os_linux.cpp revision 5143:4c84d351cca9
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_linux.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_linux.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/init.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/elfFile.hpp"
67#include "utilities/growableArray.hpp"
68#include "utilities/vmError.hpp"
69
70// put OS-includes here
71# include <sys/types.h>
72# include <sys/mman.h>
73# include <sys/stat.h>
74# include <sys/select.h>
75# include <pthread.h>
76# include <signal.h>
77# include <errno.h>
78# include <dlfcn.h>
79# include <stdio.h>
80# include <unistd.h>
81# include <sys/resource.h>
82# include <pthread.h>
83# include <sys/stat.h>
84# include <sys/time.h>
85# include <sys/times.h>
86# include <sys/utsname.h>
87# include <sys/socket.h>
88# include <sys/wait.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <syscall.h>
95# include <sys/sysinfo.h>
96# include <gnu/libc-version.h>
97# include <sys/ipc.h>
98# include <sys/shm.h>
99# include <link.h>
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
105// getrusage() is prepared to handle the associated failure.
106#ifndef RUSAGE_THREAD
107#define RUSAGE_THREAD   (1)               /* only the calling thread */
108#endif
109
110#define MAX_PATH    (2 * K)
111
112// for timer info max values which include all bits
113#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
114
115#define LARGEPAGES_BIT (1 << 6)
116////////////////////////////////////////////////////////////////////////////////
117// global variables
118julong os::Linux::_physical_memory = 0;
119
120address   os::Linux::_initial_thread_stack_bottom = NULL;
121uintptr_t os::Linux::_initial_thread_stack_size   = 0;
122
123int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
124int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
125Mutex* os::Linux::_createThread_lock = NULL;
126pthread_t os::Linux::_main_thread;
127int os::Linux::_page_size = -1;
128const int os::Linux::_vm_default_page_size = (8 * K);
129bool os::Linux::_is_floating_stack = false;
130bool os::Linux::_is_NPTL = false;
131bool os::Linux::_supports_fast_thread_cpu_time = false;
132const char * os::Linux::_glibc_version = NULL;
133const char * os::Linux::_libpthread_version = NULL;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151/* Used to protect dlsym() calls */
152static pthread_mutex_t dl_mutex;
153
154// Declarations
155static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
156
157#ifdef JAVASE_EMBEDDED
158class MemNotifyThread: public Thread {
159  friend class VMStructs;
160 public:
161  virtual void run();
162
163 private:
164  static MemNotifyThread* _memnotify_thread;
165  int _fd;
166
167 public:
168
169  // Constructor
170  MemNotifyThread(int fd);
171
172  // Tester
173  bool is_memnotify_thread() const { return true; }
174
175  // Printing
176  char* name() const { return (char*)"Linux MemNotify Thread"; }
177
178  // Returns the single instance of the MemNotifyThread
179  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
180
181  // Create and start the single instance of MemNotifyThread
182  static void start();
183};
184#endif // JAVASE_EMBEDDED
185
186// utility functions
187
188static int SR_initialize();
189
190julong os::available_memory() {
191  return Linux::available_memory();
192}
193
194julong os::Linux::available_memory() {
195  // values in struct sysinfo are "unsigned long"
196  struct sysinfo si;
197  sysinfo(&si);
198
199  return (julong)si.freeram * si.mem_unit;
200}
201
202julong os::physical_memory() {
203  return Linux::physical_memory();
204}
205
206////////////////////////////////////////////////////////////////////////////////
207// environment support
208
209bool os::getenv(const char* name, char* buf, int len) {
210  const char* val = ::getenv(name);
211  if (val != NULL && strlen(val) < (size_t)len) {
212    strcpy(buf, val);
213    return true;
214  }
215  if (len > 0) buf[0] = 0;  // return a null string
216  return false;
217}
218
219
220// Return true if user is running as root.
221
222bool os::have_special_privileges() {
223  static bool init = false;
224  static bool privileges = false;
225  if (!init) {
226    privileges = (getuid() != geteuid()) || (getgid() != getegid());
227    init = true;
228  }
229  return privileges;
230}
231
232
233#ifndef SYS_gettid
234// i386: 224, ia64: 1105, amd64: 186, sparc 143
235#ifdef __ia64__
236#define SYS_gettid 1105
237#elif __i386__
238#define SYS_gettid 224
239#elif __amd64__
240#define SYS_gettid 186
241#elif __sparc__
242#define SYS_gettid 143
243#else
244#error define gettid for the arch
245#endif
246#endif
247
248// Cpu architecture string
249#if   defined(ZERO)
250static char cpu_arch[] = ZERO_LIBARCH;
251#elif defined(IA64)
252static char cpu_arch[] = "ia64";
253#elif defined(IA32)
254static char cpu_arch[] = "i386";
255#elif defined(AMD64)
256static char cpu_arch[] = "amd64";
257#elif defined(ARM)
258static char cpu_arch[] = "arm";
259#elif defined(PPC)
260static char cpu_arch[] = "ppc";
261#elif defined(SPARC)
262#  ifdef _LP64
263static char cpu_arch[] = "sparcv9";
264#  else
265static char cpu_arch[] = "sparc";
266#  endif
267#else
268#error Add appropriate cpu_arch setting
269#endif
270
271
272// pid_t gettid()
273//
274// Returns the kernel thread id of the currently running thread. Kernel
275// thread id is used to access /proc.
276//
277// (Note that getpid() on LinuxThreads returns kernel thread id too; but
278// on NPTL, it returns the same pid for all threads, as required by POSIX.)
279//
280pid_t os::Linux::gettid() {
281  int rslt = syscall(SYS_gettid);
282  if (rslt == -1) {
283     // old kernel, no NPTL support
284     return getpid();
285  } else {
286     return (pid_t)rslt;
287  }
288}
289
290// Most versions of linux have a bug where the number of processors are
291// determined by looking at the /proc file system.  In a chroot environment,
292// the system call returns 1.  This causes the VM to act as if it is
293// a single processor and elide locking (see is_MP() call).
294static bool unsafe_chroot_detected = false;
295static const char *unstable_chroot_error = "/proc file system not found.\n"
296                     "Java may be unstable running multithreaded in a chroot "
297                     "environment on Linux when /proc filesystem is not mounted.";
298
299void os::Linux::initialize_system_info() {
300  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
301  if (processor_count() == 1) {
302    pid_t pid = os::Linux::gettid();
303    char fname[32];
304    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
305    FILE *fp = fopen(fname, "r");
306    if (fp == NULL) {
307      unsafe_chroot_detected = true;
308    } else {
309      fclose(fp);
310    }
311  }
312  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
313  assert(processor_count() > 0, "linux error");
314}
315
316void os::init_system_properties_values() {
317//  char arch[12];
318//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
319
320  // The next steps are taken in the product version:
321  //
322  // Obtain the JAVA_HOME value from the location of libjvm.so.
323  // This library should be located at:
324  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
325  //
326  // If "/jre/lib/" appears at the right place in the path, then we
327  // assume libjvm.so is installed in a JDK and we use this path.
328  //
329  // Otherwise exit with message: "Could not create the Java virtual machine."
330  //
331  // The following extra steps are taken in the debugging version:
332  //
333  // If "/jre/lib/" does NOT appear at the right place in the path
334  // instead of exit check for $JAVA_HOME environment variable.
335  //
336  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
337  // then we append a fake suffix "hotspot/libjvm.so" to this path so
338  // it looks like libjvm.so is installed there
339  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
340  //
341  // Otherwise exit.
342  //
343  // Important note: if the location of libjvm.so changes this
344  // code needs to be changed accordingly.
345
346  // The next few definitions allow the code to be verbatim:
347#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
348#define getenv(n) ::getenv(n)
349
350/*
351 * See ld(1):
352 *      The linker uses the following search paths to locate required
353 *      shared libraries:
354 *        1: ...
355 *        ...
356 *        7: The default directories, normally /lib and /usr/lib.
357 */
358#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
359#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
360#else
361#define DEFAULT_LIBPATH "/lib:/usr/lib"
362#endif
363
364#define EXTENSIONS_DIR  "/lib/ext"
365#define ENDORSED_DIR    "/lib/endorsed"
366#define REG_DIR         "/usr/java/packages"
367
368  {
369    /* sysclasspath, java_home, dll_dir */
370    {
371        char *home_path;
372        char *dll_path;
373        char *pslash;
374        char buf[MAXPATHLEN];
375        os::jvm_path(buf, sizeof(buf));
376
377        // Found the full path to libjvm.so.
378        // Now cut the path to <java_home>/jre if we can.
379        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
380        pslash = strrchr(buf, '/');
381        if (pslash != NULL)
382            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
383        dll_path = malloc(strlen(buf) + 1);
384        if (dll_path == NULL)
385            return;
386        strcpy(dll_path, buf);
387        Arguments::set_dll_dir(dll_path);
388
389        if (pslash != NULL) {
390            pslash = strrchr(buf, '/');
391            if (pslash != NULL) {
392                *pslash = '\0';       /* get rid of /<arch> */
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396            }
397        }
398
399        home_path = malloc(strlen(buf) + 1);
400        if (home_path == NULL)
401            return;
402        strcpy(home_path, buf);
403        Arguments::set_java_home(home_path);
404
405        if (!set_boot_path('/', ':'))
406            return;
407    }
408
409    /*
410     * Where to look for native libraries
411     *
412     * Note: Due to a legacy implementation, most of the library path
413     * is set in the launcher.  This was to accomodate linking restrictions
414     * on legacy Linux implementations (which are no longer supported).
415     * Eventually, all the library path setting will be done here.
416     *
417     * However, to prevent the proliferation of improperly built native
418     * libraries, the new path component /usr/java/packages is added here.
419     * Eventually, all the library path setting will be done here.
420     */
421    {
422        char *ld_library_path;
423
424        /*
425         * Construct the invariant part of ld_library_path. Note that the
426         * space for the colon and the trailing null are provided by the
427         * nulls included by the sizeof operator (so actually we allocate
428         * a byte more than necessary).
429         */
430        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
431            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
432        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
433
434        /*
435         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
436         * should always exist (until the legacy problem cited above is
437         * addressed).
438         */
439        char *v = getenv("LD_LIBRARY_PATH");
440        if (v != NULL) {
441            char *t = ld_library_path;
442            /* That's +1 for the colon and +1 for the trailing '\0' */
443            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
444            sprintf(ld_library_path, "%s:%s", v, t);
445        }
446        Arguments::set_library_path(ld_library_path);
447    }
448
449    /*
450     * Extensions directories.
451     *
452     * Note that the space for the colon and the trailing null are provided
453     * by the nulls included by the sizeof operator (so actually one byte more
454     * than necessary is allocated).
455     */
456    {
457        char *buf = malloc(strlen(Arguments::get_java_home()) +
458            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
459        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
460            Arguments::get_java_home());
461        Arguments::set_ext_dirs(buf);
462    }
463
464    /* Endorsed standards default directory. */
465    {
466        char * buf;
467        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
468        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
469        Arguments::set_endorsed_dirs(buf);
470    }
471  }
472
473#undef malloc
474#undef getenv
475#undef EXTENSIONS_DIR
476#undef ENDORSED_DIR
477
478  // Done
479  return;
480}
481
482////////////////////////////////////////////////////////////////////////////////
483// breakpoint support
484
485void os::breakpoint() {
486  BREAKPOINT;
487}
488
489extern "C" void breakpoint() {
490  // use debugger to set breakpoint here
491}
492
493////////////////////////////////////////////////////////////////////////////////
494// signal support
495
496debug_only(static bool signal_sets_initialized = false);
497static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
498
499bool os::Linux::is_sig_ignored(int sig) {
500      struct sigaction oact;
501      sigaction(sig, (struct sigaction*)NULL, &oact);
502      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
503                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
504      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
505           return true;
506      else
507           return false;
508}
509
510void os::Linux::signal_sets_init() {
511  // Should also have an assertion stating we are still single-threaded.
512  assert(!signal_sets_initialized, "Already initialized");
513  // Fill in signals that are necessarily unblocked for all threads in
514  // the VM. Currently, we unblock the following signals:
515  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
516  //                         by -Xrs (=ReduceSignalUsage));
517  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
518  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
519  // the dispositions or masks wrt these signals.
520  // Programs embedding the VM that want to use the above signals for their
521  // own purposes must, at this time, use the "-Xrs" option to prevent
522  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
523  // (See bug 4345157, and other related bugs).
524  // In reality, though, unblocking these signals is really a nop, since
525  // these signals are not blocked by default.
526  sigemptyset(&unblocked_sigs);
527  sigemptyset(&allowdebug_blocked_sigs);
528  sigaddset(&unblocked_sigs, SIGILL);
529  sigaddset(&unblocked_sigs, SIGSEGV);
530  sigaddset(&unblocked_sigs, SIGBUS);
531  sigaddset(&unblocked_sigs, SIGFPE);
532  sigaddset(&unblocked_sigs, SR_signum);
533
534  if (!ReduceSignalUsage) {
535   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
536      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
537      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
538   }
539   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
540      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
541      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
542   }
543   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
544      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
545      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
546   }
547  }
548  // Fill in signals that are blocked by all but the VM thread.
549  sigemptyset(&vm_sigs);
550  if (!ReduceSignalUsage)
551    sigaddset(&vm_sigs, BREAK_SIGNAL);
552  debug_only(signal_sets_initialized = true);
553
554}
555
556// These are signals that are unblocked while a thread is running Java.
557// (For some reason, they get blocked by default.)
558sigset_t* os::Linux::unblocked_signals() {
559  assert(signal_sets_initialized, "Not initialized");
560  return &unblocked_sigs;
561}
562
563// These are the signals that are blocked while a (non-VM) thread is
564// running Java. Only the VM thread handles these signals.
565sigset_t* os::Linux::vm_signals() {
566  assert(signal_sets_initialized, "Not initialized");
567  return &vm_sigs;
568}
569
570// These are signals that are blocked during cond_wait to allow debugger in
571sigset_t* os::Linux::allowdebug_blocked_signals() {
572  assert(signal_sets_initialized, "Not initialized");
573  return &allowdebug_blocked_sigs;
574}
575
576void os::Linux::hotspot_sigmask(Thread* thread) {
577
578  //Save caller's signal mask before setting VM signal mask
579  sigset_t caller_sigmask;
580  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
581
582  OSThread* osthread = thread->osthread();
583  osthread->set_caller_sigmask(caller_sigmask);
584
585  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
586
587  if (!ReduceSignalUsage) {
588    if (thread->is_VM_thread()) {
589      // Only the VM thread handles BREAK_SIGNAL ...
590      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
591    } else {
592      // ... all other threads block BREAK_SIGNAL
593      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
594    }
595  }
596}
597
598//////////////////////////////////////////////////////////////////////////////
599// detecting pthread library
600
601void os::Linux::libpthread_init() {
602  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
603  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
604  // generic name for earlier versions.
605  // Define macros here so we can build HotSpot on old systems.
606# ifndef _CS_GNU_LIBC_VERSION
607# define _CS_GNU_LIBC_VERSION 2
608# endif
609# ifndef _CS_GNU_LIBPTHREAD_VERSION
610# define _CS_GNU_LIBPTHREAD_VERSION 3
611# endif
612
613  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
614  if (n > 0) {
615     char *str = (char *)malloc(n, mtInternal);
616     confstr(_CS_GNU_LIBC_VERSION, str, n);
617     os::Linux::set_glibc_version(str);
618  } else {
619     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
620     static char _gnu_libc_version[32];
621     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
622              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
623     os::Linux::set_glibc_version(_gnu_libc_version);
624  }
625
626  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
627  if (n > 0) {
628     char *str = (char *)malloc(n, mtInternal);
629     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
630     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
631     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
632     // is the case. LinuxThreads has a hard limit on max number of threads.
633     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
634     // On the other hand, NPTL does not have such a limit, sysconf()
635     // will return -1 and errno is not changed. Check if it is really NPTL.
636     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
637         strstr(str, "NPTL") &&
638         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
639       free(str);
640       os::Linux::set_libpthread_version("linuxthreads");
641     } else {
642       os::Linux::set_libpthread_version(str);
643     }
644  } else {
645    // glibc before 2.3.2 only has LinuxThreads.
646    os::Linux::set_libpthread_version("linuxthreads");
647  }
648
649  if (strstr(libpthread_version(), "NPTL")) {
650     os::Linux::set_is_NPTL();
651  } else {
652     os::Linux::set_is_LinuxThreads();
653  }
654
655  // LinuxThreads have two flavors: floating-stack mode, which allows variable
656  // stack size; and fixed-stack mode. NPTL is always floating-stack.
657  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
658     os::Linux::set_is_floating_stack();
659  }
660}
661
662/////////////////////////////////////////////////////////////////////////////
663// thread stack
664
665// Force Linux kernel to expand current thread stack. If "bottom" is close
666// to the stack guard, caller should block all signals.
667//
668// MAP_GROWSDOWN:
669//   A special mmap() flag that is used to implement thread stacks. It tells
670//   kernel that the memory region should extend downwards when needed. This
671//   allows early versions of LinuxThreads to only mmap the first few pages
672//   when creating a new thread. Linux kernel will automatically expand thread
673//   stack as needed (on page faults).
674//
675//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
676//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
677//   region, it's hard to tell if the fault is due to a legitimate stack
678//   access or because of reading/writing non-exist memory (e.g. buffer
679//   overrun). As a rule, if the fault happens below current stack pointer,
680//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
681//   application (see Linux kernel fault.c).
682//
683//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
684//   stack overflow detection.
685//
686//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
687//   not use this flag. However, the stack of initial thread is not created
688//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
689//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
690//   and then attach the thread to JVM.
691//
692// To get around the problem and allow stack banging on Linux, we need to
693// manually expand thread stack after receiving the SIGSEGV.
694//
695// There are two ways to expand thread stack to address "bottom", we used
696// both of them in JVM before 1.5:
697//   1. adjust stack pointer first so that it is below "bottom", and then
698//      touch "bottom"
699//   2. mmap() the page in question
700//
701// Now alternate signal stack is gone, it's harder to use 2. For instance,
702// if current sp is already near the lower end of page 101, and we need to
703// call mmap() to map page 100, it is possible that part of the mmap() frame
704// will be placed in page 100. When page 100 is mapped, it is zero-filled.
705// That will destroy the mmap() frame and cause VM to crash.
706//
707// The following code works by adjusting sp first, then accessing the "bottom"
708// page to force a page fault. Linux kernel will then automatically expand the
709// stack mapping.
710//
711// _expand_stack_to() assumes its frame size is less than page size, which
712// should always be true if the function is not inlined.
713
714#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
715#define NOINLINE
716#else
717#define NOINLINE __attribute__ ((noinline))
718#endif
719
720static void _expand_stack_to(address bottom) NOINLINE;
721
722static void _expand_stack_to(address bottom) {
723  address sp;
724  size_t size;
725  volatile char *p;
726
727  // Adjust bottom to point to the largest address within the same page, it
728  // gives us a one-page buffer if alloca() allocates slightly more memory.
729  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
730  bottom += os::Linux::page_size() - 1;
731
732  // sp might be slightly above current stack pointer; if that's the case, we
733  // will alloca() a little more space than necessary, which is OK. Don't use
734  // os::current_stack_pointer(), as its result can be slightly below current
735  // stack pointer, causing us to not alloca enough to reach "bottom".
736  sp = (address)&sp;
737
738  if (sp > bottom) {
739    size = sp - bottom;
740    p = (volatile char *)alloca(size);
741    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
742    p[0] = '\0';
743  }
744}
745
746bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
747  assert(t!=NULL, "just checking");
748  assert(t->osthread()->expanding_stack(), "expand should be set");
749  assert(t->stack_base() != NULL, "stack_base was not initialized");
750
751  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
752    sigset_t mask_all, old_sigset;
753    sigfillset(&mask_all);
754    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
755    _expand_stack_to(addr);
756    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
757    return true;
758  }
759  return false;
760}
761
762//////////////////////////////////////////////////////////////////////////////
763// create new thread
764
765static address highest_vm_reserved_address();
766
767// check if it's safe to start a new thread
768static bool _thread_safety_check(Thread* thread) {
769  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
770    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
771    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
772    //   allocated (MAP_FIXED) from high address space. Every thread stack
773    //   occupies a fixed size slot (usually 2Mbytes, but user can change
774    //   it to other values if they rebuild LinuxThreads).
775    //
776    // Problem with MAP_FIXED is that mmap() can still succeed even part of
777    // the memory region has already been mmap'ed. That means if we have too
778    // many threads and/or very large heap, eventually thread stack will
779    // collide with heap.
780    //
781    // Here we try to prevent heap/stack collision by comparing current
782    // stack bottom with the highest address that has been mmap'ed by JVM
783    // plus a safety margin for memory maps created by native code.
784    //
785    // This feature can be disabled by setting ThreadSafetyMargin to 0
786    //
787    if (ThreadSafetyMargin > 0) {
788      address stack_bottom = os::current_stack_base() - os::current_stack_size();
789
790      // not safe if our stack extends below the safety margin
791      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
792    } else {
793      return true;
794    }
795  } else {
796    // Floating stack LinuxThreads or NPTL:
797    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
798    //   there's not enough space left, pthread_create() will fail. If we come
799    //   here, that means enough space has been reserved for stack.
800    return true;
801  }
802}
803
804// Thread start routine for all newly created threads
805static void *java_start(Thread *thread) {
806  // Try to randomize the cache line index of hot stack frames.
807  // This helps when threads of the same stack traces evict each other's
808  // cache lines. The threads can be either from the same JVM instance, or
809  // from different JVM instances. The benefit is especially true for
810  // processors with hyperthreading technology.
