os_linux.cpp revision 7050:03835eaaab2d
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/elfFile.hpp"
70#include "utilities/growableArray.hpp"
71#include "utilities/vmError.hpp"
72
73// put OS-includes here
74# include <sys/types.h>
75# include <sys/mman.h>
76# include <sys/stat.h>
77# include <sys/select.h>
78# include <pthread.h>
79# include <signal.h>
80# include <errno.h>
81# include <dlfcn.h>
82# include <stdio.h>
83# include <unistd.h>
84# include <sys/resource.h>
85# include <pthread.h>
86# include <sys/stat.h>
87# include <sys/time.h>
88# include <sys/times.h>
89# include <sys/utsname.h>
90# include <sys/socket.h>
91# include <sys/wait.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <syscall.h>
98# include <sys/sysinfo.h>
99# include <gnu/libc-version.h>
100# include <sys/ipc.h>
101# include <sys/shm.h>
102# include <link.h>
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106
107PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
108
109// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
110// getrusage() is prepared to handle the associated failure.
111#ifndef RUSAGE_THREAD
112#define RUSAGE_THREAD   (1)               /* only the calling thread */
113#endif
114
115#define MAX_PATH    (2 * K)
116
117#define MAX_SECS 100000000
118
119// for timer info max values which include all bits
120#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
121
122#define LARGEPAGES_BIT (1 << 6)
123////////////////////////////////////////////////////////////////////////////////
124// global variables
125julong os::Linux::_physical_memory = 0;
126
127address   os::Linux::_initial_thread_stack_bottom = NULL;
128uintptr_t os::Linux::_initial_thread_stack_size   = 0;
129
130int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
132Mutex* os::Linux::_createThread_lock = NULL;
133pthread_t os::Linux::_main_thread;
134int os::Linux::_page_size = -1;
135const int os::Linux::_vm_default_page_size = (8 * K);
136bool os::Linux::_is_floating_stack = false;
137bool os::Linux::_is_NPTL = false;
138bool os::Linux::_supports_fast_thread_cpu_time = false;
139const char * os::Linux::_glibc_version = NULL;
140const char * os::Linux::_libpthread_version = NULL;
141pthread_condattr_t os::Linux::_condattr[1];
142
143static jlong initial_time_count=0;
144
145static int clock_tics_per_sec = 100;
146
147// For diagnostics to print a message once. see run_periodic_checks
148static sigset_t check_signal_done;
149static bool check_signals = true;
150
151static pid_t _initial_pid = 0;
152
153/* Signal number used to suspend/resume a thread */
154
155/* do not use any signal number less than SIGSEGV, see 4355769 */
156static int SR_signum = SIGUSR2;
157sigset_t SR_sigset;
158
159/* Used to protect dlsym() calls */
160static pthread_mutex_t dl_mutex;
161
162// Declarations
163static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
164
165#ifdef JAVASE_EMBEDDED
166class MemNotifyThread: public Thread {
167  friend class VMStructs;
168 public:
169  virtual void run();
170
171 private:
172  static MemNotifyThread* _memnotify_thread;
173  int _fd;
174
175 public:
176
177  // Constructor
178  MemNotifyThread(int fd);
179
180  // Tester
181  bool is_memnotify_thread() const { return true; }
182
183  // Printing
184  char* name() const { return (char*)"Linux MemNotify Thread"; }
185
186  // Returns the single instance of the MemNotifyThread
187  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
188
189  // Create and start the single instance of MemNotifyThread
190  static void start();
191};
192#endif // JAVASE_EMBEDDED
193
194// utility functions
195
196static int SR_initialize();
197
198julong os::available_memory() {
199  return Linux::available_memory();
200}
201
202julong os::Linux::available_memory() {
203  // values in struct sysinfo are "unsigned long"
204  struct sysinfo si;
205  sysinfo(&si);
206
207  return (julong)si.freeram * si.mem_unit;
208}
209
210julong os::physical_memory() {
211  return Linux::physical_memory();
212}
213
214////////////////////////////////////////////////////////////////////////////////
215// environment support
216
217bool os::getenv(const char* name, char* buf, int len) {
218  const char* val = ::getenv(name);
219  if (val != NULL && strlen(val) < (size_t)len) {
220    strcpy(buf, val);
221    return true;
222  }
223  if (len > 0) buf[0] = 0;  // return a null string
224  return false;
225}
226
227
228// Return true if user is running as root.
229
230bool os::have_special_privileges() {
231  static bool init = false;
232  static bool privileges = false;
233  if (!init) {
234    privileges = (getuid() != geteuid()) || (getgid() != getegid());
235    init = true;
236  }
237  return privileges;
238}
239
240
241#ifndef SYS_gettid
242// i386: 224, ia64: 1105, amd64: 186, sparc 143
243#ifdef __ia64__
244#define SYS_gettid 1105
245#elif __i386__
246#define SYS_gettid 224
247#elif __amd64__
248#define SYS_gettid 186
249#elif __sparc__
250#define SYS_gettid 143
251#else
252#error define gettid for the arch
253#endif
254#endif
255
256// Cpu architecture string
257#if   defined(ZERO)
258static char cpu_arch[] = ZERO_LIBARCH;
259#elif defined(IA64)
260static char cpu_arch[] = "ia64";
261#elif defined(IA32)
262static char cpu_arch[] = "i386";
263#elif defined(AMD64)
264static char cpu_arch[] = "amd64";
265#elif defined(ARM)
266static char cpu_arch[] = "arm";
267#elif defined(PPC32)
268static char cpu_arch[] = "ppc";
269#elif defined(PPC64)
270static char cpu_arch[] = "ppc64";
271#elif defined(SPARC)
272#  ifdef _LP64
273static char cpu_arch[] = "sparcv9";
274#  else
275static char cpu_arch[] = "sparc";
276#  endif
277#else
278#error Add appropriate cpu_arch setting
279#endif
280
281
282// pid_t gettid()
283//
284// Returns the kernel thread id of the currently running thread. Kernel
285// thread id is used to access /proc.
286//
287// (Note that getpid() on LinuxThreads returns kernel thread id too; but
288// on NPTL, it returns the same pid for all threads, as required by POSIX.)
289//
290pid_t os::Linux::gettid() {
291  int rslt = syscall(SYS_gettid);
292  if (rslt == -1) {
293    // old kernel, no NPTL support
294    return getpid();
295  } else {
296    return (pid_t)rslt;
297  }
298}
299
300// Most versions of linux have a bug where the number of processors are
301// determined by looking at the /proc file system.  In a chroot environment,
302// the system call returns 1.  This causes the VM to act as if it is
303// a single processor and elide locking (see is_MP() call).
304static bool unsafe_chroot_detected = false;
305static const char *unstable_chroot_error = "/proc file system not found.\n"
306                     "Java may be unstable running multithreaded in a chroot "
307                     "environment on Linux when /proc filesystem is not mounted.";
308
309void os::Linux::initialize_system_info() {
310  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
311  if (processor_count() == 1) {
312    pid_t pid = os::Linux::gettid();
313    char fname[32];
314    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
315    FILE *fp = fopen(fname, "r");
316    if (fp == NULL) {
317      unsafe_chroot_detected = true;
318    } else {
319      fclose(fp);
320    }
321  }
322  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
323  assert(processor_count() > 0, "linux error");
324}
325
326void os::init_system_properties_values() {
327  // The next steps are taken in the product version:
328  //
329  // Obtain the JAVA_HOME value from the location of libjvm.so.
330  // This library should be located at:
331  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
332  //
333  // If "/jre/lib/" appears at the right place in the path, then we
334  // assume libjvm.so is installed in a JDK and we use this path.
335  //
336  // Otherwise exit with message: "Could not create the Java virtual machine."
337  //
338  // The following extra steps are taken in the debugging version:
339  //
340  // If "/jre/lib/" does NOT appear at the right place in the path
341  // instead of exit check for $JAVA_HOME environment variable.
342  //
343  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
344  // then we append a fake suffix "hotspot/libjvm.so" to this path so
345  // it looks like libjvm.so is installed there
346  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
347  //
348  // Otherwise exit.
349  //
350  // Important note: if the location of libjvm.so changes this
351  // code needs to be changed accordingly.
352
353// See ld(1):
354//      The linker uses the following search paths to locate required
355//      shared libraries:
356//        1: ...
357//        ...
358//        7: The default directories, normally /lib and /usr/lib.
359#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
360#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
361#else
362#define DEFAULT_LIBPATH "/lib:/usr/lib"
363#endif
364
365// Base path of extensions installed on the system.
366#define SYS_EXT_DIR     "/usr/java/packages"
367#define EXTENSIONS_DIR  "/lib/ext"
368#define ENDORSED_DIR    "/lib/endorsed"
369
370  // Buffer that fits several sprintfs.
371  // Note that the space for the colon and the trailing null are provided
372  // by the nulls included by the sizeof operator.
373  const size_t bufsize =
374    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
375         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
376         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
377  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
378
379  // sysclasspath, java_home, dll_dir
380  {
381    char *pslash;
382    os::jvm_path(buf, bufsize);
383
384    // Found the full path to libjvm.so.
385    // Now cut the path to <java_home>/jre if we can.
386    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
387    pslash = strrchr(buf, '/');
388    if (pslash != NULL) {
389      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
390    }
391    Arguments::set_dll_dir(buf);
392
393    if (pslash != NULL) {
394      pslash = strrchr(buf, '/');
395      if (pslash != NULL) {
396        *pslash = '\0';          // Get rid of /<arch>.
397        pslash = strrchr(buf, '/');
398        if (pslash != NULL) {
399          *pslash = '\0';        // Get rid of /lib.
400        }
401      }
402    }
403    Arguments::set_java_home(buf);
404    set_boot_path('/', ':');
405  }
406
407  // Where to look for native libraries.
408  //
409  // Note: Due to a legacy implementation, most of the library path
410  // is set in the launcher. This was to accomodate linking restrictions
411  // on legacy Linux implementations (which are no longer supported).
412  // Eventually, all the library path setting will be done here.
413  //
414  // However, to prevent the proliferation of improperly built native
415  // libraries, the new path component /usr/java/packages is added here.
416  // Eventually, all the library path setting will be done here.
417  {
418    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
419    // should always exist (until the legacy problem cited above is
420    // addressed).
421    const char *v = ::getenv("LD_LIBRARY_PATH");
422    const char *v_colon = ":";
423    if (v == NULL) { v = ""; v_colon = ""; }
424    // That's +1 for the colon and +1 for the trailing '\0'.
425    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
426                                                     strlen(v) + 1 +
427                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
428                                                     mtInternal);
429    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
430    Arguments::set_library_path(ld_library_path);
431    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
432  }
433
434  // Extensions directories.
435  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
436  Arguments::set_ext_dirs(buf);
437
438  // Endorsed standards default directory.
439  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
440  Arguments::set_endorsed_dirs(buf);
441
442  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
443
444#undef DEFAULT_LIBPATH
445#undef SYS_EXT_DIR
446#undef EXTENSIONS_DIR
447#undef ENDORSED_DIR
448}
449
450////////////////////////////////////////////////////////////////////////////////
451// breakpoint support
452
453void os::breakpoint() {
454  BREAKPOINT;
455}
456
457extern "C" void breakpoint() {
458  // use debugger to set breakpoint here
459}
460
461////////////////////////////////////////////////////////////////////////////////
462// signal support
463
464debug_only(static bool signal_sets_initialized = false);
465static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
466
467bool os::Linux::is_sig_ignored(int sig) {
468  struct sigaction oact;
469  sigaction(sig, (struct sigaction*)NULL, &oact);
470  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
471                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
472  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
473    return true;
474  else
475    return false;
476}
477
478void os::Linux::signal_sets_init() {
479  // Should also have an assertion stating we are still single-threaded.
480  assert(!signal_sets_initialized, "Already initialized");
481  // Fill in signals that are necessarily unblocked for all threads in
482  // the VM. Currently, we unblock the following signals:
483  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
484  //                         by -Xrs (=ReduceSignalUsage));
485  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
486  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
487  // the dispositions or masks wrt these signals.
488  // Programs embedding the VM that want to use the above signals for their
489  // own purposes must, at this time, use the "-Xrs" option to prevent
490  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
491  // (See bug 4345157, and other related bugs).
492  // In reality, though, unblocking these signals is really a nop, since
493  // these signals are not blocked by default.
494  sigemptyset(&unblocked_sigs);
495  sigemptyset(&allowdebug_blocked_sigs);
496  sigaddset(&unblocked_sigs, SIGILL);
497  sigaddset(&unblocked_sigs, SIGSEGV);
498  sigaddset(&unblocked_sigs, SIGBUS);
499  sigaddset(&unblocked_sigs, SIGFPE);
500#if defined(PPC64)
501  sigaddset(&unblocked_sigs, SIGTRAP);
502#endif
503  sigaddset(&unblocked_sigs, SR_signum);
504
505  if (!ReduceSignalUsage) {
506    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
507      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
508      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
509    }
510    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
511      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
512      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
513    }
514    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
515      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
516      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
517    }
518  }
519  // Fill in signals that are blocked by all but the VM thread.
520  sigemptyset(&vm_sigs);
521  if (!ReduceSignalUsage)
522    sigaddset(&vm_sigs, BREAK_SIGNAL);
523  debug_only(signal_sets_initialized = true);
524
525}
526
527// These are signals that are unblocked while a thread is running Java.
528// (For some reason, they get blocked by default.)
529sigset_t* os::Linux::unblocked_signals() {
530  assert(signal_sets_initialized, "Not initialized");
531  return &unblocked_sigs;
532}
533
534// These are the signals that are blocked while a (non-VM) thread is
535// running Java. Only the VM thread handles these signals.
536sigset_t* os::Linux::vm_signals() {
537  assert(signal_sets_initialized, "Not initialized");
538  return &vm_sigs;
539}
540
541// These are signals that are blocked during cond_wait to allow debugger in
542sigset_t* os::Linux::allowdebug_blocked_signals() {
543  assert(signal_sets_initialized, "Not initialized");
544  return &allowdebug_blocked_sigs;
545}
546
547void os::Linux::hotspot_sigmask(Thread* thread) {
548
549  //Save caller's signal mask before setting VM signal mask
550  sigset_t caller_sigmask;
551  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
552
553  OSThread* osthread = thread->osthread();
554  osthread->set_caller_sigmask(caller_sigmask);
555
556  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
557
558  if (!ReduceSignalUsage) {
559    if (thread->is_VM_thread()) {
560      // Only the VM thread handles BREAK_SIGNAL ...
561      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
562    } else {
563      // ... all other threads block BREAK_SIGNAL
564      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
565    }
566  }
567}
568
569//////////////////////////////////////////////////////////////////////////////
570// detecting pthread library
571
572void os::Linux::libpthread_init() {
573  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
574  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
575  // generic name for earlier versions.
576  // Define macros here so we can build HotSpot on old systems.
577# ifndef _CS_GNU_LIBC_VERSION
578# define _CS_GNU_LIBC_VERSION 2
579# endif
580# ifndef _CS_GNU_LIBPTHREAD_VERSION
581# define _CS_GNU_LIBPTHREAD_VERSION 3
582# endif
583
584  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
585  if (n > 0) {
586    char *str = (char *)malloc(n, mtInternal);
587    confstr(_CS_GNU_LIBC_VERSION, str, n);
588    os::Linux::set_glibc_version(str);
589  } else {
590    // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
591    static char _gnu_libc_version[32];
592    jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
593                 "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
594    os::Linux::set_glibc_version(_gnu_libc_version);
595  }
596
597  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
598  if (n > 0) {
599    char *str = (char *)malloc(n, mtInternal);
600    confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
601    // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
602    // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
603    // is the case. LinuxThreads has a hard limit on max number of threads.
604    // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
605    // On the other hand, NPTL does not have such a limit, sysconf()
606    // will return -1 and errno is not changed. Check if it is really NPTL.
607    if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
608        strstr(str, "NPTL") &&
609        sysconf(_SC_THREAD_THREADS_MAX) > 0) {
610      free(str);
611      os::Linux::set_libpthread_version("linuxthreads");
612    } else {
613      os::Linux::set_libpthread_version(str);
614    }
615  } else {
616    // glibc before 2.3.2 only has LinuxThreads.
617    os::Linux::set_libpthread_version("linuxthreads");
618  }
619
620  if (strstr(libpthread_version(), "NPTL")) {
621    os::Linux::set_is_NPTL();
622  } else {
623    os::Linux::set_is_LinuxThreads();
624  }
625
626  // LinuxThreads have two flavors: floating-stack mode, which allows variable
627  // stack size; and fixed-stack mode. NPTL is always floating-stack.
628  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
629    os::Linux::set_is_floating_stack();
630  }
631}
632
633/////////////////////////////////////////////////////////////////////////////
634// thread stack
635
636// Force Linux kernel to expand current thread stack. If "bottom" is close
637// to the stack guard, caller should block all signals.
638//
639// MAP_GROWSDOWN:
640//   A special mmap() flag that is used to implement thread stacks. It tells
641//   kernel that the memory region should extend downwards when needed. This
642//   allows early versions of LinuxThreads to only mmap the first few pages
643//   when creating a new thread. Linux kernel will automatically expand thread
644//   stack as needed (on page faults).
645//
646//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
647//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
648//   region, it's hard to tell if the fault is due to a legitimate stack
649//   access or because of reading/writing non-exist memory (e.g. buffer
650//   overrun). As a rule, if the fault happens below current stack pointer,
651//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
652//   application (see Linux kernel fault.c).
653//
654//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
655//   stack overflow detection.
656//
657//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
658//   not use this flag. However, the stack of initial thread is not created
659//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
660//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
661//   and then attach the thread to JVM.
662//
663// To get around the problem and allow stack banging on Linux, we need to
664// manually expand thread stack after receiving the SIGSEGV.
665//
666// There are two ways to expand thread stack to address "bottom", we used
667// both of them in JVM before 1.5:
668//   1. adjust stack pointer first so that it is below "bottom", and then
669//      touch "bottom"
670//   2. mmap() the page in question
671//
672// Now alternate signal stack is gone, it's harder to use 2. For instance,
673// if current sp is already near the lower end of page 101, and we need to
674// call mmap() to map page 100, it is possible that part of the mmap() frame
675// will be placed in page 100. When page 100 is mapped, it is zero-filled.
676// That will destroy the mmap() frame and cause VM to crash.
677//
678// The following code works by adjusting sp first, then accessing the "bottom"
679// page to force a page fault. Linux kernel will then automatically expand the
680// stack mapping.
681//
682// _expand_stack_to() assumes its frame size is less than page size, which
683// should always be true if the function is not inlined.
684
685#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
686#define NOINLINE
687#else
688#define NOINLINE __attribute__ ((noinline))
689#endif
690
691static void _expand_stack_to(address bottom) NOINLINE;
692
693static void _expand_stack_to(address bottom) {
694  address sp;
695  size_t size;
696  volatile char *p;
697
698  // Adjust bottom to point to the largest address within the same page, it
699  // gives us a one-page buffer if alloca() allocates slightly more memory.
700  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
701  bottom += os::Linux::page_size() - 1;
702
703  // sp might be slightly above current stack pointer; if that's the case, we
704  // will alloca() a little more space than necessary, which is OK. Don't use
705  // os::current_stack_pointer(), as its result can be slightly below current
706  // stack pointer, causing us to not alloca enough to reach "bottom".
707  sp = (address)&sp;
708
709  if (sp > bottom) {
710    size = sp - bottom;
711    p = (volatile char *)alloca(size);
712    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
713    p[0] = '\0';
714  }
715}
716
717bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
718  assert(t!=NULL, "just checking");
719  assert(t->osthread()->expanding_stack(), "expand should be set");
720  assert(t->stack_base() != NULL, "stack_base was not initialized");
721
722  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
723    sigset_t mask_all, old_sigset;
724    sigfillset(&mask_all);
725    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
726    _expand_stack_to(addr);
727    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
728    return true;
729  }
730  return false;
731}
732
733//////////////////////////////////////////////////////////////////////////////
734// create new thread
735
736static address highest_vm_reserved_address();
737
738// check if it's safe to start a new thread
739static bool _thread_safety_check(Thread* thread) {
740  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
741    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
742    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
743    //   allocated (MAP_FIXED) from high address space. Every thread stack
744    //   occupies a fixed size slot (usually 2Mbytes, but user can change
745    //   it to other values if they rebuild LinuxThreads).
746    //
747    // Problem with MAP_FIXED is that mmap() can still succeed even part of
748    // the memory region has already been mmap'ed. That means if we have too
749    // many threads and/or very large heap, eventually thread stack will
750    // collide with heap.
751    //
752    // Here we try to prevent heap/stack collision by comparing current
753    // stack bottom with the highest address that has been mmap'ed by JVM
754    // plus a safety margin for memory maps created by native code.
755    //
756    // This feature can be disabled by setting ThreadSafetyMargin to 0
757    //
758    if (ThreadSafetyMargin > 0) {
759      address stack_bottom = os::current_stack_base() - os::current_stack_size();
760
761      // not safe if our stack extends below the safety margin
762      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
763    } else {
764      return true;
765    }
766  } else {
767    // Floating stack LinuxThreads or NPTL:
768    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
769    //   there's not enough space left, pthread_create() will fail. If we come
770    //   here, that means enough space has been reserved for stack.
771    return true;
772  }
773}
774
775// Thread start routine for all newly created threads
776static void *java_start(Thread *thread) {
777  // Try to randomize the cache line index of hot stack frames.
778  // This helps when threads of the same stack traces evict each other's
779  // cache lines. The threads can be either from the same JVM instance, or
780  // from different JVM instances. The benefit is especially true for
781  // processors with hyperthreading technology.
