os_linux.cpp revision 5215:bb57d48691f5
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151/* Used to protect dlsym() calls */
152static pthread_mutex_t dl_mutex;
153
154// Declarations
155static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
156
157#ifdef JAVASE_EMBEDDED
158class MemNotifyThread: public Thread {
159  friend class VMStructs;
160 public:
161  virtual void run();
162
163 private:
164  static MemNotifyThread* _memnotify_thread;
165  int _fd;
166
167 public:
168
169  // Constructor
170  MemNotifyThread(int fd);
171
172  // Tester
173  bool is_memnotify_thread() const { return true; }
174
175  // Printing
176  char* name() const { return (char*)"Linux MemNotify Thread"; }
177
178  // Returns the single instance of the MemNotifyThread
179  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
180
181  // Create and start the single instance of MemNotifyThread
182  static void start();
183};
184#endif // JAVASE_EMBEDDED
185
186// utility functions
187
188static int SR_initialize();
189
190julong os::available_memory() {
191  return Linux::available_memory();
192}
193
194julong os::Linux::available_memory() {
195  // values in struct sysinfo are "unsigned long"
196  struct sysinfo si;
197  sysinfo(&si);
198
199  return (julong)si.freeram * si.mem_unit;
200}
201
202julong os::physical_memory() {
203  return Linux::physical_memory();
204}
205
206////////////////////////////////////////////////////////////////////////////////
207// environment support
208
209bool os::getenv(const char* name, char* buf, int len) {
210  const char* val = ::getenv(name);
211  if (val != NULL && strlen(val) < (size_t)len) {
212    strcpy(buf, val);
213    return true;
214  }
215  if (len > 0) buf[0] = 0;  // return a null string
216  return false;
217}
218
219
220// Return true if user is running as root.
221
222bool os::have_special_privileges() {
223  static bool init = false;
224  static bool privileges = false;
225  if (!init) {
226    privileges = (getuid() != geteuid()) || (getgid() != getegid());
227    init = true;
228  }
229  return privileges;
230}
231
232
233#ifndef SYS_gettid
234// i386: 224, ia64: 1105, amd64: 186, sparc 143
235#ifdef __ia64__
236#define SYS_gettid 1105
237#elif __i386__
238#define SYS_gettid 224
239#elif __amd64__
240#define SYS_gettid 186
241#elif __sparc__
242#define SYS_gettid 143
243#else
244#error define gettid for the arch
245#endif
246#endif
247
248// Cpu architecture string
249#if   defined(ZERO)
250static char cpu_arch[] = ZERO_LIBARCH;
251#elif defined(IA64)
252static char cpu_arch[] = "ia64";
253#elif defined(IA32)
254static char cpu_arch[] = "i386";
255#elif defined(AMD64)
256static char cpu_arch[] = "amd64";
257#elif defined(ARM)
258static char cpu_arch[] = "arm";
259#elif defined(PPC)
260static char cpu_arch[] = "ppc";
261#elif defined(SPARC)
262#  ifdef _LP64
263static char cpu_arch[] = "sparcv9";
264#  else
265static char cpu_arch[] = "sparc";
266#  endif
267#else
268#error Add appropriate cpu_arch setting
269#endif
270
271
272// pid_t gettid()
273//
274// Returns the kernel thread id of the currently running thread. Kernel
275// thread id is used to access /proc.
276//
277// (Note that getpid() on LinuxThreads returns kernel thread id too; but
278// on NPTL, it returns the same pid for all threads, as required by POSIX.)
279//
280pid_t os::Linux::gettid() {
281  int rslt = syscall(SYS_gettid);
282  if (rslt == -1) {
283     // old kernel, no NPTL support
284     return getpid();
285  } else {
286     return (pid_t)rslt;
287  }
288}
289
290// Most versions of linux have a bug where the number of processors are
291// determined by looking at the /proc file system.  In a chroot environment,
292// the system call returns 1.  This causes the VM to act as if it is
293// a single processor and elide locking (see is_MP() call).
294static bool unsafe_chroot_detected = false;
295static const char *unstable_chroot_error = "/proc file system not found.\n"
296                     "Java may be unstable running multithreaded in a chroot "
297                     "environment on Linux when /proc filesystem is not mounted.";
298
299void os::Linux::initialize_system_info() {
300  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
301  if (processor_count() == 1) {
302    pid_t pid = os::Linux::gettid();
303    char fname[32];
304    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
305    FILE *fp = fopen(fname, "r");
306    if (fp == NULL) {
307      unsafe_chroot_detected = true;
308    } else {
309      fclose(fp);
310    }
311  }
312  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
313  assert(processor_count() > 0, "linux error");
314}
315
316void os::init_system_properties_values() {
317//  char arch[12];
318//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
319
320  // The next steps are taken in the product version:
321  //
322  // Obtain the JAVA_HOME value from the location of libjvm.so.
323  // This library should be located at:
324  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
325  //
326  // If "/jre/lib/" appears at the right place in the path, then we
327  // assume libjvm.so is installed in a JDK and we use this path.
328  //
329  // Otherwise exit with message: "Could not create the Java virtual machine."
330  //
331  // The following extra steps are taken in the debugging version:
332  //
333  // If "/jre/lib/" does NOT appear at the right place in the path
334  // instead of exit check for $JAVA_HOME environment variable.
335  //
336  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
337  // then we append a fake suffix "hotspot/libjvm.so" to this path so
338  // it looks like libjvm.so is installed there
339  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
340  //
341  // Otherwise exit.
342  //
343  // Important note: if the location of libjvm.so changes this
344  // code needs to be changed accordingly.
345
346  // The next few definitions allow the code to be verbatim:
347#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
348#define getenv(n) ::getenv(n)
349
350/*
351 * See ld(1):
352 *      The linker uses the following search paths to locate required
353 *      shared libraries:
354 *        1: ...
355 *        ...
356 *        7: The default directories, normally /lib and /usr/lib.
357 */
358#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
359#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
360#else
361#define DEFAULT_LIBPATH "/lib:/usr/lib"
362#endif
363
364#define EXTENSIONS_DIR  "/lib/ext"
365#define ENDORSED_DIR    "/lib/endorsed"
366#define REG_DIR         "/usr/java/packages"
367
368  {
369    /* sysclasspath, java_home, dll_dir */
370    {
371        char *home_path;
372        char *dll_path;
373        char *pslash;
374        char buf[MAXPATHLEN];
375        os::jvm_path(buf, sizeof(buf));
376
377        // Found the full path to libjvm.so.
378        // Now cut the path to <java_home>/jre if we can.
379        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
380        pslash = strrchr(buf, '/');
381        if (pslash != NULL)
382            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
383        dll_path = malloc(strlen(buf) + 1);
384        if (dll_path == NULL)
385            return;
386        strcpy(dll_path, buf);
387        Arguments::set_dll_dir(dll_path);
388
389        if (pslash != NULL) {
390            pslash = strrchr(buf, '/');
391            if (pslash != NULL) {
392                *pslash = '\0';       /* get rid of /<arch> */
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396            }
397        }
398
399        home_path = malloc(strlen(buf) + 1);
400        if (home_path == NULL)
401            return;
402        strcpy(home_path, buf);
403        Arguments::set_java_home(home_path);
404
405        if (!set_boot_path('/', ':'))
406            return;
407    }
408
409    /*
410     * Where to look for native libraries
411     *
412     * Note: Due to a legacy implementation, most of the library path
413     * is set in the launcher.  This was to accomodate linking restrictions
414     * on legacy Linux implementations (which are no longer supported).
415     * Eventually, all the library path setting will be done here.
416     *
417     * However, to prevent the proliferation of improperly built native
418     * libraries, the new path component /usr/java/packages is added here.
419     * Eventually, all the library path setting will be done here.
420     */
421    {
422        char *ld_library_path;
423
424        /*
425         * Construct the invariant part of ld_library_path. Note that the
426         * space for the colon and the trailing null are provided by the
427         * nulls included by the sizeof operator (so actually we allocate
428         * a byte more than necessary).
429         */
430        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
431            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
432        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
433
434        /*
435         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
436         * should always exist (until the legacy problem cited above is
437         * addressed).
438         */
439        char *v = getenv("LD_LIBRARY_PATH");
440        if (v != NULL) {
441            char *t = ld_library_path;
442            /* That's +1 for the colon and +1 for the trailing '\0' */
443            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
444            sprintf(ld_library_path, "%s:%s", v, t);
445        }
446        Arguments::set_library_path(ld_library_path);
447    }
448
449    /*
450     * Extensions directories.
451     *
452     * Note that the space for the colon and the trailing null are provided
453     * by the nulls included by the sizeof operator (so actually one byte more
454     * than necessary is allocated).
455     */
456    {
457        char *buf = malloc(strlen(Arguments::get_java_home()) +
458            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
459        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
460            Arguments::get_java_home());
461        Arguments::set_ext_dirs(buf);
462    }
463
464    /* Endorsed standards default directory. */
465    {
466        char * buf;
467        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
468        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
469        Arguments::set_endorsed_dirs(buf);
470    }
471  }
472
473#undef malloc
474#undef getenv
475#undef EXTENSIONS_DIR
476#undef ENDORSED_DIR
477
478  // Done
479  return;
480}
481
482////////////////////////////////////////////////////////////////////////////////
483// breakpoint support
484
485void os::breakpoint() {
486  BREAKPOINT;
487}
488
489extern "C" void breakpoint() {
490  // use debugger to set breakpoint here
491}
492
493////////////////////////////////////////////////////////////////////////////////
494// signal support
495
496debug_only(static bool signal_sets_initialized = false);
497static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
498
499bool os::Linux::is_sig_ignored(int sig) {
500      struct sigaction oact;
501      sigaction(sig, (struct sigaction*)NULL, &oact);
502      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
503                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
504      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
505           return true;
506      else
507           return false;
508}
509
510void os::Linux::signal_sets_init() {
511  // Should also have an assertion stating we are still single-threaded.
512  assert(!signal_sets_initialized, "Already initialized");
513  // Fill in signals that are necessarily unblocked for all threads in
514  // the VM. Currently, we unblock the following signals:
515  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
516  //                         by -Xrs (=ReduceSignalUsage));
517  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
518  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
519  // the dispositions or masks wrt these signals.
520  // Programs embedding the VM that want to use the above signals for their
521  // own purposes must, at this time, use the "-Xrs" option to prevent
522  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
523  // (See bug 4345157, and other related bugs).
524  // In reality, though, unblocking these signals is really a nop, since
525  // these signals are not blocked by default.
526  sigemptyset(&unblocked_sigs);
527  sigemptyset(&allowdebug_blocked_sigs);
528  sigaddset(&unblocked_sigs, SIGILL);
529  sigaddset(&unblocked_sigs, SIGSEGV);
530  sigaddset(&unblocked_sigs, SIGBUS);
531  sigaddset(&unblocked_sigs, SIGFPE);
532  sigaddset(&unblocked_sigs, SR_signum);
533
534  if (!ReduceSignalUsage) {
535   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
536      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
537      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
538   }
539   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
540      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
541      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
542   }
543   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
544      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
545      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
546   }
547  }
548  // Fill in signals that are blocked by all but the VM thread.
549  sigemptyset(&vm_sigs);
550  if (!ReduceSignalUsage)
551    sigaddset(&vm_sigs, BREAK_SIGNAL);
552  debug_only(signal_sets_initialized = true);
553
554}
555
556// These are signals that are unblocked while a thread is running Java.
557// (For some reason, they get blocked by default.)
558sigset_t* os::Linux::unblocked_signals() {
559  assert(signal_sets_initialized, "Not initialized");
560  return &unblocked_sigs;
561}
562
563// These are the signals that are blocked while a (non-VM) thread is
564// running Java. Only the VM thread handles these signals.
565sigset_t* os::Linux::vm_signals() {
566  assert(signal_sets_initialized, "Not initialized");
567  return &vm_sigs;
568}
569
570// These are signals that are blocked during cond_wait to allow debugger in
571sigset_t* os::Linux::allowdebug_blocked_signals() {
572  assert(signal_sets_initialized, "Not initialized");
573  return &allowdebug_blocked_sigs;
574}
575
576void os::Linux::hotspot_sigmask(Thread* thread) {
577
578  //Save caller's signal mask before setting VM signal mask
579  sigset_t caller_sigmask;
580  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
581
582  OSThread* osthread = thread->osthread();
583  osthread->set_caller_sigmask(caller_sigmask);
584
585  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
586
587  if (!ReduceSignalUsage) {
588    if (thread->is_VM_thread()) {
589      // Only the VM thread handles BREAK_SIGNAL ...
590      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
591    } else {
592      // ... all other threads block BREAK_SIGNAL
593      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
594    }
595  }
596}
597
598//////////////////////////////////////////////////////////////////////////////
599// detecting pthread library
600
601void os::Linux::libpthread_init() {
602  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
603  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
604  // generic name for earlier versions.
605  // Define macros here so we can build HotSpot on old systems.
606# ifndef _CS_GNU_LIBC_VERSION
607# define _CS_GNU_LIBC_VERSION 2
608# endif
609# ifndef _CS_GNU_LIBPTHREAD_VERSION
610# define _CS_GNU_LIBPTHREAD_VERSION 3
611# endif
612
613  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
614  if (n > 0) {
615     char *str = (char *)malloc(n, mtInternal);
616     confstr(_CS_GNU_LIBC_VERSION, str, n);
617     os::Linux::set_glibc_version(str);
618  } else {
619     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
620     static char _gnu_libc_version[32];
621     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
622              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
623     os::Linux::set_glibc_version(_gnu_libc_version);
624  }
625
626  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
627  if (n > 0) {
628     char *str = (char *)malloc(n, mtInternal);
629     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
630     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
631     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
632     // is the case. LinuxThreads has a hard limit on max number of threads.
633     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
634     // On the other hand, NPTL does not have such a limit, sysconf()
635     // will return -1 and errno is not changed. Check if it is really NPTL.
636     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
637         strstr(str, "NPTL") &&
638         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
639       free(str);
640       os::Linux::set_libpthread_version("linuxthreads");
641     } else {
642       os::Linux::set_libpthread_version(str);
643     }
644  } else {
645    // glibc before 2.3.2 only has LinuxThreads.
646    os::Linux::set_libpthread_version("linuxthreads");
647  }
648
649  if (strstr(libpthread_version(), "NPTL")) {
650     os::Linux::set_is_NPTL();
651  } else {
652     os::Linux::set_is_LinuxThreads();
653  }
654
655  // LinuxThreads have two flavors: floating-stack mode, which allows variable
656  // stack size; and fixed-stack mode. NPTL is always floating-stack.
657  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
658     os::Linux::set_is_floating_stack();
659  }
660}
661
662/////////////////////////////////////////////////////////////////////////////
663// thread stack
664
665// Force Linux kernel to expand current thread stack. If "bottom" is close
666// to the stack guard, caller should block all signals.
667//
668// MAP_GROWSDOWN:
669//   A special mmap() flag that is used to implement thread stacks. It tells
670//   kernel that the memory region should extend downwards when needed. This
671//   allows early versions of LinuxThreads to only mmap the first few pages
672//   when creating a new thread. Linux kernel will automatically expand thread
673//   stack as needed (on page faults).
674//
675//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
676//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
677//   region, it's hard to tell if the fault is due to a legitimate stack
678//   access or because of reading/writing non-exist memory (e.g. buffer
679//   overrun). As a rule, if the fault happens below current stack pointer,
680//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
681//   application (see Linux kernel fault.c).
682//
683//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
684//   stack overflow detection.
685//
686//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
687//   not use this flag. However, the stack of initial thread is not created
688//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
689//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
690//   and then attach the thread to JVM.
691//
692// To get around the problem and allow stack banging on Linux, we need to
693// manually expand thread stack after receiving the SIGSEGV.
694//
695// There are two ways to expand thread stack to address "bottom", we used
696// both of them in JVM before 1.5:
697//   1. adjust stack pointer first so that it is below "bottom", and then
698//      touch "bottom"
699//   2. mmap() the page in question
700//
701// Now alternate signal stack is gone, it's harder to use 2. For instance,
702// if current sp is already near the lower end of page 101, and we need to
703// call mmap() to map page 100, it is possible that part of the mmap() frame
704// will be placed in page 100. When page 100 is mapped, it is zero-filled.
705// That will destroy the mmap() frame and cause VM to crash.
706//
707// The following code works by adjusting sp first, then accessing the "bottom"
708// page to force a page fault. Linux kernel will then automatically expand the
709// stack mapping.
710//
711// _expand_stack_to() assumes its frame size is less than page size, which
712// should always be true if the function is not inlined.
713
714#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
715#define NOINLINE
716#else
717#define NOINLINE __attribute__ ((noinline))
718#endif
719
720static void _expand_stack_to(address bottom) NOINLINE;
721
722static void _expand_stack_to(address bottom) {
723  address sp;
724  size_t size;
725  volatile char *p;
726
727  // Adjust bottom to point to the largest address within the same page, it
728  // gives us a one-page buffer if alloca() allocates slightly more memory.
729  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
730  bottom += os::Linux::page_size() - 1;
731
732  // sp might be slightly above current stack pointer; if that's the case, we
733  // will alloca() a little more space than necessary, which is OK. Don't use
734  // os::current_stack_pointer(), as its result can be slightly below current
735  // stack pointer, causing us to not alloca enough to reach "bottom".
736  sp = (address)&sp;
737
738  if (sp > bottom) {
739    size = sp - bottom;
740    p = (volatile char *)alloca(size);
741    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
742    p[0] = '\0';
743  }
744}
745
746bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
747  assert(t!=NULL, "just checking");
748  assert(t->osthread()->expanding_stack(), "expand should be set");
749  assert(t->stack_base() != NULL, "stack_base was not initialized");
750
751  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
752    sigset_t mask_all, old_sigset;
753    sigfillset(&mask_all);
754    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
755    _expand_stack_to(addr);
756    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
757    return true;
758  }
759  return false;
760}
761
762//////////////////////////////////////////////////////////////////////////////
763// create new thread
764
765static address highest_vm_reserved_address();
766
767// check if it's safe to start a new thread
768static bool _thread_safety_check(Thread* thread) {
769  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
770    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
771    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
772    //   allocated (MAP_FIXED) from high address space. Every thread stack
773    //   occupies a fixed size slot (usually 2Mbytes, but user can change
774    //   it to other values if they rebuild LinuxThreads).
775    //
776    // Problem with MAP_FIXED is that mmap() can still succeed even part of
777    // the memory region has already been mmap'ed. That means if we have too
778    // many threads and/or very large heap, eventually thread stack will
779    // collide with heap.
780    //
781    // Here we try to prevent heap/stack collision by comparing current
782    // stack bottom with the highest address that has been mmap'ed by JVM
783    // plus a safety margin for memory maps created by native code.
784    //
785    // This feature can be disabled by setting ThreadSafetyMargin to 0
786    //
787    if (ThreadSafetyMargin > 0) {
788      address stack_bottom = os::current_stack_base() - os::current_stack_size();
789
790      // not safe if our stack extends below the safety margin
791      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
792    } else {
793      return true;
794    }
795  } else {
796    // Floating stack LinuxThreads or NPTL:
797    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
798    //   there's not enough space left, pthread_create() will fail. If we come
799    //   here, that means enough space has been reserved for stack.
800    return true;
801  }
802}
803
804// Thread start routine for all newly created threads
805static void *java_start(Thread *thread) {
806  // Try to randomize the cache line index of hot stack frames.
807  // This helps when threads of the same stack traces evict each other's
808  // cache lines. The threads can be either from the same JVM instance, or
809  // from different JVM instances. The benefit is especially true for
810  // processors with hyperthreading technology.
811  static int counter = 0;
812  int pid = os::current_process_id();
813  alloca(((pid ^ counter++) & 7) * 128);
814
815  ThreadLocalStorage::set_thread(thread);
816
817  OSThread* osthread = thread->osthread();
818  Monitor* sync = osthread->startThread_lock();
819
820  // non floating stack LinuxThreads needs extra check, see above
821  if (!_thread_safety_check(thread)) {
822    // notify parent thread
823    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
824    osthread->set_state(ZOMBIE);
825    sync->notify_all();
826    return NULL;
827  }
828
829  // thread_id is kernel thread id (similar to Solaris LWP id)
830  osthread->set_thread_id(os::Linux::gettid());
831
832  if (UseNUMA) {
833    int lgrp_id = os::numa_get_group_id();
834    if (lgrp_id != -1) {
835      thread->set_lgrp_id(lgrp_id);
836    }
837  }
838  // initialize signal mask for this thread
839  os::Linux::hotspot_sigmask(thread);
840
841  // initialize floating point control register
842  os::Linux::init_thread_fpu_state();
843
844  // handshaking with parent thread
845  {
846    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
847
848    // notify parent thread
849    osthread->set_state(INITIALIZED);
850    sync->notify_all();
851
852    // wait until os::start_thread()
853    while (osthread->get_state() == INITIALIZED) {
854      sync->wait(Mutex::_no_safepoint_check_flag);
855    }
856  }
857
858  // call one more level start routine
859  thread->run();
860
861  return 0;
862}
863
864bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
865  assert(thread->osthread() == NULL, "caller responsible");
866
867  // Allocate the OSThread object
868  OSThread* osthread = new OSThread(NULL, NULL);
869  if (osthread == NULL) {
870    return false;
871  }
872
873  // set the correct thread state
874  osthread->set_thread_type(thr_type);
875
876  // Initial state is ALLOCATED but not INITIALIZED
877  osthread->set_state(ALLOCATED);
878
879  thread->set_osthread(osthread);
880
881  // init thread attributes
882  pthread_attr_t attr;
883  pthread_attr_init(&attr);
884  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
885
886  // stack size
887  if (os::Linux::supports_variable_stack_size()) {
888    // calculate stack size if it's not specified by caller
889    if (stack_size == 0) {
890      stack_size = os::Linux::default_stack_size(thr_type);
891
892      switch (thr_type) {
893      case os::java_thread:
894        // Java threads use ThreadStackSize which default value can be
895        // changed with the flag -Xss
896        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
897        stack_size = JavaThread::stack_size_at_create();
898        break;
899      case os::compiler_thread:
900        if (CompilerThreadStackSize > 0) {
901          stack_size = (size_t)(CompilerThreadStackSize * K);
902          break;
903        } // else fall through:
904          // use VMThreadStackSize if CompilerThreadStackSize is not defined
905      case os::vm_thread:
906      case os::pgc_thread:
907      case os::cgc_thread:
908      case os::watcher_thread:
909        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
910        break;
911      }
912    }
913
914    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
915    pthread_attr_setstacksize(&attr, stack_size);
916  } else {
917    // let pthread_create() pick the default value.