811  static int counter = 0;
812  int pid = os::current_process_id();
813  alloca(((pid ^ counter++) & 7) * 128);
814
815  ThreadLocalStorage::set_thread(thread);
816
817  OSThread* osthread = thread->osthread();
818  Monitor* sync = osthread->startThread_lock();
819
820  // non floating stack LinuxThreads needs extra check, see above
821  if (!_thread_safety_check(thread)) {
822    // notify parent thread
823    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
824    osthread->set_state(ZOMBIE);
825    sync->notify_all();
826    return NULL;
827  }
828
829  // thread_id is kernel thread id (similar to Solaris LWP id)
830  osthread->set_thread_id(os::Linux::gettid());
831
832  if (UseNUMA) {
833    int lgrp_id = os::numa_get_group_id();
834    if (lgrp_id != -1) {
835      thread->set_lgrp_id(lgrp_id);
836    }
837  }
838  // initialize signal mask for this thread
839  os::Linux::hotspot_sigmask(thread);
840
841  // initialize floating point control register
842  os::Linux::init_thread_fpu_state();
843
844  // handshaking with parent thread
845  {
846    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
847
848    // notify parent thread
849    osthread->set_state(INITIALIZED);
850    sync->notify_all();
851
852    // wait until os::start_thread()
853    while (osthread->get_state() == INITIALIZED) {
854      sync->wait(Mutex::_no_safepoint_check_flag);
855    }
856  }
857
858  // call one more level start routine
859  thread->run();
860
861  return 0;
862}
863
864bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
865  assert(thread->osthread() == NULL, "caller responsible");
866
867  // Allocate the OSThread object
868  OSThread* osthread = new OSThread(NULL, NULL);
869  if (osthread == NULL) {
870    return false;
871  }
872
873  // set the correct thread state
874  osthread->set_thread_type(thr_type);
875
876  // Initial state is ALLOCATED but not INITIALIZED
877  osthread->set_state(ALLOCATED);
878
879  thread->set_osthread(osthread);
880
881  // init thread attributes
882  pthread_attr_t attr;
883  pthread_attr_init(&attr);
884  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
885
886  // stack size
887  if (os::Linux::supports_variable_stack_size()) {
888    // calculate stack size if it's not specified by caller
889    if (stack_size == 0) {
890      stack_size = os::Linux::default_stack_size(thr_type);
891
892      switch (thr_type) {
893      case os::java_thread:
894        // Java threads use ThreadStackSize which default value can be
895        // changed with the flag -Xss
896        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
897        stack_size = JavaThread::stack_size_at_create();
898        break;
899      case os::compiler_thread:
900        if (CompilerThreadStackSize > 0) {
901          stack_size = (size_t)(CompilerThreadStackSize * K);
902          break;
903        } // else fall through:
904          // use VMThreadStackSize if CompilerThreadStackSize is not defined
905      case os::vm_thread:
906      case os::pgc_thread:
907      case os::cgc_thread:
908      case os::watcher_thread:
909        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
910        break;
911      }
912    }
913
914    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
915    pthread_attr_setstacksize(&attr, stack_size);
916  } else {
917    // let pthread_create() pick the default value.
918  }
919
920  // glibc guard page
921  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
922
923  ThreadState state;
924
925  {
926    // Serialize thread creation if we are running with fixed stack LinuxThreads
927    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
928    if (lock) {
929      os::Linux::createThread_lock()->lock_without_safepoint_check();
930    }
931
932    pthread_t tid;
933    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
934
935    pthread_attr_destroy(&attr);
936
937    if (ret != 0) {
938      if (PrintMiscellaneous && (Verbose || WizardMode)) {
939        perror("pthread_create()");
940      }
941      // Need to clean up stuff we've allocated so far
942      thread->set_osthread(NULL);
943      delete osthread;
944      if (lock) os::Linux::createThread_lock()->unlock();
945      return false;
946    }
947
948    // Store pthread info into the OSThread
949    osthread->set_pthread_id(tid);
950
951    // Wait until child thread is either initialized or aborted
952    {
953      Monitor* sync_with_child = osthread->startThread_lock();
954      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
955      while ((state = osthread->get_state()) == ALLOCATED) {
956        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
957      }
958    }
959
960    if (lock) {
961      os::Linux::createThread_lock()->unlock();
962    }
963  }
964
965  // Aborted due to thread limit being reached
966  if (state == ZOMBIE) {
967      thread->set_osthread(NULL);
968      delete osthread;
969      return false;
970  }
971
972  // The thread is returned suspended (in state INITIALIZED),
973  // and is started higher up in the call chain
974  assert(state == INITIALIZED, "race condition");
975  return true;
976}
977
978/////////////////////////////////////////////////////////////////////////////
979// attach existing thread
980
981// bootstrap the main thread
982bool os::create_main_thread(JavaThread* thread) {
983  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
984  return create_attached_thread(thread);
985}
986
987bool os::create_attached_thread(JavaThread* thread) {
988#ifdef ASSERT
989    thread->verify_not_published();
990#endif
991
992  // Allocate the OSThread object
993  OSThread* osthread = new OSThread(NULL, NULL);
994
995  if (osthread == NULL) {
996    return false;
997  }
998
999  // Store pthread info into the OSThread
1000  osthread->set_thread_id(os::Linux::gettid());
1001  osthread->set_pthread_id(::pthread_self());
1002
1003  // initialize floating point control register
1004  os::Linux::init_thread_fpu_state();
1005
1006  // Initial thread state is RUNNABLE
1007  osthread->set_state(RUNNABLE);
1008
1009  thread->set_osthread(osthread);
1010
1011  if (UseNUMA) {
1012    int lgrp_id = os::numa_get_group_id();
1013    if (lgrp_id != -1) {
1014      thread->set_lgrp_id(lgrp_id);
1015    }
1016  }
1017
1018  if (os::Linux::is_initial_thread()) {
1019    // If current thread is initial thread, its stack is mapped on demand,
1020    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1021    // the entire stack region to avoid SEGV in stack banging.
1022    // It is also useful to get around the heap-stack-gap problem on SuSE
1023    // kernel (see 4821821 for details). We first expand stack to the top
1024    // of yellow zone, then enable stack yellow zone (order is significant,
1025    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1026    // is no gap between the last two virtual memory regions.
1027
1028    JavaThread *jt = (JavaThread *)thread;
1029    address addr = jt->stack_yellow_zone_base();
1030    assert(addr != NULL, "initialization problem?");
1031    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1032
1033    osthread->set_expanding_stack();
1034    os::Linux::manually_expand_stack(jt, addr);
1035    osthread->clear_expanding_stack();
1036  }
1037
1038  // initialize signal mask for this thread
1039  // and save the caller's signal mask
1040  os::Linux::hotspot_sigmask(thread);
1041
1042  return true;
1043}
1044
1045void os::pd_start_thread(Thread* thread) {
1046  OSThread * osthread = thread->osthread();
1047  assert(osthread->get_state() != INITIALIZED, "just checking");
1048  Monitor* sync_with_child = osthread->startThread_lock();
1049  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1050  sync_with_child->notify();
1051}
1052
1053// Free Linux resources related to the OSThread
1054void os::free_thread(OSThread* osthread) {
1055  assert(osthread != NULL, "osthread not set");
1056
1057  if (Thread::current()->osthread() == osthread) {
1058    // Restore caller's signal mask
1059    sigset_t sigmask = osthread->caller_sigmask();
1060    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1061   }
1062
1063  delete osthread;
1064}
1065
1066//////////////////////////////////////////////////////////////////////////////
1067// thread local storage
1068
1069int os::allocate_thread_local_storage() {
1070  pthread_key_t key;
1071  int rslt = pthread_key_create(&key, NULL);
1072  assert(rslt == 0, "cannot allocate thread local storage");
1073  return (int)key;
1074}
1075
1076// Note: This is currently not used by VM, as we don't destroy TLS key
1077// on VM exit.
1078void os::free_thread_local_storage(int index) {
1079  int rslt = pthread_key_delete((pthread_key_t)index);
1080  assert(rslt == 0, "invalid index");
1081}
1082
1083void os::thread_local_storage_at_put(int index, void* value) {
1084  int rslt = pthread_setspecific((pthread_key_t)index, value);
1085  assert(rslt == 0, "pthread_setspecific failed");
1086}
1087
1088extern "C" Thread* get_thread() {
1089  return ThreadLocalStorage::thread();
1090}
1091
1092//////////////////////////////////////////////////////////////////////////////
1093// initial thread
1094
1095// Check if current thread is the initial thread, similar to Solaris thr_main.
1096bool os::Linux::is_initial_thread(void) {
1097  char dummy;
1098  // If called before init complete, thread stack bottom will be null.
1099  // Can be called if fatal error occurs before initialization.
1100  if (initial_thread_stack_bottom() == NULL) return false;
1101  assert(initial_thread_stack_bottom() != NULL &&
1102         initial_thread_stack_size()   != 0,
1103         "os::init did not locate initial thread's stack region");
1104  if ((address)&dummy >= initial_thread_stack_bottom() &&
1105      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1106       return true;
1107  else return false;
1108}
1109
1110// Find the virtual memory area that contains addr
1111static bool find_vma(address addr, address* vma_low, address* vma_high) {
1112  FILE *fp = fopen("/proc/self/maps", "r");
1113  if (fp) {
1114    address low, high;
1115    while (!feof(fp)) {
1116      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1117        if (low <= addr && addr < high) {
1118           if (vma_low)  *vma_low  = low;
1119           if (vma_high) *vma_high = high;
1120           fclose (fp);
1121           return true;
1122        }
1123      }
1124      for (;;) {
1125        int ch = fgetc(fp);
1126        if (ch == EOF || ch == (int)'\n') break;
1127      }
1128    }
1129    fclose(fp);
1130  }
1131  return false;
1132}
1133
1134// Locate initial thread stack. This special handling of initial thread stack
1135// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1136// bogus value for initial thread.
1137void os::Linux::capture_initial_stack(size_t max_size) {
1138  // stack size is the easy part, get it from RLIMIT_STACK
1139  size_t stack_size;
1140  struct rlimit rlim;
1141  getrlimit(RLIMIT_STACK, &rlim);
1142  stack_size = rlim.rlim_cur;
1143
1144  // 6308388: a bug in ld.so will relocate its own .data section to the
1145  //   lower end of primordial stack; reduce ulimit -s value a little bit
1146  //   so we won't install guard page on ld.so's data section.
1147  stack_size -= 2 * page_size();
1148
1149  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1150  //   7.1, in both cases we will get 2G in return value.
1151  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1152  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1153  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1154  //   in case other parts in glibc still assumes 2M max stack size.
1155  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1156  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1157  if (stack_size > 2 * K * K IA64_ONLY(*2))
1158      stack_size = 2 * K * K IA64_ONLY(*2);
1159  // Try to figure out where the stack base (top) is. This is harder.
1160  //
1161  // When an application is started, glibc saves the initial stack pointer in
1162  // a global variable "__libc_stack_end", which is then used by system
1163  // libraries. __libc_stack_end should be pretty close to stack top. The
1164  // variable is available since the very early days. However, because it is
1165  // a private interface, it could disappear in the future.
1166  //
1167  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1168  // to __libc_stack_end, it is very close to stack top, but isn't the real
1169  // stack top. Note that /proc may not exist if VM is running as a chroot
1170  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1171  // /proc/<pid>/stat could change in the future (though unlikely).
1172  //
1173  // We try __libc_stack_end first. If that doesn't work, look for
1174  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1175  // as a hint, which should work well in most cases.
1176
1177  uintptr_t stack_start;
1178
1179  // try __libc_stack_end first
1180  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1181  if (p && *p) {
1182    stack_start = *p;
1183  } else {
1184    // see if we can get the start_stack field from /proc/self/stat
1185    FILE *fp;
1186    int pid;
1187    char state;
1188    int ppid;
1189    int pgrp;
1190    int session;
1191    int nr;
1192    int tpgrp;
1193    unsigned long flags;
1194    unsigned long minflt;
1195    unsigned long cminflt;
1196    unsigned long majflt;
1197    unsigned long cmajflt;
1198    unsigned long utime;
1199    unsigned long stime;
1200    long cutime;
1201    long cstime;
1202    long prio;
1203    long nice;
1204    long junk;
1205    long it_real;
1206    uintptr_t start;
1207    uintptr_t vsize;
1208    intptr_t rss;
1209    uintptr_t rsslim;
1210    uintptr_t scodes;
1211    uintptr_t ecode;
1212    int i;
1213
1214    // Figure what the primordial thread stack base is. Code is inspired
1215    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1216    // followed by command name surrounded by parentheses, state, etc.
1217    char stat[2048];
1218    int statlen;
1219
1220    fp = fopen("/proc/self/stat", "r");
1221    if (fp) {
1222      statlen = fread(stat, 1, 2047, fp);
1223      stat[statlen] = '\0';
1224      fclose(fp);
1225
1226      // Skip pid and the command string. Note that we could be dealing with
1227      // weird command names, e.g. user could decide to rename java launcher
1228      // to "java 1.4.2 :)", then the stat file would look like
1229      //                1234 (java 1.4.2 :)) R ... ...
1230      // We don't really need to know the command string, just find the last
1231      // occurrence of ")" and then start parsing from there. See bug 4726580.
1232      char * s = strrchr(stat, ')');
1233
1234      i = 0;
1235      if (s) {
1236        // Skip blank chars
1237        do s++; while (isspace(*s));
1238
1239#define _UFM UINTX_FORMAT
1240#define _DFM INTX_FORMAT
1241
1242        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1243        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1244        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1245             &state,          /* 3  %c  */
1246             &ppid,           /* 4  %d  */
1247             &pgrp,           /* 5  %d  */
1248             &session,        /* 6  %d  */
1249             &nr,             /* 7  %d  */
1250             &tpgrp,          /* 8  %d  */
1251             &flags,          /* 9  %lu  */
1252             &minflt,         /* 10 %lu  */
1253             &cminflt,        /* 11 %lu  */
1254             &majflt,         /* 12 %lu  */
1255             &cmajflt,        /* 13 %lu  */
1256             &utime,          /* 14 %lu  */
1257             &stime,          /* 15 %lu  */
1258             &cutime,         /* 16 %ld  */
1259             &cstime,         /* 17 %ld  */
1260             &prio,           /* 18 %ld  */
1261             &nice,           /* 19 %ld  */
1262             &junk,           /* 20 %ld  */
1263             &it_real,        /* 21 %ld  */
1264             &start,          /* 22 UINTX_FORMAT */
1265             &vsize,          /* 23 UINTX_FORMAT */
1266             &rss,            /* 24 INTX_FORMAT  */
1267             &rsslim,         /* 25 UINTX_FORMAT */
1268             &scodes,         /* 26 UINTX_FORMAT */
1269             &ecode,          /* 27 UINTX_FORMAT */
1270             &stack_start);   /* 28 UINTX_FORMAT */
1271      }
1272
1273#undef _UFM
1274#undef _DFM
1275
1276      if (i != 28 - 2) {
1277         assert(false, "Bad conversion from /proc/self/stat");
1278         // product mode - assume we are the initial thread, good luck in the
1279         // embedded case.
1280         warning("Can't detect initial thread stack location - bad conversion");
1281         stack_start = (uintptr_t) &rlim;
1282      }
1283    } else {
1284      // For some reason we can't open /proc/self/stat (for example, running on
1285      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1286      // most cases, so don't abort:
1287      warning("Can't detect initial thread stack location - no /proc/self/stat");
1288      stack_start = (uintptr_t) &rlim;
1289    }
1290  }
1291
1292  // Now we have a pointer (stack_start) very close to the stack top, the
1293  // next thing to do is to figure out the exact location of stack top. We
1294  // can find out the virtual memory area that contains stack_start by
1295  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1296  // and its upper limit is the real stack top. (again, this would fail if
1297  // running inside chroot, because /proc may not exist.)
1298
1299  uintptr_t stack_top;
1300  address low, high;
1301  if (find_vma((address)stack_start, &low, &high)) {
1302    // success, "high" is the true stack top. (ignore "low", because initial
1303    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1304    stack_top = (uintptr_t)high;
1305  } else {
1306    // failed, likely because /proc/self/maps does not exist
1307    warning("Can't detect initial thread stack location - find_vma failed");
1308    // best effort: stack_start is normally within a few pages below the real
1309    // stack top, use it as stack top, and reduce stack size so we won't put
1310    // guard page outside stack.
1311    stack_top = stack_start;
1312    stack_size -= 16 * page_size();
1313  }
1314
1315  // stack_top could be partially down the page so align it
1316  stack_top = align_size_up(stack_top, page_size());
1317
1318  if (max_size && stack_size > max_size) {
1319     _initial_thread_stack_size = max_size;
1320  } else {
1321     _initial_thread_stack_size = stack_size;
1322  }
1323
1324  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1325  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326}
1327
1328////////////////////////////////////////////////////////////////////////////////
1329// time support
1330
1331// Time since start-up in seconds to a fine granularity.
1332// Used by VMSelfDestructTimer and the MemProfiler.
1333double os::elapsedTime() {
1334
1335  return (double)(os::elapsed_counter()) * 0.000001;
1336}
1337
1338jlong os::elapsed_counter() {
1339  timeval time;
1340  int status = gettimeofday(&time, NULL);
1341  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1342}
1343
1344jlong os::elapsed_frequency() {
1345  return (1000 * 1000);
1346}
1347
1348bool os::supports_vtime() { return true; }
1349bool os::enable_vtime()   { return false; }
1350bool os::vtime_enabled()  { return false; }
1351
1352double os::elapsedVTime() {
1353  struct rusage usage;
1354  int retval = getrusage(RUSAGE_THREAD, &usage);
1355  if (retval == 0) {
1356    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1357  } else {
1358    // better than nothing, but not much
1359    return elapsedTime();
1360  }
1361}
1362
1363jlong os::javaTimeMillis() {
1364  timeval time;
1365  int status = gettimeofday(&time, NULL);
1366  assert(status != -1, "linux error");
1367  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1368}
1369
1370#ifndef CLOCK_MONOTONIC
1371#define CLOCK_MONOTONIC (1)
1372#endif
1373
1374void os::Linux::clock_init() {
1375  // we do dlopen's in this particular order due to bug in linux
1376  // dynamical loader (see 6348968) leading to crash on exit
1377  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1378  if (handle == NULL) {
1379    handle = dlopen("librt.so", RTLD_LAZY);
1380  }
1381
1382  if (handle) {
1383    int (*clock_getres_func)(clockid_t, struct timespec*) =
1384           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1385    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1386           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1387    if (clock_getres_func && clock_gettime_func) {
1388      // See if monotonic clock is supported by the kernel. Note that some
1389      // early implementations simply return kernel jiffies (updated every
1390      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1391      // for nano time (though the monotonic property is still nice to have).
1392      // It's fixed in newer kernels, however clock_getres() still returns
1393      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1394      // resolution for now. Hopefully as people move to new kernels, this
1395      // won't be a problem.
1396      struct timespec res;
1397      struct timespec tp;
1398      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1399          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1400        // yes, monotonic clock is supported
1401        _clock_gettime = clock_gettime_func;
1402      } else {
1403        // close librt if there is no monotonic clock
1404        dlclose(handle);
1405      }
1406    }
1407  }
1408}
1409
1410#ifndef SYS_clock_getres
1411
1412#if defined(IA32) || defined(AMD64)
1413#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1414#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1415#else
1416#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1417#define sys_clock_getres(x,y)  -1
1418#endif
1419
1420#else
1421#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1422#endif
1423
1424void os::Linux::fast_thread_clock_init() {
1425  if (!UseLinuxPosixThreadCPUClocks) {
1426    return;
1427  }
1428  clockid_t clockid;
1429  struct timespec tp;
1430  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1431      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1432
1433  // Switch to using fast clocks for thread cpu time if
1434  // the sys_clock_getres() returns 0 error code.
1435  // Note, that some kernels may support the current thread
1436  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1437  // returned by the pthread_getcpuclockid().
1438  // If the fast Posix clocks are supported then the sys_clock_getres()
1439  // must return at least tp.tv_sec == 0 which means a resolution
1440  // better than 1 sec. This is extra check for reliability.
1441
1442  if(pthread_getcpuclockid_func &&
1443     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1444     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1445
1446    _supports_fast_thread_cpu_time = true;
1447    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1448  }
1449}
1450
1451jlong os::javaTimeNanos() {
1452  if (Linux::supports_monotonic_clock()) {
1453    struct timespec tp;
1454    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1455    assert(status == 0, "gettime error");
1456    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1457    return result;
1458  } else {
1459    timeval time;
1460    int status = gettimeofday(&time, NULL);
1461    assert(status != -1, "linux error");
1462    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1463    return 1000 * usecs;
1464  }
1465}
1466
1467void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1468  if (Linux::supports_monotonic_clock()) {
1469    info_ptr->max_value = ALL_64_BITS;
1470
1471    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1472    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1473    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1474  } else {
1475    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1476    info_ptr->max_value = ALL_64_BITS;
1477
1478    // gettimeofday is a real time clock so it skips
1479    info_ptr->may_skip_backward = true;
1480    info_ptr->may_skip_forward = true;
1481  }
1482
1483  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1484}
1485
1486// Return the real, user, and system times in seconds from an
1487// arbitrary fixed point in the past.
1488bool os::getTimesSecs(double* process_real_time,
1489                      double* process_user_time,
1490                      double* process_system_time) {
1491  struct tms ticks;
1492  clock_t real_ticks = times(&ticks);
1493
1494  if (real_ticks == (clock_t) (-1)) {
1495    return false;
1496  } else {
1497    double ticks_per_second = (double) clock_tics_per_sec;
1498    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1499    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1500    *process_real_time = ((double) real_ticks) / ticks_per_second;
1501
1502    return true;
1503  }
1504}
1505
1506
1507char * os::local_time_string(char *buf, size_t buflen) {
1508  struct tm t;
1509  time_t long_time;
1510  time(&long_time);
1511  localtime_r(&long_time, &t);
1512  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1513               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1514               t.tm_hour, t.tm_min, t.tm_sec);
1515  return buf;
1516}
1517
1518struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1519  return localtime_r(clock, res);
1520}
1521
1522////////////////////////////////////////////////////////////////////////////////
1523// runtime exit support
1524
1525// Note: os::shutdown() might be called very early during initialization, or
1526// called from signal handler. Before adding something to os::shutdown(), make
1527// sure it is async-safe and can handle partially initialized VM.
1528void os::shutdown() {
1529
1530  // allow PerfMemory to attempt cleanup of any persistent resources
1531  perfMemory_exit();
1532
1533  // needs to remove object in file system
1534  AttachListener::abort();
1535
1536  // flush buffered output, finish log files
1537  ostream_abort();
1538
1539  // Check for abort hook
1540  abort_hook_t abort_hook = Arguments::abort_hook();
1541  if (abort_hook != NULL) {
1542    abort_hook();
1543  }
1544
1545}
1546
1547// Note: os::abort() might be called very early during initialization, or
1548// called from signal handler. Before adding something to os::abort(), make
1549// sure it is async-safe and can handle partially initialized VM.
1550void os::abort(bool dump_core) {
1551  os::shutdown();
1552  if (dump_core) {
1553#ifndef PRODUCT
1554    fdStream out(defaultStream::output_fd());
1555    out.print_raw("Current thread is ");
1556    char buf[16];
1557    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1558    out.print_raw_cr(buf);
1559    out.print_raw_cr("Dumping core ...");
1560#endif
1561    ::abort(); // dump core
1562  }
1563
1564  ::exit(1);
1565}
1566
1567// Die immediately, no exit hook, no abort hook, no cleanup.
