os_linux.cpp revision 5430:aa6f2ea19d8f
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134pthread_condattr_t os::Linux::_condattr[1];
135
136static jlong initial_time_count=0;
137
138static int clock_tics_per_sec = 100;
139
140// For diagnostics to print a message once. see run_periodic_checks
141static sigset_t check_signal_done;
142static bool check_signals = true;;
143
144static pid_t _initial_pid = 0;
145
146/* Signal number used to suspend/resume a thread */
147
148/* do not use any signal number less than SIGSEGV, see 4355769 */
149static int SR_signum = SIGUSR2;
150sigset_t SR_sigset;
151
152/* Used to protect dlsym() calls */
153static pthread_mutex_t dl_mutex;
154
155// Declarations
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158#ifdef JAVASE_EMBEDDED
159class MemNotifyThread: public Thread {
160  friend class VMStructs;
161 public:
162  virtual void run();
163
164 private:
165  static MemNotifyThread* _memnotify_thread;
166  int _fd;
167
168 public:
169
170  // Constructor
171  MemNotifyThread(int fd);
172
173  // Tester
174  bool is_memnotify_thread() const { return true; }
175
176  // Printing
177  char* name() const { return (char*)"Linux MemNotify Thread"; }
178
179  // Returns the single instance of the MemNotifyThread
180  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
181
182  // Create and start the single instance of MemNotifyThread
183  static void start();
184};
185#endif // JAVASE_EMBEDDED
186
187// utility functions
188
189static int SR_initialize();
190
191julong os::available_memory() {
192  return Linux::available_memory();
193}
194
195julong os::Linux::available_memory() {
196  // values in struct sysinfo are "unsigned long"
197  struct sysinfo si;
198  sysinfo(&si);
199
200  return (julong)si.freeram * si.mem_unit;
201}
202
203julong os::physical_memory() {
204  return Linux::physical_memory();
205}
206
207////////////////////////////////////////////////////////////////////////////////
208// environment support
209
210bool os::getenv(const char* name, char* buf, int len) {
211  const char* val = ::getenv(name);
212  if (val != NULL && strlen(val) < (size_t)len) {
213    strcpy(buf, val);
214    return true;
215  }
216  if (len > 0) buf[0] = 0;  // return a null string
217  return false;
218}
219
220
221// Return true if user is running as root.
222
223bool os::have_special_privileges() {
224  static bool init = false;
225  static bool privileges = false;
226  if (!init) {
227    privileges = (getuid() != geteuid()) || (getgid() != getegid());
228    init = true;
229  }
230  return privileges;
231}
232
233
234#ifndef SYS_gettid
235// i386: 224, ia64: 1105, amd64: 186, sparc 143
236#ifdef __ia64__
237#define SYS_gettid 1105
238#elif __i386__
239#define SYS_gettid 224
240#elif __amd64__
241#define SYS_gettid 186
242#elif __sparc__
243#define SYS_gettid 143
244#else
245#error define gettid for the arch
246#endif
247#endif
248
249// Cpu architecture string
250#if   defined(ZERO)
251static char cpu_arch[] = ZERO_LIBARCH;
252#elif defined(IA64)
253static char cpu_arch[] = "ia64";
254#elif defined(IA32)
255static char cpu_arch[] = "i386";
256#elif defined(AMD64)
257static char cpu_arch[] = "amd64";
258#elif defined(ARM)
259static char cpu_arch[] = "arm";
260#elif defined(PPC)
261static char cpu_arch[] = "ppc";
262#elif defined(SPARC)
263#  ifdef _LP64
264static char cpu_arch[] = "sparcv9";
265#  else
266static char cpu_arch[] = "sparc";
267#  endif
268#else
269#error Add appropriate cpu_arch setting
270#endif
271
272
273// pid_t gettid()
274//
275// Returns the kernel thread id of the currently running thread. Kernel
276// thread id is used to access /proc.
277//
278// (Note that getpid() on LinuxThreads returns kernel thread id too; but
279// on NPTL, it returns the same pid for all threads, as required by POSIX.)
280//
281pid_t os::Linux::gettid() {
282  int rslt = syscall(SYS_gettid);
283  if (rslt == -1) {
284     // old kernel, no NPTL support
285     return getpid();
286  } else {
287     return (pid_t)rslt;
288  }
289}
290
291// Most versions of linux have a bug where the number of processors are
292// determined by looking at the /proc file system.  In a chroot environment,
293// the system call returns 1.  This causes the VM to act as if it is
294// a single processor and elide locking (see is_MP() call).
295static bool unsafe_chroot_detected = false;
296static const char *unstable_chroot_error = "/proc file system not found.\n"
297                     "Java may be unstable running multithreaded in a chroot "
298                     "environment on Linux when /proc filesystem is not mounted.";
299
300void os::Linux::initialize_system_info() {
301  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
302  if (processor_count() == 1) {
303    pid_t pid = os::Linux::gettid();
304    char fname[32];
305    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
306    FILE *fp = fopen(fname, "r");
307    if (fp == NULL) {
308      unsafe_chroot_detected = true;
309    } else {
310      fclose(fp);
311    }
312  }
313  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
314  assert(processor_count() > 0, "linux error");
315}
316
317void os::init_system_properties_values() {
318//  char arch[12];
319//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
320
321  // The next steps are taken in the product version:
322  //
323  // Obtain the JAVA_HOME value from the location of libjvm.so.
324  // This library should be located at:
325  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
326  //
327  // If "/jre/lib/" appears at the right place in the path, then we
328  // assume libjvm.so is installed in a JDK and we use this path.
329  //
330  // Otherwise exit with message: "Could not create the Java virtual machine."
331  //
332  // The following extra steps are taken in the debugging version:
333  //
334  // If "/jre/lib/" does NOT appear at the right place in the path
335  // instead of exit check for $JAVA_HOME environment variable.
336  //
337  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
338  // then we append a fake suffix "hotspot/libjvm.so" to this path so
339  // it looks like libjvm.so is installed there
340  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
341  //
342  // Otherwise exit.
343  //
344  // Important note: if the location of libjvm.so changes this
345  // code needs to be changed accordingly.
346
347  // The next few definitions allow the code to be verbatim:
348#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
349#define getenv(n) ::getenv(n)
350
351/*
352 * See ld(1):
353 *      The linker uses the following search paths to locate required
354 *      shared libraries:
355 *        1: ...
356 *        ...
357 *        7: The default directories, normally /lib and /usr/lib.
358 */
359#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
360#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
361#else
362#define DEFAULT_LIBPATH "/lib:/usr/lib"
363#endif
364
365#define EXTENSIONS_DIR  "/lib/ext"
366#define ENDORSED_DIR    "/lib/endorsed"
367#define REG_DIR         "/usr/java/packages"
368
369  {
370    /* sysclasspath, java_home, dll_dir */
371    {
372        char *home_path;
373        char *dll_path;
374        char *pslash;
375        char buf[MAXPATHLEN];
376        os::jvm_path(buf, sizeof(buf));
377
378        // Found the full path to libjvm.so.
379        // Now cut the path to <java_home>/jre if we can.
380        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
381        pslash = strrchr(buf, '/');
382        if (pslash != NULL)
383            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
384        dll_path = malloc(strlen(buf) + 1);
385        if (dll_path == NULL)
386            return;
387        strcpy(dll_path, buf);
388        Arguments::set_dll_dir(dll_path);
389
390        if (pslash != NULL) {
391            pslash = strrchr(buf, '/');
392            if (pslash != NULL) {
393                *pslash = '\0';       /* get rid of /<arch> */
394                pslash = strrchr(buf, '/');
395                if (pslash != NULL)
396                    *pslash = '\0';   /* get rid of /lib */
397            }
398        }
399
400        home_path = malloc(strlen(buf) + 1);
401        if (home_path == NULL)
402            return;
403        strcpy(home_path, buf);
404        Arguments::set_java_home(home_path);
405
406        if (!set_boot_path('/', ':'))
407            return;
408    }
409
410    /*
411     * Where to look for native libraries
412     *
413     * Note: Due to a legacy implementation, most of the library path
414     * is set in the launcher.  This was to accomodate linking restrictions
415     * on legacy Linux implementations (which are no longer supported).
416     * Eventually, all the library path setting will be done here.
417     *
418     * However, to prevent the proliferation of improperly built native
419     * libraries, the new path component /usr/java/packages is added here.
420     * Eventually, all the library path setting will be done here.
421     */
422    {
423        char *ld_library_path;
424
425        /*
426         * Construct the invariant part of ld_library_path. Note that the
427         * space for the colon and the trailing null are provided by the
428         * nulls included by the sizeof operator (so actually we allocate
429         * a byte more than necessary).
430         */
431        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
432            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
433        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
434
435        /*
436         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
437         * should always exist (until the legacy problem cited above is
438         * addressed).
439         */
440        char *v = getenv("LD_LIBRARY_PATH");
441        if (v != NULL) {
442            char *t = ld_library_path;
443            /* That's +1 for the colon and +1 for the trailing '\0' */
444            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
445            sprintf(ld_library_path, "%s:%s", v, t);
446        }
447        Arguments::set_library_path(ld_library_path);
448    }
449
450    /*
451     * Extensions directories.
452     *
453     * Note that the space for the colon and the trailing null are provided
454     * by the nulls included by the sizeof operator (so actually one byte more
455     * than necessary is allocated).
456     */
457    {
458        char *buf = malloc(strlen(Arguments::get_java_home()) +
459            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
460        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
461            Arguments::get_java_home());
462        Arguments::set_ext_dirs(buf);
463    }
464
465    /* Endorsed standards default directory. */
466    {
467        char * buf;
468        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
469        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
470        Arguments::set_endorsed_dirs(buf);
471    }
472  }
473
474#undef malloc
475#undef getenv
476#undef EXTENSIONS_DIR
477#undef ENDORSED_DIR
478
479  // Done
480  return;
481}
482
483////////////////////////////////////////////////////////////////////////////////
484// breakpoint support
485
486void os::breakpoint() {
487  BREAKPOINT;
488}
489
490extern "C" void breakpoint() {
491  // use debugger to set breakpoint here
492}
493
494////////////////////////////////////////////////////////////////////////////////
495// signal support
496
497debug_only(static bool signal_sets_initialized = false);
498static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
499
500bool os::Linux::is_sig_ignored(int sig) {
501      struct sigaction oact;
502      sigaction(sig, (struct sigaction*)NULL, &oact);
503      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
504                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
505      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
506           return true;
507      else
508           return false;
509}
510
511void os::Linux::signal_sets_init() {
512  // Should also have an assertion stating we are still single-threaded.
513  assert(!signal_sets_initialized, "Already initialized");
514  // Fill in signals that are necessarily unblocked for all threads in
515  // the VM. Currently, we unblock the following signals:
516  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
517  //                         by -Xrs (=ReduceSignalUsage));
518  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
519  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
520  // the dispositions or masks wrt these signals.
521  // Programs embedding the VM that want to use the above signals for their
522  // own purposes must, at this time, use the "-Xrs" option to prevent
523  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
524  // (See bug 4345157, and other related bugs).
525  // In reality, though, unblocking these signals is really a nop, since
526  // these signals are not blocked by default.
527  sigemptyset(&unblocked_sigs);
528  sigemptyset(&allowdebug_blocked_sigs);
529  sigaddset(&unblocked_sigs, SIGILL);
530  sigaddset(&unblocked_sigs, SIGSEGV);
531  sigaddset(&unblocked_sigs, SIGBUS);
532  sigaddset(&unblocked_sigs, SIGFPE);
533  sigaddset(&unblocked_sigs, SR_signum);
534
535  if (!ReduceSignalUsage) {
536   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
537      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
538      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
539   }
540   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
541      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
542      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
543   }
544   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
545      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
546      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
547   }
548  }
549  // Fill in signals that are blocked by all but the VM thread.
550  sigemptyset(&vm_sigs);
551  if (!ReduceSignalUsage)
552    sigaddset(&vm_sigs, BREAK_SIGNAL);
553  debug_only(signal_sets_initialized = true);
554
555}
556
557// These are signals that are unblocked while a thread is running Java.
558// (For some reason, they get blocked by default.)
559sigset_t* os::Linux::unblocked_signals() {
560  assert(signal_sets_initialized, "Not initialized");
561  return &unblocked_sigs;
562}
563
564// These are the signals that are blocked while a (non-VM) thread is
565// running Java. Only the VM thread handles these signals.
566sigset_t* os::Linux::vm_signals() {
567  assert(signal_sets_initialized, "Not initialized");
568  return &vm_sigs;
569}
570
571// These are signals that are blocked during cond_wait to allow debugger in
572sigset_t* os::Linux::allowdebug_blocked_signals() {
573  assert(signal_sets_initialized, "Not initialized");
574  return &allowdebug_blocked_sigs;
575}
576
577void os::Linux::hotspot_sigmask(Thread* thread) {
578
579  //Save caller's signal mask before setting VM signal mask
580  sigset_t caller_sigmask;
581  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
582
583  OSThread* osthread = thread->osthread();
584  osthread->set_caller_sigmask(caller_sigmask);
585
586  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
587
588  if (!ReduceSignalUsage) {
589    if (thread->is_VM_thread()) {
590      // Only the VM thread handles BREAK_SIGNAL ...
591      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
592    } else {
593      // ... all other threads block BREAK_SIGNAL
594      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
595    }
596  }
597}
598
599//////////////////////////////////////////////////////////////////////////////
600// detecting pthread library
601
602void os::Linux::libpthread_init() {
603  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
604  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
605  // generic name for earlier versions.
606  // Define macros here so we can build HotSpot on old systems.
607# ifndef _CS_GNU_LIBC_VERSION
608# define _CS_GNU_LIBC_VERSION 2
609# endif
610# ifndef _CS_GNU_LIBPTHREAD_VERSION
611# define _CS_GNU_LIBPTHREAD_VERSION 3
612# endif
613
614  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
615  if (n > 0) {
616     char *str = (char *)malloc(n, mtInternal);
617     confstr(_CS_GNU_LIBC_VERSION, str, n);
618     os::Linux::set_glibc_version(str);
619  } else {
620     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
621     static char _gnu_libc_version[32];
622     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
623              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
624     os::Linux::set_glibc_version(_gnu_libc_version);
625  }
626
627  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
628  if (n > 0) {
629     char *str = (char *)malloc(n, mtInternal);
630     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
631     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
632     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
633     // is the case. LinuxThreads has a hard limit on max number of threads.
634     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
635     // On the other hand, NPTL does not have such a limit, sysconf()
636     // will return -1 and errno is not changed. Check if it is really NPTL.
637     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
638         strstr(str, "NPTL") &&
639         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
640       free(str);
641       os::Linux::set_libpthread_version("linuxthreads");
642     } else {
643       os::Linux::set_libpthread_version(str);
644     }
645  } else {
646    // glibc before 2.3.2 only has LinuxThreads.
647    os::Linux::set_libpthread_version("linuxthreads");
648  }
649
650  if (strstr(libpthread_version(), "NPTL")) {
651     os::Linux::set_is_NPTL();
652  } else {
653     os::Linux::set_is_LinuxThreads();
654  }
655
656  // LinuxThreads have two flavors: floating-stack mode, which allows variable
657  // stack size; and fixed-stack mode. NPTL is always floating-stack.
658  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
659     os::Linux::set_is_floating_stack();
660  }
661}
662
663/////////////////////////////////////////////////////////////////////////////
664// thread stack
665
666// Force Linux kernel to expand current thread stack. If "bottom" is close
667// to the stack guard, caller should block all signals.
668//
669// MAP_GROWSDOWN:
670//   A special mmap() flag that is used to implement thread stacks. It tells
671//   kernel that the memory region should extend downwards when needed. This
672//   allows early versions of LinuxThreads to only mmap the first few pages
673//   when creating a new thread. Linux kernel will automatically expand thread
674//   stack as needed (on page faults).
675//
676//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
677//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
678//   region, it's hard to tell if the fault is due to a legitimate stack
679//   access or because of reading/writing non-exist memory (e.g. buffer
680//   overrun). As a rule, if the fault happens below current stack pointer,
681//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
682//   application (see Linux kernel fault.c).
683//
684//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
685//   stack overflow detection.
686//
687//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
688//   not use this flag. However, the stack of initial thread is not created
689//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
690//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
691//   and then attach the thread to JVM.
692//
693// To get around the problem and allow stack banging on Linux, we need to
694// manually expand thread stack after receiving the SIGSEGV.
695//
696// There are two ways to expand thread stack to address "bottom", we used
697// both of them in JVM before 1.5:
698//   1. adjust stack pointer first so that it is below "bottom", and then
699//      touch "bottom"
700//   2. mmap() the page in question
701//
702// Now alternate signal stack is gone, it's harder to use 2. For instance,
703// if current sp is already near the lower end of page 101, and we need to
704// call mmap() to map page 100, it is possible that part of the mmap() frame
705// will be placed in page 100. When page 100 is mapped, it is zero-filled.
706// That will destroy the mmap() frame and cause VM to crash.
707//
708// The following code works by adjusting sp first, then accessing the "bottom"
709// page to force a page fault. Linux kernel will then automatically expand the
710// stack mapping.
711//
712// _expand_stack_to() assumes its frame size is less than page size, which
713// should always be true if the function is not inlined.
714
715#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
716#define NOINLINE
717#else
718#define NOINLINE __attribute__ ((noinline))
719#endif
720
721static void _expand_stack_to(address bottom) NOINLINE;
722
723static void _expand_stack_to(address bottom) {
724  address sp;
725  size_t size;
726  volatile char *p;
727
728  // Adjust bottom to point to the largest address within the same page, it
729  // gives us a one-page buffer if alloca() allocates slightly more memory.
730  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
731  bottom += os::Linux::page_size() - 1;
732
733  // sp might be slightly above current stack pointer; if that's the case, we
734  // will alloca() a little more space than necessary, which is OK. Don't use
735  // os::current_stack_pointer(), as its result can be slightly below current
736  // stack pointer, causing us to not alloca enough to reach "bottom".
737  sp = (address)&sp;
738
739  if (sp > bottom) {
740    size = sp - bottom;
741    p = (volatile char *)alloca(size);
742    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
743    p[0] = '\0';
744  }
745}
746
747bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
748  assert(t!=NULL, "just checking");
749  assert(t->osthread()->expanding_stack(), "expand should be set");
750  assert(t->stack_base() != NULL, "stack_base was not initialized");
751
752  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
753    sigset_t mask_all, old_sigset;
754    sigfillset(&mask_all);
755    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
756    _expand_stack_to(addr);
757    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
758    return true;
759  }
760  return false;
761}
762
763//////////////////////////////////////////////////////////////////////////////
764// create new thread
765
766static address highest_vm_reserved_address();
767
768// check if it's safe to start a new thread
769static bool _thread_safety_check(Thread* thread) {
770  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
771    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
772    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
773    //   allocated (MAP_FIXED) from high address space. Every thread stack
774    //   occupies a fixed size slot (usually 2Mbytes, but user can change
775    //   it to other values if they rebuild LinuxThreads).
776    //
777    // Problem with MAP_FIXED is that mmap() can still succeed even part of
778    // the memory region has already been mmap'ed. That means if we have too
779    // many threads and/or very large heap, eventually thread stack will
780    // collide with heap.
781    //
782    // Here we try to prevent heap/stack collision by comparing current
783    // stack bottom with the highest address that has been mmap'ed by JVM
784    // plus a safety margin for memory maps created by native code.
785    //
786    // This feature can be disabled by setting ThreadSafetyMargin to 0
787    //
788    if (ThreadSafetyMargin > 0) {
789      address stack_bottom = os::current_stack_base() - os::current_stack_size();
790
791      // not safe if our stack extends below the safety margin
792      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
793    } else {
794      return true;
795    }
796  } else {
797    // Floating stack LinuxThreads or NPTL:
798    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
799    //   there's not enough space left, pthread_create() will fail. If we come
800    //   here, that means enough space has been reserved for stack.
801    return true;
802  }
803}
804
805// Thread start routine for all newly created threads
806static void *java_start(Thread *thread) {
807  // Try to randomize the cache line index of hot stack frames.
808  // This helps when threads of the same stack traces evict each other's
809  // cache lines. The threads can be either from the same JVM instance, or
810  // from different JVM instances. The benefit is especially true for
811  // processors with hyperthreading technology.
812  static int counter = 0;
813  int pid = os::current_process_id();
814  alloca(((pid ^ counter++) & 7) * 128);
815
816  ThreadLocalStorage::set_thread(thread);
817
818  OSThread* osthread = thread->osthread();
819  Monitor* sync = osthread->startThread_lock();
820
821  // non floating stack LinuxThreads needs extra check, see above
822  if (!_thread_safety_check(thread)) {
823    // notify parent thread
824    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
825    osthread->set_state(ZOMBIE);
826    sync->notify_all();
827    return NULL;
828  }
829
830  // thread_id is kernel thread id (similar to Solaris LWP id)
831  osthread->set_thread_id(os::Linux::gettid());
832
833  if (UseNUMA) {
834    int lgrp_id = os::numa_get_group_id();
835    if (lgrp_id != -1) {
836      thread->set_lgrp_id(lgrp_id);
837    }
838  }
839  // initialize signal mask for this thread
840  os::Linux::hotspot_sigmask(thread);
841
842  // initialize floating point control register
843  os::Linux::init_thread_fpu_state();
844
845  // handshaking with parent thread
846  {
847    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
848
849    // notify parent thread
850    osthread->set_state(INITIALIZED);
851    sync->notify_all();
852
853    // wait until os::start_thread()
854    while (osthread->get_state() == INITIALIZED) {
855      sync->wait(Mutex::_no_safepoint_check_flag);
856    }
857  }
858
859  // call one more level start routine
860  thread->run();
861
862  return 0;
863}
864
865bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
866  assert(thread->osthread() == NULL, "caller responsible");
867
868  // Allocate the OSThread object
869  OSThread* osthread = new OSThread(NULL, NULL);
870  if (osthread == NULL) {
871    return false;
872  }
873
874  // set the correct thread state
875  osthread->set_thread_type(thr_type);
876
877  // Initial state is ALLOCATED but not INITIALIZED
878  osthread->set_state(ALLOCATED);
879
880  thread->set_osthread(osthread);
881
882  // init thread attributes
883  pthread_attr_t attr;
884  pthread_attr_init(&attr);
885  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
886
887  // stack size
888  if (os::Linux::supports_variable_stack_size()) {
889    // calculate stack size if it's not specified by caller
890    if (stack_size == 0) {
891      stack_size = os::Linux::default_stack_size(thr_type);
892
893      switch (thr_type) {
894      case os::java_thread:
895        // Java threads use ThreadStackSize which default value can be
896        // changed with the flag -Xss
897        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
898        stack_size = JavaThread::stack_size_at_create();
899        break;
900      case os::compiler_thread:
901        if (CompilerThreadStackSize > 0) {
902          stack_size = (size_t)(CompilerThreadStackSize * K);
903          break;
904        } // else fall through:
905          // use VMThreadStackSize if CompilerThreadStackSize is not defined
906      case os::vm_thread:
907      case os::pgc_thread:
908      case os::cgc_thread:
909      case os::watcher_thread:
910        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
911        break;
912      }
913    }
914
915    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
916    pthread_attr_setstacksize(&attr, stack_size);
917  } else {
918    // let pthread_create() pick the default value.
