os_linux.cpp revision 2564:b0b8491925fe
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/objectMonitor.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/runtimeService.hpp"
61#include "thread_linux.inline.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67#ifdef TARGET_ARCH_x86
68# include "assembler_x86.inline.hpp"
69# include "nativeInst_x86.hpp"
70#endif
71#ifdef TARGET_ARCH_sparc
72# include "assembler_sparc.inline.hpp"
73# include "nativeInst_sparc.hpp"
74#endif
75#ifdef TARGET_ARCH_zero
76# include "assembler_zero.inline.hpp"
77# include "nativeInst_zero.hpp"
78#endif
79#ifdef TARGET_ARCH_arm
80# include "assembler_arm.inline.hpp"
81# include "nativeInst_arm.hpp"
82#endif
83#ifdef TARGET_ARCH_ppc
84# include "assembler_ppc.inline.hpp"
85# include "nativeInst_ppc.hpp"
86#endif
87#ifdef COMPILER1
88#include "c1/c1_Runtime1.hpp"
89#endif
90#ifdef COMPILER2
91#include "opto/runtime.hpp"
92#endif
93
94// put OS-includes here
95# include <sys/types.h>
96# include <sys/mman.h>
97# include <sys/stat.h>
98# include <sys/select.h>
99# include <pthread.h>
100# include <signal.h>
101# include <errno.h>
102# include <dlfcn.h>
103# include <stdio.h>
104# include <unistd.h>
105# include <sys/resource.h>
106# include <pthread.h>
107# include <sys/stat.h>
108# include <sys/time.h>
109# include <sys/times.h>
110# include <sys/utsname.h>
111# include <sys/socket.h>
112# include <sys/wait.h>
113# include <pwd.h>
114# include <poll.h>
115# include <semaphore.h>
116# include <fcntl.h>
117# include <string.h>
118# include <syscall.h>
119# include <sys/sysinfo.h>
120# include <gnu/libc-version.h>
121# include <sys/ipc.h>
122# include <sys/shm.h>
123# include <link.h>
124# include <stdint.h>
125# include <inttypes.h>
126# include <sys/ioctl.h>
127
128#define MAX_PATH    (2 * K)
129
130// for timer info max values which include all bits
131#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
132#define SEC_IN_NANOSECS  1000000000LL
133
134#define LARGEPAGES_BIT (1 << 6)
135////////////////////////////////////////////////////////////////////////////////
136// global variables
137julong os::Linux::_physical_memory = 0;
138
139address   os::Linux::_initial_thread_stack_bottom = NULL;
140uintptr_t os::Linux::_initial_thread_stack_size   = 0;
141
142int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
143int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
144Mutex* os::Linux::_createThread_lock = NULL;
145pthread_t os::Linux::_main_thread;
146int os::Linux::_page_size = -1;
147bool os::Linux::_is_floating_stack = false;
148bool os::Linux::_is_NPTL = false;
149bool os::Linux::_supports_fast_thread_cpu_time = false;
150const char * os::Linux::_glibc_version = NULL;
151const char * os::Linux::_libpthread_version = NULL;
152
153static jlong initial_time_count=0;
154
155static int clock_tics_per_sec = 100;
156
157// For diagnostics to print a message once. see run_periodic_checks
158static sigset_t check_signal_done;
159static bool check_signals = true;;
160
161static pid_t _initial_pid = 0;
162
163/* Signal number used to suspend/resume a thread */
164
165/* do not use any signal number less than SIGSEGV, see 4355769 */
166static int SR_signum = SIGUSR2;
167sigset_t SR_sigset;
168
169/* Used to protect dlsym() calls */
170static pthread_mutex_t dl_mutex;
171
172#ifdef JAVASE_EMBEDDED
173class MemNotifyThread: public Thread {
174  friend class VMStructs;
175 public:
176  virtual void run();
177
178 private:
179  static MemNotifyThread* _memnotify_thread;
180  int _fd;
181
182 public:
183
184  // Constructor
185  MemNotifyThread(int fd);
186
187  // Tester
188  bool is_memnotify_thread() const { return true; }
189
190  // Printing
191  char* name() const { return (char*)"Linux MemNotify Thread"; }
192
193  // Returns the single instance of the MemNotifyThread
194  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
195
196  // Create and start the single instance of MemNotifyThread
197  static void start();
198};
199#endif // JAVASE_EMBEDDED
200
201// utility functions
202
203static int SR_initialize();
204static int SR_finalize();
205
206julong os::available_memory() {
207  return Linux::available_memory();
208}
209
210julong os::Linux::available_memory() {
211  // values in struct sysinfo are "unsigned long"
212  struct sysinfo si;
213  sysinfo(&si);
214
215  return (julong)si.freeram * si.mem_unit;
216}
217
218julong os::physical_memory() {
219  return Linux::physical_memory();
220}
221
222julong os::allocatable_physical_memory(julong size) {
223#ifdef _LP64
224  return size;
225#else
226  julong result = MIN2(size, (julong)3800*M);
227   if (!is_allocatable(result)) {
228     // See comments under solaris for alignment considerations
229     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
230     result =  MIN2(size, reasonable_size);
231   }
232   return result;
233#endif // _LP64
234}
235
236////////////////////////////////////////////////////////////////////////////////
237// environment support
238
239bool os::getenv(const char* name, char* buf, int len) {
240  const char* val = ::getenv(name);
241  if (val != NULL && strlen(val) < (size_t)len) {
242    strcpy(buf, val);
243    return true;
244  }
245  if (len > 0) buf[0] = 0;  // return a null string
246  return false;
247}
248
249
250// Return true if user is running as root.
251
252bool os::have_special_privileges() {
253  static bool init = false;
254  static bool privileges = false;
255  if (!init) {
256    privileges = (getuid() != geteuid()) || (getgid() != getegid());
257    init = true;
258  }
259  return privileges;
260}
261
262
263#ifndef SYS_gettid
264// i386: 224, ia64: 1105, amd64: 186, sparc 143
265#ifdef __ia64__
266#define SYS_gettid 1105
267#elif __i386__
268#define SYS_gettid 224
269#elif __amd64__
270#define SYS_gettid 186
271#elif __sparc__
272#define SYS_gettid 143
273#else
274#error define gettid for the arch
275#endif
276#endif
277
278// Cpu architecture string
279#if   defined(ZERO)
280static char cpu_arch[] = ZERO_LIBARCH;
281#elif defined(IA64)
282static char cpu_arch[] = "ia64";
283#elif defined(IA32)
284static char cpu_arch[] = "i386";
285#elif defined(AMD64)
286static char cpu_arch[] = "amd64";
287#elif defined(ARM)
288static char cpu_arch[] = "arm";
289#elif defined(PPC)
290static char cpu_arch[] = "ppc";
291#elif defined(SPARC)
292#  ifdef _LP64
293static char cpu_arch[] = "sparcv9";
294#  else
295static char cpu_arch[] = "sparc";
296#  endif
297#else
298#error Add appropriate cpu_arch setting
299#endif
300
301
302// pid_t gettid()
303//
304// Returns the kernel thread id of the currently running thread. Kernel
305// thread id is used to access /proc.
306//
307// (Note that getpid() on LinuxThreads returns kernel thread id too; but
308// on NPTL, it returns the same pid for all threads, as required by POSIX.)
309//
310pid_t os::Linux::gettid() {
311  int rslt = syscall(SYS_gettid);
312  if (rslt == -1) {
313     // old kernel, no NPTL support
314     return getpid();
315  } else {
316     return (pid_t)rslt;
317  }
318}
319
320// Most versions of linux have a bug where the number of processors are
321// determined by looking at the /proc file system.  In a chroot environment,
322// the system call returns 1.  This causes the VM to act as if it is
323// a single processor and elide locking (see is_MP() call).
324static bool unsafe_chroot_detected = false;
325static const char *unstable_chroot_error = "/proc file system not found.\n"
326                     "Java may be unstable running multithreaded in a chroot "
327                     "environment on Linux when /proc filesystem is not mounted.";
328
329void os::Linux::initialize_system_info() {
330  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
331  if (processor_count() == 1) {
332    pid_t pid = os::Linux::gettid();
333    char fname[32];
334    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
335    FILE *fp = fopen(fname, "r");
336    if (fp == NULL) {
337      unsafe_chroot_detected = true;
338    } else {
339      fclose(fp);
340    }
341  }
342  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
343  assert(processor_count() > 0, "linux error");
344}
345
346void os::init_system_properties_values() {
347//  char arch[12];
348//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
349
350  // The next steps are taken in the product version:
351  //
352  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
353  // This library should be located at:
354  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
355  //
356  // If "/jre/lib/" appears at the right place in the path, then we
357  // assume libjvm[_g].so is installed in a JDK and we use this path.
358  //
359  // Otherwise exit with message: "Could not create the Java virtual machine."
360  //
361  // The following extra steps are taken in the debugging version:
362  //
363  // If "/jre/lib/" does NOT appear at the right place in the path
364  // instead of exit check for $JAVA_HOME environment variable.
365  //
366  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
367  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
368  // it looks like libjvm[_g].so is installed there
369  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
370  //
371  // Otherwise exit.
372  //
373  // Important note: if the location of libjvm.so changes this
374  // code needs to be changed accordingly.
375
376  // The next few definitions allow the code to be verbatim:
377#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
378#define getenv(n) ::getenv(n)
379
380/*
381 * See ld(1):
382 *      The linker uses the following search paths to locate required
383 *      shared libraries:
384 *        1: ...
385 *        ...
386 *        7: The default directories, normally /lib and /usr/lib.
387 */
388#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
389#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
390#else
391#define DEFAULT_LIBPATH "/lib:/usr/lib"
392#endif
393
394#define EXTENSIONS_DIR  "/lib/ext"
395#define ENDORSED_DIR    "/lib/endorsed"
396#define REG_DIR         "/usr/java/packages"
397
398  {
399    /* sysclasspath, java_home, dll_dir */
400    {
401        char *home_path;
402        char *dll_path;
403        char *pslash;
404        char buf[MAXPATHLEN];
405        os::jvm_path(buf, sizeof(buf));
406
407        // Found the full path to libjvm.so.
408        // Now cut the path to <java_home>/jre if we can.
409        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
410        pslash = strrchr(buf, '/');
411        if (pslash != NULL)
412            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
413        dll_path = malloc(strlen(buf) + 1);
414        if (dll_path == NULL)
415            return;
416        strcpy(dll_path, buf);
417        Arguments::set_dll_dir(dll_path);
418
419        if (pslash != NULL) {
420            pslash = strrchr(buf, '/');
421            if (pslash != NULL) {
422                *pslash = '\0';       /* get rid of /<arch> */
423                pslash = strrchr(buf, '/');
424                if (pslash != NULL)
425                    *pslash = '\0';   /* get rid of /lib */
426            }
427        }
428
429        home_path = malloc(strlen(buf) + 1);
430        if (home_path == NULL)
431            return;
432        strcpy(home_path, buf);
433        Arguments::set_java_home(home_path);
434
435        if (!set_boot_path('/', ':'))
436            return;
437    }
438
439    /*
440     * Where to look for native libraries
441     *
442     * Note: Due to a legacy implementation, most of the library path
443     * is set in the launcher.  This was to accomodate linking restrictions
444     * on legacy Linux implementations (which are no longer supported).
445     * Eventually, all the library path setting will be done here.
446     *
447     * However, to prevent the proliferation of improperly built native
448     * libraries, the new path component /usr/java/packages is added here.
449     * Eventually, all the library path setting will be done here.
450     */
451    {
452        char *ld_library_path;
453
454        /*
455         * Construct the invariant part of ld_library_path. Note that the
456         * space for the colon and the trailing null are provided by the
457         * nulls included by the sizeof operator (so actually we allocate
458         * a byte more than necessary).
459         */
460        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
461            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
462        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
463
464        /*
465         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
466         * should always exist (until the legacy problem cited above is
467         * addressed).