1568void os::die() {
1569  // _exit() on LinuxThreads only kills current thread
1570  ::abort();
1571}
1572
1573// unused on linux for now.
1574void os::set_error_file(const char *logfile) {}
1575
1576
1577// This method is a copy of JDK's sysGetLastErrorString
1578// from src/solaris/hpi/src/system_md.c
1579
1580size_t os::lasterror(char *buf, size_t len) {
1581
1582  if (errno == 0)  return 0;
1583
1584  const char *s = ::strerror(errno);
1585  size_t n = ::strlen(s);
1586  if (n >= len) {
1587    n = len - 1;
1588  }
1589  ::strncpy(buf, s, n);
1590  buf[n] = '\0';
1591  return n;
1592}
1593
1594intx os::current_thread_id() { return (intx)pthread_self(); }
1595int os::current_process_id() {
1596
1597  // Under the old linux thread library, linux gives each thread
1598  // its own process id. Because of this each thread will return
1599  // a different pid if this method were to return the result
1600  // of getpid(2). Linux provides no api that returns the pid
1601  // of the launcher thread for the vm. This implementation
1602  // returns a unique pid, the pid of the launcher thread
1603  // that starts the vm 'process'.
1604
1605  // Under the NPTL, getpid() returns the same pid as the
1606  // launcher thread rather than a unique pid per thread.
1607  // Use gettid() if you want the old pre NPTL behaviour.
1608
1609  // if you are looking for the result of a call to getpid() that
1610  // returns a unique pid for the calling thread, then look at the
1611  // OSThread::thread_id() method in osThread_linux.hpp file
1612
1613  return (int)(_initial_pid ? _initial_pid : getpid());
1614}
1615
1616// DLL functions
1617
1618const char* os::dll_file_extension() { return ".so"; }
1619
1620// This must be hard coded because it's the system's temporary
1621// directory not the java application's temp directory, ala java.io.tmpdir.
1622const char* os::get_temp_directory() { return "/tmp"; }
1623
1624static bool file_exists(const char* filename) {
1625  struct stat statbuf;
1626  if (filename == NULL || strlen(filename) == 0) {
1627    return false;
1628  }
1629  return os::stat(filename, &statbuf) == 0;
1630}
1631
1632bool os::dll_build_name(char* buffer, size_t buflen,
1633                        const char* pname, const char* fname) {
1634  bool retval = false;
1635  // Copied from libhpi
1636  const size_t pnamelen = pname ? strlen(pname) : 0;
1637
1638  // Return error on buffer overflow.
1639  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1640    return retval;
1641  }
1642
1643  if (pnamelen == 0) {
1644    snprintf(buffer, buflen, "lib%s.so", fname);
1645    retval = true;
1646  } else if (strchr(pname, *os::path_separator()) != NULL) {
1647    int n;
1648    char** pelements = split_path(pname, &n);
1649    if (pelements == NULL) {
1650      return false;
1651    }
1652    for (int i = 0 ; i < n ; i++) {
1653      // Really shouldn't be NULL, but check can't hurt
1654      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1655        continue; // skip the empty path values
1656      }
1657      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1658      if (file_exists(buffer)) {
1659        retval = true;
1660        break;
1661      }
1662    }
1663    // release the storage
1664    for (int i = 0 ; i < n ; i++) {
1665      if (pelements[i] != NULL) {
1666        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1667      }
1668    }
1669    if (pelements != NULL) {
1670      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1671    }
1672  } else {
1673    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1674    retval = true;
1675  }
1676  return retval;
1677}
1678
1679// check if addr is inside libjvm.so
1680bool os::address_is_in_vm(address addr) {
1681  static address libjvm_base_addr;
1682  Dl_info dlinfo;
1683
1684  if (libjvm_base_addr == NULL) {
1685    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1686      libjvm_base_addr = (address)dlinfo.dli_fbase;
1687    }
1688    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1689  }
1690
1691  if (dladdr((void *)addr, &dlinfo) != 0) {
1692    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1693  }
1694
1695  return false;
1696}
1697
1698bool os::dll_address_to_function_name(address addr, char *buf,
1699                                      int buflen, int *offset) {
1700  // buf is not optional, but offset is optional
1701  assert(buf != NULL, "sanity check");
1702
1703  Dl_info dlinfo;
1704
1705  if (dladdr((void*)addr, &dlinfo) != 0) {
1706    // see if we have a matching symbol
1707    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1708      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1709        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1710      }
1711      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1712      return true;
1713    }
1714    // no matching symbol so try for just file info
1715    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1716      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1717                          buf, buflen, offset, dlinfo.dli_fname)) {
1718        return true;
1719      }
1720    }
1721  }
1722
1723  buf[0] = '\0';
1724  if (offset != NULL) *offset = -1;
1725  return false;
1726}
1727
1728struct _address_to_library_name {
1729  address addr;          // input : memory address
1730  size_t  buflen;        //         size of fname
1731  char*   fname;         // output: library name
1732  address base;          //         library base addr
1733};
1734
1735static int address_to_library_name_callback(struct dl_phdr_info *info,
1736                                            size_t size, void *data) {
1737  int i;
1738  bool found = false;
1739  address libbase = NULL;
1740  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1741
1742  // iterate through all loadable segments
1743  for (i = 0; i < info->dlpi_phnum; i++) {
1744    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1745    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1746      // base address of a library is the lowest address of its loaded
1747      // segments.
1748      if (libbase == NULL || libbase > segbase) {
1749        libbase = segbase;
1750      }
1751      // see if 'addr' is within current segment
1752      if (segbase <= d->addr &&
1753          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1754        found = true;
1755      }
1756    }
1757  }
1758
1759  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1760  // so dll_address_to_library_name() can fall through to use dladdr() which
1761  // can figure out executable name from argv[0].
1762  if (found && info->dlpi_name && info->dlpi_name[0]) {
1763    d->base = libbase;
1764    if (d->fname) {
1765      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1766    }
1767    return 1;
1768  }
1769  return 0;
1770}
1771
1772bool os::dll_address_to_library_name(address addr, char* buf,
1773                                     int buflen, int* offset) {
1774  // buf is not optional, but offset is optional
1775  assert(buf != NULL, "sanity check");
1776
1777  Dl_info dlinfo;
1778  struct _address_to_library_name data;
1779
1780  // There is a bug in old glibc dladdr() implementation that it could resolve
1781  // to wrong library name if the .so file has a base address != NULL. Here
1782  // we iterate through the program headers of all loaded libraries to find
1783  // out which library 'addr' really belongs to. This workaround can be
1784  // removed once the minimum requirement for glibc is moved to 2.3.x.
1785  data.addr = addr;
1786  data.fname = buf;
1787  data.buflen = buflen;
1788  data.base = NULL;
1789  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1790
1791  if (rslt) {
1792     // buf already contains library name
1793     if (offset) *offset = addr - data.base;
1794     return true;
1795  }
1796  if (dladdr((void*)addr, &dlinfo) != 0) {
1797    if (dlinfo.dli_fname != NULL) {
1798      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1799    }
1800    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1801      *offset = addr - (address)dlinfo.dli_fbase;
1802    }
1803    return true;
1804  }
1805
1806  buf[0] = '\0';
1807  if (offset) *offset = -1;
1808  return false;
1809}
1810
1811  // Loads .dll/.so and
1812  // in case of error it checks if .dll/.so was built for the
1813  // same architecture as Hotspot is running on
1814
1815
1816// Remember the stack's state. The Linux dynamic linker will change
1817// the stack to 'executable' at most once, so we must safepoint only once.
1818bool os::Linux::_stack_is_executable = false;
1819
1820// VM operation that loads a library.  This is necessary if stack protection
1821// of the Java stacks can be lost during loading the library.  If we
1822// do not stop the Java threads, they can stack overflow before the stacks
1823// are protected again.
1824class VM_LinuxDllLoad: public VM_Operation {
1825 private:
1826  const char *_filename;
1827  char *_ebuf;
1828  int _ebuflen;
1829  void *_lib;
1830 public:
1831  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1832    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1833  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1834  void doit() {
1835    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1836    os::Linux::_stack_is_executable = true;
1837  }
1838  void* loaded_library() { return _lib; }
1839};
1840
1841void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1842{
1843  void * result = NULL;
1844  bool load_attempted = false;
1845
1846  // Check whether the library to load might change execution rights
1847  // of the stack. If they are changed, the protection of the stack
1848  // guard pages will be lost. We need a safepoint to fix this.
1849  //
1850  // See Linux man page execstack(8) for more info.
1851  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1852    ElfFile ef(filename);
1853    if (!ef.specifies_noexecstack()) {
1854      if (!is_init_completed()) {
1855        os::Linux::_stack_is_executable = true;
1856        // This is OK - No Java threads have been created yet, and hence no
1857        // stack guard pages to fix.
1858        //
1859        // This should happen only when you are building JDK7 using a very
1860        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1861        //
1862        // Dynamic loader will make all stacks executable after
1863        // this function returns, and will not do that again.
1864        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1865      } else {
1866        warning("You have loaded library %s which might have disabled stack guard. "
1867                "The VM will try to fix the stack guard now.\n"
1868                "It's highly recommended that you fix the library with "
1869                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1870                filename);
1871
1872        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1873        JavaThread *jt = JavaThread::current();
1874        if (jt->thread_state() != _thread_in_native) {
1875          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1876          // that requires ExecStack. Cannot enter safe point. Let's give up.
1877          warning("Unable to fix stack guard. Giving up.");
1878        } else {
1879          if (!LoadExecStackDllInVMThread) {
1880            // This is for the case where the DLL has an static
1881            // constructor function that executes JNI code. We cannot
1882            // load such DLLs in the VMThread.
1883            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1884          }
1885
1886          ThreadInVMfromNative tiv(jt);
1887          debug_only(VMNativeEntryWrapper vew;)
1888
1889          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1890          VMThread::execute(&op);
1891          if (LoadExecStackDllInVMThread) {
1892            result = op.loaded_library();
1893          }
1894          load_attempted = true;
1895        }
1896      }
1897    }
1898  }
1899
1900  if (!load_attempted) {
1901    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1902  }
1903
1904  if (result != NULL) {
1905    // Successful loading
1906    return result;
1907  }
1908
1909  Elf32_Ehdr elf_head;
1910  int diag_msg_max_length=ebuflen-strlen(ebuf);
1911  char* diag_msg_buf=ebuf+strlen(ebuf);
1912
1913  if (diag_msg_max_length==0) {
1914    // No more space in ebuf for additional diagnostics message
1915    return NULL;
1916  }
1917
1918
1919  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1920
1921  if (file_descriptor < 0) {
1922    // Can't open library, report dlerror() message
1923    return NULL;
1924  }
1925
1926  bool failed_to_read_elf_head=
1927    (sizeof(elf_head)!=
1928        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1929
1930  ::close(file_descriptor);
1931  if (failed_to_read_elf_head) {
1932    // file i/o error - report dlerror() msg
1933    return NULL;
1934  }
1935
1936  typedef struct {
1937    Elf32_Half  code;         // Actual value as defined in elf.h
1938    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1939    char        elf_class;    // 32 or 64 bit
1940    char        endianess;    // MSB or LSB
1941    char*       name;         // String representation
1942  } arch_t;
1943
1944  #ifndef EM_486
1945  #define EM_486          6               /* Intel 80486 */
1946  #endif
1947
1948  static const arch_t arch_array[]={
1949    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1950    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1951    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1952    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1953    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1954    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1955    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1956    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1957    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1958    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1959    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1960    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1961    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1962    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1963    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1964    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1965  };
1966
1967  #if  (defined IA32)
1968    static  Elf32_Half running_arch_code=EM_386;
1969  #elif   (defined AMD64)
1970    static  Elf32_Half running_arch_code=EM_X86_64;
1971  #elif  (defined IA64)
1972    static  Elf32_Half running_arch_code=EM_IA_64;
1973  #elif  (defined __sparc) && (defined _LP64)
1974    static  Elf32_Half running_arch_code=EM_SPARCV9;
1975  #elif  (defined __sparc) && (!defined _LP64)
1976    static  Elf32_Half running_arch_code=EM_SPARC;
1977  #elif  (defined __powerpc64__)
1978    static  Elf32_Half running_arch_code=EM_PPC64;
1979  #elif  (defined __powerpc__)
1980    static  Elf32_Half running_arch_code=EM_PPC;
1981  #elif  (defined ARM)
1982    static  Elf32_Half running_arch_code=EM_ARM;
1983  #elif  (defined S390)
1984    static  Elf32_Half running_arch_code=EM_S390;
1985  #elif  (defined ALPHA)
1986    static  Elf32_Half running_arch_code=EM_ALPHA;
1987  #elif  (defined MIPSEL)
1988    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1989  #elif  (defined PARISC)
1990    static  Elf32_Half running_arch_code=EM_PARISC;
1991  #elif  (defined MIPS)
1992    static  Elf32_Half running_arch_code=EM_MIPS;
1993  #elif  (defined M68K)
1994    static  Elf32_Half running_arch_code=EM_68K;
1995  #else
1996    #error Method os::dll_load requires that one of following is defined:\
1997         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1998  #endif
1999
2000  // Identify compatability class for VM's architecture and library's architecture
2001  // Obtain string descriptions for architectures
2002
2003  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2004  int running_arch_index=-1;
2005
2006  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2007    if (running_arch_code == arch_array[i].code) {
2008      running_arch_index    = i;
2009    }
2010    if (lib_arch.code == arch_array[i].code) {
2011      lib_arch.compat_class = arch_array[i].compat_class;
2012      lib_arch.name         = arch_array[i].name;
2013    }
2014  }
2015
2016  assert(running_arch_index != -1,
2017    "Didn't find running architecture code (running_arch_code) in arch_array");
2018  if (running_arch_index == -1) {
2019    // Even though running architecture detection failed
2020    // we may still continue with reporting dlerror() message
2021    return NULL;
2022  }
2023
2024  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2025    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2026    return NULL;
2027  }
2028
2029#ifndef S390
2030  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2031    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2032    return NULL;
2033  }
2034#endif // !S390
2035
2036  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2037    if ( lib_arch.name!=NULL ) {
2038      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2039        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2040        lib_arch.name, arch_array[running_arch_index].name);
2041    } else {
2042      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2043      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2044        lib_arch.code,
2045        arch_array[running_arch_index].name);
2046    }
2047  }
2048
2049  return NULL;
2050}
2051
2052void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2053  void * result = ::dlopen(filename, RTLD_LAZY);
2054  if (result == NULL) {
2055    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2056    ebuf[ebuflen-1] = '\0';
2057  }
2058  return result;
2059}
2060
2061void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2062  void * result = NULL;
2063  if (LoadExecStackDllInVMThread) {
2064    result = dlopen_helper(filename, ebuf, ebuflen);
2065  }
2066
2067  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2068  // library that requires an executable stack, or which does not have this
2069  // stack attribute set, dlopen changes the stack attribute to executable. The
2070  // read protection of the guard pages gets lost.
2071  //
2072  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2073  // may have been queued at the same time.
2074
2075  if (!_stack_is_executable) {
2076    JavaThread *jt = Threads::first();
2077
2078    while (jt) {
2079      if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2080          jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2081        if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2082                              jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2083          warning("Attempt to reguard stack yellow zone failed.");
2084        }
2085      }
2086      jt = jt->next();
2087    }
2088  }
2089
2090  return result;
2091}
2092
2093/*
2094 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2095 * chances are you might want to run the generated bits against glibc-2.0
2096 * libdl.so, so always use locking for any version of glibc.
2097 */
2098void* os::dll_lookup(void* handle, const char* name) {
2099  pthread_mutex_lock(&dl_mutex);
2100  void* res = dlsym(handle, name);
2101  pthread_mutex_unlock(&dl_mutex);
2102  return res;
2103}
2104
2105
2106static bool _print_ascii_file(const char* filename, outputStream* st) {
2107  int fd = ::open(filename, O_RDONLY);
2108  if (fd == -1) {
2109     return false;
2110  }
2111
2112  char buf[32];
2113  int bytes;
2114  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2115    st->print_raw(buf, bytes);
2116  }
2117
2118  ::close(fd);
2119
2120  return true;
2121}
2122
2123void os::print_dll_info(outputStream *st) {
2124   st->print_cr("Dynamic libraries:");
2125
2126   char fname[32];
2127   pid_t pid = os::Linux::gettid();
2128
2129   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2130
2131   if (!_print_ascii_file(fname, st)) {
2132     st->print("Can not get library information for pid = %d\n", pid);
2133   }
2134}
2135
2136void os::print_os_info_brief(outputStream* st) {
2137  os::Linux::print_distro_info(st);
2138
2139  os::Posix::print_uname_info(st);
2140
2141  os::Linux::print_libversion_info(st);
2142
2143}
2144
2145void os::print_os_info(outputStream* st) {
2146  st->print("OS:");
2147
2148  os::Linux::print_distro_info(st);
2149
2150  os::Posix::print_uname_info(st);
2151
2152  // Print warning if unsafe chroot environment detected
2153  if (unsafe_chroot_detected) {
2154    st->print("WARNING!! ");
2155    st->print_cr(unstable_chroot_error);
2156  }
2157
2158  os::Linux::print_libversion_info(st);
2159
2160  os::Posix::print_rlimit_info(st);
2161
2162  os::Posix::print_load_average(st);
2163
2164  os::Linux::print_full_memory_info(st);
2165}
2166
2167// Try to identify popular distros.
2168// Most Linux distributions have /etc/XXX-release file, which contains
2169// the OS version string. Some have more than one /etc/XXX-release file
2170// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2171// so the order is important.
2172void os::Linux::print_distro_info(outputStream* st) {
2173  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2174      !_print_ascii_file("/etc/sun-release", st) &&
2175      !_print_ascii_file("/etc/redhat-release", st) &&
2176      !_print_ascii_file("/etc/SuSE-release", st) &&
2177      !_print_ascii_file("/etc/turbolinux-release", st) &&
2178      !_print_ascii_file("/etc/gentoo-release", st) &&
2179      !_print_ascii_file("/etc/debian_version", st) &&
2180      !_print_ascii_file("/etc/ltib-release", st) &&
2181      !_print_ascii_file("/etc/angstrom-version", st)) {
2182      st->print("Linux");
2183  }
2184  st->cr();
2185}
2186
2187void os::Linux::print_libversion_info(outputStream* st) {
2188  // libc, pthread
2189  st->print("libc:");
2190  st->print(os::Linux::glibc_version()); st->print(" ");
2191  st->print(os::Linux::libpthread_version()); st->print(" ");
2192  if (os::Linux::is_LinuxThreads()) {
2193     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2194  }
2195  st->cr();
2196}
2197
2198void os::Linux::print_full_memory_info(outputStream* st) {
2199   st->print("\n/proc/meminfo:\n");
2200   _print_ascii_file("/proc/meminfo", st);
2201   st->cr();
2202}
2203
2204void os::print_memory_info(outputStream* st) {
2205
2206  st->print("Memory:");
2207  st->print(" %dk page", os::vm_page_size()>>10);
2208
2209  // values in struct sysinfo are "unsigned long"
2210  struct sysinfo si;
2211  sysinfo(&si);
2212
2213  st->print(", physical " UINT64_FORMAT "k",
2214            os::physical_memory() >> 10);
2215  st->print("(" UINT64_FORMAT "k free)",
2216            os::available_memory() >> 10);
2217  st->print(", swap " UINT64_FORMAT "k",
2218            ((jlong)si.totalswap * si.mem_unit) >> 10);
2219  st->print("(" UINT64_FORMAT "k free)",
2220            ((jlong)si.freeswap * si.mem_unit) >> 10);
2221  st->cr();
2222}
2223
2224void os::pd_print_cpu_info(outputStream* st) {
2225  st->print("\n/proc/cpuinfo:\n");
2226  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2227    st->print("  <Not Available>");
2228  }
2229  st->cr();
2230}
2231
2232// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2233// but they're the same for all the linux arch that we support
2234// and they're the same for solaris but there's no common place to put this.
2235const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2236                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2237                          "ILL_COPROC", "ILL_BADSTK" };
2238
2239const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2240                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2241                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2242
2243const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2244
2245const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2246
2247void os::print_siginfo(outputStream* st, void* siginfo) {
2248  st->print("siginfo:");
2249
2250  const int buflen = 100;
2251  char buf[buflen];
2252  siginfo_t *si = (siginfo_t*)siginfo;
2253  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2254  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2255    st->print("si_errno=%s", buf);
2256  } else {
2257    st->print("si_errno=%d", si->si_errno);
2258  }
2259  const int c = si->si_code;
2260  assert(c > 0, "unexpected si_code");
2261  switch (si->si_signo) {
2262  case SIGILL:
2263    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2264    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2265    break;
2266  case SIGFPE:
2267    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2268    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2269    break;
2270  case SIGSEGV:
2271    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2272    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2273    break;
2274  case SIGBUS:
2275    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2276    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2277    break;
2278  default:
2279    st->print(", si_code=%d", si->si_code);
2280    // no si_addr
2281  }
2282
2283  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2284      UseSharedSpaces) {
2285    FileMapInfo* mapinfo = FileMapInfo::current_info();
2286    if (mapinfo->is_in_shared_space(si->si_addr)) {
2287      st->print("\n\nError accessing class data sharing archive."   \
2288                " Mapped file inaccessible during execution, "      \
2289                " possible disk/network problem.");
2290    }
2291  }
2292  st->cr();
2293}
2294
2295
2296static void print_signal_handler(outputStream* st, int sig,
2297                                 char* buf, size_t buflen);
2298
2299void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2300  st->print_cr("Signal Handlers:");
2301  print_signal_handler(st, SIGSEGV, buf, buflen);
2302  print_signal_handler(st, SIGBUS , buf, buflen);
2303  print_signal_handler(st, SIGFPE , buf, buflen);
2304  print_signal_handler(st, SIGPIPE, buf, buflen);
2305  print_signal_handler(st, SIGXFSZ, buf, buflen);
2306  print_signal_handler(st, SIGILL , buf, buflen);
2307  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2308  print_signal_handler(st, SR_signum, buf, buflen);
2309  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2310  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2311  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2312  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2313}
2314
2315static char saved_jvm_path[MAXPATHLEN] = {0};
2316
2317// Find the full path to the current module, libjvm.so
2318void os::jvm_path(char *buf, jint buflen) {
2319  // Error checking.