918  }
919
920  // glibc guard page
921  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
922
923  ThreadState state;
924
925  {
926    // Serialize thread creation if we are running with fixed stack LinuxThreads
927    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
928    if (lock) {
929      os::Linux::createThread_lock()->lock_without_safepoint_check();
930    }
931
932    pthread_t tid;
933    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
934
935    pthread_attr_destroy(&attr);
936
937    if (ret != 0) {
938      if (PrintMiscellaneous && (Verbose || WizardMode)) {
939        perror("pthread_create()");
940      }
941      // Need to clean up stuff we've allocated so far
942      thread->set_osthread(NULL);
943      delete osthread;
944      if (lock) os::Linux::createThread_lock()->unlock();
945      return false;
946    }
947
948    // Store pthread info into the OSThread
949    osthread->set_pthread_id(tid);
950
951    // Wait until child thread is either initialized or aborted
952    {
953      Monitor* sync_with_child = osthread->startThread_lock();
954      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
955      while ((state = osthread->get_state()) == ALLOCATED) {
956        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
957      }
958    }
959
960    if (lock) {
961      os::Linux::createThread_lock()->unlock();
962    }
963  }
964
965  // Aborted due to thread limit being reached
966  if (state == ZOMBIE) {
967      thread->set_osthread(NULL);
968      delete osthread;
969      return false;
970  }
971
972  // The thread is returned suspended (in state INITIALIZED),
973  // and is started higher up in the call chain
974  assert(state == INITIALIZED, "race condition");
975  return true;
976}
977
978/////////////////////////////////////////////////////////////////////////////
979// attach existing thread
980
981// bootstrap the main thread
982bool os::create_main_thread(JavaThread* thread) {
983  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
984  return create_attached_thread(thread);
985}
986
987bool os::create_attached_thread(JavaThread* thread) {
988#ifdef ASSERT
989    thread->verify_not_published();
990#endif
991
992  // Allocate the OSThread object
993  OSThread* osthread = new OSThread(NULL, NULL);
994
995  if (osthread == NULL) {
996    return false;
997  }
998
999  // Store pthread info into the OSThread
1000  osthread->set_thread_id(os::Linux::gettid());
1001  osthread->set_pthread_id(::pthread_self());
1002
1003  // initialize floating point control register
1004  os::Linux::init_thread_fpu_state();
1005
1006  // Initial thread state is RUNNABLE
1007  osthread->set_state(RUNNABLE);
1008
1009  thread->set_osthread(osthread);
1010
1011  if (UseNUMA) {
1012    int lgrp_id = os::numa_get_group_id();
1013    if (lgrp_id != -1) {
1014      thread->set_lgrp_id(lgrp_id);
1015    }
1016  }
1017
1018  if (os::Linux::is_initial_thread()) {
1019    // If current thread is initial thread, its stack is mapped on demand,
1020    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1021    // the entire stack region to avoid SEGV in stack banging.
1022    // It is also useful to get around the heap-stack-gap problem on SuSE
1023    // kernel (see 4821821 for details). We first expand stack to the top
1024    // of yellow zone, then enable stack yellow zone (order is significant,
1025    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1026    // is no gap between the last two virtual memory regions.
1027
1028    JavaThread *jt = (JavaThread *)thread;
1029    address addr = jt->stack_yellow_zone_base();
1030    assert(addr != NULL, "initialization problem?");
1031    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1032
1033    osthread->set_expanding_stack();
1034    os::Linux::manually_expand_stack(jt, addr);
1035    osthread->clear_expanding_stack();
1036  }
1037
1038  // initialize signal mask for this thread
1039  // and save the caller's signal mask
1040  os::Linux::hotspot_sigmask(thread);
1041
1042  return true;
1043}
1044
1045void os::pd_start_thread(Thread* thread) {
1046  OSThread * osthread = thread->osthread();
1047  assert(osthread->get_state() != INITIALIZED, "just checking");
1048  Monitor* sync_with_child = osthread->startThread_lock();
1049  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1050  sync_with_child->notify();
1051}
1052
1053// Free Linux resources related to the OSThread
1054void os::free_thread(OSThread* osthread) {
1055  assert(osthread != NULL, "osthread not set");
1056
1057  if (Thread::current()->osthread() == osthread) {
1058    // Restore caller's signal mask
1059    sigset_t sigmask = osthread->caller_sigmask();
1060    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1061   }
1062
1063  delete osthread;
1064}
1065
1066//////////////////////////////////////////////////////////////////////////////
1067// thread local storage
1068
1069int os::allocate_thread_local_storage() {
1070  pthread_key_t key;
1071  int rslt = pthread_key_create(&key, NULL);
1072  assert(rslt == 0, "cannot allocate thread local storage");
1073  return (int)key;
1074}
1075
1076// Note: This is currently not used by VM, as we don't destroy TLS key
1077// on VM exit.
1078void os::free_thread_local_storage(int index) {
1079  int rslt = pthread_key_delete((pthread_key_t)index);
1080  assert(rslt == 0, "invalid index");
1081}
1082
1083void os::thread_local_storage_at_put(int index, void* value) {
1084  int rslt = pthread_setspecific((pthread_key_t)index, value);
1085  assert(rslt == 0, "pthread_setspecific failed");
1086}
1087
1088extern "C" Thread* get_thread() {
1089  return ThreadLocalStorage::thread();
1090}
1091
1092//////////////////////////////////////////////////////////////////////////////
1093// initial thread
1094
1095// Check if current thread is the initial thread, similar to Solaris thr_main.
1096bool os::Linux::is_initial_thread(void) {
1097  char dummy;
1098  // If called before init complete, thread stack bottom will be null.
1099  // Can be called if fatal error occurs before initialization.
1100  if (initial_thread_stack_bottom() == NULL) return false;
1101  assert(initial_thread_stack_bottom() != NULL &&
1102         initial_thread_stack_size()   != 0,
1103         "os::init did not locate initial thread's stack region");
1104  if ((address)&dummy >= initial_thread_stack_bottom() &&
1105      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1106       return true;
1107  else return false;
1108}
1109
1110// Find the virtual memory area that contains addr
1111static bool find_vma(address addr, address* vma_low, address* vma_high) {
1112  FILE *fp = fopen("/proc/self/maps", "r");
1113  if (fp) {
1114    address low, high;
1115    while (!feof(fp)) {
1116      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1117        if (low <= addr && addr < high) {
1118           if (vma_low)  *vma_low  = low;
1119           if (vma_high) *vma_high = high;
1120           fclose (fp);
1121           return true;
1122        }
1123      }
1124      for (;;) {
1125        int ch = fgetc(fp);
1126        if (ch == EOF || ch == (int)'\n') break;
1127      }
1128    }
1129    fclose(fp);
1130  }
1131  return false;
1132}
1133
1134// Locate initial thread stack. This special handling of initial thread stack
1135// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1136// bogus value for initial thread.
1137void os::Linux::capture_initial_stack(size_t max_size) {
1138  // stack size is the easy part, get it from RLIMIT_STACK
1139  size_t stack_size;
1140  struct rlimit rlim;
1141  getrlimit(RLIMIT_STACK, &rlim);
1142  stack_size = rlim.rlim_cur;
1143
1144  // 6308388: a bug in ld.so will relocate its own .data section to the
1145  //   lower end of primordial stack; reduce ulimit -s value a little bit
1146  //   so we won't install guard page on ld.so's data section.
1147  stack_size -= 2 * page_size();
1148
1149  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1150  //   7.1, in both cases we will get 2G in return value.
1151  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1152  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1153  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1154  //   in case other parts in glibc still assumes 2M max stack size.
1155  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1156  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1157  if (stack_size > 2 * K * K IA64_ONLY(*2))
1158      stack_size = 2 * K * K IA64_ONLY(*2);
1159  // Try to figure out where the stack base (top) is. This is harder.
1160  //
1161  // When an application is started, glibc saves the initial stack pointer in
1162  // a global variable "__libc_stack_end", which is then used by system
1163  // libraries. __libc_stack_end should be pretty close to stack top. The
1164  // variable is available since the very early days. However, because it is
1165  // a private interface, it could disappear in the future.
1166  //
1167  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1168  // to __libc_stack_end, it is very close to stack top, but isn't the real
1169  // stack top. Note that /proc may not exist if VM is running as a chroot
1170  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1171  // /proc/<pid>/stat could change in the future (though unlikely).
1172  //
1173  // We try __libc_stack_end first. If that doesn't work, look for
1174  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1175  // as a hint, which should work well in most cases.
1176
1177  uintptr_t stack_start;
1178
1179  // try __libc_stack_end first
1180  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1181  if (p && *p) {
1182    stack_start = *p;
1183  } else {
1184    // see if we can get the start_stack field from /proc/self/stat
1185    FILE *fp;
1186    int pid;
1187    char state;
1188    int ppid;
1189    int pgrp;
1190    int session;
1191    int nr;
1192    int tpgrp;
1193    unsigned long flags;
1194    unsigned long minflt;
1195    unsigned long cminflt;
1196    unsigned long majflt;
1197    unsigned long cmajflt;
1198    unsigned long utime;
1199    unsigned long stime;
1200    long cutime;
1201    long cstime;
1202    long prio;
1203    long nice;
1204    long junk;
1205    long it_real;
1206    uintptr_t start;
1207    uintptr_t vsize;
1208    intptr_t rss;
1209    uintptr_t rsslim;
1210    uintptr_t scodes;
1211    uintptr_t ecode;
1212    int i;
1213
1214    // Figure what the primordial thread stack base is. Code is inspired
1215    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1216    // followed by command name surrounded by parentheses, state, etc.
1217    char stat[2048];
1218    int statlen;
1219
1220    fp = fopen("/proc/self/stat", "r");
1221    if (fp) {
1222      statlen = fread(stat, 1, 2047, fp);
1223      stat[statlen] = '\0';
1224      fclose(fp);
1225
1226      // Skip pid and the command string. Note that we could be dealing with
1227      // weird command names, e.g. user could decide to rename java launcher
1228      // to "java 1.4.2 :)", then the stat file would look like
1229      //                1234 (java 1.4.2 :)) R ... ...
1230      // We don't really need to know the command string, just find the last
1231      // occurrence of ")" and then start parsing from there. See bug 4726580.
1232      char * s = strrchr(stat, ')');
1233
1234      i = 0;
1235      if (s) {
1236        // Skip blank chars
1237        do s++; while (isspace(*s));
1238
1239#define _UFM UINTX_FORMAT
1240#define _DFM INTX_FORMAT
1241
1242        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1243        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1244        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1245             &state,          /* 3  %c  */
1246             &ppid,           /* 4  %d  */
1247             &pgrp,           /* 5  %d  */
1248             &session,        /* 6  %d  */
1249             &nr,             /* 7  %d  */
1250             &tpgrp,          /* 8  %d  */
1251             &flags,          /* 9  %lu  */
1252             &minflt,         /* 10 %lu  */
1253             &cminflt,        /* 11 %lu  */
1254             &majflt,         /* 12 %lu  */
1255             &cmajflt,        /* 13 %lu  */
1256             &utime,          /* 14 %lu  */
1257             &stime,          /* 15 %lu  */
1258             &cutime,         /* 16 %ld  */
1259             &cstime,         /* 17 %ld  */
1260             &prio,           /* 18 %ld  */
1261             &nice,           /* 19 %ld  */
1262             &junk,           /* 20 %ld  */
1263             &it_real,        /* 21 %ld  */
1264             &start,          /* 22 UINTX_FORMAT */
1265             &vsize,          /* 23 UINTX_FORMAT */
1266             &rss,            /* 24 INTX_FORMAT  */
1267             &rsslim,         /* 25 UINTX_FORMAT */
1268             &scodes,         /* 26 UINTX_FORMAT */
1269             &ecode,          /* 27 UINTX_FORMAT */
1270             &stack_start);   /* 28 UINTX_FORMAT */
1271      }
1272
1273#undef _UFM
1274#undef _DFM
1275
1276      if (i != 28 - 2) {
1277         assert(false, "Bad conversion from /proc/self/stat");
1278         // product mode - assume we are the initial thread, good luck in the
1279         // embedded case.
1280         warning("Can't detect initial thread stack location - bad conversion");
1281         stack_start = (uintptr_t) &rlim;
1282      }
1283    } else {
1284      // For some reason we can't open /proc/self/stat (for example, running on
1285      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1286      // most cases, so don't abort:
1287      warning("Can't detect initial thread stack location - no /proc/self/stat");
1288      stack_start = (uintptr_t) &rlim;
1289    }
1290  }
1291
1292  // Now we have a pointer (stack_start) very close to the stack top, the
1293  // next thing to do is to figure out the exact location of stack top. We
1294  // can find out the virtual memory area that contains stack_start by
1295  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1296  // and its upper limit is the real stack top. (again, this would fail if
1297  // running inside chroot, because /proc may not exist.)
1298
1299  uintptr_t stack_top;
1300  address low, high;
1301  if (find_vma((address)stack_start, &low, &high)) {
1302    // success, "high" is the true stack top. (ignore "low", because initial
1303    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1304    stack_top = (uintptr_t)high;
1305  } else {
1306    // failed, likely because /proc/self/maps does not exist
1307    warning("Can't detect initial thread stack location - find_vma failed");
1308    // best effort: stack_start is normally within a few pages below the real
1309    // stack top, use it as stack top, and reduce stack size so we won't put
1310    // guard page outside stack.
1311    stack_top = stack_start;
1312    stack_size -= 16 * page_size();
1313  }
1314
1315  // stack_top could be partially down the page so align it
1316  stack_top = align_size_up(stack_top, page_size());
1317
1318  if (max_size && stack_size > max_size) {
1319     _initial_thread_stack_size = max_size;
1320  } else {
1321     _initial_thread_stack_size = stack_size;
1322  }
1323
1324  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1325  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326}
1327
1328////////////////////////////////////////////////////////////////////////////////
1329// time support
1330
1331// Time since start-up in seconds to a fine granularity.
1332// Used by VMSelfDestructTimer and the MemProfiler.
1333double os::elapsedTime() {
1334
1335  return (double)(os::elapsed_counter()) * 0.000001;
1336}
1337
1338jlong os::elapsed_counter() {
1339  timeval time;
1340  int status = gettimeofday(&time, NULL);
1341  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1342}
1343
1344jlong os::elapsed_frequency() {
1345  return (1000 * 1000);
1346}
1347
1348bool os::supports_vtime() { return true; }
1349bool os::enable_vtime()   { return false; }
1350bool os::vtime_enabled()  { return false; }
1351
1352double os::elapsedVTime() {
1353  struct rusage usage;
1354  int retval = getrusage(RUSAGE_THREAD, &usage);
1355  if (retval == 0) {
1356    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1357  } else {
1358    // better than nothing, but not much
1359    return elapsedTime();
1360  }
1361}
1362
1363jlong os::javaTimeMillis() {
1364  timeval time;
1365  int status = gettimeofday(&time, NULL);
1366  assert(status != -1, "linux error");
1367  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1368}
1369
1370#ifndef CLOCK_MONOTONIC
1371#define CLOCK_MONOTONIC (1)
1372#endif
1373
1374void os::Linux::clock_init() {
1375  // we do dlopen's in this particular order due to bug in linux
1376  // dynamical loader (see 6348968) leading to crash on exit
1377  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1378  if (handle == NULL) {
1379    handle = dlopen("librt.so", RTLD_LAZY);
1380  }
1381
1382  if (handle) {
1383    int (*clock_getres_func)(clockid_t, struct timespec*) =
1384           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1385    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1387    if (clock_getres_func && clock_gettime_func) {
1388      // See if monotonic clock is supported by the kernel. Note that some
1389      // early implementations simply return kernel jiffies (updated every
1390      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1391      // for nano time (though the monotonic property is still nice to have).
1392      // It's fixed in newer kernels, however clock_getres() still returns
1393      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1394      // resolution for now. Hopefully as people move to new kernels, this
1395      // won't be a problem.
1396      struct timespec res;
1397      struct timespec tp;
1398      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1399          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1400        // yes, monotonic clock is supported
1401        _clock_gettime = clock_gettime_func;
1402      } else {
1403        // close librt if there is no monotonic clock
1404        dlclose(handle);
1405      }
1406    }
1407  }
1408}
1409
1410#ifndef SYS_clock_getres
1411
1412#if defined(IA32) || defined(AMD64)
1413#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1414#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1415#else
1416#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1417#define sys_clock_getres(x,y)  -1
1418#endif
1419
1420#else
1421#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422#endif
1423
1424void os::Linux::fast_thread_clock_init() {
1425  if (!UseLinuxPosixThreadCPUClocks) {
1426    return;
1427  }
1428  clockid_t clockid;
1429  struct timespec tp;
1430  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1431      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1432
1433  // Switch to using fast clocks for thread cpu time if
1434  // the sys_clock_getres() returns 0 error code.
1435  // Note, that some kernels may support the current thread
1436  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1437  // returned by the pthread_getcpuclockid().
1438  // If the fast Posix clocks are supported then the sys_clock_getres()
1439  // must return at least tp.tv_sec == 0 which means a resolution
1440  // better than 1 sec. This is extra check for reliability.
1441
1442  if(pthread_getcpuclockid_func &&
1443     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1444     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1445
1446    _supports_fast_thread_cpu_time = true;
1447    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1448  }
1449}
1450
1451jlong os::javaTimeNanos() {
1452  if (Linux::supports_monotonic_clock()) {
1453    struct timespec tp;
1454    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1455    assert(status == 0, "gettime error");
1456    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1457    return result;
1458  } else {
1459    timeval time;
1460    int status = gettimeofday(&time, NULL);
1461    assert(status != -1, "linux error");
1462    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1463    return 1000 * usecs;
1464  }
1465}
1466
1467void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1468  if (Linux::supports_monotonic_clock()) {
1469    info_ptr->max_value = ALL_64_BITS;
1470
1471    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1472    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1473    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1474  } else {
1475    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1476    info_ptr->max_value = ALL_64_BITS;
1477
1478    // gettimeofday is a real time clock so it skips
1479    info_ptr->may_skip_backward = true;
1480    info_ptr->may_skip_forward = true;
1481  }
1482
1483  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1484}
1485
1486// Return the real, user, and system times in seconds from an
1487// arbitrary fixed point in the past.
1488bool os::getTimesSecs(double* process_real_time,
1489                      double* process_user_time,
1490                      double* process_system_time) {
1491  struct tms ticks;
1492  clock_t real_ticks = times(&ticks);
1493
1494  if (real_ticks == (clock_t) (-1)) {
1495    return false;
1496  } else {
1497    double ticks_per_second = (double) clock_tics_per_sec;
1498    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1499    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1500    *process_real_time = ((double) real_ticks) / ticks_per_second;
1501
1502    return true;
1503  }
1504}
1505
1506
1507char * os::local_time_string(char *buf, size_t buflen) {
1508  struct tm t;
1509  time_t long_time;
1510  time(&long_time);
1511  localtime_r(&long_time, &t);
1512  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1513               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1514               t.tm_hour, t.tm_min, t.tm_sec);
1515  return buf;
1516}
1517
1518struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1519  return localtime_r(clock, res);
1520}
1521
1522////////////////////////////////////////////////////////////////////////////////
1523// runtime exit support
1524
1525// Note: os::shutdown() might be called very early during initialization, or
1526// called from signal handler. Before adding something to os::shutdown(), make
1527// sure it is async-safe and can handle partially initialized VM.
1528void os::shutdown() {
1529
1530  // allow PerfMemory to attempt cleanup of any persistent resources
1531  perfMemory_exit();
1532
1533  // needs to remove object in file system
1534  AttachListener::abort();
1535
1536  // flush buffered output, finish log files
1537  ostream_abort();
1538
1539  // Check for abort hook
1540  abort_hook_t abort_hook = Arguments::abort_hook();
1541  if (abort_hook != NULL) {
1542    abort_hook();
1543  }
1544
1545}
1546
1547// Note: os::abort() might be called very early during initialization, or
1548// called from signal handler. Before adding something to os::abort(), make
1549// sure it is async-safe and can handle partially initialized VM.
1550void os::abort(bool dump_core) {
1551  os::shutdown();
1552  if (dump_core) {
1553#ifndef PRODUCT
1554    fdStream out(defaultStream::output_fd());
1555    out.print_raw("Current thread is ");
1556    char buf[16];
1557    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1558    out.print_raw_cr(buf);
1559    out.print_raw_cr("Dumping core ...");
1560#endif
1561    ::abort(); // dump core
1562  }
1563
1564  ::exit(1);
1565}
1566
1567// Die immediately, no exit hook, no abort hook, no cleanup.
1568void os::die() {
1569  // _exit() on LinuxThreads only kills current thread
1570  ::abort();
1571}
1572
1573// unused on linux for now.
1574void os::set_error_file(const char *logfile) {}
1575
1576
1577// This method is a copy of JDK's sysGetLastErrorString
1578// from src/solaris/hpi/src/system_md.c
1579
1580size_t os::lasterror(char *buf, size_t len) {
1581
1582  if (errno == 0)  return 0;
1583
1584  const char *s = ::strerror(errno);
1585  size_t n = ::strlen(s);
1586  if (n >= len) {
1587    n = len - 1;
1588  }
1589  ::strncpy(buf, s, n);
1590  buf[n] = '\0';
1591  return n;
1592}
1593
1594intx os::current_thread_id() { return (intx)pthread_self(); }
1595int os::current_process_id() {
1596
1597  // Under the old linux thread library, linux gives each thread
1598  // its own process id. Because of this each thread will return
1599  // a different pid if this method were to return the result
1600  // of getpid(2). Linux provides no api that returns the pid
1601  // of the launcher thread for the vm. This implementation
1602  // returns a unique pid, the pid of the launcher thread
1603  // that starts the vm 'process'.
1604
1605  // Under the NPTL, getpid() returns the same pid as the
1606  // launcher thread rather than a unique pid per thread.
1607  // Use gettid() if you want the old pre NPTL behaviour.
1608
1609  // if you are looking for the result of a call to getpid() that
1610  // returns a unique pid for the calling thread, then look at the
1611  // OSThread::thread_id() method in osThread_linux.hpp file
1612
1613  return (int)(_initial_pid ? _initial_pid : getpid());
1614}
1615
1616// DLL functions
1617
1618const char* os::dll_file_extension() { return ".so"; }
1619
1620// This must be hard coded because it's the system's temporary
1621// directory not the java application's temp directory, ala java.io.tmpdir.