782  static int counter = 0;
783  int pid = os::current_process_id();
784  alloca(((pid ^ counter++) & 7) * 128);
785
786  ThreadLocalStorage::set_thread(thread);
787
788  OSThread* osthread = thread->osthread();
789  Monitor* sync = osthread->startThread_lock();
790
791  // non floating stack LinuxThreads needs extra check, see above
792  if (!_thread_safety_check(thread)) {
793    // notify parent thread
794    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
795    osthread->set_state(ZOMBIE);
796    sync->notify_all();
797    return NULL;
798  }
799
800  // thread_id is kernel thread id (similar to Solaris LWP id)
801  osthread->set_thread_id(os::Linux::gettid());
802
803  if (UseNUMA) {
804    int lgrp_id = os::numa_get_group_id();
805    if (lgrp_id != -1) {
806      thread->set_lgrp_id(lgrp_id);
807    }
808  }
809  // initialize signal mask for this thread
810  os::Linux::hotspot_sigmask(thread);
811
812  // initialize floating point control register
813  os::Linux::init_thread_fpu_state();
814
815  // handshaking with parent thread
816  {
817    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
818
819    // notify parent thread
820    osthread->set_state(INITIALIZED);
821    sync->notify_all();
822
823    // wait until os::start_thread()
824    while (osthread->get_state() == INITIALIZED) {
825      sync->wait(Mutex::_no_safepoint_check_flag);
826    }
827  }
828
829  // call one more level start routine
830  thread->run();
831
832  return 0;
833}
834
835bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
836  assert(thread->osthread() == NULL, "caller responsible");
837
838  // Allocate the OSThread object
839  OSThread* osthread = new OSThread(NULL, NULL);
840  if (osthread == NULL) {
841    return false;
842  }
843
844  // set the correct thread state
845  osthread->set_thread_type(thr_type);
846
847  // Initial state is ALLOCATED but not INITIALIZED
848  osthread->set_state(ALLOCATED);
849
850  thread->set_osthread(osthread);
851
852  // init thread attributes
853  pthread_attr_t attr;
854  pthread_attr_init(&attr);
855  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
856
857  // stack size
858  if (os::Linux::supports_variable_stack_size()) {
859    // calculate stack size if it's not specified by caller
860    if (stack_size == 0) {
861      stack_size = os::Linux::default_stack_size(thr_type);
862
863      switch (thr_type) {
864      case os::java_thread:
865        // Java threads use ThreadStackSize which default value can be
866        // changed with the flag -Xss
867        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
868        stack_size = JavaThread::stack_size_at_create();
869        break;
870      case os::compiler_thread:
871        if (CompilerThreadStackSize > 0) {
872          stack_size = (size_t)(CompilerThreadStackSize * K);
873          break;
874        } // else fall through:
875          // use VMThreadStackSize if CompilerThreadStackSize is not defined
876      case os::vm_thread:
877      case os::pgc_thread:
878      case os::cgc_thread:
879      case os::watcher_thread:
880        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
881        break;
882      }
883    }
884
885    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
886    pthread_attr_setstacksize(&attr, stack_size);
887  } else {
888    // let pthread_create() pick the default value.
889  }
890
891  // glibc guard page
892  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
893
894  ThreadState state;
895
896  {
897    // Serialize thread creation if we are running with fixed stack LinuxThreads
898    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
899    if (lock) {
900      os::Linux::createThread_lock()->lock_without_safepoint_check();
901    }
902
903    pthread_t tid;
904    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
905
906    pthread_attr_destroy(&attr);
907
908    if (ret != 0) {
909      if (PrintMiscellaneous && (Verbose || WizardMode)) {
910        perror("pthread_create()");
911      }
912      // Need to clean up stuff we've allocated so far
913      thread->set_osthread(NULL);
914      delete osthread;
915      if (lock) os::Linux::createThread_lock()->unlock();
916      return false;
917    }
918
919    // Store pthread info into the OSThread
920    osthread->set_pthread_id(tid);
921
922    // Wait until child thread is either initialized or aborted
923    {
924      Monitor* sync_with_child = osthread->startThread_lock();
925      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
926      while ((state = osthread->get_state()) == ALLOCATED) {
927        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
928      }
929    }
930
931    if (lock) {
932      os::Linux::createThread_lock()->unlock();
933    }
934  }
935
936  // Aborted due to thread limit being reached
937  if (state == ZOMBIE) {
938    thread->set_osthread(NULL);
939    delete osthread;
940    return false;
941  }
942
943  // The thread is returned suspended (in state INITIALIZED),
944  // and is started higher up in the call chain
945  assert(state == INITIALIZED, "race condition");
946  return true;
947}
948
949/////////////////////////////////////////////////////////////////////////////
950// attach existing thread
951
952// bootstrap the main thread
953bool os::create_main_thread(JavaThread* thread) {
954  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
955  return create_attached_thread(thread);
956}
957
958bool os::create_attached_thread(JavaThread* thread) {
959#ifdef ASSERT
960  thread->verify_not_published();
961#endif
962
963  // Allocate the OSThread object
964  OSThread* osthread = new OSThread(NULL, NULL);
965
966  if (osthread == NULL) {
967    return false;
968  }
969
970  // Store pthread info into the OSThread
971  osthread->set_thread_id(os::Linux::gettid());
972  osthread->set_pthread_id(::pthread_self());
973
974  // initialize floating point control register
975  os::Linux::init_thread_fpu_state();
976
977  // Initial thread state is RUNNABLE
978  osthread->set_state(RUNNABLE);
979
980  thread->set_osthread(osthread);
981
982  if (UseNUMA) {
983    int lgrp_id = os::numa_get_group_id();
984    if (lgrp_id != -1) {
985      thread->set_lgrp_id(lgrp_id);
986    }
987  }
988
989  if (os::Linux::is_initial_thread()) {
990    // If current thread is initial thread, its stack is mapped on demand,
991    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
992    // the entire stack region to avoid SEGV in stack banging.
993    // It is also useful to get around the heap-stack-gap problem on SuSE
994    // kernel (see 4821821 for details). We first expand stack to the top
995    // of yellow zone, then enable stack yellow zone (order is significant,
996    // enabling yellow zone first will crash JVM on SuSE Linux), so there
997    // is no gap between the last two virtual memory regions.
998
999    JavaThread *jt = (JavaThread *)thread;
1000    address addr = jt->stack_yellow_zone_base();
1001    assert(addr != NULL, "initialization problem?");
1002    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1003
1004    osthread->set_expanding_stack();
1005    os::Linux::manually_expand_stack(jt, addr);
1006    osthread->clear_expanding_stack();
1007  }
1008
1009  // initialize signal mask for this thread
1010  // and save the caller's signal mask
1011  os::Linux::hotspot_sigmask(thread);
1012
1013  return true;
1014}
1015
1016void os::pd_start_thread(Thread* thread) {
1017  OSThread * osthread = thread->osthread();
1018  assert(osthread->get_state() != INITIALIZED, "just checking");
1019  Monitor* sync_with_child = osthread->startThread_lock();
1020  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1021  sync_with_child->notify();
1022}
1023
1024// Free Linux resources related to the OSThread
1025void os::free_thread(OSThread* osthread) {
1026  assert(osthread != NULL, "osthread not set");
1027
1028  if (Thread::current()->osthread() == osthread) {
1029    // Restore caller's signal mask
1030    sigset_t sigmask = osthread->caller_sigmask();
1031    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1032  }
1033
1034  delete osthread;
1035}
1036
1037//////////////////////////////////////////////////////////////////////////////
1038// thread local storage
1039
1040// Restore the thread pointer if the destructor is called. This is in case
1041// someone from JNI code sets up a destructor with pthread_key_create to run
1042// detachCurrentThread on thread death. Unless we restore the thread pointer we
1043// will hang or crash. When detachCurrentThread is called the key will be set
1044// to null and we will not be called again. If detachCurrentThread is never
1045// called we could loop forever depending on the pthread implementation.
1046static void restore_thread_pointer(void* p) {
1047  Thread* thread = (Thread*) p;
1048  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1049}
1050
1051int os::allocate_thread_local_storage() {
1052  pthread_key_t key;
1053  int rslt = pthread_key_create(&key, restore_thread_pointer);
1054  assert(rslt == 0, "cannot allocate thread local storage");
1055  return (int)key;
1056}
1057
1058// Note: This is currently not used by VM, as we don't destroy TLS key
1059// on VM exit.
1060void os::free_thread_local_storage(int index) {
1061  int rslt = pthread_key_delete((pthread_key_t)index);
1062  assert(rslt == 0, "invalid index");
1063}
1064
1065void os::thread_local_storage_at_put(int index, void* value) {
1066  int rslt = pthread_setspecific((pthread_key_t)index, value);
1067  assert(rslt == 0, "pthread_setspecific failed");
1068}
1069
1070extern "C" Thread* get_thread() {
1071  return ThreadLocalStorage::thread();
1072}
1073
1074//////////////////////////////////////////////////////////////////////////////
1075// initial thread
1076
1077// Check if current thread is the initial thread, similar to Solaris thr_main.
1078bool os::Linux::is_initial_thread(void) {
1079  char dummy;
1080  // If called before init complete, thread stack bottom will be null.
1081  // Can be called if fatal error occurs before initialization.
1082  if (initial_thread_stack_bottom() == NULL) return false;
1083  assert(initial_thread_stack_bottom() != NULL &&
1084         initial_thread_stack_size()   != 0,
1085         "os::init did not locate initial thread's stack region");
1086  if ((address)&dummy >= initial_thread_stack_bottom() &&
1087      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1088    return true;
1089  else return false;
1090}
1091
1092// Find the virtual memory area that contains addr
1093static bool find_vma(address addr, address* vma_low, address* vma_high) {
1094  FILE *fp = fopen("/proc/self/maps", "r");
1095  if (fp) {
1096    address low, high;
1097    while (!feof(fp)) {
1098      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1099        if (low <= addr && addr < high) {
1100          if (vma_low)  *vma_low  = low;
1101          if (vma_high) *vma_high = high;
1102          fclose(fp);
1103          return true;
1104        }
1105      }
1106      for (;;) {
1107        int ch = fgetc(fp);
1108        if (ch == EOF || ch == (int)'\n') break;
1109      }
1110    }
1111    fclose(fp);
1112  }
1113  return false;
1114}
1115
1116// Locate initial thread stack. This special handling of initial thread stack
1117// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1118// bogus value for initial thread.
1119void os::Linux::capture_initial_stack(size_t max_size) {
1120  // stack size is the easy part, get it from RLIMIT_STACK
1121  size_t stack_size;
1122  struct rlimit rlim;
1123  getrlimit(RLIMIT_STACK, &rlim);
1124  stack_size = rlim.rlim_cur;
1125
1126  // 6308388: a bug in ld.so will relocate its own .data section to the
1127  //   lower end of primordial stack; reduce ulimit -s value a little bit
1128  //   so we won't install guard page on ld.so's data section.
1129  stack_size -= 2 * page_size();
1130
1131  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1132  //   7.1, in both cases we will get 2G in return value.
1133  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1134  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1135  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1136  //   in case other parts in glibc still assumes 2M max stack size.
1137  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1138  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1139  if (stack_size > 2 * K * K IA64_ONLY(*2))
1140    stack_size = 2 * K * K IA64_ONLY(*2);
1141  // Try to figure out where the stack base (top) is. This is harder.
1142  //
1143  // When an application is started, glibc saves the initial stack pointer in
1144  // a global variable "__libc_stack_end", which is then used by system
1145  // libraries. __libc_stack_end should be pretty close to stack top. The
1146  // variable is available since the very early days. However, because it is
1147  // a private interface, it could disappear in the future.
1148  //
1149  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1150  // to __libc_stack_end, it is very close to stack top, but isn't the real
1151  // stack top. Note that /proc may not exist if VM is running as a chroot
1152  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1153  // /proc/<pid>/stat could change in the future (though unlikely).
1154  //
1155  // We try __libc_stack_end first. If that doesn't work, look for
1156  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1157  // as a hint, which should work well in most cases.
1158
1159  uintptr_t stack_start;
1160
1161  // try __libc_stack_end first
1162  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1163  if (p && *p) {
1164    stack_start = *p;
1165  } else {
1166    // see if we can get the start_stack field from /proc/self/stat
1167    FILE *fp;
1168    int pid;
1169    char state;
1170    int ppid;
1171    int pgrp;
1172    int session;
1173    int nr;
1174    int tpgrp;
1175    unsigned long flags;
1176    unsigned long minflt;
1177    unsigned long cminflt;
1178    unsigned long majflt;
1179    unsigned long cmajflt;
1180    unsigned long utime;
1181    unsigned long stime;
1182    long cutime;
1183    long cstime;
1184    long prio;
1185    long nice;
1186    long junk;
1187    long it_real;
1188    uintptr_t start;
1189    uintptr_t vsize;
1190    intptr_t rss;
1191    uintptr_t rsslim;
1192    uintptr_t scodes;
1193    uintptr_t ecode;
1194    int i;
1195
1196    // Figure what the primordial thread stack base is. Code is inspired
1197    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1198    // followed by command name surrounded by parentheses, state, etc.
1199    char stat[2048];
1200    int statlen;
1201
1202    fp = fopen("/proc/self/stat", "r");
1203    if (fp) {
1204      statlen = fread(stat, 1, 2047, fp);
1205      stat[statlen] = '\0';
1206      fclose(fp);
1207
1208      // Skip pid and the command string. Note that we could be dealing with
1209      // weird command names, e.g. user could decide to rename java launcher
1210      // to "java 1.4.2 :)", then the stat file would look like
1211      //                1234 (java 1.4.2 :)) R ... ...
1212      // We don't really need to know the command string, just find the last
1213      // occurrence of ")" and then start parsing from there. See bug 4726580.
1214      char * s = strrchr(stat, ')');
1215
1216      i = 0;
1217      if (s) {
1218        // Skip blank chars
1219        do s++; while (isspace(*s));
1220
1221#define _UFM UINTX_FORMAT
1222#define _DFM INTX_FORMAT
1223
1224        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1225        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1226        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1227                   &state,          /* 3  %c  */
1228                   &ppid,           /* 4  %d  */
1229                   &pgrp,           /* 5  %d  */
1230                   &session,        /* 6  %d  */
1231                   &nr,             /* 7  %d  */
1232                   &tpgrp,          /* 8  %d  */
1233                   &flags,          /* 9  %lu  */
1234                   &minflt,         /* 10 %lu  */
1235                   &cminflt,        /* 11 %lu  */
1236                   &majflt,         /* 12 %lu  */
1237                   &cmajflt,        /* 13 %lu  */
1238                   &utime,          /* 14 %lu  */
1239                   &stime,          /* 15 %lu  */
1240                   &cutime,         /* 16 %ld  */
1241                   &cstime,         /* 17 %ld  */
1242                   &prio,           /* 18 %ld  */
1243                   &nice,           /* 19 %ld  */
1244                   &junk,           /* 20 %ld  */
1245                   &it_real,        /* 21 %ld  */
1246                   &start,          /* 22 UINTX_FORMAT */
1247                   &vsize,          /* 23 UINTX_FORMAT */
1248                   &rss,            /* 24 INTX_FORMAT  */
1249                   &rsslim,         /* 25 UINTX_FORMAT */
1250                   &scodes,         /* 26 UINTX_FORMAT */
1251                   &ecode,          /* 27 UINTX_FORMAT */
1252                   &stack_start);   /* 28 UINTX_FORMAT */
1253      }
1254
1255#undef _UFM
1256#undef _DFM
1257
1258      if (i != 28 - 2) {
1259        assert(false, "Bad conversion from /proc/self/stat");
1260        // product mode - assume we are the initial thread, good luck in the
1261        // embedded case.
1262        warning("Can't detect initial thread stack location - bad conversion");
1263        stack_start = (uintptr_t) &rlim;
1264      }
1265    } else {
1266      // For some reason we can't open /proc/self/stat (for example, running on
1267      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1268      // most cases, so don't abort:
1269      warning("Can't detect initial thread stack location - no /proc/self/stat");
1270      stack_start = (uintptr_t) &rlim;
1271    }
1272  }
1273
1274  // Now we have a pointer (stack_start) very close to the stack top, the
1275  // next thing to do is to figure out the exact location of stack top. We
1276  // can find out the virtual memory area that contains stack_start by
1277  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1278  // and its upper limit is the real stack top. (again, this would fail if
1279  // running inside chroot, because /proc may not exist.)
1280
1281  uintptr_t stack_top;
1282  address low, high;
1283  if (find_vma((address)stack_start, &low, &high)) {
1284    // success, "high" is the true stack top. (ignore "low", because initial
1285    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1286    stack_top = (uintptr_t)high;
1287  } else {
1288    // failed, likely because /proc/self/maps does not exist
1289    warning("Can't detect initial thread stack location - find_vma failed");
1290    // best effort: stack_start is normally within a few pages below the real
1291    // stack top, use it as stack top, and reduce stack size so we won't put
1292    // guard page outside stack.
1293    stack_top = stack_start;
1294    stack_size -= 16 * page_size();
1295  }
1296
1297  // stack_top could be partially down the page so align it
1298  stack_top = align_size_up(stack_top, page_size());
1299
1300  if (max_size && stack_size > max_size) {
1301    _initial_thread_stack_size = max_size;
1302  } else {
1303    _initial_thread_stack_size = stack_size;
1304  }
1305
1306  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1307  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1308}
1309
1310////////////////////////////////////////////////////////////////////////////////
1311// time support
1312
1313// Time since start-up in seconds to a fine granularity.
1314// Used by VMSelfDestructTimer and the MemProfiler.
1315double os::elapsedTime() {
1316
1317  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1318}
1319
1320jlong os::elapsed_counter() {
1321  return javaTimeNanos() - initial_time_count;
1322}
1323
1324jlong os::elapsed_frequency() {
1325  return NANOSECS_PER_SEC; // nanosecond resolution
1326}
1327
1328bool os::supports_vtime() { return true; }
1329bool os::enable_vtime()   { return false; }
1330bool os::vtime_enabled()  { return false; }
1331
1332double os::elapsedVTime() {
1333  struct rusage usage;
1334  int retval = getrusage(RUSAGE_THREAD, &usage);
1335  if (retval == 0) {
1336    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1337  } else {
1338    // better than nothing, but not much
1339    return elapsedTime();
1340  }
1341}
1342
1343jlong os::javaTimeMillis() {
1344  timeval time;
1345  int status = gettimeofday(&time, NULL);
1346  assert(status != -1, "linux error");
1347  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1348}
1349
1350#ifndef CLOCK_MONOTONIC
1351#define CLOCK_MONOTONIC (1)
1352#endif
1353
1354void os::Linux::clock_init() {
1355  // we do dlopen's in this particular order due to bug in linux
1356  // dynamical loader (see 6348968) leading to crash on exit
1357  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1358  if (handle == NULL) {
1359    handle = dlopen("librt.so", RTLD_LAZY);
1360  }
1361
1362  if (handle) {
1363    int (*clock_getres_func)(clockid_t, struct timespec*) =
1364           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1365    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1366           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1367    if (clock_getres_func && clock_gettime_func) {
1368      // See if monotonic clock is supported by the kernel. Note that some
1369      // early implementations simply return kernel jiffies (updated every
1370      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1371      // for nano time (though the monotonic property is still nice to have).
1372      // It's fixed in newer kernels, however clock_getres() still returns
1373      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1374      // resolution for now. Hopefully as people move to new kernels, this
1375      // won't be a problem.
1376      struct timespec res;
1377      struct timespec tp;
1378      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1379          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1380        // yes, monotonic clock is supported
1381        _clock_gettime = clock_gettime_func;
1382        return;
1383      } else {
1384        // close librt if there is no monotonic clock
1385        dlclose(handle);
1386      }
1387    }
1388  }
1389  warning("No monotonic clock was available - timed services may " \
1390          "be adversely affected if the time-of-day clock changes");
1391}
1392
1393#ifndef SYS_clock_getres
1394
1395#if defined(IA32) || defined(AMD64)
1396#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1397#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1398#else
1399#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1400#define sys_clock_getres(x,y)  -1
1401#endif
1402
1403#else
1404#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1405#endif
1406
1407void os::Linux::fast_thread_clock_init() {
1408  if (!UseLinuxPosixThreadCPUClocks) {
1409    return;
1410  }
1411  clockid_t clockid;
1412  struct timespec tp;
1413  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1414      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1415
1416  // Switch to using fast clocks for thread cpu time if
1417  // the sys_clock_getres() returns 0 error code.
1418  // Note, that some kernels may support the current thread
1419  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1420  // returned by the pthread_getcpuclockid().
1421  // If the fast Posix clocks are supported then the sys_clock_getres()
1422  // must return at least tp.tv_sec == 0 which means a resolution
1423  // better than 1 sec. This is extra check for reliability.
1424
1425  if (pthread_getcpuclockid_func &&
1426      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1427      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1428
1429    _supports_fast_thread_cpu_time = true;
1430    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1431  }
1432}
1433
1434jlong os::javaTimeNanos() {
1435  if (os::supports_monotonic_clock()) {
1436    struct timespec tp;
1437    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1438    assert(status == 0, "gettime error");
1439    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1440    return result;
1441  } else {
1442    timeval time;
1443    int status = gettimeofday(&time, NULL);
1444    assert(status != -1, "linux error");
1445    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1446    return 1000 * usecs;
1447  }
1448}
1449
1450void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1451  if (os::supports_monotonic_clock()) {
1452    info_ptr->max_value = ALL_64_BITS;
1453
1454    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1455    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1456    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1457  } else {
1458    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1459    info_ptr->max_value = ALL_64_BITS;
1460
1461    // gettimeofday is a real time clock so it skips
1462    info_ptr->may_skip_backward = true;
1463    info_ptr->may_skip_forward = true;
1464  }
1465
1466  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1467}
1468
1469// Return the real, user, and system times in seconds from an
1470// arbitrary fixed point in the past.
1471bool os::getTimesSecs(double* process_real_time,
1472                      double* process_user_time,
1473                      double* process_system_time) {
1474  struct tms ticks;
1475  clock_t real_ticks = times(&ticks);
1476
1477  if (real_ticks == (clock_t) (-1)) {
1478    return false;
1479  } else {
1480    double ticks_per_second = (double) clock_tics_per_sec;
1481    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1482    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1483    *process_real_time = ((double) real_ticks) / ticks_per_second;
1484
1485    return true;
1486  }
1487}
1488
1489
1490char * os::local_time_string(char *buf, size_t buflen) {
1491  struct tm t;
1492  time_t long_time;
1493  time(&long_time);
1494  localtime_r(&long_time, &t);
1495  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1496               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1497               t.tm_hour, t.tm_min, t.tm_sec);
1498  return buf;
1499}
1500
1501struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1502  return localtime_r(clock, res);
1503}
1504
1505////////////////////////////////////////////////////////////////////////////////
1506// runtime exit support
1507
1508// Note: os::shutdown() might be called very early during initialization, or
1509// called from signal handler. Before adding something to os::shutdown(), make
1510// sure it is async-safe and can handle partially initialized VM.
1511void os::shutdown() {
1512
1513  // allow PerfMemory to attempt cleanup of any persistent resources
1514  perfMemory_exit();
1515
1516  // needs to remove object in file system
1517  AttachListener::abort();
1518
1519  // flush buffered output, finish log files
1520  ostream_abort();
1521
1522  // Check for abort hook
1523  abort_hook_t abort_hook = Arguments::abort_hook();
1524  if (abort_hook != NULL) {
1525    abort_hook();
1526  }
1527
1528}
1529
1530// Note: os::abort() might be called very early during initialization, or
1531// called from signal handler. Before adding something to os::abort(), make
1532// sure it is async-safe and can handle partially initialized VM.
1533void os::abort(bool dump_core) {
1534  os::shutdown();
1535  if (dump_core) {
1536#ifndef PRODUCT
1537    fdStream out(defaultStream::output_fd());
1538    out.print_raw("Current thread is ");
1539    char buf[16];
1540    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1541    out.print_raw_cr(buf);
1542    out.print_raw_cr("Dumping core ...");
1543#endif
1544    ::abort(); // dump core
1545  }
1546
1547  ::exit(1);
1548}
1549
1550// Die immediately, no exit hook, no abort hook, no cleanup.