468         */
469        char *v = getenv("LD_LIBRARY_PATH");
470        if (v != NULL) {
471            char *t = ld_library_path;
472            /* That's +1 for the colon and +1 for the trailing '\0' */
473            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
474            sprintf(ld_library_path, "%s:%s", v, t);
475        }
476        Arguments::set_library_path(ld_library_path);
477    }
478
479    /*
480     * Extensions directories.
481     *
482     * Note that the space for the colon and the trailing null are provided
483     * by the nulls included by the sizeof operator (so actually one byte more
484     * than necessary is allocated).
485     */
486    {
487        char *buf = malloc(strlen(Arguments::get_java_home()) +
488            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
489        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
490            Arguments::get_java_home());
491        Arguments::set_ext_dirs(buf);
492    }
493
494    /* Endorsed standards default directory. */
495    {
496        char * buf;
497        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
498        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
499        Arguments::set_endorsed_dirs(buf);
500    }
501  }
502
503#undef malloc
504#undef getenv
505#undef EXTENSIONS_DIR
506#undef ENDORSED_DIR
507
508  // Done
509  return;
510}
511
512////////////////////////////////////////////////////////////////////////////////
513// breakpoint support
514
515void os::breakpoint() {
516  BREAKPOINT;
517}
518
519extern "C" void breakpoint() {
520  // use debugger to set breakpoint here
521}
522
523////////////////////////////////////////////////////////////////////////////////
524// signal support
525
526debug_only(static bool signal_sets_initialized = false);
527static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
528
529bool os::Linux::is_sig_ignored(int sig) {
530      struct sigaction oact;
531      sigaction(sig, (struct sigaction*)NULL, &oact);
532      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
533                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
534      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
535           return true;
536      else
537           return false;
538}
539
540void os::Linux::signal_sets_init() {
541  // Should also have an assertion stating we are still single-threaded.
542  assert(!signal_sets_initialized, "Already initialized");
543  // Fill in signals that are necessarily unblocked for all threads in
544  // the VM. Currently, we unblock the following signals:
545  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
546  //                         by -Xrs (=ReduceSignalUsage));
547  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
548  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
549  // the dispositions or masks wrt these signals.
550  // Programs embedding the VM that want to use the above signals for their
551  // own purposes must, at this time, use the "-Xrs" option to prevent
552  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
553  // (See bug 4345157, and other related bugs).
554  // In reality, though, unblocking these signals is really a nop, since
555  // these signals are not blocked by default.
556  sigemptyset(&unblocked_sigs);
557  sigemptyset(&allowdebug_blocked_sigs);
558  sigaddset(&unblocked_sigs, SIGILL);
559  sigaddset(&unblocked_sigs, SIGSEGV);
560  sigaddset(&unblocked_sigs, SIGBUS);
561  sigaddset(&unblocked_sigs, SIGFPE);
562  sigaddset(&unblocked_sigs, SR_signum);
563
564  if (!ReduceSignalUsage) {
565   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
566      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
567      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
568   }
569   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
570      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
571      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
572   }
573   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
574      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
575      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
576   }
577  }
578  // Fill in signals that are blocked by all but the VM thread.
579  sigemptyset(&vm_sigs);
580  if (!ReduceSignalUsage)
581    sigaddset(&vm_sigs, BREAK_SIGNAL);
582  debug_only(signal_sets_initialized = true);
583
584}
585
586// These are signals that are unblocked while a thread is running Java.
587// (For some reason, they get blocked by default.)
588sigset_t* os::Linux::unblocked_signals() {
589  assert(signal_sets_initialized, "Not initialized");
590  return &unblocked_sigs;
591}
592
593// These are the signals that are blocked while a (non-VM) thread is
594// running Java. Only the VM thread handles these signals.
595sigset_t* os::Linux::vm_signals() {
596  assert(signal_sets_initialized, "Not initialized");
597  return &vm_sigs;
598}
599
600// These are signals that are blocked during cond_wait to allow debugger in
601sigset_t* os::Linux::allowdebug_blocked_signals() {
602  assert(signal_sets_initialized, "Not initialized");
603  return &allowdebug_blocked_sigs;
604}
605
606void os::Linux::hotspot_sigmask(Thread* thread) {
607
608  //Save caller's signal mask before setting VM signal mask
609  sigset_t caller_sigmask;
610  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
611
612  OSThread* osthread = thread->osthread();
613  osthread->set_caller_sigmask(caller_sigmask);
614
615  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
616
617  if (!ReduceSignalUsage) {
618    if (thread->is_VM_thread()) {
619      // Only the VM thread handles BREAK_SIGNAL ...
620      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
621    } else {
622      // ... all other threads block BREAK_SIGNAL
623      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
624    }
625  }
626}
627
628//////////////////////////////////////////////////////////////////////////////
629// detecting pthread library
630
631void os::Linux::libpthread_init() {
632  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
633  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
634  // generic name for earlier versions.
635  // Define macros here so we can build HotSpot on old systems.
636# ifndef _CS_GNU_LIBC_VERSION
637# define _CS_GNU_LIBC_VERSION 2
638# endif
639# ifndef _CS_GNU_LIBPTHREAD_VERSION
640# define _CS_GNU_LIBPTHREAD_VERSION 3
641# endif
642
643  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
644  if (n > 0) {
645     char *str = (char *)malloc(n);
646     confstr(_CS_GNU_LIBC_VERSION, str, n);
647     os::Linux::set_glibc_version(str);
648  } else {
649     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
650     static char _gnu_libc_version[32];
651     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
652              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
653     os::Linux::set_glibc_version(_gnu_libc_version);
654  }
655
656  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
657  if (n > 0) {
658     char *str = (char *)malloc(n);
659     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
660     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
661     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
662     // is the case. LinuxThreads has a hard limit on max number of threads.
663     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
664     // On the other hand, NPTL does not have such a limit, sysconf()
665     // will return -1 and errno is not changed. Check if it is really NPTL.
666     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
667         strstr(str, "NPTL") &&
668         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
669       free(str);
670       os::Linux::set_libpthread_version("linuxthreads");
671     } else {
672       os::Linux::set_libpthread_version(str);
673     }
674  } else {
675    // glibc before 2.3.2 only has LinuxThreads.
676    os::Linux::set_libpthread_version("linuxthreads");
677  }
678
679  if (strstr(libpthread_version(), "NPTL")) {
680     os::Linux::set_is_NPTL();
681  } else {
682     os::Linux::set_is_LinuxThreads();
683  }
684
685  // LinuxThreads have two flavors: floating-stack mode, which allows variable
686  // stack size; and fixed-stack mode. NPTL is always floating-stack.
687  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
688     os::Linux::set_is_floating_stack();
689  }
690}
691
692/////////////////////////////////////////////////////////////////////////////
693// thread stack
694
695// Force Linux kernel to expand current thread stack. If "bottom" is close
696// to the stack guard, caller should block all signals.
697//
698// MAP_GROWSDOWN:
699//   A special mmap() flag that is used to implement thread stacks. It tells
700//   kernel that the memory region should extend downwards when needed. This
701//   allows early versions of LinuxThreads to only mmap the first few pages
702//   when creating a new thread. Linux kernel will automatically expand thread
703//   stack as needed (on page faults).
704//
705//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
706//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
707//   region, it's hard to tell if the fault is due to a legitimate stack
708//   access or because of reading/writing non-exist memory (e.g. buffer
709//   overrun). As a rule, if the fault happens below current stack pointer,
710//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
711//   application (see Linux kernel fault.c).
712//
713//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
714//   stack overflow detection.
715//
716//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
717//   not use this flag. However, the stack of initial thread is not created
718//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
719//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
720//   and then attach the thread to JVM.
721//
722// To get around the problem and allow stack banging on Linux, we need to
723// manually expand thread stack after receiving the SIGSEGV.
724//
725// There are two ways to expand thread stack to address "bottom", we used
726// both of them in JVM before 1.5:
727//   1. adjust stack pointer first so that it is below "bottom", and then
728//      touch "bottom"
729//   2. mmap() the page in question
730//
731// Now alternate signal stack is gone, it's harder to use 2. For instance,
732// if current sp is already near the lower end of page 101, and we need to
733// call mmap() to map page 100, it is possible that part of the mmap() frame
734// will be placed in page 100. When page 100 is mapped, it is zero-filled.
735// That will destroy the mmap() frame and cause VM to crash.
736//
737// The following code works by adjusting sp first, then accessing the "bottom"
738// page to force a page fault. Linux kernel will then automatically expand the
739// stack mapping.
740//
741// _expand_stack_to() assumes its frame size is less than page size, which
742// should always be true if the function is not inlined.
743
744#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
745#define NOINLINE
746#else
747#define NOINLINE __attribute__ ((noinline))
748#endif
749
750static void _expand_stack_to(address bottom) NOINLINE;
751
752static void _expand_stack_to(address bottom) {
753  address sp;
754  size_t size;
755  volatile char *p;
756
757  // Adjust bottom to point to the largest address within the same page, it
758  // gives us a one-page buffer if alloca() allocates slightly more memory.
759  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
760  bottom += os::Linux::page_size() - 1;
761
762  // sp might be slightly above current stack pointer; if that's the case, we
763  // will alloca() a little more space than necessary, which is OK. Don't use
764  // os::current_stack_pointer(), as its result can be slightly below current
765  // stack pointer, causing us to not alloca enough to reach "bottom".
766  sp = (address)&sp;
767
768  if (sp > bottom) {
769    size = sp - bottom;
770    p = (volatile char *)alloca(size);
771    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
772    p[0] = '\0';
773  }
774}
775
776bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
777  assert(t!=NULL, "just checking");
778  assert(t->osthread()->expanding_stack(), "expand should be set");
779  assert(t->stack_base() != NULL, "stack_base was not initialized");
780
781  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
782    sigset_t mask_all, old_sigset;
783    sigfillset(&mask_all);
784    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
785    _expand_stack_to(addr);
786    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
787    return true;
788  }
789  return false;
790}
791
792//////////////////////////////////////////////////////////////////////////////
793// create new thread
794
795static address highest_vm_reserved_address();
796
797// check if it's safe to start a new thread
798static bool _thread_safety_check(Thread* thread) {
799  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
800    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
801    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
802    //   allocated (MAP_FIXED) from high address space. Every thread stack
803    //   occupies a fixed size slot (usually 2Mbytes, but user can change
804    //   it to other values if they rebuild LinuxThreads).
805    //
806    // Problem with MAP_FIXED is that mmap() can still succeed even part of
807    // the memory region has already been mmap'ed. That means if we have too
808    // many threads and/or very large heap, eventually thread stack will
809    // collide with heap.
810    //
811    // Here we try to prevent heap/stack collision by comparing current
812    // stack bottom with the highest address that has been mmap'ed by JVM
813    // plus a safety margin for memory maps created by native code.
814    //
815    // This feature can be disabled by setting ThreadSafetyMargin to 0
816    //
817    if (ThreadSafetyMargin > 0) {
818      address stack_bottom = os::current_stack_base() - os::current_stack_size();
819
820      // not safe if our stack extends below the safety margin
821      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
822    } else {
823      return true;
824    }
825  } else {
826    // Floating stack LinuxThreads or NPTL:
827    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
828    //   there's not enough space left, pthread_create() will fail. If we come
829    //   here, that means enough space has been reserved for stack.
830    return true;
831  }
832}
833
834// Thread start routine for all newly created threads
835static void *java_start(Thread *thread) {
836  // Try to randomize the cache line index of hot stack frames.
837  // This helps when threads of the same stack traces evict each other's
838  // cache lines. The threads can be either from the same JVM instance, or
839  // from different JVM instances. The benefit is especially true for
840  // processors with hyperthreading technology.