919  }
920
921  // glibc guard page
922  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
923
924  ThreadState state;
925
926  {
927    // Serialize thread creation if we are running with fixed stack LinuxThreads
928    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
929    if (lock) {
930      os::Linux::createThread_lock()->lock_without_safepoint_check();
931    }
932
933    pthread_t tid;
934    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
935
936    pthread_attr_destroy(&attr);
937
938    if (ret != 0) {
939      if (PrintMiscellaneous && (Verbose || WizardMode)) {
940        perror("pthread_create()");
941      }
942      // Need to clean up stuff we've allocated so far
943      thread->set_osthread(NULL);
944      delete osthread;
945      if (lock) os::Linux::createThread_lock()->unlock();
946      return false;
947    }
948
949    // Store pthread info into the OSThread
950    osthread->set_pthread_id(tid);
951
952    // Wait until child thread is either initialized or aborted
953    {
954      Monitor* sync_with_child = osthread->startThread_lock();
955      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
956      while ((state = osthread->get_state()) == ALLOCATED) {
957        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
958      }
959    }
960
961    if (lock) {
962      os::Linux::createThread_lock()->unlock();
963    }
964  }
965
966  // Aborted due to thread limit being reached
967  if (state == ZOMBIE) {
968      thread->set_osthread(NULL);
969      delete osthread;
970      return false;
971  }
972
973  // The thread is returned suspended (in state INITIALIZED),
974  // and is started higher up in the call chain
975  assert(state == INITIALIZED, "race condition");
976  return true;
977}
978
979/////////////////////////////////////////////////////////////////////////////
980// attach existing thread
981
982// bootstrap the main thread
983bool os::create_main_thread(JavaThread* thread) {
984  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
985  return create_attached_thread(thread);
986}
987
988bool os::create_attached_thread(JavaThread* thread) {
989#ifdef ASSERT
990    thread->verify_not_published();
991#endif
992
993  // Allocate the OSThread object
994  OSThread* osthread = new OSThread(NULL, NULL);
995
996  if (osthread == NULL) {
997    return false;
998  }
999
1000  // Store pthread info into the OSThread
1001  osthread->set_thread_id(os::Linux::gettid());
1002  osthread->set_pthread_id(::pthread_self());
1003
1004  // initialize floating point control register
1005  os::Linux::init_thread_fpu_state();
1006
1007  // Initial thread state is RUNNABLE
1008  osthread->set_state(RUNNABLE);
1009
1010  thread->set_osthread(osthread);
1011
1012  if (UseNUMA) {
1013    int lgrp_id = os::numa_get_group_id();
1014    if (lgrp_id != -1) {
1015      thread->set_lgrp_id(lgrp_id);
1016    }
1017  }
1018
1019  if (os::Linux::is_initial_thread()) {
1020    // If current thread is initial thread, its stack is mapped on demand,
1021    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022    // the entire stack region to avoid SEGV in stack banging.
1023    // It is also useful to get around the heap-stack-gap problem on SuSE
1024    // kernel (see 4821821 for details). We first expand stack to the top
1025    // of yellow zone, then enable stack yellow zone (order is significant,
1026    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027    // is no gap between the last two virtual memory regions.
1028
1029    JavaThread *jt = (JavaThread *)thread;
1030    address addr = jt->stack_yellow_zone_base();
1031    assert(addr != NULL, "initialization problem?");
1032    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033
1034    osthread->set_expanding_stack();
1035    os::Linux::manually_expand_stack(jt, addr);
1036    osthread->clear_expanding_stack();
1037  }
1038
1039  // initialize signal mask for this thread
1040  // and save the caller's signal mask
1041  os::Linux::hotspot_sigmask(thread);
1042
1043  return true;
1044}
1045
1046void os::pd_start_thread(Thread* thread) {
1047  OSThread * osthread = thread->osthread();
1048  assert(osthread->get_state() != INITIALIZED, "just checking");
1049  Monitor* sync_with_child = osthread->startThread_lock();
1050  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1051  sync_with_child->notify();
1052}
1053
1054// Free Linux resources related to the OSThread
1055void os::free_thread(OSThread* osthread) {
1056  assert(osthread != NULL, "osthread not set");
1057
1058  if (Thread::current()->osthread() == osthread) {
1059    // Restore caller's signal mask
1060    sigset_t sigmask = osthread->caller_sigmask();
1061    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1062   }
1063
1064  delete osthread;
1065}
1066
1067//////////////////////////////////////////////////////////////////////////////
1068// thread local storage
1069
1070int os::allocate_thread_local_storage() {
1071  pthread_key_t key;
1072  int rslt = pthread_key_create(&key, NULL);
1073  assert(rslt == 0, "cannot allocate thread local storage");
1074  return (int)key;
1075}
1076
1077// Note: This is currently not used by VM, as we don't destroy TLS key
1078// on VM exit.
1079void os::free_thread_local_storage(int index) {
1080  int rslt = pthread_key_delete((pthread_key_t)index);
1081  assert(rslt == 0, "invalid index");
1082}
1083
1084void os::thread_local_storage_at_put(int index, void* value) {
1085  int rslt = pthread_setspecific((pthread_key_t)index, value);
1086  assert(rslt == 0, "pthread_setspecific failed");
1087}
1088
1089extern "C" Thread* get_thread() {
1090  return ThreadLocalStorage::thread();
1091}
1092
1093//////////////////////////////////////////////////////////////////////////////
1094// initial thread
1095
1096// Check if current thread is the initial thread, similar to Solaris thr_main.
1097bool os::Linux::is_initial_thread(void) {
1098  char dummy;
1099  // If called before init complete, thread stack bottom will be null.
1100  // Can be called if fatal error occurs before initialization.
1101  if (initial_thread_stack_bottom() == NULL) return false;
1102  assert(initial_thread_stack_bottom() != NULL &&
1103         initial_thread_stack_size()   != 0,
1104         "os::init did not locate initial thread's stack region");
1105  if ((address)&dummy >= initial_thread_stack_bottom() &&
1106      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1107       return true;
1108  else return false;
1109}
1110
1111// Find the virtual memory area that contains addr
1112static bool find_vma(address addr, address* vma_low, address* vma_high) {
1113  FILE *fp = fopen("/proc/self/maps", "r");
1114  if (fp) {
1115    address low, high;
1116    while (!feof(fp)) {
1117      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1118        if (low <= addr && addr < high) {
1119           if (vma_low)  *vma_low  = low;
1120           if (vma_high) *vma_high = high;
1121           fclose (fp);
1122           return true;
1123        }
1124      }
1125      for (;;) {
1126        int ch = fgetc(fp);
1127        if (ch == EOF || ch == (int)'\n') break;
1128      }
1129    }
1130    fclose(fp);
1131  }
1132  return false;
1133}
1134
1135// Locate initial thread stack. This special handling of initial thread stack
1136// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1137// bogus value for initial thread.
1138void os::Linux::capture_initial_stack(size_t max_size) {
1139  // stack size is the easy part, get it from RLIMIT_STACK
1140  size_t stack_size;
1141  struct rlimit rlim;
1142  getrlimit(RLIMIT_STACK, &rlim);
1143  stack_size = rlim.rlim_cur;
1144
1145  // 6308388: a bug in ld.so will relocate its own .data section to the
1146  //   lower end of primordial stack; reduce ulimit -s value a little bit
1147  //   so we won't install guard page on ld.so's data section.
1148  stack_size -= 2 * page_size();
1149
1150  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1151  //   7.1, in both cases we will get 2G in return value.
1152  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1153  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1154  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1155  //   in case other parts in glibc still assumes 2M max stack size.
1156  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1157  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1158  if (stack_size > 2 * K * K IA64_ONLY(*2))
1159      stack_size = 2 * K * K IA64_ONLY(*2);
1160  // Try to figure out where the stack base (top) is. This is harder.
1161  //
1162  // When an application is started, glibc saves the initial stack pointer in
1163  // a global variable "__libc_stack_end", which is then used by system
1164  // libraries. __libc_stack_end should be pretty close to stack top. The
1165  // variable is available since the very early days. However, because it is
1166  // a private interface, it could disappear in the future.
1167  //
1168  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1169  // to __libc_stack_end, it is very close to stack top, but isn't the real
1170  // stack top. Note that /proc may not exist if VM is running as a chroot
1171  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1172  // /proc/<pid>/stat could change in the future (though unlikely).
1173  //
1174  // We try __libc_stack_end first. If that doesn't work, look for
1175  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1176  // as a hint, which should work well in most cases.
1177
1178  uintptr_t stack_start;
1179
1180  // try __libc_stack_end first
1181  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1182  if (p && *p) {
1183    stack_start = *p;
1184  } else {
1185    // see if we can get the start_stack field from /proc/self/stat
1186    FILE *fp;
1187    int pid;
1188    char state;
1189    int ppid;
1190    int pgrp;
1191    int session;
1192    int nr;
1193    int tpgrp;
1194    unsigned long flags;
1195    unsigned long minflt;
1196    unsigned long cminflt;
1197    unsigned long majflt;
1198    unsigned long cmajflt;
1199    unsigned long utime;
1200    unsigned long stime;
1201    long cutime;
1202    long cstime;
1203    long prio;
1204    long nice;
1205    long junk;
1206    long it_real;
1207    uintptr_t start;
1208    uintptr_t vsize;
1209    intptr_t rss;
1210    uintptr_t rsslim;
1211    uintptr_t scodes;
1212    uintptr_t ecode;
1213    int i;
1214
1215    // Figure what the primordial thread stack base is. Code is inspired
1216    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1217    // followed by command name surrounded by parentheses, state, etc.
1218    char stat[2048];
1219    int statlen;
1220
1221    fp = fopen("/proc/self/stat", "r");
1222    if (fp) {
1223      statlen = fread(stat, 1, 2047, fp);
1224      stat[statlen] = '\0';
1225      fclose(fp);
1226
1227      // Skip pid and the command string. Note that we could be dealing with
1228      // weird command names, e.g. user could decide to rename java launcher
1229      // to "java 1.4.2 :)", then the stat file would look like
1230      //                1234 (java 1.4.2 :)) R ... ...
1231      // We don't really need to know the command string, just find the last
1232      // occurrence of ")" and then start parsing from there. See bug 4726580.
1233      char * s = strrchr(stat, ')');
1234
1235      i = 0;
1236      if (s) {
1237        // Skip blank chars
1238        do s++; while (isspace(*s));
1239
1240#define _UFM UINTX_FORMAT
1241#define _DFM INTX_FORMAT
1242
1243        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1244        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1245        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1246             &state,          /* 3  %c  */
1247             &ppid,           /* 4  %d  */
1248             &pgrp,           /* 5  %d  */
1249             &session,        /* 6  %d  */
1250             &nr,             /* 7  %d  */
1251             &tpgrp,          /* 8  %d  */
1252             &flags,          /* 9  %lu  */
1253             &minflt,         /* 10 %lu  */
1254             &cminflt,        /* 11 %lu  */
1255             &majflt,         /* 12 %lu  */
1256             &cmajflt,        /* 13 %lu  */
1257             &utime,          /* 14 %lu  */
1258             &stime,          /* 15 %lu  */
1259             &cutime,         /* 16 %ld  */
1260             &cstime,         /* 17 %ld  */
1261             &prio,           /* 18 %ld  */
1262             &nice,           /* 19 %ld  */
1263             &junk,           /* 20 %ld  */
1264             &it_real,        /* 21 %ld  */
1265             &start,          /* 22 UINTX_FORMAT */
1266             &vsize,          /* 23 UINTX_FORMAT */
1267             &rss,            /* 24 INTX_FORMAT  */
1268             &rsslim,         /* 25 UINTX_FORMAT */
1269             &scodes,         /* 26 UINTX_FORMAT */
1270             &ecode,          /* 27 UINTX_FORMAT */
1271             &stack_start);   /* 28 UINTX_FORMAT */
1272      }
1273
1274#undef _UFM
1275#undef _DFM
1276
1277      if (i != 28 - 2) {
1278         assert(false, "Bad conversion from /proc/self/stat");
1279         // product mode - assume we are the initial thread, good luck in the
1280         // embedded case.
1281         warning("Can't detect initial thread stack location - bad conversion");
1282         stack_start = (uintptr_t) &rlim;
1283      }
1284    } else {
1285      // For some reason we can't open /proc/self/stat (for example, running on
1286      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1287      // most cases, so don't abort:
1288      warning("Can't detect initial thread stack location - no /proc/self/stat");
1289      stack_start = (uintptr_t) &rlim;
1290    }
1291  }
1292
1293  // Now we have a pointer (stack_start) very close to the stack top, the
1294  // next thing to do is to figure out the exact location of stack top. We
1295  // can find out the virtual memory area that contains stack_start by
1296  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1297  // and its upper limit is the real stack top. (again, this would fail if
1298  // running inside chroot, because /proc may not exist.)
1299
1300  uintptr_t stack_top;
1301  address low, high;
1302  if (find_vma((address)stack_start, &low, &high)) {
1303    // success, "high" is the true stack top. (ignore "low", because initial
1304    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1305    stack_top = (uintptr_t)high;
1306  } else {
1307    // failed, likely because /proc/self/maps does not exist
1308    warning("Can't detect initial thread stack location - find_vma failed");
1309    // best effort: stack_start is normally within a few pages below the real
1310    // stack top, use it as stack top, and reduce stack size so we won't put
1311    // guard page outside stack.
1312    stack_top = stack_start;
1313    stack_size -= 16 * page_size();
1314  }
1315
1316  // stack_top could be partially down the page so align it
1317  stack_top = align_size_up(stack_top, page_size());
1318
1319  if (max_size && stack_size > max_size) {
1320     _initial_thread_stack_size = max_size;
1321  } else {
1322     _initial_thread_stack_size = stack_size;
1323  }
1324
1325  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1326  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327}
1328
1329////////////////////////////////////////////////////////////////////////////////
1330// time support
1331
1332// Time since start-up in seconds to a fine granularity.
1333// Used by VMSelfDestructTimer and the MemProfiler.
1334double os::elapsedTime() {
1335
1336  return (double)(os::elapsed_counter()) * 0.000001;
1337}
1338
1339jlong os::elapsed_counter() {
1340  timeval time;
1341  int status = gettimeofday(&time, NULL);
1342  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1343}
1344
1345jlong os::elapsed_frequency() {
1346  return (1000 * 1000);
1347}
1348
1349bool os::supports_vtime() { return true; }
1350bool os::enable_vtime()   { return false; }
1351bool os::vtime_enabled()  { return false; }
1352
1353double os::elapsedVTime() {
1354  struct rusage usage;
1355  int retval = getrusage(RUSAGE_THREAD, &usage);
1356  if (retval == 0) {
1357    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1358  } else {
1359    // better than nothing, but not much
1360    return elapsedTime();
1361  }
1362}
1363
1364jlong os::javaTimeMillis() {
1365  timeval time;
1366  int status = gettimeofday(&time, NULL);
1367  assert(status != -1, "linux error");
1368  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1369}
1370
1371#ifndef CLOCK_MONOTONIC
1372#define CLOCK_MONOTONIC (1)
1373#endif
1374
1375void os::Linux::clock_init() {
1376  // we do dlopen's in this particular order due to bug in linux
1377  // dynamical loader (see 6348968) leading to crash on exit
1378  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1379  if (handle == NULL) {
1380    handle = dlopen("librt.so", RTLD_LAZY);
1381  }
1382
1383  if (handle) {
1384    int (*clock_getres_func)(clockid_t, struct timespec*) =
1385           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1386    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1387           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1388    if (clock_getres_func && clock_gettime_func) {
1389      // See if monotonic clock is supported by the kernel. Note that some
1390      // early implementations simply return kernel jiffies (updated every
1391      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1392      // for nano time (though the monotonic property is still nice to have).
1393      // It's fixed in newer kernels, however clock_getres() still returns
1394      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1395      // resolution for now. Hopefully as people move to new kernels, this
1396      // won't be a problem.
1397      struct timespec res;
1398      struct timespec tp;
1399      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1400          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1401        // yes, monotonic clock is supported
1402        _clock_gettime = clock_gettime_func;
1403        return;
1404      } else {
1405        // close librt if there is no monotonic clock
1406        dlclose(handle);
1407      }
1408    }
1409  }
1410  warning("No monotonic clock was available - timed services may " \
1411          "be adversely affected if the time-of-day clock changes");
1412}
1413
1414#ifndef SYS_clock_getres
1415
1416#if defined(IA32) || defined(AMD64)
1417#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1418#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1419#else
1420#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1421#define sys_clock_getres(x,y)  -1
1422#endif
1423
1424#else
1425#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1426#endif
1427
1428void os::Linux::fast_thread_clock_init() {
1429  if (!UseLinuxPosixThreadCPUClocks) {
1430    return;
1431  }
1432  clockid_t clockid;
1433  struct timespec tp;
1434  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1435      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1436
1437  // Switch to using fast clocks for thread cpu time if
1438  // the sys_clock_getres() returns 0 error code.
1439  // Note, that some kernels may support the current thread
1440  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1441  // returned by the pthread_getcpuclockid().
1442  // If the fast Posix clocks are supported then the sys_clock_getres()
1443  // must return at least tp.tv_sec == 0 which means a resolution
1444  // better than 1 sec. This is extra check for reliability.
1445
1446  if(pthread_getcpuclockid_func &&
1447     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1448     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1449
1450    _supports_fast_thread_cpu_time = true;
1451    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1452  }
1453}
1454
1455jlong os::javaTimeNanos() {
1456  if (Linux::supports_monotonic_clock()) {
1457    struct timespec tp;
1458    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1459    assert(status == 0, "gettime error");
1460    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1461    return result;
1462  } else {
1463    timeval time;
1464    int status = gettimeofday(&time, NULL);
1465    assert(status != -1, "linux error");
1466    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1467    return 1000 * usecs;
1468  }
1469}
1470
1471void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1472  if (Linux::supports_monotonic_clock()) {
1473    info_ptr->max_value = ALL_64_BITS;
1474
1475    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1476    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1477    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1478  } else {
1479    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1480    info_ptr->max_value = ALL_64_BITS;
1481
1482    // gettimeofday is a real time clock so it skips
1483    info_ptr->may_skip_backward = true;
1484    info_ptr->may_skip_forward = true;
1485  }
1486
1487  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1488}
1489
1490// Return the real, user, and system times in seconds from an
1491// arbitrary fixed point in the past.
1492bool os::getTimesSecs(double* process_real_time,
1493                      double* process_user_time,
1494                      double* process_system_time) {
1495  struct tms ticks;
1496  clock_t real_ticks = times(&ticks);
1497
1498  if (real_ticks == (clock_t) (-1)) {
1499    return false;
1500  } else {
1501    double ticks_per_second = (double) clock_tics_per_sec;
1502    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1503    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1504    *process_real_time = ((double) real_ticks) / ticks_per_second;
1505
1506    return true;
1507  }
1508}
1509
1510
1511char * os::local_time_string(char *buf, size_t buflen) {
1512  struct tm t;
1513  time_t long_time;
1514  time(&long_time);
1515  localtime_r(&long_time, &t);
1516  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1517               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1518               t.tm_hour, t.tm_min, t.tm_sec);
1519  return buf;
1520}
1521
1522struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1523  return localtime_r(clock, res);
1524}
1525
1526////////////////////////////////////////////////////////////////////////////////
1527// runtime exit support
1528
1529// Note: os::shutdown() might be called very early during initialization, or
1530// called from signal handler. Before adding something to os::shutdown(), make
1531// sure it is async-safe and can handle partially initialized VM.
1532void os::shutdown() {
1533
1534  // allow PerfMemory to attempt cleanup of any persistent resources
1535  perfMemory_exit();
1536
1537  // needs to remove object in file system
1538  AttachListener::abort();
1539
1540  // flush buffered output, finish log files
1541  ostream_abort();
1542
1543  // Check for abort hook
1544  abort_hook_t abort_hook = Arguments::abort_hook();
1545  if (abort_hook != NULL) {
1546    abort_hook();
1547  }
1548
1549}
1550
1551// Note: os::abort() might be called very early during initialization, or
1552// called from signal handler. Before adding something to os::abort(), make
1553// sure it is async-safe and can handle partially initialized VM.
1554void os::abort(bool dump_core) {
1555  os::shutdown();
1556  if (dump_core) {
1557#ifndef PRODUCT
1558    fdStream out(defaultStream::output_fd());
1559    out.print_raw("Current thread is ");
1560    char buf[16];
1561    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1562    out.print_raw_cr(buf);
1563    out.print_raw_cr("Dumping core ...");
1564#endif
1565    ::abort(); // dump core
1566  }
1567
1568  ::exit(1);
1569}
1570
1571// Die immediately, no exit hook, no abort hook, no cleanup.
1572void os::die() {
1573  // _exit() on LinuxThreads only kills current thread
1574  ::abort();
1575}
1576
1577// unused on linux for now.
1578void os::set_error_file(const char *logfile) {}
1579
1580
1581// This method is a copy of JDK's sysGetLastErrorString
1582// from src/solaris/hpi/src/system_md.c
1583
1584size_t os::lasterror(char *buf, size_t len) {
1585
1586  if (errno == 0)  return 0;
1587
1588  const char *s = ::strerror(errno);
1589  size_t n = ::strlen(s);
1590  if (n >= len) {
1591    n = len - 1;
1592  }
1593  ::strncpy(buf, s, n);
1594  buf[n] = '\0';
1595  return n;
1596}
1597
1598intx os::current_thread_id() { return (intx)pthread_self(); }
1599int os::current_process_id() {
1600
1601  // Under the old linux thread library, linux gives each thread
1602  // its own process id. Because of this each thread will return
1603  // a different pid if this method were to return the result
1604  // of getpid(2). Linux provides no api that returns the pid
1605  // of the launcher thread for the vm. This implementation
1606  // returns a unique pid, the pid of the launcher thread
1607  // that starts the vm 'process'.
1608
1609  // Under the NPTL, getpid() returns the same pid as the
1610  // launcher thread rather than a unique pid per thread.
1611  // Use gettid() if you want the old pre NPTL behaviour.
1612
1613  // if you are looking for the result of a call to getpid() that
1614  // returns a unique pid for the calling thread, then look at the
1615  // OSThread::thread_id() method in osThread_linux.hpp file
1616
1617  return (int)(_initial_pid ? _initial_pid : getpid());
1618}
1619
1620// DLL functions
1621
1622const char* os::dll_file_extension() { return ".so"; }
1623
1624// This must be hard coded because it's the system's temporary
1625// directory not the java application's temp directory, ala java.io.tmpdir.