1551void os::die() {
1552  // _exit() on LinuxThreads only kills current thread
1553  ::abort();
1554}
1555
1556
1557// This method is a copy of JDK's sysGetLastErrorString
1558// from src/solaris/hpi/src/system_md.c
1559
1560size_t os::lasterror(char *buf, size_t len) {
1561
1562  if (errno == 0)  return 0;
1563
1564  const char *s = ::strerror(errno);
1565  size_t n = ::strlen(s);
1566  if (n >= len) {
1567    n = len - 1;
1568  }
1569  ::strncpy(buf, s, n);
1570  buf[n] = '\0';
1571  return n;
1572}
1573
1574intx os::current_thread_id() { return (intx)pthread_self(); }
1575int os::current_process_id() {
1576
1577  // Under the old linux thread library, linux gives each thread
1578  // its own process id. Because of this each thread will return
1579  // a different pid if this method were to return the result
1580  // of getpid(2). Linux provides no api that returns the pid
1581  // of the launcher thread for the vm. This implementation
1582  // returns a unique pid, the pid of the launcher thread
1583  // that starts the vm 'process'.
1584
1585  // Under the NPTL, getpid() returns the same pid as the
1586  // launcher thread rather than a unique pid per thread.
1587  // Use gettid() if you want the old pre NPTL behaviour.
1588
1589  // if you are looking for the result of a call to getpid() that
1590  // returns a unique pid for the calling thread, then look at the
1591  // OSThread::thread_id() method in osThread_linux.hpp file
1592
1593  return (int)(_initial_pid ? _initial_pid : getpid());
1594}
1595
1596// DLL functions
1597
1598const char* os::dll_file_extension() { return ".so"; }
1599
1600// This must be hard coded because it's the system's temporary
1601// directory not the java application's temp directory, ala java.io.tmpdir.
1602const char* os::get_temp_directory() { return "/tmp"; }
1603
1604static bool file_exists(const char* filename) {
1605  struct stat statbuf;
1606  if (filename == NULL || strlen(filename) == 0) {
1607    return false;
1608  }
1609  return os::stat(filename, &statbuf) == 0;
1610}
1611
1612bool os::dll_build_name(char* buffer, size_t buflen,
1613                        const char* pname, const char* fname) {
1614  bool retval = false;
1615  // Copied from libhpi
1616  const size_t pnamelen = pname ? strlen(pname) : 0;
1617
1618  // Return error on buffer overflow.
1619  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1620    return retval;
1621  }
1622
1623  if (pnamelen == 0) {
1624    snprintf(buffer, buflen, "lib%s.so", fname);
1625    retval = true;
1626  } else if (strchr(pname, *os::path_separator()) != NULL) {
1627    int n;
1628    char** pelements = split_path(pname, &n);
1629    if (pelements == NULL) {
1630      return false;
1631    }
1632    for (int i = 0; i < n; i++) {
1633      // Really shouldn't be NULL, but check can't hurt
1634      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1635        continue; // skip the empty path values
1636      }
1637      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1638      if (file_exists(buffer)) {
1639        retval = true;
1640        break;
1641      }
1642    }
1643    // release the storage
1644    for (int i = 0; i < n; i++) {
1645      if (pelements[i] != NULL) {
1646        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1647      }
1648    }
1649    if (pelements != NULL) {
1650      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1651    }
1652  } else {
1653    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1654    retval = true;
1655  }
1656  return retval;
1657}
1658
1659// check if addr is inside libjvm.so
1660bool os::address_is_in_vm(address addr) {
1661  static address libjvm_base_addr;
1662  Dl_info dlinfo;
1663
1664  if (libjvm_base_addr == NULL) {
1665    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1666      libjvm_base_addr = (address)dlinfo.dli_fbase;
1667    }
1668    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1669  }
1670
1671  if (dladdr((void *)addr, &dlinfo) != 0) {
1672    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1673  }
1674
1675  return false;
1676}
1677
1678bool os::dll_address_to_function_name(address addr, char *buf,
1679                                      int buflen, int *offset) {
1680  // buf is not optional, but offset is optional
1681  assert(buf != NULL, "sanity check");
1682
1683  Dl_info dlinfo;
1684
1685  if (dladdr((void*)addr, &dlinfo) != 0) {
1686    // see if we have a matching symbol
1687    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1688      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1689        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1690      }
1691      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1692      return true;
1693    }
1694    // no matching symbol so try for just file info
1695    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1696      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1697                          buf, buflen, offset, dlinfo.dli_fname)) {
1698        return true;
1699      }
1700    }
1701  }
1702
1703  buf[0] = '\0';
1704  if (offset != NULL) *offset = -1;
1705  return false;
1706}
1707
1708struct _address_to_library_name {
1709  address addr;          // input : memory address
1710  size_t  buflen;        //         size of fname
1711  char*   fname;         // output: library name
1712  address base;          //         library base addr
1713};
1714
1715static int address_to_library_name_callback(struct dl_phdr_info *info,
1716                                            size_t size, void *data) {
1717  int i;
1718  bool found = false;
1719  address libbase = NULL;
1720  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1721
1722  // iterate through all loadable segments
1723  for (i = 0; i < info->dlpi_phnum; i++) {
1724    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1725    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1726      // base address of a library is the lowest address of its loaded
1727      // segments.
1728      if (libbase == NULL || libbase > segbase) {
1729        libbase = segbase;
1730      }
1731      // see if 'addr' is within current segment
1732      if (segbase <= d->addr &&
1733          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1734        found = true;
1735      }
1736    }
1737  }
1738
1739  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1740  // so dll_address_to_library_name() can fall through to use dladdr() which
1741  // can figure out executable name from argv[0].
1742  if (found && info->dlpi_name && info->dlpi_name[0]) {
1743    d->base = libbase;
1744    if (d->fname) {
1745      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1746    }
1747    return 1;
1748  }
1749  return 0;
1750}
1751
1752bool os::dll_address_to_library_name(address addr, char* buf,
1753                                     int buflen, int* offset) {
1754  // buf is not optional, but offset is optional
1755  assert(buf != NULL, "sanity check");
1756
1757  Dl_info dlinfo;
1758  struct _address_to_library_name data;
1759
1760  // There is a bug in old glibc dladdr() implementation that it could resolve
1761  // to wrong library name if the .so file has a base address != NULL. Here
1762  // we iterate through the program headers of all loaded libraries to find
1763  // out which library 'addr' really belongs to. This workaround can be
1764  // removed once the minimum requirement for glibc is moved to 2.3.x.
1765  data.addr = addr;
1766  data.fname = buf;
1767  data.buflen = buflen;
1768  data.base = NULL;
1769  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1770
1771  if (rslt) {
1772    // buf already contains library name
1773    if (offset) *offset = addr - data.base;
1774    return true;
1775  }
1776  if (dladdr((void*)addr, &dlinfo) != 0) {
1777    if (dlinfo.dli_fname != NULL) {
1778      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1779    }
1780    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1781      *offset = addr - (address)dlinfo.dli_fbase;
1782    }
1783    return true;
1784  }
1785
1786  buf[0] = '\0';
1787  if (offset) *offset = -1;
1788  return false;
1789}
1790
1791// Loads .dll/.so and
1792// in case of error it checks if .dll/.so was built for the
1793// same architecture as Hotspot is running on
1794
1795
1796// Remember the stack's state. The Linux dynamic linker will change
1797// the stack to 'executable' at most once, so we must safepoint only once.
1798bool os::Linux::_stack_is_executable = false;
1799
1800// VM operation that loads a library.  This is necessary if stack protection
1801// of the Java stacks can be lost during loading the library.  If we
1802// do not stop the Java threads, they can stack overflow before the stacks
1803// are protected again.
1804class VM_LinuxDllLoad: public VM_Operation {
1805 private:
1806  const char *_filename;
1807  char *_ebuf;
1808  int _ebuflen;
1809  void *_lib;
1810 public:
1811  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1812    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1813  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1814  void doit() {
1815    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1816    os::Linux::_stack_is_executable = true;
1817  }
1818  void* loaded_library() { return _lib; }
1819};
1820
1821void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1822{
1823  void * result = NULL;
1824  bool load_attempted = false;
1825
1826  // Check whether the library to load might change execution rights
1827  // of the stack. If they are changed, the protection of the stack
1828  // guard pages will be lost. We need a safepoint to fix this.
1829  //
1830  // See Linux man page execstack(8) for more info.
1831  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1832    ElfFile ef(filename);
1833    if (!ef.specifies_noexecstack()) {
1834      if (!is_init_completed()) {
1835        os::Linux::_stack_is_executable = true;
1836        // This is OK - No Java threads have been created yet, and hence no
1837        // stack guard pages to fix.
1838        //
1839        // This should happen only when you are building JDK7 using a very
1840        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1841        //
1842        // Dynamic loader will make all stacks executable after
1843        // this function returns, and will not do that again.
1844        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1845      } else {
1846        warning("You have loaded library %s which might have disabled stack guard. "
1847                "The VM will try to fix the stack guard now.\n"
1848                "It's highly recommended that you fix the library with "
1849                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1850                filename);
1851
1852        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1853        JavaThread *jt = JavaThread::current();
1854        if (jt->thread_state() != _thread_in_native) {
1855          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1856          // that requires ExecStack. Cannot enter safe point. Let's give up.
1857          warning("Unable to fix stack guard. Giving up.");
1858        } else {
1859          if (!LoadExecStackDllInVMThread) {
1860            // This is for the case where the DLL has an static
1861            // constructor function that executes JNI code. We cannot
1862            // load such DLLs in the VMThread.
1863            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1864          }
1865
1866          ThreadInVMfromNative tiv(jt);
1867          debug_only(VMNativeEntryWrapper vew;)
1868
1869          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1870          VMThread::execute(&op);
1871          if (LoadExecStackDllInVMThread) {
1872            result = op.loaded_library();
1873          }
1874          load_attempted = true;
1875        }
1876      }
1877    }
1878  }
1879
1880  if (!load_attempted) {
1881    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1882  }
1883
1884  if (result != NULL) {
1885    // Successful loading
1886    return result;
1887  }
1888
1889  Elf32_Ehdr elf_head;
1890  int diag_msg_max_length=ebuflen-strlen(ebuf);
1891  char* diag_msg_buf=ebuf+strlen(ebuf);
1892
1893  if (diag_msg_max_length==0) {
1894    // No more space in ebuf for additional diagnostics message
1895    return NULL;
1896  }
1897
1898
1899  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1900
1901  if (file_descriptor < 0) {
1902    // Can't open library, report dlerror() message
1903    return NULL;
1904  }
1905
1906  bool failed_to_read_elf_head=
1907    (sizeof(elf_head)!=
1908     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1909
1910  ::close(file_descriptor);
1911  if (failed_to_read_elf_head) {
1912    // file i/o error - report dlerror() msg
1913    return NULL;
1914  }
1915
1916  typedef struct {
1917    Elf32_Half  code;         // Actual value as defined in elf.h
1918    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1919    char        elf_class;    // 32 or 64 bit
1920    char        endianess;    // MSB or LSB
1921    char*       name;         // String representation
1922  } arch_t;
1923
1924  #ifndef EM_486
1925  #define EM_486          6               /* Intel 80486 */
1926  #endif
1927
1928  static const arch_t arch_array[]={
1929    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1930    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1931    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1932    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1933    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1934    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1935    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1936    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1937#if defined(VM_LITTLE_ENDIAN)
1938    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1939#else
1940    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1941#endif
1942    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1943    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1944    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1945    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1946    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1947    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1948    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1949  };
1950
1951  #if  (defined IA32)
1952  static  Elf32_Half running_arch_code=EM_386;
1953  #elif   (defined AMD64)
1954  static  Elf32_Half running_arch_code=EM_X86_64;
1955  #elif  (defined IA64)
1956  static  Elf32_Half running_arch_code=EM_IA_64;
1957  #elif  (defined __sparc) && (defined _LP64)
1958  static  Elf32_Half running_arch_code=EM_SPARCV9;
1959  #elif  (defined __sparc) && (!defined _LP64)
1960  static  Elf32_Half running_arch_code=EM_SPARC;
1961  #elif  (defined __powerpc64__)
1962  static  Elf32_Half running_arch_code=EM_PPC64;
1963  #elif  (defined __powerpc__)
1964  static  Elf32_Half running_arch_code=EM_PPC;
1965  #elif  (defined ARM)
1966  static  Elf32_Half running_arch_code=EM_ARM;
1967  #elif  (defined S390)
1968  static  Elf32_Half running_arch_code=EM_S390;
1969  #elif  (defined ALPHA)
1970  static  Elf32_Half running_arch_code=EM_ALPHA;
1971  #elif  (defined MIPSEL)
1972  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1973  #elif  (defined PARISC)
1974  static  Elf32_Half running_arch_code=EM_PARISC;
1975  #elif  (defined MIPS)
1976  static  Elf32_Half running_arch_code=EM_MIPS;
1977  #elif  (defined M68K)
1978  static  Elf32_Half running_arch_code=EM_68K;
1979  #else
1980    #error Method os::dll_load requires that one of following is defined:\
1981         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1982  #endif
1983
1984  // Identify compatability class for VM's architecture and library's architecture
1985  // Obtain string descriptions for architectures
1986
1987  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1988  int running_arch_index=-1;
1989
1990  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1991    if (running_arch_code == arch_array[i].code) {
1992      running_arch_index    = i;
1993    }
1994    if (lib_arch.code == arch_array[i].code) {
1995      lib_arch.compat_class = arch_array[i].compat_class;
1996      lib_arch.name         = arch_array[i].name;
1997    }
1998  }
1999
2000  assert(running_arch_index != -1,
2001         "Didn't find running architecture code (running_arch_code) in arch_array");
2002  if (running_arch_index == -1) {
2003    // Even though running architecture detection failed
2004    // we may still continue with reporting dlerror() message
2005    return NULL;
2006  }
2007
2008  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2009    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2010    return NULL;
2011  }
2012
2013#ifndef S390
2014  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2015    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2016    return NULL;
2017  }
2018#endif // !S390
2019
2020  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2021    if (lib_arch.name!=NULL) {
2022      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2023                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2024                 lib_arch.name, arch_array[running_arch_index].name);
2025    } else {
2026      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2027                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2028                 lib_arch.code,
2029                 arch_array[running_arch_index].name);
2030    }
2031  }
2032
2033  return NULL;
2034}
2035
2036void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2037  void * result = ::dlopen(filename, RTLD_LAZY);
2038  if (result == NULL) {
2039    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2040    ebuf[ebuflen-1] = '\0';
2041  }
2042  return result;
2043}
2044
2045void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2046  void * result = NULL;
2047  if (LoadExecStackDllInVMThread) {
2048    result = dlopen_helper(filename, ebuf, ebuflen);
2049  }
2050
2051  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2052  // library that requires an executable stack, or which does not have this
2053  // stack attribute set, dlopen changes the stack attribute to executable. The
2054  // read protection of the guard pages gets lost.
2055  //
2056  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2057  // may have been queued at the same time.
2058
2059  if (!_stack_is_executable) {
2060    JavaThread *jt = Threads::first();
2061
2062    while (jt) {
2063      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2064          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2065        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2066                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2067          warning("Attempt to reguard stack yellow zone failed.");
2068        }
2069      }
2070      jt = jt->next();
2071    }
2072  }
2073
2074  return result;
2075}
2076
2077/*
2078 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2079 * chances are you might want to run the generated bits against glibc-2.0
2080 * libdl.so, so always use locking for any version of glibc.
2081 */
2082void* os::dll_lookup(void* handle, const char* name) {
2083  pthread_mutex_lock(&dl_mutex);
2084  void* res = dlsym(handle, name);
2085  pthread_mutex_unlock(&dl_mutex);
2086  return res;
2087}
2088
2089void* os::get_default_process_handle() {
2090  return (void*)::dlopen(NULL, RTLD_LAZY);
2091}
2092
2093static bool _print_ascii_file(const char* filename, outputStream* st) {
2094  int fd = ::open(filename, O_RDONLY);
2095  if (fd == -1) {
2096    return false;
2097  }
2098
2099  char buf[32];
2100  int bytes;
2101  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2102    st->print_raw(buf, bytes);
2103  }
2104
2105  ::close(fd);
2106
2107  return true;
2108}
2109
2110void os::print_dll_info(outputStream *st) {
2111  st->print_cr("Dynamic libraries:");
2112
2113  char fname[32];
2114  pid_t pid = os::Linux::gettid();
2115
2116  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2117
2118  if (!_print_ascii_file(fname, st)) {
2119    st->print("Can not get library information for pid = %d\n", pid);
2120  }
2121}
2122
2123void os::print_os_info_brief(outputStream* st) {
2124  os::Linux::print_distro_info(st);
2125
2126  os::Posix::print_uname_info(st);
2127
2128  os::Linux::print_libversion_info(st);
2129
2130}
2131
2132void os::print_os_info(outputStream* st) {
2133  st->print("OS:");
2134
2135  os::Linux::print_distro_info(st);
2136
2137  os::Posix::print_uname_info(st);
2138
2139  // Print warning if unsafe chroot environment detected
2140  if (unsafe_chroot_detected) {
2141    st->print("WARNING!! ");
2142    st->print_cr("%s", unstable_chroot_error);
2143  }
2144
2145  os::Linux::print_libversion_info(st);
2146
2147  os::Posix::print_rlimit_info(st);
2148
2149  os::Posix::print_load_average(st);
2150
2151  os::Linux::print_full_memory_info(st);
2152}
2153
2154// Try to identify popular distros.
2155// Most Linux distributions have a /etc/XXX-release file, which contains
2156// the OS version string. Newer Linux distributions have a /etc/lsb-release
2157// file that also contains the OS version string. Some have more than one
2158// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2159// /etc/redhat-release.), so the order is important.
2160// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2161// their own specific XXX-release file as well as a redhat-release file.
2162// Because of this the XXX-release file needs to be searched for before the
2163// redhat-release file.
2164// Since Red Hat has a lsb-release file that is not very descriptive the
2165// search for redhat-release needs to be before lsb-release.
2166// Since the lsb-release file is the new standard it needs to be searched
2167// before the older style release files.
2168// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2169// next to last resort.  The os-release file is a new standard that contains
2170// distribution information and the system-release file seems to be an old
2171// standard that has been replaced by the lsb-release and os-release files.
2172// Searching for the debian_version file is the last resort.  It contains
2173// an informative string like "6.0.6" or "wheezy/sid". Because of this
2174// "Debian " is printed before the contents of the debian_version file.
2175void os::Linux::print_distro_info(outputStream* st) {
2176  if (!_print_ascii_file("/etc/oracle-release", st) &&
2177      !_print_ascii_file("/etc/mandriva-release", st) &&
2178      !_print_ascii_file("/etc/mandrake-release", st) &&
2179      !_print_ascii_file("/etc/sun-release", st) &&
2180      !_print_ascii_file("/etc/redhat-release", st) &&
2181      !_print_ascii_file("/etc/lsb-release", st) &&
2182      !_print_ascii_file("/etc/SuSE-release", st) &&
2183      !_print_ascii_file("/etc/turbolinux-release", st) &&
2184      !_print_ascii_file("/etc/gentoo-release", st) &&
2185      !_print_ascii_file("/etc/ltib-release", st) &&
2186      !_print_ascii_file("/etc/angstrom-version", st) &&
2187      !_print_ascii_file("/etc/system-release", st) &&
2188      !_print_ascii_file("/etc/os-release", st)) {
2189
2190    if (file_exists("/etc/debian_version")) {
2191      st->print("Debian ");
2192      _print_ascii_file("/etc/debian_version", st);
2193    } else {
2194      st->print("Linux");
2195    }
2196  }
2197  st->cr();
2198}
2199
2200void os::Linux::print_libversion_info(outputStream* st) {
2201  // libc, pthread
2202  st->print("libc:");
2203  st->print("%s ", os::Linux::glibc_version());
2204  st->print("%s ", os::Linux::libpthread_version());
2205  if (os::Linux::is_LinuxThreads()) {
2206    st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2207  }
2208  st->cr();
2209}
2210
2211void os::Linux::print_full_memory_info(outputStream* st) {
2212  st->print("\n/proc/meminfo:\n");
2213  _print_ascii_file("/proc/meminfo", st);
2214  st->cr();
2215}
2216
2217void os::print_memory_info(outputStream* st) {
2218
2219  st->print("Memory:");
2220  st->print(" %dk page", os::vm_page_size()>>10);
2221
2222  // values in struct sysinfo are "unsigned long"
2223  struct sysinfo si;
2224  sysinfo(&si);
2225
2226  st->print(", physical " UINT64_FORMAT "k",
2227            os::physical_memory() >> 10);
2228  st->print("(" UINT64_FORMAT "k free)",
2229            os::available_memory() >> 10);
2230  st->print(", swap " UINT64_FORMAT "k",
2231            ((jlong)si.totalswap * si.mem_unit) >> 10);
2232  st->print("(" UINT64_FORMAT "k free)",
2233            ((jlong)si.freeswap * si.mem_unit) >> 10);
2234  st->cr();
2235}
2236
2237void os::pd_print_cpu_info(outputStream* st) {
2238  st->print("\n/proc/cpuinfo:\n");
2239  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2240    st->print("  <Not Available>");
2241  }
2242  st->cr();
2243}
2244
2245void os::print_siginfo(outputStream* st, void* siginfo) {
2246  const siginfo_t* si = (const siginfo_t*)siginfo;
2247
2248  os::Posix::print_siginfo_brief(st, si);
2249#if INCLUDE_CDS
2250  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2251      UseSharedSpaces) {
2252    FileMapInfo* mapinfo = FileMapInfo::current_info();
2253    if (mapinfo->is_in_shared_space(si->si_addr)) {
2254      st->print("\n\nError accessing class data sharing archive."   \
2255                " Mapped file inaccessible during execution, "      \
2256                " possible disk/network problem.");
2257    }
2258  }
2259#endif
2260  st->cr();
2261}
2262
2263
2264static void print_signal_handler(outputStream* st, int sig,
2265                                 char* buf, size_t buflen);
2266
2267void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2268  st->print_cr("Signal Handlers:");
2269  print_signal_handler(st, SIGSEGV, buf, buflen);
2270  print_signal_handler(st, SIGBUS , buf, buflen);
2271  print_signal_handler(st, SIGFPE , buf, buflen);
2272  print_signal_handler(st, SIGPIPE, buf, buflen);
2273  print_signal_handler(st, SIGXFSZ, buf, buflen);
2274  print_signal_handler(st, SIGILL , buf, buflen);
2275  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2276  print_signal_handler(st, SR_signum, buf, buflen);
2277  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2278  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2279  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2280  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2281#if defined(PPC64)
2282  print_signal_handler(st, SIGTRAP, buf, buflen);
2283#endif
2284}
2285
2286static char saved_jvm_path[MAXPATHLEN] = {0};
2287
2288// Find the full path to the current module, libjvm.so
2289void os::jvm_path(char *buf, jint buflen) {
2290  // Error checking.