841  static int counter = 0;
842  int pid = os::current_process_id();
843  alloca(((pid ^ counter++) & 7) * 128);
844
845  ThreadLocalStorage::set_thread(thread);
846
847  OSThread* osthread = thread->osthread();
848  Monitor* sync = osthread->startThread_lock();
849
850  // non floating stack LinuxThreads needs extra check, see above
851  if (!_thread_safety_check(thread)) {
852    // notify parent thread
853    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
854    osthread->set_state(ZOMBIE);
855    sync->notify_all();
856    return NULL;
857  }
858
859  // thread_id is kernel thread id (similar to Solaris LWP id)
860  osthread->set_thread_id(os::Linux::gettid());
861
862  if (UseNUMA) {
863    int lgrp_id = os::numa_get_group_id();
864    if (lgrp_id != -1) {
865      thread->set_lgrp_id(lgrp_id);
866    }
867  }
868  // initialize signal mask for this thread
869  os::Linux::hotspot_sigmask(thread);
870
871  // initialize floating point control register
872  os::Linux::init_thread_fpu_state();
873
874  // handshaking with parent thread
875  {
876    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
877
878    // notify parent thread
879    osthread->set_state(INITIALIZED);
880    sync->notify_all();
881
882    // wait until os::start_thread()
883    while (osthread->get_state() == INITIALIZED) {
884      sync->wait(Mutex::_no_safepoint_check_flag);
885    }
886  }
887
888  // call one more level start routine
889  thread->run();
890
891  return 0;
892}
893
894bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
895  assert(thread->osthread() == NULL, "caller responsible");
896
897  // Allocate the OSThread object
898  OSThread* osthread = new OSThread(NULL, NULL);
899  if (osthread == NULL) {
900    return false;
901  }
902
903  // set the correct thread state
904  osthread->set_thread_type(thr_type);
905
906  // Initial state is ALLOCATED but not INITIALIZED
907  osthread->set_state(ALLOCATED);
908
909  thread->set_osthread(osthread);
910
911  // init thread attributes
912  pthread_attr_t attr;
913  pthread_attr_init(&attr);
914  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
915
916  // stack size
917  if (os::Linux::supports_variable_stack_size()) {
918    // calculate stack size if it's not specified by caller
919    if (stack_size == 0) {
920      stack_size = os::Linux::default_stack_size(thr_type);
921
922      switch (thr_type) {
923      case os::java_thread:
924        // Java threads use ThreadStackSize which default value can be
925        // changed with the flag -Xss
926        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
927        stack_size = JavaThread::stack_size_at_create();
928        break;
929      case os::compiler_thread:
930        if (CompilerThreadStackSize > 0) {
931          stack_size = (size_t)(CompilerThreadStackSize * K);
932          break;
933        } // else fall through:
934          // use VMThreadStackSize if CompilerThreadStackSize is not defined
935      case os::vm_thread:
936      case os::pgc_thread:
937      case os::cgc_thread:
938      case os::watcher_thread:
939        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
940        break;
941      }
942    }
943
944    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
945    pthread_attr_setstacksize(&attr, stack_size);
946  } else {
947    // let pthread_create() pick the default value.
948  }
949
950  // glibc guard page
951  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
952
953  ThreadState state;
954
955  {
956    // Serialize thread creation if we are running with fixed stack LinuxThreads
957    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
958    if (lock) {
959      os::Linux::createThread_lock()->lock_without_safepoint_check();
960    }
961
962    pthread_t tid;
963    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
964
965    pthread_attr_destroy(&attr);
966
967    if (ret != 0) {
968      if (PrintMiscellaneous && (Verbose || WizardMode)) {
969        perror("pthread_create()");
970      }
971      // Need to clean up stuff we've allocated so far
972      thread->set_osthread(NULL);
973      delete osthread;
974      if (lock) os::Linux::createThread_lock()->unlock();
975      return false;
976    }
977
978    // Store pthread info into the OSThread
979    osthread->set_pthread_id(tid);
980
981    // Wait until child thread is either initialized or aborted
982    {
983      Monitor* sync_with_child = osthread->startThread_lock();
984      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
985      while ((state = osthread->get_state()) == ALLOCATED) {
986        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
987      }
988    }
989
990    if (lock) {
991      os::Linux::createThread_lock()->unlock();
992    }
993  }
994
995  // Aborted due to thread limit being reached
996  if (state == ZOMBIE) {
997      thread->set_osthread(NULL);
998      delete osthread;
999      return false;
1000  }
1001
1002  // The thread is returned suspended (in state INITIALIZED),
1003  // and is started higher up in the call chain
1004  assert(state == INITIALIZED, "race condition");
1005  return true;
1006}
1007
1008/////////////////////////////////////////////////////////////////////////////
1009// attach existing thread
1010
1011// bootstrap the main thread
1012bool os::create_main_thread(JavaThread* thread) {
1013  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1014  return create_attached_thread(thread);
1015}
1016
1017bool os::create_attached_thread(JavaThread* thread) {
1018#ifdef ASSERT
1019    thread->verify_not_published();
1020#endif
1021
1022  // Allocate the OSThread object
1023  OSThread* osthread = new OSThread(NULL, NULL);
1024
1025  if (osthread == NULL) {
1026    return false;
1027  }
1028
1029  // Store pthread info into the OSThread
1030  osthread->set_thread_id(os::Linux::gettid());
1031  osthread->set_pthread_id(::pthread_self());
1032
1033  // initialize floating point control register
1034  os::Linux::init_thread_fpu_state();
1035
1036  // Initial thread state is RUNNABLE
1037  osthread->set_state(RUNNABLE);
1038
1039  thread->set_osthread(osthread);
1040
1041  if (UseNUMA) {
1042    int lgrp_id = os::numa_get_group_id();
1043    if (lgrp_id != -1) {
1044      thread->set_lgrp_id(lgrp_id);
1045    }
1046  }
1047
1048  if (os::Linux::is_initial_thread()) {
1049    // If current thread is initial thread, its stack is mapped on demand,
1050    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1051    // the entire stack region to avoid SEGV in stack banging.
1052    // It is also useful to get around the heap-stack-gap problem on SuSE
1053    // kernel (see 4821821 for details). We first expand stack to the top
1054    // of yellow zone, then enable stack yellow zone (order is significant,
1055    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1056    // is no gap between the last two virtual memory regions.
1057
1058    JavaThread *jt = (JavaThread *)thread;
1059    address addr = jt->stack_yellow_zone_base();
1060    assert(addr != NULL, "initialization problem?");
1061    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1062
1063    osthread->set_expanding_stack();
1064    os::Linux::manually_expand_stack(jt, addr);
1065    osthread->clear_expanding_stack();
1066  }
1067
1068  // initialize signal mask for this thread
1069  // and save the caller's signal mask
1070  os::Linux::hotspot_sigmask(thread);
1071
1072  return true;
1073}
1074
1075void os::pd_start_thread(Thread* thread) {
1076  OSThread * osthread = thread->osthread();
1077  assert(osthread->get_state() != INITIALIZED, "just checking");
1078  Monitor* sync_with_child = osthread->startThread_lock();
1079  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1080  sync_with_child->notify();
1081}
1082
1083// Free Linux resources related to the OSThread
1084void os::free_thread(OSThread* osthread) {
1085  assert(osthread != NULL, "osthread not set");
1086
1087  if (Thread::current()->osthread() == osthread) {
1088    // Restore caller's signal mask
1089    sigset_t sigmask = osthread->caller_sigmask();
1090    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1091   }
1092
1093  delete osthread;
1094}
1095
1096//////////////////////////////////////////////////////////////////////////////
1097// thread local storage
1098
1099int os::allocate_thread_local_storage() {
1100  pthread_key_t key;
1101  int rslt = pthread_key_create(&key, NULL);
1102  assert(rslt == 0, "cannot allocate thread local storage");
1103  return (int)key;
1104}
1105
1106// Note: This is currently not used by VM, as we don't destroy TLS key
1107// on VM exit.
1108void os::free_thread_local_storage(int index) {
1109  int rslt = pthread_key_delete((pthread_key_t)index);
1110  assert(rslt == 0, "invalid index");
1111}
1112
1113void os::thread_local_storage_at_put(int index, void* value) {
1114  int rslt = pthread_setspecific((pthread_key_t)index, value);
1115  assert(rslt == 0, "pthread_setspecific failed");
1116}
1117
1118extern "C" Thread* get_thread() {
1119  return ThreadLocalStorage::thread();
1120}
1121
1122//////////////////////////////////////////////////////////////////////////////
1123// initial thread
1124
1125// Check if current thread is the initial thread, similar to Solaris thr_main.
1126bool os::Linux::is_initial_thread(void) {
1127  char dummy;
1128  // If called before init complete, thread stack bottom will be null.
1129  // Can be called if fatal error occurs before initialization.
1130  if (initial_thread_stack_bottom() == NULL) return false;
1131  assert(initial_thread_stack_bottom() != NULL &&
1132         initial_thread_stack_size()   != 0,
1133         "os::init did not locate initial thread's stack region");
1134  if ((address)&dummy >= initial_thread_stack_bottom() &&
1135      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1136       return true;
1137  else return false;
1138}
1139
1140// Find the virtual memory area that contains addr
1141static bool find_vma(address addr, address* vma_low, address* vma_high) {
1142  FILE *fp = fopen("/proc/self/maps", "r");
1143  if (fp) {
1144    address low, high;
1145    while (!feof(fp)) {
1146      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1147        if (low <= addr && addr < high) {
1148           if (vma_low)  *vma_low  = low;
1149           if (vma_high) *vma_high = high;
1150           fclose (fp);
1151           return true;
1152        }
1153      }
1154      for (;;) {
1155        int ch = fgetc(fp);
1156        if (ch == EOF || ch == (int)'\n') break;
1157      }
1158    }
1159    fclose(fp);
1160  }
1161  return false;
1162}
1163
1164// Locate initial thread stack. This special handling of initial thread stack
1165// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1166// bogus value for initial thread.
1167void os::Linux::capture_initial_stack(size_t max_size) {
1168  // stack size is the easy part, get it from RLIMIT_STACK
1169  size_t stack_size;
1170  struct rlimit rlim;
1171  getrlimit(RLIMIT_STACK, &rlim);
1172  stack_size = rlim.rlim_cur;
1173
1174  // 6308388: a bug in ld.so will relocate its own .data section to the
1175  //   lower end of primordial stack; reduce ulimit -s value a little bit
1176  //   so we won't install guard page on ld.so's data section.
1177  stack_size -= 2 * page_size();
1178
1179  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1180  //   7.1, in both cases we will get 2G in return value.
1181  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1182  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1183  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1184  //   in case other parts in glibc still assumes 2M max stack size.
1185  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1186#ifndef IA64
1187  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1188#else
1189  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1190  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1191#endif
1192
1193  // Try to figure out where the stack base (top) is. This is harder.
1194  //
1195  // When an application is started, glibc saves the initial stack pointer in
1196  // a global variable "__libc_stack_end", which is then used by system
1197  // libraries. __libc_stack_end should be pretty close to stack top. The
1198  // variable is available since the very early days. However, because it is
1199  // a private interface, it could disappear in the future.
1200  //
1201  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1202  // to __libc_stack_end, it is very close to stack top, but isn't the real
1203  // stack top. Note that /proc may not exist if VM is running as a chroot
1204  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1205  // /proc/<pid>/stat could change in the future (though unlikely).
1206  //
1207  // We try __libc_stack_end first. If that doesn't work, look for
1208  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1209  // as a hint, which should work well in most cases.
