SYS_clock_getres
1371  #if defined(IA32) || defined(AMD64)
1372    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1373    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1374  #else
1375    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1376    #define sys_clock_getres(x,y)  -1
1377  #endif
1378#else
1379  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1380#endif
1381
1382void os::Linux::fast_thread_clock_init() {
1383  if (!UseLinuxPosixThreadCPUClocks) {
1384    return;
1385  }
1386  clockid_t clockid;
1387  struct timespec tp;
1388  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1389      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1390
1391  // Switch to using fast clocks for thread cpu time if
1392  // the sys_clock_getres() returns 0 error code.
1393  // Note, that some kernels may support the current thread
1394  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1395  // returned by the pthread_getcpuclockid().
1396  // If the fast Posix clocks are supported then the sys_clock_getres()
1397  // must return at least tp.tv_sec == 0 which means a resolution
1398  // better than 1 sec. This is extra check for reliability.
1399
1400  if (pthread_getcpuclockid_func &&
1401      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1402      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1403    _supports_fast_thread_cpu_time = true;
1404    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1405  }
1406}
1407
1408jlong os::javaTimeNanos() {
1409  if (os::supports_monotonic_clock()) {
1410    struct timespec tp;
1411    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1412    assert(status == 0, "gettime error");
1413    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1414    return result;
1415  } else {
1416    timeval time;
1417    int status = gettimeofday(&time, NULL);
1418    assert(status != -1, "linux error");
1419    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1420    return 1000 * usecs;
1421  }
1422}
1423
1424void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1425  if (os::supports_monotonic_clock()) {
1426    info_ptr->max_value = ALL_64_BITS;
1427
1428    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1429    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1430    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1431  } else {
1432    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1433    info_ptr->max_value = ALL_64_BITS;
1434
1435    // gettimeofday is a real time clock so it skips
1436    info_ptr->may_skip_backward = true;
1437    info_ptr->may_skip_forward = true;
1438  }
1439
1440  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1441}
1442
1443// Return the real, user, and system times in seconds from an
1444// arbitrary fixed point in the past.
1445bool os::getTimesSecs(double* process_real_time,
1446                      double* process_user_time,
1447                      double* process_system_time) {
1448  struct tms ticks;
1449  clock_t real_ticks = times(&ticks);
1450
1451  if (real_ticks == (clock_t) (-1)) {
1452    return false;
1453  } else {
1454    double ticks_per_second = (double) clock_tics_per_sec;
1455    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1456    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1457    *process_real_time = ((double) real_ticks) / ticks_per_second;
1458
1459    return true;
1460  }
1461}
1462
1463
1464char * os::local_time_string(char *buf, size_t buflen) {
1465  struct tm t;
1466  time_t long_time;
1467  time(&long_time);
1468  localtime_r(&long_time, &t);
1469  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1470               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1471               t.tm_hour, t.tm_min, t.tm_sec);
1472  return buf;
1473}
1474
1475struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1476  return localtime_r(clock, res);
1477}
1478
1479////////////////////////////////////////////////////////////////////////////////
1480// runtime exit support
1481
1482// Note: os::shutdown() might be called very early during initialization, or
1483// called from signal handler. Before adding something to os::shutdown(), make
1484// sure it is async-safe and can handle partially initialized VM.
1485void os::shutdown() {
1486
1487  // allow PerfMemory to attempt cleanup of any persistent resources
1488  perfMemory_exit();
1489
1490  // needs to remove object in file system
1491  AttachListener::abort();
1492
1493  // flush buffered output, finish log files
1494  ostream_abort();
1495
1496  // Check for abort hook
1497  abort_hook_t abort_hook = Arguments::abort_hook();
1498  if (abort_hook != NULL) {
1499    abort_hook();
1500  }
1501
1502}
1503
1504// Note: os::abort() might be called very early during initialization, or
1505// called from signal handler. Before adding something to os::abort(), make
1506// sure it is async-safe and can handle partially initialized VM.
1507void os::abort(bool dump_core) {
1508  os::shutdown();
1509  if (dump_core) {
1510#ifndef PRODUCT
1511    fdStream out(defaultStream::output_fd());
1512    out.print_raw("Current thread is ");
1513    char buf[16];
1514    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1515    out.print_raw_cr(buf);
1516    out.print_raw_cr("Dumping core ...");
1517#endif
1518    ::abort(); // dump core
1519  }
1520
1521  ::exit(1);
1522}
1523
1524// Die immediately, no exit hook, no abort hook, no cleanup.
1525void os::die() {
1526  // _exit() on LinuxThreads only kills current thread
1527  ::abort();
1528}
1529
1530
1531// This method is a copy of JDK's sysGetLastErrorString
1532// from src/solaris/hpi/src/system_md.c
1533
1534size_t os::lasterror(char *buf, size_t len) {
1535  if (errno == 0)  return 0;
1536
1537  const char *s = ::strerror(errno);
1538  size_t n = ::strlen(s);
1539  if (n >= len) {
1540    n = len - 1;
1541  }
1542  ::strncpy(buf, s, n);
1543  buf[n] = '\0';
1544  return n;
1545}
1546
1547intx os::current_thread_id() { return (intx)pthread_self(); }
1548int os::current_process_id() {
1549
1550  // Under the old linux thread library, linux gives each thread
1551  // its own process id. Because of this each thread will return
1552  // a different pid if this method were to return the result
1553  // of getpid(2). Linux provides no api that returns the pid
1554  // of the launcher thread for the vm. This implementation
1555  // returns a unique pid, the pid of the launcher thread
1556  // that starts the vm 'process'.
1557
1558  // Under the NPTL, getpid() returns the same pid as the
1559  // launcher thread rather than a unique pid per thread.
1560  // Use gettid() if you want the old pre NPTL behaviour.
1561
1562  // if you are looking for the result of a call to getpid() that
1563  // returns a unique pid for the calling thread, then look at the
1564  // OSThread::thread_id() method in osThread_linux.hpp file
1565
1566  return (int)(_initial_pid ? _initial_pid : getpid());
1567}
1568
1569// DLL functions
1570
1571const char* os::dll_file_extension() { return ".so"; }
1572
1573// This must be hard coded because it's the system's temporary
1574// directory not the java application's temp directory, ala java.io.tmpdir.
1575const char* os::get_temp_directory() { return "/tmp"; }
1576
1577static bool file_exists(const char* filename) {
1578  struct stat statbuf;
1579  if (filename == NULL || strlen(filename) == 0) {
1580    return false;
1581  }
1582  return os::stat(filename, &statbuf) == 0;
1583}
1584
1585bool os::dll_build_name(char* buffer, size_t buflen,
1586                        const char* pname, const char* fname) {
1587  bool retval = false;
1588  // Copied from libhpi
1589  const size_t pnamelen = pname ? strlen(pname) : 0;
1590
1591  // Return error on buffer overflow.
1592  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1593    return retval;
1594  }
1595
1596  if (pnamelen == 0) {
1597    snprintf(buffer, buflen, "lib%s.so", fname);
1598    retval = true;
1599  } else if (strchr(pname, *os::path_separator()) != NULL) {
1600    int n;
1601    char** pelements = split_path(pname, &n);
1602    if (pelements == NULL) {
1603      return false;
1604    }
1605    for (int i = 0; i < n; i++) {
1606      // Really shouldn't be NULL, but check can't hurt
1607      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1608        continue; // skip the empty path values
1609      }
1610      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1611      if (file_exists(buffer)) {
1612        retval = true;
1613        break;
1614      }
1615    }
1616    // release the storage
1617    for (int i = 0; i < n; i++) {
1618      if (pelements[i] != NULL) {
1619        FREE_C_HEAP_ARRAY(char, pelements[i]);
1620      }
1621    }
1622    if (pelements != NULL) {
1623      FREE_C_HEAP_ARRAY(char*, pelements);
1624    }
1625  } else {
1626    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1627    retval = true;
1628  }
1629  return retval;
1630}
1631
1632// check if addr is inside libjvm.so
1633bool os::address_is_in_vm(address addr) {
1634  static address libjvm_base_addr;
1635  Dl_info dlinfo;
1636
1637  if (libjvm_base_addr == NULL) {
1638    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1639      libjvm_base_addr = (address)dlinfo.dli_fbase;
1640    }
1641    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1642  }
1643
1644  if (dladdr((void *)addr, &dlinfo) != 0) {
1645    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1646  }
1647
1648  return false;
1649}
1650
1651bool os::dll_address_to_function_name(address addr, char *buf,
1652                                      int buflen, int *offset) {
1653  // buf is not optional, but offset is optional
1654  assert(buf != NULL, "sanity check");
1655
1656  Dl_info dlinfo;
1657
1658  if (dladdr((void*)addr, &dlinfo) != 0) {
1659    // see if we have a matching symbol
1660    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1661      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1662        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1663      }
1664      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1665      return true;
1666    }
1667    // no matching symbol so try for just file info
1668    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1669      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1670                          buf, buflen, offset, dlinfo.dli_fname)) {
1671        return true;
1672      }
1673    }
1674  }
1675
1676  buf[0] = '\0';
1677  if (offset != NULL) *offset = -1;
1678  return false;
1679}
1680
1681struct _address_to_library_name {
1682  address addr;          // input : memory address
1683  size_t  buflen;        //         size of fname
1684  char*   fname;         // output: library name
1685  address base;          //         library base addr
1686};
1687
1688static int address_to_library_name_callback(struct dl_phdr_info *info,
1689                                            size_t size, void *data) {
1690  int i;
1691  bool found = false;
1692  address libbase = NULL;
1693  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1694
1695  // iterate through all loadable segments
1696  for (i = 0; i < info->dlpi_phnum; i++) {
1697    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1698    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1699      // base address of a library is the lowest address of its loaded
1700      // segments.
1701      if (libbase == NULL || libbase > segbase) {
1702        libbase = segbase;
1703      }
1704      // see if 'addr' is within current segment
1705      if (segbase <= d->addr &&
1706          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1707        found = true;
1708      }
1709    }
1710  }
1711
1712  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1713  // so dll_address_to_library_name() can fall through to use dladdr() which
1714  // can figure out executable name from argv[0].
1715  if (found && info->dlpi_name && info->dlpi_name[0]) {
1716    d->base = libbase;
1717    if (d->fname) {
1718      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1719    }
1720    return 1;
1721  }
1722  return 0;
1723}
1724
1725bool os::dll_address_to_library_name(address addr, char* buf,
1726                                     int buflen, int* offset) {
1727  // buf is not optional, but offset is optional
1728  assert(buf != NULL, "sanity check");
1729
1730  Dl_info dlinfo;
1731  struct _address_to_library_name data;
1732
1733  // There is a bug in old glibc dladdr() implementation that it could resolve
1734  // to wrong library name if the .so file has a base address != NULL. Here
1735  // we iterate through the program headers of all loaded libraries to find
1736  // out which library 'addr' really belongs to. This workaround can be
1737  // removed once the minimum requirement for glibc is moved to 2.3.x.
1738  data.addr = addr;
1739  data.fname = buf;
1740  data.buflen = buflen;
1741  data.base = NULL;
1742  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1743
1744  if (rslt) {
1745    // buf already contains library name
1746    if (offset) *offset = addr - data.base;
1747    return true;
1748  }
1749  if (dladdr((void*)addr, &dlinfo) != 0) {
1750    if (dlinfo.dli_fname != NULL) {
1751      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1752    }
1753    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1754      *offset = addr - (address)dlinfo.dli_fbase;
1755    }
1756    return true;
1757  }
1758
1759  buf[0] = '\0';
1760  if (offset) *offset = -1;
1761  return false;
1762}
1763
1764// Loads .dll/.so and
1765// in case of error it checks if .dll/.so was built for the
1766// same architecture as Hotspot is running on
1767
1768
1769// Remember the stack's state. The Linux dynamic linker will change
1770// the stack to 'executable' at most once, so we must safepoint only once.
1771bool os::Linux::_stack_is_executable = false;
1772
1773// VM operation that loads a library.  This is necessary if stack protection
1774// of the Java stacks can be lost during loading the library.  If we
1775// do not stop the Java threads, they can stack overflow before the stacks
1776// are protected again.
1777class VM_LinuxDllLoad: public VM_Operation {
1778 private:
1779  const char *_filename;
1780  char *_ebuf;
1781  int _ebuflen;
1782  void *_lib;
1783 public:
1784  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1785    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1786  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1787  void doit() {
1788    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1789    os::Linux::_stack_is_executable = true;
1790  }
1791  void* loaded_library() { return _lib; }
1792};
1793
1794void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1795  void * result = NULL;
1796  bool load_attempted = false;
1797
1798  // Check whether the library to load might change execution rights
1799  // of the stack. If they are changed, the protection of the stack
1800  // guard pages will be lost. We need a safepoint to fix this.
1801  //
1802  // See Linux man page execstack(8) for more info.
1803  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1804    ElfFile ef(filename);
1805    if (!ef.specifies_noexecstack()) {
1806      if (!is_init_completed()) {
1807        os::Linux::_stack_is_executable = true;
1808        // This is OK - No Java threads have been created yet, and hence no
1809        // stack guard pages to fix.
1810        //
1811        // This should happen only when you are building JDK7 using a very
1812        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1813        //
1814        // Dynamic loader will make all stacks executable after
1815        // this function returns, and will not do that again.
1816        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1817      } else {
1818        warning("You have loaded library %s which might have disabled stack guard. "
1819                "The VM will try to fix the stack guard now.\n"
1820                "It's highly recommended that you fix the library with "
1821                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1822                filename);
1823
1824        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1825        JavaThread *jt = JavaThread::current();
1826        if (jt->thread_state() != _thread_in_native) {
1827          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1828          // that requires ExecStack. Cannot enter safe point. Let's give up.
1829          warning("Unable to fix stack guard. Giving up.");
1830        } else {
1831          if (!LoadExecStackDllInVMThread) {
1832            // This is for the case where the DLL has an static
1833            // constructor function that executes JNI code. We cannot
1834            // load such DLLs in the VMThread.
1835            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1836          }
1837
1838          ThreadInVMfromNative tiv(jt);
1839          debug_only(VMNativeEntryWrapper vew;)
1840
1841          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1842          VMThread::execute(&op);
1843          if (LoadExecStackDllInVMThread) {
1844            result = op.loaded_library();
1845          }
1846          load_attempted = true;
1847        }
1848      }
1849    }
1850  }
1851
1852  if (!load_attempted) {
1853    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1854  }
1855
1856  if (result != NULL) {
1857    // Successful loading
1858    return result;
1859  }
1860
1861  Elf32_Ehdr elf_head;
1862  int diag_msg_max_length=ebuflen-strlen(ebuf);
1863  char* diag_msg_buf=ebuf+strlen(ebuf);
1864
1865  if (diag_msg_max_length==0) {
1866    // No more space in ebuf for additional diagnostics message
1867    return NULL;
1868  }
1869
1870
1871  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1872
1873  if (file_descriptor < 0) {
1874    // Can't open library, report dlerror() message
1875    return NULL;
1876  }
1877
1878  bool failed_to_read_elf_head=
1879    (sizeof(elf_head)!=
1880     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1881
1882  ::close(file_descriptor);
1883  if (failed_to_read_elf_head) {
1884    // file i/o error - report dlerror() msg
1885    return NULL;
1886  }
1887
1888  typedef struct {
1889    Elf32_Half  code;         // Actual value as defined in elf.h
1890    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1891    char        elf_class;    // 32 or 64 bit
1892    char        endianess;    // MSB or LSB
1893    char*       name;         // String representation
1894  } arch_t;
1895
1896#ifndef EM_486
1897  #define EM_486          6               /* Intel 80486 */
1898#endif
1899#ifndef EM_AARCH64
1900  #define EM_AARCH64    183               /* ARM AARCH64 */
1901#endif
1902
1903  static const arch_t arch_array[]={
1904    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1905    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1906    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1907    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1908    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1909    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1910    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1911    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1912#if defined(VM_LITTLE_ENDIAN)
1913    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1914#else
1915    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1916#endif
1917    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1918    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1919    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1920    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1921    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1922    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1923    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1924    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1925  };
1926
1927#if  (defined IA32)
1928  static  Elf32_Half running_arch_code=EM_386;
1929#elif   (defined AMD64)
1930  static  Elf32_Half running_arch_code=EM_X86_64;
1931#elif  (defined IA64)
1932  static  Elf32_Half running_arch_code=EM_IA_64;
1933#elif  (defined __sparc) && (defined _LP64)
1934  static  Elf32_Half running_arch_code=EM_SPARCV9;
1935#elif  (defined __sparc) && (!defined _LP64)
1936  static  Elf32_Half running_arch_code=EM_SPARC;
1937#elif  (defined __powerpc64__)
1938  static  Elf32_Half running_arch_code=EM_PPC64;
1939#elif  (defined __powerpc__)
1940  static  Elf32_Half running_arch_code=EM_PPC;
1941#elif  (defined ARM)
1942  static  Elf32_Half running_arch_code=EM_ARM;
1943#elif  (defined S390)
1944  static  Elf32_Half running_arch_code=EM_S390;
1945#elif  (defined ALPHA)
1946  static  Elf32_Half running_arch_code=EM_ALPHA;
1947#elif  (defined MIPSEL)
1948  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1949#elif  (defined PARISC)
1950  static  Elf32_Half running_arch_code=EM_PARISC;
1951#elif  (defined MIPS)
1952  static  Elf32_Half running_arch_code=EM_MIPS;
1953#elif  (defined M68K)
1954  static  Elf32_Half running_arch_code=EM_68K;
1955#elif  (defined AARCH64)
1956  static  Elf32_Half running_arch_code=EM_AARCH64;
1957#else
1958    #error Method os::dll_load requires that one of following is defined:\
1959         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1960#endif
1961
1962  // Identify compatability class for VM's architecture and library's architecture
1963  // Obtain string descriptions for architectures
1964
1965  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1966  int running_arch_index=-1;
1967
1968  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1969    if (running_arch_code == arch_array[i].code) {
1970      running_arch_index    = i;
1971    }
1972    if (lib_arch.code == arch_array[i].code) {
1973      lib_arch.compat_class = arch_array[i].compat_class;
1974      lib_arch.name         = arch_array[i].name;
1975    }
1976  }
1977
1978  assert(running_arch_index != -1,
1979         "Didn't find running architecture code (running_arch_code) in arch_array");
1980  if (running_arch_index == -1) {
1981    // Even though running architecture detection failed
1982    // we may still continue with reporting dlerror() message
1983    return NULL;
1984  }
1985
1986  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1987    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1988    return NULL;
1989  }
1990
1991#ifndef S390
1992  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1993    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1994    return NULL;
1995  }
1996#endif // !S390
1997
1998  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1999    if (lib_arch.name!=NULL) {
2000      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2001                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2002                 lib_arch.name, arch_array[running_arch_index].name);
2003    } else {
2004      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2005                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2006                 lib_arch.code,
2007                 arch_array[running_arch_index].name);
2008    }
2009  }
2010
2011  return NULL;
2012}
2013
2014void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2015                                int ebuflen) {
2016  void * result = ::dlopen(filename, RTLD_LAZY);
2017  if (result == NULL) {
2018    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2019    ebuf[ebuflen-1] = '\0';
2020  }
2021  return result;
2022}
2023
2024void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2025                                       int ebuflen) {
2026  void * result = NULL;
2027  if (LoadExecStackDllInVMThread) {
2028    result = dlopen_helper(filename, ebuf, ebuflen);
2029  }
2030
2031  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2032  // library that requires an executable stack, or which does not have this
2033  // stack attribute set, dlopen changes the stack attribute to executable. The
2034  // read protection of the guard pages gets lost.