2291  if (buflen < MAXPATHLEN) {
2292    assert(false, "must use a large-enough buffer");
2293    buf[0] = '\0';
2294    return;
2295  }
2296  // Lazy resolve the path to current module.
2297  if (saved_jvm_path[0] != 0) {
2298    strcpy(buf, saved_jvm_path);
2299    return;
2300  }
2301
2302  char dli_fname[MAXPATHLEN];
2303  bool ret = dll_address_to_library_name(
2304                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2305                                         dli_fname, sizeof(dli_fname), NULL);
2306  assert(ret, "cannot locate libjvm");
2307  char *rp = NULL;
2308  if (ret && dli_fname[0] != '\0') {
2309    rp = realpath(dli_fname, buf);
2310  }
2311  if (rp == NULL)
2312    return;
2313
2314  if (Arguments::sun_java_launcher_is_altjvm()) {
2315    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2316    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2317    // If "/jre/lib/" appears at the right place in the string, then
2318    // assume we are installed in a JDK and we're done. Otherwise, check
2319    // for a JAVA_HOME environment variable and fix up the path so it
2320    // looks like libjvm.so is installed there (append a fake suffix
2321    // hotspot/libjvm.so).
2322    const char *p = buf + strlen(buf) - 1;
2323    for (int count = 0; p > buf && count < 5; ++count) {
2324      for (--p; p > buf && *p != '/'; --p)
2325        /* empty */ ;
2326    }
2327
2328    if (strncmp(p, "/jre/lib/", 9) != 0) {
2329      // Look for JAVA_HOME in the environment.
2330      char* java_home_var = ::getenv("JAVA_HOME");
2331      if (java_home_var != NULL && java_home_var[0] != 0) {
2332        char* jrelib_p;
2333        int len;
2334
2335        // Check the current module name "libjvm.so".
2336        p = strrchr(buf, '/');
2337        assert(strstr(p, "/libjvm") == p, "invalid library name");
2338
2339        rp = realpath(java_home_var, buf);
2340        if (rp == NULL)
2341          return;
2342
2343        // determine if this is a legacy image or modules image
2344        // modules image doesn't have "jre" subdirectory
2345        len = strlen(buf);
2346        assert(len < buflen, "Ran out of buffer room");
2347        jrelib_p = buf + len;
2348        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2349        if (0 != access(buf, F_OK)) {
2350          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2351        }
2352
2353        if (0 == access(buf, F_OK)) {
2354          // Use current module name "libjvm.so"
2355          len = strlen(buf);
2356          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2357        } else {
2358          // Go back to path of .so
2359          rp = realpath(dli_fname, buf);
2360          if (rp == NULL)
2361            return;
2362        }
2363      }
2364    }
2365  }
2366
2367  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2368}
2369
2370void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2371  // no prefix required, not even "_"
2372}
2373
2374void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2375  // no suffix required
2376}
2377
2378////////////////////////////////////////////////////////////////////////////////
2379// sun.misc.Signal support
2380
2381static volatile jint sigint_count = 0;
2382
2383static void
2384UserHandler(int sig, void *siginfo, void *context) {
2385  // 4511530 - sem_post is serialized and handled by the manager thread. When
2386  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2387  // don't want to flood the manager thread with sem_post requests.
2388  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2389    return;
2390
2391  // Ctrl-C is pressed during error reporting, likely because the error
2392  // handler fails to abort. Let VM die immediately.
2393  if (sig == SIGINT && is_error_reported()) {
2394    os::die();
2395  }
2396
2397  os::signal_notify(sig);
2398}
2399
2400void* os::user_handler() {
2401  return CAST_FROM_FN_PTR(void*, UserHandler);
2402}
2403
2404class Semaphore : public StackObj {
2405 public:
2406  Semaphore();
2407  ~Semaphore();
2408  void signal();
2409  void wait();
2410  bool trywait();
2411  bool timedwait(unsigned int sec, int nsec);
2412 private:
2413  sem_t _semaphore;
2414};
2415
2416Semaphore::Semaphore() {
2417  sem_init(&_semaphore, 0, 0);
2418}
2419
2420Semaphore::~Semaphore() {
2421  sem_destroy(&_semaphore);
2422}
2423
2424void Semaphore::signal() {
2425  sem_post(&_semaphore);
2426}
2427
2428void Semaphore::wait() {
2429  sem_wait(&_semaphore);
2430}
2431
2432bool Semaphore::trywait() {
2433  return sem_trywait(&_semaphore) == 0;
2434}
2435
2436bool Semaphore::timedwait(unsigned int sec, int nsec) {
2437
2438  struct timespec ts;
2439  // Semaphore's are always associated with CLOCK_REALTIME
2440  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2441  // see unpackTime for discussion on overflow checking
2442  if (sec >= MAX_SECS) {
2443    ts.tv_sec += MAX_SECS;
2444    ts.tv_nsec = 0;
2445  } else {
2446    ts.tv_sec += sec;
2447    ts.tv_nsec += nsec;
2448    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2449      ts.tv_nsec -= NANOSECS_PER_SEC;
2450      ++ts.tv_sec; // note: this must be <= max_secs
2451    }
2452  }
2453
2454  while (1) {
2455    int result = sem_timedwait(&_semaphore, &ts);
2456    if (result == 0) {
2457      return true;
2458    } else if (errno == EINTR) {
2459      continue;
2460    } else if (errno == ETIMEDOUT) {
2461      return false;
2462    } else {
2463      return false;
2464    }
2465  }
2466}
2467
2468extern "C" {
2469  typedef void (*sa_handler_t)(int);
2470  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2471}
2472
2473void* os::signal(int signal_number, void* handler) {
2474  struct sigaction sigAct, oldSigAct;
2475
2476  sigfillset(&(sigAct.sa_mask));
2477  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2478  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2479
2480  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2481    // -1 means registration failed
2482    return (void *)-1;
2483  }
2484
2485  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2486}
2487
2488void os::signal_raise(int signal_number) {
2489  ::raise(signal_number);
2490}
2491
2492/*
2493 * The following code is moved from os.cpp for making this
2494 * code platform specific, which it is by its very nature.
2495 */
2496
2497// Will be modified when max signal is changed to be dynamic
2498int os::sigexitnum_pd() {
2499  return NSIG;
2500}
2501
2502// a counter for each possible signal value
2503static volatile jint pending_signals[NSIG+1] = { 0 };
2504
2505// Linux(POSIX) specific hand shaking semaphore.
2506static sem_t sig_sem;
2507static Semaphore sr_semaphore;
2508
2509void os::signal_init_pd() {
2510  // Initialize signal structures
2511  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2512
2513  // Initialize signal semaphore
2514  ::sem_init(&sig_sem, 0, 0);
2515}
2516
2517void os::signal_notify(int sig) {
2518  Atomic::inc(&pending_signals[sig]);
2519  ::sem_post(&sig_sem);
2520}
2521
2522static int check_pending_signals(bool wait) {
2523  Atomic::store(0, &sigint_count);
2524  for (;;) {
2525    for (int i = 0; i < NSIG + 1; i++) {
2526      jint n = pending_signals[i];
2527      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2528        return i;
2529      }
2530    }
2531    if (!wait) {
2532      return -1;
2533    }
2534    JavaThread *thread = JavaThread::current();
2535    ThreadBlockInVM tbivm(thread);
2536
2537    bool threadIsSuspended;
2538    do {
2539      thread->set_suspend_equivalent();
2540      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2541      ::sem_wait(&sig_sem);
2542
2543      // were we externally suspended while we were waiting?
2544      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2545      if (threadIsSuspended) {
2546        //
2547        // The semaphore has been incremented, but while we were waiting
2548        // another thread suspended us. We don't want to continue running
2549        // while suspended because that would surprise the thread that
2550        // suspended us.
2551        //
2552        ::sem_post(&sig_sem);
2553
2554        thread->java_suspend_self();
2555      }
2556    } while (threadIsSuspended);
2557  }
2558}
2559
2560int os::signal_lookup() {
2561  return check_pending_signals(false);
2562}
2563
2564int os::signal_wait() {
2565  return check_pending_signals(true);
2566}
2567
2568////////////////////////////////////////////////////////////////////////////////
2569// Virtual Memory
2570
2571int os::vm_page_size() {
2572  // Seems redundant as all get out
2573  assert(os::Linux::page_size() != -1, "must call os::init");
2574  return os::Linux::page_size();
2575}
2576
2577// Solaris allocates memory by pages.
2578int os::vm_allocation_granularity() {
2579  assert(os::Linux::page_size() != -1, "must call os::init");
2580  return os::Linux::page_size();
2581}
2582
2583// Rationale behind this function:
2584//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2585//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2586//  samples for JITted code. Here we create private executable mapping over the code cache
2587//  and then we can use standard (well, almost, as mapping can change) way to provide
2588//  info for the reporting script by storing timestamp and location of symbol
2589void linux_wrap_code(char* base, size_t size) {
2590  static volatile jint cnt = 0;
2591
2592  if (!UseOprofile) {
2593    return;
2594  }
2595
2596  char buf[PATH_MAX+1];
2597  int num = Atomic::add(1, &cnt);
2598
2599  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2600           os::get_temp_directory(), os::current_process_id(), num);
2601  unlink(buf);
2602
2603  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2604
2605  if (fd != -1) {
2606    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2607    if (rv != (off_t)-1) {
2608      if (::write(fd, "", 1) == 1) {
2609        mmap(base, size,
2610             PROT_READ|PROT_WRITE|PROT_EXEC,
2611             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2612      }
2613    }
2614    ::close(fd);
2615    unlink(buf);
2616  }
2617}
2618
2619static bool recoverable_mmap_error(int err) {
2620  // See if the error is one we can let the caller handle. This
2621  // list of errno values comes from JBS-6843484. I can't find a
2622  // Linux man page that documents this specific set of errno
2623  // values so while this list currently matches Solaris, it may
2624  // change as we gain experience with this failure mode.
2625  switch (err) {
2626  case EBADF:
2627  case EINVAL:
2628  case ENOTSUP:
2629    // let the caller deal with these errors
2630    return true;
2631
2632  default:
2633    // Any remaining errors on this OS can cause our reserved mapping
2634    // to be lost. That can cause confusion where different data
2635    // structures think they have the same memory mapped. The worst
2636    // scenario is if both the VM and a library think they have the
2637    // same memory mapped.
2638    return false;
2639  }
2640}
2641
2642static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2643                                    int err) {
2644  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2645          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2646          strerror(err), err);
2647}
2648
2649static void warn_fail_commit_memory(char* addr, size_t size,
2650                                    size_t alignment_hint, bool exec,
2651                                    int err) {
2652  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2653          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2654          alignment_hint, exec, strerror(err), err);
2655}
2656
2657// NOTE: Linux kernel does not really reserve the pages for us.
2658//       All it does is to check if there are enough free pages
2659//       left at the time of mmap(). This could be a potential
2660//       problem.
2661int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2662  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2663  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2664                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2665  if (res != (uintptr_t) MAP_FAILED) {
2666    if (UseNUMAInterleaving) {
2667      numa_make_global(addr, size);
2668    }
2669    return 0;
2670  }
2671
2672  int err = errno;  // save errno from mmap() call above
2673
2674  if (!recoverable_mmap_error(err)) {
2675    warn_fail_commit_memory(addr, size, exec, err);
2676    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2677  }
2678
2679  return err;
2680}
2681
2682bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2683  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2684}
2685
2686void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2687                                  const char* mesg) {
2688  assert(mesg != NULL, "mesg must be specified");
2689  int err = os::Linux::commit_memory_impl(addr, size, exec);
2690  if (err != 0) {
2691    // the caller wants all commit errors to exit with the specified mesg:
2692    warn_fail_commit_memory(addr, size, exec, err);
2693    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2694  }
2695}
2696
2697// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2698#ifndef MAP_HUGETLB
2699#define MAP_HUGETLB 0x40000
2700#endif
2701
2702// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2703#ifndef MADV_HUGEPAGE
2704#define MADV_HUGEPAGE 14
2705#endif
2706
2707int os::Linux::commit_memory_impl(char* addr, size_t size,
2708                                  size_t alignment_hint, bool exec) {
2709  int err = os::Linux::commit_memory_impl(addr, size, exec);
2710  if (err == 0) {
2711    realign_memory(addr, size, alignment_hint);
2712  }
2713  return err;
2714}
2715
2716bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2717                          bool exec) {
2718  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2719}
2720
2721void os::pd_commit_memory_or_exit(char* addr, size_t size,
2722                                  size_t alignment_hint, bool exec,
2723                                  const char* mesg) {
2724  assert(mesg != NULL, "mesg must be specified");
2725  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2726  if (err != 0) {
2727    // the caller wants all commit errors to exit with the specified mesg:
2728    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2729    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2730  }
2731}
2732
2733void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2734  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2735    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2736    // be supported or the memory may already be backed by huge pages.
2737    ::madvise(addr, bytes, MADV_HUGEPAGE);
2738  }
2739}
2740
2741void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2742  // This method works by doing an mmap over an existing mmaping and effectively discarding
2743  // the existing pages. However it won't work for SHM-based large pages that cannot be
2744  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2745  // small pages on top of the SHM segment. This method always works for small pages, so we
2746  // allow that in any case.
2747  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2748    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2749  }
2750}
2751
2752void os::numa_make_global(char *addr, size_t bytes) {
2753  Linux::numa_interleave_memory(addr, bytes);
2754}
2755
2756// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2757// bind policy to MPOL_PREFERRED for the current thread.
2758#define USE_MPOL_PREFERRED 0
2759
2760void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2761  // To make NUMA and large pages more robust when both enabled, we need to ease
2762  // the requirements on where the memory should be allocated. MPOL_BIND is the
2763  // default policy and it will force memory to be allocated on the specified
2764  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2765  // the specified node, but will not force it. Using this policy will prevent
2766  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2767  // free large pages.
2768  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2769  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2770}
2771
2772bool os::numa_topology_changed()   { return false; }
2773
2774size_t os::numa_get_groups_num() {
2775  int max_node = Linux::numa_max_node();
2776  return max_node > 0 ? max_node + 1 : 1;
2777}
2778
2779int os::numa_get_group_id() {
2780  int cpu_id = Linux::sched_getcpu();
2781  if (cpu_id != -1) {
2782    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2783    if (lgrp_id != -1) {
2784      return lgrp_id;
2785    }
2786  }
2787  return 0;
2788}
2789
2790size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2791  for (size_t i = 0; i < size; i++) {
2792    ids[i] = i;
2793  }
2794  return size;
2795}
2796
2797bool os::get_page_info(char *start, page_info* info) {
2798  return false;
2799}
2800
2801char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2802  return end;
2803}
2804
2805
2806int os::Linux::sched_getcpu_syscall(void) {
2807  unsigned int cpu;
2808  int retval = -1;
2809
2810#if defined(IA32)
2811# ifndef SYS_getcpu
2812# define SYS_getcpu 318
2813# endif
2814  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2815#elif defined(AMD64)
2816// Unfortunately we have to bring all these macros here from vsyscall.h
2817// to be able to compile on old linuxes.
2818# define __NR_vgetcpu 2
2819# define VSYSCALL_START (-10UL << 20)
2820# define VSYSCALL_SIZE 1024
2821# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2822  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2823  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2824  retval = vgetcpu(&cpu, NULL, NULL);
2825#endif
2826
2827  return (retval == -1) ? retval : cpu;
2828}
2829
2830// Something to do with the numa-aware allocator needs these symbols
2831extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2832extern "C" JNIEXPORT void numa_error(char *where) { }
2833extern "C" JNIEXPORT int fork1() { return fork(); }
2834
2835
2836// If we are running with libnuma version > 2, then we should
2837// be trying to use symbols with versions 1.1
2838// If we are running with earlier version, which did not have symbol versions,
2839// we should use the base version.
2840void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2841  void *f = dlvsym(handle, name, "libnuma_1.1");
2842  if (f == NULL) {
2843    f = dlsym(handle, name);
2844  }
2845  return f;
2846}
2847
2848bool os::Linux::libnuma_init() {
2849  // sched_getcpu() should be in libc.
2850  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2851                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2852
2853  // If it's not, try a direct syscall.
2854  if (sched_getcpu() == -1)
2855    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2856
2857  if (sched_getcpu() != -1) { // Does it work?
2858    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2859    if (handle != NULL) {
2860      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2861                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2862      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2863                                       libnuma_dlsym(handle, "numa_max_node")));
2864      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2865                                        libnuma_dlsym(handle, "numa_available")));
2866      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2867                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2868      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2869                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2870      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2871                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2872
2873
2874      if (numa_available() != -1) {
2875        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2876        // Create a cpu -> node mapping
2877        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2878        rebuild_cpu_to_node_map();
2879        return true;
2880      }
2881    }
2882  }
2883  return false;
2884}
2885
2886// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2887// The table is later used in get_node_by_cpu().
2888void os::Linux::rebuild_cpu_to_node_map() {
2889  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2890                              // in libnuma (possible values are starting from 16,
2891                              // and continuing up with every other power of 2, but less
2892                              // than the maximum number of CPUs supported by kernel), and
2893                              // is a subject to change (in libnuma version 2 the requirements
2894                              // are more reasonable) we'll just hardcode the number they use
2895                              // in the library.
2896  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2897
2898  size_t cpu_num = os::active_processor_count();
2899  size_t cpu_map_size = NCPUS / BitsPerCLong;
2900  size_t cpu_map_valid_size =
2901    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2902
2903  cpu_to_node()->clear();
2904  cpu_to_node()->at_grow(cpu_num - 1);
2905  size_t node_num = numa_get_groups_num();
2906
2907  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2908  for (size_t i = 0; i < node_num; i++) {
2909    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2910      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2911        if (cpu_map[j] != 0) {
2912          for (size_t k = 0; k < BitsPerCLong; k++) {
2913            if (cpu_map[j] & (1UL << k)) {
2914              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2915            }
2916          }
2917        }
2918      }
2919    }
2920  }
2921  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2922}
2923
2924int os::Linux::get_node_by_cpu(int cpu_id) {
2925  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2926    return cpu_to_node()->at(cpu_id);
2927  }
2928  return -1;
2929}
2930
2931GrowableArray<int>* os::Linux::_cpu_to_node;
2932os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2933os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2934os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2935os::Linux::numa_available_func_t os::Linux::_numa_available;
2936os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2937os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2938os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2939unsigned long* os::Linux::_numa_all_nodes;
2940
2941bool os::pd_uncommit_memory(char* addr, size_t size) {
2942  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2943                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2944  return res  != (uintptr_t) MAP_FAILED;
2945}
2946
2947static
2948address get_stack_commited_bottom(address bottom, size_t size) {
2949  address nbot = bottom;
2950  address ntop = bottom + size;
2951
2952  size_t page_sz = os::vm_page_size();
2953  unsigned pages = size / page_sz;
2954
2955  unsigned char vec[1];
2956  unsigned imin = 1, imax = pages + 1, imid;
2957  int mincore_return_value = 0;
2958
2959  assert(imin <= imax, "Unexpected page size");
2960
2961  while (imin < imax) {
2962    imid = (imax + imin) / 2;
2963    nbot = ntop - (imid * page_sz);
2964
2965    // Use a trick with mincore to check whether the page is mapped or not.
2966    // mincore sets vec to 1 if page resides in memory and to 0 if page
2967    // is swapped output but if page we are asking for is unmapped
2968    // it returns -1,ENOMEM
2969    mincore_return_value = mincore(nbot, page_sz, vec);
2970
2971    if (mincore_return_value == -1) {
2972      // Page is not mapped go up
2973      // to find first mapped page
2974      if (errno != EAGAIN) {
2975        assert(errno == ENOMEM, "Unexpected mincore errno");
2976        imax = imid;
2977      }
2978    } else {
2979      // Page is mapped go down
2980      // to find first not mapped page
2981      imin = imid + 1;
2982    }
2983  }
2984
2985  nbot = nbot + page_sz;
2986
2987  // Adjust stack bottom one page up if last checked page is not mapped
2988  if (mincore_return_value == -1) {
2989    nbot = nbot + page_sz;
2990  }
2991
2992  return nbot;
2993}
2994
2995
2996// Linux uses a growable mapping for the stack, and if the mapping for
2997// the stack guard pages is not removed when we detach a thread the
2998// stack cannot grow beyond the pages where the stack guard was
2999// mapped.  If at some point later in the process the stack expands to
3000// that point, the Linux kernel cannot expand the stack any further
3001// because the guard pages are in the way, and a segfault occurs.
3002//
3003// However, it's essential not to split the stack region by unmapping
3004// a region (leaving a hole) that's already part of the stack mapping,
3005// so if the stack mapping has already grown beyond the guard pages at
3006// the time we create them, we have to truncate the stack mapping.
3007// So, we need to know the extent of the stack mapping when
3008// create_stack_guard_pages() is called.
3009
3010// We only need this for stacks that are growable: at the time of
3011// writing thread stacks don't use growable mappings (i.e. those
3012// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3013// only applies to the main thread.
3014
3015// If the (growable) stack mapping already extends beyond the point
3016// where we're going to put our guard pages, truncate the mapping at
3017// that point by munmap()ping it.  This ensures that when we later
3018// munmap() the guard pages we don't leave a hole in the stack
3019// mapping. This only affects the main/initial thread
3020
3021bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3022
3023  if (os::Linux::is_initial_thread()) {
3024    // As we manually grow stack up to bottom inside create_attached_thread(),
3025    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3026    // we don't need to do anything special.
3027    // Check it first, before calling heavy function.
3028    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3029    unsigned char vec[1];
3030
3031    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3032      // Fallback to slow path on all errors, including EAGAIN
3033      stack_extent = (uintptr_t) get_stack_commited_bottom(
3034                                                           os::Linux::initial_thread_stack_bottom(),
3035                                                           (size_t)addr - stack_extent);
3036    }
3037
3038    if (stack_extent < (uintptr_t)addr) {
3039      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3040    }
3041  }
3042
3043  return os::commit_memory(addr, size, !ExecMem);
3044}
3045
3046// If this is a growable mapping, remove the guard pages entirely by
3047// munmap()ping them.  If not, just call uncommit_memory(). This only
3048// affects the main/initial thread, but guard against future OS changes
3049// It's safe to always unmap guard pages for initial thread because we
3050// always place it right after end of the mapped region
3051
3052bool os::remove_stack_guard_pages(char* addr, size_t size) {
3053  uintptr_t stack_extent, stack_base;
3054
3055  if (os::Linux::is_initial_thread()) {
3056    return ::munmap(addr, size) == 0;
3057  }
3058
3059  return os::uncommit_memory(addr, size);
3060}
3061
3062static address _highest_vm_reserved_address = NULL;
3063
3064// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3065// at 'requested_addr'. If there are existing memory mappings at the same
3066// location, however, they will be overwritten. If 'fixed' is false,
3067// 'requested_addr' is only treated as a hint, the return value may or
3068// may not start from the requested address. Unlike Linux mmap(), this
3069// function returns NULL to indicate failure.