1626const char* os::get_temp_directory() { return "/tmp"; }
1627
1628static bool file_exists(const char* filename) {
1629  struct stat statbuf;
1630  if (filename == NULL || strlen(filename) == 0) {
1631    return false;
1632  }
1633  return os::stat(filename, &statbuf) == 0;
1634}
1635
1636bool os::dll_build_name(char* buffer, size_t buflen,
1637                        const char* pname, const char* fname) {
1638  bool retval = false;
1639  // Copied from libhpi
1640  const size_t pnamelen = pname ? strlen(pname) : 0;
1641
1642  // Return error on buffer overflow.
1643  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1644    return retval;
1645  }
1646
1647  if (pnamelen == 0) {
1648    snprintf(buffer, buflen, "lib%s.so", fname);
1649    retval = true;
1650  } else if (strchr(pname, *os::path_separator()) != NULL) {
1651    int n;
1652    char** pelements = split_path(pname, &n);
1653    if (pelements == NULL) {
1654      return false;
1655    }
1656    for (int i = 0 ; i < n ; i++) {
1657      // Really shouldn't be NULL, but check can't hurt
1658      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1659        continue; // skip the empty path values
1660      }
1661      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1662      if (file_exists(buffer)) {
1663        retval = true;
1664        break;
1665      }
1666    }
1667    // release the storage
1668    for (int i = 0 ; i < n ; i++) {
1669      if (pelements[i] != NULL) {
1670        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1671      }
1672    }
1673    if (pelements != NULL) {
1674      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1675    }
1676  } else {
1677    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1678    retval = true;
1679  }
1680  return retval;
1681}
1682
1683// check if addr is inside libjvm.so
1684bool os::address_is_in_vm(address addr) {
1685  static address libjvm_base_addr;
1686  Dl_info dlinfo;
1687
1688  if (libjvm_base_addr == NULL) {
1689    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1690      libjvm_base_addr = (address)dlinfo.dli_fbase;
1691    }
1692    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1693  }
1694
1695  if (dladdr((void *)addr, &dlinfo) != 0) {
1696    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1697  }
1698
1699  return false;
1700}
1701
1702bool os::dll_address_to_function_name(address addr, char *buf,
1703                                      int buflen, int *offset) {
1704  // buf is not optional, but offset is optional
1705  assert(buf != NULL, "sanity check");
1706
1707  Dl_info dlinfo;
1708
1709  if (dladdr((void*)addr, &dlinfo) != 0) {
1710    // see if we have a matching symbol
1711    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1712      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1713        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1714      }
1715      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1716      return true;
1717    }
1718    // no matching symbol so try for just file info
1719    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1720      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1721                          buf, buflen, offset, dlinfo.dli_fname)) {
1722        return true;
1723      }
1724    }
1725  }
1726
1727  buf[0] = '\0';
1728  if (offset != NULL) *offset = -1;
1729  return false;
1730}
1731
1732struct _address_to_library_name {
1733  address addr;          // input : memory address
1734  size_t  buflen;        //         size of fname
1735  char*   fname;         // output: library name
1736  address base;          //         library base addr
1737};
1738
1739static int address_to_library_name_callback(struct dl_phdr_info *info,
1740                                            size_t size, void *data) {
1741  int i;
1742  bool found = false;
1743  address libbase = NULL;
1744  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1745
1746  // iterate through all loadable segments
1747  for (i = 0; i < info->dlpi_phnum; i++) {
1748    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1749    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1750      // base address of a library is the lowest address of its loaded
1751      // segments.
1752      if (libbase == NULL || libbase > segbase) {
1753        libbase = segbase;
1754      }
1755      // see if 'addr' is within current segment
1756      if (segbase <= d->addr &&
1757          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1758        found = true;
1759      }
1760    }
1761  }
1762
1763  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1764  // so dll_address_to_library_name() can fall through to use dladdr() which
1765  // can figure out executable name from argv[0].
1766  if (found && info->dlpi_name && info->dlpi_name[0]) {
1767    d->base = libbase;
1768    if (d->fname) {
1769      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1770    }
1771    return 1;
1772  }
1773  return 0;
1774}
1775
1776bool os::dll_address_to_library_name(address addr, char* buf,
1777                                     int buflen, int* offset) {
1778  // buf is not optional, but offset is optional
1779  assert(buf != NULL, "sanity check");
1780
1781  Dl_info dlinfo;
1782  struct _address_to_library_name data;
1783
1784  // There is a bug in old glibc dladdr() implementation that it could resolve
1785  // to wrong library name if the .so file has a base address != NULL. Here
1786  // we iterate through the program headers of all loaded libraries to find
1787  // out which library 'addr' really belongs to. This workaround can be
1788  // removed once the minimum requirement for glibc is moved to 2.3.x.
1789  data.addr = addr;
1790  data.fname = buf;
1791  data.buflen = buflen;
1792  data.base = NULL;
1793  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1794
1795  if (rslt) {
1796     // buf already contains library name
1797     if (offset) *offset = addr - data.base;
1798     return true;
1799  }
1800  if (dladdr((void*)addr, &dlinfo) != 0) {
1801    if (dlinfo.dli_fname != NULL) {
1802      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1803    }
1804    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1805      *offset = addr - (address)dlinfo.dli_fbase;
1806    }
1807    return true;
1808  }
1809
1810  buf[0] = '\0';
1811  if (offset) *offset = -1;
1812  return false;
1813}
1814
1815  // Loads .dll/.so and
1816  // in case of error it checks if .dll/.so was built for the
1817  // same architecture as Hotspot is running on
1818
1819
1820// Remember the stack's state. The Linux dynamic linker will change
1821// the stack to 'executable' at most once, so we must safepoint only once.
1822bool os::Linux::_stack_is_executable = false;
1823
1824// VM operation that loads a library.  This is necessary if stack protection
1825// of the Java stacks can be lost during loading the library.  If we
1826// do not stop the Java threads, they can stack overflow before the stacks
1827// are protected again.
1828class VM_LinuxDllLoad: public VM_Operation {
1829 private:
1830  const char *_filename;
1831  char *_ebuf;
1832  int _ebuflen;
1833  void *_lib;
1834 public:
1835  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1836    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1837  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1838  void doit() {
1839    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1840    os::Linux::_stack_is_executable = true;
1841  }
1842  void* loaded_library() { return _lib; }
1843};
1844
1845void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1846{
1847  void * result = NULL;
1848  bool load_attempted = false;
1849
1850  // Check whether the library to load might change execution rights
1851  // of the stack. If they are changed, the protection of the stack
1852  // guard pages will be lost. We need a safepoint to fix this.
1853  //
1854  // See Linux man page execstack(8) for more info.
1855  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1856    ElfFile ef(filename);
1857    if (!ef.specifies_noexecstack()) {
1858      if (!is_init_completed()) {
1859        os::Linux::_stack_is_executable = true;
1860        // This is OK - No Java threads have been created yet, and hence no
1861        // stack guard pages to fix.
1862        //
1863        // This should happen only when you are building JDK7 using a very
1864        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1865        //
1866        // Dynamic loader will make all stacks executable after
1867        // this function returns, and will not do that again.
1868        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1869      } else {
1870        warning("You have loaded library %s which might have disabled stack guard. "
1871                "The VM will try to fix the stack guard now.\n"
1872                "It's highly recommended that you fix the library with "
1873                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1874                filename);
1875
1876        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1877        JavaThread *jt = JavaThread::current();
1878        if (jt->thread_state() != _thread_in_native) {
1879          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1880          // that requires ExecStack. Cannot enter safe point. Let's give up.
1881          warning("Unable to fix stack guard. Giving up.");
1882        } else {
1883          if (!LoadExecStackDllInVMThread) {
1884            // This is for the case where the DLL has an static
1885            // constructor function that executes JNI code. We cannot
1886            // load such DLLs in the VMThread.
1887            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1888          }
1889
1890          ThreadInVMfromNative tiv(jt);
1891          debug_only(VMNativeEntryWrapper vew;)
1892
1893          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1894          VMThread::execute(&op);
1895          if (LoadExecStackDllInVMThread) {
1896            result = op.loaded_library();
1897          }
1898          load_attempted = true;
1899        }
1900      }
1901    }
1902  }
1903
1904  if (!load_attempted) {
1905    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1906  }
1907
1908  if (result != NULL) {
1909    // Successful loading
1910    return result;
1911  }
1912
1913  Elf32_Ehdr elf_head;
1914  int diag_msg_max_length=ebuflen-strlen(ebuf);
1915  char* diag_msg_buf=ebuf+strlen(ebuf);
1916
1917  if (diag_msg_max_length==0) {
1918    // No more space in ebuf for additional diagnostics message
1919    return NULL;
1920  }
1921
1922
1923  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1924
1925  if (file_descriptor < 0) {
1926    // Can't open library, report dlerror() message
1927    return NULL;
1928  }
1929
1930  bool failed_to_read_elf_head=
1931    (sizeof(elf_head)!=
1932        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1933
1934  ::close(file_descriptor);
1935  if (failed_to_read_elf_head) {
1936    // file i/o error - report dlerror() msg
1937    return NULL;
1938  }
1939
1940  typedef struct {
1941    Elf32_Half  code;         // Actual value as defined in elf.h
1942    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1943    char        elf_class;    // 32 or 64 bit
1944    char        endianess;    // MSB or LSB
1945    char*       name;         // String representation
1946  } arch_t;
1947
1948  #ifndef EM_486
1949  #define EM_486          6               /* Intel 80486 */
1950  #endif
1951
1952  static const arch_t arch_array[]={
1953    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1954    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1955    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1956    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1957    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1958    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1959    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1960    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1961    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1962    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1963    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1964    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1965    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1966    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1967    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1968    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1969  };
1970
1971  #if  (defined IA32)
1972    static  Elf32_Half running_arch_code=EM_386;
1973  #elif   (defined AMD64)
1974    static  Elf32_Half running_arch_code=EM_X86_64;
1975  #elif  (defined IA64)
1976    static  Elf32_Half running_arch_code=EM_IA_64;
1977  #elif  (defined __sparc) && (defined _LP64)
1978    static  Elf32_Half running_arch_code=EM_SPARCV9;
1979  #elif  (defined __sparc) && (!defined _LP64)
1980    static  Elf32_Half running_arch_code=EM_SPARC;
1981  #elif  (defined __powerpc64__)
1982    static  Elf32_Half running_arch_code=EM_PPC64;
1983  #elif  (defined __powerpc__)
1984    static  Elf32_Half running_arch_code=EM_PPC;
1985  #elif  (defined ARM)
1986    static  Elf32_Half running_arch_code=EM_ARM;
1987  #elif  (defined S390)
1988    static  Elf32_Half running_arch_code=EM_S390;
1989  #elif  (defined ALPHA)
1990    static  Elf32_Half running_arch_code=EM_ALPHA;
1991  #elif  (defined MIPSEL)
1992    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1993  #elif  (defined PARISC)
1994    static  Elf32_Half running_arch_code=EM_PARISC;
1995  #elif  (defined MIPS)
1996    static  Elf32_Half running_arch_code=EM_MIPS;
1997  #elif  (defined M68K)
1998    static  Elf32_Half running_arch_code=EM_68K;
1999  #else
2000    #error Method os::dll_load requires that one of following is defined:\
2001         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2002  #endif
2003
2004  // Identify compatability class for VM's architecture and library's architecture
2005  // Obtain string descriptions for architectures
2006
2007  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2008  int running_arch_index=-1;
2009
2010  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2011    if (running_arch_code == arch_array[i].code) {
2012      running_arch_index    = i;
2013    }
2014    if (lib_arch.code == arch_array[i].code) {
2015      lib_arch.compat_class = arch_array[i].compat_class;
2016      lib_arch.name         = arch_array[i].name;
2017    }
2018  }
2019
2020  assert(running_arch_index != -1,
2021    "Didn't find running architecture code (running_arch_code) in arch_array");
2022  if (running_arch_index == -1) {
2023    // Even though running architecture detection failed
2024    // we may still continue with reporting dlerror() message
2025    return NULL;
2026  }
2027
2028  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2029    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2030    return NULL;
2031  }
2032
2033#ifndef S390
2034  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2035    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2036    return NULL;
2037  }
2038#endif // !S390
2039
2040  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2041    if ( lib_arch.name!=NULL ) {
2042      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2043        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2044        lib_arch.name, arch_array[running_arch_index].name);
2045    } else {
2046      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2047      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2048        lib_arch.code,
2049        arch_array[running_arch_index].name);
2050    }
2051  }
2052
2053  return NULL;
2054}
2055
2056void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2057  void * result = ::dlopen(filename, RTLD_LAZY);
2058  if (result == NULL) {
2059    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2060    ebuf[ebuflen-1] = '\0';
2061  }
2062  return result;
2063}
2064
2065void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2066  void * result = NULL;
2067  if (LoadExecStackDllInVMThread) {
2068    result = dlopen_helper(filename, ebuf, ebuflen);
2069  }
2070
2071  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2072  // library that requires an executable stack, or which does not have this
2073  // stack attribute set, dlopen changes the stack attribute to executable. The
2074  // read protection of the guard pages gets lost.
2075  //
2076  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2077  // may have been queued at the same time.
2078
2079  if (!_stack_is_executable) {
2080    JavaThread *jt = Threads::first();
2081
2082    while (jt) {
2083      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2084          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2085        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2086                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2087          warning("Attempt to reguard stack yellow zone failed.");
2088        }
2089      }
2090      jt = jt->next();
2091    }
2092  }
2093
2094  return result;
2095}
2096
2097/*
2098 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2099 * chances are you might want to run the generated bits against glibc-2.0
2100 * libdl.so, so always use locking for any version of glibc.
2101 */
2102void* os::dll_lookup(void* handle, const char* name) {
2103  pthread_mutex_lock(&dl_mutex);
2104  void* res = dlsym(handle, name);
2105  pthread_mutex_unlock(&dl_mutex);
2106  return res;
2107}
2108
2109
2110static bool _print_ascii_file(const char* filename, outputStream* st) {
2111  int fd = ::open(filename, O_RDONLY);
2112  if (fd == -1) {
2113     return false;
2114  }
2115
2116  char buf[32];
2117  int bytes;
2118  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2119    st->print_raw(buf, bytes);
2120  }
2121
2122  ::close(fd);
2123
2124  return true;
2125}
2126
2127void os::print_dll_info(outputStream *st) {
2128   st->print_cr("Dynamic libraries:");
2129
2130   char fname[32];
2131   pid_t pid = os::Linux::gettid();
2132
2133   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2134
2135   if (!_print_ascii_file(fname, st)) {
2136     st->print("Can not get library information for pid = %d\n", pid);
2137   }
2138}
2139
2140void os::print_os_info_brief(outputStream* st) {
2141  os::Linux::print_distro_info(st);
2142
2143  os::Posix::print_uname_info(st);
2144
2145  os::Linux::print_libversion_info(st);
2146
2147}
2148
2149void os::print_os_info(outputStream* st) {
2150  st->print("OS:");
2151
2152  os::Linux::print_distro_info(st);
2153
2154  os::Posix::print_uname_info(st);
2155
2156  // Print warning if unsafe chroot environment detected
2157  if (unsafe_chroot_detected) {
2158    st->print("WARNING!! ");
2159    st->print_cr(unstable_chroot_error);
2160  }
2161
2162  os::Linux::print_libversion_info(st);
2163
2164  os::Posix::print_rlimit_info(st);
2165
2166  os::Posix::print_load_average(st);
2167
2168  os::Linux::print_full_memory_info(st);
2169}
2170
2171// Try to identify popular distros.
2172// Most Linux distributions have a /etc/XXX-release file, which contains
2173// the OS version string. Newer Linux distributions have a /etc/lsb-release
2174// file that also contains the OS version string. Some have more than one
2175// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2176// /etc/redhat-release.), so the order is important.
2177// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2178// their own specific XXX-release file as well as a redhat-release file.
2179// Because of this the XXX-release file needs to be searched for before the
2180// redhat-release file.
2181// Since Red Hat has a lsb-release file that is not very descriptive the
2182// search for redhat-release needs to be before lsb-release.
2183// Since the lsb-release file is the new standard it needs to be searched
2184// before the older style release files.
2185// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2186// next to last resort.  The os-release file is a new standard that contains
2187// distribution information and the system-release file seems to be an old
2188// standard that has been replaced by the lsb-release and os-release files.
2189// Searching for the debian_version file is the last resort.  It contains
2190// an informative string like "6.0.6" or "wheezy/sid". Because of this
2191// "Debian " is printed before the contents of the debian_version file.
2192void os::Linux::print_distro_info(outputStream* st) {
2193   if (!_print_ascii_file("/etc/oracle-release", st) &&
2194       !_print_ascii_file("/etc/mandriva-release", st) &&
2195       !_print_ascii_file("/etc/mandrake-release", st) &&
2196       !_print_ascii_file("/etc/sun-release", st) &&
2197       !_print_ascii_file("/etc/redhat-release", st) &&
2198       !_print_ascii_file("/etc/lsb-release", st) &&
2199       !_print_ascii_file("/etc/SuSE-release", st) &&
2200       !_print_ascii_file("/etc/turbolinux-release", st) &&
2201       !_print_ascii_file("/etc/gentoo-release", st) &&
2202       !_print_ascii_file("/etc/ltib-release", st) &&
2203       !_print_ascii_file("/etc/angstrom-version", st) &&
2204       !_print_ascii_file("/etc/system-release", st) &&
2205       !_print_ascii_file("/etc/os-release", st)) {
2206
2207       if (file_exists("/etc/debian_version")) {
2208         st->print("Debian ");
2209         _print_ascii_file("/etc/debian_version", st);
2210       } else {
2211         st->print("Linux");
2212       }
2213   }
2214   st->cr();
2215}
2216
2217void os::Linux::print_libversion_info(outputStream* st) {
2218  // libc, pthread
2219  st->print("libc:");
2220  st->print(os::Linux::glibc_version()); st->print(" ");
2221  st->print(os::Linux::libpthread_version()); st->print(" ");
2222  if (os::Linux::is_LinuxThreads()) {
2223     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2224  }
2225  st->cr();
2226}
2227
2228void os::Linux::print_full_memory_info(outputStream* st) {
2229   st->print("\n/proc/meminfo:\n");
2230   _print_ascii_file("/proc/meminfo", st);
2231   st->cr();
2232}
2233
2234void os::print_memory_info(outputStream* st) {
2235
2236  st->print("Memory:");
2237  st->print(" %dk page", os::vm_page_size()>>10);
2238
2239  // values in struct sysinfo are "unsigned long"
2240  struct sysinfo si;
2241  sysinfo(&si);
2242
2243  st->print(", physical " UINT64_FORMAT "k",
2244            os::physical_memory() >> 10);
2245  st->print("(" UINT64_FORMAT "k free)",
2246            os::available_memory() >> 10);
2247  st->print(", swap " UINT64_FORMAT "k",
2248            ((jlong)si.totalswap * si.mem_unit) >> 10);
2249  st->print("(" UINT64_FORMAT "k free)",
2250            ((jlong)si.freeswap * si.mem_unit) >> 10);
2251  st->cr();
2252}
2253
2254void os::pd_print_cpu_info(outputStream* st) {
2255  st->print("\n/proc/cpuinfo:\n");
2256  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2257    st->print("  <Not Available>");
2258  }
2259  st->cr();
2260}
2261
2262// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2263// but they're the same for all the linux arch that we support
2264// and they're the same for solaris but there's no common place to put this.
2265const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2266                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2267                          "ILL_COPROC", "ILL_BADSTK" };
2268
2269const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2270                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2271                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2272
2273const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2274
2275const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2276
2277void os::print_siginfo(outputStream* st, void* siginfo) {
2278  st->print("siginfo:");
2279
2280  const int buflen = 100;
2281  char buf[buflen];
2282  siginfo_t *si = (siginfo_t*)siginfo;
2283  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2284  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2285    st->print("si_errno=%s", buf);
2286  } else {
2287    st->print("si_errno=%d", si->si_errno);
2288  }
2289  const int c = si->si_code;
2290  assert(c > 0, "unexpected si_code");
2291  switch (si->si_signo) {
2292  case SIGILL:
2293    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2294    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2295    break;
2296  case SIGFPE:
2297    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2298    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2299    break;
2300  case SIGSEGV:
2301    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2302    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2303    break;
2304  case SIGBUS:
2305    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2306    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2307    break;
2308  default:
2309    st->print(", si_code=%d", si->si_code);
2310    // no si_addr
2311  }
2312
2313  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2314      UseSharedSpaces) {
2315    FileMapInfo* mapinfo = FileMapInfo::current_info();
2316    if (mapinfo->is_in_shared_space(si->si_addr)) {
2317      st->print("\n\nError accessing class data sharing archive."   \
2318                " Mapped file inaccessible during execution, "      \
2319                " possible disk/network problem.");
2320    }
2321  }
2322  st->cr();
2323}
2324
2325
2326static void print_signal_handler(outputStream* st, int sig,
2327                                 char* buf, size_t buflen);
2328
2329void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2330  st->print_cr("Signal Handlers:");
2331  print_signal_handler(st, SIGSEGV, buf, buflen);
2332  print_signal_handler(st, SIGBUS , buf, buflen);
2333  print_signal_handler(st, SIGFPE , buf, buflen);
2334  print_signal_handler(st, SIGPIPE, buf, buflen);
2335  print_signal_handler(st, SIGXFSZ, buf, buflen);
2336  print_signal_handler(st, SIGILL , buf, buflen);
2337  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2338  print_signal_handler(st, SR_signum, buf, buflen);
2339  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2340  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2341  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2342  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2343}
2344
2345static char saved_jvm_path[MAXPATHLEN] = {0};
2346
2347// Find the full path to the current module, libjvm.so
2348void os::jvm_path(char *buf, jint buflen) {
2349  // Error checking.
2350  if (buflen < MAXPATHLEN) {
2351    assert(false, "must use a large-enough buffer");
2352    buf[0] = '\0';
2353    return;
2354  }
2355  // Lazy resolve the path to current module.
2356  if (saved_jvm_path[0] != 0) {
2357    strcpy(buf, saved_jvm_path);
2358    return;
2359  }
2360
2361  char dli_fname[MAXPATHLEN];
2362  bool ret = dll_address_to_library_name(
2363                CAST_FROM_FN_PTR(address, os::jvm_path),
2364                dli_fname, sizeof(dli_fname), NULL);
2365  assert(ret, "cannot locate libjvm");
2366  char *rp = NULL;
2367  if (ret && dli_fname[0] != '\0') {
2368    rp = realpath(dli_fname, buf);
2369  }
2370  if (rp == NULL)
2371    return;
2372
2373  if (Arguments::created_by_gamma_launcher()) {
2374    // Support for the gamma launcher.  Typical value for buf is
2375    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2376    // the right place in the string, then assume we are installed in a JDK and
2377    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2378    // up the path so it looks like libjvm.so is installed there (append a
2379    // fake suffix hotspot/libjvm.so).
2380    const char *p = buf + strlen(buf) - 1;
2381    for (int count = 0; p > buf && count < 5; ++count) {
2382      for (--p; p > buf && *p != '/'; --p)
2383        /* empty */ ;
2384    }
2385
2386    if (strncmp(p, "/jre/lib/", 9) != 0) {
2387      // Look for JAVA_HOME in the environment.