2035  //
2036  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2037  // may have been queued at the same time.
2038
2039  if (!_stack_is_executable) {
2040    JavaThread *jt = Threads::first();
2041
2042    while (jt) {
2043      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2044          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2045        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2046                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2047          warning("Attempt to reguard stack yellow zone failed.");
2048        }
2049      }
2050      jt = jt->next();
2051    }
2052  }
2053
2054  return result;
2055}
2056
2057// glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2058// chances are you might want to run the generated bits against glibc-2.0
2059// libdl.so, so always use locking for any version of glibc.
2060//
2061void* os::dll_lookup(void* handle, const char* name) {
2062  pthread_mutex_lock(&dl_mutex);
2063  void* res = dlsym(handle, name);
2064  pthread_mutex_unlock(&dl_mutex);
2065  return res;
2066}
2067
2068void* os::get_default_process_handle() {
2069  return (void*)::dlopen(NULL, RTLD_LAZY);
2070}
2071
2072static bool _print_ascii_file(const char* filename, outputStream* st) {
2073  int fd = ::open(filename, O_RDONLY);
2074  if (fd == -1) {
2075    return false;
2076  }
2077
2078  char buf[32];
2079  int bytes;
2080  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2081    st->print_raw(buf, bytes);
2082  }
2083
2084  ::close(fd);
2085
2086  return true;
2087}
2088
2089void os::print_dll_info(outputStream *st) {
2090  st->print_cr("Dynamic libraries:");
2091
2092  char fname[32];
2093  pid_t pid = os::Linux::gettid();
2094
2095  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2096
2097  if (!_print_ascii_file(fname, st)) {
2098    st->print("Can not get library information for pid = %d\n", pid);
2099  }
2100}
2101
2102int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2103  FILE *procmapsFile = NULL;
2104
2105  // Open the procfs maps file for the current process
2106  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2107    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2108    char line[PATH_MAX + 100];
2109
2110    // Read line by line from 'file'
2111    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2112      u8 base, top, offset, inode;
2113      char permissions[5];
2114      char device[6];
2115      char name[PATH_MAX + 1];
2116
2117      // Parse fields from line
2118      sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2119
2120      // Filter by device id '00:00' so that we only get file system mapped files.
2121      if (strcmp(device, "00:00") != 0) {
2122
2123        // Call callback with the fields of interest
2124        if(callback(name, (address)base, (address)top, param)) {
2125          // Oops abort, callback aborted
2126          fclose(procmapsFile);
2127          return 1;
2128        }
2129      }
2130    }
2131    fclose(procmapsFile);
2132  }
2133  return 0;
2134}
2135
2136void os::print_os_info_brief(outputStream* st) {
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  os::Linux::print_libversion_info(st);
2142
2143}
2144
2145void os::print_os_info(outputStream* st) {
2146  st->print("OS:");
2147
2148  os::Linux::print_distro_info(st);
2149
2150  os::Posix::print_uname_info(st);
2151
2152  // Print warning if unsafe chroot environment detected
2153  if (unsafe_chroot_detected) {
2154    st->print("WARNING!! ");
2155    st->print_cr("%s", unstable_chroot_error);
2156  }
2157
2158  os::Linux::print_libversion_info(st);
2159
2160  os::Posix::print_rlimit_info(st);
2161
2162  os::Posix::print_load_average(st);
2163
2164  os::Linux::print_full_memory_info(st);
2165}
2166
2167// Try to identify popular distros.
2168// Most Linux distributions have a /etc/XXX-release file, which contains
2169// the OS version string. Newer Linux distributions have a /etc/lsb-release
2170// file that also contains the OS version string. Some have more than one
2171// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2172// /etc/redhat-release.), so the order is important.
2173// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2174// their own specific XXX-release file as well as a redhat-release file.
2175// Because of this the XXX-release file needs to be searched for before the
2176// redhat-release file.
2177// Since Red Hat has a lsb-release file that is not very descriptive the
2178// search for redhat-release needs to be before lsb-release.
2179// Since the lsb-release file is the new standard it needs to be searched
2180// before the older style release files.
2181// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2182// next to last resort.  The os-release file is a new standard that contains
2183// distribution information and the system-release file seems to be an old
2184// standard that has been replaced by the lsb-release and os-release files.
2185// Searching for the debian_version file is the last resort.  It contains
2186// an informative string like "6.0.6" or "wheezy/sid". Because of this
2187// "Debian " is printed before the contents of the debian_version file.
2188void os::Linux::print_distro_info(outputStream* st) {
2189  if (!_print_ascii_file("/etc/oracle-release", st) &&
2190      !_print_ascii_file("/etc/mandriva-release", st) &&
2191      !_print_ascii_file("/etc/mandrake-release", st) &&
2192      !_print_ascii_file("/etc/sun-release", st) &&
2193      !_print_ascii_file("/etc/redhat-release", st) &&
2194      !_print_ascii_file("/etc/lsb-release", st) &&
2195      !_print_ascii_file("/etc/SuSE-release", st) &&
2196      !_print_ascii_file("/etc/turbolinux-release", st) &&
2197      !_print_ascii_file("/etc/gentoo-release", st) &&
2198      !_print_ascii_file("/etc/ltib-release", st) &&
2199      !_print_ascii_file("/etc/angstrom-version", st) &&
2200      !_print_ascii_file("/etc/system-release", st) &&
2201      !_print_ascii_file("/etc/os-release", st)) {
2202
2203    if (file_exists("/etc/debian_version")) {
2204      st->print("Debian ");
2205      _print_ascii_file("/etc/debian_version", st);
2206    } else {
2207      st->print("Linux");
2208    }
2209  }
2210  st->cr();
2211}
2212
2213void os::Linux::print_libversion_info(outputStream* st) {
2214  // libc, pthread
2215  st->print("libc:");
2216  st->print("%s ", os::Linux::glibc_version());
2217  st->print("%s ", os::Linux::libpthread_version());
2218  if (os::Linux::is_LinuxThreads()) {
2219    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2220  }
2221  st->cr();
2222}
2223
2224void os::Linux::print_full_memory_info(outputStream* st) {
2225  st->print("\n/proc/meminfo:\n");
2226  _print_ascii_file("/proc/meminfo", st);
2227  st->cr();
2228}
2229
2230void os::print_memory_info(outputStream* st) {
2231
2232  st->print("Memory:");
2233  st->print(" %dk page", os::vm_page_size()>>10);
2234
2235  // values in struct sysinfo are "unsigned long"
2236  struct sysinfo si;
2237  sysinfo(&si);
2238
2239  st->print(", physical " UINT64_FORMAT "k",
2240            os::physical_memory() >> 10);
2241  st->print("(" UINT64_FORMAT "k free)",
2242            os::available_memory() >> 10);
2243  st->print(", swap " UINT64_FORMAT "k",
2244            ((jlong)si.totalswap * si.mem_unit) >> 10);
2245  st->print("(" UINT64_FORMAT "k free)",
2246            ((jlong)si.freeswap * si.mem_unit) >> 10);
2247  st->cr();
2248}
2249
2250void os::pd_print_cpu_info(outputStream* st) {
2251  st->print("\n/proc/cpuinfo:\n");
2252  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2253    st->print("  <Not Available>");
2254  }
2255  st->cr();
2256}
2257
2258void os::print_siginfo(outputStream* st, void* siginfo) {
2259  const siginfo_t* si = (const siginfo_t*)siginfo;
2260
2261  os::Posix::print_siginfo_brief(st, si);
2262#if INCLUDE_CDS
2263  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2264      UseSharedSpaces) {
2265    FileMapInfo* mapinfo = FileMapInfo::current_info();
2266    if (mapinfo->is_in_shared_space(si->si_addr)) {
2267      st->print("\n\nError accessing class data sharing archive."   \
2268                " Mapped file inaccessible during execution, "      \
2269                " possible disk/network problem.");
2270    }
2271  }
2272#endif
2273  st->cr();
2274}
2275
2276
2277static void print_signal_handler(outputStream* st, int sig,
2278                                 char* buf, size_t buflen);
2279
2280void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2281  st->print_cr("Signal Handlers:");
2282  print_signal_handler(st, SIGSEGV, buf, buflen);
2283  print_signal_handler(st, SIGBUS , buf, buflen);
2284  print_signal_handler(st, SIGFPE , buf, buflen);
2285  print_signal_handler(st, SIGPIPE, buf, buflen);
2286  print_signal_handler(st, SIGXFSZ, buf, buflen);
2287  print_signal_handler(st, SIGILL , buf, buflen);
2288  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2289  print_signal_handler(st, SR_signum, buf, buflen);
2290  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2291  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2292  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2293  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2294#if defined(PPC64)
2295  print_signal_handler(st, SIGTRAP, buf, buflen);
2296#endif
2297}
2298
2299static char saved_jvm_path[MAXPATHLEN] = {0};
2300
2301// Find the full path to the current module, libjvm.so
2302void os::jvm_path(char *buf, jint buflen) {
2303  // Error checking.
2304  if (buflen < MAXPATHLEN) {
2305    assert(false, "must use a large-enough buffer");
2306    buf[0] = '\0';
2307    return;
2308  }
2309  // Lazy resolve the path to current module.
2310  if (saved_jvm_path[0] != 0) {
2311    strcpy(buf, saved_jvm_path);
2312    return;
2313  }
2314
2315  char dli_fname[MAXPATHLEN];
2316  bool ret = dll_address_to_library_name(
2317                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2318                                         dli_fname, sizeof(dli_fname), NULL);
2319  assert(ret, "cannot locate libjvm");
2320  char *rp = NULL;
2321  if (ret && dli_fname[0] != '\0') {
2322    rp = realpath(dli_fname, buf);
2323  }
2324  if (rp == NULL) {
2325    return;
2326  }
2327
2328  if (Arguments::sun_java_launcher_is_altjvm()) {
2329    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2330    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2331    // If "/jre/lib/" appears at the right place in the string, then
2332    // assume we are installed in a JDK and we're done. Otherwise, check
2333    // for a JAVA_HOME environment variable and fix up the path so it
2334    // looks like libjvm.so is installed there (append a fake suffix
2335    // hotspot/libjvm.so).
2336    const char *p = buf + strlen(buf) - 1;
2337    for (int count = 0; p > buf && count < 5; ++count) {
2338      for (--p; p > buf && *p != '/'; --p)
2339        /* empty */ ;
2340    }
2341
2342    if (strncmp(p, "/jre/lib/", 9) != 0) {
2343      // Look for JAVA_HOME in the environment.
2344      char* java_home_var = ::getenv("JAVA_HOME");
2345      if (java_home_var != NULL && java_home_var[0] != 0) {
2346        char* jrelib_p;
2347        int len;
2348
2349        // Check the current module name "libjvm.so".
2350        p = strrchr(buf, '/');
2351        if (p == NULL) {
2352          return;
2353        }
2354        assert(strstr(p, "/libjvm") == p, "invalid library name");
2355
2356        rp = realpath(java_home_var, buf);
2357        if (rp == NULL) {
2358          return;
2359        }
2360
2361        // determine if this is a legacy image or modules image
2362        // modules image doesn't have "jre" subdirectory
2363        len = strlen(buf);
2364        assert(len < buflen, "Ran out of buffer room");
2365        jrelib_p = buf + len;
2366        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2367        if (0 != access(buf, F_OK)) {
2368          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2369        }
2370
2371        if (0 == access(buf, F_OK)) {
2372          // Use current module name "libjvm.so"
2373          len = strlen(buf);
2374          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2375        } else {
2376          // Go back to path of .so
2377          rp = realpath(dli_fname, buf);
2378          if (rp == NULL) {
2379            return;
2380          }
2381        }
2382      }
2383    }
2384  }
2385
2386  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2387  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2388}
2389
2390void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2391  // no prefix required, not even "_"
2392}
2393
2394void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2395  // no suffix required
2396}
2397
2398////////////////////////////////////////////////////////////////////////////////
2399// sun.misc.Signal support
2400
2401static volatile jint sigint_count = 0;
2402
2403static void UserHandler(int sig, void *siginfo, void *context) {
2404  // 4511530 - sem_post is serialized and handled by the manager thread. When
2405  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2406  // don't want to flood the manager thread with sem_post requests.
2407  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2408    return;
2409  }
2410
2411  // Ctrl-C is pressed during error reporting, likely because the error
2412  // handler fails to abort. Let VM die immediately.
2413  if (sig == SIGINT && is_error_reported()) {
2414    os::die();
2415  }
2416
2417  os::signal_notify(sig);
2418}
2419
2420void* os::user_handler() {
2421  return CAST_FROM_FN_PTR(void*, UserHandler);
2422}
2423
2424class Semaphore : public StackObj {
2425 public:
2426  Semaphore();
2427  ~Semaphore();
2428  void signal();
2429  void wait();
2430  bool trywait();
2431  bool timedwait(unsigned int sec, int nsec);
2432 private:
2433  sem_t _semaphore;
2434};
2435
2436Semaphore::Semaphore() {
2437  sem_init(&_semaphore, 0, 0);
2438}
2439
2440Semaphore::~Semaphore() {
2441  sem_destroy(&_semaphore);
2442}
2443
2444void Semaphore::signal() {
2445  sem_post(&_semaphore);
2446}
2447
2448void Semaphore::wait() {
2449  sem_wait(&_semaphore);
2450}
2451
2452bool Semaphore::trywait() {
2453  return sem_trywait(&_semaphore) == 0;
2454}
2455
2456bool Semaphore::timedwait(unsigned int sec, int nsec) {
2457
2458  struct timespec ts;
2459  // Semaphore's are always associated with CLOCK_REALTIME
2460  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2461  // see unpackTime for discussion on overflow checking
2462  if (sec >= MAX_SECS) {
2463    ts.tv_sec += MAX_SECS;
2464    ts.tv_nsec = 0;
2465  } else {
2466    ts.tv_sec += sec;
2467    ts.tv_nsec += nsec;
2468    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2469      ts.tv_nsec -= NANOSECS_PER_SEC;
2470      ++ts.tv_sec; // note: this must be <= max_secs
2471    }
2472  }
2473
2474  while (1) {
2475    int result = sem_timedwait(&_semaphore, &ts);
2476    if (result == 0) {
2477      return true;
2478    } else if (errno == EINTR) {
2479      continue;
2480    } else if (errno == ETIMEDOUT) {
2481      return false;
2482    } else {
2483      return false;
2484    }
2485  }
2486}
2487
2488extern "C" {
2489  typedef void (*sa_handler_t)(int);
2490  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2491}
2492
2493void* os::signal(int signal_number, void* handler) {
2494  struct sigaction sigAct, oldSigAct;
2495
2496  sigfillset(&(sigAct.sa_mask));
2497  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2498  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2499
2500  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2501    // -1 means registration failed
2502    return (void *)-1;
2503  }
2504
2505  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2506}
2507
2508void os::signal_raise(int signal_number) {
2509  ::raise(signal_number);
2510}
2511
2512// The following code is moved from os.cpp for making this
2513// code platform specific, which it is by its very nature.
2514
2515// Will be modified when max signal is changed to be dynamic
2516int os::sigexitnum_pd() {
2517  return NSIG;
2518}
2519
2520// a counter for each possible signal value
2521static volatile jint pending_signals[NSIG+1] = { 0 };
2522
2523// Linux(POSIX) specific hand shaking semaphore.
2524static sem_t sig_sem;
2525static Semaphore sr_semaphore;
2526
2527void os::signal_init_pd() {
2528  // Initialize signal structures
2529  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2530
2531  // Initialize signal semaphore
2532  ::sem_init(&sig_sem, 0, 0);
2533}
2534
2535void os::signal_notify(int sig) {
2536  Atomic::inc(&pending_signals[sig]);
2537  ::sem_post(&sig_sem);
2538}
2539
2540static int check_pending_signals(bool wait) {
2541  Atomic::store(0, &sigint_count);
2542  for (;;) {
2543    for (int i = 0; i < NSIG + 1; i++) {
2544      jint n = pending_signals[i];
2545      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2546        return i;
2547      }
2548    }
2549    if (!wait) {
2550      return -1;
2551    }
2552    JavaThread *thread = JavaThread::current();
2553    ThreadBlockInVM tbivm(thread);
2554
2555    bool threadIsSuspended;
2556    do {
2557      thread->set_suspend_equivalent();
2558      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2559      ::sem_wait(&sig_sem);
2560
2561      // were we externally suspended while we were waiting?