1622const char* os::get_temp_directory() { return "/tmp"; }
1623
1624static bool file_exists(const char* filename) {
1625  struct stat statbuf;
1626  if (filename == NULL || strlen(filename) == 0) {
1627    return false;
1628  }
1629  return os::stat(filename, &statbuf) == 0;
1630}
1631
1632bool os::dll_build_name(char* buffer, size_t buflen,
1633                        const char* pname, const char* fname) {
1634  bool retval = false;
1635  // Copied from libhpi
1636  const size_t pnamelen = pname ? strlen(pname) : 0;
1637
1638  // Return error on buffer overflow.
1639  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1640    return retval;
1641  }
1642
1643  if (pnamelen == 0) {
1644    snprintf(buffer, buflen, "lib%s.so", fname);
1645    retval = true;
1646  } else if (strchr(pname, *os::path_separator()) != NULL) {
1647    int n;
1648    char** pelements = split_path(pname, &n);
1649    if (pelements == NULL) {
1650      return false;
1651    }
1652    for (int i = 0 ; i < n ; i++) {
1653      // Really shouldn't be NULL, but check can't hurt
1654      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1655        continue; // skip the empty path values
1656      }
1657      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1658      if (file_exists(buffer)) {
1659        retval = true;
1660        break;
1661      }
1662    }
1663    // release the storage
1664    for (int i = 0 ; i < n ; i++) {
1665      if (pelements[i] != NULL) {
1666        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1667      }
1668    }
1669    if (pelements != NULL) {
1670      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1671    }
1672  } else {
1673    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1674    retval = true;
1675  }
1676  return retval;
1677}
1678
1679// check if addr is inside libjvm.so
1680bool os::address_is_in_vm(address addr) {
1681  static address libjvm_base_addr;
1682  Dl_info dlinfo;
1683
1684  if (libjvm_base_addr == NULL) {
1685    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1686      libjvm_base_addr = (address)dlinfo.dli_fbase;
1687    }
1688    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1689  }
1690
1691  if (dladdr((void *)addr, &dlinfo) != 0) {
1692    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1693  }
1694
1695  return false;
1696}
1697
1698bool os::dll_address_to_function_name(address addr, char *buf,
1699                                      int buflen, int *offset) {
1700  // buf is not optional, but offset is optional
1701  assert(buf != NULL, "sanity check");
1702
1703  Dl_info dlinfo;
1704
1705  if (dladdr((void*)addr, &dlinfo) != 0) {
1706    // see if we have a matching symbol
1707    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1708      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1709        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1710      }
1711      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1712      return true;
1713    }
1714    // no matching symbol so try for just file info
1715    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1716      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1717                          buf, buflen, offset, dlinfo.dli_fname)) {
1718        return true;
1719      }
1720    }
1721  }
1722
1723  buf[0] = '\0';
1724  if (offset != NULL) *offset = -1;
1725  return false;
1726}
1727
1728struct _address_to_library_name {
1729  address addr;          // input : memory address
1730  size_t  buflen;        //         size of fname
1731  char*   fname;         // output: library name
1732  address base;          //         library base addr
1733};
1734
1735static int address_to_library_name_callback(struct dl_phdr_info *info,
1736                                            size_t size, void *data) {
1737  int i;
1738  bool found = false;
1739  address libbase = NULL;
1740  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1741
1742  // iterate through all loadable segments
1743  for (i = 0; i < info->dlpi_phnum; i++) {
1744    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1745    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1746      // base address of a library is the lowest address of its loaded
1747      // segments.
1748      if (libbase == NULL || libbase > segbase) {
1749        libbase = segbase;
1750      }
1751      // see if 'addr' is within current segment
1752      if (segbase <= d->addr &&
1753          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1754        found = true;
1755      }
1756    }
1757  }
1758
1759  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1760  // so dll_address_to_library_name() can fall through to use dladdr() which
1761  // can figure out executable name from argv[0].
1762  if (found && info->dlpi_name && info->dlpi_name[0]) {
1763    d->base = libbase;
1764    if (d->fname) {
1765      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1766    }
1767    return 1;
1768  }
1769  return 0;
1770}
1771
1772bool os::dll_address_to_library_name(address addr, char* buf,
1773                                     int buflen, int* offset) {
1774  // buf is not optional, but offset is optional
1775  assert(buf != NULL, "sanity check");
1776
1777  Dl_info dlinfo;
1778  struct _address_to_library_name data;
1779
1780  // There is a bug in old glibc dladdr() implementation that it could resolve
1781  // to wrong library name if the .so file has a base address != NULL. Here
1782  // we iterate through the program headers of all loaded libraries to find
1783  // out which library 'addr' really belongs to. This workaround can be
1784  // removed once the minimum requirement for glibc is moved to 2.3.x.
1785  data.addr = addr;
1786  data.fname = buf;
1787  data.buflen = buflen;
1788  data.base = NULL;
1789  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1790
1791  if (rslt) {
1792     // buf already contains library name
1793     if (offset) *offset = addr - data.base;
1794     return true;
1795  }
1796  if (dladdr((void*)addr, &dlinfo) != 0) {
1797    if (dlinfo.dli_fname != NULL) {
1798      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1799    }
1800    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1801      *offset = addr - (address)dlinfo.dli_fbase;
1802    }
1803    return true;
1804  }
1805
1806  buf[0] = '\0';
1807  if (offset) *offset = -1;
1808  return false;
1809}
1810
1811  // Loads .dll/.so and
1812  // in case of error it checks if .dll/.so was built for the
1813  // same architecture as Hotspot is running on
1814
1815
1816// Remember the stack's state. The Linux dynamic linker will change
1817// the stack to 'executable' at most once, so we must safepoint only once.
1818bool os::Linux::_stack_is_executable = false;
1819
1820// VM operation that loads a library.  This is necessary if stack protection
1821// of the Java stacks can be lost during loading the library.  If we
1822// do not stop the Java threads, they can stack overflow before the stacks
1823// are protected again.
1824class VM_LinuxDllLoad: public VM_Operation {
1825 private:
1826  const char *_filename;
1827  char *_ebuf;
1828  int _ebuflen;
1829  void *_lib;
1830 public:
1831  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1832    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1833  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1834  void doit() {
1835    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1836    os::Linux::_stack_is_executable = true;
1837  }
1838  void* loaded_library() { return _lib; }
1839};
1840
1841void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1842{
1843  void * result = NULL;
1844  bool load_attempted = false;
1845
1846  // Check whether the library to load might change execution rights
1847  // of the stack. If they are changed, the protection of the stack
1848  // guard pages will be lost. We need a safepoint to fix this.
1849  //
1850  // See Linux man page execstack(8) for more info.
1851  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1852    ElfFile ef(filename);
1853    if (!ef.specifies_noexecstack()) {
1854      if (!is_init_completed()) {
1855        os::Linux::_stack_is_executable = true;
1856        // This is OK - No Java threads have been created yet, and hence no
1857        // stack guard pages to fix.
1858        //
1859        // This should happen only when you are building JDK7 using a very
1860        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1861        //
1862        // Dynamic loader will make all stacks executable after
1863        // this function returns, and will not do that again.
1864        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1865      } else {
1866        warning("You have loaded library %s which might have disabled stack guard. "
1867                "The VM will try to fix the stack guard now.\n"
1868                "It's highly recommended that you fix the library with "
1869                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1870                filename);
1871
1872        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1873        JavaThread *jt = JavaThread::current();
1874        if (jt->thread_state() != _thread_in_native) {
1875          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1876          // that requires ExecStack. Cannot enter safe point. Let's give up.
1877          warning("Unable to fix stack guard. Giving up.");
1878        } else {
1879          if (!LoadExecStackDllInVMThread) {
1880            // This is for the case where the DLL has an static
1881            // constructor function that executes JNI code. We cannot
1882            // load such DLLs in the VMThread.
1883            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884          }
1885
1886          ThreadInVMfromNative tiv(jt);
1887          debug_only(VMNativeEntryWrapper vew;)
1888
1889          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1890          VMThread::execute(&op);
1891          if (LoadExecStackDllInVMThread) {
1892            result = op.loaded_library();
1893          }
1894          load_attempted = true;
1895        }
1896      }
1897    }
1898  }
1899
1900  if (!load_attempted) {
1901    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1902  }
1903
1904  if (result != NULL) {
1905    // Successful loading
1906    return result;
1907  }
1908
1909  Elf32_Ehdr elf_head;
1910  int diag_msg_max_length=ebuflen-strlen(ebuf);
1911  char* diag_msg_buf=ebuf+strlen(ebuf);
1912
1913  if (diag_msg_max_length==0) {
1914    // No more space in ebuf for additional diagnostics message
1915    return NULL;
1916  }
1917
1918
1919  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1920
1921  if (file_descriptor < 0) {
1922    // Can't open library, report dlerror() message
1923    return NULL;
1924  }
1925
1926  bool failed_to_read_elf_head=
1927    (sizeof(elf_head)!=
1928        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1929
1930  ::close(file_descriptor);
1931  if (failed_to_read_elf_head) {
1932    // file i/o error - report dlerror() msg
1933    return NULL;
1934  }
1935
1936  typedef struct {
1937    Elf32_Half  code;         // Actual value as defined in elf.h
1938    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1939    char        elf_class;    // 32 or 64 bit
1940    char        endianess;    // MSB or LSB
1941    char*       name;         // String representation
1942  } arch_t;
1943
1944  #ifndef EM_486
1945  #define EM_486          6               /* Intel 80486 */
1946  #endif
1947
1948  static const arch_t arch_array[]={
1949    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1950    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1951    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1952    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1953    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1954    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1955    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1956    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1957    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1958    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1959    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1960    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1961    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1962    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1963    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1964    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1965  };
1966
1967  #if  (defined IA32)
1968    static  Elf32_Half running_arch_code=EM_386;
1969  #elif   (defined AMD64)
1970    static  Elf32_Half running_arch_code=EM_X86_64;
1971  #elif  (defined IA64)
1972    static  Elf32_Half running_arch_code=EM_IA_64;
1973  #elif  (defined __sparc) && (defined _LP64)
1974    static  Elf32_Half running_arch_code=EM_SPARCV9;
1975  #elif  (defined __sparc) && (!defined _LP64)
1976    static  Elf32_Half running_arch_code=EM_SPARC;
1977  #elif  (defined __powerpc64__)
1978    static  Elf32_Half running_arch_code=EM_PPC64;
1979  #elif  (defined __powerpc__)
1980    static  Elf32_Half running_arch_code=EM_PPC;
1981  #elif  (defined ARM)
1982    static  Elf32_Half running_arch_code=EM_ARM;
1983  #elif  (defined S390)
1984    static  Elf32_Half running_arch_code=EM_S390;
1985  #elif  (defined ALPHA)
1986    static  Elf32_Half running_arch_code=EM_ALPHA;
1987  #elif  (defined MIPSEL)
1988    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1989  #elif  (defined PARISC)
1990    static  Elf32_Half running_arch_code=EM_PARISC;
1991  #elif  (defined MIPS)
1992    static  Elf32_Half running_arch_code=EM_MIPS;
1993  #elif  (defined M68K)
1994    static  Elf32_Half running_arch_code=EM_68K;
1995  #else
1996    #error Method os::dll_load requires that one of following is defined:\
1997         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1998  #endif
1999
2000  // Identify compatability class for VM's architecture and library's architecture
2001  // Obtain string descriptions for architectures
2002
2003  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2004  int running_arch_index=-1;
2005
2006  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2007    if (running_arch_code == arch_array[i].code) {
2008      running_arch_index    = i;
2009    }
2010    if (lib_arch.code == arch_array[i].code) {
2011      lib_arch.compat_class = arch_array[i].compat_class;
2012      lib_arch.name         = arch_array[i].name;
2013    }
2014  }
2015
2016  assert(running_arch_index != -1,
2017    "Didn't find running architecture code (running_arch_code) in arch_array");
2018  if (running_arch_index == -1) {
2019    // Even though running architecture detection failed
2020    // we may still continue with reporting dlerror() message
2021    return NULL;
2022  }
2023
2024  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2025    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2026    return NULL;
2027  }
2028
2029#ifndef S390
2030  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2031    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2032    return NULL;
2033  }
2034#endif // !S390
2035
2036  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2037    if ( lib_arch.name!=NULL ) {
2038      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2039        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2040        lib_arch.name, arch_array[running_arch_index].name);
2041    } else {
2042      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2043      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2044        lib_arch.code,
2045        arch_array[running_arch_index].name);
2046    }
2047  }
2048
2049  return NULL;
2050}
2051
2052void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2053  void * result = ::dlopen(filename, RTLD_LAZY);
2054  if (result == NULL) {
2055    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2056    ebuf[ebuflen-1] = '\0';
2057  }
2058  return result;
2059}
2060
2061void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2062  void * result = NULL;
2063  if (LoadExecStackDllInVMThread) {
2064    result = dlopen_helper(filename, ebuf, ebuflen);
2065  }
2066
2067  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2068  // library that requires an executable stack, or which does not have this
2069  // stack attribute set, dlopen changes the stack attribute to executable. The
2070  // read protection of the guard pages gets lost.
2071  //
2072  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2073  // may have been queued at the same time.
2074
2075  if (!_stack_is_executable) {
2076    JavaThread *jt = Threads::first();
2077
2078    while (jt) {
2079      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2080          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2081        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2082                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2083          warning("Attempt to reguard stack yellow zone failed.");
2084        }
2085      }
2086      jt = jt->next();
2087    }
2088  }
2089
2090  return result;
2091}
2092
2093/*
2094 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2095 * chances are you might want to run the generated bits against glibc-2.0
2096 * libdl.so, so always use locking for any version of glibc.
2097 */
2098void* os::dll_lookup(void* handle, const char* name) {
2099  pthread_mutex_lock(&dl_mutex);
2100  void* res = dlsym(handle, name);
2101  pthread_mutex_unlock(&dl_mutex);
2102  return res;
2103}
2104
2105
2106static bool _print_ascii_file(const char* filename, outputStream* st) {
2107  int fd = ::open(filename, O_RDONLY);
2108  if (fd == -1) {
2109     return false;
2110  }
2111
2112  char buf[32];
2113  int bytes;
2114  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2115    st->print_raw(buf, bytes);
2116  }
2117
2118  ::close(fd);
2119
2120  return true;
2121}
2122
2123void os::print_dll_info(outputStream *st) {
2124   st->print_cr("Dynamic libraries:");
2125
2126   char fname[32];
2127   pid_t pid = os::Linux::gettid();
2128
2129   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2130
2131   if (!_print_ascii_file(fname, st)) {
2132     st->print("Can not get library information for pid = %d\n", pid);
2133   }
2134}
2135
2136void os::print_os_info_brief(outputStream* st) {
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  os::Linux::print_libversion_info(st);
2142
2143}
2144
2145void os::print_os_info(outputStream* st) {
2146  st->print("OS:");
2147
2148  os::Linux::print_distro_info(st);
2149
2150  os::Posix::print_uname_info(st);
2151
2152  // Print warning if unsafe chroot environment detected
2153  if (unsafe_chroot_detected) {
2154    st->print("WARNING!! ");
2155    st->print_cr(unstable_chroot_error);
2156  }
2157
2158  os::Linux::print_libversion_info(st);
2159
2160  os::Posix::print_rlimit_info(st);
2161
2162  os::Posix::print_load_average(st);
2163
2164  os::Linux::print_full_memory_info(st);
2165}
2166
2167// Try to identify popular distros.
2168// Most Linux distributions have /etc/XXX-release file, which contains
2169// the OS version string. Some have more than one /etc/XXX-release file
2170// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2171// so the order is important.
2172void os::Linux::print_distro_info(outputStream* st) {
2173  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2174      !_print_ascii_file("/etc/sun-release", st) &&
2175      !_print_ascii_file("/etc/redhat-release", st) &&
2176      !_print_ascii_file("/etc/SuSE-release", st) &&
2177      !_print_ascii_file("/etc/turbolinux-release", st) &&
2178      !_print_ascii_file("/etc/gentoo-release", st) &&
2179      !_print_ascii_file("/etc/debian_version", st) &&
2180      !_print_ascii_file("/etc/ltib-release", st) &&
2181      !_print_ascii_file("/etc/angstrom-version", st)) {
2182      st->print("Linux");
2183  }
2184  st->cr();
2185}
2186
2187void os::Linux::print_libversion_info(outputStream* st) {
2188  // libc, pthread
2189  st->print("libc:");
2190  st->print(os::Linux::glibc_version()); st->print(" ");
2191  st->print(os::Linux::libpthread_version()); st->print(" ");
2192  if (os::Linux::is_LinuxThreads()) {
2193     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2194  }
2195  st->cr();
2196}
2197
2198void os::Linux::print_full_memory_info(outputStream* st) {
2199   st->print("\n/proc/meminfo:\n");
2200   _print_ascii_file("/proc/meminfo", st);
2201   st->cr();
2202}
2203
2204void os::print_memory_info(outputStream* st) {
2205
2206  st->print("Memory:");
2207  st->print(" %dk page", os::vm_page_size()>>10);
2208
2209  // values in struct sysinfo are "unsigned long"
2210  struct sysinfo si;
2211  sysinfo(&si);
2212
2213  st->print(", physical " UINT64_FORMAT "k",
2214            os::physical_memory() >> 10);
2215  st->print("(" UINT64_FORMAT "k free)",
2216            os::available_memory() >> 10);
2217  st->print(", swap " UINT64_FORMAT "k",
2218            ((jlong)si.totalswap * si.mem_unit) >> 10);
2219  st->print("(" UINT64_FORMAT "k free)",
2220            ((jlong)si.freeswap * si.mem_unit) >> 10);
2221  st->cr();
2222}
2223
2224void os::pd_print_cpu_info(outputStream* st) {
2225  st->print("\n/proc/cpuinfo:\n");
2226  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2227    st->print("  <Not Available>");
2228  }
2229  st->cr();
2230}
2231
2232// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2233// but they're the same for all the linux arch that we support
2234// and they're the same for solaris but there's no common place to put this.
2235const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2236                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2237                          "ILL_COPROC", "ILL_BADSTK" };
2238
2239const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2240                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2241                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2242
2243const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2244
2245const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2246
2247void os::print_siginfo(outputStream* st, void* siginfo) {
2248  st->print("siginfo:");
2249
2250  const int buflen = 100;
2251  char buf[buflen];
2252  siginfo_t *si = (siginfo_t*)siginfo;
2253  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2254  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2255    st->print("si_errno=%s", buf);
2256  } else {
2257    st->print("si_errno=%d", si->si_errno);
2258  }
2259  const int c = si->si_code;
2260  assert(c > 0, "unexpected si_code");
2261  switch (si->si_signo) {
2262  case SIGILL:
2263    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2264    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2265    break;
2266  case SIGFPE:
2267    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2268    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2269    break;
2270  case SIGSEGV:
2271    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2272    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2273    break;
2274  case SIGBUS:
2275    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2276    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2277    break;
2278  default:
2279    st->print(", si_code=%d", si->si_code);
2280    // no si_addr
2281  }
2282
2283  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2284      UseSharedSpaces) {
2285    FileMapInfo* mapinfo = FileMapInfo::current_info();
2286    if (mapinfo->is_in_shared_space(si->si_addr)) {
2287      st->print("\n\nError accessing class data sharing archive."   \
2288                " Mapped file inaccessible during execution, "      \
2289                " possible disk/network problem.");
2290    }
2291  }
2292  st->cr();
2293}
2294
2295
2296static void print_signal_handler(outputStream* st, int sig,
2297                                 char* buf, size_t buflen);
2298
2299void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2300  st->print_cr("Signal Handlers:");
2301  print_signal_handler(st, SIGSEGV, buf, buflen);
2302  print_signal_handler(st, SIGBUS , buf, buflen);
2303  print_signal_handler(st, SIGFPE , buf, buflen);
2304  print_signal_handler(st, SIGPIPE, buf, buflen);
2305  print_signal_handler(st, SIGXFSZ, buf, buflen);
2306  print_signal_handler(st, SIGILL , buf, buflen);
2307  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2308  print_signal_handler(st, SR_signum, buf, buflen);
2309  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2310  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2311  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2312  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2313}
2314
2315static char saved_jvm_path[MAXPATHLEN] = {0};
2316
2317// Find the full path to the current module, libjvm.so
2318void os::jvm_path(char *buf, jint buflen) {
2319  // Error checking.
2320  if (buflen < MAXPATHLEN) {
2321    assert(false, "must use a large-enough buffer");
2322    buf[0] = '\0';
2323    return;
2324  }
2325  // Lazy resolve the path to current module.
2326  if (saved_jvm_path[0] != 0) {
2327    strcpy(buf, saved_jvm_path);
2328    return;
2329  }
2330
2331  char dli_fname[MAXPATHLEN];
2332  bool ret = dll_address_to_library_name(
2333                CAST_FROM_FN_PTR(address, os::jvm_path),
2334                dli_fname, sizeof(dli_fname), NULL);
2335  assert(ret, "cannot locate libjvm");
2336  char *rp = NULL;
2337  if (ret && dli_fname[0] != '\0') {
2338    rp = realpath(dli_fname, buf);
2339  }
2340  if (rp == NULL)
2341    return;
2342
2343  if (Arguments::created_by_gamma_launcher()) {
2344    // Support for the gamma launcher.  Typical value for buf is
2345    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2346    // the right place in the string, then assume we are installed in a JDK and
2347    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2348    // up the path so it looks like libjvm.so is installed there (append a
2349    // fake suffix hotspot/libjvm.so).
2350    const char *p = buf + strlen(buf) - 1;
2351    for (int count = 0; p > buf && count < 5; ++count) {
2352      for (--p; p > buf && *p != '/'; --p)
2353        /* empty */ ;
2354    }
2355
2356    if (strncmp(p, "/jre/lib/", 9) != 0) {
2357      // Look for JAVA_HOME in the environment.
2358      char* java_home_var = ::getenv("JAVA_HOME");
2359      if (java_home_var != NULL && java_home_var[0] != 0) {
2360        char* jrelib_p;
2361        int len;
2362
2363        // Check the current module name "libjvm.so".