2388      char* java_home_var = ::getenv("JAVA_HOME");
2389      if (java_home_var != NULL && java_home_var[0] != 0) {
2390        char* jrelib_p;
2391        int len;
2392
2393        // Check the current module name "libjvm.so".
2394        p = strrchr(buf, '/');
2395        assert(strstr(p, "/libjvm") == p, "invalid library name");
2396
2397        rp = realpath(java_home_var, buf);
2398        if (rp == NULL)
2399          return;
2400
2401        // determine if this is a legacy image or modules image
2402        // modules image doesn't have "jre" subdirectory
2403        len = strlen(buf);
2404        jrelib_p = buf + len;
2405        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2406        if (0 != access(buf, F_OK)) {
2407          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2408        }
2409
2410        if (0 == access(buf, F_OK)) {
2411          // Use current module name "libjvm.so"
2412          len = strlen(buf);
2413          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2414        } else {
2415          // Go back to path of .so
2416          rp = realpath(dli_fname, buf);
2417          if (rp == NULL)
2418            return;
2419        }
2420      }
2421    }
2422  }
2423
2424  strcpy(saved_jvm_path, buf);
2425}
2426
2427void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2428  // no prefix required, not even "_"
2429}
2430
2431void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2432  // no suffix required
2433}
2434
2435////////////////////////////////////////////////////////////////////////////////
2436// sun.misc.Signal support
2437
2438static volatile jint sigint_count = 0;
2439
2440static void
2441UserHandler(int sig, void *siginfo, void *context) {
2442  // 4511530 - sem_post is serialized and handled by the manager thread. When
2443  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2444  // don't want to flood the manager thread with sem_post requests.
2445  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2446      return;
2447
2448  // Ctrl-C is pressed during error reporting, likely because the error
2449  // handler fails to abort. Let VM die immediately.
2450  if (sig == SIGINT && is_error_reported()) {
2451     os::die();
2452  }
2453
2454  os::signal_notify(sig);
2455}
2456
2457void* os::user_handler() {
2458  return CAST_FROM_FN_PTR(void*, UserHandler);
2459}
2460
2461class Semaphore : public StackObj {
2462  public:
2463    Semaphore();
2464    ~Semaphore();
2465    void signal();
2466    void wait();
2467    bool trywait();
2468    bool timedwait(unsigned int sec, int nsec);
2469  private:
2470    sem_t _semaphore;
2471};
2472
2473
2474Semaphore::Semaphore() {
2475  sem_init(&_semaphore, 0, 0);
2476}
2477
2478Semaphore::~Semaphore() {
2479  sem_destroy(&_semaphore);
2480}
2481
2482void Semaphore::signal() {
2483  sem_post(&_semaphore);
2484}
2485
2486void Semaphore::wait() {
2487  sem_wait(&_semaphore);
2488}
2489
2490bool Semaphore::trywait() {
2491  return sem_trywait(&_semaphore) == 0;
2492}
2493
2494bool Semaphore::timedwait(unsigned int sec, int nsec) {
2495  struct timespec ts;
2496  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2497
2498  while (1) {
2499    int result = sem_timedwait(&_semaphore, &ts);
2500    if (result == 0) {
2501      return true;
2502    } else if (errno == EINTR) {
2503      continue;
2504    } else if (errno == ETIMEDOUT) {
2505      return false;
2506    } else {
2507      return false;
2508    }
2509  }
2510}
2511
2512extern "C" {
2513  typedef void (*sa_handler_t)(int);
2514  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2515}
2516
2517void* os::signal(int signal_number, void* handler) {
2518  struct sigaction sigAct, oldSigAct;
2519
2520  sigfillset(&(sigAct.sa_mask));
2521  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2522  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2523
2524  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2525    // -1 means registration failed
2526    return (void *)-1;
2527  }
2528
2529  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2530}
2531
2532void os::signal_raise(int signal_number) {
2533  ::raise(signal_number);
2534}
2535
2536/*
2537 * The following code is moved from os.cpp for making this
2538 * code platform specific, which it is by its very nature.
2539 */
2540
2541// Will be modified when max signal is changed to be dynamic
2542int os::sigexitnum_pd() {
2543  return NSIG;
2544}
2545
2546// a counter for each possible signal value
2547static volatile jint pending_signals[NSIG+1] = { 0 };
2548
2549// Linux(POSIX) specific hand shaking semaphore.
2550static sem_t sig_sem;
2551static Semaphore sr_semaphore;
2552
2553void os::signal_init_pd() {
2554  // Initialize signal structures
2555  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2556
2557  // Initialize signal semaphore
2558  ::sem_init(&sig_sem, 0, 0);
2559}
2560
2561void os::signal_notify(int sig) {
2562  Atomic::inc(&pending_signals[sig]);
2563  ::sem_post(&sig_sem);
2564}
2565
2566static int check_pending_signals(bool wait) {
2567  Atomic::store(0, &sigint_count);
2568  for (;;) {
2569    for (int i = 0; i < NSIG + 1; i++) {
2570      jint n = pending_signals[i];
2571      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2572        return i;
2573      }
2574    }
2575    if (!wait) {
2576      return -1;
2577    }
2578    JavaThread *thread = JavaThread::current();
2579    ThreadBlockInVM tbivm(thread);
2580
2581    bool threadIsSuspended;
2582    do {
2583      thread->set_suspend_equivalent();
2584      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2585      ::sem_wait(&sig_sem);
2586
2587      // were we externally suspended while we were waiting?
2588      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2589      if (threadIsSuspended) {
2590        //
2591        // The semaphore has been incremented, but while we were waiting
2592        // another thread suspended us. We don't want to continue running
2593        // while suspended because that would surprise the thread that
2594        // suspended us.
2595        //
2596        ::sem_post(&sig_sem);
2597
2598        thread->java_suspend_self();
2599      }
2600    } while (threadIsSuspended);
2601  }
2602}
2603
2604int os::signal_lookup() {
2605  return check_pending_signals(false);
2606}
2607
2608int os::signal_wait() {
2609  return check_pending_signals(true);
2610}
2611
2612////////////////////////////////////////////////////////////////////////////////
2613// Virtual Memory
2614
2615int os::vm_page_size() {
2616  // Seems redundant as all get out
2617  assert(os::Linux::page_size() != -1, "must call os::init");
2618  return os::Linux::page_size();
2619}
2620
2621// Solaris allocates memory by pages.
2622int os::vm_allocation_granularity() {
2623  assert(os::Linux::page_size() != -1, "must call os::init");
2624  return os::Linux::page_size();
2625}
2626
2627// Rationale behind this function:
2628//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2629//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2630//  samples for JITted code. Here we create private executable mapping over the code cache
2631//  and then we can use standard (well, almost, as mapping can change) way to provide
2632//  info for the reporting script by storing timestamp and location of symbol
2633void linux_wrap_code(char* base, size_t size) {
2634  static volatile jint cnt = 0;
2635
2636  if (!UseOprofile) {
2637    return;
2638  }
2639
2640  char buf[PATH_MAX+1];
2641  int num = Atomic::add(1, &cnt);
2642
2643  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2644           os::get_temp_directory(), os::current_process_id(), num);
2645  unlink(buf);
2646
2647  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2648
2649  if (fd != -1) {
2650    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2651    if (rv != (off_t)-1) {
2652      if (::write(fd, "", 1) == 1) {
2653        mmap(base, size,
2654             PROT_READ|PROT_WRITE|PROT_EXEC,
2655             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2656      }
2657    }
2658    ::close(fd);
2659    unlink(buf);
2660  }
2661}
2662
2663static bool recoverable_mmap_error(int err) {
2664  // See if the error is one we can let the caller handle. This
2665  // list of errno values comes from JBS-6843484. I can't find a
2666  // Linux man page that documents this specific set of errno
2667  // values so while this list currently matches Solaris, it may
2668  // change as we gain experience with this failure mode.
2669  switch (err) {
2670  case EBADF:
2671  case EINVAL:
2672  case ENOTSUP:
2673    // let the caller deal with these errors
2674    return true;
2675
2676  default:
2677    // Any remaining errors on this OS can cause our reserved mapping
2678    // to be lost. That can cause confusion where different data
2679    // structures think they have the same memory mapped. The worst
2680    // scenario is if both the VM and a library think they have the
2681    // same memory mapped.
2682    return false;
2683  }
2684}
2685
2686static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2687                                    int err) {
2688  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2689          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2690          strerror(err), err);
2691}
2692
2693static void warn_fail_commit_memory(char* addr, size_t size,
2694                                    size_t alignment_hint, bool exec,
2695                                    int err) {
2696  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2697          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2698          alignment_hint, exec, strerror(err), err);
2699}
2700
2701// NOTE: Linux kernel does not really reserve the pages for us.
2702//       All it does is to check if there are enough free pages
2703//       left at the time of mmap(). This could be a potential
2704//       problem.
2705int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2706  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2707  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2708                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2709  if (res != (uintptr_t) MAP_FAILED) {
2710    if (UseNUMAInterleaving) {
2711      numa_make_global(addr, size);
2712    }
2713    return 0;
2714  }
2715
2716  int err = errno;  // save errno from mmap() call above
2717
2718  if (!recoverable_mmap_error(err)) {
2719    warn_fail_commit_memory(addr, size, exec, err);
2720    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2721  }
2722
2723  return err;
2724}
2725
2726bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2727  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2728}
2729
2730void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2731                                  const char* mesg) {
2732  assert(mesg != NULL, "mesg must be specified");
2733  int err = os::Linux::commit_memory_impl(addr, size, exec);
2734  if (err != 0) {
2735    // the caller wants all commit errors to exit with the specified mesg:
2736    warn_fail_commit_memory(addr, size, exec, err);
2737    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2738  }
2739}
2740
2741// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2742#ifndef MAP_HUGETLB
2743#define MAP_HUGETLB 0x40000
2744#endif
2745
2746// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2747#ifndef MADV_HUGEPAGE
2748#define MADV_HUGEPAGE 14
2749#endif
2750
2751int os::Linux::commit_memory_impl(char* addr, size_t size,
2752                                  size_t alignment_hint, bool exec) {
2753  int err = os::Linux::commit_memory_impl(addr, size, exec);
2754  if (err == 0) {
2755    realign_memory(addr, size, alignment_hint);
2756  }
2757  return err;
2758}
2759
2760bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2761                          bool exec) {
2762  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2763}
2764
2765void os::pd_commit_memory_or_exit(char* addr, size_t size,
2766                                  size_t alignment_hint, bool exec,
2767                                  const char* mesg) {
2768  assert(mesg != NULL, "mesg must be specified");
2769  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2770  if (err != 0) {
2771    // the caller wants all commit errors to exit with the specified mesg:
2772    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2773    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2774  }
2775}
2776
2777void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2778  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2779    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2780    // be supported or the memory may already be backed by huge pages.
2781    ::madvise(addr, bytes, MADV_HUGEPAGE);
2782  }
2783}
2784
2785void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2786  // This method works by doing an mmap over an existing mmaping and effectively discarding
2787  // the existing pages. However it won't work for SHM-based large pages that cannot be
2788  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2789  // small pages on top of the SHM segment. This method always works for small pages, so we
2790  // allow that in any case.
2791  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2792    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2793  }
2794}
2795
2796void os::numa_make_global(char *addr, size_t bytes) {
2797  Linux::numa_interleave_memory(addr, bytes);
2798}
2799
2800// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2801// bind policy to MPOL_PREFERRED for the current thread.
2802#define USE_MPOL_PREFERRED 0
2803
2804void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2805  // To make NUMA and large pages more robust when both enabled, we need to ease
2806  // the requirements on where the memory should be allocated. MPOL_BIND is the
2807  // default policy and it will force memory to be allocated on the specified
2808  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2809  // the specified node, but will not force it. Using this policy will prevent
2810  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2811  // free large pages.
2812  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2813  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2814}
2815
2816bool os::numa_topology_changed()   { return false; }
2817
2818size_t os::numa_get_groups_num() {
2819  int max_node = Linux::numa_max_node();
2820  return max_node > 0 ? max_node + 1 : 1;
2821}
2822
2823int os::numa_get_group_id() {
2824  int cpu_id = Linux::sched_getcpu();
2825  if (cpu_id != -1) {
2826    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2827    if (lgrp_id != -1) {
2828      return lgrp_id;
2829    }
2830  }
2831  return 0;
2832}
2833
2834size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2835  for (size_t i = 0; i < size; i++) {
2836    ids[i] = i;
2837  }
2838  return size;
2839}
2840
2841bool os::get_page_info(char *start, page_info* info) {
2842  return false;
2843}
2844
2845char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2846  return end;
2847}
2848
2849
2850int os::Linux::sched_getcpu_syscall(void) {
2851  unsigned int cpu;
2852  int retval = -1;
2853
2854#if defined(IA32)
2855# ifndef SYS_getcpu
2856# define SYS_getcpu 318
2857# endif
2858  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2859#elif defined(AMD64)
2860// Unfortunately we have to bring all these macros here from vsyscall.h
2861// to be able to compile on old linuxes.
2862# define __NR_vgetcpu 2
2863# define VSYSCALL_START (-10UL << 20)
2864# define VSYSCALL_SIZE 1024
2865# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2866  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2867  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2868  retval = vgetcpu(&cpu, NULL, NULL);
2869#endif
2870
2871  return (retval == -1) ? retval : cpu;
2872}
2873
2874// Something to do with the numa-aware allocator needs these symbols
2875extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2876extern "C" JNIEXPORT void numa_error(char *where) { }
2877extern "C" JNIEXPORT int fork1() { return fork(); }
2878
2879
2880// If we are running with libnuma version > 2, then we should
2881// be trying to use symbols with versions 1.1
2882// If we are running with earlier version, which did not have symbol versions,
2883// we should use the base version.
2884void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2885  void *f = dlvsym(handle, name, "libnuma_1.1");
2886  if (f == NULL) {
2887    f = dlsym(handle, name);
2888  }
2889  return f;
2890}
2891
2892bool os::Linux::libnuma_init() {
2893  // sched_getcpu() should be in libc.
2894  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2895                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2896
2897  // If it's not, try a direct syscall.
2898  if (sched_getcpu() == -1)
2899    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2900
2901  if (sched_getcpu() != -1) { // Does it work?
2902    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2903    if (handle != NULL) {
2904      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2905                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2906      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2907                                       libnuma_dlsym(handle, "numa_max_node")));
2908      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2909                                        libnuma_dlsym(handle, "numa_available")));
2910      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2911                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2912      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2913                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2914      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2915                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2916
2917
2918      if (numa_available() != -1) {
2919        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2920        // Create a cpu -> node mapping
2921        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2922        rebuild_cpu_to_node_map();
2923        return true;
2924      }
2925    }
2926  }
2927  return false;
2928}
2929
2930// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2931// The table is later used in get_node_by_cpu().
2932void os::Linux::rebuild_cpu_to_node_map() {
2933  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2934                              // in libnuma (possible values are starting from 16,
2935                              // and continuing up with every other power of 2, but less
2936                              // than the maximum number of CPUs supported by kernel), and
2937                              // is a subject to change (in libnuma version 2 the requirements
2938                              // are more reasonable) we'll just hardcode the number they use
2939                              // in the library.
2940  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2941
2942  size_t cpu_num = os::active_processor_count();
2943  size_t cpu_map_size = NCPUS / BitsPerCLong;
2944  size_t cpu_map_valid_size =
2945    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2946
2947  cpu_to_node()->clear();
2948  cpu_to_node()->at_grow(cpu_num - 1);
2949  size_t node_num = numa_get_groups_num();
2950
2951  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2952  for (size_t i = 0; i < node_num; i++) {
2953    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2954      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2955        if (cpu_map[j] != 0) {
2956          for (size_t k = 0; k < BitsPerCLong; k++) {
2957            if (cpu_map[j] & (1UL << k)) {
2958              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2959            }
2960          }
2961        }
2962      }
2963    }
2964  }
2965  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2966}
2967
2968int os::Linux::get_node_by_cpu(int cpu_id) {
2969  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2970    return cpu_to_node()->at(cpu_id);
2971  }
2972  return -1;
2973}
2974
2975GrowableArray<int>* os::Linux::_cpu_to_node;
2976os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2977os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2978os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2979os::Linux::numa_available_func_t os::Linux::_numa_available;
2980os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2981os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2982os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2983unsigned long* os::Linux::_numa_all_nodes;
2984
2985bool os::pd_uncommit_memory(char* addr, size_t size) {
2986  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2987                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2988  return res  != (uintptr_t) MAP_FAILED;
2989}
2990
2991static
2992address get_stack_commited_bottom(address bottom, size_t size) {
2993  address nbot = bottom;
2994  address ntop = bottom + size;
2995
2996  size_t page_sz = os::vm_page_size();
2997  unsigned pages = size / page_sz;
2998
2999  unsigned char vec[1];
3000  unsigned imin = 1, imax = pages + 1, imid;
3001  int mincore_return_value;
3002
3003  while (imin < imax) {
3004    imid = (imax + imin) / 2;
3005    nbot = ntop - (imid * page_sz);
3006
3007    // Use a trick with mincore to check whether the page is mapped or not.
3008    // mincore sets vec to 1 if page resides in memory and to 0 if page
3009    // is swapped output but if page we are asking for is unmapped
3010    // it returns -1,ENOMEM
3011    mincore_return_value = mincore(nbot, page_sz, vec);
3012
3013    if (mincore_return_value == -1) {
3014      // Page is not mapped go up
3015      // to find first mapped page
3016      if (errno != EAGAIN) {
3017        assert(errno == ENOMEM, "Unexpected mincore errno");
3018        imax = imid;
3019      }
3020    } else {
3021      // Page is mapped go down
3022      // to find first not mapped page
3023      imin = imid + 1;
3024    }
3025  }
3026
3027  nbot = nbot + page_sz;
3028
3029  // Adjust stack bottom one page up if last checked page is not mapped
3030  if (mincore_return_value == -1) {
3031    nbot = nbot + page_sz;
3032  }
3033
3034  return nbot;
3035}
3036
3037
3038// Linux uses a growable mapping for the stack, and if the mapping for
3039// the stack guard pages is not removed when we detach a thread the
3040// stack cannot grow beyond the pages where the stack guard was
3041// mapped.  If at some point later in the process the stack expands to
3042// that point, the Linux kernel cannot expand the stack any further
3043// because the guard pages are in the way, and a segfault occurs.
3044//
3045// However, it's essential not to split the stack region by unmapping
3046// a region (leaving a hole) that's already part of the stack mapping,
3047// so if the stack mapping has already grown beyond the guard pages at
3048// the time we create them, we have to truncate the stack mapping.
3049// So, we need to know the extent of the stack mapping when
3050// create_stack_guard_pages() is called.
3051
3052// We only need this for stacks that are growable: at the time of
3053// writing thread stacks don't use growable mappings (i.e. those
3054// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3055// only applies to the main thread.
3056
3057// If the (growable) stack mapping already extends beyond the point
3058// where we're going to put our guard pages, truncate the mapping at
3059// that point by munmap()ping it.  This ensures that when we later
3060// munmap() the guard pages we don't leave a hole in the stack
3061// mapping. This only affects the main/initial thread
3062
3063bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3064
3065  if (os::Linux::is_initial_thread()) {
3066    // As we manually grow stack up to bottom inside create_attached_thread(),
3067    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3068    // we don't need to do anything special.
3069    // Check it first, before calling heavy function.
3070    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3071    unsigned char vec[1];
3072
3073    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3074      // Fallback to slow path on all errors, including EAGAIN
3075      stack_extent = (uintptr_t) get_stack_commited_bottom(
3076                                    os::Linux::initial_thread_stack_bottom(),
3077                                    (size_t)addr - stack_extent);
3078    }
3079
3080    if (stack_extent < (uintptr_t)addr) {
3081      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3082    }
3083  }
3084
3085  return os::commit_memory(addr, size, !ExecMem);
3086}
3087
3088// If this is a growable mapping, remove the guard pages entirely by
3089// munmap()ping them.  If not, just call uncommit_memory(). This only
3090// affects the main/initial thread, but guard against future OS changes
3091// It's safe to always unmap guard pages for initial thread because we
3092// always place it right after end of the mapped region
3093
3094bool os::remove_stack_guard_pages(char* addr, size_t size) {
3095  uintptr_t stack_extent, stack_base;
3096
3097  if (os::Linux::is_initial_thread()) {
3098    return ::munmap(addr, size) == 0;
3099  }
3100
3101  return os::uncommit_memory(addr, size);
3102}
3103
3104static address _highest_vm_reserved_address = NULL;
3105
3106// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3107// at 'requested_addr'. If there are existing memory mappings at the same
3108// location, however, they will be overwritten. If 'fixed' is false,
3109// 'requested_addr' is only treated as a hint, the return value may or
3110// may not start from the requested address. Unlike Linux mmap(), this
3111// function returns NULL to indicate failure.
3112static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3113  char * addr;
3114  int flags;
3115
3116  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3117  if (fixed) {
3118    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3119    flags |= MAP_FIXED;
3120  }
3121
3122  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3123  // touch an uncommitted page. Otherwise, the read/write might
3124  // succeed if we have enough swap space to back the physical page.
3125  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3126                       flags, -1, 0);
3127
3128  if (addr != MAP_FAILED) {
3129    // anon_mmap() should only get called during VM initialization,
3130    // don't need lock (actually we can skip locking even it can be called
3131    // from multiple threads, because _highest_vm_reserved_address is just a
3132    // hint about the upper limit of non-stack memory regions.)
3133    if ((address)addr + bytes > _highest_vm_reserved_address) {
3134      _highest_vm_reserved_address = (address)addr + bytes;
3135    }
3136  }
3137
3138  return addr == MAP_FAILED ? NULL : addr;
3139}
3140
3141// Don't update _highest_vm_reserved_address, because there might be memory
3142// regions above addr + size. If so, releasing a memory region only creates
3143// a hole in the address space, it doesn't help prevent heap-stack collision.
3144//
3145static int anon_munmap(char * addr, size_t size) {
3146  return ::munmap(addr, size) == 0;
3147}
3148
3149char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3150                         size_t alignment_hint) {
3151  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3152}
3153
3154bool os::pd_release_memory(char* addr, size_t size) {
3155  return anon_munmap(addr, size);
3156}
3157
3158static address highest_vm_reserved_address() {
3159  return _highest_vm_reserved_address;
3160}
3161
3162static bool linux_mprotect(char* addr, size_t size, int prot) {
3163  // Linux wants the mprotect address argument to be page aligned.
3164  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3165
3166  // According to SUSv3, mprotect() should only be used with mappings
3167  // established by mmap(), and mmap() always maps whole pages. Unaligned
3168  // 'addr' likely indicates problem in the VM (e.g. trying to change
3169  // protection of malloc'ed or statically allocated memory). Check the
3170  // caller if you hit this assert.
3171  assert(addr == bottom, "sanity check");
3172
3173  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3174  return ::mprotect(bottom, size, prot) == 0;
3175}
3176
3177// Set protections specified
3178bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3179                        bool is_committed) {
3180  unsigned int p = 0;
3181  switch (prot) {
3182  case MEM_PROT_NONE: p = PROT_NONE; break;
3183  case MEM_PROT_READ: p = PROT_READ; break;
3184  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3185  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3186  default:
3187    ShouldNotReachHere();
3188  }
3189  // is_committed is unused.