2320  if (buflen < MAXPATHLEN) {
2321    assert(false, "must use a large-enough buffer");
2322    buf[0] = '\0';
2323    return;
2324  }
2325  // Lazy resolve the path to current module.
2326  if (saved_jvm_path[0] != 0) {
2327    strcpy(buf, saved_jvm_path);
2328    return;
2329  }
2330
2331  char dli_fname[MAXPATHLEN];
2332  bool ret = dll_address_to_library_name(
2333                CAST_FROM_FN_PTR(address, os::jvm_path),
2334                dli_fname, sizeof(dli_fname), NULL);
2335  assert(ret, "cannot locate libjvm");
2336  char *rp = NULL;
2337  if (ret && dli_fname[0] != '\0') {
2338    rp = realpath(dli_fname, buf);
2339  }
2340  if (rp == NULL)
2341    return;
2342
2343  if (Arguments::created_by_gamma_launcher()) {
2344    // Support for the gamma launcher.  Typical value for buf is
2345    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2346    // the right place in the string, then assume we are installed in a JDK and
2347    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2348    // up the path so it looks like libjvm.so is installed there (append a
2349    // fake suffix hotspot/libjvm.so).
2350    const char *p = buf + strlen(buf) - 1;
2351    for (int count = 0; p > buf && count < 5; ++count) {
2352      for (--p; p > buf && *p != '/'; --p)
2353        /* empty */ ;
2354    }
2355
2356    if (strncmp(p, "/jre/lib/", 9) != 0) {
2357      // Look for JAVA_HOME in the environment.
2358      char* java_home_var = ::getenv("JAVA_HOME");
2359      if (java_home_var != NULL && java_home_var[0] != 0) {
2360        char* jrelib_p;
2361        int len;
2362
2363        // Check the current module name "libjvm.so".
2364        p = strrchr(buf, '/');
2365        assert(strstr(p, "/libjvm") == p, "invalid library name");
2366
2367        rp = realpath(java_home_var, buf);
2368        if (rp == NULL)
2369          return;
2370
2371        // determine if this is a legacy image or modules image
2372        // modules image doesn't have "jre" subdirectory
2373        len = strlen(buf);
2374        jrelib_p = buf + len;
2375        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2376        if (0 != access(buf, F_OK)) {
2377          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2378        }
2379
2380        if (0 == access(buf, F_OK)) {
2381          // Use current module name "libjvm.so"
2382          len = strlen(buf);
2383          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2384        } else {
2385          // Go back to path of .so
2386          rp = realpath(dli_fname, buf);
2387          if (rp == NULL)
2388            return;
2389        }
2390      }
2391    }
2392  }
2393
2394  strcpy(saved_jvm_path, buf);
2395}
2396
2397void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2398  // no prefix required, not even "_"
2399}
2400
2401void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2402  // no suffix required
2403}
2404
2405////////////////////////////////////////////////////////////////////////////////
2406// sun.misc.Signal support
2407
2408static volatile jint sigint_count = 0;
2409
2410static void
2411UserHandler(int sig, void *siginfo, void *context) {
2412  // 4511530 - sem_post is serialized and handled by the manager thread. When
2413  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2414  // don't want to flood the manager thread with sem_post requests.
2415  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2416      return;
2417
2418  // Ctrl-C is pressed during error reporting, likely because the error
2419  // handler fails to abort. Let VM die immediately.
2420  if (sig == SIGINT && is_error_reported()) {
2421     os::die();
2422  }
2423
2424  os::signal_notify(sig);
2425}
2426
2427void* os::user_handler() {
2428  return CAST_FROM_FN_PTR(void*, UserHandler);
2429}
2430
2431class Semaphore : public StackObj {
2432  public:
2433    Semaphore();
2434    ~Semaphore();
2435    void signal();
2436    void wait();
2437    bool trywait();
2438    bool timedwait(unsigned int sec, int nsec);
2439  private:
2440    sem_t _semaphore;
2441};
2442
2443
2444Semaphore::Semaphore() {
2445  sem_init(&_semaphore, 0, 0);
2446}
2447
2448Semaphore::~Semaphore() {
2449  sem_destroy(&_semaphore);
2450}
2451
2452void Semaphore::signal() {
2453  sem_post(&_semaphore);
2454}
2455
2456void Semaphore::wait() {
2457  sem_wait(&_semaphore);
2458}
2459
2460bool Semaphore::trywait() {
2461  return sem_trywait(&_semaphore) == 0;
2462}
2463
2464bool Semaphore::timedwait(unsigned int sec, int nsec) {
2465  struct timespec ts;
2466  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2467
2468  while (1) {
2469    int result = sem_timedwait(&_semaphore, &ts);
2470    if (result == 0) {
2471      return true;
2472    } else if (errno == EINTR) {
2473      continue;
2474    } else if (errno == ETIMEDOUT) {
2475      return false;
2476    } else {
2477      return false;
2478    }
2479  }
2480}
2481
2482extern "C" {
2483  typedef void (*sa_handler_t)(int);
2484  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2485}
2486
2487void* os::signal(int signal_number, void* handler) {
2488  struct sigaction sigAct, oldSigAct;
2489
2490  sigfillset(&(sigAct.sa_mask));
2491  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2492  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2493
2494  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2495    // -1 means registration failed
2496    return (void *)-1;
2497  }
2498
2499  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2500}
2501
2502void os::signal_raise(int signal_number) {
2503  ::raise(signal_number);
2504}
2505
2506/*
2507 * The following code is moved from os.cpp for making this
2508 * code platform specific, which it is by its very nature.
2509 */
2510
2511// Will be modified when max signal is changed to be dynamic
2512int os::sigexitnum_pd() {
2513  return NSIG;
2514}
2515
2516// a counter for each possible signal value
2517static volatile jint pending_signals[NSIG+1] = { 0 };
2518
2519// Linux(POSIX) specific hand shaking semaphore.
2520static sem_t sig_sem;
2521static Semaphore sr_semaphore;
2522
2523void os::signal_init_pd() {
2524  // Initialize signal structures
2525  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2526
2527  // Initialize signal semaphore
2528  ::sem_init(&sig_sem, 0, 0);
2529}
2530
2531void os::signal_notify(int sig) {
2532  Atomic::inc(&pending_signals[sig]);
2533  ::sem_post(&sig_sem);
2534}
2535
2536static int check_pending_signals(bool wait) {
2537  Atomic::store(0, &sigint_count);
2538  for (;;) {
2539    for (int i = 0; i < NSIG + 1; i++) {
2540      jint n = pending_signals[i];
2541      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2542        return i;
2543      }
2544    }
2545    if (!wait) {
2546      return -1;
2547    }
2548    JavaThread *thread = JavaThread::current();
2549    ThreadBlockInVM tbivm(thread);
2550
2551    bool threadIsSuspended;
2552    do {
2553      thread->set_suspend_equivalent();
2554      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2555      ::sem_wait(&sig_sem);
2556
2557      // were we externally suspended while we were waiting?
2558      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2559      if (threadIsSuspended) {
2560        //
2561        // The semaphore has been incremented, but while we were waiting
2562        // another thread suspended us. We don't want to continue running
2563        // while suspended because that would surprise the thread that
2564        // suspended us.
2565        //
2566        ::sem_post(&sig_sem);
2567
2568        thread->java_suspend_self();
2569      }
2570    } while (threadIsSuspended);
2571  }
2572}
2573
2574int os::signal_lookup() {
2575  return check_pending_signals(false);
2576}
2577
2578int os::signal_wait() {
2579  return check_pending_signals(true);
2580}
2581
2582////////////////////////////////////////////////////////////////////////////////
2583// Virtual Memory
2584
2585int os::vm_page_size() {
2586  // Seems redundant as all get out
2587  assert(os::Linux::page_size() != -1, "must call os::init");
2588  return os::Linux::page_size();
2589}
2590
2591// Solaris allocates memory by pages.
2592int os::vm_allocation_granularity() {
2593  assert(os::Linux::page_size() != -1, "must call os::init");
2594  return os::Linux::page_size();
2595}
2596
2597// Rationale behind this function:
2598//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2599//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2600//  samples for JITted code. Here we create private executable mapping over the code cache
2601//  and then we can use standard (well, almost, as mapping can change) way to provide
2602//  info for the reporting script by storing timestamp and location of symbol
2603void linux_wrap_code(char* base, size_t size) {
2604  static volatile jint cnt = 0;
2605
2606  if (!UseOprofile) {
2607    return;
2608  }
2609
2610  char buf[PATH_MAX+1];
2611  int num = Atomic::add(1, &cnt);
2612
2613  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2614           os::get_temp_directory(), os::current_process_id(), num);
2615  unlink(buf);
2616
2617  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2618
2619  if (fd != -1) {
2620    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2621    if (rv != (off_t)-1) {
2622      if (::write(fd, "", 1) == 1) {
2623        mmap(base, size,
2624             PROT_READ|PROT_WRITE|PROT_EXEC,
2625             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2626      }
2627    }
2628    ::close(fd);
2629    unlink(buf);
2630  }
2631}
2632
2633static bool recoverable_mmap_error(int err) {
2634  // See if the error is one we can let the caller handle. This
2635  // list of errno values comes from JBS-6843484. I can't find a
2636  // Linux man page that documents this specific set of errno
2637  // values so while this list currently matches Solaris, it may
2638  // change as we gain experience with this failure mode.
2639  switch (err) {
2640  case EBADF:
2641  case EINVAL:
2642  case ENOTSUP:
2643    // let the caller deal with these errors
2644    return true;
2645
2646  default:
2647    // Any remaining errors on this OS can cause our reserved mapping
2648    // to be lost. That can cause confusion where different data
2649    // structures think they have the same memory mapped. The worst
2650    // scenario is if both the VM and a library think they have the
2651    // same memory mapped.
2652    return false;
2653  }
2654}
2655
2656static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2657                                    int err) {
2658  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2659          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2660          strerror(err), err);
2661}
2662
2663static void warn_fail_commit_memory(char* addr, size_t size,
2664                                    size_t alignment_hint, bool exec,
2665                                    int err) {
2666  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2667          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2668          alignment_hint, exec, strerror(err), err);
2669}
2670
2671// NOTE: Linux kernel does not really reserve the pages for us.
2672//       All it does is to check if there are enough free pages
2673//       left at the time of mmap(). This could be a potential
2674//       problem.
2675int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2676  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2677  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2678                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2679  if (res != (uintptr_t) MAP_FAILED) {
2680    if (UseNUMAInterleaving) {
2681      numa_make_global(addr, size);
2682    }
2683    return 0;
2684  }
2685
2686  int err = errno;  // save errno from mmap() call above
2687
2688  if (!recoverable_mmap_error(err)) {
2689    warn_fail_commit_memory(addr, size, exec, err);
2690    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2691  }
2692
2693  return err;
2694}
2695
2696bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2697  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2698}
2699
2700void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2701                                  const char* mesg) {
2702  assert(mesg != NULL, "mesg must be specified");
2703  int err = os::Linux::commit_memory_impl(addr, size, exec);
2704  if (err != 0) {
2705    // the caller wants all commit errors to exit with the specified mesg:
2706    warn_fail_commit_memory(addr, size, exec, err);
2707    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2708  }
2709}
2710
2711// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2712#ifndef MAP_HUGETLB
2713#define MAP_HUGETLB 0x40000
2714#endif
2715
2716// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2717#ifndef MADV_HUGEPAGE
2718#define MADV_HUGEPAGE 14
2719#endif
2720
2721int os::Linux::commit_memory_impl(char* addr, size_t size,
2722                                  size_t alignment_hint, bool exec) {
2723  int err = os::Linux::commit_memory_impl(addr, size, exec);
2724  if (err == 0) {
2725    realign_memory(addr, size, alignment_hint);
2726  }
2727  return err;
2728}
2729
2730bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2731                          bool exec) {
2732  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2733}
2734
2735void os::pd_commit_memory_or_exit(char* addr, size_t size,
2736                                  size_t alignment_hint, bool exec,
2737                                  const char* mesg) {
2738  assert(mesg != NULL, "mesg must be specified");
2739  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2740  if (err != 0) {
2741    // the caller wants all commit errors to exit with the specified mesg:
2742    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2743    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2744  }
2745}
2746
2747void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2748  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2749    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2750    // be supported or the memory may already be backed by huge pages.
2751    ::madvise(addr, bytes, MADV_HUGEPAGE);
2752  }
2753}
2754
2755void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2756  // This method works by doing an mmap over an existing mmaping and effectively discarding
2757  // the existing pages. However it won't work for SHM-based large pages that cannot be
2758  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2759  // small pages on top of the SHM segment. This method always works for small pages, so we
2760  // allow that in any case.
2761  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2762    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2763  }
2764}
2765
2766void os::numa_make_global(char *addr, size_t bytes) {
2767  Linux::numa_interleave_memory(addr, bytes);
2768}
2769
2770void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2771  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2772}
2773
2774bool os::numa_topology_changed()   { return false; }
2775
2776size_t os::numa_get_groups_num() {
2777  int max_node = Linux::numa_max_node();
2778  return max_node > 0 ? max_node + 1 : 1;
2779}
2780
2781int os::numa_get_group_id() {
2782  int cpu_id = Linux::sched_getcpu();
2783  if (cpu_id != -1) {
2784    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2785    if (lgrp_id != -1) {
2786      return lgrp_id;
2787    }
2788  }
2789  return 0;
2790}
2791
2792size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2793  for (size_t i = 0; i < size; i++) {
2794    ids[i] = i;
2795  }
2796  return size;
2797}
2798
2799bool os::get_page_info(char *start, page_info* info) {
2800  return false;
2801}
2802
2803char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2804  return end;
2805}
2806
2807
2808int os::Linux::sched_getcpu_syscall(void) {
2809  unsigned int cpu;
2810  int retval = -1;
2811
2812#if defined(IA32)
2813# ifndef SYS_getcpu
2814# define SYS_getcpu 318
2815# endif
2816  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2817#elif defined(AMD64)
2818// Unfortunately we have to bring all these macros here from vsyscall.h
2819// to be able to compile on old linuxes.
2820# define __NR_vgetcpu 2
2821# define VSYSCALL_START (-10UL << 20)
2822# define VSYSCALL_SIZE 1024
2823# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2824  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2825  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2826  retval = vgetcpu(&cpu, NULL, NULL);
2827#endif
2828
2829  return (retval == -1) ? retval : cpu;
2830}
2831
2832// Something to do with the numa-aware allocator needs these symbols
2833extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2834extern "C" JNIEXPORT void numa_error(char *where) { }
2835extern "C" JNIEXPORT int fork1() { return fork(); }
2836
2837
2838// If we are running with libnuma version > 2, then we should
2839// be trying to use symbols with versions 1.1
2840// If we are running with earlier version, which did not have symbol versions,
2841// we should use the base version.
2842void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2843  void *f = dlvsym(handle, name, "libnuma_1.1");
2844  if (f == NULL) {
2845    f = dlsym(handle, name);
2846  }
2847  return f;
2848}
2849
2850bool os::Linux::libnuma_init() {
2851  // sched_getcpu() should be in libc.
2852  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2853                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2854
2855  // If it's not, try a direct syscall.
2856  if (sched_getcpu() == -1)
2857    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2858
2859  if (sched_getcpu() != -1) { // Does it work?
2860    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2861    if (handle != NULL) {
2862      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2863                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2864      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2865                                       libnuma_dlsym(handle, "numa_max_node")));
2866      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2867                                        libnuma_dlsym(handle, "numa_available")));
2868      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2869                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2870      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2871                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2872
2873
2874      if (numa_available() != -1) {
2875        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2876        // Create a cpu -> node mapping
2877        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2878        rebuild_cpu_to_node_map();
2879        return true;
2880      }
2881    }
2882  }
2883  return false;
2884}
2885
2886// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2887// The table is later used in get_node_by_cpu().
2888void os::Linux::rebuild_cpu_to_node_map() {
2889  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2890                              // in libnuma (possible values are starting from 16,
2891                              // and continuing up with every other power of 2, but less
2892                              // than the maximum number of CPUs supported by kernel), and
2893                              // is a subject to change (in libnuma version 2 the requirements
2894                              // are more reasonable) we'll just hardcode the number they use
2895                              // in the library.
2896  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2897
2898  size_t cpu_num = os::active_processor_count();
2899  size_t cpu_map_size = NCPUS / BitsPerCLong;
2900  size_t cpu_map_valid_size =
2901    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2902
2903  cpu_to_node()->clear();
2904  cpu_to_node()->at_grow(cpu_num - 1);
2905  size_t node_num = numa_get_groups_num();
2906
2907  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2908  for (size_t i = 0; i < node_num; i++) {
2909    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2910      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2911        if (cpu_map[j] != 0) {
2912          for (size_t k = 0; k < BitsPerCLong; k++) {
2913            if (cpu_map[j] & (1UL << k)) {
2914              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2915            }
2916          }
2917        }
2918      }
2919    }
2920  }
2921  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2922}
2923
2924int os::Linux::get_node_by_cpu(int cpu_id) {
2925  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2926    return cpu_to_node()->at(cpu_id);
2927  }
2928  return -1;
2929}
2930
2931GrowableArray<int>* os::Linux::_cpu_to_node;
2932os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2933os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2934os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2935os::Linux::numa_available_func_t os::Linux::_numa_available;
2936os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2937os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2938unsigned long* os::Linux::_numa_all_nodes;
2939
2940bool os::pd_uncommit_memory(char* addr, size_t size) {
2941  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2942                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2943  return res  != (uintptr_t) MAP_FAILED;
2944}
2945
2946// Linux uses a growable mapping for the stack, and if the mapping for
2947// the stack guard pages is not removed when we detach a thread the
2948// stack cannot grow beyond the pages where the stack guard was
2949// mapped.  If at some point later in the process the stack expands to
2950// that point, the Linux kernel cannot expand the stack any further
2951// because the guard pages are in the way, and a segfault occurs.
2952//
2953// However, it's essential not to split the stack region by unmapping
2954// a region (leaving a hole) that's already part of the stack mapping,
2955// so if the stack mapping has already grown beyond the guard pages at
2956// the time we create them, we have to truncate the stack mapping.
2957// So, we need to know the extent of the stack mapping when
2958// create_stack_guard_pages() is called.
2959
2960// Find the bounds of the stack mapping.  Return true for success.
2961//
2962// We only need this for stacks that are growable: at the time of
2963// writing thread stacks don't use growable mappings (i.e. those
2964// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2965// only applies to the main thread.
2966
2967static
2968bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2969
2970  char buf[128];
2971  int fd, sz;
2972
2973  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2974    return false;
2975  }
2976
2977  const char kw[] = "[stack]";
2978  const int kwlen = sizeof(kw)-1;
2979
2980  // Address part of /proc/self/maps couldn't be more than 128 bytes
2981  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2982     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2983        // Extract addresses
2984        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2985           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2986           if (sp >= *bottom && sp <= *top) {
2987              ::close(fd);
2988              return true;
2989           }
2990        }
2991     }
2992  }
2993
2994 ::close(fd);
2995  return false;
2996}
2997
2998
2999// If the (growable) stack mapping already extends beyond the point
3000// where we're going to put our guard pages, truncate the mapping at
3001// that point by munmap()ping it.  This ensures that when we later
3002// munmap() the guard pages we don't leave a hole in the stack
3003// mapping. This only affects the main/initial thread, but guard
3004// against future OS changes
3005bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3006  uintptr_t stack_extent, stack_base;
3007  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3008  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3009      assert(os::Linux::is_initial_thread(),
3010           "growable stack in non-initial thread");
3011    if (stack_extent < (uintptr_t)addr)
3012      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
3013  }
3014
3015  return os::commit_memory(addr, size, !ExecMem);
3016}
3017
3018// If this is a growable mapping, remove the guard pages entirely by
3019// munmap()ping them.  If not, just call uncommit_memory(). This only
3020// affects the main/initial thread, but guard against future OS changes
3021bool os::remove_stack_guard_pages(char* addr, size_t size) {
3022  uintptr_t stack_extent, stack_base;
3023  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
3024  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
3025      assert(os::Linux::is_initial_thread(),
3026           "growable stack in non-initial thread");
3027
3028    return ::munmap(addr, size) == 0;
3029  }
3030
3031  return os::uncommit_memory(addr, size);
3032}
3033
3034static address _highest_vm_reserved_address = NULL;
3035
3036// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3037// at 'requested_addr'. If there are existing memory mappings at the same
3038// location, however, they will be overwritten. If 'fixed' is false,
3039// 'requested_addr' is only treated as a hint, the return value may or
3040// may not start from the requested address. Unlike Linux mmap(), this
3041// function returns NULL to indicate failure.
3042static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3043  char * addr;
3044  int flags;
3045
3046  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3047  if (fixed) {
3048    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3049    flags |= MAP_FIXED;
3050  }
3051
3052  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3053  // touch an uncommitted page. Otherwise, the read/write might
3054  // succeed if we have enough swap space to back the physical page.
3055  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3056                       flags, -1, 0);
3057
3058  if (addr != MAP_FAILED) {
3059    // anon_mmap() should only get called during VM initialization,
3060    // don't need lock (actually we can skip locking even it can be called
3061    // from multiple threads, because _highest_vm_reserved_address is just a
3062    // hint about the upper limit of non-stack memory regions.)
3063    if ((address)addr + bytes > _highest_vm_reserved_address) {
3064      _highest_vm_reserved_address = (address)addr + bytes;
3065    }
3066  }
3067
3068  return addr == MAP_FAILED ? NULL : addr;
3069}
3070
3071// Don't update _highest_vm_reserved_address, because there might be memory
3072// regions above addr + size. If so, releasing a memory region only creates
3073// a hole in the address space, it doesn't help prevent heap-stack collision.
3074//
3075static int anon_munmap(char * addr, size_t size) {
3076  return ::munmap(addr, size) == 0;
3077}
3078
3079char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3080                         size_t alignment_hint) {
3081  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3082}
3083
3084bool os::pd_release_memory(char* addr, size_t size) {
3085  return anon_munmap(addr, size);
3086}
3087
3088static address highest_vm_reserved_address() {
3089  return _highest_vm_reserved_address;
3090}
3091
3092static bool linux_mprotect(char* addr, size_t size, int prot) {
3093  // Linux wants the mprotect address argument to be page aligned.
3094  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3095
3096  // According to SUSv3, mprotect() should only be used with mappings
3097  // established by mmap(), and mmap() always maps whole pages. Unaligned
3098  // 'addr' likely indicates problem in the VM (e.g. trying to change
3099  // protection of malloc'ed or statically allocated memory). Check the
3100  // caller if you hit this assert.