2364        p = strrchr(buf, '/');
2365        assert(strstr(p, "/libjvm") == p, "invalid library name");
2366
2367        rp = realpath(java_home_var, buf);
2368        if (rp == NULL)
2369          return;
2370
2371        // determine if this is a legacy image or modules image
2372        // modules image doesn't have "jre" subdirectory
2373        len = strlen(buf);
2374        jrelib_p = buf + len;
2375        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376        if (0 != access(buf, F_OK)) {
2377          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378        }
2379
2380        if (0 == access(buf, F_OK)) {
2381          // Use current module name "libjvm.so"
2382          len = strlen(buf);
2383          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384        } else {
2385          // Go back to path of .so
2386          rp = realpath(dli_fname, buf);
2387          if (rp == NULL)
2388            return;
2389        }
2390      }
2391    }
2392  }
2393
2394  strcpy(saved_jvm_path, buf);
2395}
2396
2397void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2398  // no prefix required, not even "_"
2399}
2400
2401void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2402  // no suffix required
2403}
2404
2405////////////////////////////////////////////////////////////////////////////////
2406// sun.misc.Signal support
2407
2408static volatile jint sigint_count = 0;
2409
2410static void
2411UserHandler(int sig, void *siginfo, void *context) {
2412  // 4511530 - sem_post is serialized and handled by the manager thread. When
2413  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2414  // don't want to flood the manager thread with sem_post requests.
2415  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2416      return;
2417
2418  // Ctrl-C is pressed during error reporting, likely because the error
2419  // handler fails to abort. Let VM die immediately.
2420  if (sig == SIGINT && is_error_reported()) {
2421     os::die();
2422  }
2423
2424  os::signal_notify(sig);
2425}
2426
2427void* os::user_handler() {
2428  return CAST_FROM_FN_PTR(void*, UserHandler);
2429}
2430
2431class Semaphore : public StackObj {
2432  public:
2433    Semaphore();
2434    ~Semaphore();
2435    void signal();
2436    void wait();
2437    bool trywait();
2438    bool timedwait(unsigned int sec, int nsec);
2439  private:
2440    sem_t _semaphore;
2441};
2442
2443
2444Semaphore::Semaphore() {
2445  sem_init(&_semaphore, 0, 0);
2446}
2447
2448Semaphore::~Semaphore() {
2449  sem_destroy(&_semaphore);
2450}
2451
2452void Semaphore::signal() {
2453  sem_post(&_semaphore);
2454}
2455
2456void Semaphore::wait() {
2457  sem_wait(&_semaphore);
2458}
2459
2460bool Semaphore::trywait() {
2461  return sem_trywait(&_semaphore) == 0;
2462}
2463
2464bool Semaphore::timedwait(unsigned int sec, int nsec) {
2465  struct timespec ts;
2466  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2467
2468  while (1) {
2469    int result = sem_timedwait(&_semaphore, &ts);
2470    if (result == 0) {
2471      return true;
2472    } else if (errno == EINTR) {
2473      continue;
2474    } else if (errno == ETIMEDOUT) {
2475      return false;
2476    } else {
2477      return false;
2478    }
2479  }
2480}
2481
2482extern "C" {
2483  typedef void (*sa_handler_t)(int);
2484  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2485}
2486
2487void* os::signal(int signal_number, void* handler) {
2488  struct sigaction sigAct, oldSigAct;
2489
2490  sigfillset(&(sigAct.sa_mask));
2491  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2492  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2493
2494  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2495    // -1 means registration failed
2496    return (void *)-1;
2497  }
2498
2499  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2500}
2501
2502void os::signal_raise(int signal_number) {
2503  ::raise(signal_number);
2504}
2505
2506/*
2507 * The following code is moved from os.cpp for making this
2508 * code platform specific, which it is by its very nature.
2509 */
2510
2511// Will be modified when max signal is changed to be dynamic
2512int os::sigexitnum_pd() {
2513  return NSIG;
2514}
2515
2516// a counter for each possible signal value
2517static volatile jint pending_signals[NSIG+1] = { 0 };
2518
2519// Linux(POSIX) specific hand shaking semaphore.
2520static sem_t sig_sem;
2521static Semaphore sr_semaphore;
2522
2523void os::signal_init_pd() {
2524  // Initialize signal structures
2525  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2526
2527  // Initialize signal semaphore
2528  ::sem_init(&sig_sem, 0, 0);
2529}
2530
2531void os::signal_notify(int sig) {
2532  Atomic::inc(&pending_signals[sig]);
2533  ::sem_post(&sig_sem);
2534}
2535
2536static int check_pending_signals(bool wait) {
2537  Atomic::store(0, &sigint_count);
2538  for (;;) {
2539    for (int i = 0; i < NSIG + 1; i++) {
2540      jint n = pending_signals[i];
2541      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2542        return i;
2543      }
2544    }
2545    if (!wait) {
2546      return -1;
2547    }
2548    JavaThread *thread = JavaThread::current();
2549    ThreadBlockInVM tbivm(thread);
2550
2551    bool threadIsSuspended;
2552    do {
2553      thread->set_suspend_equivalent();
2554      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2555      ::sem_wait(&sig_sem);
2556
2557      // were we externally suspended while we were waiting?
2558      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2559      if (threadIsSuspended) {
2560        //
2561        // The semaphore has been incremented, but while we were waiting
2562        // another thread suspended us. We don't want to continue running
2563        // while suspended because that would surprise the thread that
2564        // suspended us.
2565        //
2566        ::sem_post(&sig_sem);
2567
2568        thread->java_suspend_self();
2569      }
2570    } while (threadIsSuspended);
2571  }
2572}
2573
2574int os::signal_lookup() {
2575  return check_pending_signals(false);
2576}
2577
2578int os::signal_wait() {
2579  return check_pending_signals(true);
2580}
2581
2582////////////////////////////////////////////////////////////////////////////////
2583// Virtual Memory
2584
2585int os::vm_page_size() {
2586  // Seems redundant as all get out
2587  assert(os::Linux::page_size() != -1, "must call os::init");
2588  return os::Linux::page_size();
2589}
2590
2591// Solaris allocates memory by pages.
2592int os::vm_allocation_granularity() {
2593  assert(os::Linux::page_size() != -1, "must call os::init");
2594  return os::Linux::page_size();
2595}
2596
2597// Rationale behind this function:
2598//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2599//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2600//  samples for JITted code. Here we create private executable mapping over the code cache
2601//  and then we can use standard (well, almost, as mapping can change) way to provide
2602//  info for the reporting script by storing timestamp and location of symbol
2603void linux_wrap_code(char* base, size_t size) {
2604  static volatile jint cnt = 0;
2605
2606  if (!UseOprofile) {
2607    return;
2608  }
2609
2610  char buf[PATH_MAX+1];
2611  int num = Atomic::add(1, &cnt);
2612
2613  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2614           os::get_temp_directory(), os::current_process_id(), num);
2615  unlink(buf);
2616
2617  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2618
2619  if (fd != -1) {
2620    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2621    if (rv != (off_t)-1) {
2622      if (::write(fd, "", 1) == 1) {
2623        mmap(base, size,
2624             PROT_READ|PROT_WRITE|PROT_EXEC,
2625             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2626      }
2627    }
2628    ::close(fd);
2629    unlink(buf);
2630  }
2631}
2632
2633static bool recoverable_mmap_error(int err) {
2634  // See if the error is one we can let the caller handle. This
2635  // list of errno values comes from JBS-6843484. I can't find a
2636  // Linux man page that documents this specific set of errno
2637  // values so while this list currently matches Solaris, it may
2638  // change as we gain experience with this failure mode.
2639  switch (err) {
2640  case EBADF:
2641  case EINVAL:
2642  case ENOTSUP:
2643    // let the caller deal with these errors
2644    return true;
2645
2646  default:
2647    // Any remaining errors on this OS can cause our reserved mapping
2648    // to be lost. That can cause confusion where different data
2649    // structures think they have the same memory mapped. The worst
2650    // scenario is if both the VM and a library think they have the
2651    // same memory mapped.
2652    return false;
2653  }
2654}
2655
2656static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2657                                    int err) {
2658  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2659          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2660          strerror(err), err);
2661}
2662
2663static void warn_fail_commit_memory(char* addr, size_t size,
2664                                    size_t alignment_hint, bool exec,
2665                                    int err) {
2666  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2667          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2668          alignment_hint, exec, strerror(err), err);
2669}
2670
2671// NOTE: Linux kernel does not really reserve the pages for us.
2672//       All it does is to check if there are enough free pages
2673//       left at the time of mmap(). This could be a potential
2674//       problem.
2675int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2676  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2677  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2678                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2679  if (res != (uintptr_t) MAP_FAILED) {
2680    if (UseNUMAInterleaving) {
2681      numa_make_global(addr, size);
2682    }
2683    return 0;
2684  }
2685
2686  int err = errno;  // save errno from mmap() call above
2687
2688  if (!recoverable_mmap_error(err)) {
2689    warn_fail_commit_memory(addr, size, exec, err);
2690    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2691  }
2692
2693  return err;
2694}
2695
2696bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2697  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2698}
2699
2700void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2701                                  const char* mesg) {
2702  assert(mesg != NULL, "mesg must be specified");
2703  int err = os::Linux::commit_memory_impl(addr, size, exec);
2704  if (err != 0) {
2705    // the caller wants all commit errors to exit with the specified mesg:
2706    warn_fail_commit_memory(addr, size, exec, err);
2707    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2708  }
2709}
2710
2711// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2712#ifndef MAP_HUGETLB
2713#define MAP_HUGETLB 0x40000
2714#endif
2715
2716// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2717#ifndef MADV_HUGEPAGE
2718#define MADV_HUGEPAGE 14
2719#endif
2720
2721int os::Linux::commit_memory_impl(char* addr, size_t size,
2722                                  size_t alignment_hint, bool exec) {
2723  int err = os::Linux::commit_memory_impl(addr, size, exec);
2724  if (err == 0) {
2725    realign_memory(addr, size, alignment_hint);
2726  }
2727  return err;
2728}
2729
2730bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2731                          bool exec) {
2732  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2733}
2734
2735void os::pd_commit_memory_or_exit(char* addr, size_t size,
2736                                  size_t alignment_hint, bool exec,
2737                                  const char* mesg) {
2738  assert(mesg != NULL, "mesg must be specified");
2739  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2740  if (err != 0) {
2741    // the caller wants all commit errors to exit with the specified mesg:
2742    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2743    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2744  }
2745}
2746
2747void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2748  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2749    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2750    // be supported or the memory may already be backed by huge pages.
2751    ::madvise(addr, bytes, MADV_HUGEPAGE);
2752  }
2753}
2754
2755void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2756  // This method works by doing an mmap over an existing mmaping and effectively discarding
2757  // the existing pages. However it won't work for SHM-based large pages that cannot be
2758  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2759  // small pages on top of the SHM segment. This method always works for small pages, so we
2760  // allow that in any case.
2761  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2762    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2763  }
2764}
2765
2766void os::numa_make_global(char *addr, size_t bytes) {
2767  Linux::numa_interleave_memory(addr, bytes);
2768}
2769
2770// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2771// bind policy to MPOL_PREFERRED for the current thread.
2772#define USE_MPOL_PREFERRED 0
2773
2774void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2775  // To make NUMA and large pages more robust when both enabled, we need to ease
2776  // the requirements on where the memory should be allocated. MPOL_BIND is the
2777  // default policy and it will force memory to be allocated on the specified
2778  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2779  // the specified node, but will not force it. Using this policy will prevent
2780  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2781  // free large pages.
2782  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2783  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2784}
2785
2786bool os::numa_topology_changed()   { return false; }
2787
2788size_t os::numa_get_groups_num() {
2789  int max_node = Linux::numa_max_node();
2790  return max_node > 0 ? max_node + 1 : 1;
2791}
2792
2793int os::numa_get_group_id() {
2794  int cpu_id = Linux::sched_getcpu();
2795  if (cpu_id != -1) {
2796    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2797    if (lgrp_id != -1) {
2798      return lgrp_id;
2799    }
2800  }
2801  return 0;
2802}
2803
2804size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2805  for (size_t i = 0; i < size; i++) {
2806    ids[i] = i;
2807  }
2808  return size;
2809}
2810
2811bool os::get_page_info(char *start, page_info* info) {
2812  return false;
2813}
2814
2815char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2816  return end;
2817}
2818
2819
2820int os::Linux::sched_getcpu_syscall(void) {
2821  unsigned int cpu;
2822  int retval = -1;
2823
2824#if defined(IA32)
2825# ifndef SYS_getcpu
2826# define SYS_getcpu 318
2827# endif
2828  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2829#elif defined(AMD64)
2830// Unfortunately we have to bring all these macros here from vsyscall.h
2831// to be able to compile on old linuxes.
2832# define __NR_vgetcpu 2
2833# define VSYSCALL_START (-10UL << 20)
2834# define VSYSCALL_SIZE 1024
2835# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2836  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2837  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2838  retval = vgetcpu(&cpu, NULL, NULL);
2839#endif
2840
2841  return (retval == -1) ? retval : cpu;
2842}
2843
2844// Something to do with the numa-aware allocator needs these symbols
2845extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2846extern "C" JNIEXPORT void numa_error(char *where) { }
2847extern "C" JNIEXPORT int fork1() { return fork(); }
2848
2849
2850// If we are running with libnuma version > 2, then we should
2851// be trying to use symbols with versions 1.1
2852// If we are running with earlier version, which did not have symbol versions,
2853// we should use the base version.
2854void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2855  void *f = dlvsym(handle, name, "libnuma_1.1");
2856  if (f == NULL) {
2857    f = dlsym(handle, name);
2858  }
2859  return f;
2860}
2861
2862bool os::Linux::libnuma_init() {
2863  // sched_getcpu() should be in libc.
2864  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2865                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2866
2867  // If it's not, try a direct syscall.
2868  if (sched_getcpu() == -1)
2869    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2870
2871  if (sched_getcpu() != -1) { // Does it work?
2872    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2873    if (handle != NULL) {
2874      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2875                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2876      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2877                                       libnuma_dlsym(handle, "numa_max_node")));
2878      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2879                                        libnuma_dlsym(handle, "numa_available")));
2880      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2881                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2882      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2883                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2884      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2885                                            libnuma_dlsym(handle, "numa_set_bind_policy")));
2886
2887
2888      if (numa_available() != -1) {
2889        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2890        // Create a cpu -> node mapping
2891        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2892        rebuild_cpu_to_node_map();
2893        return true;
2894      }
2895    }
2896  }
2897  return false;
2898}
2899
2900// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2901// The table is later used in get_node_by_cpu().
2902void os::Linux::rebuild_cpu_to_node_map() {
2903  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2904                              // in libnuma (possible values are starting from 16,
2905                              // and continuing up with every other power of 2, but less
2906                              // than the maximum number of CPUs supported by kernel), and
2907                              // is a subject to change (in libnuma version 2 the requirements
2908                              // are more reasonable) we'll just hardcode the number they use
2909                              // in the library.
2910  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2911
2912  size_t cpu_num = os::active_processor_count();
2913  size_t cpu_map_size = NCPUS / BitsPerCLong;
2914  size_t cpu_map_valid_size =
2915    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2916
2917  cpu_to_node()->clear();
2918  cpu_to_node()->at_grow(cpu_num - 1);
2919  size_t node_num = numa_get_groups_num();
2920
2921  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2922  for (size_t i = 0; i < node_num; i++) {
2923    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2924      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2925        if (cpu_map[j] != 0) {
2926          for (size_t k = 0; k < BitsPerCLong; k++) {
2927            if (cpu_map[j] & (1UL << k)) {
2928              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2929            }
2930          }
2931        }
2932      }
2933    }
2934  }
2935  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2936}
2937
2938int os::Linux::get_node_by_cpu(int cpu_id) {
2939  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2940    return cpu_to_node()->at(cpu_id);
2941  }
2942  return -1;
2943}
2944
2945GrowableArray<int>* os::Linux::_cpu_to_node;
2946os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2947os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2948os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2949os::Linux::numa_available_func_t os::Linux::_numa_available;
2950os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2951os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2952os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2953unsigned long* os::Linux::_numa_all_nodes;
2954
2955bool os::pd_uncommit_memory(char* addr, size_t size) {
2956  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2957                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2958  return res  != (uintptr_t) MAP_FAILED;
2959}
2960
2961static
2962address get_stack_commited_bottom(address bottom, size_t size) {
2963  address nbot = bottom;
2964  address ntop = bottom + size;
2965
2966  size_t page_sz = os::vm_page_size();
2967  unsigned pages = size / page_sz;
2968
2969  unsigned char vec[1];
2970  unsigned imin = 1, imax = pages + 1, imid;
2971  int mincore_return_value;
2972
2973  while (imin < imax) {
2974    imid = (imax + imin) / 2;
2975    nbot = ntop - (imid * page_sz);
2976
2977    // Use a trick with mincore to check whether the page is mapped or not.
2978    // mincore sets vec to 1 if page resides in memory and to 0 if page
2979    // is swapped output but if page we are asking for is unmapped
2980    // it returns -1,ENOMEM
2981    mincore_return_value = mincore(nbot, page_sz, vec);
2982
2983    if (mincore_return_value == -1) {
2984      // Page is not mapped go up
2985      // to find first mapped page
2986      if (errno != EAGAIN) {
2987        assert(errno == ENOMEM, "Unexpected mincore errno");
2988        imax = imid;
2989      }
2990    } else {
2991      // Page is mapped go down
2992      // to find first not mapped page
2993      imin = imid + 1;
2994    }
2995  }
2996
2997  nbot = nbot + page_sz;
2998
2999  // Adjust stack bottom one page up if last checked page is not mapped
3000  if (mincore_return_value == -1) {
3001    nbot = nbot + page_sz;
3002  }
3003
3004  return nbot;
3005}
3006
3007
3008// Linux uses a growable mapping for the stack, and if the mapping for
3009// the stack guard pages is not removed when we detach a thread the
3010// stack cannot grow beyond the pages where the stack guard was
3011// mapped.  If at some point later in the process the stack expands to
3012// that point, the Linux kernel cannot expand the stack any further
3013// because the guard pages are in the way, and a segfault occurs.
3014//
3015// However, it's essential not to split the stack region by unmapping
3016// a region (leaving a hole) that's already part of the stack mapping,
3017// so if the stack mapping has already grown beyond the guard pages at
3018// the time we create them, we have to truncate the stack mapping.
3019// So, we need to know the extent of the stack mapping when
3020// create_stack_guard_pages() is called.
3021
3022// We only need this for stacks that are growable: at the time of
3023// writing thread stacks don't use growable mappings (i.e. those
3024// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3025// only applies to the main thread.
3026
3027// If the (growable) stack mapping already extends beyond the point
3028// where we're going to put our guard pages, truncate the mapping at
3029// that point by munmap()ping it.  This ensures that when we later
3030// munmap() the guard pages we don't leave a hole in the stack
3031// mapping. This only affects the main/initial thread
3032
3033bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3034
3035  if (os::Linux::is_initial_thread()) {
3036    // As we manually grow stack up to bottom inside create_attached_thread(),
3037    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3038    // we don't need to do anything special.
3039    // Check it first, before calling heavy function.
3040    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3041    unsigned char vec[1];
3042
3043    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3044      // Fallback to slow path on all errors, including EAGAIN
3045      stack_extent = (uintptr_t) get_stack_commited_bottom(
3046                                    os::Linux::initial_thread_stack_bottom(),
3047                                    (size_t)addr - stack_extent);
3048    }
3049
3050    if (stack_extent < (uintptr_t)addr) {
3051      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3052    }
3053  }
3054
3055  return os::commit_memory(addr, size, !ExecMem);
3056}
3057
3058// If this is a growable mapping, remove the guard pages entirely by
3059// munmap()ping them.  If not, just call uncommit_memory(). This only
3060// affects the main/initial thread, but guard against future OS changes
3061// It's safe to always unmap guard pages for initial thread because we
3062// always place it right after end of the mapped region
3063
3064bool os::remove_stack_guard_pages(char* addr, size_t size) {
3065  uintptr_t stack_extent, stack_base;
3066
3067  if (os::Linux::is_initial_thread()) {
3068    return ::munmap(addr, size) == 0;
3069  }
3070
3071  return os::uncommit_memory(addr, size);
3072}
3073
3074static address _highest_vm_reserved_address = NULL;
3075
3076// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3077// at 'requested_addr'. If there are existing memory mappings at the same
3078// location, however, they will be overwritten. If 'fixed' is false,
3079// 'requested_addr' is only treated as a hint, the return value may or
3080// may not start from the requested address. Unlike Linux mmap(), this
3081// function returns NULL to indicate failure.
3082static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3083  char * addr;
3084  int flags;
3085
3086  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3087  if (fixed) {
3088    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3089    flags |= MAP_FIXED;
3090  }
3091
3092  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3093  // touch an uncommitted page. Otherwise, the read/write might
3094  // succeed if we have enough swap space to back the physical page.
3095  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3096                       flags, -1, 0);
3097
3098  if (addr != MAP_FAILED) {
3099    // anon_mmap() should only get called during VM initialization,
3100    // don't need lock (actually we can skip locking even it can be called
3101    // from multiple threads, because _highest_vm_reserved_address is just a
3102    // hint about the upper limit of non-stack memory regions.)
3103    if ((address)addr + bytes > _highest_vm_reserved_address) {
3104      _highest_vm_reserved_address = (address)addr + bytes;
3105    }
3106  }
3107
3108  return addr == MAP_FAILED ? NULL : addr;
3109}
3110
3111// Don't update _highest_vm_reserved_address, because there might be memory
3112// regions above addr + size. If so, releasing a memory region only creates
3113// a hole in the address space, it doesn't help prevent heap-stack collision.
3114//
3115static int anon_munmap(char * addr, size_t size) {
3116  return ::munmap(addr, size) == 0;
3117}
3118
3119char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3120                         size_t alignment_hint) {
3121  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3122}
3123
3124bool os::pd_release_memory(char* addr, size_t size) {
3125  return anon_munmap(addr, size);
3126}
3127
3128static address highest_vm_reserved_address() {
3129  return _highest_vm_reserved_address;
3130}
3131
3132static bool linux_mprotect(char* addr, size_t size, int prot) {
3133  // Linux wants the mprotect address argument to be page aligned.
3134  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3135
3136  // According to SUSv3, mprotect() should only be used with mappings
3137  // established by mmap(), and mmap() always maps whole pages. Unaligned
3138  // 'addr' likely indicates problem in the VM (e.g. trying to change
3139  // protection of malloc'ed or statically allocated memory). Check the
3140  // caller if you hit this assert.