1210
1211  uintptr_t stack_start;
1212
1213  // try __libc_stack_end first
1214  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1215  if (p && *p) {
1216    stack_start = *p;
1217  } else {
1218    // see if we can get the start_stack field from /proc/self/stat
1219    FILE *fp;
1220    int pid;
1221    char state;
1222    int ppid;
1223    int pgrp;
1224    int session;
1225    int nr;
1226    int tpgrp;
1227    unsigned long flags;
1228    unsigned long minflt;
1229    unsigned long cminflt;
1230    unsigned long majflt;
1231    unsigned long cmajflt;
1232    unsigned long utime;
1233    unsigned long stime;
1234    long cutime;
1235    long cstime;
1236    long prio;
1237    long nice;
1238    long junk;
1239    long it_real;
1240    uintptr_t start;
1241    uintptr_t vsize;
1242    intptr_t rss;
1243    uintptr_t rsslim;
1244    uintptr_t scodes;
1245    uintptr_t ecode;
1246    int i;
1247
1248    // Figure what the primordial thread stack base is. Code is inspired
1249    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1250    // followed by command name surrounded by parentheses, state, etc.
1251    char stat[2048];
1252    int statlen;
1253
1254    fp = fopen("/proc/self/stat", "r");
1255    if (fp) {
1256      statlen = fread(stat, 1, 2047, fp);
1257      stat[statlen] = '\0';
1258      fclose(fp);
1259
1260      // Skip pid and the command string. Note that we could be dealing with
1261      // weird command names, e.g. user could decide to rename java launcher
1262      // to "java 1.4.2 :)", then the stat file would look like
1263      //                1234 (java 1.4.2 :)) R ... ...
1264      // We don't really need to know the command string, just find the last
1265      // occurrence of ")" and then start parsing from there. See bug 4726580.
1266      char * s = strrchr(stat, ')');
1267
1268      i = 0;
1269      if (s) {
1270        // Skip blank chars
1271        do s++; while (isspace(*s));
1272
1273#define _UFM UINTX_FORMAT
1274#define _DFM INTX_FORMAT
1275
1276        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1277        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1278        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1279             &state,          /* 3  %c  */
1280             &ppid,           /* 4  %d  */
1281             &pgrp,           /* 5  %d  */
1282             &session,        /* 6  %d  */
1283             &nr,             /* 7  %d  */
1284             &tpgrp,          /* 8  %d  */
1285             &flags,          /* 9  %lu  */
1286             &minflt,         /* 10 %lu  */
1287             &cminflt,        /* 11 %lu  */
1288             &majflt,         /* 12 %lu  */
1289             &cmajflt,        /* 13 %lu  */
1290             &utime,          /* 14 %lu  */
1291             &stime,          /* 15 %lu  */
1292             &cutime,         /* 16 %ld  */
1293             &cstime,         /* 17 %ld  */
1294             &prio,           /* 18 %ld  */
1295             &nice,           /* 19 %ld  */
1296             &junk,           /* 20 %ld  */
1297             &it_real,        /* 21 %ld  */
1298             &start,          /* 22 UINTX_FORMAT */
1299             &vsize,          /* 23 UINTX_FORMAT */
1300             &rss,            /* 24 INTX_FORMAT  */
1301             &rsslim,         /* 25 UINTX_FORMAT */
1302             &scodes,         /* 26 UINTX_FORMAT */
1303             &ecode,          /* 27 UINTX_FORMAT */
1304             &stack_start);   /* 28 UINTX_FORMAT */
1305      }
1306
1307#undef _UFM
1308#undef _DFM
1309
1310      if (i != 28 - 2) {
1311         assert(false, "Bad conversion from /proc/self/stat");
1312         // product mode - assume we are the initial thread, good luck in the
1313         // embedded case.
1314         warning("Can't detect initial thread stack location - bad conversion");
1315         stack_start = (uintptr_t) &rlim;
1316      }
1317    } else {
1318      // For some reason we can't open /proc/self/stat (for example, running on
1319      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1320      // most cases, so don't abort:
1321      warning("Can't detect initial thread stack location - no /proc/self/stat");
1322      stack_start = (uintptr_t) &rlim;
1323    }
1324  }
1325
1326  // Now we have a pointer (stack_start) very close to the stack top, the
1327  // next thing to do is to figure out the exact location of stack top. We
1328  // can find out the virtual memory area that contains stack_start by
1329  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1330  // and its upper limit is the real stack top. (again, this would fail if
1331  // running inside chroot, because /proc may not exist.)
1332
1333  uintptr_t stack_top;
1334  address low, high;
1335  if (find_vma((address)stack_start, &low, &high)) {
1336    // success, "high" is the true stack top. (ignore "low", because initial
1337    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1338    stack_top = (uintptr_t)high;
1339  } else {
1340    // failed, likely because /proc/self/maps does not exist
1341    warning("Can't detect initial thread stack location - find_vma failed");
1342    // best effort: stack_start is normally within a few pages below the real
1343    // stack top, use it as stack top, and reduce stack size so we won't put
1344    // guard page outside stack.
1345    stack_top = stack_start;
1346    stack_size -= 16 * page_size();
1347  }
1348
1349  // stack_top could be partially down the page so align it
1350  stack_top = align_size_up(stack_top, page_size());
1351
1352  if (max_size && stack_size > max_size) {
1353     _initial_thread_stack_size = max_size;
1354  } else {
1355     _initial_thread_stack_size = stack_size;
1356  }
1357
1358  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1359  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1360}
1361
1362////////////////////////////////////////////////////////////////////////////////
1363// time support
1364
1365// Time since start-up in seconds to a fine granularity.
1366// Used by VMSelfDestructTimer and the MemProfiler.
1367double os::elapsedTime() {
1368
1369  return (double)(os::elapsed_counter()) * 0.000001;
1370}
1371
1372jlong os::elapsed_counter() {
1373  timeval time;
1374  int status = gettimeofday(&time, NULL);
1375  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1376}
1377
1378jlong os::elapsed_frequency() {
1379  return (1000 * 1000);
1380}
1381
1382// For now, we say that linux does not support vtime.  I have no idea
1383// whether it can actually be made to (DLD, 9/13/05).
1384
1385bool os::supports_vtime() { return false; }
1386bool os::enable_vtime()   { return false; }
1387bool os::vtime_enabled()  { return false; }
1388double os::elapsedVTime() {
1389  // better than nothing, but not much
1390  return elapsedTime();
1391}
1392
1393jlong os::javaTimeMillis() {
1394  timeval time;
1395  int status = gettimeofday(&time, NULL);
1396  assert(status != -1, "linux error");
1397  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1398}
1399
1400#ifndef CLOCK_MONOTONIC
1401#define CLOCK_MONOTONIC (1)
1402#endif
1403
1404void os::Linux::clock_init() {
1405  // we do dlopen's in this particular order due to bug in linux
1406  // dynamical loader (see 6348968) leading to crash on exit
1407  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1408  if (handle == NULL) {
1409    handle = dlopen("librt.so", RTLD_LAZY);
1410  }
1411
1412  if (handle) {
1413    int (*clock_getres_func)(clockid_t, struct timespec*) =
1414           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1415    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1416           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1417    if (clock_getres_func && clock_gettime_func) {
1418      // See if monotonic clock is supported by the kernel. Note that some
1419      // early implementations simply return kernel jiffies (updated every
1420      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1421      // for nano time (though the monotonic property is still nice to have).
1422      // It's fixed in newer kernels, however clock_getres() still returns
1423      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1424      // resolution for now. Hopefully as people move to new kernels, this
1425      // won't be a problem.
1426      struct timespec res;
1427      struct timespec tp;
1428      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1429          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1430        // yes, monotonic clock is supported
1431        _clock_gettime = clock_gettime_func;
1432      } else {
1433        // close librt if there is no monotonic clock
1434        dlclose(handle);
1435      }
1436    }
1437  }
1438}
1439
1440#ifndef SYS_clock_getres
1441
1442#if defined(IA32) || defined(AMD64)
1443#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1444#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1445#else
1446#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1447#define sys_clock_getres(x,y)  -1
1448#endif
1449
1450#else
1451#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1452#endif
1453
1454void os::Linux::fast_thread_clock_init() {
1455  if (!UseLinuxPosixThreadCPUClocks) {
1456    return;
1457  }
1458  clockid_t clockid;
1459  struct timespec tp;
1460  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1461      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1462
1463  // Switch to using fast clocks for thread cpu time if
1464  // the sys_clock_getres() returns 0 error code.
1465  // Note, that some kernels may support the current thread
1466  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1467  // returned by the pthread_getcpuclockid().
1468  // If the fast Posix clocks are supported then the sys_clock_getres()
1469  // must return at least tp.tv_sec == 0 which means a resolution
1470  // better than 1 sec. This is extra check for reliability.
1471
1472  if(pthread_getcpuclockid_func &&
1473     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1474     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1475
1476    _supports_fast_thread_cpu_time = true;
1477    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1478  }
1479}
1480
1481jlong os::javaTimeNanos() {
1482  if (Linux::supports_monotonic_clock()) {
1483    struct timespec tp;
1484    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1485    assert(status == 0, "gettime error");
1486    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1487    return result;
1488  } else {
1489    timeval time;
1490    int status = gettimeofday(&time, NULL);
1491    assert(status != -1, "linux error");
1492    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1493    return 1000 * usecs;
1494  }
1495}
1496
1497void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1498  if (Linux::supports_monotonic_clock()) {
1499    info_ptr->max_value = ALL_64_BITS;
1500
1501    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1502    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1503    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1504  } else {
1505    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1506    info_ptr->max_value = ALL_64_BITS;
1507
1508    // gettimeofday is a real time clock so it skips
1509    info_ptr->may_skip_backward = true;
1510    info_ptr->may_skip_forward = true;
1511  }
1512
1513  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1514}
1515
1516// Return the real, user, and system times in seconds from an
1517// arbitrary fixed point in the past.
1518bool os::getTimesSecs(double* process_real_time,
1519                      double* process_user_time,
1520                      double* process_system_time) {
1521  struct tms ticks;
1522  clock_t real_ticks = times(&ticks);
1523
1524  if (real_ticks == (clock_t) (-1)) {
1525    return false;
1526  } else {
1527    double ticks_per_second = (double) clock_tics_per_sec;
1528    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1529    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1530    *process_real_time = ((double) real_ticks) / ticks_per_second;
1531
1532    return true;
1533  }
1534}
1535
1536
1537char * os::local_time_string(char *buf, size_t buflen) {
1538  struct tm t;
1539  time_t long_time;
1540  time(&long_time);
1541  localtime_r(&long_time, &t);
1542  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1543               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1544               t.tm_hour, t.tm_min, t.tm_sec);
1545  return buf;
1546}
1547
1548struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1549  return localtime_r(clock, res);
1550}
1551
1552////////////////////////////////////////////////////////////////////////////////
1553// runtime exit support
1554
1555// Note: os::shutdown() might be called very early during initialization, or
1556// called from signal handler. Before adding something to os::shutdown(), make
1557// sure it is async-safe and can handle partially initialized VM.
1558void os::shutdown() {
1559
1560  // allow PerfMemory to attempt cleanup of any persistent resources
1561  perfMemory_exit();
1562
1563  // needs to remove object in file system
1564  AttachListener::abort();
1565
1566  // flush buffered output, finish log files
1567  ostream_abort();
1568
1569  // Check for abort hook
1570  abort_hook_t abort_hook = Arguments::abort_hook();
1571  if (abort_hook != NULL) {
1572    abort_hook();
1573  }
1574
1575}
1576
1577// Note: os::abort() might be called very early during initialization, or
1578// called from signal handler. Before adding something to os::abort(), make
1579// sure it is async-safe and can handle partially initialized VM.
1580void os::abort(bool dump_core) {
1581  os::shutdown();
1582  if (dump_core) {
1583#ifndef PRODUCT
1584    fdStream out(defaultStream::output_fd());
1585    out.print_raw("Current thread is ");
1586    char buf[16];
1587    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1588    out.print_raw_cr(buf);
1589    out.print_raw_cr("Dumping core ...");
1590#endif
1591    ::abort(); // dump core
1592  }
1593
1594  ::exit(1);
1595}
1596
1597// Die immediately, no exit hook, no abort hook, no cleanup.