2562      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2563      if (threadIsSuspended) {
2564        // The semaphore has been incremented, but while we were waiting
2565        // another thread suspended us. We don't want to continue running
2566        // while suspended because that would surprise the thread that
2567        // suspended us.
2568        ::sem_post(&sig_sem);
2569
2570        thread->java_suspend_self();
2571      }
2572    } while (threadIsSuspended);
2573  }
2574}
2575
2576int os::signal_lookup() {
2577  return check_pending_signals(false);
2578}
2579
2580int os::signal_wait() {
2581  return check_pending_signals(true);
2582}
2583
2584////////////////////////////////////////////////////////////////////////////////
2585// Virtual Memory
2586
2587int os::vm_page_size() {
2588  // Seems redundant as all get out
2589  assert(os::Linux::page_size() != -1, "must call os::init");
2590  return os::Linux::page_size();
2591}
2592
2593// Solaris allocates memory by pages.
2594int os::vm_allocation_granularity() {
2595  assert(os::Linux::page_size() != -1, "must call os::init");
2596  return os::Linux::page_size();
2597}
2598
2599// Rationale behind this function:
2600//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2601//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2602//  samples for JITted code. Here we create private executable mapping over the code cache
2603//  and then we can use standard (well, almost, as mapping can change) way to provide
2604//  info for the reporting script by storing timestamp and location of symbol
2605void linux_wrap_code(char* base, size_t size) {
2606  static volatile jint cnt = 0;
2607
2608  if (!UseOprofile) {
2609    return;
2610  }
2611
2612  char buf[PATH_MAX+1];
2613  int num = Atomic::add(1, &cnt);
2614
2615  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2616           os::get_temp_directory(), os::current_process_id(), num);
2617  unlink(buf);
2618
2619  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2620
2621  if (fd != -1) {
2622    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2623    if (rv != (off_t)-1) {
2624      if (::write(fd, "", 1) == 1) {
2625        mmap(base, size,
2626             PROT_READ|PROT_WRITE|PROT_EXEC,
2627             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2628      }
2629    }
2630    ::close(fd);
2631    unlink(buf);
2632  }
2633}
2634
2635static bool recoverable_mmap_error(int err) {
2636  // See if the error is one we can let the caller handle. This
2637  // list of errno values comes from JBS-6843484. I can't find a
2638  // Linux man page that documents this specific set of errno
2639  // values so while this list currently matches Solaris, it may
2640  // change as we gain experience with this failure mode.
2641  switch (err) {
2642  case EBADF:
2643  case EINVAL:
2644  case ENOTSUP:
2645    // let the caller deal with these errors
2646    return true;
2647
2648  default:
2649    // Any remaining errors on this OS can cause our reserved mapping
2650    // to be lost. That can cause confusion where different data
2651    // structures think they have the same memory mapped. The worst
2652    // scenario is if both the VM and a library think they have the
2653    // same memory mapped.
2654    return false;
2655  }
2656}
2657
2658static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2659                                    int err) {
2660  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2661          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2662          strerror(err), err);
2663}
2664
2665static void warn_fail_commit_memory(char* addr, size_t size,
2666                                    size_t alignment_hint, bool exec,
2667                                    int err) {
2668  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2669          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2670          alignment_hint, exec, strerror(err), err);
2671}
2672
2673// NOTE: Linux kernel does not really reserve the pages for us.
2674//       All it does is to check if there are enough free pages
2675//       left at the time of mmap(). This could be a potential
2676//       problem.
2677int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2678  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2679  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2680                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2681  if (res != (uintptr_t) MAP_FAILED) {
2682    if (UseNUMAInterleaving) {
2683      numa_make_global(addr, size);
2684    }
2685    return 0;
2686  }
2687
2688  int err = errno;  // save errno from mmap() call above
2689
2690  if (!recoverable_mmap_error(err)) {
2691    warn_fail_commit_memory(addr, size, exec, err);
2692    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2693  }
2694
2695  return err;
2696}
2697
2698bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2699  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2700}
2701
2702void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2703                                  const char* mesg) {
2704  assert(mesg != NULL, "mesg must be specified");
2705  int err = os::Linux::commit_memory_impl(addr, size, exec);
2706  if (err != 0) {
2707    // the caller wants all commit errors to exit with the specified mesg:
2708    warn_fail_commit_memory(addr, size, exec, err);
2709    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2710  }
2711}
2712
2713// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2714#ifndef MAP_HUGETLB
2715  #define MAP_HUGETLB 0x40000
2716#endif
2717
2718// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2719#ifndef MADV_HUGEPAGE
2720  #define MADV_HUGEPAGE 14
2721#endif
2722
2723int os::Linux::commit_memory_impl(char* addr, size_t size,
2724                                  size_t alignment_hint, bool exec) {
2725  int err = os::Linux::commit_memory_impl(addr, size, exec);
2726  if (err == 0) {
2727    realign_memory(addr, size, alignment_hint);
2728  }
2729  return err;
2730}
2731
2732bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2733                          bool exec) {
2734  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2735}
2736
2737void os::pd_commit_memory_or_exit(char* addr, size_t size,
2738                                  size_t alignment_hint, bool exec,
2739                                  const char* mesg) {
2740  assert(mesg != NULL, "mesg must be specified");
2741  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2742  if (err != 0) {
2743    // the caller wants all commit errors to exit with the specified mesg:
2744    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2745    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2746  }
2747}
2748
2749void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2750  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2751    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2752    // be supported or the memory may already be backed by huge pages.
2753    ::madvise(addr, bytes, MADV_HUGEPAGE);
2754  }
2755}
2756
2757void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2758  // This method works by doing an mmap over an existing mmaping and effectively discarding
2759  // the existing pages. However it won't work for SHM-based large pages that cannot be
2760  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2761  // small pages on top of the SHM segment. This method always works for small pages, so we
2762  // allow that in any case.
2763  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2764    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2765  }
2766}
2767
2768void os::numa_make_global(char *addr, size_t bytes) {
2769  Linux::numa_interleave_memory(addr, bytes);
2770}
2771
2772// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2773// bind policy to MPOL_PREFERRED for the current thread.
2774#define USE_MPOL_PREFERRED 0
2775
2776void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2777  // To make NUMA and large pages more robust when both enabled, we need to ease
2778  // the requirements on where the memory should be allocated. MPOL_BIND is the
2779  // default policy and it will force memory to be allocated on the specified
2780  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2781  // the specified node, but will not force it. Using this policy will prevent
2782  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2783  // free large pages.
2784  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2785  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2786}
2787
2788bool os::numa_topology_changed() { return false; }
2789
2790size_t os::numa_get_groups_num() {
2791  int max_node = Linux::numa_max_node();
2792  return max_node > 0 ? max_node + 1 : 1;
2793}
2794
2795int os::numa_get_group_id() {
2796  int cpu_id = Linux::sched_getcpu();
2797  if (cpu_id != -1) {
2798    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2799    if (lgrp_id != -1) {
2800      return lgrp_id;
2801    }
2802  }
2803  return 0;
2804}
2805
2806size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2807  for (size_t i = 0; i < size; i++) {
2808    ids[i] = i;
2809  }
2810  return size;
2811}
2812
2813bool os::get_page_info(char *start, page_info* info) {
2814  return false;
2815}
2816
2817char *os::scan_pages(char *start, char* end, page_info* page_expected,
2818                     page_info* page_found) {
2819  return end;
2820}
2821
2822
2823int os::Linux::sched_getcpu_syscall(void) {
2824  unsigned int cpu;
2825  int retval = -1;
2826
2827#if defined(IA32)
2828  #ifndef SYS_getcpu
2829    #define SYS_getcpu 318
2830  #endif
2831  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2832#elif defined(AMD64)
2833// Unfortunately we have to bring all these macros here from vsyscall.h
2834// to be able to compile on old linuxes.
2835  #define __NR_vgetcpu 2
2836  #define VSYSCALL_START (-10UL << 20)
2837  #define VSYSCALL_SIZE 1024
2838  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2839  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2840  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2841  retval = vgetcpu(&cpu, NULL, NULL);
2842#endif
2843
2844  return (retval == -1) ? retval : cpu;
2845}
2846
2847// Something to do with the numa-aware allocator needs these symbols
2848extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2849extern "C" JNIEXPORT void numa_error(char *where) { }
2850extern "C" JNIEXPORT int fork1() { return fork(); }
2851
2852
2853// If we are running with libnuma version > 2, then we should
2854// be trying to use symbols with versions 1.1
2855// If we are running with earlier version, which did not have symbol versions,
2856// we should use the base version.
2857void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2858  void *f = dlvsym(handle, name, "libnuma_1.1");
2859  if (f == NULL) {
2860    f = dlsym(handle, name);
2861  }
2862  return f;
2863}
2864
2865bool os::Linux::libnuma_init() {
2866  // sched_getcpu() should be in libc.
2867  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2868                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2869
2870  // If it's not, try a direct syscall.
2871  if (sched_getcpu() == -1) {
2872    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2873                                    (void*)&sched_getcpu_syscall));
2874  }
2875
2876  if (sched_getcpu() != -1) { // Does it work?
2877    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2878    if (handle != NULL) {
2879      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2880                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2881      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2882                                       libnuma_dlsym(handle, "numa_max_node")));
2883      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2884                                        libnuma_dlsym(handle, "numa_available")));
2885      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2886                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2887      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2888                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2889      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2890                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2891
2892
2893      if (numa_available() != -1) {
2894        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2895        // Create a cpu -> node mapping
2896        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2897        rebuild_cpu_to_node_map();
2898        return true;
2899      }
2900    }
2901  }
2902  return false;
2903}
2904
2905// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2906// The table is later used in get_node_by_cpu().
2907void os::Linux::rebuild_cpu_to_node_map() {
2908  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2909                              // in libnuma (possible values are starting from 16,
2910                              // and continuing up with every other power of 2, but less
2911                              // than the maximum number of CPUs supported by kernel), and
2912                              // is a subject to change (in libnuma version 2 the requirements
2913                              // are more reasonable) we'll just hardcode the number they use
2914                              // in the library.
2915  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2916
2917  size_t cpu_num = os::active_processor_count();
2918  size_t cpu_map_size = NCPUS / BitsPerCLong;
2919  size_t cpu_map_valid_size =
2920    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2921
2922  cpu_to_node()->clear();
2923  cpu_to_node()->at_grow(cpu_num - 1);
2924  size_t node_num = numa_get_groups_num();
2925
2926  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2927  for (size_t i = 0; i < node_num; i++) {
2928    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2929      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2930        if (cpu_map[j] != 0) {
2931          for (size_t k = 0; k < BitsPerCLong; k++) {
2932            if (cpu_map[j] & (1UL << k)) {
2933              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2934            }
2935          }
2936        }
2937      }
2938    }
2939  }
2940  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2941}
2942
2943int os::Linux::get_node_by_cpu(int cpu_id) {
2944  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2945    return cpu_to_node()->at(cpu_id);
2946  }
2947  return -1;
2948}
2949
2950GrowableArray<int>* os::Linux::_cpu_to_node;
2951os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2952os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2953os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2954os::Linux::numa_available_func_t os::Linux::_numa_available;
2955os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2956os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2957os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2958unsigned long* os::Linux::_numa_all_nodes;
2959
2960bool os::pd_uncommit_memory(char* addr, size_t size) {
2961  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2962                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2963  return res  != (uintptr_t) MAP_FAILED;
2964}
2965
2966static address get_stack_commited_bottom(address bottom, size_t size) {
2967  address nbot = bottom;
2968  address ntop = bottom + size;
2969
2970  size_t page_sz = os::vm_page_size();
2971  unsigned pages = size / page_sz;
2972
2973  unsigned char vec[1];
2974  unsigned imin = 1, imax = pages + 1, imid;
2975  int mincore_return_value = 0;
2976
2977  assert(imin <= imax, "Unexpected page size");
2978
2979  while (imin < imax) {
2980    imid = (imax + imin) / 2;
2981    nbot = ntop - (imid * page_sz);
2982
2983    // Use a trick with mincore to check whether the page is mapped or not.
2984    // mincore sets vec to 1 if page resides in memory and to 0 if page
2985    // is swapped output but if page we are asking for is unmapped
2986    // it returns -1,ENOMEM
2987    mincore_return_value = mincore(nbot, page_sz, vec);
2988
2989    if (mincore_return_value == -1) {
2990      // Page is not mapped go up
2991      // to find first mapped page
2992      if (errno != EAGAIN) {
2993        assert(errno == ENOMEM, "Unexpected mincore errno");
2994        imax = imid;
2995      }
2996    } else {
2997      // Page is mapped go down
2998      // to find first not mapped page
2999      imin = imid + 1;
3000    }
3001  }
3002
3003  nbot = nbot + page_sz;
3004
3005  // Adjust stack bottom one page up if last checked page is not mapped
3006  if (mincore_return_value == -1) {
3007    nbot = nbot + page_sz;
3008  }
3009
3010  return nbot;
3011}
3012
3013
3014// Linux uses a growable mapping for the stack, and if the mapping for
3015// the stack guard pages is not removed when we detach a thread the
3016// stack cannot grow beyond the pages where the stack guard was
3017// mapped.  If at some point later in the process the stack expands to
3018// that point, the Linux kernel cannot expand the stack any further
3019// because the guard pages are in the way, and a segfault occurs.
3020//
3021// However, it's essential not to split the stack region by unmapping
3022// a region (leaving a hole) that's already part of the stack mapping,
3023// so if the stack mapping has already grown beyond the guard pages at
3024// the time we create them, we have to truncate the stack mapping.
3025// So, we need to know the extent of the stack mapping when
3026// create_stack_guard_pages() is called.
3027
3028// We only need this for stacks that are growable: at the time of
3029// writing thread stacks don't use growable mappings (i.e. those
3030// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3031// only applies to the main thread.
3032
3033// If the (growable) stack mapping already extends beyond the point
3034// where we're going to put our guard pages, truncate the mapping at
3035// that point by munmap()ping it.  This ensures that when we later
3036// munmap() the guard pages we don't leave a hole in the stack
3037// mapping. This only affects the main/initial thread
3038
3039bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3040  if (os::Linux::is_initial_thread()) {
3041    // As we manually grow stack up to bottom inside create_attached_thread(),
3042    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3043    // we don't need to do anything special.
3044    // Check it first, before calling heavy function.
3045    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3046    unsigned char vec[1];
3047
3048    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3049      // Fallback to slow path on all errors, including EAGAIN
3050      stack_extent = (uintptr_t) get_stack_commited_bottom(
3051                                                           os::Linux::initial_thread_stack_bottom(),
3052                                                           (size_t)addr - stack_extent);
3053    }
3054
3055    if (stack_extent < (uintptr_t)addr) {
3056      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3057    }
3058  }
3059
3060  return os::commit_memory(addr, size, !ExecMem);
3061}
3062
3063// If this is a growable mapping, remove the guard pages entirely by
3064// munmap()ping them.  If not, just call uncommit_memory(). This only
3065// affects the main/initial thread, but guard against future OS changes
3066// It's safe to always unmap guard pages for initial thread because we
3067// always place it right after end of the mapped region
3068
3069bool os::remove_stack_guard_pages(char* addr, size_t size) {
3070  uintptr_t stack_extent, stack_base;
3071
3072  if (os::Linux::is_initial_thread()) {
3073    return ::munmap(addr, size) == 0;
3074  }
3075
3076  return os::uncommit_memory(addr, size);
3077}
3078
3079static address _highest_vm_reserved_address = NULL;
3080
3081// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3082// at 'requested_addr'. If there are existing memory mappings at the same
3083// location, however, they will be overwritten. If 'fixed' is false,
3084// 'requested_addr' is only treated as a hint, the return value may or
3085// may not start from the requested address. Unlike Linux mmap(), this
3086// function returns NULL to indicate failure.
3087static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3088  char * addr;
3089  int flags;
3090
3091  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3092  if (fixed) {
3093    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3094    flags |= MAP_FIXED;
3095  }
3096
3097  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3098  // touch an uncommitted page. Otherwise, the read/write might
3099  // succeed if we have enough swap space to back the physical page.
3100  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3101                       flags, -1, 0);
3102
3103  if (addr != MAP_FAILED) {
3104    // anon_mmap() should only get called during VM initialization,
3105    // don't need lock (actually we can skip locking even it can be called
3106    // from multiple threads, because _highest_vm_reserved_address is just a
3107    // hint about the upper limit of non-stack memory regions.)
3108    if ((address)addr + bytes > _highest_vm_reserved_address) {
3109      _highest_vm_reserved_address = (address)addr + bytes;
3110    }
3111  }
3112
3113  return addr == MAP_FAILED ? NULL : addr;
3114}
3115
3116// Don't update _highest_vm_reserved_address, because there might be memory
3117// regions above addr + size. If so, releasing a memory region only creates
3118// a hole in the address space, it doesn't help prevent heap-stack collision.
3119//
3120static int anon_munmap(char * addr, size_t size) {
3121  return ::munmap(addr, size) == 0;
3122}
3123
3124char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3125                            size_t alignment_hint) {
3126  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3127}
3128
3129bool os::pd_release_memory(char* addr, size_t size) {
3130  return anon_munmap(addr, size);
3131}
3132
3133static address highest_vm_reserved_address() {
3134  return _highest_vm_reserved_address;
3135}
3136
3137static bool linux_mprotect(char* addr, size_t size, int prot) {
3138  // Linux wants the mprotect address argument to be page aligned.
3139  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3140
3141  // According to SUSv3, mprotect() should only be used with mappings
3142  // established by mmap(), and mmap() always maps whole pages. Unaligned
3143  // 'addr' likely indicates problem in the VM (e.g. trying to change
3144  // protection of malloc'ed or statically allocated memory). Check the
3145  // caller if you hit this assert.
3146  assert(addr == bottom, "sanity check");
3147
3148  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3149  return ::mprotect(bottom, size, prot) == 0;
3150}
3151
3152// Set protections specified
3153bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3154                        bool is_committed) {
3155  unsigned int p = 0;
3156  switch (prot) {
3157  case MEM_PROT_NONE: p = PROT_NONE; break;
3158  case MEM_PROT_READ: p = PROT_READ; break;
3159  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3160  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3161  default:
3162    ShouldNotReachHere();
3163  }
3164  // is_committed is unused.