3141  assert(addr == bottom, "sanity check");
3142
3143  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3144  return ::mprotect(bottom, size, prot) == 0;
3145}
3146
3147// Set protections specified
3148bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3149                        bool is_committed) {
3150  unsigned int p = 0;
3151  switch (prot) {
3152  case MEM_PROT_NONE: p = PROT_NONE; break;
3153  case MEM_PROT_READ: p = PROT_READ; break;
3154  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3155  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3156  default:
3157    ShouldNotReachHere();
3158  }
3159  // is_committed is unused.
3160  return linux_mprotect(addr, bytes, p);
3161}
3162
3163bool os::guard_memory(char* addr, size_t size) {
3164  return linux_mprotect(addr, size, PROT_NONE);
3165}
3166
3167bool os::unguard_memory(char* addr, size_t size) {
3168  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3169}
3170
3171bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3172  bool result = false;
3173  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3174                 MAP_ANONYMOUS|MAP_PRIVATE,
3175                 -1, 0);
3176  if (p != MAP_FAILED) {
3177    void *aligned_p = align_ptr_up(p, page_size);
3178
3179    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3180
3181    munmap(p, page_size * 2);
3182  }
3183
3184  if (warn && !result) {
3185    warning("TransparentHugePages is not supported by the operating system.");
3186  }
3187
3188  return result;
3189}
3190
3191bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3192  bool result = false;
3193  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3194                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3195                 -1, 0);
3196
3197  if (p != MAP_FAILED) {
3198    // We don't know if this really is a huge page or not.
3199    FILE *fp = fopen("/proc/self/maps", "r");
3200    if (fp) {
3201      while (!feof(fp)) {
3202        char chars[257];
3203        long x = 0;
3204        if (fgets(chars, sizeof(chars), fp)) {
3205          if (sscanf(chars, "%lx-%*x", &x) == 1
3206              && x == (long)p) {
3207            if (strstr (chars, "hugepage")) {
3208              result = true;
3209              break;
3210            }
3211          }
3212        }
3213      }
3214      fclose(fp);
3215    }
3216    munmap(p, page_size);
3217  }
3218
3219  if (warn && !result) {
3220    warning("HugeTLBFS is not supported by the operating system.");
3221  }
3222
3223  return result;
3224}
3225
3226/*
3227* Set the coredump_filter bits to include largepages in core dump (bit 6)
3228*
3229* From the coredump_filter documentation:
3230*
3231* - (bit 0) anonymous private memory
3232* - (bit 1) anonymous shared memory
3233* - (bit 2) file-backed private memory
3234* - (bit 3) file-backed shared memory
3235* - (bit 4) ELF header pages in file-backed private memory areas (it is
3236*           effective only if the bit 2 is cleared)
3237* - (bit 5) hugetlb private memory
3238* - (bit 6) hugetlb shared memory
3239*/
3240static void set_coredump_filter(void) {
3241  FILE *f;
3242  long cdm;
3243
3244  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3245    return;
3246  }
3247
3248  if (fscanf(f, "%lx", &cdm) != 1) {
3249    fclose(f);
3250    return;
3251  }
3252
3253  rewind(f);
3254
3255  if ((cdm & LARGEPAGES_BIT) == 0) {
3256    cdm |= LARGEPAGES_BIT;
3257    fprintf(f, "%#lx", cdm);
3258  }
3259
3260  fclose(f);
3261}
3262
3263// Large page support
3264
3265static size_t _large_page_size = 0;
3266
3267size_t os::Linux::find_large_page_size() {
3268  size_t large_page_size = 0;
3269
3270  // large_page_size on Linux is used to round up heap size. x86 uses either
3271  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3272  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3273  // page as large as 256M.
3274  //
3275  // Here we try to figure out page size by parsing /proc/meminfo and looking
3276  // for a line with the following format:
3277  //    Hugepagesize:     2048 kB
3278  //
3279  // If we can't determine the value (e.g. /proc is not mounted, or the text
3280  // format has been changed), we'll use the largest page size supported by
3281  // the processor.
3282
3283#ifndef ZERO
3284  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3285                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3286#endif // ZERO
3287
3288  FILE *fp = fopen("/proc/meminfo", "r");
3289  if (fp) {
3290    while (!feof(fp)) {
3291      int x = 0;
3292      char buf[16];
3293      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3294        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3295          large_page_size = x * K;
3296          break;
3297        }
3298      } else {
3299        // skip to next line
3300        for (;;) {
3301          int ch = fgetc(fp);
3302          if (ch == EOF || ch == (int)'\n') break;
3303        }
3304      }
3305    }
3306    fclose(fp);
3307  }
3308
3309  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3310    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3311        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3312        proper_unit_for_byte_size(large_page_size));
3313  }
3314
3315  return large_page_size;
3316}
3317
3318size_t os::Linux::setup_large_page_size() {
3319  _large_page_size = Linux::find_large_page_size();
3320  const size_t default_page_size = (size_t)Linux::page_size();
3321  if (_large_page_size > default_page_size) {
3322    _page_sizes[0] = _large_page_size;
3323    _page_sizes[1] = default_page_size;
3324    _page_sizes[2] = 0;
3325  }
3326
3327  return _large_page_size;
3328}
3329
3330bool os::Linux::setup_large_page_type(size_t page_size) {
3331  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3332      FLAG_IS_DEFAULT(UseSHM) &&
3333      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3334    // If UseLargePages is specified on the command line try all methods,
3335    // if it's default, then try only UseTransparentHugePages.
3336    if (FLAG_IS_DEFAULT(UseLargePages)) {
3337      UseTransparentHugePages = true;
3338    } else {
3339      UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
3340    }
3341  }
3342
3343  if (UseTransparentHugePages) {
3344    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3345    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3346      UseHugeTLBFS = false;
3347      UseSHM = false;
3348      return true;
3349    }
3350    UseTransparentHugePages = false;
3351  }
3352
3353  if (UseHugeTLBFS) {
3354    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3355    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3356      UseSHM = false;
3357      return true;
3358    }
3359    UseHugeTLBFS = false;
3360  }
3361
3362  return UseSHM;
3363}
3364
3365void os::large_page_init() {
3366  if (!UseLargePages) {
3367    UseHugeTLBFS = false;
3368    UseTransparentHugePages = false;
3369    UseSHM = false;
3370    return;
3371  }
3372
3373  size_t large_page_size = Linux::setup_large_page_size();
3374  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3375
3376  set_coredump_filter();
3377}
3378
3379#ifndef SHM_HUGETLB
3380#define SHM_HUGETLB 04000
3381#endif
3382
3383char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3384  // "exec" is passed in but not used.  Creating the shared image for
3385  // the code cache doesn't have an SHM_X executable permission to check.
3386  assert(UseLargePages && UseSHM, "only for SHM large pages");
3387  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3388
3389  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3390    return NULL; // Fallback to small pages.
3391  }
3392
3393  key_t key = IPC_PRIVATE;
3394  char *addr;
3395
3396  bool warn_on_failure = UseLargePages &&
3397                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3398                         !FLAG_IS_DEFAULT(UseSHM) ||
3399                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3400                        );
3401  char msg[128];
3402
3403  // Create a large shared memory region to attach to based on size.
3404  // Currently, size is the total size of the heap
3405  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3406  if (shmid == -1) {
3407     // Possible reasons for shmget failure:
3408     // 1. shmmax is too small for Java heap.
3409     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3410     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3411     // 2. not enough large page memory.
3412     //    > check available large pages: cat /proc/meminfo
3413     //    > increase amount of large pages:
3414     //          echo new_value > /proc/sys/vm/nr_hugepages
3415     //      Note 1: different Linux may use different name for this property,
3416     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3417     //      Note 2: it's possible there's enough physical memory available but
3418     //            they are so fragmented after a long run that they can't
3419     //            coalesce into large pages. Try to reserve large pages when
3420     //            the system is still "fresh".
3421     if (warn_on_failure) {
3422       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3423       warning(msg);
3424     }
3425     return NULL;
3426  }
3427
3428  // attach to the region
3429  addr = (char*)shmat(shmid, req_addr, 0);
3430  int err = errno;
3431
3432  // Remove shmid. If shmat() is successful, the actual shared memory segment
3433  // will be deleted when it's detached by shmdt() or when the process
3434  // terminates. If shmat() is not successful this will remove the shared
3435  // segment immediately.
3436  shmctl(shmid, IPC_RMID, NULL);
3437
3438  if ((intptr_t)addr == -1) {
3439     if (warn_on_failure) {
3440       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3441       warning(msg);
3442     }
3443     return NULL;
3444  }
3445
3446  return addr;
3447}
3448
3449static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3450  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3451
3452  bool warn_on_failure = UseLargePages &&
3453      (!FLAG_IS_DEFAULT(UseLargePages) ||
3454       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3455       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3456
3457  if (warn_on_failure) {
3458    char msg[128];
3459    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3460        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3461    warning(msg);
3462  }
3463}
3464
3465char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3466  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3467  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3468  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3469
3470  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3471  char* addr = (char*)::mmap(req_addr, bytes, prot,
3472                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3473                             -1, 0);
3474
3475  if (addr == MAP_FAILED) {
3476    warn_on_large_pages_failure(req_addr, bytes, errno);
3477    return NULL;
3478  }
3479
3480  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3481
3482  return addr;
3483}
3484
3485char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3486  size_t large_page_size = os::large_page_size();
3487
3488  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3489
3490  // Allocate small pages.
3491
3492  char* start;
3493  if (req_addr != NULL) {
3494    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3495    assert(is_size_aligned(bytes, alignment), "Must be");
3496    start = os::reserve_memory(bytes, req_addr);
3497    assert(start == NULL || start == req_addr, "Must be");
3498  } else {
3499    start = os::reserve_memory_aligned(bytes, alignment);
3500  }
3501
3502  if (start == NULL) {
3503    return NULL;
3504  }
3505
3506  assert(is_ptr_aligned(start, alignment), "Must be");
3507
3508  // os::reserve_memory_special will record this memory area.
3509  // Need to release it here to prevent overlapping reservations.
3510  MemTracker::record_virtual_memory_release((address)start, bytes);
3511
3512  char* end = start + bytes;
3513
3514  // Find the regions of the allocated chunk that can be promoted to large pages.
3515  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3516  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3517
3518  size_t lp_bytes = lp_end - lp_start;
3519
3520  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3521
3522  if (lp_bytes == 0) {
3523    // The mapped region doesn't even span the start and the end of a large page.
3524    // Fall back to allocate a non-special area.
3525    ::munmap(start, end - start);
3526    return NULL;
3527  }
3528
3529  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3530
3531
3532  void* result;
3533
3534  if (start != lp_start) {
3535    result = ::mmap(start, lp_start - start, prot,
3536                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3537                    -1, 0);
3538    if (result == MAP_FAILED) {
3539      ::munmap(lp_start, end - lp_start);
3540      return NULL;
3541    }
3542  }
3543
3544  result = ::mmap(lp_start, lp_bytes, prot,
3545                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3546                  -1, 0);
3547  if (result == MAP_FAILED) {
3548    warn_on_large_pages_failure(req_addr, bytes, errno);
3549    // If the mmap above fails, the large pages region will be unmapped and we
3550    // have regions before and after with small pages. Release these regions.
3551    //
3552    // |  mapped  |  unmapped  |  mapped  |
3553    // ^          ^            ^          ^
3554    // start      lp_start     lp_end     end
3555    //
3556    ::munmap(start, lp_start - start);
3557    ::munmap(lp_end, end - lp_end);
3558    return NULL;
3559  }
3560
3561  if (lp_end != end) {
3562      result = ::mmap(lp_end, end - lp_end, prot,
3563                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3564                      -1, 0);
3565    if (result == MAP_FAILED) {
3566      ::munmap(start, lp_end - start);
3567      return NULL;
3568    }
3569  }
3570
3571  return start;
3572}
3573
3574char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3575  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3576  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3577  assert(is_power_of_2(alignment), "Must be");
3578  assert(is_power_of_2(os::large_page_size()), "Must be");
3579  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3580
3581  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3582    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3583  } else {
3584    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3585  }
3586}
3587
3588char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3589  assert(UseLargePages, "only for large pages");
3590
3591  char* addr;
3592  if (UseSHM) {
3593    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3594  } else {
3595    assert(UseHugeTLBFS, "must be");
3596    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3597  }
3598
3599  if (addr != NULL) {
3600    if (UseNUMAInterleaving) {
3601      numa_make_global(addr, bytes);
3602    }
3603
3604    // The memory is committed
3605    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3606  }
3607
3608  return addr;
3609}
3610
3611bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3612  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3613  return shmdt(base) == 0;
3614}
3615
3616bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3617  return pd_release_memory(base, bytes);
3618}
3619
3620bool os::release_memory_special(char* base, size_t bytes) {
3621  assert(UseLargePages, "only for large pages");
3622
3623  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3624
3625  bool res;
3626  if (UseSHM) {
3627    res = os::Linux::release_memory_special_shm(base, bytes);
3628  } else {
3629    assert(UseHugeTLBFS, "must be");
3630    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3631  }
3632
3633  if (res) {
3634    tkr.record((address)base, bytes);
3635  } else {
3636    tkr.discard();
3637  }
3638
3639  return res;
3640}
3641
3642size_t os::large_page_size() {
3643  return _large_page_size;
3644}
3645
3646// With SysV SHM the entire memory region must be allocated as shared
3647// memory.
3648// HugeTLBFS allows application to commit large page memory on demand.
3649// However, when committing memory with HugeTLBFS fails, the region
3650// that was supposed to be committed will lose the old reservation
3651// and allow other threads to steal that memory region. Because of this
3652// behavior we can't commit HugeTLBFS memory.
3653bool os::can_commit_large_page_memory() {
3654  return UseTransparentHugePages;
3655}
3656
3657bool os::can_execute_large_page_memory() {
3658  return UseTransparentHugePages || UseHugeTLBFS;
3659}
3660
3661// Reserve memory at an arbitrary address, only if that area is
3662// available (and not reserved for something else).
3663
3664char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3665  const int max_tries = 10;
3666  char* base[max_tries];
3667  size_t size[max_tries];
3668  const size_t gap = 0x000000;
3669
3670  // Assert only that the size is a multiple of the page size, since
3671  // that's all that mmap requires, and since that's all we really know
3672  // about at this low abstraction level.  If we need higher alignment,
3673  // we can either pass an alignment to this method or verify alignment
3674  // in one of the methods further up the call chain.  See bug 5044738.
3675  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3676
3677  // Repeatedly allocate blocks until the block is allocated at the
3678  // right spot. Give up after max_tries. Note that reserve_memory() will
3679  // automatically update _highest_vm_reserved_address if the call is
3680  // successful. The variable tracks the highest memory address every reserved
3681  // by JVM. It is used to detect heap-stack collision if running with
3682  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3683  // space than needed, it could confuse the collision detecting code. To
3684  // solve the problem, save current _highest_vm_reserved_address and
3685  // calculate the correct value before return.
3686  address old_highest = _highest_vm_reserved_address;
3687
3688  // Linux mmap allows caller to pass an address as hint; give it a try first,
3689  // if kernel honors the hint then we can return immediately.
3690  char * addr = anon_mmap(requested_addr, bytes, false);
3691  if (addr == requested_addr) {
3692     return requested_addr;
3693  }
3694
3695  if (addr != NULL) {
3696     // mmap() is successful but it fails to reserve at the requested address
3697     anon_munmap(addr, bytes);
3698  }
3699
3700  int i;
3701  for (i = 0; i < max_tries; ++i) {
3702    base[i] = reserve_memory(bytes);
3703
3704    if (base[i] != NULL) {
3705      // Is this the block we wanted?
3706      if (base[i] == requested_addr) {
3707        size[i] = bytes;
3708        break;
3709      }
3710
3711      // Does this overlap the block we wanted? Give back the overlapped
3712      // parts and try again.
3713
3714      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3715      if (top_overlap >= 0 && top_overlap < bytes) {
3716        unmap_memory(base[i], top_overlap);
3717        base[i] += top_overlap;
3718        size[i] = bytes - top_overlap;
3719      } else {
3720        size_t bottom_overlap = base[i] + bytes - requested_addr;
3721        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3722          unmap_memory(requested_addr, bottom_overlap);
3723          size[i] = bytes - bottom_overlap;
3724        } else {
3725          size[i] = bytes;
3726        }
3727      }
3728    }
3729  }
3730
3731  // Give back the unused reserved pieces.
3732
3733  for (int j = 0; j < i; ++j) {
3734    if (base[j] != NULL) {
3735      unmap_memory(base[j], size[j]);
3736    }
3737  }
3738
3739  if (i < max_tries) {
3740    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3741    return requested_addr;
3742  } else {
3743    _highest_vm_reserved_address = old_highest;
3744    return NULL;
3745  }
3746}
3747
3748size_t os::read(int fd, void *buf, unsigned int nBytes) {
3749  return ::read(fd, buf, nBytes);
3750}
3751
3752// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3753// Solaris uses poll(), linux uses park().
3754// Poll() is likely a better choice, assuming that Thread.interrupt()
3755// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3756// SIGSEGV, see 4355769.
3757
3758int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3759  assert(thread == Thread::current(),  "thread consistency check");
3760
3761  ParkEvent * const slp = thread->_SleepEvent ;
3762  slp->reset() ;
3763  OrderAccess::fence() ;
3764
3765  if (interruptible) {
3766    jlong prevtime = javaTimeNanos();
3767
3768    for (;;) {
3769      if (os::is_interrupted(thread, true)) {
3770        return OS_INTRPT;
3771      }
3772
3773      jlong newtime = javaTimeNanos();
3774
3775      if (newtime - prevtime < 0) {
3776        // time moving backwards, should only happen if no monotonic clock
3777        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3778        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3779      } else {
3780        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3781      }
3782
3783      if(millis <= 0) {
3784        return OS_OK;
3785      }
3786
3787      prevtime = newtime;
3788
3789      {
3790        assert(thread->is_Java_thread(), "sanity check");
3791        JavaThread *jt = (JavaThread *) thread;
3792        ThreadBlockInVM tbivm(jt);
3793        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3794
3795        jt->set_suspend_equivalent();
3796        // cleared by handle_special_suspend_equivalent_condition() or
3797        // java_suspend_self() via check_and_wait_while_suspended()
3798
3799        slp->park(millis);
3800
3801        // were we externally suspended while we were waiting?
3802        jt->check_and_wait_while_suspended();
3803      }
3804    }
3805  } else {
3806    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3807    jlong prevtime = javaTimeNanos();
3808
3809    for (;;) {
3810      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3811      // the 1st iteration ...
3812      jlong newtime = javaTimeNanos();
3813
3814      if (newtime - prevtime < 0) {
3815        // time moving backwards, should only happen if no monotonic clock
3816        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3817        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3818      } else {
3819        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3820      }
3821
3822      if(millis <= 0) break ;
3823
3824      prevtime = newtime;
3825      slp->park(millis);
3826    }
3827    return OS_OK ;
3828  }
3829}
3830
3831int os::naked_sleep() {
3832  // %% make the sleep time an integer flag. for now use 1 millisec.
3833  return os::sleep(Thread::current(), 1, false);
3834}
3835
3836// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3837void os::infinite_sleep() {
3838  while (true) {    // sleep forever ...
3839    ::sleep(100);   // ... 100 seconds at a time
3840  }
3841}
3842
3843// Used to convert frequent JVM_Yield() to nops
3844bool os::dont_yield() {
3845  return DontYieldALot;
3846}
3847
3848void os::yield() {
3849  sched_yield();
3850}
3851
3852os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3853
3854void os::yield_all(int attempts) {
3855  // Yields to all threads, including threads with lower priorities
3856  // Threads on Linux are all with same priority. The Solaris style
3857  // os::yield_all() with nanosleep(1ms) is not necessary.
3858  sched_yield();
3859}
3860
3861// Called from the tight loops to possibly influence time-sharing heuristics
3862void os::loop_breaker(int attempts) {
3863  os::yield_all(attempts);
3864}
3865
3866////////////////////////////////////////////////////////////////////////////////
3867// thread priority support
3868
3869// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3870// only supports dynamic priority, static priority must be zero. For real-time
3871// applications, Linux supports SCHED_RR which allows static priority (1-99).
3872// However, for large multi-threaded applications, SCHED_RR is not only slower
3873// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3874// of 5 runs - Sep 2005).
3875//
3876// The following code actually changes the niceness of kernel-thread/LWP. It
3877// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3878// not the entire user process, and user level threads are 1:1 mapped to kernel
3879// threads. It has always been the case, but could change in the future. For
3880// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3881// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3882
3883int os::java_to_os_priority[CriticalPriority + 1] = {
3884  19,              // 0 Entry should never be used
3885
3886   4,              // 1 MinPriority
3887   3,              // 2
3888   2,              // 3
3889
3890   1,              // 4
3891   0,              // 5 NormPriority
3892  -1,              // 6
3893
3894  -2,              // 7
3895  -3,              // 8
3896  -4,              // 9 NearMaxPriority
3897
3898  -5,              // 10 MaxPriority
3899
3900  -5               // 11 CriticalPriority
3901};
3902
3903static int prio_init() {
3904  if (ThreadPriorityPolicy == 1) {
3905    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3906    // if effective uid is not root. Perhaps, a more elegant way of doing
3907    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3908    if (geteuid() != 0) {
3909      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3910        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3911      }
3912      ThreadPriorityPolicy = 0;
3913    }
3914  }
3915  if (UseCriticalJavaThreadPriority) {
3916    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3917  }
3918  return 0;
3919}
3920
3921OSReturn os::set_native_priority(Thread* thread, int newpri) {
3922  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3923
3924  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3925  return (ret == 0) ? OS_OK : OS_ERR;
3926}
3927
3928OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3929  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3930    *priority_ptr = java_to_os_priority[NormPriority];
3931    return OS_OK;
3932  }
3933
3934  errno = 0;
3935  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3936  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3937}
3938
3939// Hint to the underlying OS that a task switch would not be good.
3940// Void return because it's a hint and can fail.
3941void os::hint_no_preempt() {}
3942
3943////////////////////////////////////////////////////////////////////////////////
3944// suspend/resume support
3945
3946//  the low-level signal-based suspend/resume support is a remnant from the
3947//  old VM-suspension that used to be for java-suspension, safepoints etc,
3948//  within hotspot. Now there is a single use-case for this:
3949//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3950//      that runs in the watcher thread.