1598void os::die() {
1599  // _exit() on LinuxThreads only kills current thread
1600  ::abort();
1601}
1602
1603// unused on linux for now.
1604void os::set_error_file(const char *logfile) {}
1605
1606
1607// This method is a copy of JDK's sysGetLastErrorString
1608// from src/solaris/hpi/src/system_md.c
1609
1610size_t os::lasterror(char *buf, size_t len) {
1611
1612  if (errno == 0)  return 0;
1613
1614  const char *s = ::strerror(errno);
1615  size_t n = ::strlen(s);
1616  if (n >= len) {
1617    n = len - 1;
1618  }
1619  ::strncpy(buf, s, n);
1620  buf[n] = '\0';
1621  return n;
1622}
1623
1624intx os::current_thread_id() { return (intx)pthread_self(); }
1625int os::current_process_id() {
1626
1627  // Under the old linux thread library, linux gives each thread
1628  // its own process id. Because of this each thread will return
1629  // a different pid if this method were to return the result
1630  // of getpid(2). Linux provides no api that returns the pid
1631  // of the launcher thread for the vm. This implementation
1632  // returns a unique pid, the pid of the launcher thread
1633  // that starts the vm 'process'.
1634
1635  // Under the NPTL, getpid() returns the same pid as the
1636  // launcher thread rather than a unique pid per thread.
1637  // Use gettid() if you want the old pre NPTL behaviour.
1638
1639  // if you are looking for the result of a call to getpid() that
1640  // returns a unique pid for the calling thread, then look at the
1641  // OSThread::thread_id() method in osThread_linux.hpp file
1642
1643  return (int)(_initial_pid ? _initial_pid : getpid());
1644}
1645
1646// DLL functions
1647
1648const char* os::dll_file_extension() { return ".so"; }
1649
1650// This must be hard coded because it's the system's temporary
1651// directory not the java application's temp directory, ala java.io.tmpdir.
1652const char* os::get_temp_directory() { return "/tmp"; }
1653
1654static bool file_exists(const char* filename) {
1655  struct stat statbuf;
1656  if (filename == NULL || strlen(filename) == 0) {
1657    return false;
1658  }
1659  return os::stat(filename, &statbuf) == 0;
1660}
1661
1662void os::dll_build_name(char* buffer, size_t buflen,
1663                        const char* pname, const char* fname) {
1664  // Copied from libhpi
1665  const size_t pnamelen = pname ? strlen(pname) : 0;
1666
1667  // Quietly truncate on buffer overflow.  Should be an error.
1668  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1669      *buffer = '\0';
1670      return;
1671  }
1672
1673  if (pnamelen == 0) {
1674    snprintf(buffer, buflen, "lib%s.so", fname);
1675  } else if (strchr(pname, *os::path_separator()) != NULL) {
1676    int n;
1677    char** pelements = split_path(pname, &n);
1678    for (int i = 0 ; i < n ; i++) {
1679      // Really shouldn't be NULL, but check can't hurt
1680      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1681        continue; // skip the empty path values
1682      }
1683      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1684      if (file_exists(buffer)) {
1685        break;
1686      }
1687    }
1688    // release the storage
1689    for (int i = 0 ; i < n ; i++) {
1690      if (pelements[i] != NULL) {
1691        FREE_C_HEAP_ARRAY(char, pelements[i]);
1692      }
1693    }
1694    if (pelements != NULL) {
1695      FREE_C_HEAP_ARRAY(char*, pelements);
1696    }
1697  } else {
1698    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1699  }
1700}
1701
1702const char* os::get_current_directory(char *buf, int buflen) {
1703  return getcwd(buf, buflen);
1704}
1705
1706// check if addr is inside libjvm[_g].so
1707bool os::address_is_in_vm(address addr) {
1708  static address libjvm_base_addr;
1709  Dl_info dlinfo;
1710
1711  if (libjvm_base_addr == NULL) {
1712    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1713    libjvm_base_addr = (address)dlinfo.dli_fbase;
1714    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1715  }
1716
1717  if (dladdr((void *)addr, &dlinfo)) {
1718    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1719  }
1720
1721  return false;
1722}
1723
1724bool os::dll_address_to_function_name(address addr, char *buf,
1725                                      int buflen, int *offset) {
1726  Dl_info dlinfo;
1727
1728  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1729    if (buf != NULL) {
1730      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1731        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1732      }
1733    }
1734    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1735    return true;
1736  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1737    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1738       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1739       return true;
1740    }
1741  }
1742
1743  if (buf != NULL) buf[0] = '\0';
1744  if (offset != NULL) *offset = -1;
1745  return false;
1746}
1747
1748struct _address_to_library_name {
1749  address addr;          // input : memory address
1750  size_t  buflen;        //         size of fname
1751  char*   fname;         // output: library name
1752  address base;          //         library base addr
1753};
1754
1755static int address_to_library_name_callback(struct dl_phdr_info *info,
1756                                            size_t size, void *data) {
1757  int i;
1758  bool found = false;
1759  address libbase = NULL;
1760  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1761
1762  // iterate through all loadable segments
1763  for (i = 0; i < info->dlpi_phnum; i++) {
1764    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1765    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1766      // base address of a library is the lowest address of its loaded
1767      // segments.
1768      if (libbase == NULL || libbase > segbase) {
1769        libbase = segbase;
1770      }
1771      // see if 'addr' is within current segment
1772      if (segbase <= d->addr &&
1773          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1774        found = true;
1775      }
1776    }
1777  }
1778
1779  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1780  // so dll_address_to_library_name() can fall through to use dladdr() which
1781  // can figure out executable name from argv[0].
1782  if (found && info->dlpi_name && info->dlpi_name[0]) {
1783    d->base = libbase;
1784    if (d->fname) {
1785      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1786    }
1787    return 1;
1788  }
1789  return 0;
1790}
1791
1792bool os::dll_address_to_library_name(address addr, char* buf,
1793                                     int buflen, int* offset) {
1794  Dl_info dlinfo;
1795  struct _address_to_library_name data;
1796
1797  // There is a bug in old glibc dladdr() implementation that it could resolve
1798  // to wrong library name if the .so file has a base address != NULL. Here
1799  // we iterate through the program headers of all loaded libraries to find
1800  // out which library 'addr' really belongs to. This workaround can be
1801  // removed once the minimum requirement for glibc is moved to 2.3.x.
1802  data.addr = addr;
1803  data.fname = buf;
1804  data.buflen = buflen;
1805  data.base = NULL;
1806  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1807
1808  if (rslt) {
1809     // buf already contains library name
1810     if (offset) *offset = addr - data.base;
1811     return true;
1812  } else if (dladdr((void*)addr, &dlinfo)){
1813     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1814     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1815     return true;
1816  } else {
1817     if (buf) buf[0] = '\0';
1818     if (offset) *offset = -1;
1819     return false;
1820  }
1821}
1822
1823  // Loads .dll/.so and
1824  // in case of error it checks if .dll/.so was built for the
1825  // same architecture as Hotspot is running on
1826
1827void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1828{
1829  void * result= ::dlopen(filename, RTLD_LAZY);
1830  if (result != NULL) {
1831    // Successful loading
1832    return result;
1833  }
1834
1835  Elf32_Ehdr elf_head;
1836
1837  // Read system error message into ebuf
1838  // It may or may not be overwritten below
1839  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1840  ebuf[ebuflen-1]='\0';
1841  int diag_msg_max_length=ebuflen-strlen(ebuf);
1842  char* diag_msg_buf=ebuf+strlen(ebuf);
1843
1844  if (diag_msg_max_length==0) {
1845    // No more space in ebuf for additional diagnostics message
1846    return NULL;
1847  }
1848
1849
1850  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1851
1852  if (file_descriptor < 0) {
1853    // Can't open library, report dlerror() message
1854    return NULL;
1855  }
1856
1857  bool failed_to_read_elf_head=
1858    (sizeof(elf_head)!=
1859        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1860
1861  ::close(file_descriptor);
1862  if (failed_to_read_elf_head) {
1863    // file i/o error - report dlerror() msg
1864    return NULL;
1865  }
1866
1867  typedef struct {
1868    Elf32_Half  code;         // Actual value as defined in elf.h
1869    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1870    char        elf_class;    // 32 or 64 bit
1871    char        endianess;    // MSB or LSB
1872    char*       name;         // String representation
1873  } arch_t;
1874
1875  #ifndef EM_486
1876  #define EM_486          6               /* Intel 80486 */
1877  #endif
1878
1879  static const arch_t arch_array[]={
1880    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1881    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1882    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1883    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1884    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1885    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1886    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1887    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1888    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1889    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1890    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1891    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1892    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1893    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1894    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1895    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1896  };
1897
1898  #if  (defined IA32)
1899    static  Elf32_Half running_arch_code=EM_386;
1900  #elif   (defined AMD64)
1901    static  Elf32_Half running_arch_code=EM_X86_64;
1902  #elif  (defined IA64)
1903    static  Elf32_Half running_arch_code=EM_IA_64;
1904  #elif  (defined __sparc) && (defined _LP64)
1905    static  Elf32_Half running_arch_code=EM_SPARCV9;
1906  #elif  (defined __sparc) && (!defined _LP64)
1907    static  Elf32_Half running_arch_code=EM_SPARC;
1908  #elif  (defined __powerpc64__)
1909    static  Elf32_Half running_arch_code=EM_PPC64;
1910  #elif  (defined __powerpc__)
1911    static  Elf32_Half running_arch_code=EM_PPC;
1912  #elif  (defined ARM)
1913    static  Elf32_Half running_arch_code=EM_ARM;
1914  #elif  (defined S390)
1915    static  Elf32_Half running_arch_code=EM_S390;
1916  #elif  (defined ALPHA)
1917    static  Elf32_Half running_arch_code=EM_ALPHA;
1918  #elif  (defined MIPSEL)
1919    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1920  #elif  (defined PARISC)
1921    static  Elf32_Half running_arch_code=EM_PARISC;
1922  #elif  (defined MIPS)
1923    static  Elf32_Half running_arch_code=EM_MIPS;
1924  #elif  (defined M68K)
1925    static  Elf32_Half running_arch_code=EM_68K;
1926  #else
1927    #error Method os::dll_load requires that one of following is defined:\
1928         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1929  #endif
1930
1931  // Identify compatability class for VM's architecture and library's architecture
1932  // Obtain string descriptions for architectures
1933
1934  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1935  int running_arch_index=-1;
1936
1937  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1938    if (running_arch_code == arch_array[i].code) {
1939      running_arch_index    = i;
1940    }
1941    if (lib_arch.code == arch_array[i].code) {
1942      lib_arch.compat_class = arch_array[i].compat_class;
1943      lib_arch.name         = arch_array[i].name;
1944    }
1945  }
1946
1947  assert(running_arch_index != -1,
1948    "Didn't find running architecture code (running_arch_code) in arch_array");
1949  if (running_arch_index == -1) {
1950    // Even though running architecture detection failed
1951    // we may still continue with reporting dlerror() message
1952    return NULL;
1953  }
1954
1955  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1956    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1957    return NULL;
1958  }
1959
1960#ifndef S390
1961  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1962    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1963    return NULL;
1964  }
1965#endif // !S390
1966
1967  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1968    if ( lib_arch.name!=NULL ) {
1969      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1970        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1971        lib_arch.name, arch_array[running_arch_index].name);
1972    } else {
1973      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1974      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1975        lib_arch.code,
1976        arch_array[running_arch_index].name);
1977    }
1978  }
1979
1980  return NULL;
1981}
1982
1983/*
1984 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1985 * chances are you might want to run the generated bits against glibc-2.0
1986 * libdl.so, so always use locking for any version of glibc.