3070static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3071  char * addr;
3072  int flags;
3073
3074  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3075  if (fixed) {
3076    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3077    flags |= MAP_FIXED;
3078  }
3079
3080  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3081  // touch an uncommitted page. Otherwise, the read/write might
3082  // succeed if we have enough swap space to back the physical page.
3083  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3084                       flags, -1, 0);
3085
3086  if (addr != MAP_FAILED) {
3087    // anon_mmap() should only get called during VM initialization,
3088    // don't need lock (actually we can skip locking even it can be called
3089    // from multiple threads, because _highest_vm_reserved_address is just a
3090    // hint about the upper limit of non-stack memory regions.)
3091    if ((address)addr + bytes > _highest_vm_reserved_address) {
3092      _highest_vm_reserved_address = (address)addr + bytes;
3093    }
3094  }
3095
3096  return addr == MAP_FAILED ? NULL : addr;
3097}
3098
3099// Don't update _highest_vm_reserved_address, because there might be memory
3100// regions above addr + size. If so, releasing a memory region only creates
3101// a hole in the address space, it doesn't help prevent heap-stack collision.
3102//
3103static int anon_munmap(char * addr, size_t size) {
3104  return ::munmap(addr, size) == 0;
3105}
3106
3107char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3108                            size_t alignment_hint) {
3109  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3110}
3111
3112bool os::pd_release_memory(char* addr, size_t size) {
3113  return anon_munmap(addr, size);
3114}
3115
3116static address highest_vm_reserved_address() {
3117  return _highest_vm_reserved_address;
3118}
3119
3120static bool linux_mprotect(char* addr, size_t size, int prot) {
3121  // Linux wants the mprotect address argument to be page aligned.
3122  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3123
3124  // According to SUSv3, mprotect() should only be used with mappings
3125  // established by mmap(), and mmap() always maps whole pages. Unaligned
3126  // 'addr' likely indicates problem in the VM (e.g. trying to change
3127  // protection of malloc'ed or statically allocated memory). Check the
3128  // caller if you hit this assert.
3129  assert(addr == bottom, "sanity check");
3130
3131  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3132  return ::mprotect(bottom, size, prot) == 0;
3133}
3134
3135// Set protections specified
3136bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3137                        bool is_committed) {
3138  unsigned int p = 0;
3139  switch (prot) {
3140  case MEM_PROT_NONE: p = PROT_NONE; break;
3141  case MEM_PROT_READ: p = PROT_READ; break;
3142  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3143  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3144  default:
3145    ShouldNotReachHere();
3146  }
3147  // is_committed is unused.
3148  return linux_mprotect(addr, bytes, p);
3149}
3150
3151bool os::guard_memory(char* addr, size_t size) {
3152  return linux_mprotect(addr, size, PROT_NONE);
3153}
3154
3155bool os::unguard_memory(char* addr, size_t size) {
3156  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3157}
3158
3159bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3160  bool result = false;
3161  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3162                 MAP_ANONYMOUS|MAP_PRIVATE,
3163                 -1, 0);
3164  if (p != MAP_FAILED) {
3165    void *aligned_p = align_ptr_up(p, page_size);
3166
3167    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3168
3169    munmap(p, page_size * 2);
3170  }
3171
3172  if (warn && !result) {
3173    warning("TransparentHugePages is not supported by the operating system.");
3174  }
3175
3176  return result;
3177}
3178
3179bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3180  bool result = false;
3181  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3182                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3183                 -1, 0);
3184
3185  if (p != MAP_FAILED) {
3186    // We don't know if this really is a huge page or not.
3187    FILE *fp = fopen("/proc/self/maps", "r");
3188    if (fp) {
3189      while (!feof(fp)) {
3190        char chars[257];
3191        long x = 0;
3192        if (fgets(chars, sizeof(chars), fp)) {
3193          if (sscanf(chars, "%lx-%*x", &x) == 1
3194              && x == (long)p) {
3195            if (strstr (chars, "hugepage")) {
3196              result = true;
3197              break;
3198            }
3199          }
3200        }
3201      }
3202      fclose(fp);
3203    }
3204    munmap(p, page_size);
3205  }
3206
3207  if (warn && !result) {
3208    warning("HugeTLBFS is not supported by the operating system.");
3209  }
3210
3211  return result;
3212}
3213
3214/*
3215* Set the coredump_filter bits to include largepages in core dump (bit 6)
3216*
3217* From the coredump_filter documentation:
3218*
3219* - (bit 0) anonymous private memory
3220* - (bit 1) anonymous shared memory
3221* - (bit 2) file-backed private memory
3222* - (bit 3) file-backed shared memory
3223* - (bit 4) ELF header pages in file-backed private memory areas (it is
3224*           effective only if the bit 2 is cleared)
3225* - (bit 5) hugetlb private memory
3226* - (bit 6) hugetlb shared memory
3227*/
3228static void set_coredump_filter(void) {
3229  FILE *f;
3230  long cdm;
3231
3232  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3233    return;
3234  }
3235
3236  if (fscanf(f, "%lx", &cdm) != 1) {
3237    fclose(f);
3238    return;
3239  }
3240
3241  rewind(f);
3242
3243  if ((cdm & LARGEPAGES_BIT) == 0) {
3244    cdm |= LARGEPAGES_BIT;
3245    fprintf(f, "%#lx", cdm);
3246  }
3247
3248  fclose(f);
3249}
3250
3251// Large page support
3252
3253static size_t _large_page_size = 0;
3254
3255size_t os::Linux::find_large_page_size() {
3256  size_t large_page_size = 0;
3257
3258  // large_page_size on Linux is used to round up heap size. x86 uses either
3259  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3260  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3261  // page as large as 256M.
3262  //
3263  // Here we try to figure out page size by parsing /proc/meminfo and looking
3264  // for a line with the following format:
3265  //    Hugepagesize:     2048 kB
3266  //
3267  // If we can't determine the value (e.g. /proc is not mounted, or the text
3268  // format has been changed), we'll use the largest page size supported by
3269  // the processor.
3270
3271#ifndef ZERO
3272  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3273                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3274#endif // ZERO
3275
3276  FILE *fp = fopen("/proc/meminfo", "r");
3277  if (fp) {
3278    while (!feof(fp)) {
3279      int x = 0;
3280      char buf[16];
3281      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3282        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3283          large_page_size = x * K;
3284          break;
3285        }
3286      } else {
3287        // skip to next line
3288        for (;;) {
3289          int ch = fgetc(fp);
3290          if (ch == EOF || ch == (int)'\n') break;
3291        }
3292      }
3293    }
3294    fclose(fp);
3295  }
3296
3297  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3298    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3299            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3300            proper_unit_for_byte_size(large_page_size));
3301  }
3302
3303  return large_page_size;
3304}
3305
3306size_t os::Linux::setup_large_page_size() {
3307  _large_page_size = Linux::find_large_page_size();
3308  const size_t default_page_size = (size_t)Linux::page_size();
3309  if (_large_page_size > default_page_size) {
3310    _page_sizes[0] = _large_page_size;
3311    _page_sizes[1] = default_page_size;
3312    _page_sizes[2] = 0;
3313  }
3314
3315  return _large_page_size;
3316}
3317
3318bool os::Linux::setup_large_page_type(size_t page_size) {
3319  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3320      FLAG_IS_DEFAULT(UseSHM) &&
3321      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3322
3323    // The type of large pages has not been specified by the user.
3324
3325    // Try UseHugeTLBFS and then UseSHM.
3326    UseHugeTLBFS = UseSHM = true;
3327
3328    // Don't try UseTransparentHugePages since there are known
3329    // performance issues with it turned on. This might change in the future.
3330    UseTransparentHugePages = false;
3331  }
3332
3333  if (UseTransparentHugePages) {
3334    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3335    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3336      UseHugeTLBFS = false;
3337      UseSHM = false;
3338      return true;
3339    }
3340    UseTransparentHugePages = false;
3341  }
3342
3343  if (UseHugeTLBFS) {
3344    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3345    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3346      UseSHM = false;
3347      return true;
3348    }
3349    UseHugeTLBFS = false;
3350  }
3351
3352  return UseSHM;
3353}
3354
3355void os::large_page_init() {
3356  if (!UseLargePages &&
3357      !UseTransparentHugePages &&
3358      !UseHugeTLBFS &&
3359      !UseSHM) {
3360    // Not using large pages.
3361    return;
3362  }
3363
3364  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3365    // The user explicitly turned off large pages.
3366    // Ignore the rest of the large pages flags.
3367    UseTransparentHugePages = false;
3368    UseHugeTLBFS = false;
3369    UseSHM = false;
3370    return;
3371  }
3372
3373  size_t large_page_size = Linux::setup_large_page_size();
3374  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3375
3376  set_coredump_filter();
3377}
3378
3379#ifndef SHM_HUGETLB
3380#define SHM_HUGETLB 04000
3381#endif
3382
3383char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3384  // "exec" is passed in but not used.  Creating the shared image for
3385  // the code cache doesn't have an SHM_X executable permission to check.
3386  assert(UseLargePages && UseSHM, "only for SHM large pages");
3387  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3388
3389  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3390    return NULL; // Fallback to small pages.
3391  }
3392
3393  key_t key = IPC_PRIVATE;
3394  char *addr;
3395
3396  bool warn_on_failure = UseLargePages &&
3397                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3398                         !FLAG_IS_DEFAULT(UseSHM) ||
3399                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3400                        );
3401  char msg[128];
3402
3403  // Create a large shared memory region to attach to based on size.
3404  // Currently, size is the total size of the heap
3405  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3406  if (shmid == -1) {
3407    // Possible reasons for shmget failure:
3408    // 1. shmmax is too small for Java heap.
3409    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3410    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3411    // 2. not enough large page memory.
3412    //    > check available large pages: cat /proc/meminfo
3413    //    > increase amount of large pages:
3414    //          echo new_value > /proc/sys/vm/nr_hugepages
3415    //      Note 1: different Linux may use different name for this property,
3416    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3417    //      Note 2: it's possible there's enough physical memory available but
3418    //            they are so fragmented after a long run that they can't
3419    //            coalesce into large pages. Try to reserve large pages when
3420    //            the system is still "fresh".
3421    if (warn_on_failure) {
3422      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3423      warning("%s", msg);
3424    }
3425    return NULL;
3426  }
3427
3428  // attach to the region
3429  addr = (char*)shmat(shmid, req_addr, 0);
3430  int err = errno;
3431
3432  // Remove shmid. If shmat() is successful, the actual shared memory segment
3433  // will be deleted when it's detached by shmdt() or when the process
3434  // terminates. If shmat() is not successful this will remove the shared
3435  // segment immediately.
3436  shmctl(shmid, IPC_RMID, NULL);
3437
3438  if ((intptr_t)addr == -1) {
3439    if (warn_on_failure) {
3440      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3441      warning("%s", msg);
3442    }
3443    return NULL;
3444  }
3445
3446  return addr;
3447}
3448
3449static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3450  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3451
3452  bool warn_on_failure = UseLargePages &&
3453      (!FLAG_IS_DEFAULT(UseLargePages) ||
3454       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3455       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3456
3457  if (warn_on_failure) {
3458    char msg[128];
3459    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3460                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3461    warning("%s", msg);
3462  }
3463}
3464
3465char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3466  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3467  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3468  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3469
3470  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3471  char* addr = (char*)::mmap(req_addr, bytes, prot,
3472                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3473                             -1, 0);
3474
3475  if (addr == MAP_FAILED) {
3476    warn_on_large_pages_failure(req_addr, bytes, errno);
3477    return NULL;
3478  }
3479
3480  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3481
3482  return addr;
3483}
3484
3485char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3486  size_t large_page_size = os::large_page_size();
3487
3488  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3489
3490  // Allocate small pages.
3491
3492  char* start;
3493  if (req_addr != NULL) {
3494    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3495    assert(is_size_aligned(bytes, alignment), "Must be");
3496    start = os::reserve_memory(bytes, req_addr);
3497    assert(start == NULL || start == req_addr, "Must be");
3498  } else {
3499    start = os::reserve_memory_aligned(bytes, alignment);
3500  }
3501
3502  if (start == NULL) {
3503    return NULL;
3504  }
3505
3506  assert(is_ptr_aligned(start, alignment), "Must be");
3507
3508  if (MemTracker::tracking_level() > NMT_minimal) {
3509    // os::reserve_memory_special will record this memory area.
3510    // Need to release it here to prevent overlapping reservations.
3511    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3512    tkr.record((address)start, bytes);
3513  }
3514
3515  char* end = start + bytes;
3516
3517  // Find the regions of the allocated chunk that can be promoted to large pages.
3518  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3519  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3520
3521  size_t lp_bytes = lp_end - lp_start;
3522
3523  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3524
3525  if (lp_bytes == 0) {
3526    // The mapped region doesn't even span the start and the end of a large page.
3527    // Fall back to allocate a non-special area.
3528    ::munmap(start, end - start);
3529    return NULL;
3530  }
3531
3532  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3533
3534
3535  void* result;
3536
3537  if (start != lp_start) {
3538    result = ::mmap(start, lp_start - start, prot,
3539                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3540                    -1, 0);
3541    if (result == MAP_FAILED) {
3542      ::munmap(lp_start, end - lp_start);
3543      return NULL;
3544    }
3545  }
3546
3547  result = ::mmap(lp_start, lp_bytes, prot,
3548                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3549                  -1, 0);
3550  if (result == MAP_FAILED) {
3551    warn_on_large_pages_failure(req_addr, bytes, errno);
3552    // If the mmap above fails, the large pages region will be unmapped and we
3553    // have regions before and after with small pages. Release these regions.
3554    //
3555    // |  mapped  |  unmapped  |  mapped  |
3556    // ^          ^            ^          ^
3557    // start      lp_start     lp_end     end
3558    //
3559    ::munmap(start, lp_start - start);
3560    ::munmap(lp_end, end - lp_end);
3561    return NULL;
3562  }
3563
3564  if (lp_end != end) {
3565    result = ::mmap(lp_end, end - lp_end, prot,
3566                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3567                    -1, 0);
3568    if (result == MAP_FAILED) {
3569      ::munmap(start, lp_end - start);
3570      return NULL;
3571    }
3572  }
3573
3574  return start;
3575}
3576
3577char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3578  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3579  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3580  assert(is_power_of_2(alignment), "Must be");
3581  assert(is_power_of_2(os::large_page_size()), "Must be");
3582  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3583
3584  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3585    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3586  } else {
3587    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3588  }
3589}
3590
3591char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3592  assert(UseLargePages, "only for large pages");
3593
3594  char* addr;
3595  if (UseSHM) {
3596    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3597  } else {
3598    assert(UseHugeTLBFS, "must be");
3599    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3600  }
3601
3602  if (addr != NULL) {
3603    if (UseNUMAInterleaving) {
3604      numa_make_global(addr, bytes);
3605    }
3606
3607    // The memory is committed
3608    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3609  }
3610
3611  return addr;
3612}
3613
3614bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3615  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3616  return shmdt(base) == 0;
3617}
3618
3619bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3620  return pd_release_memory(base, bytes);
3621}
3622
3623bool os::release_memory_special(char* base, size_t bytes) {
3624  bool res;
3625  if (MemTracker::tracking_level() > NMT_minimal) {
3626    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3627    res = os::Linux::release_memory_special_impl(base, bytes);
3628    if (res) {
3629      tkr.record((address)base, bytes);
3630    }
3631
3632  } else {
3633    res = os::Linux::release_memory_special_impl(base, bytes);
3634  }
3635  return res;
3636}
3637
3638bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3639  assert(UseLargePages, "only for large pages");
3640  bool res;
3641
3642  if (UseSHM) {
3643    res = os::Linux::release_memory_special_shm(base, bytes);
3644  } else {
3645    assert(UseHugeTLBFS, "must be");
3646    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3647  }
3648  return res;
3649}
3650
3651size_t os::large_page_size() {
3652  return _large_page_size;
3653}
3654
3655// With SysV SHM the entire memory region must be allocated as shared
3656// memory.
3657// HugeTLBFS allows application to commit large page memory on demand.
3658// However, when committing memory with HugeTLBFS fails, the region
3659// that was supposed to be committed will lose the old reservation
3660// and allow other threads to steal that memory region. Because of this
3661// behavior we can't commit HugeTLBFS memory.
3662bool os::can_commit_large_page_memory() {
3663  return UseTransparentHugePages;
3664}
3665
3666bool os::can_execute_large_page_memory() {
3667  return UseTransparentHugePages || UseHugeTLBFS;
3668}
3669
3670// Reserve memory at an arbitrary address, only if that area is
3671// available (and not reserved for something else).
3672
3673char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3674  const int max_tries = 10;
3675  char* base[max_tries];
3676  size_t size[max_tries];
3677  const size_t gap = 0x000000;
3678
3679  // Assert only that the size is a multiple of the page size, since
3680  // that's all that mmap requires, and since that's all we really know
3681  // about at this low abstraction level.  If we need higher alignment,
3682  // we can either pass an alignment to this method or verify alignment
3683  // in one of the methods further up the call chain.  See bug 5044738.
3684  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3685
3686  // Repeatedly allocate blocks until the block is allocated at the
3687  // right spot. Give up after max_tries. Note that reserve_memory() will
3688  // automatically update _highest_vm_reserved_address if the call is
3689  // successful. The variable tracks the highest memory address every reserved
3690  // by JVM. It is used to detect heap-stack collision if running with
3691  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3692  // space than needed, it could confuse the collision detecting code. To
3693  // solve the problem, save current _highest_vm_reserved_address and
3694  // calculate the correct value before return.
3695  address old_highest = _highest_vm_reserved_address;
3696
3697  // Linux mmap allows caller to pass an address as hint; give it a try first,
3698  // if kernel honors the hint then we can return immediately.
3699  char * addr = anon_mmap(requested_addr, bytes, false);
3700  if (addr == requested_addr) {
3701    return requested_addr;
3702  }
3703
3704  if (addr != NULL) {
3705    // mmap() is successful but it fails to reserve at the requested address
3706    anon_munmap(addr, bytes);
3707  }
3708
3709  int i;
3710  for (i = 0; i < max_tries; ++i) {
3711    base[i] = reserve_memory(bytes);
3712
3713    if (base[i] != NULL) {
3714      // Is this the block we wanted?
3715      if (base[i] == requested_addr) {
3716        size[i] = bytes;
3717        break;
3718      }
3719
3720      // Does this overlap the block we wanted? Give back the overlapped
3721      // parts and try again.
3722
3723      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3724      if (top_overlap >= 0 && top_overlap < bytes) {
3725        unmap_memory(base[i], top_overlap);
3726        base[i] += top_overlap;
3727        size[i] = bytes - top_overlap;
3728      } else {
3729        size_t bottom_overlap = base[i] + bytes - requested_addr;
3730        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3731          unmap_memory(requested_addr, bottom_overlap);
3732          size[i] = bytes - bottom_overlap;
3733        } else {
3734          size[i] = bytes;
3735        }
3736      }
3737    }
3738  }
3739
3740  // Give back the unused reserved pieces.
3741
3742  for (int j = 0; j < i; ++j) {
3743    if (base[j] != NULL) {
3744      unmap_memory(base[j], size[j]);
3745    }
3746  }
3747
3748  if (i < max_tries) {
3749    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3750    return requested_addr;
3751  } else {
3752    _highest_vm_reserved_address = old_highest;
3753    return NULL;
3754  }
3755}
3756
3757size_t os::read(int fd, void *buf, unsigned int nBytes) {
3758  return ::read(fd, buf, nBytes);
3759}
3760
3761//
3762// Short sleep, direct OS call.
3763//
3764// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3765// sched_yield(2) will actually give up the CPU:
3766//
3767//   * Alone on this pariticular CPU, keeps running.
3768//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3769//     (pre 2.6.39).
3770//
3771// So calling this with 0 is an alternative.
3772//
3773void os::naked_short_sleep(jlong ms) {
3774  struct timespec req;
3775
3776  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3777  req.tv_sec = 0;
3778  if (ms > 0) {
3779    req.tv_nsec = (ms % 1000) * 1000000;
3780  }
3781  else {
3782    req.tv_nsec = 1;
3783  }
3784
3785  nanosleep(&req, NULL);
3786
3787  return;
3788}
3789
3790// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3791void os::infinite_sleep() {
3792  while (true) {    // sleep forever ...
3793    ::sleep(100);   // ... 100 seconds at a time
3794  }
3795}
3796
3797// Used to convert frequent JVM_Yield() to nops
3798bool os::dont_yield() {
3799  return DontYieldALot;
3800}
3801
3802void os::naked_yield() {
3803  sched_yield();
3804}
3805
3806////////////////////////////////////////////////////////////////////////////////
3807// thread priority support
3808
3809// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3810// only supports dynamic priority, static priority must be zero. For real-time
3811// applications, Linux supports SCHED_RR which allows static priority (1-99).
3812// However, for large multi-threaded applications, SCHED_RR is not only slower
3813// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3814// of 5 runs - Sep 2005).
3815//
3816// The following code actually changes the niceness of kernel-thread/LWP. It
3817// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3818// not the entire user process, and user level threads are 1:1 mapped to kernel
3819// threads. It has always been the case, but could change in the future. For
3820// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3821// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3822
3823int os::java_to_os_priority[CriticalPriority + 1] = {
3824  19,              // 0 Entry should never be used
3825
3826   4,              // 1 MinPriority
3827   3,              // 2
3828   2,              // 3
3829
3830   1,              // 4
3831   0,              // 5 NormPriority
3832  -1,              // 6
3833
3834  -2,              // 7
3835  -3,              // 8
3836  -4,              // 9 NearMaxPriority
3837
3838  -5,              // 10 MaxPriority
3839
3840  -5               // 11 CriticalPriority
3841};
3842
3843static int prio_init() {
3844  if (ThreadPriorityPolicy == 1) {
3845    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3846    // if effective uid is not root. Perhaps, a more elegant way of doing
3847    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3848    if (geteuid() != 0) {
3849      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3850        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3851      }
3852      ThreadPriorityPolicy = 0;
3853    }
3854  }
3855  if (UseCriticalJavaThreadPriority) {
3856    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3857  }
3858  return 0;
3859}
3860
3861OSReturn os::set_native_priority(Thread* thread, int newpri) {
3862  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3863
3864  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3865  return (ret == 0) ? OS_OK : OS_ERR;
3866}
3867
3868OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3869  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3870    *priority_ptr = java_to_os_priority[NormPriority];
3871    return OS_OK;
3872  }
3873
3874  errno = 0;
3875  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3876  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3877}
3878
3879// Hint to the underlying OS that a task switch would not be good.