3190  return linux_mprotect(addr, bytes, p);
3191}
3192
3193bool os::guard_memory(char* addr, size_t size) {
3194  return linux_mprotect(addr, size, PROT_NONE);
3195}
3196
3197bool os::unguard_memory(char* addr, size_t size) {
3198  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3199}
3200
3201bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3202  bool result = false;
3203  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3204                 MAP_ANONYMOUS|MAP_PRIVATE,
3205                 -1, 0);
3206  if (p != MAP_FAILED) {
3207    void *aligned_p = align_ptr_up(p, page_size);
3208
3209    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3210
3211    munmap(p, page_size * 2);
3212  }
3213
3214  if (warn && !result) {
3215    warning("TransparentHugePages is not supported by the operating system.");
3216  }
3217
3218  return result;
3219}
3220
3221bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3222  bool result = false;
3223  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3224                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3225                 -1, 0);
3226
3227  if (p != MAP_FAILED) {
3228    // We don't know if this really is a huge page or not.
3229    FILE *fp = fopen("/proc/self/maps", "r");
3230    if (fp) {
3231      while (!feof(fp)) {
3232        char chars[257];
3233        long x = 0;
3234        if (fgets(chars, sizeof(chars), fp)) {
3235          if (sscanf(chars, "%lx-%*x", &x) == 1
3236              && x == (long)p) {
3237            if (strstr (chars, "hugepage")) {
3238              result = true;
3239              break;
3240            }
3241          }
3242        }
3243      }
3244      fclose(fp);
3245    }
3246    munmap(p, page_size);
3247  }
3248
3249  if (warn && !result) {
3250    warning("HugeTLBFS is not supported by the operating system.");
3251  }
3252
3253  return result;
3254}
3255
3256/*
3257* Set the coredump_filter bits to include largepages in core dump (bit 6)
3258*
3259* From the coredump_filter documentation:
3260*
3261* - (bit 0) anonymous private memory
3262* - (bit 1) anonymous shared memory
3263* - (bit 2) file-backed private memory
3264* - (bit 3) file-backed shared memory
3265* - (bit 4) ELF header pages in file-backed private memory areas (it is
3266*           effective only if the bit 2 is cleared)
3267* - (bit 5) hugetlb private memory
3268* - (bit 6) hugetlb shared memory
3269*/
3270static void set_coredump_filter(void) {
3271  FILE *f;
3272  long cdm;
3273
3274  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3275    return;
3276  }
3277
3278  if (fscanf(f, "%lx", &cdm) != 1) {
3279    fclose(f);
3280    return;
3281  }
3282
3283  rewind(f);
3284
3285  if ((cdm & LARGEPAGES_BIT) == 0) {
3286    cdm |= LARGEPAGES_BIT;
3287    fprintf(f, "%#lx", cdm);
3288  }
3289
3290  fclose(f);
3291}
3292
3293// Large page support
3294
3295static size_t _large_page_size = 0;
3296
3297size_t os::Linux::find_large_page_size() {
3298  size_t large_page_size = 0;
3299
3300  // large_page_size on Linux is used to round up heap size. x86 uses either
3301  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3302  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3303  // page as large as 256M.
3304  //
3305  // Here we try to figure out page size by parsing /proc/meminfo and looking
3306  // for a line with the following format:
3307  //    Hugepagesize:     2048 kB
3308  //
3309  // If we can't determine the value (e.g. /proc is not mounted, or the text
3310  // format has been changed), we'll use the largest page size supported by
3311  // the processor.
3312
3313#ifndef ZERO
3314  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3315                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3316#endif // ZERO
3317
3318  FILE *fp = fopen("/proc/meminfo", "r");
3319  if (fp) {
3320    while (!feof(fp)) {
3321      int x = 0;
3322      char buf[16];
3323      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3324        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3325          large_page_size = x * K;
3326          break;
3327        }
3328      } else {
3329        // skip to next line
3330        for (;;) {
3331          int ch = fgetc(fp);
3332          if (ch == EOF || ch == (int)'\n') break;
3333        }
3334      }
3335    }
3336    fclose(fp);
3337  }
3338
3339  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3340    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3341        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3342        proper_unit_for_byte_size(large_page_size));
3343  }
3344
3345  return large_page_size;
3346}
3347
3348size_t os::Linux::setup_large_page_size() {
3349  _large_page_size = Linux::find_large_page_size();
3350  const size_t default_page_size = (size_t)Linux::page_size();
3351  if (_large_page_size > default_page_size) {
3352    _page_sizes[0] = _large_page_size;
3353    _page_sizes[1] = default_page_size;
3354    _page_sizes[2] = 0;
3355  }
3356
3357  return _large_page_size;
3358}
3359
3360bool os::Linux::setup_large_page_type(size_t page_size) {
3361  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3362      FLAG_IS_DEFAULT(UseSHM) &&
3363      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3364
3365    // The type of large pages has not been specified by the user.
3366
3367    // Try UseHugeTLBFS and then UseSHM.
3368    UseHugeTLBFS = UseSHM = true;
3369
3370    // Don't try UseTransparentHugePages since there are known
3371    // performance issues with it turned on. This might change in the future.
3372    UseTransparentHugePages = false;
3373  }
3374
3375  if (UseTransparentHugePages) {
3376    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3377    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3378      UseHugeTLBFS = false;
3379      UseSHM = false;
3380      return true;
3381    }
3382    UseTransparentHugePages = false;
3383  }
3384
3385  if (UseHugeTLBFS) {
3386    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3387    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3388      UseSHM = false;
3389      return true;
3390    }
3391    UseHugeTLBFS = false;
3392  }
3393
3394  return UseSHM;
3395}
3396
3397void os::large_page_init() {
3398  if (!UseLargePages &&
3399      !UseTransparentHugePages &&
3400      !UseHugeTLBFS &&
3401      !UseSHM) {
3402    // Not using large pages.
3403    return;
3404  }
3405
3406  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3407    // The user explicitly turned off large pages.
3408    // Ignore the rest of the large pages flags.
3409    UseTransparentHugePages = false;
3410    UseHugeTLBFS = false;
3411    UseSHM = false;
3412    return;
3413  }
3414
3415  size_t large_page_size = Linux::setup_large_page_size();
3416  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3417
3418  set_coredump_filter();
3419}
3420
3421#ifndef SHM_HUGETLB
3422#define SHM_HUGETLB 04000
3423#endif
3424
3425char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3426  // "exec" is passed in but not used.  Creating the shared image for
3427  // the code cache doesn't have an SHM_X executable permission to check.
3428  assert(UseLargePages && UseSHM, "only for SHM large pages");
3429  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3430
3431  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3432    return NULL; // Fallback to small pages.
3433  }
3434
3435  key_t key = IPC_PRIVATE;
3436  char *addr;
3437
3438  bool warn_on_failure = UseLargePages &&
3439                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3440                         !FLAG_IS_DEFAULT(UseSHM) ||
3441                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3442                        );
3443  char msg[128];
3444
3445  // Create a large shared memory region to attach to based on size.
3446  // Currently, size is the total size of the heap
3447  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3448  if (shmid == -1) {
3449     // Possible reasons for shmget failure:
3450     // 1. shmmax is too small for Java heap.
3451     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3452     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3453     // 2. not enough large page memory.
3454     //    > check available large pages: cat /proc/meminfo
3455     //    > increase amount of large pages:
3456     //          echo new_value > /proc/sys/vm/nr_hugepages
3457     //      Note 1: different Linux may use different name for this property,
3458     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3459     //      Note 2: it's possible there's enough physical memory available but
3460     //            they are so fragmented after a long run that they can't
3461     //            coalesce into large pages. Try to reserve large pages when
3462     //            the system is still "fresh".
3463     if (warn_on_failure) {
3464       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3465       warning(msg);
3466     }
3467     return NULL;
3468  }
3469
3470  // attach to the region
3471  addr = (char*)shmat(shmid, req_addr, 0);
3472  int err = errno;
3473
3474  // Remove shmid. If shmat() is successful, the actual shared memory segment
3475  // will be deleted when it's detached by shmdt() or when the process
3476  // terminates. If shmat() is not successful this will remove the shared
3477  // segment immediately.
3478  shmctl(shmid, IPC_RMID, NULL);
3479
3480  if ((intptr_t)addr == -1) {
3481     if (warn_on_failure) {
3482       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3483       warning(msg);
3484     }
3485     return NULL;
3486  }
3487
3488  return addr;
3489}
3490
3491static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3492  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3493
3494  bool warn_on_failure = UseLargePages &&
3495      (!FLAG_IS_DEFAULT(UseLargePages) ||
3496       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3497       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3498
3499  if (warn_on_failure) {
3500    char msg[128];
3501    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3502        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3503    warning(msg);
3504  }
3505}
3506
3507char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3508  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3509  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3510  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3511
3512  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3513  char* addr = (char*)::mmap(req_addr, bytes, prot,
3514                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3515                             -1, 0);
3516
3517  if (addr == MAP_FAILED) {
3518    warn_on_large_pages_failure(req_addr, bytes, errno);
3519    return NULL;
3520  }
3521
3522  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3523
3524  return addr;
3525}
3526
3527char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3528  size_t large_page_size = os::large_page_size();
3529
3530  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3531
3532  // Allocate small pages.
3533
3534  char* start;
3535  if (req_addr != NULL) {
3536    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3537    assert(is_size_aligned(bytes, alignment), "Must be");
3538    start = os::reserve_memory(bytes, req_addr);
3539    assert(start == NULL || start == req_addr, "Must be");
3540  } else {
3541    start = os::reserve_memory_aligned(bytes, alignment);
3542  }
3543
3544  if (start == NULL) {
3545    return NULL;
3546  }
3547
3548  assert(is_ptr_aligned(start, alignment), "Must be");
3549
3550  // os::reserve_memory_special will record this memory area.
3551  // Need to release it here to prevent overlapping reservations.
3552  MemTracker::record_virtual_memory_release((address)start, bytes);
3553
3554  char* end = start + bytes;
3555
3556  // Find the regions of the allocated chunk that can be promoted to large pages.
3557  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3558  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3559
3560  size_t lp_bytes = lp_end - lp_start;
3561
3562  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3563
3564  if (lp_bytes == 0) {
3565    // The mapped region doesn't even span the start and the end of a large page.
3566    // Fall back to allocate a non-special area.
3567    ::munmap(start, end - start);
3568    return NULL;
3569  }
3570
3571  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3572
3573
3574  void* result;
3575
3576  if (start != lp_start) {
3577    result = ::mmap(start, lp_start - start, prot,
3578                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3579                    -1, 0);
3580    if (result == MAP_FAILED) {
3581      ::munmap(lp_start, end - lp_start);
3582      return NULL;
3583    }
3584  }
3585
3586  result = ::mmap(lp_start, lp_bytes, prot,
3587                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3588                  -1, 0);
3589  if (result == MAP_FAILED) {
3590    warn_on_large_pages_failure(req_addr, bytes, errno);
3591    // If the mmap above fails, the large pages region will be unmapped and we
3592    // have regions before and after with small pages. Release these regions.
3593    //
3594    // |  mapped  |  unmapped  |  mapped  |
3595    // ^          ^            ^          ^
3596    // start      lp_start     lp_end     end
3597    //
3598    ::munmap(start, lp_start - start);
3599    ::munmap(lp_end, end - lp_end);
3600    return NULL;
3601  }
3602
3603  if (lp_end != end) {
3604      result = ::mmap(lp_end, end - lp_end, prot,
3605                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3606                      -1, 0);
3607    if (result == MAP_FAILED) {
3608      ::munmap(start, lp_end - start);
3609      return NULL;
3610    }
3611  }
3612
3613  return start;
3614}
3615
3616char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3617  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3618  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3619  assert(is_power_of_2(alignment), "Must be");
3620  assert(is_power_of_2(os::large_page_size()), "Must be");
3621  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3622
3623  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3624    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3625  } else {
3626    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3627  }
3628}
3629
3630char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3631  assert(UseLargePages, "only for large pages");
3632
3633  char* addr;
3634  if (UseSHM) {
3635    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3636  } else {
3637    assert(UseHugeTLBFS, "must be");
3638    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3639  }
3640
3641  if (addr != NULL) {
3642    if (UseNUMAInterleaving) {
3643      numa_make_global(addr, bytes);
3644    }
3645
3646    // The memory is committed
3647    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3648  }
3649
3650  return addr;
3651}
3652
3653bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3654  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3655  return shmdt(base) == 0;
3656}
3657
3658bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3659  return pd_release_memory(base, bytes);
3660}
3661
3662bool os::release_memory_special(char* base, size_t bytes) {
3663  assert(UseLargePages, "only for large pages");
3664
3665  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3666
3667  bool res;
3668  if (UseSHM) {
3669    res = os::Linux::release_memory_special_shm(base, bytes);
3670  } else {
3671    assert(UseHugeTLBFS, "must be");
3672    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3673  }
3674
3675  if (res) {
3676    tkr.record((address)base, bytes);
3677  } else {
3678    tkr.discard();
3679  }
3680
3681  return res;
3682}
3683
3684size_t os::large_page_size() {
3685  return _large_page_size;
3686}
3687
3688// With SysV SHM the entire memory region must be allocated as shared
3689// memory.
3690// HugeTLBFS allows application to commit large page memory on demand.
3691// However, when committing memory with HugeTLBFS fails, the region
3692// that was supposed to be committed will lose the old reservation
3693// and allow other threads to steal that memory region. Because of this
3694// behavior we can't commit HugeTLBFS memory.
3695bool os::can_commit_large_page_memory() {
3696  return UseTransparentHugePages;
3697}
3698
3699bool os::can_execute_large_page_memory() {
3700  return UseTransparentHugePages || UseHugeTLBFS;
3701}
3702
3703// Reserve memory at an arbitrary address, only if that area is
3704// available (and not reserved for something else).
3705
3706char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3707  const int max_tries = 10;
3708  char* base[max_tries];
3709  size_t size[max_tries];
3710  const size_t gap = 0x000000;
3711
3712  // Assert only that the size is a multiple of the page size, since
3713  // that's all that mmap requires, and since that's all we really know
3714  // about at this low abstraction level.  If we need higher alignment,
3715  // we can either pass an alignment to this method or verify alignment
3716  // in one of the methods further up the call chain.  See bug 5044738.
3717  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3718
3719  // Repeatedly allocate blocks until the block is allocated at the
3720  // right spot. Give up after max_tries. Note that reserve_memory() will
3721  // automatically update _highest_vm_reserved_address if the call is
3722  // successful. The variable tracks the highest memory address every reserved
3723  // by JVM. It is used to detect heap-stack collision if running with
3724  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3725  // space than needed, it could confuse the collision detecting code. To
3726  // solve the problem, save current _highest_vm_reserved_address and
3727  // calculate the correct value before return.
3728  address old_highest = _highest_vm_reserved_address;
3729
3730  // Linux mmap allows caller to pass an address as hint; give it a try first,
3731  // if kernel honors the hint then we can return immediately.
3732  char * addr = anon_mmap(requested_addr, bytes, false);
3733  if (addr == requested_addr) {
3734     return requested_addr;
3735  }
3736
3737  if (addr != NULL) {
3738     // mmap() is successful but it fails to reserve at the requested address
3739     anon_munmap(addr, bytes);
3740  }
3741
3742  int i;
3743  for (i = 0; i < max_tries; ++i) {
3744    base[i] = reserve_memory(bytes);
3745
3746    if (base[i] != NULL) {
3747      // Is this the block we wanted?
3748      if (base[i] == requested_addr) {
3749        size[i] = bytes;
3750        break;
3751      }
3752
3753      // Does this overlap the block we wanted? Give back the overlapped
3754      // parts and try again.
3755
3756      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3757      if (top_overlap >= 0 && top_overlap < bytes) {
3758        unmap_memory(base[i], top_overlap);
3759        base[i] += top_overlap;
3760        size[i] = bytes - top_overlap;
3761      } else {
3762        size_t bottom_overlap = base[i] + bytes - requested_addr;
3763        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3764          unmap_memory(requested_addr, bottom_overlap);
3765          size[i] = bytes - bottom_overlap;
3766        } else {
3767          size[i] = bytes;
3768        }
3769      }
3770    }
3771  }
3772
3773  // Give back the unused reserved pieces.
3774
3775  for (int j = 0; j < i; ++j) {
3776    if (base[j] != NULL) {
3777      unmap_memory(base[j], size[j]);
3778    }
3779  }
3780
3781  if (i < max_tries) {
3782    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3783    return requested_addr;
3784  } else {
3785    _highest_vm_reserved_address = old_highest;
3786    return NULL;
3787  }
3788}
3789
3790size_t os::read(int fd, void *buf, unsigned int nBytes) {
3791  return ::read(fd, buf, nBytes);
3792}
3793
3794// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3795// Solaris uses poll(), linux uses park().
3796// Poll() is likely a better choice, assuming that Thread.interrupt()
3797// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3798// SIGSEGV, see 4355769.
3799
3800int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3801  assert(thread == Thread::current(),  "thread consistency check");
3802
3803  ParkEvent * const slp = thread->_SleepEvent ;
3804  slp->reset() ;
3805  OrderAccess::fence() ;
3806
3807  if (interruptible) {
3808    jlong prevtime = javaTimeNanos();
3809
3810    for (;;) {
3811      if (os::is_interrupted(thread, true)) {
3812        return OS_INTRPT;
3813      }
3814
3815      jlong newtime = javaTimeNanos();
3816
3817      if (newtime - prevtime < 0) {
3818        // time moving backwards, should only happen if no monotonic clock
3819        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3820        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3821      } else {
3822        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3823      }
3824
3825      if(millis <= 0) {
3826        return OS_OK;
3827      }
3828
3829      prevtime = newtime;
3830
3831      {
3832        assert(thread->is_Java_thread(), "sanity check");
3833        JavaThread *jt = (JavaThread *) thread;
3834        ThreadBlockInVM tbivm(jt);
3835        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3836
3837        jt->set_suspend_equivalent();
3838        // cleared by handle_special_suspend_equivalent_condition() or
3839        // java_suspend_self() via check_and_wait_while_suspended()
3840
3841        slp->park(millis);
3842
3843        // were we externally suspended while we were waiting?
3844        jt->check_and_wait_while_suspended();
3845      }
3846    }
3847  } else {
3848    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3849    jlong prevtime = javaTimeNanos();
3850
3851    for (;;) {
3852      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3853      // the 1st iteration ...
3854      jlong newtime = javaTimeNanos();
3855
3856      if (newtime - prevtime < 0) {
3857        // time moving backwards, should only happen if no monotonic clock
3858        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3859        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3860      } else {
3861        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3862      }
3863
3864      if(millis <= 0) break ;
3865
3866      prevtime = newtime;
3867      slp->park(millis);
3868    }
3869    return OS_OK ;
3870  }
3871}
3872
3873int os::naked_sleep() {
3874  // %% make the sleep time an integer flag. for now use 1 millisec.
3875  return os::sleep(Thread::current(), 1, false);
3876}
3877
3878// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3879void os::infinite_sleep() {
3880  while (true) {    // sleep forever ...
3881    ::sleep(100);   // ... 100 seconds at a time
3882  }
3883}
3884
3885// Used to convert frequent JVM_Yield() to nops
3886bool os::dont_yield() {
3887  return DontYieldALot;
3888}
3889
3890void os::yield() {
3891  sched_yield();
3892}
3893
3894os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3895
3896void os::yield_all(int attempts) {
3897  // Yields to all threads, including threads with lower priorities
3898  // Threads on Linux are all with same priority. The Solaris style
3899  // os::yield_all() with nanosleep(1ms) is not necessary.
3900  sched_yield();
3901}
3902
3903// Called from the tight loops to possibly influence time-sharing heuristics
3904void os::loop_breaker(int attempts) {
3905  os::yield_all(attempts);
3906}
3907
3908////////////////////////////////////////////////////////////////////////////////
3909// thread priority support
3910
3911// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3912// only supports dynamic priority, static priority must be zero. For real-time
3913// applications, Linux supports SCHED_RR which allows static priority (1-99).
3914// However, for large multi-threaded applications, SCHED_RR is not only slower
3915// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3916// of 5 runs - Sep 2005).
3917//
3918// The following code actually changes the niceness of kernel-thread/LWP. It
3919// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3920// not the entire user process, and user level threads are 1:1 mapped to kernel
3921// threads. It has always been the case, but could change in the future. For
3922// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3923// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3924
3925int os::java_to_os_priority[CriticalPriority + 1] = {
3926  19,              // 0 Entry should never be used
3927
3928   4,              // 1 MinPriority
3929   3,              // 2
3930   2,              // 3
3931
3932   1,              // 4
3933   0,              // 5 NormPriority
3934  -1,              // 6
3935
3936  -2,              // 7
3937  -3,              // 8
3938  -4,              // 9 NearMaxPriority
3939
3940  -5,              // 10 MaxPriority
3941
3942  -5               // 11 CriticalPriority
3943};
3944
3945static int prio_init() {
3946  if (ThreadPriorityPolicy == 1) {
3947    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3948    // if effective uid is not root. Perhaps, a more elegant way of doing
3949    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3950    if (geteuid() != 0) {
3951      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3952        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3953      }
3954      ThreadPriorityPolicy = 0;
3955    }
3956  }
3957  if (UseCriticalJavaThreadPriority) {
3958    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3959  }
3960  return 0;
3961}
3962
3963OSReturn os::set_native_priority(Thread* thread, int newpri) {
3964  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3965
3966  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3967  return (ret == 0) ? OS_OK : OS_ERR;
3968}
3969
3970OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3971  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3972    *priority_ptr = java_to_os_priority[NormPriority];
3973    return OS_OK;
3974  }
3975
3976  errno = 0;
3977  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3978  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3979}
3980
3981// Hint to the underlying OS that a task switch would not be good.
3982// Void return because it's a hint and can fail.
3983void os::hint_no_preempt() {}
3984
3985////////////////////////////////////////////////////////////////////////////////
3986// suspend/resume support
3987
3988//  the low-level signal-based suspend/resume support is a remnant from the
3989//  old VM-suspension that used to be for java-suspension, safepoints etc,
3990//  within hotspot. Now there is a single use-case for this:
3991//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3992//      that runs in the watcher thread.
3993//  The remaining code is greatly simplified from the more general suspension
3994//  code that used to be used.
3995//
3996//  The protocol is quite simple:
3997//  - suspend:
3998//      - sends a signal to the target thread
3999//      - polls the suspend state of the osthread using a yield loop
4000//      - target thread signal handler (SR_handler) sets suspend state
4001//        and blocks in sigsuspend until continued
4002//  - resume:
4003//      - sets target osthread state to continue
4004//      - sends signal to end the sigsuspend loop in the SR_handler
4005//
4006//  Note that the SR_lock plays no role in this suspend/resume protocol.