1987 */
1988void* os::dll_lookup(void* handle, const char* name) {
1989  pthread_mutex_lock(&dl_mutex);
1990  void* res = dlsym(handle, name);
1991  pthread_mutex_unlock(&dl_mutex);
1992  return res;
1993}
1994
1995
1996static bool _print_ascii_file(const char* filename, outputStream* st) {
1997  int fd = ::open(filename, O_RDONLY);
1998  if (fd == -1) {
1999     return false;
2000  }
2001
2002  char buf[32];
2003  int bytes;
2004  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2005    st->print_raw(buf, bytes);
2006  }
2007
2008  ::close(fd);
2009
2010  return true;
2011}
2012
2013void os::print_dll_info(outputStream *st) {
2014   st->print_cr("Dynamic libraries:");
2015
2016   char fname[32];
2017   pid_t pid = os::Linux::gettid();
2018
2019   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2020
2021   if (!_print_ascii_file(fname, st)) {
2022     st->print("Can not get library information for pid = %d\n", pid);
2023   }
2024}
2025
2026
2027void os::print_os_info(outputStream* st) {
2028  st->print("OS:");
2029
2030  // Try to identify popular distros.
2031  // Most Linux distributions have /etc/XXX-release file, which contains
2032  // the OS version string. Some have more than one /etc/XXX-release file
2033  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2034  // so the order is important.
2035  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2036      !_print_ascii_file("/etc/sun-release", st) &&
2037      !_print_ascii_file("/etc/redhat-release", st) &&
2038      !_print_ascii_file("/etc/SuSE-release", st) &&
2039      !_print_ascii_file("/etc/turbolinux-release", st) &&
2040      !_print_ascii_file("/etc/gentoo-release", st) &&
2041      !_print_ascii_file("/etc/debian_version", st) &&
2042      !_print_ascii_file("/etc/ltib-release", st) &&
2043      !_print_ascii_file("/etc/angstrom-version", st)) {
2044      st->print("Linux");
2045  }
2046  st->cr();
2047
2048  // kernel
2049  st->print("uname:");
2050  struct utsname name;
2051  uname(&name);
2052  st->print(name.sysname); st->print(" ");
2053  st->print(name.release); st->print(" ");
2054  st->print(name.version); st->print(" ");
2055  st->print(name.machine);
2056  st->cr();
2057
2058  // Print warning if unsafe chroot environment detected
2059  if (unsafe_chroot_detected) {
2060    st->print("WARNING!! ");
2061    st->print_cr(unstable_chroot_error);
2062  }
2063
2064  // libc, pthread
2065  st->print("libc:");
2066  st->print(os::Linux::glibc_version()); st->print(" ");
2067  st->print(os::Linux::libpthread_version()); st->print(" ");
2068  if (os::Linux::is_LinuxThreads()) {
2069     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2070  }
2071  st->cr();
2072
2073  // rlimit
2074  st->print("rlimit:");
2075  struct rlimit rlim;
2076
2077  st->print(" STACK ");
2078  getrlimit(RLIMIT_STACK, &rlim);
2079  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2080  else st->print("%uk", rlim.rlim_cur >> 10);
2081
2082  st->print(", CORE ");
2083  getrlimit(RLIMIT_CORE, &rlim);
2084  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2085  else st->print("%uk", rlim.rlim_cur >> 10);
2086
2087  st->print(", NPROC ");
2088  getrlimit(RLIMIT_NPROC, &rlim);
2089  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2090  else st->print("%d", rlim.rlim_cur);
2091
2092  st->print(", NOFILE ");
2093  getrlimit(RLIMIT_NOFILE, &rlim);
2094  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2095  else st->print("%d", rlim.rlim_cur);
2096
2097  st->print(", AS ");
2098  getrlimit(RLIMIT_AS, &rlim);
2099  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2100  else st->print("%uk", rlim.rlim_cur >> 10);
2101  st->cr();
2102
2103  // load average
2104  st->print("load average:");
2105  double loadavg[3];
2106  os::loadavg(loadavg, 3);
2107  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2108  st->cr();
2109
2110  // meminfo
2111  st->print("\n/proc/meminfo:\n");
2112  _print_ascii_file("/proc/meminfo", st);
2113  st->cr();
2114}
2115
2116void os::pd_print_cpu_info(outputStream* st) {
2117  st->print("\n/proc/cpuinfo:\n");
2118  if (!_print_ascii_file("/proc/cpuinfo", st)) {
2119    st->print("  <Not Available>");
2120  }
2121  st->cr();
2122}
2123
2124void os::print_memory_info(outputStream* st) {
2125
2126  st->print("Memory:");
2127  st->print(" %dk page", os::vm_page_size()>>10);
2128
2129  // values in struct sysinfo are "unsigned long"
2130  struct sysinfo si;
2131  sysinfo(&si);
2132
2133  st->print(", physical " UINT64_FORMAT "k",
2134            os::physical_memory() >> 10);
2135  st->print("(" UINT64_FORMAT "k free)",
2136            os::available_memory() >> 10);
2137  st->print(", swap " UINT64_FORMAT "k",
2138            ((jlong)si.totalswap * si.mem_unit) >> 10);
2139  st->print("(" UINT64_FORMAT "k free)",
2140            ((jlong)si.freeswap * si.mem_unit) >> 10);
2141  st->cr();
2142}
2143
2144// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2145// but they're the same for all the linux arch that we support
2146// and they're the same for solaris but there's no common place to put this.
2147const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2148                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2149                          "ILL_COPROC", "ILL_BADSTK" };
2150
2151const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2152                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2153                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2154
2155const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2156
2157const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2158
2159void os::print_siginfo(outputStream* st, void* siginfo) {
2160  st->print("siginfo:");
2161
2162  const int buflen = 100;
2163  char buf[buflen];
2164  siginfo_t *si = (siginfo_t*)siginfo;
2165  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2166  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2167    st->print("si_errno=%s", buf);
2168  } else {
2169    st->print("si_errno=%d", si->si_errno);
2170  }
2171  const int c = si->si_code;
2172  assert(c > 0, "unexpected si_code");
2173  switch (si->si_signo) {
2174  case SIGILL:
2175    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2176    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2177    break;
2178  case SIGFPE:
2179    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2180    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2181    break;
2182  case SIGSEGV:
2183    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2184    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2185    break;
2186  case SIGBUS:
2187    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2188    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2189    break;
2190  default:
2191    st->print(", si_code=%d", si->si_code);
2192    // no si_addr
2193  }
2194
2195  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2196      UseSharedSpaces) {
2197    FileMapInfo* mapinfo = FileMapInfo::current_info();
2198    if (mapinfo->is_in_shared_space(si->si_addr)) {
2199      st->print("\n\nError accessing class data sharing archive."   \
2200                " Mapped file inaccessible during execution, "      \
2201                " possible disk/network problem.");
2202    }
2203  }
2204  st->cr();
2205}
2206
2207
2208static void print_signal_handler(outputStream* st, int sig,
2209                                 char* buf, size_t buflen);
2210
2211void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2212  st->print_cr("Signal Handlers:");
2213  print_signal_handler(st, SIGSEGV, buf, buflen);
2214  print_signal_handler(st, SIGBUS , buf, buflen);
2215  print_signal_handler(st, SIGFPE , buf, buflen);
2216  print_signal_handler(st, SIGPIPE, buf, buflen);
2217  print_signal_handler(st, SIGXFSZ, buf, buflen);
2218  print_signal_handler(st, SIGILL , buf, buflen);
2219  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2220  print_signal_handler(st, SR_signum, buf, buflen);
2221  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2222  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2223  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2224  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2225}
2226
2227static char saved_jvm_path[MAXPATHLEN] = {0};
2228
2229// Find the full path to the current module, libjvm.so or libjvm_g.so
2230void os::jvm_path(char *buf, jint buflen) {
2231  // Error checking.
2232  if (buflen < MAXPATHLEN) {
2233    assert(false, "must use a large-enough buffer");
2234    buf[0] = '\0';
2235    return;
2236  }
2237  // Lazy resolve the path to current module.
2238  if (saved_jvm_path[0] != 0) {
2239    strcpy(buf, saved_jvm_path);
2240    return;
2241  }
2242
2243  char dli_fname[MAXPATHLEN];
2244  bool ret = dll_address_to_library_name(
2245                CAST_FROM_FN_PTR(address, os::jvm_path),
2246                dli_fname, sizeof(dli_fname), NULL);
2247  assert(ret != 0, "cannot locate libjvm");
2248  char *rp = realpath(dli_fname, buf);
2249  if (rp == NULL)
2250    return;
2251
2252  if (Arguments::created_by_gamma_launcher()) {
2253    // Support for the gamma launcher.  Typical value for buf is
2254    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2255    // the right place in the string, then assume we are installed in a JDK and
2256    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2257    // up the path so it looks like libjvm.so is installed there (append a
2258    // fake suffix hotspot/libjvm.so).
2259    const char *p = buf + strlen(buf) - 1;
2260    for (int count = 0; p > buf && count < 5; ++count) {
2261      for (--p; p > buf && *p != '/'; --p)
2262        /* empty */ ;
2263    }
2264
2265    if (strncmp(p, "/jre/lib/", 9) != 0) {
2266      // Look for JAVA_HOME in the environment.
2267      char* java_home_var = ::getenv("JAVA_HOME");
2268      if (java_home_var != NULL && java_home_var[0] != 0) {
2269        char* jrelib_p;
2270        int len;
2271
2272        // Check the current module name "libjvm.so" or "libjvm_g.so".
2273        p = strrchr(buf, '/');
2274        assert(strstr(p, "/libjvm") == p, "invalid library name");
2275        p = strstr(p, "_g") ? "_g" : "";
2276
2277        rp = realpath(java_home_var, buf);
2278        if (rp == NULL)
2279          return;
2280
2281        // determine if this is a legacy image or modules image
2282        // modules image doesn't have "jre" subdirectory
2283        len = strlen(buf);
2284        jrelib_p = buf + len;
2285        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2286        if (0 != access(buf, F_OK)) {
2287          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2288        }
2289
2290        if (0 == access(buf, F_OK)) {
2291          // Use current module name "libjvm[_g].so" instead of
2292          // "libjvm"debug_only("_g")".so" since for fastdebug version
2293          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2294          len = strlen(buf);
2295          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2296        } else {
2297          // Go back to path of .so
2298          rp = realpath(dli_fname, buf);
2299          if (rp == NULL)
2300            return;
2301        }
2302      }
2303    }
2304  }
2305
2306  strcpy(saved_jvm_path, buf);
2307}
2308
2309void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2310  // no prefix required, not even "_"
2311}
2312
2313void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2314  // no suffix required
2315}
2316
2317////////////////////////////////////////////////////////////////////////////////
2318// sun.misc.Signal support
2319
2320static volatile jint sigint_count = 0;
2321
2322static void
2323UserHandler(int sig, void *siginfo, void *context) {
2324  // 4511530 - sem_post is serialized and handled by the manager thread. When
2325  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2326  // don't want to flood the manager thread with sem_post requests.
2327  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2328      return;
2329
2330  // Ctrl-C is pressed during error reporting, likely because the error
2331  // handler fails to abort. Let VM die immediately.
2332  if (sig == SIGINT && is_error_reported()) {
2333     os::die();
2334  }
2335
2336  os::signal_notify(sig);
2337}
2338
2339void* os::user_handler() {
2340  return CAST_FROM_FN_PTR(void*, UserHandler);
2341}
2342
2343extern "C" {
2344  typedef void (*sa_handler_t)(int);
2345  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2346}
2347
2348void* os::signal(int signal_number, void* handler) {
2349  struct sigaction sigAct, oldSigAct;
2350
2351  sigfillset(&(sigAct.sa_mask));
2352  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2353  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2354
2355  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2356    // -1 means registration failed
2357    return (void *)-1;
2358  }
2359
2360  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2361}
2362
2363void os::signal_raise(int signal_number) {
2364  ::raise(signal_number);
2365}
2366
2367/*
2368 * The following code is moved from os.cpp for making this
2369 * code platform specific, which it is by its very nature.