3101  assert(addr == bottom, "sanity check");
3102
3103  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3104  return ::mprotect(bottom, size, prot) == 0;
3105}
3106
3107// Set protections specified
3108bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3109                        bool is_committed) {
3110  unsigned int p = 0;
3111  switch (prot) {
3112  case MEM_PROT_NONE: p = PROT_NONE; break;
3113  case MEM_PROT_READ: p = PROT_READ; break;
3114  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3115  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3116  default:
3117    ShouldNotReachHere();
3118  }
3119  // is_committed is unused.
3120  return linux_mprotect(addr, bytes, p);
3121}
3122
3123bool os::guard_memory(char* addr, size_t size) {
3124  return linux_mprotect(addr, size, PROT_NONE);
3125}
3126
3127bool os::unguard_memory(char* addr, size_t size) {
3128  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3129}
3130
3131bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3132  bool result = false;
3133  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3134                 MAP_ANONYMOUS|MAP_PRIVATE,
3135                 -1, 0);
3136  if (p != MAP_FAILED) {
3137    void *aligned_p = align_ptr_up(p, page_size);
3138
3139    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3140
3141    munmap(p, page_size * 2);
3142  }
3143
3144  if (warn && !result) {
3145    warning("TransparentHugePages is not supported by the operating system.");
3146  }
3147
3148  return result;
3149}
3150
3151bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3152  bool result = false;
3153  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3154                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3155                 -1, 0);
3156
3157  if (p != MAP_FAILED) {
3158    // We don't know if this really is a huge page or not.
3159    FILE *fp = fopen("/proc/self/maps", "r");
3160    if (fp) {
3161      while (!feof(fp)) {
3162        char chars[257];
3163        long x = 0;
3164        if (fgets(chars, sizeof(chars), fp)) {
3165          if (sscanf(chars, "%lx-%*x", &x) == 1
3166              && x == (long)p) {
3167            if (strstr (chars, "hugepage")) {
3168              result = true;
3169              break;
3170            }
3171          }
3172        }
3173      }
3174      fclose(fp);
3175    }
3176    munmap(p, page_size);
3177  }
3178
3179  if (warn && !result) {
3180    warning("HugeTLBFS is not supported by the operating system.");
3181  }
3182
3183  return result;
3184}
3185
3186/*
3187* Set the coredump_filter bits to include largepages in core dump (bit 6)
3188*
3189* From the coredump_filter documentation:
3190*
3191* - (bit 0) anonymous private memory
3192* - (bit 1) anonymous shared memory
3193* - (bit 2) file-backed private memory
3194* - (bit 3) file-backed shared memory
3195* - (bit 4) ELF header pages in file-backed private memory areas (it is
3196*           effective only if the bit 2 is cleared)
3197* - (bit 5) hugetlb private memory
3198* - (bit 6) hugetlb shared memory
3199*/
3200static void set_coredump_filter(void) {
3201  FILE *f;
3202  long cdm;
3203
3204  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3205    return;
3206  }
3207
3208  if (fscanf(f, "%lx", &cdm) != 1) {
3209    fclose(f);
3210    return;
3211  }
3212
3213  rewind(f);
3214
3215  if ((cdm & LARGEPAGES_BIT) == 0) {
3216    cdm |= LARGEPAGES_BIT;
3217    fprintf(f, "%#lx", cdm);
3218  }
3219
3220  fclose(f);
3221}
3222
3223// Large page support
3224
3225static size_t _large_page_size = 0;
3226
3227size_t os::Linux::find_large_page_size() {
3228  size_t large_page_size = 0;
3229
3230  // large_page_size on Linux is used to round up heap size. x86 uses either
3231  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3232  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3233  // page as large as 256M.
3234  //
3235  // Here we try to figure out page size by parsing /proc/meminfo and looking
3236  // for a line with the following format:
3237  //    Hugepagesize:     2048 kB
3238  //
3239  // If we can't determine the value (e.g. /proc is not mounted, or the text
3240  // format has been changed), we'll use the largest page size supported by
3241  // the processor.
3242
3243#ifndef ZERO
3244  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3245                     ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3246#endif // ZERO
3247
3248  FILE *fp = fopen("/proc/meminfo", "r");
3249  if (fp) {
3250    while (!feof(fp)) {
3251      int x = 0;
3252      char buf[16];
3253      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3254        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3255          large_page_size = x * K;
3256          break;
3257        }
3258      } else {
3259        // skip to next line
3260        for (;;) {
3261          int ch = fgetc(fp);
3262          if (ch == EOF || ch == (int)'\n') break;
3263        }
3264      }
3265    }
3266    fclose(fp);
3267  }
3268
3269  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3270    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3271        SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3272        proper_unit_for_byte_size(large_page_size));
3273  }
3274
3275  return large_page_size;
3276}
3277
3278size_t os::Linux::setup_large_page_size() {
3279  _large_page_size = Linux::find_large_page_size();
3280  const size_t default_page_size = (size_t)Linux::page_size();
3281  if (_large_page_size > default_page_size) {
3282    _page_sizes[0] = _large_page_size;
3283    _page_sizes[1] = default_page_size;
3284    _page_sizes[2] = 0;
3285  }
3286
3287  return _large_page_size;
3288}
3289
3290bool os::Linux::setup_large_page_type(size_t page_size) {
3291  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3292      FLAG_IS_DEFAULT(UseSHM) &&
3293      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3294    // If UseLargePages is specified on the command line try all methods,
3295    // if it's default, then try only UseTransparentHugePages.
3296    if (FLAG_IS_DEFAULT(UseLargePages)) {
3297      UseTransparentHugePages = true;
3298    } else {
3299      UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
3300    }
3301  }
3302
3303  if (UseTransparentHugePages) {
3304    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3305    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3306      UseHugeTLBFS = false;
3307      UseSHM = false;
3308      return true;
3309    }
3310    UseTransparentHugePages = false;
3311  }
3312
3313  if (UseHugeTLBFS) {
3314    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3315    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3316      UseSHM = false;
3317      return true;
3318    }
3319    UseHugeTLBFS = false;
3320  }
3321
3322  return UseSHM;
3323}
3324
3325void os::large_page_init() {
3326  if (!UseLargePages) {
3327    UseHugeTLBFS = false;
3328    UseTransparentHugePages = false;
3329    UseSHM = false;
3330    return;
3331  }
3332
3333  size_t large_page_size = Linux::setup_large_page_size();
3334  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3335
3336  set_coredump_filter();
3337}
3338
3339#ifndef SHM_HUGETLB
3340#define SHM_HUGETLB 04000
3341#endif
3342
3343char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3344  // "exec" is passed in but not used.  Creating the shared image for
3345  // the code cache doesn't have an SHM_X executable permission to check.
3346  assert(UseLargePages && UseSHM, "only for SHM large pages");
3347  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3348
3349  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3350    return NULL; // Fallback to small pages.
3351  }
3352
3353  key_t key = IPC_PRIVATE;
3354  char *addr;
3355
3356  bool warn_on_failure = UseLargePages &&
3357                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3358                         !FLAG_IS_DEFAULT(UseSHM) ||
3359                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3360                        );
3361  char msg[128];
3362
3363  // Create a large shared memory region to attach to based on size.
3364  // Currently, size is the total size of the heap
3365  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3366  if (shmid == -1) {
3367     // Possible reasons for shmget failure:
3368     // 1. shmmax is too small for Java heap.
3369     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3370     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3371     // 2. not enough large page memory.
3372     //    > check available large pages: cat /proc/meminfo
3373     //    > increase amount of large pages:
3374     //          echo new_value > /proc/sys/vm/nr_hugepages
3375     //      Note 1: different Linux may use different name for this property,
3376     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3377     //      Note 2: it's possible there's enough physical memory available but
3378     //            they are so fragmented after a long run that they can't
3379     //            coalesce into large pages. Try to reserve large pages when
3380     //            the system is still "fresh".
3381     if (warn_on_failure) {
3382       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3383       warning(msg);
3384     }
3385     return NULL;
3386  }
3387
3388  // attach to the region
3389  addr = (char*)shmat(shmid, req_addr, 0);
3390  int err = errno;
3391
3392  // Remove shmid. If shmat() is successful, the actual shared memory segment
3393  // will be deleted when it's detached by shmdt() or when the process
3394  // terminates. If shmat() is not successful this will remove the shared
3395  // segment immediately.
3396  shmctl(shmid, IPC_RMID, NULL);
3397
3398  if ((intptr_t)addr == -1) {
3399     if (warn_on_failure) {
3400       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3401       warning(msg);
3402     }
3403     return NULL;
3404  }
3405
3406  return addr;
3407}
3408
3409static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3410  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3411
3412  bool warn_on_failure = UseLargePages &&
3413      (!FLAG_IS_DEFAULT(UseLargePages) ||
3414       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3415       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3416
3417  if (warn_on_failure) {
3418    char msg[128];
3419    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3420        PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3421    warning(msg);
3422  }
3423}
3424
3425char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3426  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3427  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3428  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3429
3430  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3431  char* addr = (char*)::mmap(req_addr, bytes, prot,
3432                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3433                             -1, 0);
3434
3435  if (addr == MAP_FAILED) {
3436    warn_on_large_pages_failure(req_addr, bytes, errno);
3437    return NULL;
3438  }
3439
3440  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3441
3442  return addr;
3443}
3444
3445char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3446  size_t large_page_size = os::large_page_size();
3447
3448  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3449
3450  // Allocate small pages.
3451
3452  char* start;
3453  if (req_addr != NULL) {
3454    assert(is_ptr_aligned(req_addr, alignment), "Must be");
3455    assert(is_size_aligned(bytes, alignment), "Must be");
3456    start = os::reserve_memory(bytes, req_addr);
3457    assert(start == NULL || start == req_addr, "Must be");
3458  } else {
3459    start = os::reserve_memory_aligned(bytes, alignment);
3460  }
3461
3462  if (start == NULL) {
3463    return NULL;
3464  }
3465
3466  assert(is_ptr_aligned(start, alignment), "Must be");
3467
3468  // os::reserve_memory_special will record this memory area.
3469  // Need to release it here to prevent overlapping reservations.
3470  MemTracker::record_virtual_memory_release((address)start, bytes);
3471
3472  char* end = start + bytes;
3473
3474  // Find the regions of the allocated chunk that can be promoted to large pages.
3475  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3476  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3477
3478  size_t lp_bytes = lp_end - lp_start;
3479
3480  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3481
3482  if (lp_bytes == 0) {
3483    // The mapped region doesn't even span the start and the end of a large page.
3484    // Fall back to allocate a non-special area.
3485    ::munmap(start, end - start);
3486    return NULL;
3487  }
3488
3489  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3490
3491
3492  void* result;
3493
3494  if (start != lp_start) {
3495    result = ::mmap(start, lp_start - start, prot,
3496                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3497                    -1, 0);
3498    if (result == MAP_FAILED) {
3499      ::munmap(lp_start, end - lp_start);
3500      return NULL;
3501    }
3502  }
3503
3504  result = ::mmap(lp_start, lp_bytes, prot,
3505                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3506                  -1, 0);
3507  if (result == MAP_FAILED) {
3508    warn_on_large_pages_failure(req_addr, bytes, errno);
3509    // If the mmap above fails, the large pages region will be unmapped and we
3510    // have regions before and after with small pages. Release these regions.
3511    //
3512    // |  mapped  |  unmapped  |  mapped  |
3513    // ^          ^            ^          ^
3514    // start      lp_start     lp_end     end
3515    //
3516    ::munmap(start, lp_start - start);
3517    ::munmap(lp_end, end - lp_end);
3518    return NULL;
3519  }
3520
3521  if (lp_end != end) {
3522      result = ::mmap(lp_end, end - lp_end, prot,
3523                      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3524                      -1, 0);
3525    if (result == MAP_FAILED) {
3526      ::munmap(start, lp_end - start);
3527      return NULL;
3528    }
3529  }
3530
3531  return start;
3532}
3533
3534char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3535  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3536  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3537  assert(is_power_of_2(alignment), "Must be");
3538  assert(is_power_of_2(os::large_page_size()), "Must be");
3539  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3540
3541  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3542    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3543  } else {
3544    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3545  }
3546}
3547
3548char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3549  assert(UseLargePages, "only for large pages");
3550
3551  char* addr;
3552  if (UseSHM) {
3553    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3554  } else {
3555    assert(UseHugeTLBFS, "must be");
3556    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3557  }
3558
3559  if (addr != NULL) {
3560    if (UseNUMAInterleaving) {
3561      numa_make_global(addr, bytes);
3562    }
3563
3564    // The memory is committed
3565    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3566  }
3567
3568  return addr;
3569}
3570
3571bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3572  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3573  return shmdt(base) == 0;
3574}
3575
3576bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3577  return pd_release_memory(base, bytes);
3578}
3579
3580bool os::release_memory_special(char* base, size_t bytes) {
3581  assert(UseLargePages, "only for large pages");
3582
3583  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3584
3585  bool res;
3586  if (UseSHM) {
3587    res = os::Linux::release_memory_special_shm(base, bytes);
3588  } else {
3589    assert(UseHugeTLBFS, "must be");
3590    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3591  }
3592
3593  if (res) {
3594    tkr.record((address)base, bytes);
3595  } else {
3596    tkr.discard();
3597  }
3598
3599  return res;
3600}
3601
3602size_t os::large_page_size() {
3603  return _large_page_size;
3604}
3605
3606// With SysV SHM the entire memory region must be allocated as shared
3607// memory.
3608// HugeTLBFS allows application to commit large page memory on demand.
3609// However, when committing memory with HugeTLBFS fails, the region
3610// that was supposed to be committed will lose the old reservation
3611// and allow other threads to steal that memory region. Because of this
3612// behavior we can't commit HugeTLBFS memory.
3613bool os::can_commit_large_page_memory() {
3614  return UseTransparentHugePages;
3615}
3616
3617bool os::can_execute_large_page_memory() {
3618  return UseTransparentHugePages || UseHugeTLBFS;
3619}
3620
3621// Reserve memory at an arbitrary address, only if that area is
3622// available (and not reserved for something else).
3623
3624char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3625  const int max_tries = 10;
3626  char* base[max_tries];
3627  size_t size[max_tries];
3628  const size_t gap = 0x000000;
3629
3630  // Assert only that the size is a multiple of the page size, since
3631  // that's all that mmap requires, and since that's all we really know
3632  // about at this low abstraction level.  If we need higher alignment,
3633  // we can either pass an alignment to this method or verify alignment
3634  // in one of the methods further up the call chain.  See bug 5044738.
3635  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3636
3637  // Repeatedly allocate blocks until the block is allocated at the
3638  // right spot. Give up after max_tries. Note that reserve_memory() will
3639  // automatically update _highest_vm_reserved_address if the call is
3640  // successful. The variable tracks the highest memory address every reserved
3641  // by JVM. It is used to detect heap-stack collision if running with
3642  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3643  // space than needed, it could confuse the collision detecting code. To
3644  // solve the problem, save current _highest_vm_reserved_address and
3645  // calculate the correct value before return.
3646  address old_highest = _highest_vm_reserved_address;
3647
3648  // Linux mmap allows caller to pass an address as hint; give it a try first,
3649  // if kernel honors the hint then we can return immediately.
3650  char * addr = anon_mmap(requested_addr, bytes, false);
3651  if (addr == requested_addr) {
3652     return requested_addr;
3653  }
3654
3655  if (addr != NULL) {
3656     // mmap() is successful but it fails to reserve at the requested address
3657     anon_munmap(addr, bytes);
3658  }
3659
3660  int i;
3661  for (i = 0; i < max_tries; ++i) {
3662    base[i] = reserve_memory(bytes);
3663
3664    if (base[i] != NULL) {
3665      // Is this the block we wanted?
3666      if (base[i] == requested_addr) {
3667        size[i] = bytes;
3668        break;
3669      }
3670
3671      // Does this overlap the block we wanted? Give back the overlapped
3672      // parts and try again.
3673
3674      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3675      if (top_overlap >= 0 && top_overlap < bytes) {
3676        unmap_memory(base[i], top_overlap);
3677        base[i] += top_overlap;
3678        size[i] = bytes - top_overlap;
3679      } else {
3680        size_t bottom_overlap = base[i] + bytes - requested_addr;
3681        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3682          unmap_memory(requested_addr, bottom_overlap);
3683          size[i] = bytes - bottom_overlap;
3684        } else {
3685          size[i] = bytes;
3686        }
3687      }
3688    }
3689  }
3690
3691  // Give back the unused reserved pieces.
3692
3693  for (int j = 0; j < i; ++j) {
3694    if (base[j] != NULL) {
3695      unmap_memory(base[j], size[j]);
3696    }
3697  }
3698
3699  if (i < max_tries) {
3700    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3701    return requested_addr;
3702  } else {
3703    _highest_vm_reserved_address = old_highest;
3704    return NULL;
3705  }
3706}
3707
3708size_t os::read(int fd, void *buf, unsigned int nBytes) {
3709  return ::read(fd, buf, nBytes);
3710}
3711
3712// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3713// Solaris uses poll(), linux uses park().
3714// Poll() is likely a better choice, assuming that Thread.interrupt()
3715// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3716// SIGSEGV, see 4355769.
3717
3718int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3719  assert(thread == Thread::current(),  "thread consistency check");
3720
3721  ParkEvent * const slp = thread->_SleepEvent ;
3722  slp->reset() ;
3723  OrderAccess::fence() ;
3724
3725  if (interruptible) {
3726    jlong prevtime = javaTimeNanos();
3727
3728    for (;;) {
3729      if (os::is_interrupted(thread, true)) {
3730        return OS_INTRPT;
3731      }
3732
3733      jlong newtime = javaTimeNanos();
3734
3735      if (newtime - prevtime < 0) {
3736        // time moving backwards, should only happen if no monotonic clock
3737        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3738        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3739      } else {
3740        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3741      }
3742
3743      if(millis <= 0) {
3744        return OS_OK;
3745      }
3746
3747      prevtime = newtime;
3748
3749      {
3750        assert(thread->is_Java_thread(), "sanity check");
3751        JavaThread *jt = (JavaThread *) thread;
3752        ThreadBlockInVM tbivm(jt);
3753        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3754
3755        jt->set_suspend_equivalent();
3756        // cleared by handle_special_suspend_equivalent_condition() or
3757        // java_suspend_self() via check_and_wait_while_suspended()
3758
3759        slp->park(millis);
3760
3761        // were we externally suspended while we were waiting?
3762        jt->check_and_wait_while_suspended();
3763      }
3764    }
3765  } else {
3766    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3767    jlong prevtime = javaTimeNanos();
3768
3769    for (;;) {
3770      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3771      // the 1st iteration ...
3772      jlong newtime = javaTimeNanos();
3773
3774      if (newtime - prevtime < 0) {
3775        // time moving backwards, should only happen if no monotonic clock
3776        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3777        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3778      } else {
3779        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3780      }
3781
3782      if(millis <= 0) break ;
3783
3784      prevtime = newtime;
3785      slp->park(millis);
3786    }
3787    return OS_OK ;
3788  }
3789}
3790
3791int os::naked_sleep() {
3792  // %% make the sleep time an integer flag. for now use 1 millisec.
3793  return os::sleep(Thread::current(), 1, false);
3794}
3795
3796// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3797void os::infinite_sleep() {
3798  while (true) {    // sleep forever ...
3799    ::sleep(100);   // ... 100 seconds at a time
3800  }
3801}
3802
3803// Used to convert frequent JVM_Yield() to nops
3804bool os::dont_yield() {
3805  return DontYieldALot;
3806}
3807
3808void os::yield() {
3809  sched_yield();
3810}
3811
3812os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3813
3814void os::yield_all(int attempts) {
3815  // Yields to all threads, including threads with lower priorities
3816  // Threads on Linux are all with same priority. The Solaris style
3817  // os::yield_all() with nanosleep(1ms) is not necessary.
3818  sched_yield();
3819}
3820
3821// Called from the tight loops to possibly influence time-sharing heuristics
3822void os::loop_breaker(int attempts) {
3823  os::yield_all(attempts);
3824}
3825
3826////////////////////////////////////////////////////////////////////////////////
3827// thread priority support
3828
3829// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3830// only supports dynamic priority, static priority must be zero. For real-time
3831// applications, Linux supports SCHED_RR which allows static priority (1-99).
3832// However, for large multi-threaded applications, SCHED_RR is not only slower
3833// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3834// of 5 runs - Sep 2005).
3835//
3836// The following code actually changes the niceness of kernel-thread/LWP. It
3837// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3838// not the entire user process, and user level threads are 1:1 mapped to kernel
3839// threads. It has always been the case, but could change in the future. For
3840// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3841// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3842
3843int os::java_to_os_priority[CriticalPriority + 1] = {
3844  19,              // 0 Entry should never be used
3845
3846   4,              // 1 MinPriority
3847   3,              // 2
3848   2,              // 3
3849
3850   1,              // 4
3851   0,              // 5 NormPriority
3852  -1,              // 6
3853
3854  -2,              // 7
3855  -3,              // 8
3856  -4,              // 9 NearMaxPriority
3857
3858  -5,              // 10 MaxPriority
3859
3860  -5               // 11 CriticalPriority
3861};
3862
3863static int prio_init() {
3864  if (ThreadPriorityPolicy == 1) {
3865    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3866    // if effective uid is not root. Perhaps, a more elegant way of doing
3867    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3868    if (geteuid() != 0) {
3869      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3870        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3871      }
3872      ThreadPriorityPolicy = 0;
3873    }
3874  }
3875  if (UseCriticalJavaThreadPriority) {
3876    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3877  }
3878  return 0;
3879}
3880
3881OSReturn os::set_native_priority(Thread* thread, int newpri) {
3882  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3883
3884  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3885  return (ret == 0) ? OS_OK : OS_ERR;
3886}
3887
3888OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3889  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3890    *priority_ptr = java_to_os_priority[NormPriority];
3891    return OS_OK;
3892  }
3893
3894  errno = 0;
3895  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3896  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3897}
3898
3899// Hint to the underlying OS that a task switch would not be good.
3900// Void return because it's a hint and can fail.
3901void os::hint_no_preempt() {}
3902
3903////////////////////////////////////////////////////////////////////////////////
3904// suspend/resume support
3905
3906//  the low-level signal-based suspend/resume support is a remnant from the
3907//  old VM-suspension that used to be for java-suspension, safepoints etc,
3908//  within hotspot. Now there is a single use-case for this:
3909//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3910//      that runs in the watcher thread.