4007//
4008
4009static void resume_clear_context(OSThread *osthread) {
4010  osthread->set_ucontext(NULL);
4011  osthread->set_siginfo(NULL);
4012}
4013
4014static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4015  osthread->set_ucontext(context);
4016  osthread->set_siginfo(siginfo);
4017}
4018
4019//
4020// Handler function invoked when a thread's execution is suspended or
4021// resumed. We have to be careful that only async-safe functions are
4022// called here (Note: most pthread functions are not async safe and
4023// should be avoided.)
4024//
4025// Note: sigwait() is a more natural fit than sigsuspend() from an
4026// interface point of view, but sigwait() prevents the signal hander
4027// from being run. libpthread would get very confused by not having
4028// its signal handlers run and prevents sigwait()'s use with the
4029// mutex granting granting signal.
4030//
4031// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4032//
4033static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4034  // Save and restore errno to avoid confusing native code with EINTR
4035  // after sigsuspend.
4036  int old_errno = errno;
4037
4038  Thread* thread = Thread::current();
4039  OSThread* osthread = thread->osthread();
4040  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4041
4042  os::SuspendResume::State current = osthread->sr.state();
4043  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4044    suspend_save_context(osthread, siginfo, context);
4045
4046    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4047    os::SuspendResume::State state = osthread->sr.suspended();
4048    if (state == os::SuspendResume::SR_SUSPENDED) {
4049      sigset_t suspend_set;  // signals for sigsuspend()
4050
4051      // get current set of blocked signals and unblock resume signal
4052      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4053      sigdelset(&suspend_set, SR_signum);
4054
4055      sr_semaphore.signal();
4056      // wait here until we are resumed
4057      while (1) {
4058        sigsuspend(&suspend_set);
4059
4060        os::SuspendResume::State result = osthread->sr.running();
4061        if (result == os::SuspendResume::SR_RUNNING) {
4062          sr_semaphore.signal();
4063          break;
4064        }
4065      }
4066
4067    } else if (state == os::SuspendResume::SR_RUNNING) {
4068      // request was cancelled, continue
4069    } else {
4070      ShouldNotReachHere();
4071    }
4072
4073    resume_clear_context(osthread);
4074  } else if (current == os::SuspendResume::SR_RUNNING) {
4075    // request was cancelled, continue
4076  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4077    // ignore
4078  } else {
4079    // ignore
4080  }
4081
4082  errno = old_errno;
4083}
4084
4085
4086static int SR_initialize() {
4087  struct sigaction act;
4088  char *s;
4089  /* Get signal number to use for suspend/resume */
4090  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4091    int sig = ::strtol(s, 0, 10);
4092    if (sig > 0 || sig < _NSIG) {
4093        SR_signum = sig;
4094    }
4095  }
4096
4097  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4098        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4099
4100  sigemptyset(&SR_sigset);
4101  sigaddset(&SR_sigset, SR_signum);
4102
4103  /* Set up signal handler for suspend/resume */
4104  act.sa_flags = SA_RESTART|SA_SIGINFO;
4105  act.sa_handler = (void (*)(int)) SR_handler;
4106
4107  // SR_signum is blocked by default.
4108  // 4528190 - We also need to block pthread restart signal (32 on all
4109  // supported Linux platforms). Note that LinuxThreads need to block
4110  // this signal for all threads to work properly. So we don't have
4111  // to use hard-coded signal number when setting up the mask.
4112  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4113
4114  if (sigaction(SR_signum, &act, 0) == -1) {
4115    return -1;
4116  }
4117
4118  // Save signal flag
4119  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4120  return 0;
4121}
4122
4123static int sr_notify(OSThread* osthread) {
4124  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4125  assert_status(status == 0, status, "pthread_kill");
4126  return status;
4127}
4128
4129// "Randomly" selected value for how long we want to spin
4130// before bailing out on suspending a thread, also how often
4131// we send a signal to a thread we want to resume
4132static const int RANDOMLY_LARGE_INTEGER = 1000000;
4133static const int RANDOMLY_LARGE_INTEGER2 = 100;
4134
4135// returns true on success and false on error - really an error is fatal
4136// but this seems the normal response to library errors
4137static bool do_suspend(OSThread* osthread) {
4138  assert(osthread->sr.is_running(), "thread should be running");
4139  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4140
4141  // mark as suspended and send signal
4142  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4143    // failed to switch, state wasn't running?
4144    ShouldNotReachHere();
4145    return false;
4146  }
4147
4148  if (sr_notify(osthread) != 0) {
4149    ShouldNotReachHere();
4150  }
4151
4152  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4153  while (true) {
4154    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4155      break;
4156    } else {
4157      // timeout
4158      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4159      if (cancelled == os::SuspendResume::SR_RUNNING) {
4160        return false;
4161      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4162        // make sure that we consume the signal on the semaphore as well
4163        sr_semaphore.wait();
4164        break;
4165      } else {
4166        ShouldNotReachHere();
4167        return false;
4168      }
4169    }
4170  }
4171
4172  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4173  return true;
4174}
4175
4176static void do_resume(OSThread* osthread) {
4177  assert(osthread->sr.is_suspended(), "thread should be suspended");
4178  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4179
4180  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4181    // failed to switch to WAKEUP_REQUEST
4182    ShouldNotReachHere();
4183    return;
4184  }
4185
4186  while (true) {
4187    if (sr_notify(osthread) == 0) {
4188      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4189        if (osthread->sr.is_running()) {
4190          return;
4191        }
4192      }
4193    } else {
4194      ShouldNotReachHere();
4195    }
4196  }
4197
4198  guarantee(osthread->sr.is_running(), "Must be running!");
4199}
4200
4201////////////////////////////////////////////////////////////////////////////////
4202// interrupt support
4203
4204void os::interrupt(Thread* thread) {
4205  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4206    "possibility of dangling Thread pointer");
4207
4208  OSThread* osthread = thread->osthread();
4209
4210  if (!osthread->interrupted()) {
4211    osthread->set_interrupted(true);
4212    // More than one thread can get here with the same value of osthread,
4213    // resulting in multiple notifications.  We do, however, want the store
4214    // to interrupted() to be visible to other threads before we execute unpark().
4215    OrderAccess::fence();
4216    ParkEvent * const slp = thread->_SleepEvent ;
4217    if (slp != NULL) slp->unpark() ;
4218  }
4219
4220  // For JSR166. Unpark even if interrupt status already was set
4221  if (thread->is_Java_thread())
4222    ((JavaThread*)thread)->parker()->unpark();
4223
4224  ParkEvent * ev = thread->_ParkEvent ;
4225  if (ev != NULL) ev->unpark() ;
4226
4227}
4228
4229bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4230  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4231    "possibility of dangling Thread pointer");
4232
4233  OSThread* osthread = thread->osthread();
4234
4235  bool interrupted = osthread->interrupted();
4236
4237  if (interrupted && clear_interrupted) {
4238    osthread->set_interrupted(false);
4239    // consider thread->_SleepEvent->reset() ... optional optimization
4240  }
4241
4242  return interrupted;
4243}
4244
4245///////////////////////////////////////////////////////////////////////////////////
4246// signal handling (except suspend/resume)
4247
4248// This routine may be used by user applications as a "hook" to catch signals.
4249// The user-defined signal handler must pass unrecognized signals to this
4250// routine, and if it returns true (non-zero), then the signal handler must
4251// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4252// routine will never retun false (zero), but instead will execute a VM panic
4253// routine kill the process.
4254//
4255// If this routine returns false, it is OK to call it again.  This allows
4256// the user-defined signal handler to perform checks either before or after
4257// the VM performs its own checks.  Naturally, the user code would be making
4258// a serious error if it tried to handle an exception (such as a null check
4259// or breakpoint) that the VM was generating for its own correct operation.
4260//
4261// This routine may recognize any of the following kinds of signals:
4262//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4263// It should be consulted by handlers for any of those signals.
4264//
4265// The caller of this routine must pass in the three arguments supplied
4266// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4267// field of the structure passed to sigaction().  This routine assumes that
4268// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4269//
4270// Note that the VM will print warnings if it detects conflicting signal
4271// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4272//
4273extern "C" JNIEXPORT int
4274JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4275                        void* ucontext, int abort_if_unrecognized);
4276
4277void signalHandler(int sig, siginfo_t* info, void* uc) {
4278  assert(info != NULL && uc != NULL, "it must be old kernel");
4279  int orig_errno = errno;  // Preserve errno value over signal handler.
4280  JVM_handle_linux_signal(sig, info, uc, true);
4281  errno = orig_errno;
4282}
4283
4284
4285// This boolean allows users to forward their own non-matching signals
4286// to JVM_handle_linux_signal, harmlessly.
4287bool os::Linux::signal_handlers_are_installed = false;
4288
4289// For signal-chaining
4290struct sigaction os::Linux::sigact[MAXSIGNUM];
4291unsigned int os::Linux::sigs = 0;
4292bool os::Linux::libjsig_is_loaded = false;
4293typedef struct sigaction *(*get_signal_t)(int);
4294get_signal_t os::Linux::get_signal_action = NULL;
4295
4296struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4297  struct sigaction *actp = NULL;
4298
4299  if (libjsig_is_loaded) {
4300    // Retrieve the old signal handler from libjsig
4301    actp = (*get_signal_action)(sig);
4302  }
4303  if (actp == NULL) {
4304    // Retrieve the preinstalled signal handler from jvm
4305    actp = get_preinstalled_handler(sig);
4306  }
4307
4308  return actp;
4309}
4310
4311static bool call_chained_handler(struct sigaction *actp, int sig,
4312                                 siginfo_t *siginfo, void *context) {
4313  // Call the old signal handler
4314  if (actp->sa_handler == SIG_DFL) {
4315    // It's more reasonable to let jvm treat it as an unexpected exception
4316    // instead of taking the default action.
4317    return false;
4318  } else if (actp->sa_handler != SIG_IGN) {
4319    if ((actp->sa_flags & SA_NODEFER) == 0) {
4320      // automaticlly block the signal
4321      sigaddset(&(actp->sa_mask), sig);
4322    }
4323
4324    sa_handler_t hand;
4325    sa_sigaction_t sa;
4326    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4327    // retrieve the chained handler
4328    if (siginfo_flag_set) {
4329      sa = actp->sa_sigaction;
4330    } else {
4331      hand = actp->sa_handler;
4332    }
4333
4334    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4335      actp->sa_handler = SIG_DFL;
4336    }
4337
4338    // try to honor the signal mask
4339    sigset_t oset;
4340    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4341
4342    // call into the chained handler
4343    if (siginfo_flag_set) {
4344      (*sa)(sig, siginfo, context);
4345    } else {
4346      (*hand)(sig);
4347    }
4348
4349    // restore the signal mask
4350    pthread_sigmask(SIG_SETMASK, &oset, 0);
4351  }
4352  // Tell jvm's signal handler the signal is taken care of.
4353  return true;
4354}
4355
4356bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4357  bool chained = false;
4358  // signal-chaining
4359  if (UseSignalChaining) {
4360    struct sigaction *actp = get_chained_signal_action(sig);
4361    if (actp != NULL) {
4362      chained = call_chained_handler(actp, sig, siginfo, context);
4363    }
4364  }
4365  return chained;
4366}
4367
4368struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4369  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4370    return &sigact[sig];
4371  }
4372  return NULL;
4373}
4374
4375void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4376  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4377  sigact[sig] = oldAct;
4378  sigs |= (unsigned int)1 << sig;
4379}
4380
4381// for diagnostic
4382int os::Linux::sigflags[MAXSIGNUM];
4383
4384int os::Linux::get_our_sigflags(int sig) {
4385  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4386  return sigflags[sig];
4387}
4388
4389void os::Linux::set_our_sigflags(int sig, int flags) {
4390  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4391  sigflags[sig] = flags;
4392}
4393
4394void os::Linux::set_signal_handler(int sig, bool set_installed) {
4395  // Check for overwrite.
4396  struct sigaction oldAct;
4397  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4398
4399  void* oldhand = oldAct.sa_sigaction
4400                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4401                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4402  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4403      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4404      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4405    if (AllowUserSignalHandlers || !set_installed) {
4406      // Do not overwrite; user takes responsibility to forward to us.
4407      return;
4408    } else if (UseSignalChaining) {
4409      // save the old handler in jvm
4410      save_preinstalled_handler(sig, oldAct);
4411      // libjsig also interposes the sigaction() call below and saves the
4412      // old sigaction on it own.
4413    } else {
4414      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4415                    "%#lx for signal %d.", (long)oldhand, sig));
4416    }
4417  }
4418
4419  struct sigaction sigAct;
4420  sigfillset(&(sigAct.sa_mask));
4421  sigAct.sa_handler = SIG_DFL;
4422  if (!set_installed) {
4423    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4424  } else {
4425    sigAct.sa_sigaction = signalHandler;
4426    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4427  }
4428  // Save flags, which are set by ours
4429  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4430  sigflags[sig] = sigAct.sa_flags;
4431
4432  int ret = sigaction(sig, &sigAct, &oldAct);
4433  assert(ret == 0, "check");
4434
4435  void* oldhand2  = oldAct.sa_sigaction
4436                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4437                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4438  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4439}
4440
4441// install signal handlers for signals that HotSpot needs to
4442// handle in order to support Java-level exception handling.
4443
4444void os::Linux::install_signal_handlers() {
4445  if (!signal_handlers_are_installed) {
4446    signal_handlers_are_installed = true;
4447
4448    // signal-chaining
4449    typedef void (*signal_setting_t)();
4450    signal_setting_t begin_signal_setting = NULL;
4451    signal_setting_t end_signal_setting = NULL;
4452    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4453                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4454    if (begin_signal_setting != NULL) {
4455      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4456                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4457      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4458                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4459      libjsig_is_loaded = true;
4460      assert(UseSignalChaining, "should enable signal-chaining");
4461    }
4462    if (libjsig_is_loaded) {
4463      // Tell libjsig jvm is setting signal handlers
4464      (*begin_signal_setting)();
4465    }
4466
4467    set_signal_handler(SIGSEGV, true);
4468    set_signal_handler(SIGPIPE, true);
4469    set_signal_handler(SIGBUS, true);
4470    set_signal_handler(SIGILL, true);
4471    set_signal_handler(SIGFPE, true);
4472    set_signal_handler(SIGXFSZ, true);
4473
4474    if (libjsig_is_loaded) {
4475      // Tell libjsig jvm finishes setting signal handlers
4476      (*end_signal_setting)();
4477    }
4478
4479    // We don't activate signal checker if libjsig is in place, we trust ourselves
4480    // and if UserSignalHandler is installed all bets are off.
4481    // Log that signal checking is off only if -verbose:jni is specified.
4482    if (CheckJNICalls) {
4483      if (libjsig_is_loaded) {
4484        if (PrintJNIResolving) {
4485          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4486        }
4487        check_signals = false;
4488      }
4489      if (AllowUserSignalHandlers) {
4490        if (PrintJNIResolving) {
4491          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4492        }
4493        check_signals = false;
4494      }
4495    }
4496  }
4497}
4498
4499// This is the fastest way to get thread cpu time on Linux.
4500// Returns cpu time (user+sys) for any thread, not only for current.
4501// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4502// It might work on 2.6.10+ with a special kernel/glibc patch.
4503// For reference, please, see IEEE Std 1003.1-2004:
4504//   http://www.unix.org/single_unix_specification
4505
4506jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4507  struct timespec tp;
4508  int rc = os::Linux::clock_gettime(clockid, &tp);
4509  assert(rc == 0, "clock_gettime is expected to return 0 code");
4510
4511  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4512}
4513
4514/////
4515// glibc on Linux platform uses non-documented flag
4516// to indicate, that some special sort of signal
4517// trampoline is used.
4518// We will never set this flag, and we should
4519// ignore this flag in our diagnostic
4520#ifdef SIGNIFICANT_SIGNAL_MASK
4521#undef SIGNIFICANT_SIGNAL_MASK
4522#endif
4523#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4524
4525static const char* get_signal_handler_name(address handler,
4526                                           char* buf, int buflen) {
4527  int offset;
4528  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4529  if (found) {
4530    // skip directory names
4531    const char *p1, *p2;
4532    p1 = buf;
4533    size_t len = strlen(os::file_separator());
4534    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4535    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4536  } else {
4537    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4538  }
4539  return buf;
4540}
4541
4542static void print_signal_handler(outputStream* st, int sig,
4543                                 char* buf, size_t buflen) {
4544  struct sigaction sa;
4545
4546  sigaction(sig, NULL, &sa);
4547
4548  // See comment for SIGNIFICANT_SIGNAL_MASK define
4549  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4550
4551  st->print("%s: ", os::exception_name(sig, buf, buflen));
4552
4553  address handler = (sa.sa_flags & SA_SIGINFO)
4554    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4555    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4556
4557  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4558    st->print("SIG_DFL");
4559  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4560    st->print("SIG_IGN");
4561  } else {
4562    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4563  }
4564
4565  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4566
4567  address rh = VMError::get_resetted_sighandler(sig);
4568  // May be, handler was resetted by VMError?
4569  if(rh != NULL) {
4570    handler = rh;
4571    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4572  }
4573
4574  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4575
4576  // Check: is it our handler?
4577  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4578     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4579    // It is our signal handler
4580    // check for flags, reset system-used one!
4581    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4582      st->print(
4583                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4584                os::Linux::get_our_sigflags(sig));
4585    }
4586  }
4587  st->cr();
4588}
4589
4590
4591#define DO_SIGNAL_CHECK(sig) \
4592  if (!sigismember(&check_signal_done, sig)) \
4593    os::Linux::check_signal_handler(sig)
4594
4595// This method is a periodic task to check for misbehaving JNI applications
4596// under CheckJNI, we can add any periodic checks here
4597
4598void os::run_periodic_checks() {
4599
4600  if (check_signals == false) return;
4601
4602  // SEGV and BUS if overridden could potentially prevent
4603  // generation of hs*.log in the event of a crash, debugging
4604  // such a case can be very challenging, so we absolutely
4605  // check the following for a good measure:
4606  DO_SIGNAL_CHECK(SIGSEGV);
4607  DO_SIGNAL_CHECK(SIGILL);
4608  DO_SIGNAL_CHECK(SIGFPE);
4609  DO_SIGNAL_CHECK(SIGBUS);
4610  DO_SIGNAL_CHECK(SIGPIPE);
4611  DO_SIGNAL_CHECK(SIGXFSZ);
4612
4613
4614  // ReduceSignalUsage allows the user to override these handlers
4615  // see comments at the very top and jvm_solaris.h
4616  if (!ReduceSignalUsage) {
4617    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4618    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4619    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4620    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4621  }
4622
4623  DO_SIGNAL_CHECK(SR_signum);
4624  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4625}
4626
4627typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4628
4629static os_sigaction_t os_sigaction = NULL;
4630
4631void os::Linux::check_signal_handler(int sig) {
4632  char buf[O_BUFLEN];
4633  address jvmHandler = NULL;
4634
4635
4636  struct sigaction act;
4637  if (os_sigaction == NULL) {
4638    // only trust the default sigaction, in case it has been interposed
4639    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4640    if (os_sigaction == NULL) return;
4641  }
4642
4643  os_sigaction(sig, (struct sigaction*)NULL, &act);
4644
4645
4646  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4647
4648  address thisHandler = (act.sa_flags & SA_SIGINFO)
4649    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4650    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4651
4652
4653  switch(sig) {
4654  case SIGSEGV:
4655  case SIGBUS:
4656  case SIGFPE:
4657  case SIGPIPE:
4658  case SIGILL:
4659  case SIGXFSZ:
4660    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4661    break;
4662
4663  case SHUTDOWN1_SIGNAL:
4664  case SHUTDOWN2_SIGNAL:
4665  case SHUTDOWN3_SIGNAL:
4666  case BREAK_SIGNAL:
4667    jvmHandler = (address)user_handler();
4668    break;
4669
4670  case INTERRUPT_SIGNAL:
4671    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4672    break;
4673
4674  default:
4675    if (sig == SR_signum) {
4676      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4677    } else {
4678      return;
4679    }
4680    break;
4681  }
4682
4683  if (thisHandler != jvmHandler) {
4684    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4685    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4686    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4687    // No need to check this sig any longer
4688    sigaddset(&check_signal_done, sig);
4689  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4690    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4691    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4692    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4693    // No need to check this sig any longer
4694    sigaddset(&check_signal_done, sig);
4695  }
4696
4697  // Dump all the signal
4698  if (sigismember(&check_signal_done, sig)) {
4699    print_signal_handlers(tty, buf, O_BUFLEN);
4700  }
4701}
4702
4703extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4704
4705extern bool signal_name(int signo, char* buf, size_t len);
4706
4707const char* os::exception_name(int exception_code, char* buf, size_t size) {
4708  if (0 < exception_code && exception_code <= SIGRTMAX) {
4709    // signal
4710    if (!signal_name(exception_code, buf, size)) {
4711      jio_snprintf(buf, size, "SIG%d", exception_code);
4712    }
4713    return buf;
4714  } else {
4715    return NULL;
4716  }
4717}
4718
4719// this is called _before_ the most of global arguments have been parsed
4720void os::init(void) {
4721  char dummy;   /* used to get a guess on initial stack address */
4722//  first_hrtime = gethrtime();
4723
4724  // With LinuxThreads the JavaMain thread pid (primordial thread)
4725  // is different than the pid of the java launcher thread.
4726  // So, on Linux, the launcher thread pid is passed to the VM
4727  // via the sun.java.launcher.pid property.
4728  // Use this property instead of getpid() if it was correctly passed.
4729  // See bug 6351349.
4730  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4731
4732  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4733
4734  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4735
4736  init_random(1234567);
4737
4738  ThreadCritical::initialize();
4739
4740  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4741  if (Linux::page_size() == -1) {
4742    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4743                  strerror(errno)));
4744  }
4745  init_page_sizes((size_t) Linux::page_size());
4746
4747  Linux::initialize_system_info();
4748
4749  // main_thread points to the aboriginal thread
4750  Linux::_main_thread = pthread_self();
4751
4752  Linux::clock_init();
4753  initial_time_count = os::elapsed_counter();
4754
4755  // pthread_condattr initialization for monotonic clock
4756  int status;
4757  pthread_condattr_t* _condattr = os::Linux::condAttr();
4758  if ((status = pthread_condattr_init(_condattr)) != 0) {
4759    fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4760  }
4761  // Only set the clock if CLOCK_MONOTONIC is available
4762  if (Linux::supports_monotonic_clock()) {
4763    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4764      if (status == EINVAL) {
4765        warning("Unable to use monotonic clock with relative timed-waits" \
4766                " - changes to the time-of-day clock may have adverse affects");
4767      } else {
4768        fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4769      }
4770    }
4771  }
4772  // else it defaults to CLOCK_REALTIME
4773
4774  pthread_mutex_init(&dl_mutex, NULL);
4775
4776  // If the pagesize of the VM is greater than 8K determine the appropriate
4777  // number of initial guard pages.  The user can change this with the
4778  // command line arguments, if needed.