3951//  The remaining code is greatly simplified from the more general suspension
3952//  code that used to be used.
3953//
3954//  The protocol is quite simple:
3955//  - suspend:
3956//      - sends a signal to the target thread
3957//      - polls the suspend state of the osthread using a yield loop
3958//      - target thread signal handler (SR_handler) sets suspend state
3959//        and blocks in sigsuspend until continued
3960//  - resume:
3961//      - sets target osthread state to continue
3962//      - sends signal to end the sigsuspend loop in the SR_handler
3963//
3964//  Note that the SR_lock plays no role in this suspend/resume protocol.
3965//
3966
3967static void resume_clear_context(OSThread *osthread) {
3968  osthread->set_ucontext(NULL);
3969  osthread->set_siginfo(NULL);
3970}
3971
3972static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3973  osthread->set_ucontext(context);
3974  osthread->set_siginfo(siginfo);
3975}
3976
3977//
3978// Handler function invoked when a thread's execution is suspended or
3979// resumed. We have to be careful that only async-safe functions are
3980// called here (Note: most pthread functions are not async safe and
3981// should be avoided.)
3982//
3983// Note: sigwait() is a more natural fit than sigsuspend() from an
3984// interface point of view, but sigwait() prevents the signal hander
3985// from being run. libpthread would get very confused by not having
3986// its signal handlers run and prevents sigwait()'s use with the
3987// mutex granting granting signal.
3988//
3989// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3990//
3991static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3992  // Save and restore errno to avoid confusing native code with EINTR
3993  // after sigsuspend.
3994  int old_errno = errno;
3995
3996  Thread* thread = Thread::current();
3997  OSThread* osthread = thread->osthread();
3998  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3999
4000  os::SuspendResume::State current = osthread->sr.state();
4001  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4002    suspend_save_context(osthread, siginfo, context);
4003
4004    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4005    os::SuspendResume::State state = osthread->sr.suspended();
4006    if (state == os::SuspendResume::SR_SUSPENDED) {
4007      sigset_t suspend_set;  // signals for sigsuspend()
4008
4009      // get current set of blocked signals and unblock resume signal
4010      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4011      sigdelset(&suspend_set, SR_signum);
4012
4013      sr_semaphore.signal();
4014      // wait here until we are resumed
4015      while (1) {
4016        sigsuspend(&suspend_set);
4017
4018        os::SuspendResume::State result = osthread->sr.running();
4019        if (result == os::SuspendResume::SR_RUNNING) {
4020          sr_semaphore.signal();
4021          break;
4022        }
4023      }
4024
4025    } else if (state == os::SuspendResume::SR_RUNNING) {
4026      // request was cancelled, continue
4027    } else {
4028      ShouldNotReachHere();
4029    }
4030
4031    resume_clear_context(osthread);
4032  } else if (current == os::SuspendResume::SR_RUNNING) {
4033    // request was cancelled, continue
4034  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4035    // ignore
4036  } else {
4037    // ignore
4038  }
4039
4040  errno = old_errno;
4041}
4042
4043
4044static int SR_initialize() {
4045  struct sigaction act;
4046  char *s;
4047  /* Get signal number to use for suspend/resume */
4048  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4049    int sig = ::strtol(s, 0, 10);
4050    if (sig > 0 || sig < _NSIG) {
4051        SR_signum = sig;
4052    }
4053  }
4054
4055  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4056        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4057
4058  sigemptyset(&SR_sigset);
4059  sigaddset(&SR_sigset, SR_signum);
4060
4061  /* Set up signal handler for suspend/resume */
4062  act.sa_flags = SA_RESTART|SA_SIGINFO;
4063  act.sa_handler = (void (*)(int)) SR_handler;
4064
4065  // SR_signum is blocked by default.
4066  // 4528190 - We also need to block pthread restart signal (32 on all
4067  // supported Linux platforms). Note that LinuxThreads need to block
4068  // this signal for all threads to work properly. So we don't have
4069  // to use hard-coded signal number when setting up the mask.
4070  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4071
4072  if (sigaction(SR_signum, &act, 0) == -1) {
4073    return -1;
4074  }
4075
4076  // Save signal flag
4077  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4078  return 0;
4079}
4080
4081static int sr_notify(OSThread* osthread) {
4082  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4083  assert_status(status == 0, status, "pthread_kill");
4084  return status;
4085}
4086
4087// "Randomly" selected value for how long we want to spin
4088// before bailing out on suspending a thread, also how often
4089// we send a signal to a thread we want to resume
4090static const int RANDOMLY_LARGE_INTEGER = 1000000;
4091static const int RANDOMLY_LARGE_INTEGER2 = 100;
4092
4093// returns true on success and false on error - really an error is fatal
4094// but this seems the normal response to library errors
4095static bool do_suspend(OSThread* osthread) {
4096  assert(osthread->sr.is_running(), "thread should be running");
4097  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4098
4099  // mark as suspended and send signal
4100  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4101    // failed to switch, state wasn't running?
4102    ShouldNotReachHere();
4103    return false;
4104  }
4105
4106  if (sr_notify(osthread) != 0) {
4107    ShouldNotReachHere();
4108  }
4109
4110  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4111  while (true) {
4112    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4113      break;
4114    } else {
4115      // timeout
4116      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4117      if (cancelled == os::SuspendResume::SR_RUNNING) {
4118        return false;
4119      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4120        // make sure that we consume the signal on the semaphore as well
4121        sr_semaphore.wait();
4122        break;
4123      } else {
4124        ShouldNotReachHere();
4125        return false;
4126      }
4127    }
4128  }
4129
4130  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4131  return true;
4132}
4133
4134static void do_resume(OSThread* osthread) {
4135  assert(osthread->sr.is_suspended(), "thread should be suspended");
4136  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4137
4138  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4139    // failed to switch to WAKEUP_REQUEST
4140    ShouldNotReachHere();
4141    return;
4142  }
4143
4144  while (true) {
4145    if (sr_notify(osthread) == 0) {
4146      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4147        if (osthread->sr.is_running()) {
4148          return;
4149        }
4150      }
4151    } else {
4152      ShouldNotReachHere();
4153    }
4154  }
4155
4156  guarantee(osthread->sr.is_running(), "Must be running!");
4157}
4158
4159////////////////////////////////////////////////////////////////////////////////
4160// interrupt support
4161
4162void os::interrupt(Thread* thread) {
4163  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4164    "possibility of dangling Thread pointer");
4165
4166  OSThread* osthread = thread->osthread();
4167
4168  if (!osthread->interrupted()) {
4169    osthread->set_interrupted(true);
4170    // More than one thread can get here with the same value of osthread,
4171    // resulting in multiple notifications.  We do, however, want the store
4172    // to interrupted() to be visible to other threads before we execute unpark().
4173    OrderAccess::fence();
4174    ParkEvent * const slp = thread->_SleepEvent ;
4175    if (slp != NULL) slp->unpark() ;
4176  }
4177
4178  // For JSR166. Unpark even if interrupt status already was set
4179  if (thread->is_Java_thread())
4180    ((JavaThread*)thread)->parker()->unpark();
4181
4182  ParkEvent * ev = thread->_ParkEvent ;
4183  if (ev != NULL) ev->unpark() ;
4184
4185}
4186
4187bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4188  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4189    "possibility of dangling Thread pointer");
4190
4191  OSThread* osthread = thread->osthread();
4192
4193  bool interrupted = osthread->interrupted();
4194
4195  if (interrupted && clear_interrupted) {
4196    osthread->set_interrupted(false);
4197    // consider thread->_SleepEvent->reset() ... optional optimization
4198  }
4199
4200  return interrupted;
4201}
4202
4203///////////////////////////////////////////////////////////////////////////////////
4204// signal handling (except suspend/resume)
4205
4206// This routine may be used by user applications as a "hook" to catch signals.
4207// The user-defined signal handler must pass unrecognized signals to this
4208// routine, and if it returns true (non-zero), then the signal handler must
4209// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4210// routine will never retun false (zero), but instead will execute a VM panic
4211// routine kill the process.
4212//
4213// If this routine returns false, it is OK to call it again.  This allows
4214// the user-defined signal handler to perform checks either before or after
4215// the VM performs its own checks.  Naturally, the user code would be making
4216// a serious error if it tried to handle an exception (such as a null check
4217// or breakpoint) that the VM was generating for its own correct operation.
4218//
4219// This routine may recognize any of the following kinds of signals:
4220//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4221// It should be consulted by handlers for any of those signals.
4222//
4223// The caller of this routine must pass in the three arguments supplied
4224// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4225// field of the structure passed to sigaction().  This routine assumes that
4226// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4227//
4228// Note that the VM will print warnings if it detects conflicting signal
4229// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4230//
4231extern "C" JNIEXPORT int
4232JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4233                        void* ucontext, int abort_if_unrecognized);
4234
4235void signalHandler(int sig, siginfo_t* info, void* uc) {
4236  assert(info != NULL && uc != NULL, "it must be old kernel");
4237  int orig_errno = errno;  // Preserve errno value over signal handler.
4238  JVM_handle_linux_signal(sig, info, uc, true);
4239  errno = orig_errno;
4240}
4241
4242
4243// This boolean allows users to forward their own non-matching signals
4244// to JVM_handle_linux_signal, harmlessly.
4245bool os::Linux::signal_handlers_are_installed = false;
4246
4247// For signal-chaining
4248struct sigaction os::Linux::sigact[MAXSIGNUM];
4249unsigned int os::Linux::sigs = 0;
4250bool os::Linux::libjsig_is_loaded = false;
4251typedef struct sigaction *(*get_signal_t)(int);
4252get_signal_t os::Linux::get_signal_action = NULL;
4253
4254struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4255  struct sigaction *actp = NULL;
4256
4257  if (libjsig_is_loaded) {
4258    // Retrieve the old signal handler from libjsig
4259    actp = (*get_signal_action)(sig);
4260  }
4261  if (actp == NULL) {
4262    // Retrieve the preinstalled signal handler from jvm
4263    actp = get_preinstalled_handler(sig);
4264  }
4265
4266  return actp;
4267}
4268
4269static bool call_chained_handler(struct sigaction *actp, int sig,
4270                                 siginfo_t *siginfo, void *context) {
4271  // Call the old signal handler
4272  if (actp->sa_handler == SIG_DFL) {
4273    // It's more reasonable to let jvm treat it as an unexpected exception
4274    // instead of taking the default action.
4275    return false;
4276  } else if (actp->sa_handler != SIG_IGN) {
4277    if ((actp->sa_flags & SA_NODEFER) == 0) {
4278      // automaticlly block the signal
4279      sigaddset(&(actp->sa_mask), sig);
4280    }
4281
4282    sa_handler_t hand;
4283    sa_sigaction_t sa;
4284    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4285    // retrieve the chained handler
4286    if (siginfo_flag_set) {
4287      sa = actp->sa_sigaction;
4288    } else {
4289      hand = actp->sa_handler;
4290    }
4291
4292    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4293      actp->sa_handler = SIG_DFL;
4294    }
4295
4296    // try to honor the signal mask
4297    sigset_t oset;
4298    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4299
4300    // call into the chained handler
4301    if (siginfo_flag_set) {
4302      (*sa)(sig, siginfo, context);
4303    } else {
4304      (*hand)(sig);
4305    }
4306
4307    // restore the signal mask
4308    pthread_sigmask(SIG_SETMASK, &oset, 0);
4309  }
4310  // Tell jvm's signal handler the signal is taken care of.
4311  return true;
4312}
4313
4314bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4315  bool chained = false;
4316  // signal-chaining
4317  if (UseSignalChaining) {
4318    struct sigaction *actp = get_chained_signal_action(sig);
4319    if (actp != NULL) {
4320      chained = call_chained_handler(actp, sig, siginfo, context);
4321    }
4322  }
4323  return chained;
4324}
4325
4326struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4327  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4328    return &sigact[sig];
4329  }
4330  return NULL;
4331}
4332
4333void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4334  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4335  sigact[sig] = oldAct;
4336  sigs |= (unsigned int)1 << sig;
4337}
4338
4339// for diagnostic
4340int os::Linux::sigflags[MAXSIGNUM];
4341
4342int os::Linux::get_our_sigflags(int sig) {
4343  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4344  return sigflags[sig];
4345}
4346
4347void os::Linux::set_our_sigflags(int sig, int flags) {
4348  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4349  sigflags[sig] = flags;
4350}
4351
4352void os::Linux::set_signal_handler(int sig, bool set_installed) {
4353  // Check for overwrite.
4354  struct sigaction oldAct;
4355  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4356
4357  void* oldhand = oldAct.sa_sigaction
4358                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4359                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4360  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4361      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4362      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4363    if (AllowUserSignalHandlers || !set_installed) {
4364      // Do not overwrite; user takes responsibility to forward to us.
4365      return;
4366    } else if (UseSignalChaining) {
4367      // save the old handler in jvm
4368      save_preinstalled_handler(sig, oldAct);
4369      // libjsig also interposes the sigaction() call below and saves the
4370      // old sigaction on it own.
4371    } else {
4372      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4373                    "%#lx for signal %d.", (long)oldhand, sig));
4374    }
4375  }
4376
4377  struct sigaction sigAct;
4378  sigfillset(&(sigAct.sa_mask));
4379  sigAct.sa_handler = SIG_DFL;
4380  if (!set_installed) {
4381    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4382  } else {
4383    sigAct.sa_sigaction = signalHandler;
4384    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4385  }
4386  // Save flags, which are set by ours
4387  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4388  sigflags[sig] = sigAct.sa_flags;
4389
4390  int ret = sigaction(sig, &sigAct, &oldAct);
4391  assert(ret == 0, "check");
4392
4393  void* oldhand2  = oldAct.sa_sigaction
4394                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4395                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4396  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4397}
4398
4399// install signal handlers for signals that HotSpot needs to
4400// handle in order to support Java-level exception handling.
4401
4402void os::Linux::install_signal_handlers() {
4403  if (!signal_handlers_are_installed) {
4404    signal_handlers_are_installed = true;
4405
4406    // signal-chaining
4407    typedef void (*signal_setting_t)();
4408    signal_setting_t begin_signal_setting = NULL;
4409    signal_setting_t end_signal_setting = NULL;
4410    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4411                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4412    if (begin_signal_setting != NULL) {
4413      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4414                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4415      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4416                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4417      libjsig_is_loaded = true;
4418      assert(UseSignalChaining, "should enable signal-chaining");
4419    }
4420    if (libjsig_is_loaded) {
4421      // Tell libjsig jvm is setting signal handlers
4422      (*begin_signal_setting)();
4423    }
4424
4425    set_signal_handler(SIGSEGV, true);
4426    set_signal_handler(SIGPIPE, true);
4427    set_signal_handler(SIGBUS, true);
4428    set_signal_handler(SIGILL, true);
4429    set_signal_handler(SIGFPE, true);
4430    set_signal_handler(SIGXFSZ, true);
4431
4432    if (libjsig_is_loaded) {
4433      // Tell libjsig jvm finishes setting signal handlers
4434      (*end_signal_setting)();
4435    }
4436
4437    // We don't activate signal checker if libjsig is in place, we trust ourselves
4438    // and if UserSignalHandler is installed all bets are off.
4439    // Log that signal checking is off only if -verbose:jni is specified.
4440    if (CheckJNICalls) {
4441      if (libjsig_is_loaded) {
4442        if (PrintJNIResolving) {
4443          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4444        }
4445        check_signals = false;
4446      }
4447      if (AllowUserSignalHandlers) {
4448        if (PrintJNIResolving) {
4449          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4450        }
4451        check_signals = false;
4452      }
4453    }
4454  }
4455}
4456
4457// This is the fastest way to get thread cpu time on Linux.
4458// Returns cpu time (user+sys) for any thread, not only for current.
4459// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4460// It might work on 2.6.10+ with a special kernel/glibc patch.
4461// For reference, please, see IEEE Std 1003.1-2004:
4462//   http://www.unix.org/single_unix_specification
4463
4464jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4465  struct timespec tp;
4466  int rc = os::Linux::clock_gettime(clockid, &tp);
4467  assert(rc == 0, "clock_gettime is expected to return 0 code");
4468
4469  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4470}
4471
4472/////
4473// glibc on Linux platform uses non-documented flag
4474// to indicate, that some special sort of signal
4475// trampoline is used.
4476// We will never set this flag, and we should
4477// ignore this flag in our diagnostic
4478#ifdef SIGNIFICANT_SIGNAL_MASK
4479#undef SIGNIFICANT_SIGNAL_MASK
4480#endif
4481#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4482
4483static const char* get_signal_handler_name(address handler,
4484                                           char* buf, int buflen) {
4485  int offset;
4486  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4487  if (found) {
4488    // skip directory names
4489    const char *p1, *p2;
4490    p1 = buf;
4491    size_t len = strlen(os::file_separator());
4492    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4493    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4494  } else {
4495    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4496  }
4497  return buf;
4498}
4499
4500static void print_signal_handler(outputStream* st, int sig,
4501                                 char* buf, size_t buflen) {
4502  struct sigaction sa;
4503
4504  sigaction(sig, NULL, &sa);
4505
4506  // See comment for SIGNIFICANT_SIGNAL_MASK define
4507  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4508
4509  st->print("%s: ", os::exception_name(sig, buf, buflen));
4510
4511  address handler = (sa.sa_flags & SA_SIGINFO)
4512    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4513    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4514
4515  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4516    st->print("SIG_DFL");
4517  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4518    st->print("SIG_IGN");
4519  } else {
4520    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4521  }
4522
4523  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4524
4525  address rh = VMError::get_resetted_sighandler(sig);
4526  // May be, handler was resetted by VMError?
4527  if(rh != NULL) {
4528    handler = rh;
4529    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4530  }
4531
4532  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4533
4534  // Check: is it our handler?
4535  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4536     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4537    // It is our signal handler
4538    // check for flags, reset system-used one!
4539    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4540      st->print(
4541                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4542                os::Linux::get_our_sigflags(sig));
4543    }
4544  }
4545  st->cr();
4546}
4547
4548
4549#define DO_SIGNAL_CHECK(sig) \
4550  if (!sigismember(&check_signal_done, sig)) \
4551    os::Linux::check_signal_handler(sig)
4552
4553// This method is a periodic task to check for misbehaving JNI applications
4554// under CheckJNI, we can add any periodic checks here
4555
4556void os::run_periodic_checks() {
4557
4558  if (check_signals == false) return;
4559
4560  // SEGV and BUS if overridden could potentially prevent
4561  // generation of hs*.log in the event of a crash, debugging
4562  // such a case can be very challenging, so we absolutely
4563  // check the following for a good measure:
4564  DO_SIGNAL_CHECK(SIGSEGV);
4565  DO_SIGNAL_CHECK(SIGILL);
4566  DO_SIGNAL_CHECK(SIGFPE);
4567  DO_SIGNAL_CHECK(SIGBUS);
4568  DO_SIGNAL_CHECK(SIGPIPE);
4569  DO_SIGNAL_CHECK(SIGXFSZ);
4570
4571
4572  // ReduceSignalUsage allows the user to override these handlers
4573  // see comments at the very top and jvm_solaris.h
4574  if (!ReduceSignalUsage) {
4575    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4576    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4577    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4578    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4579  }
4580
4581  DO_SIGNAL_CHECK(SR_signum);
4582  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4583}
4584
4585typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4586
4587static os_sigaction_t os_sigaction = NULL;
4588
4589void os::Linux::check_signal_handler(int sig) {
4590  char buf[O_BUFLEN];
4591  address jvmHandler = NULL;
4592
4593
4594  struct sigaction act;
4595  if (os_sigaction == NULL) {
4596    // only trust the default sigaction, in case it has been interposed
4597    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4598    if (os_sigaction == NULL) return;
4599  }
4600
4601  os_sigaction(sig, (struct sigaction*)NULL, &act);
4602
4603
4604  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4605
4606  address thisHandler = (act.sa_flags & SA_SIGINFO)
4607    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4608    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4609
4610
4611  switch(sig) {
4612  case SIGSEGV:
4613  case SIGBUS:
4614  case SIGFPE:
4615  case SIGPIPE:
4616  case SIGILL:
4617  case SIGXFSZ:
4618    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4619    break;
4620
4621  case SHUTDOWN1_SIGNAL:
4622  case SHUTDOWN2_SIGNAL:
4623  case SHUTDOWN3_SIGNAL:
4624  case BREAK_SIGNAL:
4625    jvmHandler = (address)user_handler();
4626    break;
4627
4628  case INTERRUPT_SIGNAL:
4629    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4630    break;
4631
4632  default:
4633    if (sig == SR_signum) {
4634      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4635    } else {
4636      return;
4637    }
4638    break;
4639  }
4640
4641  if (thisHandler != jvmHandler) {
4642    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4643    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4644    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4645    // No need to check this sig any longer
4646    sigaddset(&check_signal_done, sig);
4647  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4648    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4649    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4650    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4651    // No need to check this sig any longer
4652    sigaddset(&check_signal_done, sig);
4653  }
4654
4655  // Dump all the signal
4656  if (sigismember(&check_signal_done, sig)) {
4657    print_signal_handlers(tty, buf, O_BUFLEN);
4658  }
4659}
4660
4661extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4662
4663extern bool signal_name(int signo, char* buf, size_t len);
4664
4665const char* os::exception_name(int exception_code, char* buf, size_t size) {
4666  if (0 < exception_code && exception_code <= SIGRTMAX) {
4667    // signal
4668    if (!signal_name(exception_code, buf, size)) {
4669      jio_snprintf(buf, size, "SIG%d", exception_code);
4670    }
4671    return buf;
4672  } else {
4673    return NULL;
4674  }
4675}
4676
4677// this is called _before_ the most of global arguments have been parsed
4678void os::init(void) {
4679  char dummy;   /* used to get a guess on initial stack address */
4680//  first_hrtime = gethrtime();
4681
4682  // With LinuxThreads the JavaMain thread pid (primordial thread)
4683  // is different than the pid of the java launcher thread.
4684  // So, on Linux, the launcher thread pid is passed to the VM
4685  // via the sun.java.launcher.pid property.
4686  // Use this property instead of getpid() if it was correctly passed.
4687  // See bug 6351349.