3165  return linux_mprotect(addr, bytes, p);
3166}
3167
3168bool os::guard_memory(char* addr, size_t size) {
3169  return linux_mprotect(addr, size, PROT_NONE);
3170}
3171
3172bool os::unguard_memory(char* addr, size_t size) {
3173  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3174}
3175
3176bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3177                                                    size_t page_size) {
3178  bool result = false;
3179  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3180                 MAP_ANONYMOUS|MAP_PRIVATE,
3181                 -1, 0);
3182  if (p != MAP_FAILED) {
3183    void *aligned_p = align_ptr_up(p, page_size);
3184
3185    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3186
3187    munmap(p, page_size * 2);
3188  }
3189
3190  if (warn && !result) {
3191    warning("TransparentHugePages is not supported by the operating system.");
3192  }
3193
3194  return result;
3195}
3196
3197bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3198  bool result = false;
3199  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3200                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3201                 -1, 0);
3202
3203  if (p != MAP_FAILED) {
3204    // We don't know if this really is a huge page or not.
3205    FILE *fp = fopen("/proc/self/maps", "r");
3206    if (fp) {
3207      while (!feof(fp)) {
3208        char chars[257];
3209        long x = 0;
3210        if (fgets(chars, sizeof(chars), fp)) {
3211          if (sscanf(chars, "%lx-%*x", &x) == 1
3212              && x == (long)p) {
3213            if (strstr (chars, "hugepage")) {
3214              result = true;
3215              break;
3216            }
3217          }
3218        }
3219      }
3220      fclose(fp);
3221    }
3222    munmap(p, page_size);
3223  }
3224
3225  if (warn && !result) {
3226    warning("HugeTLBFS is not supported by the operating system.");
3227  }
3228
3229  return result;
3230}
3231
3232// Set the coredump_filter bits to include largepages in core dump (bit 6)
3233//
3234// From the coredump_filter documentation:
3235//
3236// - (bit 0) anonymous private memory
3237// - (bit 1) anonymous shared memory
3238// - (bit 2) file-backed private memory
3239// - (bit 3) file-backed shared memory
3240// - (bit 4) ELF header pages in file-backed private memory areas (it is
3241//           effective only if the bit 2 is cleared)
3242// - (bit 5) hugetlb private memory
3243// - (bit 6) hugetlb shared memory
3244//
3245static void set_coredump_filter(void) {
3246  FILE *f;
3247  long cdm;
3248
3249  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3250    return;
3251  }
3252
3253  if (fscanf(f, "%lx", &cdm) != 1) {
3254    fclose(f);
3255    return;
3256  }
3257
3258  rewind(f);
3259
3260  if ((cdm & LARGEPAGES_BIT) == 0) {
3261    cdm |= LARGEPAGES_BIT;
3262    fprintf(f, "%#lx", cdm);
3263  }
3264
3265  fclose(f);
3266}
3267
3268// Large page support
3269
3270static size_t _large_page_size = 0;
3271
3272size_t os::Linux::find_large_page_size() {
3273  size_t large_page_size = 0;
3274
3275  // large_page_size on Linux is used to round up heap size. x86 uses either
3276  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3277  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3278  // page as large as 256M.
3279  //
3280  // Here we try to figure out page size by parsing /proc/meminfo and looking
3281  // for a line with the following format:
3282  //    Hugepagesize:     2048 kB
3283  //
3284  // If we can't determine the value (e.g. /proc is not mounted, or the text
3285  // format has been changed), we'll use the largest page size supported by
3286  // the processor.
3287
3288#ifndef ZERO
3289  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3290                     ARM_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3291#endif // ZERO
3292
3293  FILE *fp = fopen("/proc/meminfo", "r");
3294  if (fp) {
3295    while (!feof(fp)) {
3296      int x = 0;
3297      char buf[16];
3298      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3299        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3300          large_page_size = x * K;
3301          break;
3302        }
3303      } else {
3304        // skip to next line
3305        for (;;) {
3306          int ch = fgetc(fp);
3307          if (ch == EOF || ch == (int)'\n') break;
3308        }
3309      }
3310    }
3311    fclose(fp);
3312  }
3313
3314  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3315    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3316            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3317            proper_unit_for_byte_size(large_page_size));
3318  }
3319
3320  return large_page_size;
3321}
3322
3323size_t os::Linux::setup_large_page_size() {
3324  _large_page_size = Linux::find_large_page_size();
3325  const size_t default_page_size = (size_t)Linux::page_size();
3326  if (_large_page_size > default_page_size) {
3327    _page_sizes[0] = _large_page_size;
3328    _page_sizes[1] = default_page_size;
3329    _page_sizes[2] = 0;
3330  }
3331
3332  return _large_page_size;
3333}
3334
3335bool os::Linux::setup_large_page_type(size_t page_size) {
3336  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3337      FLAG_IS_DEFAULT(UseSHM) &&
3338      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3339
3340    // The type of large pages has not been specified by the user.
3341
3342    // Try UseHugeTLBFS and then UseSHM.
3343    UseHugeTLBFS = UseSHM = true;
3344
3345    // Don't try UseTransparentHugePages since there are known
3346    // performance issues with it turned on. This might change in the future.
3347    UseTransparentHugePages = false;
3348  }
3349
3350  if (UseTransparentHugePages) {
3351    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3352    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3353      UseHugeTLBFS = false;
3354      UseSHM = false;
3355      return true;
3356    }
3357    UseTransparentHugePages = false;
3358  }
3359
3360  if (UseHugeTLBFS) {
3361    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3362    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3363      UseSHM = false;
3364      return true;
3365    }
3366    UseHugeTLBFS = false;
3367  }
3368
3369  return UseSHM;
3370}
3371
3372void os::large_page_init() {
3373  if (!UseLargePages &&
3374      !UseTransparentHugePages &&
3375      !UseHugeTLBFS &&
3376      !UseSHM) {
3377    // Not using large pages.
3378    return;
3379  }
3380
3381  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3382    // The user explicitly turned off large pages.
3383    // Ignore the rest of the large pages flags.
3384    UseTransparentHugePages = false;
3385    UseHugeTLBFS = false;
3386    UseSHM = false;
3387    return;
3388  }
3389
3390  size_t large_page_size = Linux::setup_large_page_size();
3391  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3392
3393  set_coredump_filter();
3394}
3395
3396#ifndef SHM_HUGETLB
3397  #define SHM_HUGETLB 04000
3398#endif
3399
3400char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3401                                            char* req_addr, bool exec) {
3402  // "exec" is passed in but not used.  Creating the shared image for
3403  // the code cache doesn't have an SHM_X executable permission to check.
3404  assert(UseLargePages && UseSHM, "only for SHM large pages");
3405  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3406
3407  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3408    return NULL; // Fallback to small pages.
3409  }
3410
3411  key_t key = IPC_PRIVATE;
3412  char *addr;
3413
3414  bool warn_on_failure = UseLargePages &&
3415                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3416                         !FLAG_IS_DEFAULT(UseSHM) ||
3417                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3418  char msg[128];
3419
3420  // Create a large shared memory region to attach to based on size.
3421  // Currently, size is the total size of the heap
3422  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3423  if (shmid == -1) {
3424    // Possible reasons for shmget failure:
3425    // 1. shmmax is too small for Java heap.
3426    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3427    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3428    // 2. not enough large page memory.
3429    //    > check available large pages: cat /proc/meminfo
3430    //    > increase amount of large pages:
3431    //          echo new_value > /proc/sys/vm/nr_hugepages
3432    //      Note 1: different Linux may use different name for this property,
3433    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3434    //      Note 2: it's possible there's enough physical memory available but
3435    //            they are so fragmented after a long run that they can't
3436    //            coalesce into large pages. Try to reserve large pages when
3437    //            the system is still "fresh".
3438    if (warn_on_failure) {
3439      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3440      warning("%s", msg);
3441    }
3442    return NULL;
3443  }
3444
3445  // attach to the region
3446  addr = (char*)shmat(shmid, req_addr, 0);
3447  int err = errno;
3448
3449  // Remove shmid. If shmat() is successful, the actual shared memory segment
3450  // will be deleted when it's detached by shmdt() or when the process
3451  // terminates. If shmat() is not successful this will remove the shared
3452  // segment immediately.
3453  shmctl(shmid, IPC_RMID, NULL);
3454
3455  if ((intptr_t)addr == -1) {
3456    if (warn_on_failure) {
3457      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3458      warning("%s", msg);
3459    }
3460    return NULL;
3461  }
3462
3463  return addr;
3464}
3465
3466static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3467                                        int error) {
3468  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3469
3470  bool warn_on_failure = UseLargePages &&
3471      (!FLAG_IS_DEFAULT(UseLargePages) ||
3472       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3473       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3474
3475  if (warn_on_failure) {
3476    char msg[128];
3477    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3478                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3479    warning("%s", msg);
3480  }
3481}
3482
3483char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3484                                                        char* req_addr,
3485                                                        bool exec) {
3486  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3487  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3488  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3489
3490  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3491  char* addr = (char*)::mmap(req_addr, bytes, prot,
3492                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3493                             -1, 0);
3494
3495  if (addr == MAP_FAILED) {
3496    warn_on_large_pages_failure(req_addr, bytes, errno);
3497    return NULL;
3498  }
3499
3500  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3501
3502  return addr;
3503}
3504
3505char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3506                                                         size_t alignment,
3507                                                         char* req_addr,
3508                                                         bool exec) {
3509  size_t large_page_size = os::large_page_size();
3510
3511  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3512
3513  // Allocate small pages.
3514
3515  char* start;
3516  if (req_addr != NULL) {
3517    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3518    assert(is_size_aligned(bytes, alignment), "Must be");
3519    start = os::reserve_memory(bytes, req_addr);
3520    assert(start == NULL || start == req_addr, "Must be");
3521  } else {
3522    start = os::reserve_memory_aligned(bytes, alignment);
3523  }
3524
3525  if (start == NULL) {
3526    return NULL;
3527  }
3528
3529  assert(is_ptr_aligned(start, alignment), "Must be");
3530
3531  if (MemTracker::tracking_level() > NMT_minimal) {
3532    // os::reserve_memory_special will record this memory area.
3533    // Need to release it here to prevent overlapping reservations.
3534    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3535    tkr.record((address)start, bytes);
3536  }
3537
3538  char* end = start + bytes;
3539
3540  // Find the regions of the allocated chunk that can be promoted to large pages.
3541  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3542  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3543
3544  size_t lp_bytes = lp_end - lp_start;
3545
3546  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3547
3548  if (lp_bytes == 0) {
3549    // The mapped region doesn't even span the start and the end of a large page.
3550    // Fall back to allocate a non-special area.
3551    ::munmap(start, end - start);
3552    return NULL;
3553  }
3554
3555  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3556
3557
3558  void* result;
3559
3560  if (start != lp_start) {
3561    result = ::mmap(start, lp_start - start, prot,
3562                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3563                    -1, 0);
3564    if (result == MAP_FAILED) {
3565      ::munmap(lp_start, end - lp_start);
3566      return NULL;
3567    }
3568  }
3569
3570  result = ::mmap(lp_start, lp_bytes, prot,
3571                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3572                  -1, 0);
3573  if (result == MAP_FAILED) {
3574    warn_on_large_pages_failure(req_addr, bytes, errno);
3575    // If the mmap above fails, the large pages region will be unmapped and we
3576    // have regions before and after with small pages. Release these regions.
3577    //
3578    // |  mapped  |  unmapped  |  mapped  |
3579    // ^          ^            ^          ^
3580    // start      lp_start     lp_end     end
3581    //
3582    ::munmap(start, lp_start - start);
3583    ::munmap(lp_end, end - lp_end);
3584    return NULL;
3585  }
3586
3587  if (lp_end != end) {
3588    result = ::mmap(lp_end, end - lp_end, prot,
3589                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3590                    -1, 0);
3591    if (result == MAP_FAILED) {
3592      ::munmap(start, lp_end - start);
3593      return NULL;
3594    }
3595  }
3596
3597  return start;
3598}
3599
3600char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3601                                                   size_t alignment,
3602                                                   char* req_addr,
3603                                                   bool exec) {
3604  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3605  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3606  assert(is_power_of_2(alignment), "Must be");
3607  assert(is_power_of_2(os::large_page_size()), "Must be");
3608  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3609
3610  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3611    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3612  } else {
3613    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3614  }
3615}
3616
3617char* os::reserve_memory_special(size_t bytes, size_t alignment,
3618                                 char* req_addr, bool exec) {
3619  assert(UseLargePages, "only for large pages");
3620
3621  char* addr;
3622  if (UseSHM) {
3623    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3624  } else {
3625    assert(UseHugeTLBFS, "must be");
3626    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3627  }
3628
3629  if (addr != NULL) {
3630    if (UseNUMAInterleaving) {
3631      numa_make_global(addr, bytes);
3632    }
3633
3634    // The memory is committed
3635    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3636  }
3637
3638  return addr;
3639}
3640
3641bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3642  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3643  return shmdt(base) == 0;
3644}
3645
3646bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3647  return pd_release_memory(base, bytes);
3648}
3649
3650bool os::release_memory_special(char* base, size_t bytes) {
3651  bool res;
3652  if (MemTracker::tracking_level() > NMT_minimal) {
3653    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3654    res = os::Linux::release_memory_special_impl(base, bytes);
3655    if (res) {
3656      tkr.record((address)base, bytes);
3657    }
3658
3659  } else {
3660    res = os::Linux::release_memory_special_impl(base, bytes);
3661  }
3662  return res;
3663}
3664
3665bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3666  assert(UseLargePages, "only for large pages");
3667  bool res;
3668
3669  if (UseSHM) {
3670    res = os::Linux::release_memory_special_shm(base, bytes);
3671  } else {
3672    assert(UseHugeTLBFS, "must be");
3673    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3674  }
3675  return res;
3676}
3677
3678size_t os::large_page_size() {
3679  return _large_page_size;
3680}
3681
3682// With SysV SHM the entire memory region must be allocated as shared
3683// memory.
3684// HugeTLBFS allows application to commit large page memory on demand.
3685// However, when committing memory with HugeTLBFS fails, the region
3686// that was supposed to be committed will lose the old reservation
3687// and allow other threads to steal that memory region. Because of this
3688// behavior we can't commit HugeTLBFS memory.
3689bool os::can_commit_large_page_memory() {
3690  return UseTransparentHugePages;
3691}
3692
3693bool os::can_execute_large_page_memory() {
3694  return UseTransparentHugePages || UseHugeTLBFS;
3695}
3696
3697// Reserve memory at an arbitrary address, only if that area is
3698// available (and not reserved for something else).
3699
3700char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3701  const int max_tries = 10;
3702  char* base[max_tries];
3703  size_t size[max_tries];
3704  const size_t gap = 0x000000;
3705
3706  // Assert only that the size is a multiple of the page size, since
3707  // that's all that mmap requires, and since that's all we really know
3708  // about at this low abstraction level.  If we need higher alignment,
3709  // we can either pass an alignment to this method or verify alignment
3710  // in one of the methods further up the call chain.  See bug 5044738.
3711  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3712
3713  // Repeatedly allocate blocks until the block is allocated at the
3714  // right spot. Give up after max_tries. Note that reserve_memory() will
3715  // automatically update _highest_vm_reserved_address if the call is
3716  // successful. The variable tracks the highest memory address every reserved
3717  // by JVM. It is used to detect heap-stack collision if running with
3718  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3719  // space than needed, it could confuse the collision detecting code. To
3720  // solve the problem, save current _highest_vm_reserved_address and
3721  // calculate the correct value before return.
3722  address old_highest = _highest_vm_reserved_address;
3723
3724  // Linux mmap allows caller to pass an address as hint; give it a try first,
3725  // if kernel honors the hint then we can return immediately.
3726  char * addr = anon_mmap(requested_addr, bytes, false);
3727  if (addr == requested_addr) {
3728    return requested_addr;
3729  }
3730
3731  if (addr != NULL) {
3732    // mmap() is successful but it fails to reserve at the requested address
3733    anon_munmap(addr, bytes);
3734  }
3735
3736  int i;
3737  for (i = 0; i < max_tries; ++i) {
3738    base[i] = reserve_memory(bytes);
3739
3740    if (base[i] != NULL) {
3741      // Is this the block we wanted?
3742      if (base[i] == requested_addr) {
3743        size[i] = bytes;
3744        break;
3745      }
3746
3747      // Does this overlap the block we wanted? Give back the overlapped
3748      // parts and try again.
3749
3750      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3751      if (top_overlap >= 0 && top_overlap < bytes) {
3752        unmap_memory(base[i], top_overlap);
3753        base[i] += top_overlap;
3754        size[i] = bytes - top_overlap;
3755      } else {
3756        size_t bottom_overlap = base[i] + bytes - requested_addr;
3757        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3758          unmap_memory(requested_addr, bottom_overlap);
3759          size[i] = bytes - bottom_overlap;
3760        } else {
3761          size[i] = bytes;
3762        }
3763      }
3764    }
3765  }
3766
3767  // Give back the unused reserved pieces.
3768
3769  for (int j = 0; j < i; ++j) {
3770    if (base[j] != NULL) {
3771      unmap_memory(base[j], size[j]);
3772    }
3773  }
3774
3775  if (i < max_tries) {
3776    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3777    return requested_addr;
3778  } else {
3779    _highest_vm_reserved_address = old_highest;
3780    return NULL;
3781  }
3782}
3783
3784size_t os::read(int fd, void *buf, unsigned int nBytes) {
3785  return ::read(fd, buf, nBytes);
3786}
3787
3788size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3789  return ::pread(fd, buf, nBytes, offset);
3790}
3791
3792// Short sleep, direct OS call.
3793//
3794// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3795// sched_yield(2) will actually give up the CPU:
3796//
3797//   * Alone on this pariticular CPU, keeps running.