4779  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4780    StackYellowPages = 1;
4781    StackRedPages = 1;
4782    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4783  }
4784}
4785
4786// To install functions for atexit system call
4787extern "C" {
4788  static void perfMemory_exit_helper() {
4789    perfMemory_exit();
4790  }
4791}
4792
4793// this is called _after_ the global arguments have been parsed
4794jint os::init_2(void)
4795{
4796  Linux::fast_thread_clock_init();
4797
4798  // Allocate a single page and mark it as readable for safepoint polling
4799  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4800  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4801
4802  os::set_polling_page( polling_page );
4803
4804#ifndef PRODUCT
4805  if(Verbose && PrintMiscellaneous)
4806    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4807#endif
4808
4809  if (!UseMembar) {
4810    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4811    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4812    os::set_memory_serialize_page( mem_serialize_page );
4813
4814#ifndef PRODUCT
4815    if(Verbose && PrintMiscellaneous)
4816      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4817#endif
4818  }
4819
4820  // initialize suspend/resume support - must do this before signal_sets_init()
4821  if (SR_initialize() != 0) {
4822    perror("SR_initialize failed");
4823    return JNI_ERR;
4824  }
4825
4826  Linux::signal_sets_init();
4827  Linux::install_signal_handlers();
4828
4829  // Check minimum allowable stack size for thread creation and to initialize
4830  // the java system classes, including StackOverflowError - depends on page
4831  // size.  Add a page for compiler2 recursion in main thread.
4832  // Add in 2*BytesPerWord times page size to account for VM stack during
4833  // class initialization depending on 32 or 64 bit VM.
4834  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4835            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4836                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4837
4838  size_t threadStackSizeInBytes = ThreadStackSize * K;
4839  if (threadStackSizeInBytes != 0 &&
4840      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4841        tty->print_cr("\nThe stack size specified is too small, "
4842                      "Specify at least %dk",
4843                      os::Linux::min_stack_allowed/ K);
4844        return JNI_ERR;
4845  }
4846
4847  // Make the stack size a multiple of the page size so that
4848  // the yellow/red zones can be guarded.
4849  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4850        vm_page_size()));
4851
4852  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4853
4854#if defined(IA32)
4855  workaround_expand_exec_shield_cs_limit();
4856#endif
4857
4858  Linux::libpthread_init();
4859  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4860     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4861          Linux::glibc_version(), Linux::libpthread_version(),
4862          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4863  }
4864
4865  if (UseNUMA) {
4866    if (!Linux::libnuma_init()) {
4867      UseNUMA = false;
4868    } else {
4869      if ((Linux::numa_max_node() < 1)) {
4870        // There's only one node(they start from 0), disable NUMA.
4871        UseNUMA = false;
4872      }
4873    }
4874    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4875    // we can make the adaptive lgrp chunk resizing work. If the user specified
4876    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4877    // disable adaptive resizing.
4878    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4879      if (FLAG_IS_DEFAULT(UseNUMA)) {
4880        UseNUMA = false;
4881      } else {
4882        if (FLAG_IS_DEFAULT(UseLargePages) &&
4883            FLAG_IS_DEFAULT(UseSHM) &&
4884            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4885          UseLargePages = false;
4886        } else {
4887          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4888          UseAdaptiveSizePolicy = false;
4889          UseAdaptiveNUMAChunkSizing = false;
4890        }
4891      }
4892    }
4893    if (!UseNUMA && ForceNUMA) {
4894      UseNUMA = true;
4895    }
4896  }
4897
4898  if (MaxFDLimit) {
4899    // set the number of file descriptors to max. print out error
4900    // if getrlimit/setrlimit fails but continue regardless.
4901    struct rlimit nbr_files;
4902    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4903    if (status != 0) {
4904      if (PrintMiscellaneous && (Verbose || WizardMode))
4905        perror("os::init_2 getrlimit failed");
4906    } else {
4907      nbr_files.rlim_cur = nbr_files.rlim_max;
4908      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4909      if (status != 0) {
4910        if (PrintMiscellaneous && (Verbose || WizardMode))
4911          perror("os::init_2 setrlimit failed");
4912      }
4913    }
4914  }
4915
4916  // Initialize lock used to serialize thread creation (see os::create_thread)
4917  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4918
4919  // at-exit methods are called in the reverse order of their registration.
4920  // atexit functions are called on return from main or as a result of a
4921  // call to exit(3C). There can be only 32 of these functions registered
4922  // and atexit() does not set errno.
4923
4924  if (PerfAllowAtExitRegistration) {
4925    // only register atexit functions if PerfAllowAtExitRegistration is set.
4926    // atexit functions can be delayed until process exit time, which
4927    // can be problematic for embedded VM situations. Embedded VMs should
4928    // call DestroyJavaVM() to assure that VM resources are released.
4929
4930    // note: perfMemory_exit_helper atexit function may be removed in
4931    // the future if the appropriate cleanup code can be added to the
4932    // VM_Exit VMOperation's doit method.
4933    if (atexit(perfMemory_exit_helper) != 0) {
4934      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4935    }
4936  }
4937
4938  // initialize thread priority policy
4939  prio_init();
4940
4941  return JNI_OK;
4942}
4943
4944// this is called at the end of vm_initialization
4945void os::init_3(void)
4946{
4947#ifdef JAVASE_EMBEDDED
4948  // Start the MemNotifyThread
4949  if (LowMemoryProtection) {
4950    MemNotifyThread::start();
4951  }
4952  return;
4953#endif
4954}
4955
4956// Mark the polling page as unreadable
4957void os::make_polling_page_unreadable(void) {
4958  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4959    fatal("Could not disable polling page");
4960};
4961
4962// Mark the polling page as readable
4963void os::make_polling_page_readable(void) {
4964  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4965    fatal("Could not enable polling page");
4966  }
4967};
4968
4969int os::active_processor_count() {
4970  // Linux doesn't yet have a (official) notion of processor sets,
4971  // so just return the number of online processors.
4972  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4973  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4974  return online_cpus;
4975}
4976
4977void os::set_native_thread_name(const char *name) {
4978  // Not yet implemented.
4979  return;
4980}
4981
4982bool os::distribute_processes(uint length, uint* distribution) {
4983  // Not yet implemented.
4984  return false;
4985}
4986
4987bool os::bind_to_processor(uint processor_id) {
4988  // Not yet implemented.
4989  return false;
4990}
4991
4992///
4993
4994void os::SuspendedThreadTask::internal_do_task() {
4995  if (do_suspend(_thread->osthread())) {
4996    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4997    do_task(context);
4998    do_resume(_thread->osthread());
4999  }
5000}
5001
5002class PcFetcher : public os::SuspendedThreadTask {
5003public:
5004  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5005  ExtendedPC result();
5006protected:
5007  void do_task(const os::SuspendedThreadTaskContext& context);
5008private:
5009  ExtendedPC _epc;
5010};
5011
5012ExtendedPC PcFetcher::result() {
5013  guarantee(is_done(), "task is not done yet.");
5014  return _epc;
5015}
5016
5017void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5018  Thread* thread = context.thread();
5019  OSThread* osthread = thread->osthread();
5020  if (osthread->ucontext() != NULL) {
5021    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5022  } else {
5023    // NULL context is unexpected, double-check this is the VMThread
5024    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5025  }
5026}
5027
5028// Suspends the target using the signal mechanism and then grabs the PC before
5029// resuming the target. Used by the flat-profiler only
5030ExtendedPC os::get_thread_pc(Thread* thread) {
5031  // Make sure that it is called by the watcher for the VMThread
5032  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5033  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5034
5035  PcFetcher fetcher(thread);
5036  fetcher.run();
5037  return fetcher.result();
5038}
5039
5040int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5041{
5042   if (is_NPTL()) {
5043      return pthread_cond_timedwait(_cond, _mutex, _abstime);
5044   } else {
5045      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5046      // word back to default 64bit precision if condvar is signaled. Java
5047      // wants 53bit precision.  Save and restore current value.
5048      int fpu = get_fpu_control_word();
5049      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5050      set_fpu_control_word(fpu);
5051      return status;
5052   }
5053}
5054
5055////////////////////////////////////////////////////////////////////////////////
5056// debug support
5057
5058bool os::find(address addr, outputStream* st) {
5059  Dl_info dlinfo;
5060  memset(&dlinfo, 0, sizeof(dlinfo));
5061  if (dladdr(addr, &dlinfo) != 0) {
5062    st->print(PTR_FORMAT ": ", addr);
5063    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5064      st->print("%s+%#x", dlinfo.dli_sname,
5065                 addr - (intptr_t)dlinfo.dli_saddr);
5066    } else if (dlinfo.dli_fbase != NULL) {
5067      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5068    } else {
5069      st->print("<absolute address>");
5070    }
5071    if (dlinfo.dli_fname != NULL) {
5072      st->print(" in %s", dlinfo.dli_fname);
5073    }
5074    if (dlinfo.dli_fbase != NULL) {
5075      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5076    }
5077    st->cr();
5078
5079    if (Verbose) {
5080      // decode some bytes around the PC
5081      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5082      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5083      address       lowest = (address) dlinfo.dli_sname;
5084      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5085      if (begin < lowest)  begin = lowest;
5086      Dl_info dlinfo2;
5087      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5088          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5089        end = (address) dlinfo2.dli_saddr;
5090      Disassembler::decode(begin, end, st);
5091    }
5092    return true;
5093  }
5094  return false;
5095}
5096
5097////////////////////////////////////////////////////////////////////////////////
5098// misc
5099
5100// This does not do anything on Linux. This is basically a hook for being
5101// able to use structured exception handling (thread-local exception filters)
5102// on, e.g., Win32.
5103void
5104os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5105                         JavaCallArguments* args, Thread* thread) {
5106  f(value, method, args, thread);
5107}
5108
5109void os::print_statistics() {
5110}
5111
5112int os::message_box(const char* title, const char* message) {
5113  int i;
5114  fdStream err(defaultStream::error_fd());
5115  for (i = 0; i < 78; i++) err.print_raw("=");
5116  err.cr();
5117  err.print_raw_cr(title);
5118  for (i = 0; i < 78; i++) err.print_raw("-");
5119  err.cr();
5120  err.print_raw_cr(message);
5121  for (i = 0; i < 78; i++) err.print_raw("=");
5122  err.cr();
5123
5124  char buf[16];
5125  // Prevent process from exiting upon "read error" without consuming all CPU
5126  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5127
5128  return buf[0] == 'y' || buf[0] == 'Y';
5129}
5130
5131int os::stat(const char *path, struct stat *sbuf) {
5132  char pathbuf[MAX_PATH];
5133  if (strlen(path) > MAX_PATH - 1) {
5134    errno = ENAMETOOLONG;
5135    return -1;
5136  }
5137  os::native_path(strcpy(pathbuf, path));
5138  return ::stat(pathbuf, sbuf);
5139}
5140
5141bool os::check_heap(bool force) {
5142  return true;
5143}
5144
5145int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5146  return ::vsnprintf(buf, count, format, args);
5147}
5148
5149// Is a (classpath) directory empty?
5150bool os::dir_is_empty(const char* path) {
5151  DIR *dir = NULL;
5152  struct dirent *ptr;
5153
5154  dir = opendir(path);
5155  if (dir == NULL) return true;
5156
5157  /* Scan the directory */
5158  bool result = true;
5159  char buf[sizeof(struct dirent) + MAX_PATH];
5160  while (result && (ptr = ::readdir(dir)) != NULL) {
5161    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5162      result = false;
5163    }
5164  }
5165  closedir(dir);
5166  return result;
5167}
5168
5169// This code originates from JDK's sysOpen and open64_w
5170// from src/solaris/hpi/src/system_md.c
5171
5172#ifndef O_DELETE
5173#define O_DELETE 0x10000
5174#endif
5175
5176// Open a file. Unlink the file immediately after open returns
5177// if the specified oflag has the O_DELETE flag set.
5178// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5179
5180int os::open(const char *path, int oflag, int mode) {
5181
5182  if (strlen(path) > MAX_PATH - 1) {
5183    errno = ENAMETOOLONG;
5184    return -1;
5185  }
5186  int fd;
5187  int o_delete = (oflag & O_DELETE);
5188  oflag = oflag & ~O_DELETE;
5189
5190  fd = ::open64(path, oflag, mode);
5191  if (fd == -1) return -1;
5192
5193  //If the open succeeded, the file might still be a directory
5194  {
5195    struct stat64 buf64;
5196    int ret = ::fstat64(fd, &buf64);
5197    int st_mode = buf64.st_mode;
5198
5199    if (ret != -1) {
5200      if ((st_mode & S_IFMT) == S_IFDIR) {
5201        errno = EISDIR;
5202        ::close(fd);
5203        return -1;
5204      }
5205    } else {
5206      ::close(fd);
5207      return -1;
5208    }
5209  }
5210
5211    /*
5212     * All file descriptors that are opened in the JVM and not
5213     * specifically destined for a subprocess should have the
5214     * close-on-exec flag set.  If we don't set it, then careless 3rd
5215     * party native code might fork and exec without closing all
5216     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5217     * UNIXProcess.c), and this in turn might:
5218     *
5219     * - cause end-of-file to fail to be detected on some file
5220     *   descriptors, resulting in mysterious hangs, or
5221     *
5222     * - might cause an fopen in the subprocess to fail on a system
5223     *   suffering from bug 1085341.
5224     *
5225     * (Yes, the default setting of the close-on-exec flag is a Unix
5226     * design flaw)
5227     *
5228     * See:
5229     * 1085341: 32-bit stdio routines should support file descriptors >255
5230     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5231     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5232     */
5233#ifdef FD_CLOEXEC
5234    {
5235        int flags = ::fcntl(fd, F_GETFD);
5236        if (flags != -1)
5237            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5238    }
5239#endif
5240
5241  if (o_delete != 0) {
5242    ::unlink(path);
5243  }
5244  return fd;
5245}
5246
5247
5248// create binary file, rewriting existing file if required
5249int os::create_binary_file(const char* path, bool rewrite_existing) {
5250  int oflags = O_WRONLY | O_CREAT;
5251  if (!rewrite_existing) {
5252    oflags |= O_EXCL;
5253  }
5254  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5255}
5256
5257// return current position of file pointer
5258jlong os::current_file_offset(int fd) {
5259  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5260}
5261
5262// move file pointer to the specified offset
5263jlong os::seek_to_file_offset(int fd, jlong offset) {
5264  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5265}
5266
5267// This code originates from JDK's sysAvailable
5268// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5269
5270int os::available(int fd, jlong *bytes) {
5271  jlong cur, end;
5272  int mode;
5273  struct stat64 buf64;
5274
5275  if (::fstat64(fd, &buf64) >= 0) {
5276    mode = buf64.st_mode;
5277    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5278      /*
5279      * XXX: is the following call interruptible? If so, this might
5280      * need to go through the INTERRUPT_IO() wrapper as for other
5281      * blocking, interruptible calls in this file.
5282      */
5283      int n;
5284      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5285        *bytes = n;
5286        return 1;
5287      }
5288    }
5289  }
5290  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5291    return 0;
5292  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5293    return 0;
5294  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5295    return 0;
5296  }
5297  *bytes = end - cur;
5298  return 1;
5299}
5300
5301int os::socket_available(int fd, jint *pbytes) {
5302  // Linux doc says EINTR not returned, unlike Solaris
5303  int ret = ::ioctl(fd, FIONREAD, pbytes);
5304
5305  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5306  // is expected to return 0 on failure and 1 on success to the jdk.
5307  return (ret < 0) ? 0 : 1;
5308}
5309
5310// Map a block of memory.
5311char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5312                     char *addr, size_t bytes, bool read_only,
5313                     bool allow_exec) {
5314  int prot;
5315  int flags = MAP_PRIVATE;
5316
5317  if (read_only) {
5318    prot = PROT_READ;
5319  } else {
5320    prot = PROT_READ | PROT_WRITE;
5321  }
5322
5323  if (allow_exec) {
5324    prot |= PROT_EXEC;
5325  }
5326
5327  if (addr != NULL) {
5328    flags |= MAP_FIXED;
5329  }
5330
5331  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5332                                     fd, file_offset);
5333  if (mapped_address == MAP_FAILED) {
5334    return NULL;
5335  }
5336  return mapped_address;
5337}
5338
5339
5340// Remap a block of memory.
5341char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5342                       char *addr, size_t bytes, bool read_only,
5343                       bool allow_exec) {
5344  // same as map_memory() on this OS
5345  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5346                        allow_exec);
5347}
5348
5349
5350// Unmap a block of memory.
5351bool os::pd_unmap_memory(char* addr, size_t bytes) {
5352  return munmap(addr, bytes) == 0;
5353}
5354
5355static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5356
5357static clockid_t thread_cpu_clockid(Thread* thread) {
5358  pthread_t tid = thread->osthread()->pthread_id();
5359  clockid_t clockid;
5360
5361  // Get thread clockid
5362  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5363  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5364  return clockid;
5365}
5366
5367// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5368// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5369// of a thread.
5370//
5371// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5372// the fast estimate available on the platform.
5373
5374jlong os::current_thread_cpu_time() {
5375  if (os::Linux::supports_fast_thread_cpu_time()) {
5376    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5377  } else {
5378    // return user + sys since the cost is the same
5379    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5380  }
5381}
5382
5383jlong os::thread_cpu_time(Thread* thread) {
5384  // consistent with what current_thread_cpu_time() returns
5385  if (os::Linux::supports_fast_thread_cpu_time()) {
5386    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5387  } else {
5388    return slow_thread_cpu_time(thread, true /* user + sys */);
5389  }
5390}
5391
5392jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5393  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5394    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5395  } else {
5396    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5397  }
5398}
5399
5400jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5401  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5402    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5403  } else {
5404    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5405  }
5406}
5407
5408//
5409//  -1 on error.
5410//
5411
5412static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5413  static bool proc_task_unchecked = true;
5414  static const char *proc_stat_path = "/proc/%d/stat";
5415  pid_t  tid = thread->osthread()->thread_id();
5416  char *s;
5417  char stat[2048];
5418  int statlen;
5419  char proc_name[64];
5420  int count;
5421  long sys_time, user_time;
5422  char cdummy;
5423  int idummy;
5424  long ldummy;
5425  FILE *fp;
5426
5427  // The /proc/<tid>/stat aggregates per-process usage on
5428  // new Linux kernels 2.6+ where NPTL is supported.
5429  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5430  // See bug 6328462.
5431  // There possibly can be cases where there is no directory
5432  // /proc/self/task, so we check its availability.
5433  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5434    // This is executed only once
5435    proc_task_unchecked = false;
5436    fp = fopen("/proc/self/task", "r");
5437    if (fp != NULL) {
5438      proc_stat_path = "/proc/self/task/%d/stat";
5439      fclose(fp);
5440    }
5441  }
5442
5443  sprintf(proc_name, proc_stat_path, tid);
5444  fp = fopen(proc_name, "r");
5445  if ( fp == NULL ) return -1;
5446  statlen = fread(stat, 1, 2047, fp);
5447  stat[statlen] = '\0';
5448  fclose(fp);
5449
5450  // Skip pid and the command string. Note that we could be dealing with
5451  // weird command names, e.g. user could decide to rename java launcher
5452  // to "java 1.4.2 :)", then the stat file would look like
5453  //                1234 (java 1.4.2 :)) R ... ...
5454  // We don't really need to know the command string, just find the last
5455  // occurrence of ")" and then start parsing from there. See bug 4726580.
5456  s = strrchr(stat, ')');
5457  if (s == NULL ) return -1;
5458
5459  // Skip blank chars
5460  do s++; while (isspace(*s));
5461
5462  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5463                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5464                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5465                 &user_time, &sys_time);
5466  if ( count != 13 ) return -1;
5467  if (user_sys_cpu_time) {
5468    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5469  } else {
5470    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5471  }
5472}
5473
5474void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5475  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5476  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5477  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5478  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5479}
5480
5481void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5482  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5483  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5484  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5485  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5486}
5487
5488bool os::is_thread_cpu_time_supported() {
5489  return true;
5490}
5491
5492// System loadavg support.  Returns -1 if load average cannot be obtained.
5493// Linux doesn't yet have a (official) notion of processor sets,
5494// so just return the system wide load average.
5495int os::loadavg(double loadavg[], int nelem) {
5496  return ::getloadavg(loadavg, nelem);
5497}
5498
5499void os::pause() {
5500  char filename[MAX_PATH];
5501  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5502    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5503  } else {
5504    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5505  }
5506
5507  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5508  if (fd != -1) {
5509    struct stat buf;
5510    ::close(fd);
5511    while (::stat(filename, &buf) == 0) {
5512      (void)::poll(NULL, 0, 100);
5513    }
5514  } else {
5515    jio_fprintf(stderr,
5516      "Could not open pause file '%s', continuing immediately.\n", filename);
5517  }
5518}
5519
5520
5521// Refer to the comments in os_solaris.cpp park-unpark.
5522//
5523// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5524// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5525// For specifics regarding the bug see GLIBC BUGID 261237 :
5526//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5527// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5528// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5529// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5530// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5531// and monitorenter when we're using 1-0 locking.  All those operations may result in
5532// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5533// of libpthread avoids the problem, but isn't practical.
5534//
5535// Possible remedies:
5536//
5537// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5538//      This is palliative and probabilistic, however.  If the thread is preempted
5539//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5540//      than the minimum period may have passed, and the abstime may be stale (in the
5541//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5542//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5543//
5544// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5545//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5546//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5547//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5548//      thread.
5549//
5550// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5551//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5552//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5553//      This also works well.  In fact it avoids kernel-level scalability impediments
5554//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5555//      timers in a graceful fashion.
5556//
5557// 4.   When the abstime value is in the past it appears that control returns
5558//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5559//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5560//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5561//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5562//      It may be possible to avoid reinitialization by checking the return
5563//      value from pthread_cond_timedwait().  In addition to reinitializing the
5564//      condvar we must establish the invariant that cond_signal() is only called
5565//      within critical sections protected by the adjunct mutex.  This prevents
5566//      cond_signal() from "seeing" a condvar that's in the midst of being
5567//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5568//      desirable signal-after-unlock optimization that avoids futile context switching.
5569//
5570//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5571//      structure when a condvar is used or initialized.  cond_destroy()  would
5572//      release the helper structure.  Our reinitialize-after-timedwait fix
5573//      put excessive stress on malloc/free and locks protecting the c-heap.
5574//
5575// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5576// It may be possible to refine (4) by checking the kernel and NTPL verisons
5577// and only enabling the work-around for vulnerable environments.