3880// Void return because it's a hint and can fail.
3881void os::hint_no_preempt() {}
3882
3883////////////////////////////////////////////////////////////////////////////////
3884// suspend/resume support
3885
3886//  the low-level signal-based suspend/resume support is a remnant from the
3887//  old VM-suspension that used to be for java-suspension, safepoints etc,
3888//  within hotspot. Now there is a single use-case for this:
3889//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3890//      that runs in the watcher thread.
3891//  The remaining code is greatly simplified from the more general suspension
3892//  code that used to be used.
3893//
3894//  The protocol is quite simple:
3895//  - suspend:
3896//      - sends a signal to the target thread
3897//      - polls the suspend state of the osthread using a yield loop
3898//      - target thread signal handler (SR_handler) sets suspend state
3899//        and blocks in sigsuspend until continued
3900//  - resume:
3901//      - sets target osthread state to continue
3902//      - sends signal to end the sigsuspend loop in the SR_handler
3903//
3904//  Note that the SR_lock plays no role in this suspend/resume protocol.
3905//
3906
3907static void resume_clear_context(OSThread *osthread) {
3908  osthread->set_ucontext(NULL);
3909  osthread->set_siginfo(NULL);
3910}
3911
3912static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3913  osthread->set_ucontext(context);
3914  osthread->set_siginfo(siginfo);
3915}
3916
3917//
3918// Handler function invoked when a thread's execution is suspended or
3919// resumed. We have to be careful that only async-safe functions are
3920// called here (Note: most pthread functions are not async safe and
3921// should be avoided.)
3922//
3923// Note: sigwait() is a more natural fit than sigsuspend() from an
3924// interface point of view, but sigwait() prevents the signal hander
3925// from being run. libpthread would get very confused by not having
3926// its signal handlers run and prevents sigwait()'s use with the
3927// mutex granting granting signal.
3928//
3929// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3930//
3931static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3932  // Save and restore errno to avoid confusing native code with EINTR
3933  // after sigsuspend.
3934  int old_errno = errno;
3935
3936  Thread* thread = Thread::current();
3937  OSThread* osthread = thread->osthread();
3938  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3939
3940  os::SuspendResume::State current = osthread->sr.state();
3941  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3942    suspend_save_context(osthread, siginfo, context);
3943
3944    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3945    os::SuspendResume::State state = osthread->sr.suspended();
3946    if (state == os::SuspendResume::SR_SUSPENDED) {
3947      sigset_t suspend_set;  // signals for sigsuspend()
3948
3949      // get current set of blocked signals and unblock resume signal
3950      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3951      sigdelset(&suspend_set, SR_signum);
3952
3953      sr_semaphore.signal();
3954      // wait here until we are resumed
3955      while (1) {
3956        sigsuspend(&suspend_set);
3957
3958        os::SuspendResume::State result = osthread->sr.running();
3959        if (result == os::SuspendResume::SR_RUNNING) {
3960          sr_semaphore.signal();
3961          break;
3962        }
3963      }
3964
3965    } else if (state == os::SuspendResume::SR_RUNNING) {
3966      // request was cancelled, continue
3967    } else {
3968      ShouldNotReachHere();
3969    }
3970
3971    resume_clear_context(osthread);
3972  } else if (current == os::SuspendResume::SR_RUNNING) {
3973    // request was cancelled, continue
3974  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3975    // ignore
3976  } else {
3977    // ignore
3978  }
3979
3980  errno = old_errno;
3981}
3982
3983
3984static int SR_initialize() {
3985  struct sigaction act;
3986  char *s;
3987  /* Get signal number to use for suspend/resume */
3988  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3989    int sig = ::strtol(s, 0, 10);
3990    if (sig > 0 || sig < _NSIG) {
3991      SR_signum = sig;
3992    }
3993  }
3994
3995  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3996         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3997
3998  sigemptyset(&SR_sigset);
3999  sigaddset(&SR_sigset, SR_signum);
4000
4001  /* Set up signal handler for suspend/resume */
4002  act.sa_flags = SA_RESTART|SA_SIGINFO;
4003  act.sa_handler = (void (*)(int)) SR_handler;
4004
4005  // SR_signum is blocked by default.
4006  // 4528190 - We also need to block pthread restart signal (32 on all
4007  // supported Linux platforms). Note that LinuxThreads need to block
4008  // this signal for all threads to work properly. So we don't have
4009  // to use hard-coded signal number when setting up the mask.
4010  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4011
4012  if (sigaction(SR_signum, &act, 0) == -1) {
4013    return -1;
4014  }
4015
4016  // Save signal flag
4017  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4018  return 0;
4019}
4020
4021static int sr_notify(OSThread* osthread) {
4022  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4023  assert_status(status == 0, status, "pthread_kill");
4024  return status;
4025}
4026
4027// "Randomly" selected value for how long we want to spin
4028// before bailing out on suspending a thread, also how often
4029// we send a signal to a thread we want to resume
4030static const int RANDOMLY_LARGE_INTEGER = 1000000;
4031static const int RANDOMLY_LARGE_INTEGER2 = 100;
4032
4033// returns true on success and false on error - really an error is fatal
4034// but this seems the normal response to library errors
4035static bool do_suspend(OSThread* osthread) {
4036  assert(osthread->sr.is_running(), "thread should be running");
4037  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4038
4039  // mark as suspended and send signal
4040  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4041    // failed to switch, state wasn't running?
4042    ShouldNotReachHere();
4043    return false;
4044  }
4045
4046  if (sr_notify(osthread) != 0) {
4047    ShouldNotReachHere();
4048  }
4049
4050  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4051  while (true) {
4052    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4053      break;
4054    } else {
4055      // timeout
4056      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4057      if (cancelled == os::SuspendResume::SR_RUNNING) {
4058        return false;
4059      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4060        // make sure that we consume the signal on the semaphore as well
4061        sr_semaphore.wait();
4062        break;
4063      } else {
4064        ShouldNotReachHere();
4065        return false;
4066      }
4067    }
4068  }
4069
4070  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4071  return true;
4072}
4073
4074static void do_resume(OSThread* osthread) {
4075  assert(osthread->sr.is_suspended(), "thread should be suspended");
4076  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4077
4078  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4079    // failed to switch to WAKEUP_REQUEST
4080    ShouldNotReachHere();
4081    return;
4082  }
4083
4084  while (true) {
4085    if (sr_notify(osthread) == 0) {
4086      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4087        if (osthread->sr.is_running()) {
4088          return;
4089        }
4090      }
4091    } else {
4092      ShouldNotReachHere();
4093    }
4094  }
4095
4096  guarantee(osthread->sr.is_running(), "Must be running!");
4097}
4098
4099///////////////////////////////////////////////////////////////////////////////////
4100// signal handling (except suspend/resume)
4101
4102// This routine may be used by user applications as a "hook" to catch signals.
4103// The user-defined signal handler must pass unrecognized signals to this
4104// routine, and if it returns true (non-zero), then the signal handler must
4105// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4106// routine will never retun false (zero), but instead will execute a VM panic
4107// routine kill the process.
4108//
4109// If this routine returns false, it is OK to call it again.  This allows
4110// the user-defined signal handler to perform checks either before or after
4111// the VM performs its own checks.  Naturally, the user code would be making
4112// a serious error if it tried to handle an exception (such as a null check
4113// or breakpoint) that the VM was generating for its own correct operation.
4114//
4115// This routine may recognize any of the following kinds of signals:
4116//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4117// It should be consulted by handlers for any of those signals.
4118//
4119// The caller of this routine must pass in the three arguments supplied
4120// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4121// field of the structure passed to sigaction().  This routine assumes that
4122// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4123//
4124// Note that the VM will print warnings if it detects conflicting signal
4125// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4126//
4127extern "C" JNIEXPORT int
4128JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4129                        void* ucontext, int abort_if_unrecognized);
4130
4131void signalHandler(int sig, siginfo_t* info, void* uc) {
4132  assert(info != NULL && uc != NULL, "it must be old kernel");
4133  int orig_errno = errno;  // Preserve errno value over signal handler.
4134  JVM_handle_linux_signal(sig, info, uc, true);
4135  errno = orig_errno;
4136}
4137
4138
4139// This boolean allows users to forward their own non-matching signals
4140// to JVM_handle_linux_signal, harmlessly.
4141bool os::Linux::signal_handlers_are_installed = false;
4142
4143// For signal-chaining
4144struct sigaction os::Linux::sigact[MAXSIGNUM];
4145unsigned int os::Linux::sigs = 0;
4146bool os::Linux::libjsig_is_loaded = false;
4147typedef struct sigaction *(*get_signal_t)(int);
4148get_signal_t os::Linux::get_signal_action = NULL;
4149
4150struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4151  struct sigaction *actp = NULL;
4152
4153  if (libjsig_is_loaded) {
4154    // Retrieve the old signal handler from libjsig
4155    actp = (*get_signal_action)(sig);
4156  }
4157  if (actp == NULL) {
4158    // Retrieve the preinstalled signal handler from jvm
4159    actp = get_preinstalled_handler(sig);
4160  }
4161
4162  return actp;
4163}
4164
4165static bool call_chained_handler(struct sigaction *actp, int sig,
4166                                 siginfo_t *siginfo, void *context) {
4167  // Call the old signal handler
4168  if (actp->sa_handler == SIG_DFL) {
4169    // It's more reasonable to let jvm treat it as an unexpected exception
4170    // instead of taking the default action.
4171    return false;
4172  } else if (actp->sa_handler != SIG_IGN) {
4173    if ((actp->sa_flags & SA_NODEFER) == 0) {
4174      // automaticlly block the signal
4175      sigaddset(&(actp->sa_mask), sig);
4176    }
4177
4178    sa_handler_t hand;
4179    sa_sigaction_t sa;
4180    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4181    // retrieve the chained handler
4182    if (siginfo_flag_set) {
4183      sa = actp->sa_sigaction;
4184    } else {
4185      hand = actp->sa_handler;
4186    }
4187
4188    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4189      actp->sa_handler = SIG_DFL;
4190    }
4191
4192    // try to honor the signal mask
4193    sigset_t oset;
4194    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4195
4196    // call into the chained handler
4197    if (siginfo_flag_set) {
4198      (*sa)(sig, siginfo, context);
4199    } else {
4200      (*hand)(sig);
4201    }
4202
4203    // restore the signal mask
4204    pthread_sigmask(SIG_SETMASK, &oset, 0);
4205  }
4206  // Tell jvm's signal handler the signal is taken care of.
4207  return true;
4208}
4209
4210bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4211  bool chained = false;
4212  // signal-chaining
4213  if (UseSignalChaining) {
4214    struct sigaction *actp = get_chained_signal_action(sig);
4215    if (actp != NULL) {
4216      chained = call_chained_handler(actp, sig, siginfo, context);
4217    }
4218  }
4219  return chained;
4220}
4221
4222struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4223  if ((((unsigned int)1 << sig) & sigs) != 0) {
4224    return &sigact[sig];
4225  }
4226  return NULL;
4227}
4228
4229void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4230  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4231  sigact[sig] = oldAct;
4232  sigs |= (unsigned int)1 << sig;
4233}
4234
4235// for diagnostic
4236int os::Linux::sigflags[MAXSIGNUM];
4237
4238int os::Linux::get_our_sigflags(int sig) {
4239  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4240  return sigflags[sig];
4241}
4242
4243void os::Linux::set_our_sigflags(int sig, int flags) {
4244  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4245  sigflags[sig] = flags;
4246}
4247
4248void os::Linux::set_signal_handler(int sig, bool set_installed) {
4249  // Check for overwrite.
4250  struct sigaction oldAct;
4251  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4252
4253  void* oldhand = oldAct.sa_sigaction
4254                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4255                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4256  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4257      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4258      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4259    if (AllowUserSignalHandlers || !set_installed) {
4260      // Do not overwrite; user takes responsibility to forward to us.
4261      return;
4262    } else if (UseSignalChaining) {
4263      // save the old handler in jvm
4264      save_preinstalled_handler(sig, oldAct);
4265      // libjsig also interposes the sigaction() call below and saves the
4266      // old sigaction on it own.
4267    } else {
4268      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4269                    "%#lx for signal %d.", (long)oldhand, sig));
4270    }
4271  }
4272
4273  struct sigaction sigAct;
4274  sigfillset(&(sigAct.sa_mask));
4275  sigAct.sa_handler = SIG_DFL;
4276  if (!set_installed) {
4277    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4278  } else {
4279    sigAct.sa_sigaction = signalHandler;
4280    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4281  }
4282  // Save flags, which are set by ours
4283  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4284  sigflags[sig] = sigAct.sa_flags;
4285
4286  int ret = sigaction(sig, &sigAct, &oldAct);
4287  assert(ret == 0, "check");
4288
4289  void* oldhand2  = oldAct.sa_sigaction
4290                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4291                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4292  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4293}
4294
4295// install signal handlers for signals that HotSpot needs to
4296// handle in order to support Java-level exception handling.
4297
4298void os::Linux::install_signal_handlers() {
4299  if (!signal_handlers_are_installed) {
4300    signal_handlers_are_installed = true;
4301
4302    // signal-chaining
4303    typedef void (*signal_setting_t)();
4304    signal_setting_t begin_signal_setting = NULL;
4305    signal_setting_t end_signal_setting = NULL;
4306    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4307                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4308    if (begin_signal_setting != NULL) {
4309      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4310                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4311      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4312                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4313      libjsig_is_loaded = true;
4314      assert(UseSignalChaining, "should enable signal-chaining");
4315    }
4316    if (libjsig_is_loaded) {
4317      // Tell libjsig jvm is setting signal handlers
4318      (*begin_signal_setting)();
4319    }
4320
4321    set_signal_handler(SIGSEGV, true);
4322    set_signal_handler(SIGPIPE, true);
4323    set_signal_handler(SIGBUS, true);
4324    set_signal_handler(SIGILL, true);
4325    set_signal_handler(SIGFPE, true);
4326#if defined(PPC64)
4327    set_signal_handler(SIGTRAP, true);
4328#endif
4329    set_signal_handler(SIGXFSZ, true);
4330
4331    if (libjsig_is_loaded) {
4332      // Tell libjsig jvm finishes setting signal handlers
4333      (*end_signal_setting)();
4334    }
4335
4336    // We don't activate signal checker if libjsig is in place, we trust ourselves
4337    // and if UserSignalHandler is installed all bets are off.
4338    // Log that signal checking is off only if -verbose:jni is specified.
4339    if (CheckJNICalls) {
4340      if (libjsig_is_loaded) {
4341        if (PrintJNIResolving) {
4342          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4343        }
4344        check_signals = false;
4345      }
4346      if (AllowUserSignalHandlers) {
4347        if (PrintJNIResolving) {
4348          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4349        }
4350        check_signals = false;
4351      }
4352    }
4353  }
4354}
4355
4356// This is the fastest way to get thread cpu time on Linux.
4357// Returns cpu time (user+sys) for any thread, not only for current.
4358// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4359// It might work on 2.6.10+ with a special kernel/glibc patch.
4360// For reference, please, see IEEE Std 1003.1-2004:
4361//   http://www.unix.org/single_unix_specification
4362
4363jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4364  struct timespec tp;
4365  int rc = os::Linux::clock_gettime(clockid, &tp);
4366  assert(rc == 0, "clock_gettime is expected to return 0 code");
4367
4368  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4369}
4370
4371/////
4372// glibc on Linux platform uses non-documented flag
4373// to indicate, that some special sort of signal
4374// trampoline is used.
4375// We will never set this flag, and we should
4376// ignore this flag in our diagnostic
4377#ifdef SIGNIFICANT_SIGNAL_MASK
4378#undef SIGNIFICANT_SIGNAL_MASK
4379#endif
4380#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4381
4382static const char* get_signal_handler_name(address handler,
4383                                           char* buf, int buflen) {
4384  int offset;
4385  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4386  if (found) {
4387    // skip directory names
4388    const char *p1, *p2;
4389    p1 = buf;
4390    size_t len = strlen(os::file_separator());
4391    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4392    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4393  } else {
4394    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4395  }
4396  return buf;
4397}
4398
4399static void print_signal_handler(outputStream* st, int sig,
4400                                 char* buf, size_t buflen) {
4401  struct sigaction sa;
4402
4403  sigaction(sig, NULL, &sa);
4404
4405  // See comment for SIGNIFICANT_SIGNAL_MASK define
4406  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4407
4408  st->print("%s: ", os::exception_name(sig, buf, buflen));
4409
4410  address handler = (sa.sa_flags & SA_SIGINFO)
4411    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4412    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4413
4414  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4415    st->print("SIG_DFL");
4416  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4417    st->print("SIG_IGN");
4418  } else {
4419    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4420  }
4421
4422  st->print(", sa_mask[0]=");
4423  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4424
4425  address rh = VMError::get_resetted_sighandler(sig);
4426  // May be, handler was resetted by VMError?
4427  if (rh != NULL) {
4428    handler = rh;
4429    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4430  }
4431
4432  st->print(", sa_flags=");
4433  os::Posix::print_sa_flags(st, sa.sa_flags);
4434
4435  // Check: is it our handler?
4436  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4437      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4438    // It is our signal handler
4439    // check for flags, reset system-used one!
4440    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4441      st->print(
4442                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4443                os::Linux::get_our_sigflags(sig));
4444    }
4445  }
4446  st->cr();
4447}
4448
4449
4450#define DO_SIGNAL_CHECK(sig) \
4451  if (!sigismember(&check_signal_done, sig)) \
4452    os::Linux::check_signal_handler(sig)
4453
4454// This method is a periodic task to check for misbehaving JNI applications
4455// under CheckJNI, we can add any periodic checks here
4456
4457void os::run_periodic_checks() {
4458
4459  if (check_signals == false) return;
4460
4461  // SEGV and BUS if overridden could potentially prevent
4462  // generation of hs*.log in the event of a crash, debugging
4463  // such a case can be very challenging, so we absolutely
4464  // check the following for a good measure:
4465  DO_SIGNAL_CHECK(SIGSEGV);
4466  DO_SIGNAL_CHECK(SIGILL);
4467  DO_SIGNAL_CHECK(SIGFPE);
4468  DO_SIGNAL_CHECK(SIGBUS);
4469  DO_SIGNAL_CHECK(SIGPIPE);
4470  DO_SIGNAL_CHECK(SIGXFSZ);
4471#if defined(PPC64)
4472  DO_SIGNAL_CHECK(SIGTRAP);
4473#endif
4474
4475  // ReduceSignalUsage allows the user to override these handlers
4476  // see comments at the very top and jvm_solaris.h
4477  if (!ReduceSignalUsage) {
4478    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4479    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4480    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4481    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4482  }
4483
4484  DO_SIGNAL_CHECK(SR_signum);
4485  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4486}
4487
4488typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4489
4490static os_sigaction_t os_sigaction = NULL;
4491
4492void os::Linux::check_signal_handler(int sig) {
4493  char buf[O_BUFLEN];
4494  address jvmHandler = NULL;
4495
4496
4497  struct sigaction act;
4498  if (os_sigaction == NULL) {
4499    // only trust the default sigaction, in case it has been interposed
4500    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4501    if (os_sigaction == NULL) return;
4502  }
4503
4504  os_sigaction(sig, (struct sigaction*)NULL, &act);
4505
4506
4507  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4508
4509  address thisHandler = (act.sa_flags & SA_SIGINFO)
4510    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4511    : CAST_FROM_FN_PTR(address, act.sa_handler);
4512
4513
4514  switch (sig) {
4515  case SIGSEGV:
4516  case SIGBUS:
4517  case SIGFPE:
4518  case SIGPIPE:
4519  case SIGILL:
4520  case SIGXFSZ:
4521    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4522    break;
4523
4524  case SHUTDOWN1_SIGNAL:
4525  case SHUTDOWN2_SIGNAL:
4526  case SHUTDOWN3_SIGNAL:
4527  case BREAK_SIGNAL:
4528    jvmHandler = (address)user_handler();
4529    break;
4530
4531  case INTERRUPT_SIGNAL:
4532    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4533    break;
4534
4535  default:
4536    if (sig == SR_signum) {
4537      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4538    } else {
4539      return;
4540    }
4541    break;
4542  }
4543
4544  if (thisHandler != jvmHandler) {
4545    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4546    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4547    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4548    // No need to check this sig any longer
4549    sigaddset(&check_signal_done, sig);
4550    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4551    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4552      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4553                    exception_name(sig, buf, O_BUFLEN));
4554    }
4555  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4556    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4557    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4558    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4559    // No need to check this sig any longer
4560    sigaddset(&check_signal_done, sig);
4561  }
4562
4563  // Dump all the signal
4564  if (sigismember(&check_signal_done, sig)) {
4565    print_signal_handlers(tty, buf, O_BUFLEN);
4566  }
4567}
4568
4569extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4570
4571extern bool signal_name(int signo, char* buf, size_t len);
4572
4573const char* os::exception_name(int exception_code, char* buf, size_t size) {
4574  if (0 < exception_code && exception_code <= SIGRTMAX) {
4575    // signal
4576    if (!signal_name(exception_code, buf, size)) {
4577      jio_snprintf(buf, size, "SIG%d", exception_code);
4578    }
4579    return buf;
4580  } else {
4581    return NULL;
4582  }
4583}
4584
4585// this is called _before_ the most of global arguments have been parsed
4586void os::init(void) {
4587  char dummy;   /* used to get a guess on initial stack address */
4588//  first_hrtime = gethrtime();
4589
4590  // With LinuxThreads the JavaMain thread pid (primordial thread)
4591  // is different than the pid of the java launcher thread.
4592  // So, on Linux, the launcher thread pid is passed to the VM
4593  // via the sun.java.launcher.pid property.
4594  // Use this property instead of getpid() if it was correctly passed.
4595  // See bug 6351349.
4596  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4597
4598  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4599
4600  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4601
4602  init_random(1234567);
4603
4604  ThreadCritical::initialize();
4605
4606  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4607  if (Linux::page_size() == -1) {
4608    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4609                  strerror(errno)));
4610  }
4611  init_page_sizes((size_t) Linux::page_size());
4612
4613  Linux::initialize_system_info();
4614
4615  // main_thread points to the aboriginal thread
4616  Linux::_main_thread = pthread_self();
4617
4618  Linux::clock_init();
4619  initial_time_count = javaTimeNanos();
4620
4621  // pthread_condattr initialization for monotonic clock
4622  int status;
4623  pthread_condattr_t* _condattr = os::Linux::condAttr();
4624  if ((status = pthread_condattr_init(_condattr)) != 0) {
4625    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4626  }
4627  // Only set the clock if CLOCK_MONOTONIC is available
4628  if (os::supports_monotonic_clock()) {
4629    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4630      if (status == EINVAL) {
4631        warning("Unable to use monotonic clock with relative timed-waits" \
4632                " - changes to the time-of-day clock may have adverse affects");
4633      } else {
4634        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4635      }
4636    }
4637  }
4638  // else it defaults to CLOCK_REALTIME
4639
4640  pthread_mutex_init(&dl_mutex, NULL);
4641
4642  // If the pagesize of the VM is greater than 8K determine the appropriate
4643  // number of initial guard pages.  The user can change this with the
4644  // command line arguments, if needed.