2370 */
2371
2372// Will be modified when max signal is changed to be dynamic
2373int os::sigexitnum_pd() {
2374  return NSIG;
2375}
2376
2377// a counter for each possible signal value
2378static volatile jint pending_signals[NSIG+1] = { 0 };
2379
2380// Linux(POSIX) specific hand shaking semaphore.
2381static sem_t sig_sem;
2382
2383void os::signal_init_pd() {
2384  // Initialize signal structures
2385  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2386
2387  // Initialize signal semaphore
2388  ::sem_init(&sig_sem, 0, 0);
2389}
2390
2391void os::signal_notify(int sig) {
2392  Atomic::inc(&pending_signals[sig]);
2393  ::sem_post(&sig_sem);
2394}
2395
2396static int check_pending_signals(bool wait) {
2397  Atomic::store(0, &sigint_count);
2398  for (;;) {
2399    for (int i = 0; i < NSIG + 1; i++) {
2400      jint n = pending_signals[i];
2401      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2402        return i;
2403      }
2404    }
2405    if (!wait) {
2406      return -1;
2407    }
2408    JavaThread *thread = JavaThread::current();
2409    ThreadBlockInVM tbivm(thread);
2410
2411    bool threadIsSuspended;
2412    do {
2413      thread->set_suspend_equivalent();
2414      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2415      ::sem_wait(&sig_sem);
2416
2417      // were we externally suspended while we were waiting?
2418      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2419      if (threadIsSuspended) {
2420        //
2421        // The semaphore has been incremented, but while we were waiting
2422        // another thread suspended us. We don't want to continue running
2423        // while suspended because that would surprise the thread that
2424        // suspended us.
2425        //
2426        ::sem_post(&sig_sem);
2427
2428        thread->java_suspend_self();
2429      }
2430    } while (threadIsSuspended);
2431  }
2432}
2433
2434int os::signal_lookup() {
2435  return check_pending_signals(false);
2436}
2437
2438int os::signal_wait() {
2439  return check_pending_signals(true);
2440}
2441
2442////////////////////////////////////////////////////////////////////////////////
2443// Virtual Memory
2444
2445int os::vm_page_size() {
2446  // Seems redundant as all get out
2447  assert(os::Linux::page_size() != -1, "must call os::init");
2448  return os::Linux::page_size();
2449}
2450
2451// Solaris allocates memory by pages.
2452int os::vm_allocation_granularity() {
2453  assert(os::Linux::page_size() != -1, "must call os::init");
2454  return os::Linux::page_size();
2455}
2456
2457// Rationale behind this function:
2458//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2459//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2460//  samples for JITted code. Here we create private executable mapping over the code cache
2461//  and then we can use standard (well, almost, as mapping can change) way to provide
2462//  info for the reporting script by storing timestamp and location of symbol
2463void linux_wrap_code(char* base, size_t size) {
2464  static volatile jint cnt = 0;
2465
2466  if (!UseOprofile) {
2467    return;
2468  }
2469
2470  char buf[PATH_MAX+1];
2471  int num = Atomic::add(1, &cnt);
2472
2473  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2474           os::get_temp_directory(), os::current_process_id(), num);
2475  unlink(buf);
2476
2477  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2478
2479  if (fd != -1) {
2480    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2481    if (rv != (off_t)-1) {
2482      if (::write(fd, "", 1) == 1) {
2483        mmap(base, size,
2484             PROT_READ|PROT_WRITE|PROT_EXEC,
2485             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2486      }
2487    }
2488    ::close(fd);
2489    unlink(buf);
2490  }
2491}
2492
2493// NOTE: Linux kernel does not really reserve the pages for us.
2494//       All it does is to check if there are enough free pages
2495//       left at the time of mmap(). This could be a potential
2496//       problem.
2497bool os::commit_memory(char* addr, size_t size, bool exec) {
2498  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2499  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2500                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2501  return res != (uintptr_t) MAP_FAILED;
2502}
2503
2504// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2505#ifndef MAP_HUGETLB
2506#define MAP_HUGETLB 0x40000
2507#endif
2508
2509// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2510#ifndef MADV_HUGEPAGE
2511#define MADV_HUGEPAGE 14
2512#endif
2513
2514bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2515                       bool exec) {
2516  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2517    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2518    uintptr_t res =
2519      (uintptr_t) ::mmap(addr, size, prot,
2520                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2521                         -1, 0);
2522    return res != (uintptr_t) MAP_FAILED;
2523  }
2524
2525  return commit_memory(addr, size, exec);
2526}
2527
2528void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2529  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2530    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2531    // be supported or the memory may already be backed by huge pages.
2532    ::madvise(addr, bytes, MADV_HUGEPAGE);
2533  }
2534}
2535
2536void os::free_memory(char *addr, size_t bytes) {
2537  ::madvise(addr, bytes, MADV_DONTNEED);
2538}
2539
2540void os::numa_make_global(char *addr, size_t bytes) {
2541  Linux::numa_interleave_memory(addr, bytes);
2542}
2543
2544void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2545  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2546}
2547
2548bool os::numa_topology_changed()   { return false; }
2549
2550size_t os::numa_get_groups_num() {
2551  int max_node = Linux::numa_max_node();
2552  return max_node > 0 ? max_node + 1 : 1;
2553}
2554
2555int os::numa_get_group_id() {
2556  int cpu_id = Linux::sched_getcpu();
2557  if (cpu_id != -1) {
2558    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2559    if (lgrp_id != -1) {
2560      return lgrp_id;
2561    }
2562  }
2563  return 0;
2564}
2565
2566size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2567  for (size_t i = 0; i < size; i++) {
2568    ids[i] = i;
2569  }
2570  return size;
2571}
2572
2573bool os::get_page_info(char *start, page_info* info) {
2574  return false;
2575}
2576
2577char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2578  return end;
2579}
2580
2581// Something to do with the numa-aware allocator needs these symbols
2582extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2583extern "C" JNIEXPORT void numa_error(char *where) { }
2584extern "C" JNIEXPORT int fork1() { return fork(); }
2585
2586
2587// If we are running with libnuma version > 2, then we should
2588// be trying to use symbols with versions 1.1
2589// If we are running with earlier version, which did not have symbol versions,
2590// we should use the base version.
2591void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2592  void *f = dlvsym(handle, name, "libnuma_1.1");
2593  if (f == NULL) {
2594    f = dlsym(handle, name);
2595  }
2596  return f;
2597}
2598
2599bool os::Linux::libnuma_init() {
2600  // sched_getcpu() should be in libc.
2601  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2602                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2603
2604  if (sched_getcpu() != -1) { // Does it work?
2605    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2606    if (handle != NULL) {
2607      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2608                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2609      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2610                                       libnuma_dlsym(handle, "numa_max_node")));
2611      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2612                                        libnuma_dlsym(handle, "numa_available")));
2613      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2614                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2615      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2616                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2617
2618
2619      if (numa_available() != -1) {
2620        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2621        // Create a cpu -> node mapping
2622        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2623        rebuild_cpu_to_node_map();
2624        return true;
2625      }
2626    }
2627  }
2628  return false;
2629}
2630
2631// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2632// The table is later used in get_node_by_cpu().
2633void os::Linux::rebuild_cpu_to_node_map() {
2634  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2635                              // in libnuma (possible values are starting from 16,
2636                              // and continuing up with every other power of 2, but less
2637                              // than the maximum number of CPUs supported by kernel), and
2638                              // is a subject to change (in libnuma version 2 the requirements
2639                              // are more reasonable) we'll just hardcode the number they use
2640                              // in the library.
2641  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2642
2643  size_t cpu_num = os::active_processor_count();
2644  size_t cpu_map_size = NCPUS / BitsPerCLong;
2645  size_t cpu_map_valid_size =
2646    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2647
2648  cpu_to_node()->clear();
2649  cpu_to_node()->at_grow(cpu_num - 1);
2650  size_t node_num = numa_get_groups_num();
2651
2652  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2653  for (size_t i = 0; i < node_num; i++) {
2654    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2655      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2656        if (cpu_map[j] != 0) {
2657          for (size_t k = 0; k < BitsPerCLong; k++) {
2658            if (cpu_map[j] & (1UL << k)) {
2659              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2660            }
2661          }
2662        }
2663      }
2664    }
2665  }
2666  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2667}
2668
2669int os::Linux::get_node_by_cpu(int cpu_id) {
2670  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2671    return cpu_to_node()->at(cpu_id);
2672  }
2673  return -1;
2674}
2675
2676GrowableArray<int>* os::Linux::_cpu_to_node;
2677os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2678os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2679os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2680os::Linux::numa_available_func_t os::Linux::_numa_available;
2681os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2682os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2683unsigned long* os::Linux::_numa_all_nodes;
2684
2685bool os::uncommit_memory(char* addr, size_t size) {
2686  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2687                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2688  return res  != (uintptr_t) MAP_FAILED;
2689}
2690
2691// Linux uses a growable mapping for the stack, and if the mapping for
2692// the stack guard pages is not removed when we detach a thread the
2693// stack cannot grow beyond the pages where the stack guard was
2694// mapped.  If at some point later in the process the stack expands to
2695// that point, the Linux kernel cannot expand the stack any further
2696// because the guard pages are in the way, and a segfault occurs.
2697//
2698// However, it's essential not to split the stack region by unmapping
2699// a region (leaving a hole) that's already part of the stack mapping,
2700// so if the stack mapping has already grown beyond the guard pages at
2701// the time we create them, we have to truncate the stack mapping.
2702// So, we need to know the extent of the stack mapping when
2703// create_stack_guard_pages() is called.
2704
2705// Find the bounds of the stack mapping.  Return true for success.
2706//
2707// We only need this for stacks that are growable: at the time of
2708// writing thread stacks don't use growable mappings (i.e. those
2709// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2710// only applies to the main thread.
2711
2712static
2713bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2714
2715  char buf[128];
2716  int fd, sz;
2717
2718  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2719    return false;
2720  }
2721
2722  const char kw[] = "[stack]";
2723  const int kwlen = sizeof(kw)-1;
2724
2725  // Address part of /proc/self/maps couldn't be more than 128 bytes
2726  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2727     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2728        // Extract addresses
2729        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2730           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2731           if (sp >= *bottom && sp <= *top) {
2732              ::close(fd);
2733              return true;
2734           }
2735        }
2736     }
2737  }
2738
2739 ::close(fd);
2740  return false;
2741}
2742
2743
2744// If the (growable) stack mapping already extends beyond the point
2745// where we're going to put our guard pages, truncate the mapping at
2746// that point by munmap()ping it.  This ensures that when we later
2747// munmap() the guard pages we don't leave a hole in the stack
2748// mapping. This only affects the main/initial thread, but guard
2749// against future OS changes
2750bool os::create_stack_guard_pages(char* addr, size_t size) {
2751  uintptr_t stack_extent, stack_base;
2752  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2753  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2754      assert(os::Linux::is_initial_thread(),
2755           "growable stack in non-initial thread");
2756    if (stack_extent < (uintptr_t)addr)
2757      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2758  }
2759
2760  return os::commit_memory(addr, size);
2761}
2762
2763// If this is a growable mapping, remove the guard pages entirely by
2764// munmap()ping them.  If not, just call uncommit_memory(). This only
2765// affects the main/initial thread, but guard against future OS changes
2766bool os::remove_stack_guard_pages(char* addr, size_t size) {
2767  uintptr_t stack_extent, stack_base;
2768  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2769  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2770      assert(os::Linux::is_initial_thread(),
2771           "growable stack in non-initial thread");
2772
2773    return ::munmap(addr, size) == 0;
2774  }
2775
2776  return os::uncommit_memory(addr, size);
2777}
2778
2779static address _highest_vm_reserved_address = NULL;
2780
2781// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2782// at 'requested_addr'. If there are existing memory mappings at the same
2783// location, however, they will be overwritten. If 'fixed' is false,
2784// 'requested_addr' is only treated as a hint, the return value may or
2785// may not start from the requested address. Unlike Linux mmap(), this
2786// function returns NULL to indicate failure.