3911//  The remaining code is greatly simplified from the more general suspension
3912//  code that used to be used.
3913//
3914//  The protocol is quite simple:
3915//  - suspend:
3916//      - sends a signal to the target thread
3917//      - polls the suspend state of the osthread using a yield loop
3918//      - target thread signal handler (SR_handler) sets suspend state
3919//        and blocks in sigsuspend until continued
3920//  - resume:
3921//      - sets target osthread state to continue
3922//      - sends signal to end the sigsuspend loop in the SR_handler
3923//
3924//  Note that the SR_lock plays no role in this suspend/resume protocol.
3925//
3926
3927static void resume_clear_context(OSThread *osthread) {
3928  osthread->set_ucontext(NULL);
3929  osthread->set_siginfo(NULL);
3930}
3931
3932static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3933  osthread->set_ucontext(context);
3934  osthread->set_siginfo(siginfo);
3935}
3936
3937//
3938// Handler function invoked when a thread's execution is suspended or
3939// resumed. We have to be careful that only async-safe functions are
3940// called here (Note: most pthread functions are not async safe and
3941// should be avoided.)
3942//
3943// Note: sigwait() is a more natural fit than sigsuspend() from an
3944// interface point of view, but sigwait() prevents the signal hander
3945// from being run. libpthread would get very confused by not having
3946// its signal handlers run and prevents sigwait()'s use with the
3947// mutex granting granting signal.
3948//
3949// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3950//
3951static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3952  // Save and restore errno to avoid confusing native code with EINTR
3953  // after sigsuspend.
3954  int old_errno = errno;
3955
3956  Thread* thread = Thread::current();
3957  OSThread* osthread = thread->osthread();
3958  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3959
3960  os::SuspendResume::State current = osthread->sr.state();
3961  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3962    suspend_save_context(osthread, siginfo, context);
3963
3964    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3965    os::SuspendResume::State state = osthread->sr.suspended();
3966    if (state == os::SuspendResume::SR_SUSPENDED) {
3967      sigset_t suspend_set;  // signals for sigsuspend()
3968
3969      // get current set of blocked signals and unblock resume signal
3970      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3971      sigdelset(&suspend_set, SR_signum);
3972
3973      sr_semaphore.signal();
3974      // wait here until we are resumed
3975      while (1) {
3976        sigsuspend(&suspend_set);
3977
3978        os::SuspendResume::State result = osthread->sr.running();
3979        if (result == os::SuspendResume::SR_RUNNING) {
3980          sr_semaphore.signal();
3981          break;
3982        }
3983      }
3984
3985    } else if (state == os::SuspendResume::SR_RUNNING) {
3986      // request was cancelled, continue
3987    } else {
3988      ShouldNotReachHere();
3989    }
3990
3991    resume_clear_context(osthread);
3992  } else if (current == os::SuspendResume::SR_RUNNING) {
3993    // request was cancelled, continue
3994  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3995    // ignore
3996  } else {
3997    // ignore
3998  }
3999
4000  errno = old_errno;
4001}
4002
4003
4004static int SR_initialize() {
4005  struct sigaction act;
4006  char *s;
4007  /* Get signal number to use for suspend/resume */
4008  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4009    int sig = ::strtol(s, 0, 10);
4010    if (sig > 0 || sig < _NSIG) {
4011        SR_signum = sig;
4012    }
4013  }
4014
4015  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4016        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4017
4018  sigemptyset(&SR_sigset);
4019  sigaddset(&SR_sigset, SR_signum);
4020
4021  /* Set up signal handler for suspend/resume */
4022  act.sa_flags = SA_RESTART|SA_SIGINFO;
4023  act.sa_handler = (void (*)(int)) SR_handler;
4024
4025  // SR_signum is blocked by default.
4026  // 4528190 - We also need to block pthread restart signal (32 on all
4027  // supported Linux platforms). Note that LinuxThreads need to block
4028  // this signal for all threads to work properly. So we don't have
4029  // to use hard-coded signal number when setting up the mask.
4030  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4031
4032  if (sigaction(SR_signum, &act, 0) == -1) {
4033    return -1;
4034  }
4035
4036  // Save signal flag
4037  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4038  return 0;
4039}
4040
4041static int sr_notify(OSThread* osthread) {
4042  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4043  assert_status(status == 0, status, "pthread_kill");
4044  return status;
4045}
4046
4047// "Randomly" selected value for how long we want to spin
4048// before bailing out on suspending a thread, also how often
4049// we send a signal to a thread we want to resume
4050static const int RANDOMLY_LARGE_INTEGER = 1000000;
4051static const int RANDOMLY_LARGE_INTEGER2 = 100;
4052
4053// returns true on success and false on error - really an error is fatal
4054// but this seems the normal response to library errors
4055static bool do_suspend(OSThread* osthread) {
4056  assert(osthread->sr.is_running(), "thread should be running");
4057  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4058
4059  // mark as suspended and send signal
4060  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4061    // failed to switch, state wasn't running?
4062    ShouldNotReachHere();
4063    return false;
4064  }
4065
4066  if (sr_notify(osthread) != 0) {
4067    ShouldNotReachHere();
4068  }
4069
4070  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4071  while (true) {
4072    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4073      break;
4074    } else {
4075      // timeout
4076      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4077      if (cancelled == os::SuspendResume::SR_RUNNING) {
4078        return false;
4079      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4080        // make sure that we consume the signal on the semaphore as well
4081        sr_semaphore.wait();
4082        break;
4083      } else {
4084        ShouldNotReachHere();
4085        return false;
4086      }
4087    }
4088  }
4089
4090  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4091  return true;
4092}
4093
4094static void do_resume(OSThread* osthread) {
4095  assert(osthread->sr.is_suspended(), "thread should be suspended");
4096  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4097
4098  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4099    // failed to switch to WAKEUP_REQUEST
4100    ShouldNotReachHere();
4101    return;
4102  }
4103
4104  while (true) {
4105    if (sr_notify(osthread) == 0) {
4106      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4107        if (osthread->sr.is_running()) {
4108          return;
4109        }
4110      }
4111    } else {
4112      ShouldNotReachHere();
4113    }
4114  }
4115
4116  guarantee(osthread->sr.is_running(), "Must be running!");
4117}
4118
4119////////////////////////////////////////////////////////////////////////////////
4120// interrupt support
4121
4122void os::interrupt(Thread* thread) {
4123  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4124    "possibility of dangling Thread pointer");
4125
4126  OSThread* osthread = thread->osthread();
4127
4128  if (!osthread->interrupted()) {
4129    osthread->set_interrupted(true);
4130    // More than one thread can get here with the same value of osthread,
4131    // resulting in multiple notifications.  We do, however, want the store
4132    // to interrupted() to be visible to other threads before we execute unpark().
4133    OrderAccess::fence();
4134    ParkEvent * const slp = thread->_SleepEvent ;
4135    if (slp != NULL) slp->unpark() ;
4136  }
4137
4138  // For JSR166. Unpark even if interrupt status already was set
4139  if (thread->is_Java_thread())
4140    ((JavaThread*)thread)->parker()->unpark();
4141
4142  ParkEvent * ev = thread->_ParkEvent ;
4143  if (ev != NULL) ev->unpark() ;
4144
4145}
4146
4147bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4148  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4149    "possibility of dangling Thread pointer");
4150
4151  OSThread* osthread = thread->osthread();
4152
4153  bool interrupted = osthread->interrupted();
4154
4155  if (interrupted && clear_interrupted) {
4156    osthread->set_interrupted(false);
4157    // consider thread->_SleepEvent->reset() ... optional optimization
4158  }
4159
4160  return interrupted;
4161}
4162
4163///////////////////////////////////////////////////////////////////////////////////
4164// signal handling (except suspend/resume)
4165
4166// This routine may be used by user applications as a "hook" to catch signals.
4167// The user-defined signal handler must pass unrecognized signals to this
4168// routine, and if it returns true (non-zero), then the signal handler must
4169// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4170// routine will never retun false (zero), but instead will execute a VM panic
4171// routine kill the process.
4172//
4173// If this routine returns false, it is OK to call it again.  This allows
4174// the user-defined signal handler to perform checks either before or after
4175// the VM performs its own checks.  Naturally, the user code would be making
4176// a serious error if it tried to handle an exception (such as a null check
4177// or breakpoint) that the VM was generating for its own correct operation.
4178//
4179// This routine may recognize any of the following kinds of signals:
4180//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4181// It should be consulted by handlers for any of those signals.
4182//
4183// The caller of this routine must pass in the three arguments supplied
4184// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4185// field of the structure passed to sigaction().  This routine assumes that
4186// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4187//
4188// Note that the VM will print warnings if it detects conflicting signal
4189// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4190//
4191extern "C" JNIEXPORT int
4192JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4193                        void* ucontext, int abort_if_unrecognized);
4194
4195void signalHandler(int sig, siginfo_t* info, void* uc) {
4196  assert(info != NULL && uc != NULL, "it must be old kernel");
4197  int orig_errno = errno;  // Preserve errno value over signal handler.
4198  JVM_handle_linux_signal(sig, info, uc, true);
4199  errno = orig_errno;
4200}
4201
4202
4203// This boolean allows users to forward their own non-matching signals
4204// to JVM_handle_linux_signal, harmlessly.
4205bool os::Linux::signal_handlers_are_installed = false;
4206
4207// For signal-chaining
4208struct sigaction os::Linux::sigact[MAXSIGNUM];
4209unsigned int os::Linux::sigs = 0;
4210bool os::Linux::libjsig_is_loaded = false;
4211typedef struct sigaction *(*get_signal_t)(int);
4212get_signal_t os::Linux::get_signal_action = NULL;
4213
4214struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4215  struct sigaction *actp = NULL;
4216
4217  if (libjsig_is_loaded) {
4218    // Retrieve the old signal handler from libjsig
4219    actp = (*get_signal_action)(sig);
4220  }
4221  if (actp == NULL) {
4222    // Retrieve the preinstalled signal handler from jvm
4223    actp = get_preinstalled_handler(sig);
4224  }
4225
4226  return actp;
4227}
4228
4229static bool call_chained_handler(struct sigaction *actp, int sig,
4230                                 siginfo_t *siginfo, void *context) {
4231  // Call the old signal handler
4232  if (actp->sa_handler == SIG_DFL) {
4233    // It's more reasonable to let jvm treat it as an unexpected exception
4234    // instead of taking the default action.
4235    return false;
4236  } else if (actp->sa_handler != SIG_IGN) {
4237    if ((actp->sa_flags & SA_NODEFER) == 0) {
4238      // automaticlly block the signal
4239      sigaddset(&(actp->sa_mask), sig);
4240    }
4241
4242    sa_handler_t hand;
4243    sa_sigaction_t sa;
4244    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4245    // retrieve the chained handler
4246    if (siginfo_flag_set) {
4247      sa = actp->sa_sigaction;
4248    } else {
4249      hand = actp->sa_handler;
4250    }
4251
4252    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4253      actp->sa_handler = SIG_DFL;
4254    }
4255
4256    // try to honor the signal mask
4257    sigset_t oset;
4258    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4259
4260    // call into the chained handler
4261    if (siginfo_flag_set) {
4262      (*sa)(sig, siginfo, context);
4263    } else {
4264      (*hand)(sig);
4265    }
4266
4267    // restore the signal mask
4268    pthread_sigmask(SIG_SETMASK, &oset, 0);
4269  }
4270  // Tell jvm's signal handler the signal is taken care of.
4271  return true;
4272}
4273
4274bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4275  bool chained = false;
4276  // signal-chaining
4277  if (UseSignalChaining) {
4278    struct sigaction *actp = get_chained_signal_action(sig);
4279    if (actp != NULL) {
4280      chained = call_chained_handler(actp, sig, siginfo, context);
4281    }
4282  }
4283  return chained;
4284}
4285
4286struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4287  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4288    return &sigact[sig];
4289  }
4290  return NULL;
4291}
4292
4293void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4294  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4295  sigact[sig] = oldAct;
4296  sigs |= (unsigned int)1 << sig;
4297}
4298
4299// for diagnostic
4300int os::Linux::sigflags[MAXSIGNUM];
4301
4302int os::Linux::get_our_sigflags(int sig) {
4303  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4304  return sigflags[sig];
4305}
4306
4307void os::Linux::set_our_sigflags(int sig, int flags) {
4308  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4309  sigflags[sig] = flags;
4310}
4311
4312void os::Linux::set_signal_handler(int sig, bool set_installed) {
4313  // Check for overwrite.
4314  struct sigaction oldAct;
4315  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4316
4317  void* oldhand = oldAct.sa_sigaction
4318                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4319                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4320  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4321      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4322      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4323    if (AllowUserSignalHandlers || !set_installed) {
4324      // Do not overwrite; user takes responsibility to forward to us.
4325      return;
4326    } else if (UseSignalChaining) {
4327      // save the old handler in jvm
4328      save_preinstalled_handler(sig, oldAct);
4329      // libjsig also interposes the sigaction() call below and saves the
4330      // old sigaction on it own.
4331    } else {
4332      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4333                    "%#lx for signal %d.", (long)oldhand, sig));
4334    }
4335  }
4336
4337  struct sigaction sigAct;
4338  sigfillset(&(sigAct.sa_mask));
4339  sigAct.sa_handler = SIG_DFL;
4340  if (!set_installed) {
4341    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4342  } else {
4343    sigAct.sa_sigaction = signalHandler;
4344    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4345  }
4346  // Save flags, which are set by ours
4347  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4348  sigflags[sig] = sigAct.sa_flags;
4349
4350  int ret = sigaction(sig, &sigAct, &oldAct);
4351  assert(ret == 0, "check");
4352
4353  void* oldhand2  = oldAct.sa_sigaction
4354                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4355                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4356  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4357}
4358
4359// install signal handlers for signals that HotSpot needs to
4360// handle in order to support Java-level exception handling.
4361
4362void os::Linux::install_signal_handlers() {
4363  if (!signal_handlers_are_installed) {
4364    signal_handlers_are_installed = true;
4365
4366    // signal-chaining
4367    typedef void (*signal_setting_t)();
4368    signal_setting_t begin_signal_setting = NULL;
4369    signal_setting_t end_signal_setting = NULL;
4370    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4371                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4372    if (begin_signal_setting != NULL) {
4373      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4374                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4375      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4376                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4377      libjsig_is_loaded = true;
4378      assert(UseSignalChaining, "should enable signal-chaining");
4379    }
4380    if (libjsig_is_loaded) {
4381      // Tell libjsig jvm is setting signal handlers
4382      (*begin_signal_setting)();
4383    }
4384
4385    set_signal_handler(SIGSEGV, true);
4386    set_signal_handler(SIGPIPE, true);
4387    set_signal_handler(SIGBUS, true);
4388    set_signal_handler(SIGILL, true);
4389    set_signal_handler(SIGFPE, true);
4390    set_signal_handler(SIGXFSZ, true);
4391
4392    if (libjsig_is_loaded) {
4393      // Tell libjsig jvm finishes setting signal handlers
4394      (*end_signal_setting)();
4395    }
4396
4397    // We don't activate signal checker if libjsig is in place, we trust ourselves
4398    // and if UserSignalHandler is installed all bets are off.
4399    // Log that signal checking is off only if -verbose:jni is specified.
4400    if (CheckJNICalls) {
4401      if (libjsig_is_loaded) {
4402        if (PrintJNIResolving) {
4403          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4404        }
4405        check_signals = false;
4406      }
4407      if (AllowUserSignalHandlers) {
4408        if (PrintJNIResolving) {
4409          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4410        }
4411        check_signals = false;
4412      }
4413    }
4414  }
4415}
4416
4417// This is the fastest way to get thread cpu time on Linux.
4418// Returns cpu time (user+sys) for any thread, not only for current.
4419// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4420// It might work on 2.6.10+ with a special kernel/glibc patch.
4421// For reference, please, see IEEE Std 1003.1-2004:
4422//   http://www.unix.org/single_unix_specification
4423
4424jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4425  struct timespec tp;
4426  int rc = os::Linux::clock_gettime(clockid, &tp);
4427  assert(rc == 0, "clock_gettime is expected to return 0 code");
4428
4429  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4430}
4431
4432/////
4433// glibc on Linux platform uses non-documented flag
4434// to indicate, that some special sort of signal
4435// trampoline is used.
4436// We will never set this flag, and we should
4437// ignore this flag in our diagnostic
4438#ifdef SIGNIFICANT_SIGNAL_MASK
4439#undef SIGNIFICANT_SIGNAL_MASK
4440#endif
4441#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4442
4443static const char* get_signal_handler_name(address handler,
4444                                           char* buf, int buflen) {
4445  int offset;
4446  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4447  if (found) {
4448    // skip directory names
4449    const char *p1, *p2;
4450    p1 = buf;
4451    size_t len = strlen(os::file_separator());
4452    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4453    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4454  } else {
4455    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4456  }
4457  return buf;
4458}
4459
4460static void print_signal_handler(outputStream* st, int sig,
4461                                 char* buf, size_t buflen) {
4462  struct sigaction sa;
4463
4464  sigaction(sig, NULL, &sa);
4465
4466  // See comment for SIGNIFICANT_SIGNAL_MASK define
4467  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4468
4469  st->print("%s: ", os::exception_name(sig, buf, buflen));
4470
4471  address handler = (sa.sa_flags & SA_SIGINFO)
4472    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4473    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4474
4475  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4476    st->print("SIG_DFL");
4477  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4478    st->print("SIG_IGN");
4479  } else {
4480    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4481  }
4482
4483  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4484
4485  address rh = VMError::get_resetted_sighandler(sig);
4486  // May be, handler was resetted by VMError?
4487  if(rh != NULL) {
4488    handler = rh;
4489    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4490  }
4491
4492  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4493
4494  // Check: is it our handler?
4495  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4496     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4497    // It is our signal handler
4498    // check for flags, reset system-used one!
4499    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4500      st->print(
4501                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4502                os::Linux::get_our_sigflags(sig));
4503    }
4504  }
4505  st->cr();
4506}
4507
4508
4509#define DO_SIGNAL_CHECK(sig) \
4510  if (!sigismember(&check_signal_done, sig)) \
4511    os::Linux::check_signal_handler(sig)
4512
4513// This method is a periodic task to check for misbehaving JNI applications
4514// under CheckJNI, we can add any periodic checks here
4515
4516void os::run_periodic_checks() {
4517
4518  if (check_signals == false) return;
4519
4520  // SEGV and BUS if overridden could potentially prevent
4521  // generation of hs*.log in the event of a crash, debugging
4522  // such a case can be very challenging, so we absolutely
4523  // check the following for a good measure:
4524  DO_SIGNAL_CHECK(SIGSEGV);
4525  DO_SIGNAL_CHECK(SIGILL);
4526  DO_SIGNAL_CHECK(SIGFPE);
4527  DO_SIGNAL_CHECK(SIGBUS);
4528  DO_SIGNAL_CHECK(SIGPIPE);
4529  DO_SIGNAL_CHECK(SIGXFSZ);
4530
4531
4532  // ReduceSignalUsage allows the user to override these handlers
4533  // see comments at the very top and jvm_solaris.h
4534  if (!ReduceSignalUsage) {
4535    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4536    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4537    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4538    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4539  }
4540
4541  DO_SIGNAL_CHECK(SR_signum);
4542  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4543}
4544
4545typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4546
4547static os_sigaction_t os_sigaction = NULL;
4548
4549void os::Linux::check_signal_handler(int sig) {
4550  char buf[O_BUFLEN];
4551  address jvmHandler = NULL;
4552
4553
4554  struct sigaction act;
4555  if (os_sigaction == NULL) {
4556    // only trust the default sigaction, in case it has been interposed
4557    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4558    if (os_sigaction == NULL) return;
4559  }
4560
4561  os_sigaction(sig, (struct sigaction*)NULL, &act);
4562
4563
4564  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4565
4566  address thisHandler = (act.sa_flags & SA_SIGINFO)
4567    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4568    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4569
4570
4571  switch(sig) {
4572  case SIGSEGV:
4573  case SIGBUS:
4574  case SIGFPE:
4575  case SIGPIPE:
4576  case SIGILL:
4577  case SIGXFSZ:
4578    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4579    break;
4580
4581  case SHUTDOWN1_SIGNAL:
4582  case SHUTDOWN2_SIGNAL:
4583  case SHUTDOWN3_SIGNAL:
4584  case BREAK_SIGNAL:
4585    jvmHandler = (address)user_handler();
4586    break;
4587
4588  case INTERRUPT_SIGNAL:
4589    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4590    break;
4591
4592  default:
4593    if (sig == SR_signum) {
4594      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4595    } else {
4596      return;
4597    }
4598    break;
4599  }
4600
4601  if (thisHandler != jvmHandler) {
4602    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4603    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4604    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4605    // No need to check this sig any longer
4606    sigaddset(&check_signal_done, sig);
4607  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4608    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4609    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4610    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4611    // No need to check this sig any longer
4612    sigaddset(&check_signal_done, sig);
4613  }
4614
4615  // Dump all the signal
4616  if (sigismember(&check_signal_done, sig)) {
4617    print_signal_handlers(tty, buf, O_BUFLEN);
4618  }
4619}
4620
4621extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4622
4623extern bool signal_name(int signo, char* buf, size_t len);
4624
4625const char* os::exception_name(int exception_code, char* buf, size_t size) {
4626  if (0 < exception_code && exception_code <= SIGRTMAX) {
4627    // signal
4628    if (!signal_name(exception_code, buf, size)) {
4629      jio_snprintf(buf, size, "SIG%d", exception_code);
4630    }
4631    return buf;
4632  } else {
4633    return NULL;
4634  }
4635}
4636
4637// this is called _before_ the most of global arguments have been parsed
4638void os::init(void) {
4639  char dummy;   /* used to get a guess on initial stack address */
4640//  first_hrtime = gethrtime();
4641
4642  // With LinuxThreads the JavaMain thread pid (primordial thread)
4643  // is different than the pid of the java launcher thread.
4644  // So, on Linux, the launcher thread pid is passed to the VM
4645  // via the sun.java.launcher.pid property.
4646  // Use this property instead of getpid() if it was correctly passed.
4647  // See bug 6351349.