4645  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4646    StackYellowPages = 1;
4647    StackRedPages = 1;
4648    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4649  }
4650}
4651
4652// To install functions for atexit system call
4653extern "C" {
4654  static void perfMemory_exit_helper() {
4655    perfMemory_exit();
4656  }
4657}
4658
4659// this is called _after_ the global arguments have been parsed
4660jint os::init_2(void)
4661{
4662  Linux::fast_thread_clock_init();
4663
4664  // Allocate a single page and mark it as readable for safepoint polling
4665  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4666  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4667
4668  os::set_polling_page(polling_page);
4669
4670#ifndef PRODUCT
4671  if (Verbose && PrintMiscellaneous)
4672    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4673#endif
4674
4675  if (!UseMembar) {
4676    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4677    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4678    os::set_memory_serialize_page(mem_serialize_page);
4679
4680#ifndef PRODUCT
4681    if (Verbose && PrintMiscellaneous)
4682      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4683#endif
4684  }
4685
4686  // initialize suspend/resume support - must do this before signal_sets_init()
4687  if (SR_initialize() != 0) {
4688    perror("SR_initialize failed");
4689    return JNI_ERR;
4690  }
4691
4692  Linux::signal_sets_init();
4693  Linux::install_signal_handlers();
4694
4695  // Check minimum allowable stack size for thread creation and to initialize
4696  // the java system classes, including StackOverflowError - depends on page
4697  // size.  Add a page for compiler2 recursion in main thread.
4698  // Add in 2*BytesPerWord times page size to account for VM stack during
4699  // class initialization depending on 32 or 64 bit VM.
4700  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4701                                      (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4702                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4703
4704  size_t threadStackSizeInBytes = ThreadStackSize * K;
4705  if (threadStackSizeInBytes != 0 &&
4706      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4707    tty->print_cr("\nThe stack size specified is too small, "
4708                  "Specify at least %dk",
4709                  os::Linux::min_stack_allowed/ K);
4710    return JNI_ERR;
4711  }
4712
4713  // Make the stack size a multiple of the page size so that
4714  // the yellow/red zones can be guarded.
4715  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4716                                                vm_page_size()));
4717
4718  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4719
4720#if defined(IA32)
4721  workaround_expand_exec_shield_cs_limit();
4722#endif
4723
4724  Linux::libpthread_init();
4725  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4726    tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4727                  Linux::glibc_version(), Linux::libpthread_version(),
4728                  Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4729  }
4730
4731  if (UseNUMA) {
4732    if (!Linux::libnuma_init()) {
4733      UseNUMA = false;
4734    } else {
4735      if ((Linux::numa_max_node() < 1)) {
4736        // There's only one node(they start from 0), disable NUMA.
4737        UseNUMA = false;
4738      }
4739    }
4740    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4741    // we can make the adaptive lgrp chunk resizing work. If the user specified
4742    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4743    // disable adaptive resizing.
4744    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4745      if (FLAG_IS_DEFAULT(UseNUMA)) {
4746        UseNUMA = false;
4747      } else {
4748        if (FLAG_IS_DEFAULT(UseLargePages) &&
4749            FLAG_IS_DEFAULT(UseSHM) &&
4750            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4751          UseLargePages = false;
4752        } else {
4753          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4754          UseAdaptiveSizePolicy = false;
4755          UseAdaptiveNUMAChunkSizing = false;
4756        }
4757      }
4758    }
4759    if (!UseNUMA && ForceNUMA) {
4760      UseNUMA = true;
4761    }
4762  }
4763
4764  if (MaxFDLimit) {
4765    // set the number of file descriptors to max. print out error
4766    // if getrlimit/setrlimit fails but continue regardless.
4767    struct rlimit nbr_files;
4768    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4769    if (status != 0) {
4770      if (PrintMiscellaneous && (Verbose || WizardMode))
4771        perror("os::init_2 getrlimit failed");
4772    } else {
4773      nbr_files.rlim_cur = nbr_files.rlim_max;
4774      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4775      if (status != 0) {
4776        if (PrintMiscellaneous && (Verbose || WizardMode))
4777          perror("os::init_2 setrlimit failed");
4778      }
4779    }
4780  }
4781
4782  // Initialize lock used to serialize thread creation (see os::create_thread)
4783  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4784
4785  // at-exit methods are called in the reverse order of their registration.
4786  // atexit functions are called on return from main or as a result of a
4787  // call to exit(3C). There can be only 32 of these functions registered
4788  // and atexit() does not set errno.
4789
4790  if (PerfAllowAtExitRegistration) {
4791    // only register atexit functions if PerfAllowAtExitRegistration is set.
4792    // atexit functions can be delayed until process exit time, which
4793    // can be problematic for embedded VM situations. Embedded VMs should
4794    // call DestroyJavaVM() to assure that VM resources are released.
4795
4796    // note: perfMemory_exit_helper atexit function may be removed in
4797    // the future if the appropriate cleanup code can be added to the
4798    // VM_Exit VMOperation's doit method.
4799    if (atexit(perfMemory_exit_helper) != 0) {
4800      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4801    }
4802  }
4803
4804  // initialize thread priority policy
4805  prio_init();
4806
4807  return JNI_OK;
4808}
4809
4810// this is called at the end of vm_initialization
4811void os::init_3(void) {
4812#ifdef JAVASE_EMBEDDED
4813  // Start the MemNotifyThread
4814  if (LowMemoryProtection) {
4815    MemNotifyThread::start();
4816  }
4817  return;
4818#endif
4819}
4820
4821// Mark the polling page as unreadable
4822void os::make_polling_page_unreadable(void) {
4823  if (!guard_memory((char*)_polling_page, Linux::page_size()))
4824    fatal("Could not disable polling page");
4825};
4826
4827// Mark the polling page as readable
4828void os::make_polling_page_readable(void) {
4829  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4830    fatal("Could not enable polling page");
4831  }
4832};
4833
4834int os::active_processor_count() {
4835  // Linux doesn't yet have a (official) notion of processor sets,
4836  // so just return the number of online processors.
4837  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4838  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4839  return online_cpus;
4840}
4841
4842void os::set_native_thread_name(const char *name) {
4843  // Not yet implemented.
4844  return;
4845}
4846
4847bool os::distribute_processes(uint length, uint* distribution) {
4848  // Not yet implemented.
4849  return false;
4850}
4851
4852bool os::bind_to_processor(uint processor_id) {
4853  // Not yet implemented.
4854  return false;
4855}
4856
4857///
4858
4859void os::SuspendedThreadTask::internal_do_task() {
4860  if (do_suspend(_thread->osthread())) {
4861    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4862    do_task(context);
4863    do_resume(_thread->osthread());
4864  }
4865}
4866
4867class PcFetcher : public os::SuspendedThreadTask {
4868 public:
4869  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4870  ExtendedPC result();
4871 protected:
4872  void do_task(const os::SuspendedThreadTaskContext& context);
4873 private:
4874  ExtendedPC _epc;
4875};
4876
4877ExtendedPC PcFetcher::result() {
4878  guarantee(is_done(), "task is not done yet.");
4879  return _epc;
4880}
4881
4882void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4883  Thread* thread = context.thread();
4884  OSThread* osthread = thread->osthread();
4885  if (osthread->ucontext() != NULL) {
4886    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4887  } else {
4888    // NULL context is unexpected, double-check this is the VMThread
4889    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4890  }
4891}
4892
4893// Suspends the target using the signal mechanism and then grabs the PC before
4894// resuming the target. Used by the flat-profiler only
4895ExtendedPC os::get_thread_pc(Thread* thread) {
4896  // Make sure that it is called by the watcher for the VMThread
4897  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4898  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4899
4900  PcFetcher fetcher(thread);
4901  fetcher.run();
4902  return fetcher.result();
4903}
4904
4905int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4906{
4907  if (is_NPTL()) {
4908    return pthread_cond_timedwait(_cond, _mutex, _abstime);
4909  } else {
4910    // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4911    // word back to default 64bit precision if condvar is signaled. Java
4912    // wants 53bit precision.  Save and restore current value.
4913    int fpu = get_fpu_control_word();
4914    int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4915    set_fpu_control_word(fpu);
4916    return status;
4917  }
4918}
4919
4920////////////////////////////////////////////////////////////////////////////////
4921// debug support
4922
4923bool os::find(address addr, outputStream* st) {
4924  Dl_info dlinfo;
4925  memset(&dlinfo, 0, sizeof(dlinfo));
4926  if (dladdr(addr, &dlinfo) != 0) {
4927    st->print(PTR_FORMAT ": ", addr);
4928    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4929      st->print("%s+%#x", dlinfo.dli_sname,
4930                addr - (intptr_t)dlinfo.dli_saddr);
4931    } else if (dlinfo.dli_fbase != NULL) {
4932      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4933    } else {
4934      st->print("<absolute address>");
4935    }
4936    if (dlinfo.dli_fname != NULL) {
4937      st->print(" in %s", dlinfo.dli_fname);
4938    }
4939    if (dlinfo.dli_fbase != NULL) {
4940      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4941    }
4942    st->cr();
4943
4944    if (Verbose) {
4945      // decode some bytes around the PC
4946      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4947      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4948      address       lowest = (address) dlinfo.dli_sname;
4949      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4950      if (begin < lowest)  begin = lowest;
4951      Dl_info dlinfo2;
4952      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4953          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4954        end = (address) dlinfo2.dli_saddr;
4955      Disassembler::decode(begin, end, st);
4956    }
4957    return true;
4958  }
4959  return false;
4960}
4961
4962////////////////////////////////////////////////////////////////////////////////
4963// misc
4964
4965// This does not do anything on Linux. This is basically a hook for being
4966// able to use structured exception handling (thread-local exception filters)
4967// on, e.g., Win32.
4968void
4969os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4970                         JavaCallArguments* args, Thread* thread) {
4971  f(value, method, args, thread);
4972}
4973
4974void os::print_statistics() {
4975}
4976
4977int os::message_box(const char* title, const char* message) {
4978  int i;
4979  fdStream err(defaultStream::error_fd());
4980  for (i = 0; i < 78; i++) err.print_raw("=");
4981  err.cr();
4982  err.print_raw_cr(title);
4983  for (i = 0; i < 78; i++) err.print_raw("-");
4984  err.cr();
4985  err.print_raw_cr(message);
4986  for (i = 0; i < 78; i++) err.print_raw("=");
4987  err.cr();
4988
4989  char buf[16];
4990  // Prevent process from exiting upon "read error" without consuming all CPU
4991  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4992
4993  return buf[0] == 'y' || buf[0] == 'Y';
4994}
4995
4996int os::stat(const char *path, struct stat *sbuf) {
4997  char pathbuf[MAX_PATH];
4998  if (strlen(path) > MAX_PATH - 1) {
4999    errno = ENAMETOOLONG;
5000    return -1;
5001  }
5002  os::native_path(strcpy(pathbuf, path));
5003  return ::stat(pathbuf, sbuf);
5004}
5005
5006bool os::check_heap(bool force) {
5007  return true;
5008}
5009
5010int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5011  return ::vsnprintf(buf, count, format, args);
5012}
5013
5014// Is a (classpath) directory empty?
5015bool os::dir_is_empty(const char* path) {
5016  DIR *dir = NULL;
5017  struct dirent *ptr;
5018
5019  dir = opendir(path);
5020  if (dir == NULL) return true;
5021
5022  /* Scan the directory */
5023  bool result = true;
5024  char buf[sizeof(struct dirent) + MAX_PATH];
5025  while (result && (ptr = ::readdir(dir)) != NULL) {
5026    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5027      result = false;
5028    }
5029  }
5030  closedir(dir);
5031  return result;
5032}
5033
5034// This code originates from JDK's sysOpen and open64_w
5035// from src/solaris/hpi/src/system_md.c
5036
5037#ifndef O_DELETE
5038#define O_DELETE 0x10000
5039#endif
5040
5041// Open a file. Unlink the file immediately after open returns
5042// if the specified oflag has the O_DELETE flag set.
5043// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5044
5045int os::open(const char *path, int oflag, int mode) {
5046
5047  if (strlen(path) > MAX_PATH - 1) {
5048    errno = ENAMETOOLONG;
5049    return -1;
5050  }
5051  int fd;
5052  int o_delete = (oflag & O_DELETE);
5053  oflag = oflag & ~O_DELETE;
5054
5055  fd = ::open64(path, oflag, mode);
5056  if (fd == -1) return -1;
5057
5058  //If the open succeeded, the file might still be a directory
5059  {
5060    struct stat64 buf64;
5061    int ret = ::fstat64(fd, &buf64);
5062    int st_mode = buf64.st_mode;
5063
5064    if (ret != -1) {
5065      if ((st_mode & S_IFMT) == S_IFDIR) {
5066        errno = EISDIR;
5067        ::close(fd);
5068        return -1;
5069      }
5070    } else {
5071      ::close(fd);
5072      return -1;
5073    }
5074  }
5075
5076    /*
5077     * All file descriptors that are opened in the JVM and not
5078     * specifically destined for a subprocess should have the
5079     * close-on-exec flag set.  If we don't set it, then careless 3rd
5080     * party native code might fork and exec without closing all
5081     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5082     * UNIXProcess.c), and this in turn might:
5083     *
5084     * - cause end-of-file to fail to be detected on some file
5085     *   descriptors, resulting in mysterious hangs, or
5086     *
5087     * - might cause an fopen in the subprocess to fail on a system
5088     *   suffering from bug 1085341.
5089     *
5090     * (Yes, the default setting of the close-on-exec flag is a Unix
5091     * design flaw)
5092     *
5093     * See:
5094     * 1085341: 32-bit stdio routines should support file descriptors >255
5095     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5096     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5097     */
5098#ifdef FD_CLOEXEC
5099  {
5100    int flags = ::fcntl(fd, F_GETFD);
5101    if (flags != -1)
5102      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5103  }
5104#endif
5105
5106  if (o_delete != 0) {
5107    ::unlink(path);
5108  }
5109  return fd;
5110}
5111
5112
5113// create binary file, rewriting existing file if required
5114int os::create_binary_file(const char* path, bool rewrite_existing) {
5115  int oflags = O_WRONLY | O_CREAT;
5116  if (!rewrite_existing) {
5117    oflags |= O_EXCL;
5118  }
5119  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5120}
5121
5122// return current position of file pointer
5123jlong os::current_file_offset(int fd) {
5124  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5125}
5126
5127// move file pointer to the specified offset
5128jlong os::seek_to_file_offset(int fd, jlong offset) {
5129  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5130}
5131
5132// This code originates from JDK's sysAvailable
5133// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5134
5135int os::available(int fd, jlong *bytes) {
5136  jlong cur, end;
5137  int mode;
5138  struct stat64 buf64;
5139
5140  if (::fstat64(fd, &buf64) >= 0) {
5141    mode = buf64.st_mode;
5142    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5143      /*
5144      * XXX: is the following call interruptible? If so, this might
5145      * need to go through the INTERRUPT_IO() wrapper as for other
5146      * blocking, interruptible calls in this file.
5147      */
5148      int n;
5149      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5150        *bytes = n;
5151        return 1;
5152      }
5153    }
5154  }
5155  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5156    return 0;
5157  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5158    return 0;
5159  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5160    return 0;
5161  }
5162  *bytes = end - cur;
5163  return 1;
5164}
5165
5166int os::socket_available(int fd, jint *pbytes) {
5167  // Linux doc says EINTR not returned, unlike Solaris
5168  int ret = ::ioctl(fd, FIONREAD, pbytes);
5169
5170  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5171  // is expected to return 0 on failure and 1 on success to the jdk.
5172  return (ret < 0) ? 0 : 1;
5173}
5174
5175// Map a block of memory.
5176char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5177                        char *addr, size_t bytes, bool read_only,
5178                        bool allow_exec) {
5179  int prot;
5180  int flags = MAP_PRIVATE;
5181
5182  if (read_only) {
5183    prot = PROT_READ;
5184  } else {
5185    prot = PROT_READ | PROT_WRITE;
5186  }
5187
5188  if (allow_exec) {
5189    prot |= PROT_EXEC;
5190  }
5191
5192  if (addr != NULL) {
5193    flags |= MAP_FIXED;
5194  }
5195
5196  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5197                                     fd, file_offset);
5198  if (mapped_address == MAP_FAILED) {
5199    return NULL;
5200  }
5201  return mapped_address;
5202}
5203
5204
5205// Remap a block of memory.
5206char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5207                          char *addr, size_t bytes, bool read_only,
5208                          bool allow_exec) {
5209  // same as map_memory() on this OS
5210  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5211                        allow_exec);
5212}
5213
5214
5215// Unmap a block of memory.
5216bool os::pd_unmap_memory(char* addr, size_t bytes) {
5217  return munmap(addr, bytes) == 0;
5218}
5219
5220static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5221
5222static clockid_t thread_cpu_clockid(Thread* thread) {
5223  pthread_t tid = thread->osthread()->pthread_id();
5224  clockid_t clockid;
5225
5226  // Get thread clockid
5227  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5228  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5229  return clockid;
5230}
5231
5232// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5233// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5234// of a thread.
5235//
5236// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5237// the fast estimate available on the platform.
5238
5239jlong os::current_thread_cpu_time() {
5240  if (os::Linux::supports_fast_thread_cpu_time()) {
5241    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5242  } else {
5243    // return user + sys since the cost is the same
5244    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5245  }
5246}
5247
5248jlong os::thread_cpu_time(Thread* thread) {
5249  // consistent with what current_thread_cpu_time() returns
5250  if (os::Linux::supports_fast_thread_cpu_time()) {
5251    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5252  } else {
5253    return slow_thread_cpu_time(thread, true /* user + sys */);
5254  }
5255}
5256
5257jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5258  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5259    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5260  } else {
5261    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5262  }
5263}
5264
5265jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5266  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5267    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5268  } else {
5269    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5270  }
5271}
5272
5273//
5274//  -1 on error.
5275//
5276
5277static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5278  pid_t  tid = thread->osthread()->thread_id();
5279  char *s;
5280  char stat[2048];
5281  int statlen;
5282  char proc_name[64];
5283  int count;
5284  long sys_time, user_time;
5285  char cdummy;
5286  int idummy;
5287  long ldummy;
5288  FILE *fp;
5289
5290  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5291  fp = fopen(proc_name, "r");
5292  if (fp == NULL) return -1;
5293  statlen = fread(stat, 1, 2047, fp);
5294  stat[statlen] = '\0';
5295  fclose(fp);
5296
5297  // Skip pid and the command string. Note that we could be dealing with
5298  // weird command names, e.g. user could decide to rename java launcher
5299  // to "java 1.4.2 :)", then the stat file would look like
5300  //                1234 (java 1.4.2 :)) R ... ...
5301  // We don't really need to know the command string, just find the last
5302  // occurrence of ")" and then start parsing from there. See bug 4726580.
5303  s = strrchr(stat, ')');
5304  if (s == NULL) return -1;
5305
5306  // Skip blank chars
5307  do s++; while (isspace(*s));
5308
5309  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5310                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5311                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5312                 &user_time, &sys_time);
5313  if (count != 13) return -1;
5314  if (user_sys_cpu_time) {
5315    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5316  } else {
5317    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5318  }
5319}
5320
5321void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5322  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5323  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5324  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5325  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5326}
5327
5328void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5329  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5330  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5331  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5332  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5333}
5334
5335bool os::is_thread_cpu_time_supported() {
5336  return true;
5337}
5338
5339// System loadavg support.  Returns -1 if load average cannot be obtained.
5340// Linux doesn't yet have a (official) notion of processor sets,
5341// so just return the system wide load average.
5342int os::loadavg(double loadavg[], int nelem) {
5343  return ::getloadavg(loadavg, nelem);
5344}
5345
5346void os::pause() {
5347  char filename[MAX_PATH];
5348  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5349    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5350  } else {
5351    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5352  }
5353
5354  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5355  if (fd != -1) {
5356    struct stat buf;
5357    ::close(fd);
5358    while (::stat(filename, &buf) == 0) {
5359      (void)::poll(NULL, 0, 100);
5360    }
5361  } else {
5362    jio_fprintf(stderr,
5363                "Could not open pause file '%s', continuing immediately.\n", filename);
5364  }
5365}
5366
5367
5368// Refer to the comments in os_solaris.cpp park-unpark.
5369//
5370// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5371// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5372// For specifics regarding the bug see GLIBC BUGID 261237 :
5373//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5374// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5375// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5376// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5377// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5378// and monitorenter when we're using 1-0 locking.  All those operations may result in
5379// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5380// of libpthread avoids the problem, but isn't practical.
5381//
5382// Possible remedies:
5383//
5384// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5385//      This is palliative and probabilistic, however.  If the thread is preempted
5386//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5387//      than the minimum period may have passed, and the abstime may be stale (in the
5388//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5389//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5390//
5391// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5392//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5393//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5394//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5395//      thread.
5396//
5397// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5398//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5399//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5400//      This also works well.  In fact it avoids kernel-level scalability impediments
5401//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5402//      timers in a graceful fashion.
5403//
5404// 4.   When the abstime value is in the past it appears that control returns
5405//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5406//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5407//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5408//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5409//      It may be possible to avoid reinitialization by checking the return
5410//      value from pthread_cond_timedwait().  In addition to reinitializing the
5411//      condvar we must establish the invariant that cond_signal() is only called
5412//      within critical sections protected by the adjunct mutex.  This prevents
5413//      cond_signal() from "seeing" a condvar that's in the midst of being
5414//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5415//      desirable signal-after-unlock optimization that avoids futile context switching.
5416//
5417//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5418//      structure when a condvar is used or initialized.  cond_destroy()  would
5419//      release the helper structure.  Our reinitialize-after-timedwait fix
5420//      put excessive stress on malloc/free and locks protecting the c-heap.
5421//
5422// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5423// It may be possible to refine (4) by checking the kernel and NTPL verisons
5424// and only enabling the work-around for vulnerable environments.