4688  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4689
4690  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4691
4692  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4693
4694  init_random(1234567);
4695
4696  ThreadCritical::initialize();
4697
4698  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4699  if (Linux::page_size() == -1) {
4700    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4701                  strerror(errno)));
4702  }
4703  init_page_sizes((size_t) Linux::page_size());
4704
4705  Linux::initialize_system_info();
4706
4707  // main_thread points to the aboriginal thread
4708  Linux::_main_thread = pthread_self();
4709
4710  Linux::clock_init();
4711  initial_time_count = os::elapsed_counter();
4712  pthread_mutex_init(&dl_mutex, NULL);
4713
4714  // If the pagesize of the VM is greater than 8K determine the appropriate
4715  // number of initial guard pages.  The user can change this with the
4716  // command line arguments, if needed.
4717  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4718    StackYellowPages = 1;
4719    StackRedPages = 1;
4720    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4721  }
4722}
4723
4724// To install functions for atexit system call
4725extern "C" {
4726  static void perfMemory_exit_helper() {
4727    perfMemory_exit();
4728  }
4729}
4730
4731// this is called _after_ the global arguments have been parsed
4732jint os::init_2(void)
4733{
4734  Linux::fast_thread_clock_init();
4735
4736  // Allocate a single page and mark it as readable for safepoint polling
4737  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4738  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4739
4740  os::set_polling_page( polling_page );
4741
4742#ifndef PRODUCT
4743  if(Verbose && PrintMiscellaneous)
4744    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4745#endif
4746
4747  if (!UseMembar) {
4748    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4749    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4750    os::set_memory_serialize_page( mem_serialize_page );
4751
4752#ifndef PRODUCT
4753    if(Verbose && PrintMiscellaneous)
4754      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4755#endif
4756  }
4757
4758  os::large_page_init();
4759
4760  // initialize suspend/resume support - must do this before signal_sets_init()
4761  if (SR_initialize() != 0) {
4762    perror("SR_initialize failed");
4763    return JNI_ERR;
4764  }
4765
4766  Linux::signal_sets_init();
4767  Linux::install_signal_handlers();
4768
4769  // Check minimum allowable stack size for thread creation and to initialize
4770  // the java system classes, including StackOverflowError - depends on page
4771  // size.  Add a page for compiler2 recursion in main thread.
4772  // Add in 2*BytesPerWord times page size to account for VM stack during
4773  // class initialization depending on 32 or 64 bit VM.
4774  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4775            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4776                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4777
4778  size_t threadStackSizeInBytes = ThreadStackSize * K;
4779  if (threadStackSizeInBytes != 0 &&
4780      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4781        tty->print_cr("\nThe stack size specified is too small, "
4782                      "Specify at least %dk",
4783                      os::Linux::min_stack_allowed/ K);
4784        return JNI_ERR;
4785  }
4786
4787  // Make the stack size a multiple of the page size so that
4788  // the yellow/red zones can be guarded.
4789  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4790        vm_page_size()));
4791
4792  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4793
4794  Linux::libpthread_init();
4795  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4796     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4797          Linux::glibc_version(), Linux::libpthread_version(),
4798          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4799  }
4800
4801  if (UseNUMA) {
4802    if (!Linux::libnuma_init()) {
4803      UseNUMA = false;
4804    } else {
4805      if ((Linux::numa_max_node() < 1)) {
4806        // There's only one node(they start from 0), disable NUMA.
4807        UseNUMA = false;
4808      }
4809    }
4810    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4811    // we can make the adaptive lgrp chunk resizing work. If the user specified
4812    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4813    // disable adaptive resizing.
4814    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4815      if (FLAG_IS_DEFAULT(UseNUMA)) {
4816        UseNUMA = false;
4817      } else {
4818        if (FLAG_IS_DEFAULT(UseLargePages) &&
4819            FLAG_IS_DEFAULT(UseSHM) &&
4820            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4821          UseLargePages = false;
4822        } else {
4823          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4824          UseAdaptiveSizePolicy = false;
4825          UseAdaptiveNUMAChunkSizing = false;
4826        }
4827      }
4828    }
4829    if (!UseNUMA && ForceNUMA) {
4830      UseNUMA = true;
4831    }
4832  }
4833
4834  if (MaxFDLimit) {
4835    // set the number of file descriptors to max. print out error
4836    // if getrlimit/setrlimit fails but continue regardless.
4837    struct rlimit nbr_files;
4838    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4839    if (status != 0) {
4840      if (PrintMiscellaneous && (Verbose || WizardMode))
4841        perror("os::init_2 getrlimit failed");
4842    } else {
4843      nbr_files.rlim_cur = nbr_files.rlim_max;
4844      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4845      if (status != 0) {
4846        if (PrintMiscellaneous && (Verbose || WizardMode))
4847          perror("os::init_2 setrlimit failed");
4848      }
4849    }
4850  }
4851
4852  // Initialize lock used to serialize thread creation (see os::create_thread)
4853  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4854
4855  // at-exit methods are called in the reverse order of their registration.
4856  // atexit functions are called on return from main or as a result of a
4857  // call to exit(3C). There can be only 32 of these functions registered
4858  // and atexit() does not set errno.
4859
4860  if (PerfAllowAtExitRegistration) {
4861    // only register atexit functions if PerfAllowAtExitRegistration is set.
4862    // atexit functions can be delayed until process exit time, which
4863    // can be problematic for embedded VM situations. Embedded VMs should
4864    // call DestroyJavaVM() to assure that VM resources are released.
4865
4866    // note: perfMemory_exit_helper atexit function may be removed in
4867    // the future if the appropriate cleanup code can be added to the
4868    // VM_Exit VMOperation's doit method.
4869    if (atexit(perfMemory_exit_helper) != 0) {
4870      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4871    }
4872  }
4873
4874  // initialize thread priority policy
4875  prio_init();
4876
4877  return JNI_OK;
4878}
4879
4880// this is called at the end of vm_initialization
4881void os::init_3(void)
4882{
4883#ifdef JAVASE_EMBEDDED
4884  // Start the MemNotifyThread
4885  if (LowMemoryProtection) {
4886    MemNotifyThread::start();
4887  }
4888  return;
4889#endif
4890}
4891
4892// Mark the polling page as unreadable
4893void os::make_polling_page_unreadable(void) {
4894  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4895    fatal("Could not disable polling page");
4896};
4897
4898// Mark the polling page as readable
4899void os::make_polling_page_readable(void) {
4900  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4901    fatal("Could not enable polling page");
4902  }
4903};
4904
4905int os::active_processor_count() {
4906  // Linux doesn't yet have a (official) notion of processor sets,
4907  // so just return the number of online processors.
4908  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4909  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4910  return online_cpus;
4911}
4912
4913void os::set_native_thread_name(const char *name) {
4914  // Not yet implemented.
4915  return;
4916}
4917
4918bool os::distribute_processes(uint length, uint* distribution) {
4919  // Not yet implemented.
4920  return false;
4921}
4922
4923bool os::bind_to_processor(uint processor_id) {
4924  // Not yet implemented.
4925  return false;
4926}
4927
4928///
4929
4930void os::SuspendedThreadTask::internal_do_task() {
4931  if (do_suspend(_thread->osthread())) {
4932    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4933    do_task(context);
4934    do_resume(_thread->osthread());
4935  }
4936}
4937
4938class PcFetcher : public os::SuspendedThreadTask {
4939public:
4940  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4941  ExtendedPC result();
4942protected:
4943  void do_task(const os::SuspendedThreadTaskContext& context);
4944private:
4945  ExtendedPC _epc;
4946};
4947
4948ExtendedPC PcFetcher::result() {
4949  guarantee(is_done(), "task is not done yet.");
4950  return _epc;
4951}
4952
4953void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4954  Thread* thread = context.thread();
4955  OSThread* osthread = thread->osthread();
4956  if (osthread->ucontext() != NULL) {
4957    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4958  } else {
4959    // NULL context is unexpected, double-check this is the VMThread
4960    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4961  }
4962}
4963
4964// Suspends the target using the signal mechanism and then grabs the PC before
4965// resuming the target. Used by the flat-profiler only
4966ExtendedPC os::get_thread_pc(Thread* thread) {
4967  // Make sure that it is called by the watcher for the VMThread
4968  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4969  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4970
4971  PcFetcher fetcher(thread);
4972  fetcher.run();
4973  return fetcher.result();
4974}
4975
4976int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4977{
4978   if (is_NPTL()) {
4979      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4980   } else {
4981      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4982      // word back to default 64bit precision if condvar is signaled. Java
4983      // wants 53bit precision.  Save and restore current value.
4984      int fpu = get_fpu_control_word();
4985      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4986      set_fpu_control_word(fpu);
4987      return status;
4988   }
4989}
4990
4991////////////////////////////////////////////////////////////////////////////////
4992// debug support
4993
4994bool os::find(address addr, outputStream* st) {
4995  Dl_info dlinfo;
4996  memset(&dlinfo, 0, sizeof(dlinfo));
4997  if (dladdr(addr, &dlinfo) != 0) {
4998    st->print(PTR_FORMAT ": ", addr);
4999    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5000      st->print("%s+%#x", dlinfo.dli_sname,
5001                 addr - (intptr_t)dlinfo.dli_saddr);
5002    } else if (dlinfo.dli_fbase != NULL) {
5003      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5004    } else {
5005      st->print("<absolute address>");
5006    }
5007    if (dlinfo.dli_fname != NULL) {
5008      st->print(" in %s", dlinfo.dli_fname);
5009    }
5010    if (dlinfo.dli_fbase != NULL) {
5011      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5012    }
5013    st->cr();
5014
5015    if (Verbose) {
5016      // decode some bytes around the PC
5017      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5018      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5019      address       lowest = (address) dlinfo.dli_sname;
5020      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5021      if (begin < lowest)  begin = lowest;
5022      Dl_info dlinfo2;
5023      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5024          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5025        end = (address) dlinfo2.dli_saddr;
5026      Disassembler::decode(begin, end, st);
5027    }
5028    return true;
5029  }
5030  return false;
5031}
5032
5033////////////////////////////////////////////////////////////////////////////////
5034// misc
5035
5036// This does not do anything on Linux. This is basically a hook for being
5037// able to use structured exception handling (thread-local exception filters)
5038// on, e.g., Win32.
5039void
5040os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5041                         JavaCallArguments* args, Thread* thread) {
5042  f(value, method, args, thread);
5043}
5044
5045void os::print_statistics() {
5046}
5047
5048int os::message_box(const char* title, const char* message) {
5049  int i;
5050  fdStream err(defaultStream::error_fd());
5051  for (i = 0; i < 78; i++) err.print_raw("=");
5052  err.cr();
5053  err.print_raw_cr(title);
5054  for (i = 0; i < 78; i++) err.print_raw("-");
5055  err.cr();
5056  err.print_raw_cr(message);
5057  for (i = 0; i < 78; i++) err.print_raw("=");
5058  err.cr();
5059
5060  char buf[16];
5061  // Prevent process from exiting upon "read error" without consuming all CPU
5062  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5063
5064  return buf[0] == 'y' || buf[0] == 'Y';
5065}
5066
5067int os::stat(const char *path, struct stat *sbuf) {
5068  char pathbuf[MAX_PATH];
5069  if (strlen(path) > MAX_PATH - 1) {
5070    errno = ENAMETOOLONG;
5071    return -1;
5072  }
5073  os::native_path(strcpy(pathbuf, path));
5074  return ::stat(pathbuf, sbuf);
5075}
5076
5077bool os::check_heap(bool force) {
5078  return true;
5079}
5080
5081int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5082  return ::vsnprintf(buf, count, format, args);
5083}
5084
5085// Is a (classpath) directory empty?
5086bool os::dir_is_empty(const char* path) {
5087  DIR *dir = NULL;
5088  struct dirent *ptr;
5089
5090  dir = opendir(path);
5091  if (dir == NULL) return true;
5092
5093  /* Scan the directory */
5094  bool result = true;
5095  char buf[sizeof(struct dirent) + MAX_PATH];
5096  while (result && (ptr = ::readdir(dir)) != NULL) {
5097    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5098      result = false;
5099    }
5100  }
5101  closedir(dir);
5102  return result;
5103}
5104
5105// This code originates from JDK's sysOpen and open64_w
5106// from src/solaris/hpi/src/system_md.c
5107
5108#ifndef O_DELETE
5109#define O_DELETE 0x10000
5110#endif
5111
5112// Open a file. Unlink the file immediately after open returns
5113// if the specified oflag has the O_DELETE flag set.
5114// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5115
5116int os::open(const char *path, int oflag, int mode) {
5117
5118  if (strlen(path) > MAX_PATH - 1) {
5119    errno = ENAMETOOLONG;
5120    return -1;
5121  }
5122  int fd;
5123  int o_delete = (oflag & O_DELETE);
5124  oflag = oflag & ~O_DELETE;
5125
5126  fd = ::open64(path, oflag, mode);
5127  if (fd == -1) return -1;
5128
5129  //If the open succeeded, the file might still be a directory
5130  {
5131    struct stat64 buf64;
5132    int ret = ::fstat64(fd, &buf64);
5133    int st_mode = buf64.st_mode;
5134
5135    if (ret != -1) {
5136      if ((st_mode & S_IFMT) == S_IFDIR) {
5137        errno = EISDIR;
5138        ::close(fd);
5139        return -1;
5140      }
5141    } else {
5142      ::close(fd);
5143      return -1;
5144    }
5145  }
5146
5147    /*
5148     * All file descriptors that are opened in the JVM and not
5149     * specifically destined for a subprocess should have the
5150     * close-on-exec flag set.  If we don't set it, then careless 3rd
5151     * party native code might fork and exec without closing all
5152     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5153     * UNIXProcess.c), and this in turn might:
5154     *
5155     * - cause end-of-file to fail to be detected on some file
5156     *   descriptors, resulting in mysterious hangs, or
5157     *
5158     * - might cause an fopen in the subprocess to fail on a system
5159     *   suffering from bug 1085341.
5160     *
5161     * (Yes, the default setting of the close-on-exec flag is a Unix
5162     * design flaw)
5163     *
5164     * See:
5165     * 1085341: 32-bit stdio routines should support file descriptors >255
5166     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5167     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5168     */
5169#ifdef FD_CLOEXEC
5170    {
5171        int flags = ::fcntl(fd, F_GETFD);
5172        if (flags != -1)
5173            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5174    }
5175#endif
5176
5177  if (o_delete != 0) {
5178    ::unlink(path);
5179  }
5180  return fd;
5181}
5182
5183
5184// create binary file, rewriting existing file if required
5185int os::create_binary_file(const char* path, bool rewrite_existing) {
5186  int oflags = O_WRONLY | O_CREAT;
5187  if (!rewrite_existing) {
5188    oflags |= O_EXCL;
5189  }
5190  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5191}
5192
5193// return current position of file pointer
5194jlong os::current_file_offset(int fd) {
5195  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5196}
5197
5198// move file pointer to the specified offset
5199jlong os::seek_to_file_offset(int fd, jlong offset) {
5200  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5201}
5202
5203// This code originates from JDK's sysAvailable
5204// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5205
5206int os::available(int fd, jlong *bytes) {
5207  jlong cur, end;
5208  int mode;
5209  struct stat64 buf64;
5210
5211  if (::fstat64(fd, &buf64) >= 0) {
5212    mode = buf64.st_mode;
5213    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5214      /*
5215      * XXX: is the following call interruptible? If so, this might
5216      * need to go through the INTERRUPT_IO() wrapper as for other
5217      * blocking, interruptible calls in this file.
5218      */
5219      int n;
5220      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5221        *bytes = n;
5222        return 1;
5223      }
5224    }
5225  }
5226  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5227    return 0;
5228  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5229    return 0;
5230  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5231    return 0;
5232  }
5233  *bytes = end - cur;
5234  return 1;
5235}
5236
5237int os::socket_available(int fd, jint *pbytes) {
5238  // Linux doc says EINTR not returned, unlike Solaris
5239  int ret = ::ioctl(fd, FIONREAD, pbytes);
5240
5241  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5242  // is expected to return 0 on failure and 1 on success to the jdk.
5243  return (ret < 0) ? 0 : 1;
5244}
5245
5246// Map a block of memory.
5247char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5248                     char *addr, size_t bytes, bool read_only,
5249                     bool allow_exec) {
5250  int prot;
5251  int flags = MAP_PRIVATE;
5252
5253  if (read_only) {
5254    prot = PROT_READ;
5255  } else {
5256    prot = PROT_READ | PROT_WRITE;
5257  }
5258
5259  if (allow_exec) {
5260    prot |= PROT_EXEC;
5261  }
5262
5263  if (addr != NULL) {
5264    flags |= MAP_FIXED;
5265  }
5266
5267  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5268                                     fd, file_offset);
5269  if (mapped_address == MAP_FAILED) {
5270    return NULL;
5271  }
5272  return mapped_address;
5273}
5274
5275
5276// Remap a block of memory.
5277char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5278                       char *addr, size_t bytes, bool read_only,
5279                       bool allow_exec) {
5280  // same as map_memory() on this OS
5281  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5282                        allow_exec);
5283}
5284
5285
5286// Unmap a block of memory.
5287bool os::pd_unmap_memory(char* addr, size_t bytes) {
5288  return munmap(addr, bytes) == 0;
5289}
5290
5291static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5292
5293static clockid_t thread_cpu_clockid(Thread* thread) {
5294  pthread_t tid = thread->osthread()->pthread_id();
5295  clockid_t clockid;
5296
5297  // Get thread clockid
5298  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5299  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5300  return clockid;
5301}
5302
5303// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5304// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5305// of a thread.
5306//
5307// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5308// the fast estimate available on the platform.
5309
5310jlong os::current_thread_cpu_time() {
5311  if (os::Linux::supports_fast_thread_cpu_time()) {
5312    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5313  } else {
5314    // return user + sys since the cost is the same
5315    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5316  }
5317}
5318
5319jlong os::thread_cpu_time(Thread* thread) {
5320  // consistent with what current_thread_cpu_time() returns
5321  if (os::Linux::supports_fast_thread_cpu_time()) {
5322    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5323  } else {
5324    return slow_thread_cpu_time(thread, true /* user + sys */);
5325  }
5326}
5327
5328jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5329  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5330    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5331  } else {
5332    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5333  }
5334}
5335
5336jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5337  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5338    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5339  } else {
5340    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5341  }
5342}
5343
5344//
5345//  -1 on error.
5346//
5347
5348static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5349  static bool proc_task_unchecked = true;
5350  static const char *proc_stat_path = "/proc/%d/stat";
5351  pid_t  tid = thread->osthread()->thread_id();
5352  char *s;
5353  char stat[2048];
5354  int statlen;
5355  char proc_name[64];
5356  int count;
5357  long sys_time, user_time;
5358  char cdummy;
5359  int idummy;
5360  long ldummy;
5361  FILE *fp;
5362
5363  // The /proc/<tid>/stat aggregates per-process usage on
5364  // new Linux kernels 2.6+ where NPTL is supported.
5365  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5366  // See bug 6328462.
5367  // There possibly can be cases where there is no directory
5368  // /proc/self/task, so we check its availability.
5369  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5370    // This is executed only once
5371    proc_task_unchecked = false;
5372    fp = fopen("/proc/self/task", "r");
5373    if (fp != NULL) {
5374      proc_stat_path = "/proc/self/task/%d/stat";
5375      fclose(fp);
5376    }
5377  }
5378
5379  sprintf(proc_name, proc_stat_path, tid);
5380  fp = fopen(proc_name, "r");
5381  if ( fp == NULL ) return -1;
5382  statlen = fread(stat, 1, 2047, fp);
5383  stat[statlen] = '\0';
5384  fclose(fp);
5385
5386  // Skip pid and the command string. Note that we could be dealing with
5387  // weird command names, e.g. user could decide to rename java launcher
5388  // to "java 1.4.2 :)", then the stat file would look like
5389  //                1234 (java 1.4.2 :)) R ... ...
5390  // We don't really need to know the command string, just find the last
5391  // occurrence of ")" and then start parsing from there. See bug 4726580.
5392  s = strrchr(stat, ')');
5393  if (s == NULL ) return -1;
5394
5395  // Skip blank chars
5396  do s++; while (isspace(*s));
5397
5398  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5399                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5400                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5401                 &user_time, &sys_time);
5402  if ( count != 13 ) return -1;
5403  if (user_sys_cpu_time) {
5404    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5405  } else {
5406    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5407  }
5408}
5409
5410void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5411  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5412  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5413  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5414  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5415}
5416
5417void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5418  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5419  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5420  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5421  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5422}
5423
5424bool os::is_thread_cpu_time_supported() {
5425  return true;
5426}
5427
5428// System loadavg support.  Returns -1 if load average cannot be obtained.
5429// Linux doesn't yet have a (official) notion of processor sets,
5430// so just return the system wide load average.
5431int os::loadavg(double loadavg[], int nelem) {
5432  return ::getloadavg(loadavg, nelem);
5433}
5434
5435void os::pause() {
5436  char filename[MAX_PATH];
5437  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5438    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5439  } else {
5440    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5441  }
5442
5443  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5444  if (fd != -1) {
5445    struct stat buf;
5446    ::close(fd);
5447    while (::stat(filename, &buf) == 0) {
5448      (void)::poll(NULL, 0, 100);
5449    }
5450  } else {
5451    jio_fprintf(stderr,
5452      "Could not open pause file '%s', continuing immediately.\n", filename);
5453  }
5454}
5455
5456
5457// Refer to the comments in os_solaris.cpp park-unpark.
5458//
5459// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5460// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5461// For specifics regarding the bug see GLIBC BUGID 261237 :
5462//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5463// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5464// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5465// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5466// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5467// and monitorenter when we're using 1-0 locking.  All those operations may result in
5468// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5469// of libpthread avoids the problem, but isn't practical.
5470//
5471// Possible remedies:
5472//
5473// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5474//      This is palliative and probabilistic, however.  If the thread is preempted
5475//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5476//      than the minimum period may have passed, and the abstime may be stale (in the
5477//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5478//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5479//
5480// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5481//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5482//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5483//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5484//      thread.
5485//
5486// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5487//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5488//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5489//      This also works well.  In fact it avoids kernel-level scalability impediments
5490//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5491//      timers in a graceful fashion.
5492//
5493// 4.   When the abstime value is in the past it appears that control returns
5494//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5495//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5496//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5497//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5498//      It may be possible to avoid reinitialization by checking the return
5499//      value from pthread_cond_timedwait().  In addition to reinitializing the
5500//      condvar we must establish the invariant that cond_signal() is only called
5501//      within critical sections protected by the adjunct mutex.  This prevents
5502//      cond_signal() from "seeing" a condvar that's in the midst of being
5503//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5504//      desirable signal-after-unlock optimization that avoids futile context switching.