3798//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3799//     (pre 2.6.39).
3800//
3801// So calling this with 0 is an alternative.
3802//
3803void os::naked_short_sleep(jlong ms) {
3804  struct timespec req;
3805
3806  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3807  req.tv_sec = 0;
3808  if (ms > 0) {
3809    req.tv_nsec = (ms % 1000) * 1000000;
3810  } else {
3811    req.tv_nsec = 1;
3812  }
3813
3814  nanosleep(&req, NULL);
3815
3816  return;
3817}
3818
3819// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3820void os::infinite_sleep() {
3821  while (true) {    // sleep forever ...
3822    ::sleep(100);   // ... 100 seconds at a time
3823  }
3824}
3825
3826// Used to convert frequent JVM_Yield() to nops
3827bool os::dont_yield() {
3828  return DontYieldALot;
3829}
3830
3831void os::naked_yield() {
3832  sched_yield();
3833}
3834
3835////////////////////////////////////////////////////////////////////////////////
3836// thread priority support
3837
3838// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3839// only supports dynamic priority, static priority must be zero. For real-time
3840// applications, Linux supports SCHED_RR which allows static priority (1-99).
3841// However, for large multi-threaded applications, SCHED_RR is not only slower
3842// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3843// of 5 runs - Sep 2005).
3844//
3845// The following code actually changes the niceness of kernel-thread/LWP. It
3846// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3847// not the entire user process, and user level threads are 1:1 mapped to kernel
3848// threads. It has always been the case, but could change in the future. For
3849// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3850// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3851
3852int os::java_to_os_priority[CriticalPriority + 1] = {
3853  19,              // 0 Entry should never be used
3854
3855   4,              // 1 MinPriority
3856   3,              // 2
3857   2,              // 3
3858
3859   1,              // 4
3860   0,              // 5 NormPriority
3861  -1,              // 6
3862
3863  -2,              // 7
3864  -3,              // 8
3865  -4,              // 9 NearMaxPriority
3866
3867  -5,              // 10 MaxPriority
3868
3869  -5               // 11 CriticalPriority
3870};
3871
3872static int prio_init() {
3873  if (ThreadPriorityPolicy == 1) {
3874    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3875    // if effective uid is not root. Perhaps, a more elegant way of doing
3876    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3877    if (geteuid() != 0) {
3878      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3879        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3880      }
3881      ThreadPriorityPolicy = 0;
3882    }
3883  }
3884  if (UseCriticalJavaThreadPriority) {
3885    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3886  }
3887  return 0;
3888}
3889
3890OSReturn os::set_native_priority(Thread* thread, int newpri) {
3891  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3892
3893  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3894  return (ret == 0) ? OS_OK : OS_ERR;
3895}
3896
3897OSReturn os::get_native_priority(const Thread* const thread,
3898                                 int *priority_ptr) {
3899  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3900    *priority_ptr = java_to_os_priority[NormPriority];
3901    return OS_OK;
3902  }
3903
3904  errno = 0;
3905  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3906  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3907}
3908
3909// Hint to the underlying OS that a task switch would not be good.
3910// Void return because it's a hint and can fail.
3911void os::hint_no_preempt() {}
3912
3913////////////////////////////////////////////////////////////////////////////////
3914// suspend/resume support
3915
3916//  the low-level signal-based suspend/resume support is a remnant from the
3917//  old VM-suspension that used to be for java-suspension, safepoints etc,
3918//  within hotspot. Now there is a single use-case for this:
3919//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3920//      that runs in the watcher thread.
3921//  The remaining code is greatly simplified from the more general suspension
3922//  code that used to be used.
3923//
3924//  The protocol is quite simple:
3925//  - suspend:
3926//      - sends a signal to the target thread
3927//      - polls the suspend state of the osthread using a yield loop
3928//      - target thread signal handler (SR_handler) sets suspend state
3929//        and blocks in sigsuspend until continued
3930//  - resume:
3931//      - sets target osthread state to continue
3932//      - sends signal to end the sigsuspend loop in the SR_handler
3933//
3934//  Note that the SR_lock plays no role in this suspend/resume protocol.
3935
3936static void resume_clear_context(OSThread *osthread) {
3937  osthread->set_ucontext(NULL);
3938  osthread->set_siginfo(NULL);
3939}
3940
3941static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3942                                 ucontext_t* context) {
3943  osthread->set_ucontext(context);
3944  osthread->set_siginfo(siginfo);
3945}
3946
3947// Handler function invoked when a thread's execution is suspended or
3948// resumed. We have to be careful that only async-safe functions are
3949// called here (Note: most pthread functions are not async safe and
3950// should be avoided.)
3951//
3952// Note: sigwait() is a more natural fit than sigsuspend() from an
3953// interface point of view, but sigwait() prevents the signal hander
3954// from being run. libpthread would get very confused by not having
3955// its signal handlers run and prevents sigwait()'s use with the
3956// mutex granting granting signal.
3957//
3958// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3959//
3960static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3961  // Save and restore errno to avoid confusing native code with EINTR
3962  // after sigsuspend.
3963  int old_errno = errno;
3964
3965  Thread* thread = Thread::current();
3966  OSThread* osthread = thread->osthread();
3967  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3968
3969  os::SuspendResume::State current = osthread->sr.state();
3970  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3971    suspend_save_context(osthread, siginfo, context);
3972
3973    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3974    os::SuspendResume::State state = osthread->sr.suspended();
3975    if (state == os::SuspendResume::SR_SUSPENDED) {
3976      sigset_t suspend_set;  // signals for sigsuspend()
3977
3978      // get current set of blocked signals and unblock resume signal
3979      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3980      sigdelset(&suspend_set, SR_signum);
3981
3982      sr_semaphore.signal();
3983      // wait here until we are resumed
3984      while (1) {
3985        sigsuspend(&suspend_set);
3986
3987        os::SuspendResume::State result = osthread->sr.running();
3988        if (result == os::SuspendResume::SR_RUNNING) {
3989          sr_semaphore.signal();
3990          break;
3991        }
3992      }
3993
3994    } else if (state == os::SuspendResume::SR_RUNNING) {
3995      // request was cancelled, continue
3996    } else {
3997      ShouldNotReachHere();
3998    }
3999
4000    resume_clear_context(osthread);
4001  } else if (current == os::SuspendResume::SR_RUNNING) {
4002    // request was cancelled, continue
4003  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4004    // ignore
4005  } else {
4006    // ignore
4007  }
4008
4009  errno = old_errno;
4010}
4011
4012
4013static int SR_initialize() {
4014  struct sigaction act;
4015  char *s;
4016  // Get signal number to use for suspend/resume
4017  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4018    int sig = ::strtol(s, 0, 10);
4019    if (sig > 0 || sig < _NSIG) {
4020      SR_signum = sig;
4021    }
4022  }
4023
4024  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4025         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4026
4027  sigemptyset(&SR_sigset);
4028  sigaddset(&SR_sigset, SR_signum);
4029
4030  // Set up signal handler for suspend/resume
4031  act.sa_flags = SA_RESTART|SA_SIGINFO;
4032  act.sa_handler = (void (*)(int)) SR_handler;
4033
4034  // SR_signum is blocked by default.
4035  // 4528190 - We also need to block pthread restart signal (32 on all
4036  // supported Linux platforms). Note that LinuxThreads need to block
4037  // this signal for all threads to work properly. So we don't have
4038  // to use hard-coded signal number when setting up the mask.
4039  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4040
4041  if (sigaction(SR_signum, &act, 0) == -1) {
4042    return -1;
4043  }
4044
4045  // Save signal flag
4046  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4047  return 0;
4048}
4049
4050static int sr_notify(OSThread* osthread) {
4051  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4052  assert_status(status == 0, status, "pthread_kill");
4053  return status;
4054}
4055
4056// "Randomly" selected value for how long we want to spin
4057// before bailing out on suspending a thread, also how often
4058// we send a signal to a thread we want to resume
4059static const int RANDOMLY_LARGE_INTEGER = 1000000;
4060static const int RANDOMLY_LARGE_INTEGER2 = 100;
4061
4062// returns true on success and false on error - really an error is fatal
4063// but this seems the normal response to library errors
4064static bool do_suspend(OSThread* osthread) {
4065  assert(osthread->sr.is_running(), "thread should be running");
4066  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4067
4068  // mark as suspended and send signal
4069  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4070    // failed to switch, state wasn't running?
4071    ShouldNotReachHere();
4072    return false;
4073  }
4074
4075  if (sr_notify(osthread) != 0) {
4076    ShouldNotReachHere();
4077  }
4078
4079  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4080  while (true) {
4081    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4082      break;
4083    } else {
4084      // timeout
4085      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4086      if (cancelled == os::SuspendResume::SR_RUNNING) {
4087        return false;
4088      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4089        // make sure that we consume the signal on the semaphore as well
4090        sr_semaphore.wait();
4091        break;
4092      } else {
4093        ShouldNotReachHere();
4094        return false;
4095      }
4096    }
4097  }
4098
4099  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4100  return true;
4101}
4102
4103static void do_resume(OSThread* osthread) {
4104  assert(osthread->sr.is_suspended(), "thread should be suspended");
4105  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4106
4107  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4108    // failed to switch to WAKEUP_REQUEST
4109    ShouldNotReachHere();
4110    return;
4111  }
4112
4113  while (true) {
4114    if (sr_notify(osthread) == 0) {
4115      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4116        if (osthread->sr.is_running()) {
4117          return;
4118        }
4119      }
4120    } else {
4121      ShouldNotReachHere();
4122    }
4123  }
4124
4125  guarantee(osthread->sr.is_running(), "Must be running!");
4126}
4127
4128///////////////////////////////////////////////////////////////////////////////////
4129// signal handling (except suspend/resume)
4130
4131// This routine may be used by user applications as a "hook" to catch signals.
4132// The user-defined signal handler must pass unrecognized signals to this
4133// routine, and if it returns true (non-zero), then the signal handler must
4134// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4135// routine will never retun false (zero), but instead will execute a VM panic
4136// routine kill the process.
4137//
4138// If this routine returns false, it is OK to call it again.  This allows
4139// the user-defined signal handler to perform checks either before or after
4140// the VM performs its own checks.  Naturally, the user code would be making
4141// a serious error if it tried to handle an exception (such as a null check
4142// or breakpoint) that the VM was generating for its own correct operation.
4143//
4144// This routine may recognize any of the following kinds of signals:
4145//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4146// It should be consulted by handlers for any of those signals.
4147//
4148// The caller of this routine must pass in the three arguments supplied
4149// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4150// field of the structure passed to sigaction().  This routine assumes that
4151// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4152//
4153// Note that the VM will print warnings if it detects conflicting signal
4154// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4155//
4156extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4157                                                 siginfo_t* siginfo,
4158                                                 void* ucontext,
4159                                                 int abort_if_unrecognized);
4160
4161void signalHandler(int sig, siginfo_t* info, void* uc) {
4162  assert(info != NULL && uc != NULL, "it must be old kernel");
4163  int orig_errno = errno;  // Preserve errno value over signal handler.
4164  JVM_handle_linux_signal(sig, info, uc, true);
4165  errno = orig_errno;
4166}
4167
4168
4169// This boolean allows users to forward their own non-matching signals
4170// to JVM_handle_linux_signal, harmlessly.
4171bool os::Linux::signal_handlers_are_installed = false;
4172
4173// For signal-chaining
4174struct sigaction os::Linux::sigact[MAXSIGNUM];
4175unsigned int os::Linux::sigs = 0;
4176bool os::Linux::libjsig_is_loaded = false;
4177typedef struct sigaction *(*get_signal_t)(int);
4178get_signal_t os::Linux::get_signal_action = NULL;
4179
4180struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4181  struct sigaction *actp = NULL;
4182
4183  if (libjsig_is_loaded) {
4184    // Retrieve the old signal handler from libjsig
4185    actp = (*get_signal_action)(sig);
4186  }
4187  if (actp == NULL) {
4188    // Retrieve the preinstalled signal handler from jvm
4189    actp = get_preinstalled_handler(sig);
4190  }
4191
4192  return actp;
4193}
4194
4195static bool call_chained_handler(struct sigaction *actp, int sig,
4196                                 siginfo_t *siginfo, void *context) {
4197  // Call the old signal handler
4198  if (actp->sa_handler == SIG_DFL) {
4199    // It's more reasonable to let jvm treat it as an unexpected exception
4200    // instead of taking the default action.
4201    return false;
4202  } else if (actp->sa_handler != SIG_IGN) {
4203    if ((actp->sa_flags & SA_NODEFER) == 0) {
4204      // automaticlly block the signal
4205      sigaddset(&(actp->sa_mask), sig);
4206    }
4207
4208    sa_handler_t hand;
4209    sa_sigaction_t sa;
4210    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4211    // retrieve the chained handler
4212    if (siginfo_flag_set) {
4213      sa = actp->sa_sigaction;
4214    } else {
4215      hand = actp->sa_handler;
4216    }
4217
4218    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4219      actp->sa_handler = SIG_DFL;
4220    }
4221
4222    // try to honor the signal mask
4223    sigset_t oset;
4224    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4225
4226    // call into the chained handler
4227    if (siginfo_flag_set) {
4228      (*sa)(sig, siginfo, context);
4229    } else {
4230      (*hand)(sig);
4231    }
4232
4233    // restore the signal mask
4234    pthread_sigmask(SIG_SETMASK, &oset, 0);
4235  }
4236  // Tell jvm's signal handler the signal is taken care of.
4237  return true;
4238}
4239
4240bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4241  bool chained = false;
4242  // signal-chaining
4243  if (UseSignalChaining) {
4244    struct sigaction *actp = get_chained_signal_action(sig);
4245    if (actp != NULL) {
4246      chained = call_chained_handler(actp, sig, siginfo, context);
4247    }
4248  }
4249  return chained;
4250}
4251
4252struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4253  if ((((unsigned int)1 << sig) & sigs) != 0) {
4254    return &sigact[sig];
4255  }
4256  return NULL;
4257}
4258
4259void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4260  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4261  sigact[sig] = oldAct;
4262  sigs |= (unsigned int)1 << sig;
4263}
4264
4265// for diagnostic
4266int os::Linux::sigflags[MAXSIGNUM];
4267
4268int os::Linux::get_our_sigflags(int sig) {
4269  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4270  return sigflags[sig];
4271}
4272
4273void os::Linux::set_our_sigflags(int sig, int flags) {
4274  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4275  sigflags[sig] = flags;
4276}
4277
4278void os::Linux::set_signal_handler(int sig, bool set_installed) {
4279  // Check for overwrite.
4280  struct sigaction oldAct;
4281  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4282
4283  void* oldhand = oldAct.sa_sigaction
4284                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4285                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4286  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4287      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4288      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4289    if (AllowUserSignalHandlers || !set_installed) {
4290      // Do not overwrite; user takes responsibility to forward to us.
4291      return;
4292    } else if (UseSignalChaining) {
4293      // save the old handler in jvm
4294      save_preinstalled_handler(sig, oldAct);
4295      // libjsig also interposes the sigaction() call below and saves the
4296      // old sigaction on it own.
4297    } else {
4298      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4299                    "%#lx for signal %d.", (long)oldhand, sig));
4300    }
4301  }
4302
4303  struct sigaction sigAct;
4304  sigfillset(&(sigAct.sa_mask));
4305  sigAct.sa_handler = SIG_DFL;
4306  if (!set_installed) {
4307    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4308  } else {
4309    sigAct.sa_sigaction = signalHandler;
4310    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4311  }
4312  // Save flags, which are set by ours
4313  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4314  sigflags[sig] = sigAct.sa_flags;
4315
4316  int ret = sigaction(sig, &sigAct, &oldAct);
4317  assert(ret == 0, "check");
4318
4319  void* oldhand2  = oldAct.sa_sigaction
4320                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4321                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4322  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4323}
4324
4325// install signal handlers for signals that HotSpot needs to
4326// handle in order to support Java-level exception handling.
4327
4328void os::Linux::install_signal_handlers() {
4329  if (!signal_handlers_are_installed) {
4330    signal_handlers_are_installed = true;
4331
4332    // signal-chaining
4333    typedef void (*signal_setting_t)();
4334    signal_setting_t begin_signal_setting = NULL;
4335    signal_setting_t end_signal_setting = NULL;
4336    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4337                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4338    if (begin_signal_setting != NULL) {
4339      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4340                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4341      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4342                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4343      libjsig_is_loaded = true;
4344      assert(UseSignalChaining, "should enable signal-chaining");
4345    }
4346    if (libjsig_is_loaded) {
4347      // Tell libjsig jvm is setting signal handlers
4348      (*begin_signal_setting)();
4349    }
4350
4351    set_signal_handler(SIGSEGV, true);
4352    set_signal_handler(SIGPIPE, true);
4353    set_signal_handler(SIGBUS, true);
4354    set_signal_handler(SIGILL, true);
4355    set_signal_handler(SIGFPE, true);
4356#if defined(PPC64)
4357    set_signal_handler(SIGTRAP, true);
4358#endif
4359    set_signal_handler(SIGXFSZ, true);
4360
4361    if (libjsig_is_loaded) {
4362      // Tell libjsig jvm finishes setting signal handlers
4363      (*end_signal_setting)();
4364    }
4365
4366    // We don't activate signal checker if libjsig is in place, we trust ourselves
4367    // and if UserSignalHandler is installed all bets are off.
4368    // Log that signal checking is off only if -verbose:jni is specified.
4369    if (CheckJNICalls) {
4370      if (libjsig_is_loaded) {
4371        if (PrintJNIResolving) {
4372          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4373        }
4374        check_signals = false;
4375      }
4376      if (AllowUserSignalHandlers) {
4377        if (PrintJNIResolving) {
4378          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4379        }
4380        check_signals = false;
4381      }
4382    }
4383  }
4384}
4385
4386// This is the fastest way to get thread cpu time on Linux.
4387// Returns cpu time (user+sys) for any thread, not only for current.
4388// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4389// It might work on 2.6.10+ with a special kernel/glibc patch.