5425
5426// utility to compute the abstime argument to timedwait:
5427// millis is the relative timeout time
5428// abstime will be the absolute timeout time
5429// TODO: replace compute_abstime() with unpackTime()
5430
5431static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5432  if (millis < 0)  millis = 0;
5433
5434  jlong seconds = millis / 1000;
5435  millis %= 1000;
5436  if (seconds > 50000000) { // see man cond_timedwait(3T)
5437    seconds = 50000000;
5438  }
5439
5440  if (os::supports_monotonic_clock()) {
5441    struct timespec now;
5442    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5443    assert_status(status == 0, status, "clock_gettime");
5444    abstime->tv_sec = now.tv_sec  + seconds;
5445    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5446    if (nanos >= NANOSECS_PER_SEC) {
5447      abstime->tv_sec += 1;
5448      nanos -= NANOSECS_PER_SEC;
5449    }
5450    abstime->tv_nsec = nanos;
5451  } else {
5452    struct timeval now;
5453    int status = gettimeofday(&now, NULL);
5454    assert(status == 0, "gettimeofday");
5455    abstime->tv_sec = now.tv_sec  + seconds;
5456    long usec = now.tv_usec + millis * 1000;
5457    if (usec >= 1000000) {
5458      abstime->tv_sec += 1;
5459      usec -= 1000000;
5460    }
5461    abstime->tv_nsec = usec * 1000;
5462  }
5463  return abstime;
5464}
5465
5466void os::PlatformEvent::park() {       // AKA "down()"
5467  // Invariant: Only the thread associated with the Event/PlatformEvent
5468  // may call park().
5469  // TODO: assert that _Assoc != NULL or _Assoc == Self
5470  assert(_nParked == 0, "invariant");
5471
5472  int v;
5473  for (;;) {
5474    v = _Event;
5475    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5476  }
5477  guarantee(v >= 0, "invariant");
5478  if (v == 0) {
5479    // Do this the hard way by blocking ...
5480    int status = pthread_mutex_lock(_mutex);
5481    assert_status(status == 0, status, "mutex_lock");
5482    guarantee(_nParked == 0, "invariant");
5483    ++_nParked;
5484    while (_Event < 0) {
5485      status = pthread_cond_wait(_cond, _mutex);
5486      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5487      // Treat this the same as if the wait was interrupted
5488      if (status == ETIME) { status = EINTR; }
5489      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5490    }
5491    --_nParked;
5492
5493    _Event = 0;
5494    status = pthread_mutex_unlock(_mutex);
5495    assert_status(status == 0, status, "mutex_unlock");
5496    // Paranoia to ensure our locked and lock-free paths interact
5497    // correctly with each other.
5498    OrderAccess::fence();
5499  }
5500  guarantee(_Event >= 0, "invariant");
5501}
5502
5503int os::PlatformEvent::park(jlong millis) {
5504  guarantee(_nParked == 0, "invariant");
5505
5506  int v;
5507  for (;;) {
5508    v = _Event;
5509    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5510  }
5511  guarantee(v >= 0, "invariant");
5512  if (v != 0) return OS_OK;
5513
5514  // We do this the hard way, by blocking the thread.
5515  // Consider enforcing a minimum timeout value.
5516  struct timespec abst;
5517  compute_abstime(&abst, millis);
5518
5519  int ret = OS_TIMEOUT;
5520  int status = pthread_mutex_lock(_mutex);
5521  assert_status(status == 0, status, "mutex_lock");
5522  guarantee(_nParked == 0, "invariant");
5523  ++_nParked;
5524
5525  // Object.wait(timo) will return because of
5526  // (a) notification
5527  // (b) timeout
5528  // (c) thread.interrupt
5529  //
5530  // Thread.interrupt and object.notify{All} both call Event::set.
5531  // That is, we treat thread.interrupt as a special case of notification.
5532  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5533  // We assume all ETIME returns are valid.
5534  //
5535  // TODO: properly differentiate simultaneous notify+interrupt.
5536  // In that case, we should propagate the notify to another waiter.
5537
5538  while (_Event < 0) {
5539    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5540    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5541      pthread_cond_destroy(_cond);
5542      pthread_cond_init(_cond, os::Linux::condAttr());
5543    }
5544    assert_status(status == 0 || status == EINTR ||
5545                  status == ETIME || status == ETIMEDOUT,
5546                  status, "cond_timedwait");
5547    if (!FilterSpuriousWakeups) break;                 // previous semantics
5548    if (status == ETIME || status == ETIMEDOUT) break;
5549    // We consume and ignore EINTR and spurious wakeups.
5550  }
5551  --_nParked;
5552  if (_Event >= 0) {
5553    ret = OS_OK;
5554  }
5555  _Event = 0;
5556  status = pthread_mutex_unlock(_mutex);
5557  assert_status(status == 0, status, "mutex_unlock");
5558  assert(_nParked == 0, "invariant");
5559  // Paranoia to ensure our locked and lock-free paths interact
5560  // correctly with each other.
5561  OrderAccess::fence();
5562  return ret;
5563}
5564
5565void os::PlatformEvent::unpark() {
5566  // Transitions for _Event:
5567  //    0 :=> 1
5568  //    1 :=> 1
5569  //   -1 :=> either 0 or 1; must signal target thread
5570  //          That is, we can safely transition _Event from -1 to either
5571  //          0 or 1.
5572  // See also: "Semaphores in Plan 9" by Mullender & Cox
5573  //
5574  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5575  // that it will take two back-to-back park() calls for the owning
5576  // thread to block. This has the benefit of forcing a spurious return
5577  // from the first park() call after an unpark() call which will help
5578  // shake out uses of park() and unpark() without condition variables.
5579
5580  if (Atomic::xchg(1, &_Event) >= 0) return;
5581
5582  // Wait for the thread associated with the event to vacate
5583  int status = pthread_mutex_lock(_mutex);
5584  assert_status(status == 0, status, "mutex_lock");
5585  int AnyWaiters = _nParked;
5586  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5587  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5588    AnyWaiters = 0;
5589    pthread_cond_signal(_cond);
5590  }
5591  status = pthread_mutex_unlock(_mutex);
5592  assert_status(status == 0, status, "mutex_unlock");
5593  if (AnyWaiters != 0) {
5594    status = pthread_cond_signal(_cond);
5595    assert_status(status == 0, status, "cond_signal");
5596  }
5597
5598  // Note that we signal() _after dropping the lock for "immortal" Events.
5599  // This is safe and avoids a common class of  futile wakeups.  In rare
5600  // circumstances this can cause a thread to return prematurely from
5601  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5602  // simply re-test the condition and re-park itself.
5603}
5604
5605
5606// JSR166
5607// -------------------------------------------------------
5608
5609/*
5610 * The solaris and linux implementations of park/unpark are fairly
5611 * conservative for now, but can be improved. They currently use a
5612 * mutex/condvar pair, plus a a count.
5613 * Park decrements count if > 0, else does a condvar wait.  Unpark
5614 * sets count to 1 and signals condvar.  Only one thread ever waits
5615 * on the condvar. Contention seen when trying to park implies that someone
5616 * is unparking you, so don't wait. And spurious returns are fine, so there
5617 * is no need to track notifications.
5618 */
5619
5620/*
5621 * This code is common to linux and solaris and will be moved to a
5622 * common place in dolphin.
5623 *
5624 * The passed in time value is either a relative time in nanoseconds
5625 * or an absolute time in milliseconds. Either way it has to be unpacked
5626 * into suitable seconds and nanoseconds components and stored in the
5627 * given timespec structure.
5628 * Given time is a 64-bit value and the time_t used in the timespec is only
5629 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5630 * overflow if times way in the future are given. Further on Solaris versions
5631 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5632 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5633 * As it will be 28 years before "now + 100000000" will overflow we can
5634 * ignore overflow and just impose a hard-limit on seconds using the value
5635 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5636 * years from "now".
5637 */
5638
5639static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5640  assert(time > 0, "convertTime");
5641  time_t max_secs = 0;
5642
5643  if (!os::supports_monotonic_clock() || isAbsolute) {
5644    struct timeval now;
5645    int status = gettimeofday(&now, NULL);
5646    assert(status == 0, "gettimeofday");
5647
5648    max_secs = now.tv_sec + MAX_SECS;
5649
5650    if (isAbsolute) {
5651      jlong secs = time / 1000;
5652      if (secs > max_secs) {
5653        absTime->tv_sec = max_secs;
5654      } else {
5655        absTime->tv_sec = secs;
5656      }
5657      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5658    } else {
5659      jlong secs = time / NANOSECS_PER_SEC;
5660      if (secs >= MAX_SECS) {
5661        absTime->tv_sec = max_secs;
5662        absTime->tv_nsec = 0;
5663      } else {
5664        absTime->tv_sec = now.tv_sec + secs;
5665        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5666        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5667          absTime->tv_nsec -= NANOSECS_PER_SEC;
5668          ++absTime->tv_sec; // note: this must be <= max_secs
5669        }
5670      }
5671    }
5672  } else {
5673    // must be relative using monotonic clock
5674    struct timespec now;
5675    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5676    assert_status(status == 0, status, "clock_gettime");
5677    max_secs = now.tv_sec + MAX_SECS;
5678    jlong secs = time / NANOSECS_PER_SEC;
5679    if (secs >= MAX_SECS) {
5680      absTime->tv_sec = max_secs;
5681      absTime->tv_nsec = 0;
5682    } else {
5683      absTime->tv_sec = now.tv_sec + secs;
5684      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5685      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5686        absTime->tv_nsec -= NANOSECS_PER_SEC;
5687        ++absTime->tv_sec; // note: this must be <= max_secs
5688      }
5689    }
5690  }
5691  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5692  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5693  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5694  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5695}
5696
5697void Parker::park(bool isAbsolute, jlong time) {
5698  // Ideally we'd do something useful while spinning, such
5699  // as calling unpackTime().
5700
5701  // Optional fast-path check:
5702  // Return immediately if a permit is available.
5703  // We depend on Atomic::xchg() having full barrier semantics
5704  // since we are doing a lock-free update to _counter.
5705  if (Atomic::xchg(0, &_counter) > 0) return;
5706
5707  Thread* thread = Thread::current();
5708  assert(thread->is_Java_thread(), "Must be JavaThread");
5709  JavaThread *jt = (JavaThread *)thread;
5710
5711  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5712  // Check interrupt before trying to wait
5713  if (Thread::is_interrupted(thread, false)) {
5714    return;
5715  }
5716
5717  // Next, demultiplex/decode time arguments
5718  timespec absTime;
5719  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5720    return;
5721  }
5722  if (time > 0) {
5723    unpackTime(&absTime, isAbsolute, time);
5724  }
5725
5726
5727  // Enter safepoint region
5728  // Beware of deadlocks such as 6317397.
5729  // The per-thread Parker:: mutex is a classic leaf-lock.
5730  // In particular a thread must never block on the Threads_lock while
5731  // holding the Parker:: mutex.  If safepoints are pending both the
5732  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5733  ThreadBlockInVM tbivm(jt);
5734
5735  // Don't wait if cannot get lock since interference arises from
5736  // unblocking.  Also. check interrupt before trying wait
5737  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5738    return;
5739  }
5740
5741  int status;
5742  if (_counter > 0)  { // no wait needed
5743    _counter = 0;
5744    status = pthread_mutex_unlock(_mutex);
5745    assert(status == 0, "invariant");
5746    // Paranoia to ensure our locked and lock-free paths interact
5747    // correctly with each other and Java-level accesses.
5748    OrderAccess::fence();
5749    return;
5750  }
5751
5752#ifdef ASSERT
5753  // Don't catch signals while blocked; let the running threads have the signals.
5754  // (This allows a debugger to break into the running thread.)
5755  sigset_t oldsigs;
5756  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5757  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5758#endif
5759
5760  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5761  jt->set_suspend_equivalent();
5762  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5763
5764  assert(_cur_index == -1, "invariant");
5765  if (time == 0) {
5766    _cur_index = REL_INDEX; // arbitrary choice when not timed
5767    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5768  } else {
5769    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5770    status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5771    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5772      pthread_cond_destroy(&_cond[_cur_index]);
5773      pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5774    }
5775  }
5776  _cur_index = -1;
5777  assert_status(status == 0 || status == EINTR ||
5778                status == ETIME || status == ETIMEDOUT,
5779                status, "cond_timedwait");
5780
5781#ifdef ASSERT
5782  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5783#endif
5784
5785  _counter = 0;
5786  status = pthread_mutex_unlock(_mutex);
5787  assert_status(status == 0, status, "invariant");
5788  // Paranoia to ensure our locked and lock-free paths interact
5789  // correctly with each other and Java-level accesses.
5790  OrderAccess::fence();
5791
5792  // If externally suspended while waiting, re-suspend
5793  if (jt->handle_special_suspend_equivalent_condition()) {
5794    jt->java_suspend_self();
5795  }
5796}
5797
5798void Parker::unpark() {
5799  int status = pthread_mutex_lock(_mutex);
5800  assert(status == 0, "invariant");
5801  const int s = _counter;
5802  _counter = 1;
5803  if (s < 1) {
5804    // thread might be parked
5805    if (_cur_index != -1) {
5806      // thread is definitely parked
5807      if (WorkAroundNPTLTimedWaitHang) {
5808        status = pthread_cond_signal (&_cond[_cur_index]);
5809        assert(status == 0, "invariant");
5810        status = pthread_mutex_unlock(_mutex);
5811        assert(status == 0, "invariant");
5812      } else {
5813        status = pthread_mutex_unlock(_mutex);
5814        assert(status == 0, "invariant");
5815        status = pthread_cond_signal (&_cond[_cur_index]);
5816        assert(status == 0, "invariant");
5817      }
5818    } else {
5819      pthread_mutex_unlock(_mutex);
5820      assert(status == 0, "invariant");
5821    }
5822  } else {
5823    pthread_mutex_unlock(_mutex);
5824    assert(status == 0, "invariant");
5825  }
5826}
5827
5828
5829extern char** environ;
5830
5831#ifndef __NR_fork
5832#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5833#endif
5834
5835#ifndef __NR_execve
5836#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5837#endif
5838
5839// Run the specified command in a separate process. Return its exit value,
5840// or -1 on failure (e.g. can't fork a new process).
5841// Unlike system(), this function can be called from signal handler. It
5842// doesn't block SIGINT et al.
5843int os::fork_and_exec(char* cmd) {
5844  const char * argv[4] = {"sh", "-c", cmd, NULL};
5845
5846  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5847  // pthread_atfork handlers and reset pthread library. All we need is a
5848  // separate process to execve. Make a direct syscall to fork process.
5849  // On IA64 there's no fork syscall, we have to use fork() and hope for
5850  // the best...
5851  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5852  IA64_ONLY(fork();)
5853
5854  if (pid < 0) {
5855    // fork failed
5856    return -1;
5857
5858  } else if (pid == 0) {
5859    // child process
5860
5861    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5862    // first to kill every thread on the thread list. Because this list is
5863    // not reset by fork() (see notes above), execve() will instead kill
5864    // every thread in the parent process. We know this is the only thread
5865    // in the new process, so make a system call directly.
5866    // IA64 should use normal execve() from glibc to match the glibc fork()
5867    // above.
5868    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5869    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5870
5871    // execve failed
5872    _exit(-1);
5873
5874  } else  {
5875    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5876    // care about the actual exit code, for now.
5877
5878    int status;
5879
5880    // Wait for the child process to exit.  This returns immediately if
5881    // the child has already exited. */
5882    while (waitpid(pid, &status, 0) < 0) {
5883      switch (errno) {
5884      case ECHILD: return 0;
5885      case EINTR: break;
5886      default: return -1;
5887      }
5888    }
5889
5890    if (WIFEXITED(status)) {
5891      // The child exited normally; get its exit code.
5892      return WEXITSTATUS(status);
5893    } else if (WIFSIGNALED(status)) {
5894      // The child exited because of a signal
5895      // The best value to return is 0x80 + signal number,
5896      // because that is what all Unix shells do, and because
5897      // it allows callers to distinguish between process exit and
5898      // process death by signal.
5899      return 0x80 + WTERMSIG(status);
5900    } else {
5901      // Unknown exit code; pass it through
5902      return status;
5903    }
5904  }
5905}
5906
5907// is_headless_jre()
5908//
5909// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5910// in order to report if we are running in a headless jre
5911//
5912// Since JDK8 xawt/libmawt.so was moved into the same directory
5913// as libawt.so, and renamed libawt_xawt.so
5914//
5915bool os::is_headless_jre() {
5916  struct stat statbuf;
5917  char buf[MAXPATHLEN];
5918  char libmawtpath[MAXPATHLEN];
5919  const char *xawtstr  = "/xawt/libmawt.so";
5920  const char *new_xawtstr = "/libawt_xawt.so";
5921  char *p;
5922
5923  // Get path to libjvm.so
5924  os::jvm_path(buf, sizeof(buf));
5925
5926  // Get rid of libjvm.so
5927  p = strrchr(buf, '/');
5928  if (p == NULL) return false;
5929  else *p = '\0';
5930
5931  // Get rid of client or server
5932  p = strrchr(buf, '/');
5933  if (p == NULL) return false;
5934  else *p = '\0';
5935
5936  // check xawt/libmawt.so
5937  strcpy(libmawtpath, buf);
5938  strcat(libmawtpath, xawtstr);
5939  if (::stat(libmawtpath, &statbuf) == 0) return false;
5940
5941  // check libawt_xawt.so
5942  strcpy(libmawtpath, buf);
5943  strcat(libmawtpath, new_xawtstr);
5944  if (::stat(libmawtpath, &statbuf) == 0) return false;
5945
5946  return true;
5947}
5948
5949// Get the default path to the core file
5950// Returns the length of the string
5951int os::get_core_path(char* buffer, size_t bufferSize) {
5952  const char* p = get_current_directory(buffer, bufferSize);
5953
5954  if (p == NULL) {
5955    assert(p != NULL, "failed to get current directory");
5956    return 0;
5957  }
5958
5959  return strlen(buffer);
5960}
5961
5962#ifdef JAVASE_EMBEDDED
5963//
5964// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5965//
5966MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5967
5968// ctor
5969//
5970MemNotifyThread::MemNotifyThread(int fd): Thread() {
5971  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5972  _fd = fd;
5973
5974  if (os::create_thread(this, os::os_thread)) {
5975    _memnotify_thread = this;
5976    os::set_priority(this, NearMaxPriority);
5977    os::start_thread(this);
5978  }
5979}
5980
5981// Where all the work gets done
5982//
5983void MemNotifyThread::run() {
5984  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5985
5986  // Set up the select arguments
5987  fd_set rfds;
5988  if (_fd != -1) {
5989    FD_ZERO(&rfds);
5990    FD_SET(_fd, &rfds);
5991  }
5992
5993  // Now wait for the mem_notify device to wake up
5994  while (1) {
5995    // Wait for the mem_notify device to signal us..
5996    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5997    if (rc == -1) {
5998      perror("select!\n");
5999      break;
6000    } else if (rc) {
6001      //ssize_t free_before = os::available_memory();
6002      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6003
6004      // The kernel is telling us there is not much memory left...
6005      // try to do something about that
6006
6007      // If we are not already in a GC, try one.
6008      if (!Universe::heap()->is_gc_active()) {
6009        Universe::heap()->collect(GCCause::_allocation_failure);
6010
6011        //ssize_t free_after = os::available_memory();
6012        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6013        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6014      }
6015      // We might want to do something like the following if we find the GC's are not helping...
6016      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6017    }
6018  }
6019}
6020
6021//
6022// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6023//
6024void MemNotifyThread::start() {
6025  int    fd;
6026  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6027  if (fd < 0) {
6028    return;
6029  }
6030
6031  if (memnotify_thread() == NULL) {
6032    new MemNotifyThread(fd);
6033  }
6034}
6035
6036#endif // JAVASE_EMBEDDED
6037
6038
6039/////////////// Unit tests ///////////////
6040
6041#ifndef PRODUCT
6042
6043#define test_log(...) \
6044  do {\
6045    if (VerboseInternalVMTests) { \
6046      tty->print_cr(__VA_ARGS__); \
6047      tty->flush(); \
6048    }\
6049  } while (false)
6050
6051class TestReserveMemorySpecial : AllStatic {
6052 public:
6053  static void small_page_write(void* addr, size_t size) {
6054    size_t page_size = os::vm_page_size();
6055
6056    char* end = (char*)addr + size;
6057    for (char* p = (char*)addr; p < end; p += page_size) {
6058      *p = 1;
6059    }
6060  }
6061
6062  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6063    if (!UseHugeTLBFS) {
6064      return;
6065    }
6066
6067    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6068
6069    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6070
6071    if (addr != NULL) {
6072      small_page_write(addr, size);
6073
6074      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6075    }
6076  }
6077
6078  static void test_reserve_memory_special_huge_tlbfs_only() {
6079    if (!UseHugeTLBFS) {
6080      return;
6081    }
6082
6083    size_t lp = os::large_page_size();
6084
6085    for (size_t size = lp; size <= lp * 10; size += lp) {
6086      test_reserve_memory_special_huge_tlbfs_only(size);
6087    }
6088  }
6089
6090  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6091    if (!UseHugeTLBFS) {
6092      return;
6093    }
6094
6095    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6096             size, alignment);
6097
6098    assert(size >= os::large_page_size(), "Incorrect input to test");
6099
6100    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6101
6102    if (addr != NULL) {
6103      small_page_write(addr, size);
6104
6105      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6106    }
6107  }
6108
6109  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6110    size_t lp = os::large_page_size();
6111    size_t ag = os::vm_allocation_granularity();
6112
6113    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6114      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6115    }
6116  }
6117
6118  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6119    size_t lp = os::large_page_size();
6120    size_t ag = os::vm_allocation_granularity();
6121
6122    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6123    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6124    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6125    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6126    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6127    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6128    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6129    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6130    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6131  }
6132
6133  static void test_reserve_memory_special_huge_tlbfs() {
6134    if (!UseHugeTLBFS) {
6135      return;
6136    }
6137
6138    test_reserve_memory_special_huge_tlbfs_only();
6139    test_reserve_memory_special_huge_tlbfs_mixed();
6140  }
6141
6142  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6143    if (!UseSHM) {
6144      return;
6145    }
6146
6147    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6148
6149    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6150
6151    if (addr != NULL) {
6152      assert(is_ptr_aligned(addr, alignment), "Check");
6153      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6154
6155      small_page_write(addr, size);
6156
6157      os::Linux::release_memory_special_shm(addr, size);
6158    }
6159  }
6160
6161  static void test_reserve_memory_special_shm() {
6162    size_t lp = os::large_page_size();
6163    size_t ag = os::vm_allocation_granularity();
6164
6165    for (size_t size = ag; size < lp * 3; size += ag) {
6166      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6167        test_reserve_memory_special_shm(size, alignment);
6168      }
6169    }
6170  }
6171
6172  static void test() {
6173    test_reserve_memory_special_huge_tlbfs();
6174    test_reserve_memory_special_shm();
6175  }
6176};
6177
6178void TestReserveMemorySpecial_test() {
6179  TestReserveMemorySpecial::test();
6180}
6181
6182#endif
6183