4648  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4649
4650  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4651
4652  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4653
4654  init_random(1234567);
4655
4656  ThreadCritical::initialize();
4657
4658  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4659  if (Linux::page_size() == -1) {
4660    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4661                  strerror(errno)));
4662  }
4663  init_page_sizes((size_t) Linux::page_size());
4664
4665  Linux::initialize_system_info();
4666
4667  // main_thread points to the aboriginal thread
4668  Linux::_main_thread = pthread_self();
4669
4670  Linux::clock_init();
4671  initial_time_count = os::elapsed_counter();
4672  pthread_mutex_init(&dl_mutex, NULL);
4673
4674  // If the pagesize of the VM is greater than 8K determine the appropriate
4675  // number of initial guard pages.  The user can change this with the
4676  // command line arguments, if needed.
4677  if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4678    StackYellowPages = 1;
4679    StackRedPages = 1;
4680    StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4681  }
4682}
4683
4684// To install functions for atexit system call
4685extern "C" {
4686  static void perfMemory_exit_helper() {
4687    perfMemory_exit();
4688  }
4689}
4690
4691// this is called _after_ the global arguments have been parsed
4692jint os::init_2(void)
4693{
4694  Linux::fast_thread_clock_init();
4695
4696  // Allocate a single page and mark it as readable for safepoint polling
4697  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4698  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4699
4700  os::set_polling_page( polling_page );
4701
4702#ifndef PRODUCT
4703  if(Verbose && PrintMiscellaneous)
4704    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4705#endif
4706
4707  if (!UseMembar) {
4708    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4709    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4710    os::set_memory_serialize_page( mem_serialize_page );
4711
4712#ifndef PRODUCT
4713    if(Verbose && PrintMiscellaneous)
4714      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4715#endif
4716  }
4717
4718  os::large_page_init();
4719
4720  // initialize suspend/resume support - must do this before signal_sets_init()
4721  if (SR_initialize() != 0) {
4722    perror("SR_initialize failed");
4723    return JNI_ERR;
4724  }
4725
4726  Linux::signal_sets_init();
4727  Linux::install_signal_handlers();
4728
4729  // Check minimum allowable stack size for thread creation and to initialize
4730  // the java system classes, including StackOverflowError - depends on page
4731  // size.  Add a page for compiler2 recursion in main thread.
4732  // Add in 2*BytesPerWord times page size to account for VM stack during
4733  // class initialization depending on 32 or 64 bit VM.
4734  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4735            (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4736                    (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4737
4738  size_t threadStackSizeInBytes = ThreadStackSize * K;
4739  if (threadStackSizeInBytes != 0 &&
4740      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4741        tty->print_cr("\nThe stack size specified is too small, "
4742                      "Specify at least %dk",
4743                      os::Linux::min_stack_allowed/ K);
4744        return JNI_ERR;
4745  }
4746
4747  // Make the stack size a multiple of the page size so that
4748  // the yellow/red zones can be guarded.
4749  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4750        vm_page_size()));
4751
4752  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4753
4754  Linux::libpthread_init();
4755  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4756     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4757          Linux::glibc_version(), Linux::libpthread_version(),
4758          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4759  }
4760
4761  if (UseNUMA) {
4762    if (!Linux::libnuma_init()) {
4763      UseNUMA = false;
4764    } else {
4765      if ((Linux::numa_max_node() < 1)) {
4766        // There's only one node(they start from 0), disable NUMA.
4767        UseNUMA = false;
4768      }
4769    }
4770    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4771    // we can make the adaptive lgrp chunk resizing work. If the user specified
4772    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4773    // disable adaptive resizing.
4774    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4775      if (FLAG_IS_DEFAULT(UseNUMA)) {
4776        UseNUMA = false;
4777      } else {
4778        if (FLAG_IS_DEFAULT(UseLargePages) &&
4779            FLAG_IS_DEFAULT(UseSHM) &&
4780            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4781          UseLargePages = false;
4782        } else {
4783          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4784          UseAdaptiveSizePolicy = false;
4785          UseAdaptiveNUMAChunkSizing = false;
4786        }
4787      }
4788    }
4789    if (!UseNUMA && ForceNUMA) {
4790      UseNUMA = true;
4791    }
4792  }
4793
4794  if (MaxFDLimit) {
4795    // set the number of file descriptors to max. print out error
4796    // if getrlimit/setrlimit fails but continue regardless.
4797    struct rlimit nbr_files;
4798    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4799    if (status != 0) {
4800      if (PrintMiscellaneous && (Verbose || WizardMode))
4801        perror("os::init_2 getrlimit failed");
4802    } else {
4803      nbr_files.rlim_cur = nbr_files.rlim_max;
4804      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4805      if (status != 0) {
4806        if (PrintMiscellaneous && (Verbose || WizardMode))
4807          perror("os::init_2 setrlimit failed");
4808      }
4809    }
4810  }
4811
4812  // Initialize lock used to serialize thread creation (see os::create_thread)
4813  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4814
4815  // at-exit methods are called in the reverse order of their registration.
4816  // atexit functions are called on return from main or as a result of a
4817  // call to exit(3C). There can be only 32 of these functions registered
4818  // and atexit() does not set errno.
4819
4820  if (PerfAllowAtExitRegistration) {
4821    // only register atexit functions if PerfAllowAtExitRegistration is set.
4822    // atexit functions can be delayed until process exit time, which
4823    // can be problematic for embedded VM situations. Embedded VMs should
4824    // call DestroyJavaVM() to assure that VM resources are released.
4825
4826    // note: perfMemory_exit_helper atexit function may be removed in
4827    // the future if the appropriate cleanup code can be added to the
4828    // VM_Exit VMOperation's doit method.
4829    if (atexit(perfMemory_exit_helper) != 0) {
4830      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4831    }
4832  }
4833
4834  // initialize thread priority policy
4835  prio_init();
4836
4837  return JNI_OK;
4838}
4839
4840// this is called at the end of vm_initialization
4841void os::init_3(void)
4842{
4843#ifdef JAVASE_EMBEDDED
4844  // Start the MemNotifyThread
4845  if (LowMemoryProtection) {
4846    MemNotifyThread::start();
4847  }
4848  return;
4849#endif
4850}
4851
4852// Mark the polling page as unreadable
4853void os::make_polling_page_unreadable(void) {
4854  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4855    fatal("Could not disable polling page");
4856};
4857
4858// Mark the polling page as readable
4859void os::make_polling_page_readable(void) {
4860  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4861    fatal("Could not enable polling page");
4862  }
4863};
4864
4865int os::active_processor_count() {
4866  // Linux doesn't yet have a (official) notion of processor sets,
4867  // so just return the number of online processors.
4868  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4869  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4870  return online_cpus;
4871}
4872
4873void os::set_native_thread_name(const char *name) {
4874  // Not yet implemented.
4875  return;
4876}
4877
4878bool os::distribute_processes(uint length, uint* distribution) {
4879  // Not yet implemented.
4880  return false;
4881}
4882
4883bool os::bind_to_processor(uint processor_id) {
4884  // Not yet implemented.
4885  return false;
4886}
4887
4888///
4889
4890void os::SuspendedThreadTask::internal_do_task() {
4891  if (do_suspend(_thread->osthread())) {
4892    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4893    do_task(context);
4894    do_resume(_thread->osthread());
4895  }
4896}
4897
4898class PcFetcher : public os::SuspendedThreadTask {
4899public:
4900  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4901  ExtendedPC result();
4902protected:
4903  void do_task(const os::SuspendedThreadTaskContext& context);
4904private:
4905  ExtendedPC _epc;
4906};
4907
4908ExtendedPC PcFetcher::result() {
4909  guarantee(is_done(), "task is not done yet.");
4910  return _epc;
4911}
4912
4913void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4914  Thread* thread = context.thread();
4915  OSThread* osthread = thread->osthread();
4916  if (osthread->ucontext() != NULL) {
4917    _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4918  } else {
4919    // NULL context is unexpected, double-check this is the VMThread
4920    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4921  }
4922}
4923
4924// Suspends the target using the signal mechanism and then grabs the PC before
4925// resuming the target. Used by the flat-profiler only
4926ExtendedPC os::get_thread_pc(Thread* thread) {
4927  // Make sure that it is called by the watcher for the VMThread
4928  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4929  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4930
4931  PcFetcher fetcher(thread);
4932  fetcher.run();
4933  return fetcher.result();
4934}
4935
4936int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4937{
4938   if (is_NPTL()) {
4939      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4940   } else {
4941      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4942      // word back to default 64bit precision if condvar is signaled. Java
4943      // wants 53bit precision.  Save and restore current value.
4944      int fpu = get_fpu_control_word();
4945      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4946      set_fpu_control_word(fpu);
4947      return status;
4948   }
4949}
4950
4951////////////////////////////////////////////////////////////////////////////////
4952// debug support
4953
4954bool os::find(address addr, outputStream* st) {
4955  Dl_info dlinfo;
4956  memset(&dlinfo, 0, sizeof(dlinfo));
4957  if (dladdr(addr, &dlinfo) != 0) {
4958    st->print(PTR_FORMAT ": ", addr);
4959    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4960      st->print("%s+%#x", dlinfo.dli_sname,
4961                 addr - (intptr_t)dlinfo.dli_saddr);
4962    } else if (dlinfo.dli_fbase != NULL) {
4963      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4964    } else {
4965      st->print("<absolute address>");
4966    }
4967    if (dlinfo.dli_fname != NULL) {
4968      st->print(" in %s", dlinfo.dli_fname);
4969    }
4970    if (dlinfo.dli_fbase != NULL) {
4971      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4972    }
4973    st->cr();
4974
4975    if (Verbose) {
4976      // decode some bytes around the PC
4977      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4978      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4979      address       lowest = (address) dlinfo.dli_sname;
4980      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4981      if (begin < lowest)  begin = lowest;
4982      Dl_info dlinfo2;
4983      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4984          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4985        end = (address) dlinfo2.dli_saddr;
4986      Disassembler::decode(begin, end, st);
4987    }
4988    return true;
4989  }
4990  return false;
4991}
4992
4993////////////////////////////////////////////////////////////////////////////////
4994// misc
4995
4996// This does not do anything on Linux. This is basically a hook for being
4997// able to use structured exception handling (thread-local exception filters)
4998// on, e.g., Win32.
4999void
5000os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5001                         JavaCallArguments* args, Thread* thread) {
5002  f(value, method, args, thread);
5003}
5004
5005void os::print_statistics() {
5006}
5007
5008int os::message_box(const char* title, const char* message) {
5009  int i;
5010  fdStream err(defaultStream::error_fd());
5011  for (i = 0; i < 78; i++) err.print_raw("=");
5012  err.cr();
5013  err.print_raw_cr(title);
5014  for (i = 0; i < 78; i++) err.print_raw("-");
5015  err.cr();
5016  err.print_raw_cr(message);
5017  for (i = 0; i < 78; i++) err.print_raw("=");
5018  err.cr();
5019
5020  char buf[16];
5021  // Prevent process from exiting upon "read error" without consuming all CPU
5022  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5023
5024  return buf[0] == 'y' || buf[0] == 'Y';
5025}
5026
5027int os::stat(const char *path, struct stat *sbuf) {
5028  char pathbuf[MAX_PATH];
5029  if (strlen(path) > MAX_PATH - 1) {
5030    errno = ENAMETOOLONG;
5031    return -1;
5032  }
5033  os::native_path(strcpy(pathbuf, path));
5034  return ::stat(pathbuf, sbuf);
5035}
5036
5037bool os::check_heap(bool force) {
5038  return true;
5039}
5040
5041int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5042  return ::vsnprintf(buf, count, format, args);
5043}
5044
5045// Is a (classpath) directory empty?
5046bool os::dir_is_empty(const char* path) {
5047  DIR *dir = NULL;
5048  struct dirent *ptr;
5049
5050  dir = opendir(path);
5051  if (dir == NULL) return true;
5052
5053  /* Scan the directory */
5054  bool result = true;
5055  char buf[sizeof(struct dirent) + MAX_PATH];
5056  while (result && (ptr = ::readdir(dir)) != NULL) {
5057    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5058      result = false;
5059    }
5060  }
5061  closedir(dir);
5062  return result;
5063}
5064
5065// This code originates from JDK's sysOpen and open64_w
5066// from src/solaris/hpi/src/system_md.c
5067
5068#ifndef O_DELETE
5069#define O_DELETE 0x10000
5070#endif
5071
5072// Open a file. Unlink the file immediately after open returns
5073// if the specified oflag has the O_DELETE flag set.
5074// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5075
5076int os::open(const char *path, int oflag, int mode) {
5077
5078  if (strlen(path) > MAX_PATH - 1) {
5079    errno = ENAMETOOLONG;
5080    return -1;
5081  }
5082  int fd;
5083  int o_delete = (oflag & O_DELETE);
5084  oflag = oflag & ~O_DELETE;
5085
5086  fd = ::open64(path, oflag, mode);
5087  if (fd == -1) return -1;
5088
5089  //If the open succeeded, the file might still be a directory
5090  {
5091    struct stat64 buf64;
5092    int ret = ::fstat64(fd, &buf64);
5093    int st_mode = buf64.st_mode;
5094
5095    if (ret != -1) {
5096      if ((st_mode & S_IFMT) == S_IFDIR) {
5097        errno = EISDIR;
5098        ::close(fd);
5099        return -1;
5100      }
5101    } else {
5102      ::close(fd);
5103      return -1;
5104    }
5105  }
5106
5107    /*
5108     * All file descriptors that are opened in the JVM and not
5109     * specifically destined for a subprocess should have the
5110     * close-on-exec flag set.  If we don't set it, then careless 3rd
5111     * party native code might fork and exec without closing all
5112     * appropriate file descriptors (e.g. as we do in closeDescriptors in
5113     * UNIXProcess.c), and this in turn might:
5114     *
5115     * - cause end-of-file to fail to be detected on some file
5116     *   descriptors, resulting in mysterious hangs, or
5117     *
5118     * - might cause an fopen in the subprocess to fail on a system
5119     *   suffering from bug 1085341.
5120     *
5121     * (Yes, the default setting of the close-on-exec flag is a Unix
5122     * design flaw)
5123     *
5124     * See:
5125     * 1085341: 32-bit stdio routines should support file descriptors >255
5126     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5127     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5128     */
5129#ifdef FD_CLOEXEC
5130    {
5131        int flags = ::fcntl(fd, F_GETFD);
5132        if (flags != -1)
5133            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5134    }
5135#endif
5136
5137  if (o_delete != 0) {
5138    ::unlink(path);
5139  }
5140  return fd;
5141}
5142
5143
5144// create binary file, rewriting existing file if required
5145int os::create_binary_file(const char* path, bool rewrite_existing) {
5146  int oflags = O_WRONLY | O_CREAT;
5147  if (!rewrite_existing) {
5148    oflags |= O_EXCL;
5149  }
5150  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5151}
5152
5153// return current position of file pointer
5154jlong os::current_file_offset(int fd) {
5155  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5156}
5157
5158// move file pointer to the specified offset
5159jlong os::seek_to_file_offset(int fd, jlong offset) {
5160  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5161}
5162
5163// This code originates from JDK's sysAvailable
5164// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5165
5166int os::available(int fd, jlong *bytes) {
5167  jlong cur, end;
5168  int mode;
5169  struct stat64 buf64;
5170
5171  if (::fstat64(fd, &buf64) >= 0) {
5172    mode = buf64.st_mode;
5173    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5174      /*
5175      * XXX: is the following call interruptible? If so, this might
5176      * need to go through the INTERRUPT_IO() wrapper as for other
5177      * blocking, interruptible calls in this file.
5178      */
5179      int n;
5180      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5181        *bytes = n;
5182        return 1;
5183      }
5184    }
5185  }
5186  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5187    return 0;
5188  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5189    return 0;
5190  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5191    return 0;
5192  }
5193  *bytes = end - cur;
5194  return 1;
5195}
5196
5197int os::socket_available(int fd, jint *pbytes) {
5198  // Linux doc says EINTR not returned, unlike Solaris
5199  int ret = ::ioctl(fd, FIONREAD, pbytes);
5200
5201  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5202  // is expected to return 0 on failure and 1 on success to the jdk.
5203  return (ret < 0) ? 0 : 1;
5204}
5205
5206// Map a block of memory.
5207char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5208                     char *addr, size_t bytes, bool read_only,
5209                     bool allow_exec) {
5210  int prot;
5211  int flags = MAP_PRIVATE;
5212
5213  if (read_only) {
5214    prot = PROT_READ;
5215  } else {
5216    prot = PROT_READ | PROT_WRITE;
5217  }
5218
5219  if (allow_exec) {
5220    prot |= PROT_EXEC;
5221  }
5222
5223  if (addr != NULL) {
5224    flags |= MAP_FIXED;
5225  }
5226
5227  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5228                                     fd, file_offset);
5229  if (mapped_address == MAP_FAILED) {
5230    return NULL;
5231  }
5232  return mapped_address;
5233}
5234
5235
5236// Remap a block of memory.
5237char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5238                       char *addr, size_t bytes, bool read_only,
5239                       bool allow_exec) {
5240  // same as map_memory() on this OS
5241  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5242                        allow_exec);
5243}
5244
5245
5246// Unmap a block of memory.
5247bool os::pd_unmap_memory(char* addr, size_t bytes) {
5248  return munmap(addr, bytes) == 0;
5249}
5250
5251static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5252
5253static clockid_t thread_cpu_clockid(Thread* thread) {
5254  pthread_t tid = thread->osthread()->pthread_id();
5255  clockid_t clockid;
5256
5257  // Get thread clockid
5258  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5259  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5260  return clockid;
5261}
5262
5263// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5264// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5265// of a thread.
5266//
5267// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5268// the fast estimate available on the platform.
5269
5270jlong os::current_thread_cpu_time() {
5271  if (os::Linux::supports_fast_thread_cpu_time()) {
5272    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5273  } else {
5274    // return user + sys since the cost is the same
5275    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5276  }
5277}
5278
5279jlong os::thread_cpu_time(Thread* thread) {
5280  // consistent with what current_thread_cpu_time() returns
5281  if (os::Linux::supports_fast_thread_cpu_time()) {
5282    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5283  } else {
5284    return slow_thread_cpu_time(thread, true /* user + sys */);
5285  }
5286}
5287
5288jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5289  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5290    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5291  } else {
5292    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5293  }
5294}
5295
5296jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5297  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5298    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5299  } else {
5300    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5301  }
5302}
5303
5304//
5305//  -1 on error.
5306//
5307
5308static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5309  static bool proc_task_unchecked = true;
5310  static const char *proc_stat_path = "/proc/%d/stat";
5311  pid_t  tid = thread->osthread()->thread_id();
5312  char *s;
5313  char stat[2048];
5314  int statlen;
5315  char proc_name[64];
5316  int count;
5317  long sys_time, user_time;
5318  char cdummy;
5319  int idummy;
5320  long ldummy;
5321  FILE *fp;
5322
5323  // The /proc/<tid>/stat aggregates per-process usage on
5324  // new Linux kernels 2.6+ where NPTL is supported.
5325  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5326  // See bug 6328462.
5327  // There possibly can be cases where there is no directory
5328  // /proc/self/task, so we check its availability.
5329  if (proc_task_unchecked && os::Linux::is_NPTL()) {
5330    // This is executed only once
5331    proc_task_unchecked = false;
5332    fp = fopen("/proc/self/task", "r");
5333    if (fp != NULL) {
5334      proc_stat_path = "/proc/self/task/%d/stat";
5335      fclose(fp);
5336    }
5337  }
5338
5339  sprintf(proc_name, proc_stat_path, tid);
5340  fp = fopen(proc_name, "r");
5341  if ( fp == NULL ) return -1;
5342  statlen = fread(stat, 1, 2047, fp);
5343  stat[statlen] = '\0';
5344  fclose(fp);
5345
5346  // Skip pid and the command string. Note that we could be dealing with
5347  // weird command names, e.g. user could decide to rename java launcher
5348  // to "java 1.4.2 :)", then the stat file would look like
5349  //                1234 (java 1.4.2 :)) R ... ...
5350  // We don't really need to know the command string, just find the last
5351  // occurrence of ")" and then start parsing from there. See bug 4726580.
5352  s = strrchr(stat, ')');
5353  if (s == NULL ) return -1;
5354
5355  // Skip blank chars
5356  do s++; while (isspace(*s));
5357
5358  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5359                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5360                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5361                 &user_time, &sys_time);
5362  if ( count != 13 ) return -1;
5363  if (user_sys_cpu_time) {
5364    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5365  } else {
5366    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5367  }
5368}
5369
5370void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5371  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5372  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5373  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5374  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5375}
5376
5377void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5378  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5379  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5380  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5381  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5382}
5383
5384bool os::is_thread_cpu_time_supported() {
5385  return true;
5386}
5387
5388// System loadavg support.  Returns -1 if load average cannot be obtained.
5389// Linux doesn't yet have a (official) notion of processor sets,
5390// so just return the system wide load average.
5391int os::loadavg(double loadavg[], int nelem) {
5392  return ::getloadavg(loadavg, nelem);
5393}
5394
5395void os::pause() {
5396  char filename[MAX_PATH];
5397  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5398    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5399  } else {
5400    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5401  }
5402
5403  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5404  if (fd != -1) {
5405    struct stat buf;
5406    ::close(fd);
5407    while (::stat(filename, &buf) == 0) {
5408      (void)::poll(NULL, 0, 100);
5409    }
5410  } else {
5411    jio_fprintf(stderr,
5412      "Could not open pause file '%s', continuing immediately.\n", filename);
5413  }
5414}
5415
5416
5417// Refer to the comments in os_solaris.cpp park-unpark.
5418//
5419// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5420// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5421// For specifics regarding the bug see GLIBC BUGID 261237 :
5422//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5423// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5424// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5425// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5426// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5427// and monitorenter when we're using 1-0 locking.  All those operations may result in
5428// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5429// of libpthread avoids the problem, but isn't practical.
5430//
5431// Possible remedies:
5432//
5433// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5434//      This is palliative and probabilistic, however.  If the thread is preempted
5435//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5436//      than the minimum period may have passed, and the abstime may be stale (in the
5437//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5438//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5439//
5440// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5441//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5442//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5443//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5444//      thread.
5445//
5446// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5447//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5448//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5449//      This also works well.  In fact it avoids kernel-level scalability impediments
5450//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5451//      timers in a graceful fashion.
5452//
5453// 4.   When the abstime value is in the past it appears that control returns
5454//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5455//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5456//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5457//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5458//      It may be possible to avoid reinitialization by checking the return
5459//      value from pthread_cond_timedwait().  In addition to reinitializing the
5460//      condvar we must establish the invariant that cond_signal() is only called
5461//      within critical sections protected by the adjunct mutex.  This prevents
5462//      cond_signal() from "seeing" a condvar that's in the midst of being
5463//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5464//      desirable signal-after-unlock optimization that avoids futile context switching.