4390// For reference, please, see IEEE Std 1003.1-2004:
4391//   http://www.unix.org/single_unix_specification
4392
4393jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4394  struct timespec tp;
4395  int rc = os::Linux::clock_gettime(clockid, &tp);
4396  assert(rc == 0, "clock_gettime is expected to return 0 code");
4397
4398  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4399}
4400
4401/////
4402// glibc on Linux platform uses non-documented flag
4403// to indicate, that some special sort of signal
4404// trampoline is used.
4405// We will never set this flag, and we should
4406// ignore this flag in our diagnostic
4407#ifdef SIGNIFICANT_SIGNAL_MASK
4408  #undef SIGNIFICANT_SIGNAL_MASK
4409#endif
4410#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4411
4412static const char* get_signal_handler_name(address handler,
4413                                           char* buf, int buflen) {
4414  int offset;
4415  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4416  if (found) {
4417    // skip directory names
4418    const char *p1, *p2;
4419    p1 = buf;
4420    size_t len = strlen(os::file_separator());
4421    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4422    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4423  } else {
4424    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4425  }
4426  return buf;
4427}
4428
4429static void print_signal_handler(outputStream* st, int sig,
4430                                 char* buf, size_t buflen) {
4431  struct sigaction sa;
4432
4433  sigaction(sig, NULL, &sa);
4434
4435  // See comment for SIGNIFICANT_SIGNAL_MASK define
4436  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4437
4438  st->print("%s: ", os::exception_name(sig, buf, buflen));
4439
4440  address handler = (sa.sa_flags & SA_SIGINFO)
4441    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4442    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4443
4444  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4445    st->print("SIG_DFL");
4446  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4447    st->print("SIG_IGN");
4448  } else {
4449    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4450  }
4451
4452  st->print(", sa_mask[0]=");
4453  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4454
4455  address rh = VMError::get_resetted_sighandler(sig);
4456  // May be, handler was resetted by VMError?
4457  if (rh != NULL) {
4458    handler = rh;
4459    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4460  }
4461
4462  st->print(", sa_flags=");
4463  os::Posix::print_sa_flags(st, sa.sa_flags);
4464
4465  // Check: is it our handler?
4466  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4467      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4468    // It is our signal handler
4469    // check for flags, reset system-used one!
4470    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4471      st->print(
4472                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4473                os::Linux::get_our_sigflags(sig));
4474    }
4475  }
4476  st->cr();
4477}
4478
4479
4480#define DO_SIGNAL_CHECK(sig)                      \
4481  do {                                            \
4482    if (!sigismember(&check_signal_done, sig)) {  \
4483      os::Linux::check_signal_handler(sig);       \
4484    }                                             \
4485  } while (0)
4486
4487// This method is a periodic task to check for misbehaving JNI applications
4488// under CheckJNI, we can add any periodic checks here
4489
4490void os::run_periodic_checks() {
4491  if (check_signals == false) return;
4492
4493  // SEGV and BUS if overridden could potentially prevent
4494  // generation of hs*.log in the event of a crash, debugging
4495  // such a case can be very challenging, so we absolutely
4496  // check the following for a good measure:
4497  DO_SIGNAL_CHECK(SIGSEGV);
4498  DO_SIGNAL_CHECK(SIGILL);
4499  DO_SIGNAL_CHECK(SIGFPE);
4500  DO_SIGNAL_CHECK(SIGBUS);
4501  DO_SIGNAL_CHECK(SIGPIPE);
4502  DO_SIGNAL_CHECK(SIGXFSZ);
4503#if defined(PPC64)
4504  DO_SIGNAL_CHECK(SIGTRAP);
4505#endif
4506
4507  // ReduceSignalUsage allows the user to override these handlers
4508  // see comments at the very top and jvm_solaris.h
4509  if (!ReduceSignalUsage) {
4510    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4511    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4512    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4513    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4514  }
4515
4516  DO_SIGNAL_CHECK(SR_signum);
4517  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4518}
4519
4520typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4521
4522static os_sigaction_t os_sigaction = NULL;
4523
4524void os::Linux::check_signal_handler(int sig) {
4525  char buf[O_BUFLEN];
4526  address jvmHandler = NULL;
4527
4528
4529  struct sigaction act;
4530  if (os_sigaction == NULL) {
4531    // only trust the default sigaction, in case it has been interposed
4532    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4533    if (os_sigaction == NULL) return;
4534  }
4535
4536  os_sigaction(sig, (struct sigaction*)NULL, &act);
4537
4538
4539  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4540
4541  address thisHandler = (act.sa_flags & SA_SIGINFO)
4542    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4543    : CAST_FROM_FN_PTR(address, act.sa_handler);
4544
4545
4546  switch (sig) {
4547  case SIGSEGV:
4548  case SIGBUS:
4549  case SIGFPE:
4550  case SIGPIPE:
4551  case SIGILL:
4552  case SIGXFSZ:
4553    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4554    break;
4555
4556  case SHUTDOWN1_SIGNAL:
4557  case SHUTDOWN2_SIGNAL:
4558  case SHUTDOWN3_SIGNAL:
4559  case BREAK_SIGNAL:
4560    jvmHandler = (address)user_handler();
4561    break;
4562
4563  case INTERRUPT_SIGNAL:
4564    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4565    break;
4566
4567  default:
4568    if (sig == SR_signum) {
4569      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4570    } else {
4571      return;
4572    }
4573    break;
4574  }
4575
4576  if (thisHandler != jvmHandler) {
4577    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4578    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4579    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4580    // No need to check this sig any longer
4581    sigaddset(&check_signal_done, sig);
4582    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4583    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4584      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4585                    exception_name(sig, buf, O_BUFLEN));
4586    }
4587  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4588    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4589    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4590    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4591    // No need to check this sig any longer
4592    sigaddset(&check_signal_done, sig);
4593  }
4594
4595  // Dump all the signal
4596  if (sigismember(&check_signal_done, sig)) {
4597    print_signal_handlers(tty, buf, O_BUFLEN);
4598  }
4599}
4600
4601extern void report_error(char* file_name, int line_no, char* title,
4602                         char* format, ...);
4603
4604extern bool signal_name(int signo, char* buf, size_t len);
4605
4606const char* os::exception_name(int exception_code, char* buf, size_t size) {
4607  if (0 < exception_code && exception_code <= SIGRTMAX) {
4608    // signal
4609    if (!signal_name(exception_code, buf, size)) {
4610      jio_snprintf(buf, size, "SIG%d", exception_code);
4611    }
4612    return buf;
4613  } else {
4614    return NULL;
4615  }
4616}
4617
4618// this is called _before_ the most of global arguments have been parsed
4619void os::init(void) {
4620  char dummy;   // used to get a guess on initial stack address
4621//  first_hrtime = gethrtime();
4622
4623  // With LinuxThreads the JavaMain thread pid (primordial thread)
4624  // is different than the pid of the java launcher thread.
4625  // So, on Linux, the launcher thread pid is passed to the VM
4626  // via the sun.java.launcher.pid property.
4627  // Use this property instead of getpid() if it was correctly passed.
4628  // See bug 6351349.
4629  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4630
4631  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4632
4633  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4634
4635  init_random(1234567);
4636
4637  ThreadCritical::initialize();
4638
4639  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4640  if (Linux::page_size() == -1) {
4641    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4642                  strerror(errno)));
4643  }
4644  init_page_sizes((size_t) Linux::page_size());
4645
4646  Linux::initialize_system_info();
4647
4648  // main_thread points to the aboriginal thread
4649  Linux::_main_thread = pthread_self();
4650
4651  Linux::clock_init();
4652  initial_time_count = javaTimeNanos();
4653
4654  // pthread_condattr initialization for monotonic clock
4655  int status;
4656  pthread_condattr_t* _condattr = os::Linux::condAttr();
4657  if ((status = pthread_condattr_init(_condattr)) != 0) {
4658    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4659  }
4660  // Only set the clock if CLOCK_MONOTONIC is available
4661  if (os::supports_monotonic_clock()) {
4662    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4663      if (status == EINVAL) {
4664        warning("Unable to use monotonic clock with relative timed-waits" \
4665                " - changes to the time-of-day clock may have adverse affects");
4666      } else {
4667        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4668      }
4669    }
4670  }
4671  // else it defaults to CLOCK_REALTIME
4672
4673  pthread_mutex_init(&dl_mutex, NULL);
4674
4675  // If the pagesize of the VM is greater than 8K determine the appropriate
4676  // number of initial guard pages.  The user can change this with the
4677  // command line arguments, if needed.
4678  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4679    StackYellowPages = 1;
4680    StackRedPages = 1;
4681    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4682  }
4683
4684  // retrieve entry point for pthread_setname_np
4685  Linux::_pthread_setname_np =
4686    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4687
4688}
4689
4690// To install functions for atexit system call
4691extern "C" {
4692  static void perfMemory_exit_helper() {
4693    perfMemory_exit();
4694  }
4695}
4696
4697// this is called _after_ the global arguments have been parsed
4698jint os::init_2(void) {
4699  Linux::fast_thread_clock_init();
4700
4701  // Allocate a single page and mark it as readable for safepoint polling
4702  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4703  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4704
4705  os::set_polling_page(polling_page);
4706
4707#ifndef PRODUCT
4708  if (Verbose && PrintMiscellaneous) {
4709    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4710               (intptr_t)polling_page);
4711  }
4712#endif
4713
4714  if (!UseMembar) {
4715    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4716    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4717    os::set_memory_serialize_page(mem_serialize_page);
4718
4719#ifndef PRODUCT
4720    if (Verbose && PrintMiscellaneous) {
4721      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4722                 (intptr_t)mem_serialize_page);
4723    }
4724#endif
4725  }
4726
4727  // initialize suspend/resume support - must do this before signal_sets_init()
4728  if (SR_initialize() != 0) {
4729    perror("SR_initialize failed");
4730    return JNI_ERR;
4731  }
4732
4733  Linux::signal_sets_init();
4734  Linux::install_signal_handlers();
4735
4736  // Check minimum allowable stack size for thread creation and to initialize
4737  // the java system classes, including StackOverflowError - depends on page
4738  // size.  Add a page for compiler2 recursion in main thread.
4739  // Add in 2*BytesPerWord times page size to account for VM stack during
4740  // class initialization depending on 32 or 64 bit VM.
4741  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4742                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4743                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4744
4745  size_t threadStackSizeInBytes = ThreadStackSize * K;
4746  if (threadStackSizeInBytes != 0 &&
4747      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4748    tty->print_cr("\nThe stack size specified is too small, "
4749                  "Specify at least %dk",
4750                  os::Linux::min_stack_allowed/ K);
4751    return JNI_ERR;
4752  }
4753
4754  // Make the stack size a multiple of the page size so that
4755  // the yellow/red zones can be guarded.
4756  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4757                                                vm_page_size()));
4758
4759  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4760
4761#if defined(IA32)
4762  workaround_expand_exec_shield_cs_limit();
4763#endif
4764
4765  Linux::libpthread_init();
4766  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4767    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4768                  Linux::glibc_version(), Linux::libpthread_version(),
4769                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4770  }
4771
4772  if (UseNUMA) {
4773    if (!Linux::libnuma_init()) {
4774      UseNUMA = false;
4775    } else {
4776      if ((Linux::numa_max_node() < 1)) {
4777        // There's only one node(they start from 0), disable NUMA.
4778        UseNUMA = false;
4779      }
4780    }
4781    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4782    // we can make the adaptive lgrp chunk resizing work. If the user specified
4783    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4784    // disable adaptive resizing.
4785    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4786      if (FLAG_IS_DEFAULT(UseNUMA)) {
4787        UseNUMA = false;
4788      } else {
4789        if (FLAG_IS_DEFAULT(UseLargePages) &&
4790            FLAG_IS_DEFAULT(UseSHM) &&
4791            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4792          UseLargePages = false;
4793        } else {
4794          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4795          UseAdaptiveSizePolicy = false;
4796          UseAdaptiveNUMAChunkSizing = false;
4797        }
4798      }
4799    }
4800    if (!UseNUMA && ForceNUMA) {
4801      UseNUMA = true;
4802    }
4803  }
4804
4805  if (MaxFDLimit) {
4806    // set the number of file descriptors to max. print out error
4807    // if getrlimit/setrlimit fails but continue regardless.
4808    struct rlimit nbr_files;
4809    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4810    if (status != 0) {
4811      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4812        perror("os::init_2 getrlimit failed");
4813      }
4814    } else {
4815      nbr_files.rlim_cur = nbr_files.rlim_max;
4816      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4817      if (status != 0) {
4818        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4819          perror("os::init_2 setrlimit failed");
4820        }
4821      }
4822    }
4823  }
4824
4825  // Initialize lock used to serialize thread creation (see os::create_thread)
4826  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4827
4828  // at-exit methods are called in the reverse order of their registration.
4829  // atexit functions are called on return from main or as a result of a
4830  // call to exit(3C). There can be only 32 of these functions registered
4831  // and atexit() does not set errno.
4832
4833  if (PerfAllowAtExitRegistration) {
4834    // only register atexit functions if PerfAllowAtExitRegistration is set.
4835    // atexit functions can be delayed until process exit time, which
4836    // can be problematic for embedded VM situations. Embedded VMs should
4837    // call DestroyJavaVM() to assure that VM resources are released.
4838
4839    // note: perfMemory_exit_helper atexit function may be removed in
4840    // the future if the appropriate cleanup code can be added to the
4841    // VM_Exit VMOperation's doit method.
4842    if (atexit(perfMemory_exit_helper) != 0) {
4843      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4844    }
4845  }
4846
4847  // initialize thread priority policy
4848  prio_init();
4849
4850  return JNI_OK;
4851}
4852
4853// Mark the polling page as unreadable
4854void os::make_polling_page_unreadable(void) {
4855  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4856    fatal("Could not disable polling page");
4857  }
4858}
4859
4860// Mark the polling page as readable
4861void os::make_polling_page_readable(void) {
4862  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4863    fatal("Could not enable polling page");
4864  }
4865}
4866
4867int os::active_processor_count() {
4868  // Linux doesn't yet have a (official) notion of processor sets,
4869  // so just return the number of online processors.
4870  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4871  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4872  return online_cpus;
4873}
4874
4875void os::set_native_thread_name(const char *name) {
4876  if (Linux::_pthread_setname_np) {
4877    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4878    snprintf(buf, sizeof(buf), "%s", name);
4879    buf[sizeof(buf) - 1] = '\0';
4880    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4881    // ERANGE should not happen; all other errors should just be ignored.
4882    assert(rc != ERANGE, "pthread_setname_np failed");
4883  }
4884}
4885
4886bool os::distribute_processes(uint length, uint* distribution) {
4887  // Not yet implemented.
4888  return false;
4889}
4890
4891bool os::bind_to_processor(uint processor_id) {
4892  // Not yet implemented.
4893  return false;
4894}
4895
4896///
4897
4898void os::SuspendedThreadTask::internal_do_task() {
4899  if (do_suspend(_thread->osthread())) {
4900    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4901    do_task(context);
4902    do_resume(_thread->osthread());
4903  }
4904}
4905
4906class PcFetcher : public os::SuspendedThreadTask {
4907 public:
4908  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4909  ExtendedPC result();
4910 protected:
4911  void do_task(const os::SuspendedThreadTaskContext& context);
4912 private:
4913  ExtendedPC _epc;
4914};
4915
4916ExtendedPC PcFetcher::result() {
4917  guarantee(is_done(), "task is not done yet.");
4918  return _epc;
4919}
4920
4921void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4922  Thread* thread = context.thread();
4923  OSThread* osthread = thread->osthread();
4924  if (osthread->ucontext() != NULL) {
4925    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4926  } else {
4927    // NULL context is unexpected, double-check this is the VMThread
4928    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4929  }
4930}
4931
4932// Suspends the target using the signal mechanism and then grabs the PC before
4933// resuming the target. Used by the flat-profiler only
4934ExtendedPC os::get_thread_pc(Thread* thread) {
4935  // Make sure that it is called by the watcher for the VMThread
4936  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4937  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4938
4939  PcFetcher fetcher(thread);
4940  fetcher.run();
4941  return fetcher.result();
4942}
4943
4944int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4945                                   pthread_mutex_t *_mutex,
4946                                   const struct timespec *_abstime) {
4947  if (is_NPTL()) {
4948    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4949  } else {
4950    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4951    // word back to default 64bit precision if condvar is signaled. Java
4952    // wants 53bit precision.  Save and restore current value.
4953    int fpu = get_fpu_control_word();
4954    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4955    set_fpu_control_word(fpu);
4956    return status;
4957  }
4958}
4959
4960////////////////////////////////////////////////////////////////////////////////
4961// debug support
4962
4963bool os::find(address addr, outputStream* st) {
4964  Dl_info dlinfo;
4965  memset(&dlinfo, 0, sizeof(dlinfo));
4966  if (dladdr(addr, &dlinfo) != 0) {
4967    st->print(PTR_FORMAT ": ", addr);
4968    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4969      st->print("%s+%#x", dlinfo.dli_sname,
4970                addr - (intptr_t)dlinfo.dli_saddr);
4971    } else if (dlinfo.dli_fbase != NULL) {
4972      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4973    } else {
4974      st->print("<absolute address>");
4975    }
4976    if (dlinfo.dli_fname != NULL) {
4977      st->print(" in %s", dlinfo.dli_fname);
4978    }
4979    if (dlinfo.dli_fbase != NULL) {
4980      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4981    }
4982    st->cr();
4983
4984    if (Verbose) {
4985      // decode some bytes around the PC
4986      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4987      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4988      address       lowest = (address) dlinfo.dli_sname;
4989      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4990      if (begin < lowest)  begin = lowest;
4991      Dl_info dlinfo2;
4992      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4993          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4994        end = (address) dlinfo2.dli_saddr;
4995      }
4996      Disassembler::decode(begin, end, st);
4997    }
4998    return true;
4999  }
5000  return false;
5001}
5002
5003////////////////////////////////////////////////////////////////////////////////
5004// misc
5005
5006// This does not do anything on Linux. This is basically a hook for being
5007// able to use structured exception handling (thread-local exception filters)
5008// on, e.g., Win32.