5578
5579// utility to compute the abstime argument to timedwait:
5580// millis is the relative timeout time
5581// abstime will be the absolute timeout time
5582// TODO: replace compute_abstime() with unpackTime()
5583
5584static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5585  if (millis < 0)  millis = 0;
5586
5587  jlong seconds = millis / 1000;
5588  millis %= 1000;
5589  if (seconds > 50000000) { // see man cond_timedwait(3T)
5590    seconds = 50000000;
5591  }
5592
5593  if (os::Linux::supports_monotonic_clock()) {
5594    struct timespec now;
5595    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5596    assert_status(status == 0, status, "clock_gettime");
5597    abstime->tv_sec = now.tv_sec  + seconds;
5598    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5599    if (nanos >= NANOSECS_PER_SEC) {
5600      abstime->tv_sec += 1;
5601      nanos -= NANOSECS_PER_SEC;
5602    }
5603    abstime->tv_nsec = nanos;
5604  } else {
5605    struct timeval now;
5606    int status = gettimeofday(&now, NULL);
5607    assert(status == 0, "gettimeofday");
5608    abstime->tv_sec = now.tv_sec  + seconds;
5609    long usec = now.tv_usec + millis * 1000;
5610    if (usec >= 1000000) {
5611      abstime->tv_sec += 1;
5612      usec -= 1000000;
5613    }
5614    abstime->tv_nsec = usec * 1000;
5615  }
5616  return abstime;
5617}
5618
5619
5620// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5621// Conceptually TryPark() should be equivalent to park(0).
5622
5623int os::PlatformEvent::TryPark() {
5624  for (;;) {
5625    const int v = _Event ;
5626    guarantee ((v == 0) || (v == 1), "invariant") ;
5627    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5628  }
5629}
5630
5631void os::PlatformEvent::park() {       // AKA "down()"
5632  // Invariant: Only the thread associated with the Event/PlatformEvent
5633  // may call park().
5634  // TODO: assert that _Assoc != NULL or _Assoc == Self
5635  int v ;
5636  for (;;) {
5637      v = _Event ;
5638      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5639  }
5640  guarantee (v >= 0, "invariant") ;
5641  if (v == 0) {
5642     // Do this the hard way by blocking ...
5643     int status = pthread_mutex_lock(_mutex);
5644     assert_status(status == 0, status, "mutex_lock");
5645     guarantee (_nParked == 0, "invariant") ;
5646     ++ _nParked ;
5647     while (_Event < 0) {
5648        status = pthread_cond_wait(_cond, _mutex);
5649        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5650        // Treat this the same as if the wait was interrupted
5651        if (status == ETIME) { status = EINTR; }
5652        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5653     }
5654     -- _nParked ;
5655
5656    _Event = 0 ;
5657     status = pthread_mutex_unlock(_mutex);
5658     assert_status(status == 0, status, "mutex_unlock");
5659    // Paranoia to ensure our locked and lock-free paths interact
5660    // correctly with each other.
5661    OrderAccess::fence();
5662  }
5663  guarantee (_Event >= 0, "invariant") ;
5664}
5665
5666int os::PlatformEvent::park(jlong millis) {
5667  guarantee (_nParked == 0, "invariant") ;
5668
5669  int v ;
5670  for (;;) {
5671      v = _Event ;
5672      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5673  }
5674  guarantee (v >= 0, "invariant") ;
5675  if (v != 0) return OS_OK ;
5676
5677  // We do this the hard way, by blocking the thread.
5678  // Consider enforcing a minimum timeout value.
5679  struct timespec abst;
5680  compute_abstime(&abst, millis);
5681
5682  int ret = OS_TIMEOUT;
5683  int status = pthread_mutex_lock(_mutex);
5684  assert_status(status == 0, status, "mutex_lock");
5685  guarantee (_nParked == 0, "invariant") ;
5686  ++_nParked ;
5687
5688  // Object.wait(timo) will return because of
5689  // (a) notification
5690  // (b) timeout
5691  // (c) thread.interrupt
5692  //
5693  // Thread.interrupt and object.notify{All} both call Event::set.
5694  // That is, we treat thread.interrupt as a special case of notification.
5695  // The underlying Solaris implementation, cond_timedwait, admits
5696  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5697  // JVM from making those visible to Java code.  As such, we must
5698  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5699  //
5700  // TODO: properly differentiate simultaneous notify+interrupt.
5701  // In that case, we should propagate the notify to another waiter.
5702
5703  while (_Event < 0) {
5704    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5705    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5706      pthread_cond_destroy (_cond);
5707      pthread_cond_init (_cond, os::Linux::condAttr()) ;
5708    }
5709    assert_status(status == 0 || status == EINTR ||
5710                  status == ETIME || status == ETIMEDOUT,
5711                  status, "cond_timedwait");
5712    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5713    if (status == ETIME || status == ETIMEDOUT) break ;
5714    // We consume and ignore EINTR and spurious wakeups.
5715  }
5716  --_nParked ;
5717  if (_Event >= 0) {
5718     ret = OS_OK;
5719  }
5720  _Event = 0 ;
5721  status = pthread_mutex_unlock(_mutex);
5722  assert_status(status == 0, status, "mutex_unlock");
5723  assert (_nParked == 0, "invariant") ;
5724  // Paranoia to ensure our locked and lock-free paths interact
5725  // correctly with each other.
5726  OrderAccess::fence();
5727  return ret;
5728}
5729
5730void os::PlatformEvent::unpark() {
5731  // Transitions for _Event:
5732  //    0 :=> 1
5733  //    1 :=> 1
5734  //   -1 :=> either 0 or 1; must signal target thread
5735  //          That is, we can safely transition _Event from -1 to either
5736  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5737  //          unpark() calls.
5738  // See also: "Semaphores in Plan 9" by Mullender & Cox
5739  //
5740  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5741  // that it will take two back-to-back park() calls for the owning
5742  // thread to block. This has the benefit of forcing a spurious return
5743  // from the first park() call after an unpark() call which will help
5744  // shake out uses of park() and unpark() without condition variables.
5745
5746  if (Atomic::xchg(1, &_Event) >= 0) return;
5747
5748  // Wait for the thread associated with the event to vacate
5749  int status = pthread_mutex_lock(_mutex);
5750  assert_status(status == 0, status, "mutex_lock");
5751  int AnyWaiters = _nParked;
5752  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5753  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5754    AnyWaiters = 0;
5755    pthread_cond_signal(_cond);
5756  }
5757  status = pthread_mutex_unlock(_mutex);
5758  assert_status(status == 0, status, "mutex_unlock");
5759  if (AnyWaiters != 0) {
5760    status = pthread_cond_signal(_cond);
5761    assert_status(status == 0, status, "cond_signal");
5762  }
5763
5764  // Note that we signal() _after dropping the lock for "immortal" Events.
5765  // This is safe and avoids a common class of  futile wakeups.  In rare
5766  // circumstances this can cause a thread to return prematurely from
5767  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5768  // simply re-test the condition and re-park itself.
5769}
5770
5771
5772// JSR166
5773// -------------------------------------------------------
5774
5775/*
5776 * The solaris and linux implementations of park/unpark are fairly
5777 * conservative for now, but can be improved. They currently use a
5778 * mutex/condvar pair, plus a a count.
5779 * Park decrements count if > 0, else does a condvar wait.  Unpark
5780 * sets count to 1 and signals condvar.  Only one thread ever waits
5781 * on the condvar. Contention seen when trying to park implies that someone
5782 * is unparking you, so don't wait. And spurious returns are fine, so there
5783 * is no need to track notifications.
5784 */
5785
5786#define MAX_SECS 100000000
5787/*
5788 * This code is common to linux and solaris and will be moved to a
5789 * common place in dolphin.
5790 *
5791 * The passed in time value is either a relative time in nanoseconds
5792 * or an absolute time in milliseconds. Either way it has to be unpacked
5793 * into suitable seconds and nanoseconds components and stored in the
5794 * given timespec structure.
5795 * Given time is a 64-bit value and the time_t used in the timespec is only
5796 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5797 * overflow if times way in the future are given. Further on Solaris versions
5798 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5799 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5800 * As it will be 28 years before "now + 100000000" will overflow we can
5801 * ignore overflow and just impose a hard-limit on seconds using the value
5802 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5803 * years from "now".
5804 */
5805
5806static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5807  assert (time > 0, "convertTime");
5808  time_t max_secs = 0;
5809
5810  if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5811    struct timeval now;
5812    int status = gettimeofday(&now, NULL);
5813    assert(status == 0, "gettimeofday");
5814
5815    max_secs = now.tv_sec + MAX_SECS;
5816
5817    if (isAbsolute) {
5818      jlong secs = time / 1000;
5819      if (secs > max_secs) {
5820        absTime->tv_sec = max_secs;
5821      } else {
5822        absTime->tv_sec = secs;
5823      }
5824      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5825    } else {
5826      jlong secs = time / NANOSECS_PER_SEC;
5827      if (secs >= MAX_SECS) {
5828        absTime->tv_sec = max_secs;
5829        absTime->tv_nsec = 0;
5830      } else {
5831        absTime->tv_sec = now.tv_sec + secs;
5832        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5833        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5834          absTime->tv_nsec -= NANOSECS_PER_SEC;
5835          ++absTime->tv_sec; // note: this must be <= max_secs
5836        }
5837      }
5838    }
5839  } else {
5840    // must be relative using monotonic clock
5841    struct timespec now;
5842    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5843    assert_status(status == 0, status, "clock_gettime");
5844    max_secs = now.tv_sec + MAX_SECS;
5845    jlong secs = time / NANOSECS_PER_SEC;
5846    if (secs >= MAX_SECS) {
5847      absTime->tv_sec = max_secs;
5848      absTime->tv_nsec = 0;
5849    } else {
5850      absTime->tv_sec = now.tv_sec + secs;
5851      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5852      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5853        absTime->tv_nsec -= NANOSECS_PER_SEC;
5854        ++absTime->tv_sec; // note: this must be <= max_secs
5855      }
5856    }
5857  }
5858  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5859  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5860  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5861  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5862}
5863
5864void Parker::park(bool isAbsolute, jlong time) {
5865  // Ideally we'd do something useful while spinning, such
5866  // as calling unpackTime().
5867
5868  // Optional fast-path check:
5869  // Return immediately if a permit is available.
5870  // We depend on Atomic::xchg() having full barrier semantics
5871  // since we are doing a lock-free update to _counter.
5872  if (Atomic::xchg(0, &_counter) > 0) return;
5873
5874  Thread* thread = Thread::current();
5875  assert(thread->is_Java_thread(), "Must be JavaThread");
5876  JavaThread *jt = (JavaThread *)thread;
5877
5878  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5879  // Check interrupt before trying to wait
5880  if (Thread::is_interrupted(thread, false)) {
5881    return;
5882  }
5883
5884  // Next, demultiplex/decode time arguments
5885  timespec absTime;
5886  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5887    return;
5888  }
5889  if (time > 0) {
5890    unpackTime(&absTime, isAbsolute, time);
5891  }
5892
5893
5894  // Enter safepoint region
5895  // Beware of deadlocks such as 6317397.
5896  // The per-thread Parker:: mutex is a classic leaf-lock.
5897  // In particular a thread must never block on the Threads_lock while
5898  // holding the Parker:: mutex.  If safepoints are pending both the
5899  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5900  ThreadBlockInVM tbivm(jt);
5901
5902  // Don't wait if cannot get lock since interference arises from
5903  // unblocking.  Also. check interrupt before trying wait
5904  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5905    return;
5906  }
5907
5908  int status ;
5909  if (_counter > 0)  { // no wait needed
5910    _counter = 0;
5911    status = pthread_mutex_unlock(_mutex);
5912    assert (status == 0, "invariant") ;
5913    // Paranoia to ensure our locked and lock-free paths interact
5914    // correctly with each other and Java-level accesses.
5915    OrderAccess::fence();
5916    return;
5917  }
5918
5919#ifdef ASSERT
5920  // Don't catch signals while blocked; let the running threads have the signals.
5921  // (This allows a debugger to break into the running thread.)
5922  sigset_t oldsigs;
5923  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5924  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5925#endif
5926
5927  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5928  jt->set_suspend_equivalent();
5929  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5930
5931  assert(_cur_index == -1, "invariant");
5932  if (time == 0) {
5933    _cur_index = REL_INDEX; // arbitrary choice when not timed
5934    status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5935  } else {
5936    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5937    status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5938    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5939      pthread_cond_destroy (&_cond[_cur_index]) ;
5940      pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5941    }
5942  }
5943  _cur_index = -1;
5944  assert_status(status == 0 || status == EINTR ||
5945                status == ETIME || status == ETIMEDOUT,
5946                status, "cond_timedwait");
5947
5948#ifdef ASSERT
5949  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5950#endif
5951
5952  _counter = 0 ;
5953  status = pthread_mutex_unlock(_mutex) ;
5954  assert_status(status == 0, status, "invariant") ;
5955  // Paranoia to ensure our locked and lock-free paths interact
5956  // correctly with each other and Java-level accesses.
5957  OrderAccess::fence();
5958
5959  // If externally suspended while waiting, re-suspend
5960  if (jt->handle_special_suspend_equivalent_condition()) {
5961    jt->java_suspend_self();
5962  }
5963}
5964
5965void Parker::unpark() {
5966  int s, status ;
5967  status = pthread_mutex_lock(_mutex);
5968  assert (status == 0, "invariant") ;
5969  s = _counter;
5970  _counter = 1;
5971  if (s < 1) {
5972    // thread might be parked
5973    if (_cur_index != -1) {
5974      // thread is definitely parked
5975      if (WorkAroundNPTLTimedWaitHang) {
5976        status = pthread_cond_signal (&_cond[_cur_index]);
5977        assert (status == 0, "invariant");
5978        status = pthread_mutex_unlock(_mutex);
5979        assert (status == 0, "invariant");
5980      } else {
5981        status = pthread_mutex_unlock(_mutex);
5982        assert (status == 0, "invariant");
5983        status = pthread_cond_signal (&_cond[_cur_index]);
5984        assert (status == 0, "invariant");
5985      }
5986    } else {
5987      pthread_mutex_unlock(_mutex);
5988      assert (status == 0, "invariant") ;
5989    }
5990  } else {
5991    pthread_mutex_unlock(_mutex);
5992    assert (status == 0, "invariant") ;
5993  }
5994}
5995
5996
5997extern char** environ;
5998
5999#ifndef __NR_fork
6000#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
6001#endif
6002
6003#ifndef __NR_execve
6004#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
6005#endif
6006
6007// Run the specified command in a separate process. Return its exit value,
6008// or -1 on failure (e.g. can't fork a new process).
6009// Unlike system(), this function can be called from signal handler. It
6010// doesn't block SIGINT et al.
6011int os::fork_and_exec(char* cmd) {
6012  const char * argv[4] = {"sh", "-c", cmd, NULL};
6013
6014  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
6015  // pthread_atfork handlers and reset pthread library. All we need is a
6016  // separate process to execve. Make a direct syscall to fork process.
6017  // On IA64 there's no fork syscall, we have to use fork() and hope for
6018  // the best...
6019  pid_t pid = NOT_IA64(syscall(__NR_fork);)
6020              IA64_ONLY(fork();)
6021
6022  if (pid < 0) {
6023    // fork failed
6024    return -1;
6025
6026  } else if (pid == 0) {
6027    // child process
6028
6029    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
6030    // first to kill every thread on the thread list. Because this list is
6031    // not reset by fork() (see notes above), execve() will instead kill
6032    // every thread in the parent process. We know this is the only thread
6033    // in the new process, so make a system call directly.
6034    // IA64 should use normal execve() from glibc to match the glibc fork()
6035    // above.
6036    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
6037    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
6038
6039    // execve failed
6040    _exit(-1);
6041
6042  } else  {
6043    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6044    // care about the actual exit code, for now.
6045
6046    int status;
6047
6048    // Wait for the child process to exit.  This returns immediately if
6049    // the child has already exited. */
6050    while (waitpid(pid, &status, 0) < 0) {
6051        switch (errno) {
6052        case ECHILD: return 0;
6053        case EINTR: break;
6054        default: return -1;
6055        }
6056    }
6057
6058    if (WIFEXITED(status)) {
6059       // The child exited normally; get its exit code.
6060       return WEXITSTATUS(status);
6061    } else if (WIFSIGNALED(status)) {
6062       // The child exited because of a signal
6063       // The best value to return is 0x80 + signal number,
6064       // because that is what all Unix shells do, and because
6065       // it allows callers to distinguish between process exit and
6066       // process death by signal.
6067       return 0x80 + WTERMSIG(status);
6068    } else {
6069       // Unknown exit code; pass it through
6070       return status;
6071    }
6072  }
6073}
6074
6075// is_headless_jre()
6076//
6077// Test for the existence of xawt/libmawt.so or libawt_xawt.so
6078// in order to report if we are running in a headless jre
6079//
6080// Since JDK8 xawt/libmawt.so was moved into the same directory
6081// as libawt.so, and renamed libawt_xawt.so
6082//
6083bool os::is_headless_jre() {
6084    struct stat statbuf;
6085    char buf[MAXPATHLEN];
6086    char libmawtpath[MAXPATHLEN];
6087    const char *xawtstr  = "/xawt/libmawt.so";
6088    const char *new_xawtstr = "/libawt_xawt.so";
6089    char *p;
6090
6091    // Get path to libjvm.so
6092    os::jvm_path(buf, sizeof(buf));
6093
6094    // Get rid of libjvm.so
6095    p = strrchr(buf, '/');
6096    if (p == NULL) return false;
6097    else *p = '\0';
6098
6099    // Get rid of client or server
6100    p = strrchr(buf, '/');
6101    if (p == NULL) return false;
6102    else *p = '\0';
6103
6104    // check xawt/libmawt.so
6105    strcpy(libmawtpath, buf);
6106    strcat(libmawtpath, xawtstr);
6107    if (::stat(libmawtpath, &statbuf) == 0) return false;
6108
6109    // check libawt_xawt.so
6110    strcpy(libmawtpath, buf);
6111    strcat(libmawtpath, new_xawtstr);
6112    if (::stat(libmawtpath, &statbuf) == 0) return false;
6113
6114    return true;
6115}
6116
6117// Get the default path to the core file
6118// Returns the length of the string
6119int os::get_core_path(char* buffer, size_t bufferSize) {
6120  const char* p = get_current_directory(buffer, bufferSize);
6121
6122  if (p == NULL) {
6123    assert(p != NULL, "failed to get current directory");
6124    return 0;
6125  }
6126
6127  return strlen(buffer);
6128}
6129
6130#ifdef JAVASE_EMBEDDED
6131//
6132// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6133//
6134MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6135
6136// ctor
6137//
6138MemNotifyThread::MemNotifyThread(int fd): Thread() {
6139  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6140  _fd = fd;
6141
6142  if (os::create_thread(this, os::os_thread)) {
6143    _memnotify_thread = this;
6144    os::set_priority(this, NearMaxPriority);
6145    os::start_thread(this);
6146  }
6147}
6148
6149// Where all the work gets done
6150//
6151void MemNotifyThread::run() {
6152  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6153
6154  // Set up the select arguments
6155  fd_set rfds;
6156  if (_fd != -1) {
6157    FD_ZERO(&rfds);
6158    FD_SET(_fd, &rfds);
6159  }
6160
6161  // Now wait for the mem_notify device to wake up
6162  while (1) {
6163    // Wait for the mem_notify device to signal us..
6164    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6165    if (rc == -1) {
6166      perror("select!\n");
6167      break;
6168    } else if (rc) {
6169      //ssize_t free_before = os::available_memory();
6170      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6171
6172      // The kernel is telling us there is not much memory left...
6173      // try to do something about that
6174
6175      // If we are not already in a GC, try one.
6176      if (!Universe::heap()->is_gc_active()) {
6177        Universe::heap()->collect(GCCause::_allocation_failure);
6178
6179        //ssize_t free_after = os::available_memory();
6180        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6181        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6182      }
6183      // We might want to do something like the following if we find the GC's are not helping...
6184      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6185    }
6186  }
6187}
6188
6189//
6190// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6191//
6192void MemNotifyThread::start() {
6193  int    fd;
6194  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6195  if (fd < 0) {
6196      return;
6197  }
6198
6199  if (memnotify_thread() == NULL) {
6200    new MemNotifyThread(fd);
6201  }
6202}
6203
6204#endif // JAVASE_EMBEDDED
6205
6206
6207/////////////// Unit tests ///////////////
6208
6209#ifndef PRODUCT
6210
6211#define test_log(...) \
6212  do {\
6213    if (VerboseInternalVMTests) { \
6214      tty->print_cr(__VA_ARGS__); \
6215      tty->flush(); \
6216    }\
6217  } while (false)
6218
6219class TestReserveMemorySpecial : AllStatic {
6220 public:
6221  static void small_page_write(void* addr, size_t size) {
6222    size_t page_size = os::vm_page_size();
6223
6224    char* end = (char*)addr + size;
6225    for (char* p = (char*)addr; p < end; p += page_size) {
6226      *p = 1;
6227    }
6228  }
6229
6230  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6231    if (!UseHugeTLBFS) {
6232      return;
6233    }
6234
6235    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6236
6237    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6238
6239    if (addr != NULL) {
6240      small_page_write(addr, size);
6241
6242      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6243    }
6244  }
6245
6246  static void test_reserve_memory_special_huge_tlbfs_only() {
6247    if (!UseHugeTLBFS) {
6248      return;
6249    }
6250
6251    size_t lp = os::large_page_size();
6252
6253    for (size_t size = lp; size <= lp * 10; size += lp) {
6254      test_reserve_memory_special_huge_tlbfs_only(size);
6255    }
6256  }
6257
6258  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6259    if (!UseHugeTLBFS) {
6260        return;
6261    }
6262
6263    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6264        size, alignment);
6265
6266    assert(size >= os::large_page_size(), "Incorrect input to test");
6267
6268    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6269
6270    if (addr != NULL) {
6271      small_page_write(addr, size);
6272
6273      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6274    }
6275  }
6276
6277  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6278    size_t lp = os::large_page_size();
6279    size_t ag = os::vm_allocation_granularity();
6280
6281    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6282      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6283    }
6284  }
6285
6286  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6287    size_t lp = os::large_page_size();
6288    size_t ag = os::vm_allocation_granularity();
6289
6290    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6291    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6292    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6293    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6294    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6295    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6296    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6297    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6298    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6299  }
6300
6301  static void test_reserve_memory_special_huge_tlbfs() {
6302    if (!UseHugeTLBFS) {
6303      return;
6304    }
6305
6306    test_reserve_memory_special_huge_tlbfs_only();
6307    test_reserve_memory_special_huge_tlbfs_mixed();
6308  }
6309
6310  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6311    if (!UseSHM) {
6312      return;
6313    }
6314
6315    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6316
6317    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6318
6319    if (addr != NULL) {
6320      assert(is_ptr_aligned(addr, alignment), "Check");
6321      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6322
6323      small_page_write(addr, size);
6324
6325      os::Linux::release_memory_special_shm(addr, size);
6326    }
6327  }
6328
6329  static void test_reserve_memory_special_shm() {
6330    size_t lp = os::large_page_size();
6331    size_t ag = os::vm_allocation_granularity();
6332
6333    for (size_t size = ag; size < lp * 3; size += ag) {
6334      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6335        test_reserve_memory_special_shm(size, alignment);
6336      }
6337    }
6338  }
6339
6340  static void test() {
6341    test_reserve_memory_special_huge_tlbfs();
6342    test_reserve_memory_special_shm();
6343  }
6344};
6345
6346void TestReserveMemorySpecial_test() {
6347  TestReserveMemorySpecial::test();
6348}
6349
6350#endif
6351