5465//
5466//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5467//      structure when a condvar is used or initialized.  cond_destroy()  would
5468//      release the helper structure.  Our reinitialize-after-timedwait fix
5469//      put excessive stress on malloc/free and locks protecting the c-heap.
5470//
5471// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5472// It may be possible to refine (4) by checking the kernel and NTPL verisons
5473// and only enabling the work-around for vulnerable environments.
5474
5475// utility to compute the abstime argument to timedwait:
5476// millis is the relative timeout time
5477// abstime will be the absolute timeout time
5478// TODO: replace compute_abstime() with unpackTime()
5479
5480static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5481  if (millis < 0)  millis = 0;
5482  struct timeval now;
5483  int status = gettimeofday(&now, NULL);
5484  assert(status == 0, "gettimeofday");
5485  jlong seconds = millis / 1000;
5486  millis %= 1000;
5487  if (seconds > 50000000) { // see man cond_timedwait(3T)
5488    seconds = 50000000;
5489  }
5490  abstime->tv_sec = now.tv_sec  + seconds;
5491  long       usec = now.tv_usec + millis * 1000;
5492  if (usec >= 1000000) {
5493    abstime->tv_sec += 1;
5494    usec -= 1000000;
5495  }
5496  abstime->tv_nsec = usec * 1000;
5497  return abstime;
5498}
5499
5500
5501// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5502// Conceptually TryPark() should be equivalent to park(0).
5503
5504int os::PlatformEvent::TryPark() {
5505  for (;;) {
5506    const int v = _Event ;
5507    guarantee ((v == 0) || (v == 1), "invariant") ;
5508    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5509  }
5510}
5511
5512void os::PlatformEvent::park() {       // AKA "down()"
5513  // Invariant: Only the thread associated with the Event/PlatformEvent
5514  // may call park().
5515  // TODO: assert that _Assoc != NULL or _Assoc == Self
5516  int v ;
5517  for (;;) {
5518      v = _Event ;
5519      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5520  }
5521  guarantee (v >= 0, "invariant") ;
5522  if (v == 0) {
5523     // Do this the hard way by blocking ...
5524     int status = pthread_mutex_lock(_mutex);
5525     assert_status(status == 0, status, "mutex_lock");
5526     guarantee (_nParked == 0, "invariant") ;
5527     ++ _nParked ;
5528     while (_Event < 0) {
5529        status = pthread_cond_wait(_cond, _mutex);
5530        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5531        // Treat this the same as if the wait was interrupted
5532        if (status == ETIME) { status = EINTR; }
5533        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5534     }
5535     -- _nParked ;
5536
5537    _Event = 0 ;
5538     status = pthread_mutex_unlock(_mutex);
5539     assert_status(status == 0, status, "mutex_unlock");
5540    // Paranoia to ensure our locked and lock-free paths interact
5541    // correctly with each other.
5542    OrderAccess::fence();
5543  }
5544  guarantee (_Event >= 0, "invariant") ;
5545}
5546
5547int os::PlatformEvent::park(jlong millis) {
5548  guarantee (_nParked == 0, "invariant") ;
5549
5550  int v ;
5551  for (;;) {
5552      v = _Event ;
5553      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5554  }
5555  guarantee (v >= 0, "invariant") ;
5556  if (v != 0) return OS_OK ;
5557
5558  // We do this the hard way, by blocking the thread.
5559  // Consider enforcing a minimum timeout value.
5560  struct timespec abst;
5561  compute_abstime(&abst, millis);
5562
5563  int ret = OS_TIMEOUT;
5564  int status = pthread_mutex_lock(_mutex);
5565  assert_status(status == 0, status, "mutex_lock");
5566  guarantee (_nParked == 0, "invariant") ;
5567  ++_nParked ;
5568
5569  // Object.wait(timo) will return because of
5570  // (a) notification
5571  // (b) timeout
5572  // (c) thread.interrupt
5573  //
5574  // Thread.interrupt and object.notify{All} both call Event::set.
5575  // That is, we treat thread.interrupt as a special case of notification.
5576  // The underlying Solaris implementation, cond_timedwait, admits
5577  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5578  // JVM from making those visible to Java code.  As such, we must
5579  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5580  //
5581  // TODO: properly differentiate simultaneous notify+interrupt.
5582  // In that case, we should propagate the notify to another waiter.
5583
5584  while (_Event < 0) {
5585    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5586    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5587      pthread_cond_destroy (_cond);
5588      pthread_cond_init (_cond, NULL) ;
5589    }
5590    assert_status(status == 0 || status == EINTR ||
5591                  status == ETIME || status == ETIMEDOUT,
5592                  status, "cond_timedwait");
5593    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5594    if (status == ETIME || status == ETIMEDOUT) break ;
5595    // We consume and ignore EINTR and spurious wakeups.
5596  }
5597  --_nParked ;
5598  if (_Event >= 0) {
5599     ret = OS_OK;
5600  }
5601  _Event = 0 ;
5602  status = pthread_mutex_unlock(_mutex);
5603  assert_status(status == 0, status, "mutex_unlock");
5604  assert (_nParked == 0, "invariant") ;
5605  // Paranoia to ensure our locked and lock-free paths interact
5606  // correctly with each other.
5607  OrderAccess::fence();
5608  return ret;
5609}
5610
5611void os::PlatformEvent::unpark() {
5612  // Transitions for _Event:
5613  //    0 :=> 1
5614  //    1 :=> 1
5615  //   -1 :=> either 0 or 1; must signal target thread
5616  //          That is, we can safely transition _Event from -1 to either
5617  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5618  //          unpark() calls.
5619  // See also: "Semaphores in Plan 9" by Mullender & Cox
5620  //
5621  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5622  // that it will take two back-to-back park() calls for the owning
5623  // thread to block. This has the benefit of forcing a spurious return
5624  // from the first park() call after an unpark() call which will help
5625  // shake out uses of park() and unpark() without condition variables.
5626
5627  if (Atomic::xchg(1, &_Event) >= 0) return;
5628
5629  // Wait for the thread associated with the event to vacate
5630  int status = pthread_mutex_lock(_mutex);
5631  assert_status(status == 0, status, "mutex_lock");
5632  int AnyWaiters = _nParked;
5633  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5634  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5635    AnyWaiters = 0;
5636    pthread_cond_signal(_cond);
5637  }
5638  status = pthread_mutex_unlock(_mutex);
5639  assert_status(status == 0, status, "mutex_unlock");
5640  if (AnyWaiters != 0) {
5641    status = pthread_cond_signal(_cond);
5642    assert_status(status == 0, status, "cond_signal");
5643  }
5644
5645  // Note that we signal() _after dropping the lock for "immortal" Events.
5646  // This is safe and avoids a common class of  futile wakeups.  In rare
5647  // circumstances this can cause a thread to return prematurely from
5648  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5649  // simply re-test the condition and re-park itself.
5650}
5651
5652
5653// JSR166
5654// -------------------------------------------------------
5655
5656/*
5657 * The solaris and linux implementations of park/unpark are fairly
5658 * conservative for now, but can be improved. They currently use a
5659 * mutex/condvar pair, plus a a count.
5660 * Park decrements count if > 0, else does a condvar wait.  Unpark
5661 * sets count to 1 and signals condvar.  Only one thread ever waits
5662 * on the condvar. Contention seen when trying to park implies that someone
5663 * is unparking you, so don't wait. And spurious returns are fine, so there
5664 * is no need to track notifications.
5665 */
5666
5667#define MAX_SECS 100000000
5668/*
5669 * This code is common to linux and solaris and will be moved to a
5670 * common place in dolphin.
5671 *
5672 * The passed in time value is either a relative time in nanoseconds
5673 * or an absolute time in milliseconds. Either way it has to be unpacked
5674 * into suitable seconds and nanoseconds components and stored in the
5675 * given timespec structure.
5676 * Given time is a 64-bit value and the time_t used in the timespec is only
5677 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5678 * overflow if times way in the future are given. Further on Solaris versions
5679 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5680 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5681 * As it will be 28 years before "now + 100000000" will overflow we can
5682 * ignore overflow and just impose a hard-limit on seconds using the value
5683 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5684 * years from "now".
5685 */
5686
5687static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5688  assert (time > 0, "convertTime");
5689
5690  struct timeval now;
5691  int status = gettimeofday(&now, NULL);
5692  assert(status == 0, "gettimeofday");
5693
5694  time_t max_secs = now.tv_sec + MAX_SECS;
5695
5696  if (isAbsolute) {
5697    jlong secs = time / 1000;
5698    if (secs > max_secs) {
5699      absTime->tv_sec = max_secs;
5700    }
5701    else {
5702      absTime->tv_sec = secs;
5703    }
5704    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5705  }
5706  else {
5707    jlong secs = time / NANOSECS_PER_SEC;
5708    if (secs >= MAX_SECS) {
5709      absTime->tv_sec = max_secs;
5710      absTime->tv_nsec = 0;
5711    }
5712    else {
5713      absTime->tv_sec = now.tv_sec + secs;
5714      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5715      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5716        absTime->tv_nsec -= NANOSECS_PER_SEC;
5717        ++absTime->tv_sec; // note: this must be <= max_secs
5718      }
5719    }
5720  }
5721  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5722  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5723  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5724  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5725}
5726
5727void Parker::park(bool isAbsolute, jlong time) {
5728  // Ideally we'd do something useful while spinning, such
5729  // as calling unpackTime().
5730
5731  // Optional fast-path check:
5732  // Return immediately if a permit is available.
5733  // We depend on Atomic::xchg() having full barrier semantics
5734  // since we are doing a lock-free update to _counter.
5735  if (Atomic::xchg(0, &_counter) > 0) return;
5736
5737  Thread* thread = Thread::current();
5738  assert(thread->is_Java_thread(), "Must be JavaThread");
5739  JavaThread *jt = (JavaThread *)thread;
5740
5741  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5742  // Check interrupt before trying to wait
5743  if (Thread::is_interrupted(thread, false)) {
5744    return;
5745  }
5746
5747  // Next, demultiplex/decode time arguments
5748  timespec absTime;
5749  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5750    return;
5751  }
5752  if (time > 0) {
5753    unpackTime(&absTime, isAbsolute, time);
5754  }
5755
5756
5757  // Enter safepoint region
5758  // Beware of deadlocks such as 6317397.
5759  // The per-thread Parker:: mutex is a classic leaf-lock.
5760  // In particular a thread must never block on the Threads_lock while
5761  // holding the Parker:: mutex.  If safepoints are pending both the
5762  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5763  ThreadBlockInVM tbivm(jt);
5764
5765  // Don't wait if cannot get lock since interference arises from
5766  // unblocking.  Also. check interrupt before trying wait
5767  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5768    return;
5769  }
5770
5771  int status ;
5772  if (_counter > 0)  { // no wait needed
5773    _counter = 0;
5774    status = pthread_mutex_unlock(_mutex);
5775    assert (status == 0, "invariant") ;
5776    // Paranoia to ensure our locked and lock-free paths interact
5777    // correctly with each other and Java-level accesses.
5778    OrderAccess::fence();
5779    return;
5780  }
5781
5782#ifdef ASSERT
5783  // Don't catch signals while blocked; let the running threads have the signals.
5784  // (This allows a debugger to break into the running thread.)
5785  sigset_t oldsigs;
5786  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5787  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5788#endif
5789
5790  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5791  jt->set_suspend_equivalent();
5792  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5793
5794  if (time == 0) {
5795    status = pthread_cond_wait (_cond, _mutex) ;
5796  } else {
5797    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5798    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5799      pthread_cond_destroy (_cond) ;
5800      pthread_cond_init    (_cond, NULL);
5801    }
5802  }
5803  assert_status(status == 0 || status == EINTR ||
5804                status == ETIME || status == ETIMEDOUT,
5805                status, "cond_timedwait");
5806
5807#ifdef ASSERT
5808  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5809#endif
5810
5811  _counter = 0 ;
5812  status = pthread_mutex_unlock(_mutex) ;
5813  assert_status(status == 0, status, "invariant") ;
5814  // Paranoia to ensure our locked and lock-free paths interact
5815  // correctly with each other and Java-level accesses.
5816  OrderAccess::fence();
5817
5818  // If externally suspended while waiting, re-suspend
5819  if (jt->handle_special_suspend_equivalent_condition()) {
5820    jt->java_suspend_self();
5821  }
5822}
5823
5824void Parker::unpark() {
5825  int s, status ;
5826  status = pthread_mutex_lock(_mutex);
5827  assert (status == 0, "invariant") ;
5828  s = _counter;
5829  _counter = 1;
5830  if (s < 1) {
5831     if (WorkAroundNPTLTimedWaitHang) {
5832        status = pthread_cond_signal (_cond) ;
5833        assert (status == 0, "invariant") ;
5834        status = pthread_mutex_unlock(_mutex);
5835        assert (status == 0, "invariant") ;
5836     } else {
5837        status = pthread_mutex_unlock(_mutex);
5838        assert (status == 0, "invariant") ;
5839        status = pthread_cond_signal (_cond) ;
5840        assert (status == 0, "invariant") ;
5841     }
5842  } else {
5843    pthread_mutex_unlock(_mutex);
5844    assert (status == 0, "invariant") ;
5845  }
5846}
5847
5848
5849extern char** environ;
5850
5851#ifndef __NR_fork
5852#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5853#endif
5854
5855#ifndef __NR_execve
5856#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5857#endif
5858
5859// Run the specified command in a separate process. Return its exit value,
5860// or -1 on failure (e.g. can't fork a new process).
5861// Unlike system(), this function can be called from signal handler. It
5862// doesn't block SIGINT et al.
5863int os::fork_and_exec(char* cmd) {
5864  const char * argv[4] = {"sh", "-c", cmd, NULL};
5865
5866  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5867  // pthread_atfork handlers and reset pthread library. All we need is a
5868  // separate process to execve. Make a direct syscall to fork process.
5869  // On IA64 there's no fork syscall, we have to use fork() and hope for
5870  // the best...
5871  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5872              IA64_ONLY(fork();)
5873
5874  if (pid < 0) {
5875    // fork failed
5876    return -1;
5877
5878  } else if (pid == 0) {
5879    // child process
5880
5881    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5882    // first to kill every thread on the thread list. Because this list is
5883    // not reset by fork() (see notes above), execve() will instead kill
5884    // every thread in the parent process. We know this is the only thread
5885    // in the new process, so make a system call directly.
5886    // IA64 should use normal execve() from glibc to match the glibc fork()
5887    // above.
5888    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5889    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5890
5891    // execve failed
5892    _exit(-1);
5893
5894  } else  {
5895    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5896    // care about the actual exit code, for now.
5897
5898    int status;
5899
5900    // Wait for the child process to exit.  This returns immediately if
5901    // the child has already exited. */
5902    while (waitpid(pid, &status, 0) < 0) {
5903        switch (errno) {
5904        case ECHILD: return 0;
5905        case EINTR: break;
5906        default: return -1;
5907        }
5908    }
5909
5910    if (WIFEXITED(status)) {
5911       // The child exited normally; get its exit code.
5912       return WEXITSTATUS(status);
5913    } else if (WIFSIGNALED(status)) {
5914       // The child exited because of a signal
5915       // The best value to return is 0x80 + signal number,
5916       // because that is what all Unix shells do, and because
5917       // it allows callers to distinguish between process exit and
5918       // process death by signal.
5919       return 0x80 + WTERMSIG(status);
5920    } else {
5921       // Unknown exit code; pass it through
5922       return status;
5923    }
5924  }
5925}
5926
5927// is_headless_jre()
5928//
5929// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5930// in order to report if we are running in a headless jre
5931//
5932// Since JDK8 xawt/libmawt.so was moved into the same directory
5933// as libawt.so, and renamed libawt_xawt.so
5934//
5935bool os::is_headless_jre() {
5936    struct stat statbuf;
5937    char buf[MAXPATHLEN];
5938    char libmawtpath[MAXPATHLEN];
5939    const char *xawtstr  = "/xawt/libmawt.so";
5940    const char *new_xawtstr = "/libawt_xawt.so";
5941    char *p;
5942
5943    // Get path to libjvm.so
5944    os::jvm_path(buf, sizeof(buf));
5945
5946    // Get rid of libjvm.so
5947    p = strrchr(buf, '/');
5948    if (p == NULL) return false;
5949    else *p = '\0';
5950
5951    // Get rid of client or server
5952    p = strrchr(buf, '/');
5953    if (p == NULL) return false;
5954    else *p = '\0';
5955
5956    // check xawt/libmawt.so
5957    strcpy(libmawtpath, buf);
5958    strcat(libmawtpath, xawtstr);
5959    if (::stat(libmawtpath, &statbuf) == 0) return false;
5960
5961    // check libawt_xawt.so
5962    strcpy(libmawtpath, buf);
5963    strcat(libmawtpath, new_xawtstr);
5964    if (::stat(libmawtpath, &statbuf) == 0) return false;
5965
5966    return true;
5967}
5968
5969// Get the default path to the core file
5970// Returns the length of the string
5971int os::get_core_path(char* buffer, size_t bufferSize) {
5972  const char* p = get_current_directory(buffer, bufferSize);
5973
5974  if (p == NULL) {
5975    assert(p != NULL, "failed to get current directory");
5976    return 0;
5977  }
5978
5979  return strlen(buffer);
5980}
5981
5982#ifdef JAVASE_EMBEDDED
5983//
5984// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5985//
5986MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5987
5988// ctor
5989//
5990MemNotifyThread::MemNotifyThread(int fd): Thread() {
5991  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5992  _fd = fd;
5993
5994  if (os::create_thread(this, os::os_thread)) {
5995    _memnotify_thread = this;
5996    os::set_priority(this, NearMaxPriority);
5997    os::start_thread(this);
5998  }
5999}
6000
6001// Where all the work gets done
6002//
6003void MemNotifyThread::run() {
6004  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6005
6006  // Set up the select arguments
6007  fd_set rfds;
6008  if (_fd != -1) {
6009    FD_ZERO(&rfds);
6010    FD_SET(_fd, &rfds);
6011  }
6012
6013  // Now wait for the mem_notify device to wake up
6014  while (1) {
6015    // Wait for the mem_notify device to signal us..
6016    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6017    if (rc == -1) {
6018      perror("select!\n");
6019      break;
6020    } else if (rc) {
6021      //ssize_t free_before = os::available_memory();
6022      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6023
6024      // The kernel is telling us there is not much memory left...
6025      // try to do something about that
6026
6027      // If we are not already in a GC, try one.
6028      if (!Universe::heap()->is_gc_active()) {
6029        Universe::heap()->collect(GCCause::_allocation_failure);
6030
6031        //ssize_t free_after = os::available_memory();
6032        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6033        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6034      }
6035      // We might want to do something like the following if we find the GC's are not helping...
6036      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6037    }
6038  }
6039}
6040
6041//
6042// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6043//
6044void MemNotifyThread::start() {
6045  int    fd;
6046  fd = open ("/dev/mem_notify", O_RDONLY, 0);
6047  if (fd < 0) {
6048      return;
6049  }
6050
6051  if (memnotify_thread() == NULL) {
6052    new MemNotifyThread(fd);
6053  }
6054}
6055
6056#endif // JAVASE_EMBEDDED
6057
6058
6059/////////////// Unit tests ///////////////
6060
6061#ifndef PRODUCT
6062
6063#define test_log(...) \
6064  do {\
6065    if (VerboseInternalVMTests) { \
6066      tty->print_cr(__VA_ARGS__); \
6067      tty->flush(); \
6068    }\
6069  } while (false)
6070
6071class TestReserveMemorySpecial : AllStatic {
6072 public:
6073  static void small_page_write(void* addr, size_t size) {
6074    size_t page_size = os::vm_page_size();
6075
6076    char* end = (char*)addr + size;
6077    for (char* p = (char*)addr; p < end; p += page_size) {
6078      *p = 1;
6079    }
6080  }
6081
6082  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6083    if (!UseHugeTLBFS) {
6084      return;
6085    }
6086
6087    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6088
6089    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6090
6091    if (addr != NULL) {
6092      small_page_write(addr, size);
6093
6094      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6095    }
6096  }
6097
6098  static void test_reserve_memory_special_huge_tlbfs_only() {
6099    if (!UseHugeTLBFS) {
6100      return;
6101    }
6102
6103    size_t lp = os::large_page_size();
6104
6105    for (size_t size = lp; size <= lp * 10; size += lp) {
6106      test_reserve_memory_special_huge_tlbfs_only(size);
6107    }
6108  }
6109
6110  static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6111    if (!UseHugeTLBFS) {
6112        return;
6113    }
6114
6115    test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6116        size, alignment);
6117
6118    assert(size >= os::large_page_size(), "Incorrect input to test");
6119
6120    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6121
6122    if (addr != NULL) {
6123      small_page_write(addr, size);
6124
6125      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6126    }
6127  }
6128
6129  static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6130    size_t lp = os::large_page_size();
6131    size_t ag = os::vm_allocation_granularity();
6132
6133    for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6134      test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6135    }
6136  }
6137
6138  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6139    size_t lp = os::large_page_size();
6140    size_t ag = os::vm_allocation_granularity();
6141
6142    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6143    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6144    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6145    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6146    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6147    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6148    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6149    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6150    test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6151  }
6152
6153  static void test_reserve_memory_special_huge_tlbfs() {
6154    if (!UseHugeTLBFS) {
6155      return;
6156    }
6157
6158    test_reserve_memory_special_huge_tlbfs_only();
6159    test_reserve_memory_special_huge_tlbfs_mixed();
6160  }
6161
6162  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6163    if (!UseSHM) {
6164      return;
6165    }
6166
6167    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6168
6169    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6170
6171    if (addr != NULL) {
6172      assert(is_ptr_aligned(addr, alignment), "Check");
6173      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6174
6175      small_page_write(addr, size);
6176
6177      os::Linux::release_memory_special_shm(addr, size);
6178    }
6179  }
6180
6181  static void test_reserve_memory_special_shm() {
6182    size_t lp = os::large_page_size();
6183    size_t ag = os::vm_allocation_granularity();
6184
6185    for (size_t size = ag; size < lp * 3; size += ag) {
6186      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6187        test_reserve_memory_special_shm(size, alignment);
6188      }
6189    }
6190  }
6191
6192  static void test() {
6193    test_reserve_memory_special_huge_tlbfs();
6194    test_reserve_memory_special_shm();
6195  }
6196};
6197
6198void TestReserveMemorySpecial_test() {
6199  TestReserveMemorySpecial::test();
6200}
6201
6202#endif
6203