5009void
5010os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5011                         JavaCallArguments* args, Thread* thread) {
5012  f(value, method, args, thread);
5013}
5014
5015void os::print_statistics() {
5016}
5017
5018int os::message_box(const char* title, const char* message) {
5019  int i;
5020  fdStream err(defaultStream::error_fd());
5021  for (i = 0; i < 78; i++) err.print_raw("=");
5022  err.cr();
5023  err.print_raw_cr(title);
5024  for (i = 0; i < 78; i++) err.print_raw("-");
5025  err.cr();
5026  err.print_raw_cr(message);
5027  for (i = 0; i < 78; i++) err.print_raw("=");
5028  err.cr();
5029
5030  char buf[16];
5031  // Prevent process from exiting upon "read error" without consuming all CPU
5032  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5033
5034  return buf[0] == 'y' || buf[0] == 'Y';
5035}
5036
5037int os::stat(const char *path, struct stat *sbuf) {
5038  char pathbuf[MAX_PATH];
5039  if (strlen(path) > MAX_PATH - 1) {
5040    errno = ENAMETOOLONG;
5041    return -1;
5042  }
5043  os::native_path(strcpy(pathbuf, path));
5044  return ::stat(pathbuf, sbuf);
5045}
5046
5047bool os::check_heap(bool force) {
5048  return true;
5049}
5050
5051// Is a (classpath) directory empty?
5052bool os::dir_is_empty(const char* path) {
5053  DIR *dir = NULL;
5054  struct dirent *ptr;
5055
5056  dir = opendir(path);
5057  if (dir == NULL) return true;
5058
5059  // Scan the directory
5060  bool result = true;
5061  char buf[sizeof(struct dirent) + MAX_PATH];
5062  while (result && (ptr = ::readdir(dir)) != NULL) {
5063    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5064      result = false;
5065    }
5066  }
5067  closedir(dir);
5068  return result;
5069}
5070
5071// This code originates from JDK's sysOpen and open64_w
5072// from src/solaris/hpi/src/system_md.c
5073
5074int os::open(const char *path, int oflag, int mode) {
5075  if (strlen(path) > MAX_PATH - 1) {
5076    errno = ENAMETOOLONG;
5077    return -1;
5078  }
5079
5080  // All file descriptors that are opened in the Java process and not
5081  // specifically destined for a subprocess should have the close-on-exec
5082  // flag set.  If we don't set it, then careless 3rd party native code
5083  // might fork and exec without closing all appropriate file descriptors
5084  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5085  // turn might:
5086  //
5087  // - cause end-of-file to fail to be detected on some file
5088  //   descriptors, resulting in mysterious hangs, or
5089  //
5090  // - might cause an fopen in the subprocess to fail on a system
5091  //   suffering from bug 1085341.
5092  //
5093  // (Yes, the default setting of the close-on-exec flag is a Unix
5094  // design flaw)
5095  //
5096  // See:
5097  // 1085341: 32-bit stdio routines should support file descriptors >255
5098  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5099  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5100  //
5101  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5102  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5103  // because it saves a system call and removes a small window where the flag
5104  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5105  // and we fall back to using FD_CLOEXEC (see below).
5106#ifdef O_CLOEXEC
5107  oflag |= O_CLOEXEC;
5108#endif
5109
5110  int fd = ::open64(path, oflag, mode);
5111  if (fd == -1) return -1;
5112
5113  //If the open succeeded, the file might still be a directory
5114  {
5115    struct stat64 buf64;
5116    int ret = ::fstat64(fd, &buf64);
5117    int st_mode = buf64.st_mode;
5118
5119    if (ret != -1) {
5120      if ((st_mode & S_IFMT) == S_IFDIR) {
5121        errno = EISDIR;
5122        ::close(fd);
5123        return -1;
5124      }
5125    } else {
5126      ::close(fd);
5127      return -1;
5128    }
5129  }
5130
5131#ifdef FD_CLOEXEC
5132  // Validate that the use of the O_CLOEXEC flag on open above worked.
5133  // With recent kernels, we will perform this check exactly once.
5134  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5135  if (!O_CLOEXEC_is_known_to_work) {
5136    int flags = ::fcntl(fd, F_GETFD);
5137    if (flags != -1) {
5138      if ((flags & FD_CLOEXEC) != 0)
5139        O_CLOEXEC_is_known_to_work = 1;
5140      else
5141        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5142    }
5143  }
5144#endif
5145
5146  return fd;
5147}
5148
5149
5150// create binary file, rewriting existing file if required
5151int os::create_binary_file(const char* path, bool rewrite_existing) {
5152  int oflags = O_WRONLY | O_CREAT;
5153  if (!rewrite_existing) {
5154    oflags |= O_EXCL;
5155  }
5156  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5157}
5158
5159// return current position of file pointer
5160jlong os::current_file_offset(int fd) {
5161  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5162}
5163
5164// move file pointer to the specified offset
5165jlong os::seek_to_file_offset(int fd, jlong offset) {
5166  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5167}
5168
5169// This code originates from JDK's sysAvailable
5170// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5171
5172int os::available(int fd, jlong *bytes) {
5173  jlong cur, end;
5174  int mode;
5175  struct stat64 buf64;
5176
5177  if (::fstat64(fd, &buf64) >= 0) {
5178    mode = buf64.st_mode;
5179    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5180      // XXX: is the following call interruptible? If so, this might
5181      // need to go through the INTERRUPT_IO() wrapper as for other
5182      // blocking, interruptible calls in this file.
5183      int n;
5184      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5185        *bytes = n;
5186        return 1;
5187      }
5188    }
5189  }
5190  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5191    return 0;
5192  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5193    return 0;
5194  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5195    return 0;
5196  }
5197  *bytes = end - cur;
5198  return 1;
5199}
5200
5201// Map a block of memory.
5202char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5203                        char *addr, size_t bytes, bool read_only,
5204                        bool allow_exec) {
5205  int prot;
5206  int flags = MAP_PRIVATE;
5207
5208  if (read_only) {
5209    prot = PROT_READ;
5210  } else {
5211    prot = PROT_READ | PROT_WRITE;
5212  }
5213
5214  if (allow_exec) {
5215    prot |= PROT_EXEC;
5216  }
5217
5218  if (addr != NULL) {
5219    flags |= MAP_FIXED;
5220  }
5221
5222  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5223                                     fd, file_offset);
5224  if (mapped_address == MAP_FAILED) {
5225    return NULL;
5226  }
5227  return mapped_address;
5228}
5229
5230
5231// Remap a block of memory.
5232char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5233                          char *addr, size_t bytes, bool read_only,
5234                          bool allow_exec) {
5235  // same as map_memory() on this OS
5236  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5237                        allow_exec);
5238}
5239
5240
5241// Unmap a block of memory.
5242bool os::pd_unmap_memory(char* addr, size_t bytes) {
5243  return munmap(addr, bytes) == 0;
5244}
5245
5246static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5247
5248static clockid_t thread_cpu_clockid(Thread* thread) {
5249  pthread_t tid = thread->osthread()->pthread_id();
5250  clockid_t clockid;
5251
5252  // Get thread clockid
5253  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5254  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5255  return clockid;
5256}
5257
5258// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5259// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5260// of a thread.
5261//
5262// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5263// the fast estimate available on the platform.
5264
5265jlong os::current_thread_cpu_time() {
5266  if (os::Linux::supports_fast_thread_cpu_time()) {
5267    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5268  } else {
5269    // return user + sys since the cost is the same
5270    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5271  }
5272}
5273
5274jlong os::thread_cpu_time(Thread* thread) {
5275  // consistent with what current_thread_cpu_time() returns
5276  if (os::Linux::supports_fast_thread_cpu_time()) {
5277    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5278  } else {
5279    return slow_thread_cpu_time(thread, true /* user + sys */);
5280  }
5281}
5282
5283jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5284  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5285    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5286  } else {
5287    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5288  }
5289}
5290
5291jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5292  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5293    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5294  } else {
5295    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5296  }
5297}
5298
5299//  -1 on error.
5300static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5301  pid_t  tid = thread->osthread()->thread_id();
5302  char *s;
5303  char stat[2048];
5304  int statlen;
5305  char proc_name[64];
5306  int count;
5307  long sys_time, user_time;
5308  char cdummy;
5309  int idummy;
5310  long ldummy;
5311  FILE *fp;
5312
5313  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5314  fp = fopen(proc_name, "r");
5315  if (fp == NULL) return -1;
5316  statlen = fread(stat, 1, 2047, fp);
5317  stat[statlen] = '\0';
5318  fclose(fp);
5319
5320  // Skip pid and the command string. Note that we could be dealing with
5321  // weird command names, e.g. user could decide to rename java launcher
5322  // to "java 1.4.2 :)", then the stat file would look like
5323  //                1234 (java 1.4.2 :)) R ... ...
5324  // We don't really need to know the command string, just find the last
5325  // occurrence of ")" and then start parsing from there. See bug 4726580.
5326  s = strrchr(stat, ')');
5327  if (s == NULL) return -1;
5328
5329  // Skip blank chars
5330  do { s++; } while (s && isspace(*s));
5331
5332  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5333                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5334                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5335                 &user_time, &sys_time);
5336  if (count != 13) return -1;
5337  if (user_sys_cpu_time) {
5338    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5339  } else {
5340    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5341  }
5342}
5343
5344void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5345  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5346  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5347  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5348  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5349}
5350
5351void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5352  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5353  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5354  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5355  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5356}
5357
5358bool os::is_thread_cpu_time_supported() {
5359  return true;
5360}
5361
5362// System loadavg support.  Returns -1 if load average cannot be obtained.
5363// Linux doesn't yet have a (official) notion of processor sets,
5364// so just return the system wide load average.
5365int os::loadavg(double loadavg[], int nelem) {
5366  return ::getloadavg(loadavg, nelem);
5367}
5368
5369void os::pause() {
5370  char filename[MAX_PATH];
5371  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5372    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5373  } else {
5374    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5375  }
5376
5377  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5378  if (fd != -1) {
5379    struct stat buf;
5380    ::close(fd);
5381    while (::stat(filename, &buf) == 0) {
5382      (void)::poll(NULL, 0, 100);
5383    }
5384  } else {
5385    jio_fprintf(stderr,
5386                "Could not open pause file '%s', continuing immediately.\n", filename);
5387  }
5388}
5389
5390
5391// Refer to the comments in os_solaris.cpp park-unpark. The next two
5392// comment paragraphs are worth repeating here:
5393//
5394// Assumption:
5395//    Only one parker can exist on an event, which is why we allocate
5396//    them per-thread. Multiple unparkers can coexist.
5397//
5398// _Event serves as a restricted-range semaphore.
5399//   -1 : thread is blocked, i.e. there is a waiter
5400//    0 : neutral: thread is running or ready,
5401//        could have been signaled after a wait started
5402//    1 : signaled - thread is running or ready
5403//
5404// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5405// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5406// For specifics regarding the bug see GLIBC BUGID 261237 :
5407//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5408// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5409// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5410// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5411// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5412// and monitorenter when we're using 1-0 locking.  All those operations may result in
5413// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5414// of libpthread avoids the problem, but isn't practical.
5415//
5416// Possible remedies:
5417//
5418// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5419//      This is palliative and probabilistic, however.  If the thread is preempted
5420//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5421//      than the minimum period may have passed, and the abstime may be stale (in the
5422//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5423//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5424//
5425// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5426//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5427//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5428//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5429//      thread.
5430//
5431// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5432//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5433//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5434//      This also works well.  In fact it avoids kernel-level scalability impediments
5435//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5436//      timers in a graceful fashion.
5437//
5438// 4.   When the abstime value is in the past it appears that control returns
5439//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5440//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5441//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5442//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5443//      It may be possible to avoid reinitialization by checking the return
5444//      value from pthread_cond_timedwait().  In addition to reinitializing the
5445//      condvar we must establish the invariant that cond_signal() is only called
5446//      within critical sections protected by the adjunct mutex.  This prevents
5447//      cond_signal() from "seeing" a condvar that's in the midst of being
5448//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5449//      desirable signal-after-unlock optimization that avoids futile context switching.
5450//
5451//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5452//      structure when a condvar is used or initialized.  cond_destroy()  would
5453//      release the helper structure.  Our reinitialize-after-timedwait fix
5454//      put excessive stress on malloc/free and locks protecting the c-heap.
5455//
5456// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5457// It may be possible to refine (4) by checking the kernel and NTPL verisons
5458// and only enabling the work-around for vulnerable environments.
5459
5460// utility to compute the abstime argument to timedwait:
5461// millis is the relative timeout time
5462// abstime will be the absolute timeout time
5463// TODO: replace compute_abstime() with unpackTime()
5464
5465static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5466  if (millis < 0)  millis = 0;
5467
5468  jlong seconds = millis / 1000;
5469  millis %= 1000;
5470  if (seconds > 50000000) { // see man cond_timedwait(3T)
5471    seconds = 50000000;
5472  }
5473
5474  if (os::supports_monotonic_clock()) {
5475    struct timespec now;
5476    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5477    assert_status(status == 0, status, "clock_gettime");
5478    abstime->tv_sec = now.tv_sec  + seconds;
5479    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5480    if (nanos >= NANOSECS_PER_SEC) {
5481      abstime->tv_sec += 1;
5482      nanos -= NANOSECS_PER_SEC;
5483    }
5484    abstime->tv_nsec = nanos;
5485  } else {
5486    struct timeval now;
5487    int status = gettimeofday(&now, NULL);
5488    assert(status == 0, "gettimeofday");
5489    abstime->tv_sec = now.tv_sec  + seconds;
5490    long usec = now.tv_usec + millis * 1000;
5491    if (usec >= 1000000) {
5492      abstime->tv_sec += 1;
5493      usec -= 1000000;
5494    }
5495    abstime->tv_nsec = usec * 1000;
5496  }
5497  return abstime;
5498}
5499
5500void os::PlatformEvent::park() {       // AKA "down()"
5501  // Transitions for _Event:
5502  //   -1 => -1 : illegal
5503  //    1 =>  0 : pass - return immediately
5504  //    0 => -1 : block; then set _Event to 0 before returning
5505
5506  // Invariant: Only the thread associated with the Event/PlatformEvent
5507  // may call park().
5508  // TODO: assert that _Assoc != NULL or _Assoc == Self
5509  assert(_nParked == 0, "invariant");
5510
5511  int v;
5512  for (;;) {
5513    v = _Event;
5514    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5515  }
5516  guarantee(v >= 0, "invariant");
5517  if (v == 0) {
5518    // Do this the hard way by blocking ...
5519    int status = pthread_mutex_lock(_mutex);
5520    assert_status(status == 0, status, "mutex_lock");
5521    guarantee(_nParked == 0, "invariant");
5522    ++_nParked;
5523    while (_Event < 0) {
5524      status = pthread_cond_wait(_cond, _mutex);
5525      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5526      // Treat this the same as if the wait was interrupted
5527      if (status == ETIME) { status = EINTR; }
5528      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5529    }
5530    --_nParked;
5531
5532    _Event = 0;
5533    status = pthread_mutex_unlock(_mutex);
5534    assert_status(status == 0, status, "mutex_unlock");
5535    // Paranoia to ensure our locked and lock-free paths interact
5536    // correctly with each other.
5537    OrderAccess::fence();
5538  }
5539  guarantee(_Event >= 0, "invariant");
5540}
5541
5542int os::PlatformEvent::park(jlong millis) {
5543  // Transitions for _Event:
5544  //   -1 => -1 : illegal
5545  //    1 =>  0 : pass - return immediately
5546  //    0 => -1 : block; then set _Event to 0 before returning
5547
5548  guarantee(_nParked == 0, "invariant");
5549
5550  int v;
5551  for (;;) {
5552    v = _Event;
5553    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5554  }
5555  guarantee(v >= 0, "invariant");
5556  if (v != 0) return OS_OK;
5557
5558  // We do this the hard way, by blocking the thread.
5559  // Consider enforcing a minimum timeout value.
5560  struct timespec abst;
5561  compute_abstime(&abst, millis);
5562
5563  int ret = OS_TIMEOUT;
5564  int status = pthread_mutex_lock(_mutex);
5565  assert_status(status == 0, status, "mutex_lock");
5566  guarantee(_nParked == 0, "invariant");
5567  ++_nParked;
5568
5569  // Object.wait(timo) will return because of
5570  // (a) notification
5571  // (b) timeout
5572  // (c) thread.interrupt
5573  //
5574  // Thread.interrupt and object.notify{All} both call Event::set.
5575  // That is, we treat thread.interrupt as a special case of notification.
5576  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5577  // We assume all ETIME returns are valid.
5578  //
5579  // TODO: properly differentiate simultaneous notify+interrupt.
5580  // In that case, we should propagate the notify to another waiter.
5581
5582  while (_Event < 0) {
5583    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5584    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5585      pthread_cond_destroy(_cond);
5586      pthread_cond_init(_cond, os::Linux::condAttr());
5587    }
5588    assert_status(status == 0 || status == EINTR ||
5589                  status == ETIME || status == ETIMEDOUT,
5590                  status, "cond_timedwait");
5591    if (!FilterSpuriousWakeups) break;                 // previous semantics
5592    if (status == ETIME || status == ETIMEDOUT) break;
5593    // We consume and ignore EINTR and spurious wakeups.
5594  }
5595  --_nParked;
5596  if (_Event >= 0) {
5597    ret = OS_OK;
5598  }
5599  _Event = 0;
5600  status = pthread_mutex_unlock(_mutex);
5601  assert_status(status == 0, status, "mutex_unlock");
5602  assert(_nParked == 0, "invariant");
5603  // Paranoia to ensure our locked and lock-free paths interact
5604  // correctly with each other.
5605  OrderAccess::fence();
5606  return ret;
5607}
5608
5609void os::PlatformEvent::unpark() {
5610  // Transitions for _Event:
5611  //    0 => 1 : just return
5612  //    1 => 1 : just return
5613  //   -1 => either 0 or 1; must signal target thread
5614  //         That is, we can safely transition _Event from -1 to either
5615  //         0 or 1.