5505//
5506//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5507//      structure when a condvar is used or initialized.  cond_destroy()  would
5508//      release the helper structure.  Our reinitialize-after-timedwait fix
5509//      put excessive stress on malloc/free and locks protecting the c-heap.
5510//
5511// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5512// It may be possible to refine (4) by checking the kernel and NTPL verisons
5513// and only enabling the work-around for vulnerable environments.
5514
5515// utility to compute the abstime argument to timedwait:
5516// millis is the relative timeout time
5517// abstime will be the absolute timeout time
5518// TODO: replace compute_abstime() with unpackTime()
5519
5520static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5521  if (millis < 0)  millis = 0;
5522  struct timeval now;
5523  int status = gettimeofday(&now, NULL);
5524  assert(status == 0, "gettimeofday");
5525  jlong seconds = millis / 1000;
5526  millis %= 1000;
5527  if (seconds > 50000000) { // see man cond_timedwait(3T)
5528    seconds = 50000000;
5529  }
5530  abstime->tv_sec = now.tv_sec  + seconds;
5531  long       usec = now.tv_usec + millis * 1000;
5532  if (usec >= 1000000) {
5533    abstime->tv_sec += 1;
5534    usec -= 1000000;
5535  }
5536  abstime->tv_nsec = usec * 1000;
5537  return abstime;
5538}
5539
5540
5541// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5542// Conceptually TryPark() should be equivalent to park(0).
5543
5544int os::PlatformEvent::TryPark() {
5545  for (;;) {
5546    const int v = _Event ;
5547    guarantee ((v == 0) || (v == 1), "invariant") ;
5548    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5549  }
5550}
5551
5552void os::PlatformEvent::park() {       // AKA "down()"
5553  // Invariant: Only the thread associated with the Event/PlatformEvent
5554  // may call park().
5555  // TODO: assert that _Assoc != NULL or _Assoc == Self
5556  int v ;
5557  for (;;) {
5558      v = _Event ;
5559      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5560  }
5561  guarantee (v >= 0, "invariant") ;
5562  if (v == 0) {
5563     // Do this the hard way by blocking ...
5564     int status = pthread_mutex_lock(_mutex);
5565     assert_status(status == 0, status, "mutex_lock");
5566     guarantee (_nParked == 0, "invariant") ;
5567     ++ _nParked ;
5568     while (_Event < 0) {
5569        status = pthread_cond_wait(_cond, _mutex);
5570        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5571        // Treat this the same as if the wait was interrupted
5572        if (status == ETIME) { status = EINTR; }
5573        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5574     }
5575     -- _nParked ;
5576
5577    _Event = 0 ;
5578     status = pthread_mutex_unlock(_mutex);
5579     assert_status(status == 0, status, "mutex_unlock");
5580    // Paranoia to ensure our locked and lock-free paths interact
5581    // correctly with each other.
5582    OrderAccess::fence();
5583  }
5584  guarantee (_Event >= 0, "invariant") ;
5585}
5586
5587int os::PlatformEvent::park(jlong millis) {
5588  guarantee (_nParked == 0, "invariant") ;
5589
5590  int v ;
5591  for (;;) {
5592      v = _Event ;
5593      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5594  }
5595  guarantee (v >= 0, "invariant") ;
5596  if (v != 0) return OS_OK ;
5597
5598  // We do this the hard way, by blocking the thread.
5599  // Consider enforcing a minimum timeout value.
5600  struct timespec abst;
5601  compute_abstime(&abst, millis);
5602
5603  int ret = OS_TIMEOUT;
5604  int status = pthread_mutex_lock(_mutex);
5605  assert_status(status == 0, status, "mutex_lock");
5606  guarantee (_nParked == 0, "invariant") ;
5607  ++_nParked ;
5608
5609  // Object.wait(timo) will return because of
5610  // (a) notification
5611  // (b) timeout
5612  // (c) thread.interrupt
5613  //
5614  // Thread.interrupt and object.notify{All} both call Event::set.
5615  // That is, we treat thread.interrupt as a special case of notification.
5616  // The underlying Solaris implementation, cond_timedwait, admits
5617  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5618  // JVM from making those visible to Java code.  As such, we must
5619  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5620  //
5621  // TODO: properly differentiate simultaneous notify+interrupt.
5622  // In that case, we should propagate the notify to another waiter.
5623
5624  while (_Event < 0) {
5625    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5626    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5627      pthread_cond_destroy (_cond);
5628      pthread_cond_init (_cond, NULL) ;
5629    }
5630    assert_status(status == 0 || status == EINTR ||
5631                  status == ETIME || status == ETIMEDOUT,
5632                  status, "cond_timedwait");
5633    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5634    if (status == ETIME || status == ETIMEDOUT) break ;
5635    // We consume and ignore EINTR and spurious wakeups.
5636  }
5637  --_nParked ;
5638  if (_Event >= 0) {
5639     ret = OS_OK;
5640  }
5641  _Event = 0 ;
5642  status = pthread_mutex_unlock(_mutex);
5643  assert_status(status == 0, status, "mutex_unlock");
5644  assert (_nParked == 0, "invariant") ;
5645  // Paranoia to ensure our locked and lock-free paths interact
5646  // correctly with each other.
5647  OrderAccess::fence();
5648  return ret;
5649}
5650
5651void os::PlatformEvent::unpark() {
5652  // Transitions for _Event:
5653  //    0 :=> 1
5654  //    1 :=> 1
5655  //   -1 :=> either 0 or 1; must signal target thread
5656  //          That is, we can safely transition _Event from -1 to either
5657  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5658  //          unpark() calls.
5659  // See also: "Semaphores in Plan 9" by Mullender & Cox
5660  //
5661  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5662  // that it will take two back-to-back park() calls for the owning
5663  // thread to block. This has the benefit of forcing a spurious return
5664  // from the first park() call after an unpark() call which will help
5665  // shake out uses of park() and unpark() without condition variables.
5666
5667  if (Atomic::xchg(1, &_Event) >= 0) return;
5668
5669  // Wait for the thread associated with the event to vacate
5670  int status = pthread_mutex_lock(_mutex);
5671  assert_status(status == 0, status, "mutex_lock");
5672  int AnyWaiters = _nParked;
5673  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5674  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5675    AnyWaiters = 0;
5676    pthread_cond_signal(_cond);
5677  }
5678  status = pthread_mutex_unlock(_mutex);
5679  assert_status(status == 0, status, "mutex_unlock");
5680  if (AnyWaiters != 0) {
5681    status = pthread_cond_signal(_cond);
5682    assert_status(status == 0, status, "cond_signal");
5683  }
5684
5685  // Note that we signal() _after dropping the lock for "immortal" Events.
5686  // This is safe and avoids a common class of  futile wakeups.  In rare
5687  // circumstances this can cause a thread to return prematurely from
5688  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5689  // simply re-test the condition and re-park itself.
5690}
5691
5692
5693// JSR166
5694// -------------------------------------------------------
5695
5696/*
5697 * The solaris and linux implementations of park/unpark are fairly
5698 * conservative for now, but can be improved. They currently use a
5699 * mutex/condvar pair, plus a a count.
5700 * Park decrements count if > 0, else does a condvar wait.  Unpark
5701 * sets count to 1 and signals condvar.  Only one thread ever waits
5702 * on the condvar. Contention seen when trying to park implies that someone
5703 * is unparking you, so don't wait. And spurious returns are fine, so there
5704 * is no need to track notifications.
5705 */
5706
5707#define MAX_SECS 100000000
5708/*
5709 * This code is common to linux and solaris and will be moved to a
5710 * common place in dolphin.
5711 *
5712 * The passed in time value is either a relative time in nanoseconds
5713 * or an absolute time in milliseconds. Either way it has to be unpacked
5714 * into suitable seconds and nanoseconds components and stored in the
5715 * given timespec structure.
5716 * Given time is a 64-bit value and the time_t used in the timespec is only
5717 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5718 * overflow if times way in the future are given. Further on Solaris versions
5719 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5720 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5721 * As it will be 28 years before "now + 100000000" will overflow we can
5722 * ignore overflow and just impose a hard-limit on seconds using the value
5723 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5724 * years from "now".
5725 */
5726
5727static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5728  assert (time > 0, "convertTime");
5729
5730  struct timeval now;
5731  int status = gettimeofday(&now, NULL);
5732  assert(status == 0, "gettimeofday");
5733
5734  time_t max_secs = now.tv_sec + MAX_SECS;
5735
5736  if (isAbsolute) {
5737    jlong secs = time / 1000;
5738    if (secs > max_secs) {
5739      absTime->tv_sec = max_secs;
5740    }
5741    else {
5742      absTime->tv_sec = secs;
5743    }
5744    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5745  }
5746  else {
5747    jlong secs = time / NANOSECS_PER_SEC;
5748    if (secs >= MAX_SECS) {
5749      absTime->tv_sec = max_secs;
5750      absTime->tv_nsec = 0;
5751    }
5752    else {
5753      absTime->tv_sec = now.tv_sec + secs;
5754      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5755      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5756        absTime->tv_nsec -= NANOSECS_PER_SEC;
5757        ++absTime->tv_sec; // note: this must be <= max_secs
5758      }
5759    }
5760  }
5761  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5762  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5763  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5764  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5765}
5766
5767void Parker::park(bool isAbsolute, jlong time) {
5768  // Ideally we'd do something useful while spinning, such
5769  // as calling unpackTime().
5770
5771  // Optional fast-path check:
5772  // Return immediately if a permit is available.
5773  // We depend on Atomic::xchg() having full barrier semantics
5774  // since we are doing a lock-free update to _counter.
5775  if (Atomic::xchg(0, &_counter) > 0) return;
5776
5777  Thread* thread = Thread::current();
5778  assert(thread->is_Java_thread(), "Must be JavaThread");
5779  JavaThread *jt = (JavaThread *)thread;
5780
5781  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5782  // Check interrupt before trying to wait
5783  if (Thread::is_interrupted(thread, false)) {
5784    return;
5785  }
5786
5787  // Next, demultiplex/decode time arguments
5788  timespec absTime;
5789  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5790    return;
5791  }
5792  if (time > 0) {
5793    unpackTime(&absTime, isAbsolute, time);
5794  }
5795
5796
5797  // Enter safepoint region
5798  // Beware of deadlocks such as 6317397.
5799  // The per-thread Parker:: mutex is a classic leaf-lock.
5800  // In particular a thread must never block on the Threads_lock while
5801  // holding the Parker:: mutex.  If safepoints are pending both the
5802  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5803  ThreadBlockInVM tbivm(jt);
5804
5805  // Don't wait if cannot get lock since interference arises from
5806  // unblocking.  Also. check interrupt before trying wait
5807  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5808    return;
5809  }
5810
5811  int status ;
5812  if (_counter > 0)  { // no wait needed
5813    _counter = 0;
5814    status = pthread_mutex_unlock(_mutex);
5815    assert (status == 0, "invariant") ;
5816    // Paranoia to ensure our locked and lock-free paths interact
5817    // correctly with each other and Java-level accesses.
5818    OrderAccess::fence();
5819    return;
5820  }
5821
5822#ifdef ASSERT
5823  // Don't catch signals while blocked; let the running threads have the signals.
5824  // (This allows a debugger to break into the running thread.)
5825  sigset_t oldsigs;
5826  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5827  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5828#endif
5829
5830  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5831  jt->set_suspend_equivalent();
5832  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5833
5834  if (time == 0) {
5835    status = pthread_cond_wait (_cond, _mutex) ;
5836  } else {
5837    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5838    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5839      pthread_cond_destroy (_cond) ;
5840      pthread_cond_init    (_cond, NULL);
5841    }
5842  }
5843  assert_status(status == 0 || status == EINTR ||
5844                status == ETIME || status == ETIMEDOUT,
5845                status, "cond_timedwait");
5846
5847#ifdef ASSERT
5848  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5849#endif
5850
5851  _counter = 0 ;
5852  status = pthread_mutex_unlock(_mutex) ;
5853  assert_status(status == 0, status, "invariant") ;
5854  // Paranoia to ensure our locked and lock-free paths interact
5855  // correctly with each other and Java-level accesses.
5856  OrderAccess::fence();
5857
5858  // If externally suspended while waiting, re-suspend
5859  if (jt->handle_special_suspend_equivalent_condition()) {
5860    jt->java_suspend_self();
5861  }
5862}
5863
5864void Parker::unpark() {
5865  int s, status ;
5866  status = pthread_mutex_lock(_mutex);
5867  assert (status == 0, "invariant") ;
5868  s = _counter;
5869  _counter = 1;
5870  if (s < 1) {
5871     if (WorkAroundNPTLTimedWaitHang) {
5872        status = pthread_cond_signal (_cond) ;
5873        assert (status == 0, "invariant") ;
5874        status = pthread_mutex_unlock(_mutex);
5875        assert (status == 0, "invariant") ;
5876     } else {
5877        status = pthread_mutex_unlock(_mutex);
5878        assert (status == 0, "invariant") ;
5879        status = pthread_cond_signal (_cond) ;
5880        assert (status == 0, "invariant") ;
5881     }
5882  } else {
5883    pthread_mutex_unlock(_mutex);
5884    assert (status == 0, "invariant") ;
5885  }
5886}
5887
5888
5889extern char** environ;
5890
5891#ifndef __NR_fork
5892#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5893#endif
5894
5895#ifndef __NR_execve
5896#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5897#endif
5898
5899// Run the specified command in a separate process. Return its exit value,
5900// or -1 on failure (e.g. can't fork a new process).
5901// Unlike system(), this function can be called from signal handler. It
5902// doesn't block SIGINT et al.
5903int os::fork_and_exec(char* cmd) {
5904  const char * argv[4] = {"sh", "-c", cmd, NULL};
5905
5906  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5907  // pthread_atfork handlers and reset pthread library. All we need is a
5908  // separate process to execve. Make a direct syscall to fork process.
5909  // On IA64 there's no fork syscall, we have to use fork() and hope for
5910  // the best...
5911  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5912              IA64_ONLY(fork();)
5913
5914  if (pid < 0) {
5915    // fork failed
5916    return -1;
5917
5918  } else if (pid == 0) {
5919    // child process
5920
5921    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5922    // first to kill every thread on the thread list. Because this list is
5923    // not reset by fork() (see notes above), execve() will instead kill
5924    // every thread in the parent process. We know this is the only thread
5925    // in the new process, so make a system call directly.
5926    // IA64 should use normal execve() from glibc to match the glibc fork()
5927    // above.
5928    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5929    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5930
5931    // execve failed
5932    _exit(-1);
5933
5934  } else  {
5935    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5936    // care about the actual exit code, for now.
5937
5938    int status;
5939
5940    // Wait for the child process to exit.  This returns immediately if
5941    // the child has already exited. */
5942    while (waitpid(pid, &status, 0) < 0) {
5943        switch (errno) {
5944        case ECHILD: return 0;
5945        case EINTR: break;
5946        default: return -1;
5947        }
5948    }
5949
5950    if (WIFEXITED(status)) {
5951       // The child exited normally; get its exit code.
5952       return WEXITSTATUS(status);
5953    } else if (WIFSIGNALED(status)) {
5954       // The child exited because of a signal
5955       // The best value to return is 0x80 + signal number,
5956       // because that is what all Unix shells do, and because
5957       // it allows callers to distinguish between process exit and
5958       // process death by signal.
5959       return 0x80 + WTERMSIG(status);
5960    } else {
5961       // Unknown exit code; pass it through
5962       return status;
5963    }
5964  }
5965}
5966
5967// is_headless_jre()
5968//
5969// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5970// in order to report if we are running in a headless jre
5971//
5972// Since JDK8 xawt/libmawt.so was moved into the same directory
5973// as libawt.so, and renamed libawt_xawt.so
5974//
5975bool os::is_headless_jre() {
5976    struct stat statbuf;
5977    char buf[MAXPATHLEN];
5978    char libmawtpath[MAXPATHLEN];
5979    const char *xawtstr  = "/xawt/libmawt.so";
5980    const char *new_xawtstr = "/libawt_xawt.so";
5981    char *p;
5982
5983    // Get path to libjvm.so
5984    os::jvm_path(buf, sizeof(buf));
5985
5986    // Get rid of libjvm.so
5987    p = strrchr(buf, '/');
5988    if (p == NULL) return false;
5989    else *p = '\0';
5990
5991    // Get rid of client or server
5992    p = strrchr(buf, '/');
5993    if (p == NULL) return false;
5994    else *p = '\0';
5995
5996    // check xawt/libmawt.so
5997    strcpy(libmawtpath, buf);
5998    strcat(libmawtpath, xawtstr);
5999    if (::stat(libmawtpath, &statbuf) == 0) return false;
6000
6001    // check libawt_xawt.so
6002    strcpy(libmawtpath, buf);
6003    strcat(libmawtpath, new_xawtstr);
6004    if (::stat(libmawtpath, &statbuf) == 0) return false;
6005
6006    return true;
6007}
6008
6009// Get the default path to the core file
6010// Returns the length of the string
6011int os::get_core_path(char* buffer, size_t bufferSize) {
6012  const char* p = get_current_directory(buffer, bufferSize);
6013
6014  if (p == NULL) {
6015    assert(p != NULL, "failed to get current directory");
6016    return 0;
6017  }
6018
6019  return strlen(buffer);
6020}
6021
6022#ifdef JAVASE_EMBEDDED
6023//
6024// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6025//
6026MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6027
6028// ctor
6029//
6030MemNotifyThread::MemNotifyThread(int fd): Thread() {
6031  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6032  _fd = fd;
6033
6034  if (os::create_thread(this, os::os_thread)) {
6035    _memnotify_thread = this;
6036    os::set_priority(this, NearMaxPriority);
6037    os::start_thread(this);
6038  }
6039}
6040
6041// Where all the work gets done
6042//
6043void MemNotifyThread::run() {
6044  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6045
6046  // Set up the select arguments
6047  fd_set rfds;
6048  if (_fd != -1) {
6049    FD_ZERO(&rfds);
6050    FD_SET(_fd, &rfds);
6051  }
6052
6053  // Now wait for the mem_notify device to wake up
6054  while (1) {
6055    // Wait for the mem_notify device to signal us..
6056    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6057    if (rc == -1) {
6058      perror("select!\n");
6059      break;
6060    } else if (rc) {
6061      //ssize_t free_before = os::available_memory();
6062      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6063
6064      // The kernel is telling us there is not much memory left...
6065      // try to do something about that
6066
6067      // If we are not already in a GC, try one.
6068      if (!Universe::heap()->is_gc_active()) {
6069        Universe::heap()->collect(GCCause::_allocation_failure);
6070
6071        //ssize_t free_after = os::available_memory();
6072        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6073        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6074      }
6075      // We might want to do something like the following if we find the GC's are not helping...
6076      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6077    }
6078  }
6079}
6080
6081//
6082// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6083//
6084void MemNotifyThread::start() {
6085  int    fd;
6086  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6087  if (fd < 0) {
6088      return;
6089  }
6090
6091  if (memnotify_thread() == NULL) {
6092    new MemNotifyThread(fd);
6093  }
6094}
6095
6096#endif // JAVASE_EMBEDDED
6097
6098
6099/////////////// Unit tests ///////////////
6100
6101#ifndef PRODUCT
6102
6103#define test_log(...) \
6104  do {\
6105    if (VerboseInternalVMTests) { \
6106      tty->print_cr(__VA_ARGS__); \
6107      tty->flush(); \
6108    }\
6109  } while (false)
6110
6111class TestReserveMemorySpecial : AllStatic {
6112 public:
6113  static void small_page_write(void* addr, size_t size) {
6114    size_t page_size = os::vm_page_size();
6115
6116    char* end = (char*)addr + size;
6117    for (char* p = (char*)addr; p < end; p += page_size) {
6118      *p = 1;
6119    }
6120  }
6121
6122  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6123    if (!UseHugeTLBFS) {
6124      return;
6125    }
6126
6127    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6128
6129    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6130
6131    if (addr != NULL) {
6132      small_page_write(addr, size);
6133
6134      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6135    }
6136  }
6137
6138  static void test_reserve_memory_special_huge_tlbfs_only() {
6139    if (!UseHugeTLBFS) {
6140      return;
6141    }
6142
6143    size_t lp = os::large_page_size();
6144
6145    for (size_t size = lp; size <= lp * 10; size += lp) {
6146      test_reserve_memory_special_huge_tlbfs_only(size);
6147    }
6148  }
6149
6150  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6151    if (!UseHugeTLBFS) {
6152        return;
6153    }
6154
6155    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6156        size, alignment);
6157
6158    assert(size >= os::large_page_size(), "Incorrect input to test");
6159
6160    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6161
6162    if (addr != NULL) {
6163      small_page_write(addr, size);
6164
6165      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6166    }
6167  }
6168
6169  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6170    size_t lp = os::large_page_size();
6171    size_t ag = os::vm_allocation_granularity();
6172
6173    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6174      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6175    }
6176  }
6177
6178  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6179    size_t lp = os::large_page_size();
6180    size_t ag = os::vm_allocation_granularity();
6181
6182    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6183    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6184    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6185    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6186    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6187    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6188    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6189    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6190    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6191  }
6192
6193  static void test_reserve_memory_special_huge_tlbfs() {
6194    if (!UseHugeTLBFS) {
6195      return;
6196    }
6197
6198    test_reserve_memory_special_huge_tlbfs_only();
6199    test_reserve_memory_special_huge_tlbfs_mixed();
6200  }
6201
6202  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6203    if (!UseSHM) {
6204      return;
6205    }
6206
6207    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6208
6209    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6210
6211    if (addr != NULL) {
6212      assert(is_ptr_aligned(addr, alignment), "Check");
6213      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6214
6215      small_page_write(addr, size);
6216
6217      os::Linux::release_memory_special_shm(addr, size);
6218    }
6219  }
6220
6221  static void test_reserve_memory_special_shm() {
6222    size_t lp = os::large_page_size();
6223    size_t ag = os::vm_allocation_granularity();
6224
6225    for (size_t size = ag; size < lp * 3; size += ag) {
6226      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6227        test_reserve_memory_special_shm(size, alignment);
6228      }
6229    }
6230  }
6231
6232  static void test() {
6233    test_reserve_memory_special_huge_tlbfs();
6234    test_reserve_memory_special_shm();
6235  }
6236};
6237
6238void TestReserveMemorySpecial_test() {
6239  TestReserveMemorySpecial::test();
6240}
6241
6242#endif
6243