5616  // See also: "Semaphores in Plan 9" by Mullender & Cox
5617  //
5618  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5619  // that it will take two back-to-back park() calls for the owning
5620  // thread to block. This has the benefit of forcing a spurious return
5621  // from the first park() call after an unpark() call which will help
5622  // shake out uses of park() and unpark() without condition variables.
5623
5624  if (Atomic::xchg(1, &_Event) >= 0) return;
5625
5626  // Wait for the thread associated with the event to vacate
5627  int status = pthread_mutex_lock(_mutex);
5628  assert_status(status == 0, status, "mutex_lock");
5629  int AnyWaiters = _nParked;
5630  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5631  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5632    AnyWaiters = 0;
5633    pthread_cond_signal(_cond);
5634  }
5635  status = pthread_mutex_unlock(_mutex);
5636  assert_status(status == 0, status, "mutex_unlock");
5637  if (AnyWaiters != 0) {
5638    // Note that we signal() *after* dropping the lock for "immortal" Events.
5639    // This is safe and avoids a common class of  futile wakeups.  In rare
5640    // circumstances this can cause a thread to return prematurely from
5641    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5642    // will simply re-test the condition and re-park itself.
5643    // This provides particular benefit if the underlying platform does not
5644    // provide wait morphing.
5645    status = pthread_cond_signal(_cond);
5646    assert_status(status == 0, status, "cond_signal");
5647  }
5648}
5649
5650
5651// JSR166
5652// -------------------------------------------------------
5653
5654// The solaris and linux implementations of park/unpark are fairly
5655// conservative for now, but can be improved. They currently use a
5656// mutex/condvar pair, plus a a count.
5657// Park decrements count if > 0, else does a condvar wait.  Unpark
5658// sets count to 1 and signals condvar.  Only one thread ever waits
5659// on the condvar. Contention seen when trying to park implies that someone
5660// is unparking you, so don't wait. And spurious returns are fine, so there
5661// is no need to track notifications.
5662
5663// This code is common to linux and solaris and will be moved to a
5664// common place in dolphin.
5665//
5666// The passed in time value is either a relative time in nanoseconds
5667// or an absolute time in milliseconds. Either way it has to be unpacked
5668// into suitable seconds and nanoseconds components and stored in the
5669// given timespec structure.
5670// Given time is a 64-bit value and the time_t used in the timespec is only
5671// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5672// overflow if times way in the future are given. Further on Solaris versions
5673// prior to 10 there is a restriction (see cond_timedwait) that the specified
5674// number of seconds, in abstime, is less than current_time  + 100,000,000.
5675// As it will be 28 years before "now + 100000000" will overflow we can
5676// ignore overflow and just impose a hard-limit on seconds using the value
5677// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5678// years from "now".
5679
5680static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5681  assert(time > 0, "convertTime");
5682  time_t max_secs = 0;
5683
5684  if (!os::supports_monotonic_clock() || isAbsolute) {
5685    struct timeval now;
5686    int status = gettimeofday(&now, NULL);
5687    assert(status == 0, "gettimeofday");
5688
5689    max_secs = now.tv_sec + MAX_SECS;
5690
5691    if (isAbsolute) {
5692      jlong secs = time / 1000;
5693      if (secs > max_secs) {
5694        absTime->tv_sec = max_secs;
5695      } else {
5696        absTime->tv_sec = secs;
5697      }
5698      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5699    } else {
5700      jlong secs = time / NANOSECS_PER_SEC;
5701      if (secs >= MAX_SECS) {
5702        absTime->tv_sec = max_secs;
5703        absTime->tv_nsec = 0;
5704      } else {
5705        absTime->tv_sec = now.tv_sec + secs;
5706        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5707        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5708          absTime->tv_nsec -= NANOSECS_PER_SEC;
5709          ++absTime->tv_sec; // note: this must be <= max_secs
5710        }
5711      }
5712    }
5713  } else {
5714    // must be relative using monotonic clock
5715    struct timespec now;
5716    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5717    assert_status(status == 0, status, "clock_gettime");
5718    max_secs = now.tv_sec + MAX_SECS;
5719    jlong secs = time / NANOSECS_PER_SEC;
5720    if (secs >= MAX_SECS) {
5721      absTime->tv_sec = max_secs;
5722      absTime->tv_nsec = 0;
5723    } else {
5724      absTime->tv_sec = now.tv_sec + secs;
5725      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5726      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5727        absTime->tv_nsec -= NANOSECS_PER_SEC;
5728        ++absTime->tv_sec; // note: this must be <= max_secs
5729      }
5730    }
5731  }
5732  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5733  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5734  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5735  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5736}
5737
5738void Parker::park(bool isAbsolute, jlong time) {
5739  // Ideally we'd do something useful while spinning, such
5740  // as calling unpackTime().
5741
5742  // Optional fast-path check:
5743  // Return immediately if a permit is available.
5744  // We depend on Atomic::xchg() having full barrier semantics
5745  // since we are doing a lock-free update to _counter.
5746  if (Atomic::xchg(0, &_counter) > 0) return;
5747
5748  Thread* thread = Thread::current();
5749  assert(thread->is_Java_thread(), "Must be JavaThread");
5750  JavaThread *jt = (JavaThread *)thread;
5751
5752  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5753  // Check interrupt before trying to wait
5754  if (Thread::is_interrupted(thread, false)) {
5755    return;
5756  }
5757
5758  // Next, demultiplex/decode time arguments
5759  timespec absTime;
5760  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5761    return;
5762  }
5763  if (time > 0) {
5764    unpackTime(&absTime, isAbsolute, time);
5765  }
5766
5767
5768  // Enter safepoint region
5769  // Beware of deadlocks such as 6317397.
5770  // The per-thread Parker:: mutex is a classic leaf-lock.
5771  // In particular a thread must never block on the Threads_lock while
5772  // holding the Parker:: mutex.  If safepoints are pending both the
5773  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5774  ThreadBlockInVM tbivm(jt);
5775
5776  // Don't wait if cannot get lock since interference arises from
5777  // unblocking.  Also. check interrupt before trying wait
5778  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5779    return;
5780  }
5781
5782  int status;
5783  if (_counter > 0)  { // no wait needed
5784    _counter = 0;
5785    status = pthread_mutex_unlock(_mutex);
5786    assert(status == 0, "invariant");
5787    // Paranoia to ensure our locked and lock-free paths interact
5788    // correctly with each other and Java-level accesses.
5789    OrderAccess::fence();
5790    return;
5791  }
5792
5793#ifdef ASSERT
5794  // Don't catch signals while blocked; let the running threads have the signals.
5795  // (This allows a debugger to break into the running thread.)
5796  sigset_t oldsigs;
5797  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5798  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5799#endif
5800
5801  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5802  jt->set_suspend_equivalent();
5803  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5804
5805  assert(_cur_index == -1, "invariant");
5806  if (time == 0) {
5807    _cur_index = REL_INDEX; // arbitrary choice when not timed
5808    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5809  } else {
5810    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5811    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5812    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5813      pthread_cond_destroy(&_cond[_cur_index]);
5814      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5815    }
5816  }
5817  _cur_index = -1;
5818  assert_status(status == 0 || status == EINTR ||
5819                status == ETIME || status == ETIMEDOUT,
5820                status, "cond_timedwait");
5821
5822#ifdef ASSERT
5823  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5824#endif
5825
5826  _counter = 0;
5827  status = pthread_mutex_unlock(_mutex);
5828  assert_status(status == 0, status, "invariant");
5829  // Paranoia to ensure our locked and lock-free paths interact
5830  // correctly with each other and Java-level accesses.
5831  OrderAccess::fence();
5832
5833  // If externally suspended while waiting, re-suspend
5834  if (jt->handle_special_suspend_equivalent_condition()) {
5835    jt->java_suspend_self();
5836  }
5837}
5838
5839void Parker::unpark() {
5840  int status = pthread_mutex_lock(_mutex);
5841  assert(status == 0, "invariant");
5842  const int s = _counter;
5843  _counter = 1;
5844  if (s < 1) {
5845    // thread might be parked
5846    if (_cur_index != -1) {
5847      // thread is definitely parked
5848      if (WorkAroundNPTLTimedWaitHang) {
5849        status = pthread_cond_signal(&_cond[_cur_index]);
5850        assert(status == 0, "invariant");
5851        status = pthread_mutex_unlock(_mutex);
5852        assert(status == 0, "invariant");
5853      } else {
5854        status = pthread_mutex_unlock(_mutex);
5855        assert(status == 0, "invariant");
5856        status = pthread_cond_signal(&_cond[_cur_index]);
5857        assert(status == 0, "invariant");
5858      }
5859    } else {
5860      pthread_mutex_unlock(_mutex);
5861      assert(status == 0, "invariant");
5862    }
5863  } else {
5864    pthread_mutex_unlock(_mutex);
5865    assert(status == 0, "invariant");
5866  }
5867}
5868
5869
5870extern char** environ;
5871
5872#ifndef __NR_fork
5873  #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5874#endif
5875
5876#ifndef __NR_execve
5877  #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5878#endif
5879
5880// Run the specified command in a separate process. Return its exit value,
5881// or -1 on failure (e.g. can't fork a new process).
5882// Unlike system(), this function can be called from signal handler. It
5883// doesn't block SIGINT et al.
5884int os::fork_and_exec(char* cmd) {
5885  const char * argv[4] = {"sh", "-c", cmd, NULL};
5886
5887  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5888  // pthread_atfork handlers and reset pthread library. All we need is a
5889  // separate process to execve. Make a direct syscall to fork process.
5890  // On IA64 there's no fork syscall, we have to use fork() and hope for
5891  // the best...
5892  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5893  IA64_ONLY(fork();)
5894
5895  if (pid < 0) {
5896    // fork failed
5897    return -1;
5898
5899  } else if (pid == 0) {
5900    // child process
5901
5902    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5903    // first to kill every thread on the thread list. Because this list is
5904    // not reset by fork() (see notes above), execve() will instead kill
5905    // every thread in the parent process. We know this is the only thread
5906    // in the new process, so make a system call directly.
5907    // IA64 should use normal execve() from glibc to match the glibc fork()
5908    // above.
5909    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5910    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5911
5912    // execve failed
5913    _exit(-1);
5914
5915  } else  {
5916    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5917    // care about the actual exit code, for now.
5918
5919    int status;
5920
5921    // Wait for the child process to exit.  This returns immediately if
5922    // the child has already exited. */
5923    while (waitpid(pid, &status, 0) < 0) {
5924      switch (errno) {
5925      case ECHILD: return 0;
5926      case EINTR: break;
5927      default: return -1;
5928      }
5929    }
5930
5931    if (WIFEXITED(status)) {
5932      // The child exited normally; get its exit code.
5933      return WEXITSTATUS(status);
5934    } else if (WIFSIGNALED(status)) {
5935      // The child exited because of a signal
5936      // The best value to return is 0x80 + signal number,
5937      // because that is what all Unix shells do, and because
5938      // it allows callers to distinguish between process exit and
5939      // process death by signal.
5940      return 0x80 + WTERMSIG(status);
5941    } else {
5942      // Unknown exit code; pass it through
5943      return status;
5944    }
5945  }
5946}
5947
5948// is_headless_jre()
5949//
5950// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5951// in order to report if we are running in a headless jre
5952//
5953// Since JDK8 xawt/libmawt.so was moved into the same directory
5954// as libawt.so, and renamed libawt_xawt.so
5955//
5956bool os::is_headless_jre() {
5957  struct stat statbuf;
5958  char buf[MAXPATHLEN];
5959  char libmawtpath[MAXPATHLEN];
5960  const char *xawtstr  = "/xawt/libmawt.so";
5961  const char *new_xawtstr = "/libawt_xawt.so";
5962  char *p;
5963
5964  // Get path to libjvm.so
5965  os::jvm_path(buf, sizeof(buf));
5966
5967  // Get rid of libjvm.so
5968  p = strrchr(buf, '/');
5969  if (p == NULL) {
5970    return false;
5971  } else {
5972    *p = '\0';
5973  }
5974
5975  // Get rid of client or server
5976  p = strrchr(buf, '/');
5977  if (p == NULL) {
5978    return false;
5979  } else {
5980    *p = '\0';
5981  }
5982
5983  // check xawt/libmawt.so
5984  strcpy(libmawtpath, buf);
5985  strcat(libmawtpath, xawtstr);
5986  if (::stat(libmawtpath, &statbuf) == 0) return false;
5987
5988  // check libawt_xawt.so
5989  strcpy(libmawtpath, buf);
5990  strcat(libmawtpath, new_xawtstr);
5991  if (::stat(libmawtpath, &statbuf) == 0) return false;
5992
5993  return true;
5994}
5995
5996// Get the default path to the core file
5997// Returns the length of the string
5998int os::get_core_path(char* buffer, size_t bufferSize) {
5999  /*
6000   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6001   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6002   */
6003  const int core_pattern_len = 129;
6004  char core_pattern[core_pattern_len] = {0};
6005
6006  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6007  if (core_pattern_file != -1) {
6008    ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6009    ::close(core_pattern_file);
6010
6011    if (ret > 0) {
6012      char *last_char = core_pattern + strlen(core_pattern) - 1;
6013
6014      if (*last_char == '\n') {
6015        *last_char = '\0';
6016      }
6017    }
6018  }
6019
6020  if (strlen(core_pattern) == 0) {
6021    return 0;
6022  }
6023
6024  char *pid_pos = strstr(core_pattern, "%p");
6025  size_t written;
6026
6027  if (core_pattern[0] == '/') {
6028    written = jio_snprintf(buffer, bufferSize, core_pattern);
6029  } else {
6030    char cwd[PATH_MAX];
6031
6032    const char* p = get_current_directory(cwd, PATH_MAX);
6033    if (p == NULL) {
6034      assert(p != NULL, "failed to get current directory");
6035      return 0;
6036    }
6037
6038    if (core_pattern[0] == '|') {
6039      written = jio_snprintf(buffer, bufferSize,
6040                        "\"%s\" (or dumping to %s/core.%d)",
6041                                     &core_pattern[1], p, current_process_id());
6042    } else {
6043      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6044    }
6045  }
6046
6047  if ((written >= 0) && (written < bufferSize)
6048            && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6049    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6050
6051    if (core_uses_pid_file != -1) {
6052      char core_uses_pid = 0;
6053      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6054      ::close(core_uses_pid_file);
6055
6056      if (core_uses_pid == '1'){
6057        jio_snprintf(buffer + written, bufferSize - written,
6058                                          ".%d", current_process_id());
6059      }
6060    }
6061  }
6062
6063  return strlen(buffer);
6064}
6065
6066/////////////// Unit tests ///////////////
6067
6068#ifndef PRODUCT
6069
6070#define test_log(...)              \
6071  do {                             \
6072    if (VerboseInternalVMTests) {  \
6073      tty->print_cr(__VA_ARGS__);  \
6074      tty->flush();                \
6075    }                              \
6076  } while (false)
6077
6078class TestReserveMemorySpecial : AllStatic {
6079 public:
6080  static void small_page_write(void* addr, size_t size) {
6081    size_t page_size = os::vm_page_size();
6082
6083    char* end = (char*)addr + size;
6084    for (char* p = (char*)addr; p < end; p += page_size) {
6085      *p = 1;
6086    }
6087  }
6088
6089  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6090    if (!UseHugeTLBFS) {
6091      return;
6092    }
6093
6094    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6095
6096    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6097
6098    if (addr != NULL) {
6099      small_page_write(addr, size);
6100
6101      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6102    }
6103  }
6104
6105  static void test_reserve_memory_special_huge_tlbfs_only() {
6106    if (!UseHugeTLBFS) {
6107      return;
6108    }
6109
6110    size_t lp = os::large_page_size();
6111
6112    for (size_t size = lp; size <= lp * 10; size += lp) {
6113      test_reserve_memory_special_huge_tlbfs_only(size);
6114    }
6115  }
6116
6117  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6118    if (!UseHugeTLBFS) {
6119      return;
6120    }
6121
6122    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6123             size, alignment);
6124
6125    assert(size >= os::large_page_size(), "Incorrect input to test");
6126
6127    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6128
6129    if (addr != NULL) {
6130      small_page_write(addr, size);
6131
6132      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6133    }
6134  }
6135
6136  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6137    size_t lp = os::large_page_size();
6138    size_t ag = os::vm_allocation_granularity();
6139
6140    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6141      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6142    }
6143  }
6144
6145  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6146    size_t lp = os::large_page_size();
6147    size_t ag = os::vm_allocation_granularity();
6148
6149    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6150    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6151    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6152    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6153    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6154    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6155    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6156    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6157    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6158  }
6159
6160  static void test_reserve_memory_special_huge_tlbfs() {
6161    if (!UseHugeTLBFS) {
6162      return;
6163    }
6164
6165    test_reserve_memory_special_huge_tlbfs_only();
6166    test_reserve_memory_special_huge_tlbfs_mixed();
6167  }
6168
6169  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6170    if (!UseSHM) {
6171      return;
6172    }
6173
6174    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6175
6176    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6177
6178    if (addr != NULL) {
6179      assert(is_ptr_aligned(addr, alignment), "Check");
6180      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6181
6182      small_page_write(addr, size);
6183
6184      os::Linux::release_memory_special_shm(addr, size);
6185    }
6186  }
6187
6188  static void test_reserve_memory_special_shm() {
6189    size_t lp = os::large_page_size();
6190    size_t ag = os::vm_allocation_granularity();
6191
6192    for (size_t size = ag; size < lp * 3; size += ag) {
6193      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6194        test_reserve_memory_special_shm(size, alignment);
6195      }
6196    }
6197  }
6198
6199  static void test() {
6200    test_reserve_memory_special_huge_tlbfs();
6201    test_reserve_memory_special_shm();
6202  }
6203};
6204
6205void TestReserveMemorySpecial_test() {
6206  TestReserveMemorySpecial::test();
6207}
6208
6209#endif
6210