2787static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2788  char * addr;
2789  int flags;
2790
2791  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2792  if (fixed) {
2793    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2794    flags |= MAP_FIXED;
2795  }
2796
2797  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2798  // to PROT_EXEC if executable when we commit the page.
2799  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2800                       flags, -1, 0);
2801
2802  if (addr != MAP_FAILED) {
2803    // anon_mmap() should only get called during VM initialization,
2804    // don't need lock (actually we can skip locking even it can be called
2805    // from multiple threads, because _highest_vm_reserved_address is just a
2806    // hint about the upper limit of non-stack memory regions.)
2807    if ((address)addr + bytes > _highest_vm_reserved_address) {
2808      _highest_vm_reserved_address = (address)addr + bytes;
2809    }
2810  }
2811
2812  return addr == MAP_FAILED ? NULL : addr;
2813}
2814
2815// Don't update _highest_vm_reserved_address, because there might be memory
2816// regions above addr + size. If so, releasing a memory region only creates
2817// a hole in the address space, it doesn't help prevent heap-stack collision.
2818//
2819static int anon_munmap(char * addr, size_t size) {
2820  return ::munmap(addr, size) == 0;
2821}
2822
2823char* os::reserve_memory(size_t bytes, char* requested_addr,
2824                         size_t alignment_hint) {
2825  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2826}
2827
2828bool os::release_memory(char* addr, size_t size) {
2829  return anon_munmap(addr, size);
2830}
2831
2832static address highest_vm_reserved_address() {
2833  return _highest_vm_reserved_address;
2834}
2835
2836static bool linux_mprotect(char* addr, size_t size, int prot) {
2837  // Linux wants the mprotect address argument to be page aligned.
2838  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2839
2840  // According to SUSv3, mprotect() should only be used with mappings
2841  // established by mmap(), and mmap() always maps whole pages. Unaligned
2842  // 'addr' likely indicates problem in the VM (e.g. trying to change
2843  // protection of malloc'ed or statically allocated memory). Check the
2844  // caller if you hit this assert.
2845  assert(addr == bottom, "sanity check");
2846
2847  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2848  return ::mprotect(bottom, size, prot) == 0;
2849}
2850
2851// Set protections specified
2852bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2853                        bool is_committed) {
2854  unsigned int p = 0;
2855  switch (prot) {
2856  case MEM_PROT_NONE: p = PROT_NONE; break;
2857  case MEM_PROT_READ: p = PROT_READ; break;
2858  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2859  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2860  default:
2861    ShouldNotReachHere();
2862  }
2863  // is_committed is unused.
2864  return linux_mprotect(addr, bytes, p);
2865}
2866
2867bool os::guard_memory(char* addr, size_t size) {
2868  return linux_mprotect(addr, size, PROT_NONE);
2869}
2870
2871bool os::unguard_memory(char* addr, size_t size) {
2872  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2873}
2874
2875bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2876  bool result = false;
2877  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2878                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2879                  -1, 0);
2880
2881  if (p != (void *) -1) {
2882    // We don't know if this really is a huge page or not.
2883    FILE *fp = fopen("/proc/self/maps", "r");
2884    if (fp) {
2885      while (!feof(fp)) {
2886        char chars[257];
2887        long x = 0;
2888        if (fgets(chars, sizeof(chars), fp)) {
2889          if (sscanf(chars, "%lx-%*x", &x) == 1
2890              && x == (long)p) {
2891            if (strstr (chars, "hugepage")) {
2892              result = true;
2893              break;
2894            }
2895          }
2896        }
2897      }
2898      fclose(fp);
2899    }
2900    munmap (p, page_size);
2901    if (result)
2902      return true;
2903  }
2904
2905  if (warn) {
2906    warning("HugeTLBFS is not supported by the operating system.");
2907  }
2908
2909  return result;
2910}
2911
2912/*
2913* Set the coredump_filter bits to include largepages in core dump (bit 6)
2914*
2915* From the coredump_filter documentation:
2916*
2917* - (bit 0) anonymous private memory
2918* - (bit 1) anonymous shared memory
2919* - (bit 2) file-backed private memory
2920* - (bit 3) file-backed shared memory
2921* - (bit 4) ELF header pages in file-backed private memory areas (it is
2922*           effective only if the bit 2 is cleared)
2923* - (bit 5) hugetlb private memory
2924* - (bit 6) hugetlb shared memory
2925*/
2926static void set_coredump_filter(void) {
2927  FILE *f;
2928  long cdm;
2929
2930  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2931    return;
2932  }
2933
2934  if (fscanf(f, "%lx", &cdm) != 1) {
2935    fclose(f);
2936    return;
2937  }
2938
2939  rewind(f);
2940
2941  if ((cdm & LARGEPAGES_BIT) == 0) {
2942    cdm |= LARGEPAGES_BIT;
2943    fprintf(f, "%#lx", cdm);
2944  }
2945
2946  fclose(f);
2947}
2948
2949// Large page support
2950
2951static size_t _large_page_size = 0;
2952
2953void os::large_page_init() {
2954  if (!UseLargePages) {
2955    UseHugeTLBFS = false;
2956    UseSHM = false;
2957    return;
2958  }
2959
2960  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2961    // If UseLargePages is specified on the command line try both methods,
2962    // if it's default, then try only HugeTLBFS.
2963    if (FLAG_IS_DEFAULT(UseLargePages)) {
2964      UseHugeTLBFS = true;
2965    } else {
2966      UseHugeTLBFS = UseSHM = true;
2967    }
2968  }
2969
2970  if (LargePageSizeInBytes) {
2971    _large_page_size = LargePageSizeInBytes;
2972  } else {
2973    // large_page_size on Linux is used to round up heap size. x86 uses either
2974    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2975    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2976    // page as large as 256M.
2977    //
2978    // Here we try to figure out page size by parsing /proc/meminfo and looking
2979    // for a line with the following format:
2980    //    Hugepagesize:     2048 kB
2981    //
2982    // If we can't determine the value (e.g. /proc is not mounted, or the text
2983    // format has been changed), we'll use the largest page size supported by
2984    // the processor.
2985
2986#ifndef ZERO
2987    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2988                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2989#endif // ZERO
2990
2991    FILE *fp = fopen("/proc/meminfo", "r");
2992    if (fp) {
2993      while (!feof(fp)) {
2994        int x = 0;
2995        char buf[16];
2996        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2997          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2998            _large_page_size = x * K;
2999            break;
3000          }
3001        } else {
3002          // skip to next line
3003          for (;;) {
3004            int ch = fgetc(fp);
3005            if (ch == EOF || ch == (int)'\n') break;
3006          }
3007        }
3008      }
3009      fclose(fp);
3010    }
3011  }
3012
3013  // print a warning if any large page related flag is specified on command line
3014  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3015
3016  const size_t default_page_size = (size_t)Linux::page_size();
3017  if (_large_page_size > default_page_size) {
3018    _page_sizes[0] = _large_page_size;
3019    _page_sizes[1] = default_page_size;
3020    _page_sizes[2] = 0;
3021  }
3022  UseHugeTLBFS = UseHugeTLBFS &&
3023                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3024
3025  if (UseHugeTLBFS)
3026    UseSHM = false;
3027
3028  UseLargePages = UseHugeTLBFS || UseSHM;
3029
3030  set_coredump_filter();
3031}
3032
3033#ifndef SHM_HUGETLB
3034#define SHM_HUGETLB 04000
3035#endif
3036
3037char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3038  // "exec" is passed in but not used.  Creating the shared image for
3039  // the code cache doesn't have an SHM_X executable permission to check.
3040  assert(UseLargePages && UseSHM, "only for SHM large pages");
3041
3042  key_t key = IPC_PRIVATE;
3043  char *addr;
3044
3045  bool warn_on_failure = UseLargePages &&
3046                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3047                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3048                        );
3049  char msg[128];
3050
3051  // Create a large shared memory region to attach to based on size.
3052  // Currently, size is the total size of the heap
3053  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3054  if (shmid == -1) {
3055     // Possible reasons for shmget failure:
3056     // 1. shmmax is too small for Java heap.
3057     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3058     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3059     // 2. not enough large page memory.
3060     //    > check available large pages: cat /proc/meminfo
3061     //    > increase amount of large pages:
3062     //          echo new_value > /proc/sys/vm/nr_hugepages
3063     //      Note 1: different Linux may use different name for this property,
3064     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3065     //      Note 2: it's possible there's enough physical memory available but
3066     //            they are so fragmented after a long run that they can't
3067     //            coalesce into large pages. Try to reserve large pages when
3068     //            the system is still "fresh".
3069     if (warn_on_failure) {
3070       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3071       warning(msg);
3072     }
3073     return NULL;
3074  }
3075
3076  // attach to the region
3077  addr = (char*)shmat(shmid, req_addr, 0);
3078  int err = errno;
3079
3080  // Remove shmid. If shmat() is successful, the actual shared memory segment
3081  // will be deleted when it's detached by shmdt() or when the process
3082  // terminates. If shmat() is not successful this will remove the shared
3083  // segment immediately.
3084  shmctl(shmid, IPC_RMID, NULL);
3085
3086  if ((intptr_t)addr == -1) {
3087     if (warn_on_failure) {
3088       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3089       warning(msg);
3090     }
3091     return NULL;
3092  }
3093
3094  return addr;
3095}
3096
3097bool os::release_memory_special(char* base, size_t bytes) {
3098  // detaching the SHM segment will also delete it, see reserve_memory_special()
3099  int rslt = shmdt(base);
3100  return rslt == 0;
3101}
3102
3103size_t os::large_page_size() {
3104  return _large_page_size;
3105}
3106
3107// HugeTLBFS allows application to commit large page memory on demand;
3108// with SysV SHM the entire memory region must be allocated as shared
3109// memory.
3110bool os::can_commit_large_page_memory() {
3111  return UseHugeTLBFS;
3112}
3113
3114bool os::can_execute_large_page_memory() {
3115  return UseHugeTLBFS;
3116}
3117
3118// Reserve memory at an arbitrary address, only if that area is
3119// available (and not reserved for something else).
3120
3121char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3122  const int max_tries = 10;
3123  char* base[max_tries];
3124  size_t size[max_tries];
3125  const size_t gap = 0x000000;
3126
3127  // Assert only that the size is a multiple of the page size, since
3128  // that's all that mmap requires, and since that's all we really know
3129  // about at this low abstraction level.  If we need higher alignment,
3130  // we can either pass an alignment to this method or verify alignment
3131  // in one of the methods further up the call chain.  See bug 5044738.
3132  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3133
3134  // Repeatedly allocate blocks until the block is allocated at the
3135  // right spot. Give up after max_tries. Note that reserve_memory() will
3136  // automatically update _highest_vm_reserved_address if the call is
3137  // successful. The variable tracks the highest memory address every reserved
3138  // by JVM. It is used to detect heap-stack collision if running with
3139  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3140  // space than needed, it could confuse the collision detecting code. To
3141  // solve the problem, save current _highest_vm_reserved_address and
3142  // calculate the correct value before return.
3143  address old_highest = _highest_vm_reserved_address;
3144
3145  // Linux mmap allows caller to pass an address as hint; give it a try first,
3146  // if kernel honors the hint then we can return immediately.
3147  char * addr = anon_mmap(requested_addr, bytes, false);
3148  if (addr == requested_addr) {
3149     return requested_addr;
3150  }
3151
3152  if (addr != NULL) {
3153     // mmap() is successful but it fails to reserve at the requested address
3154     anon_munmap(addr, bytes);
3155  }
3156
3157  int i;
3158  for (i = 0; i < max_tries; ++i) {
3159    base[i] = reserve_memory(bytes);
3160
3161    if (base[i] != NULL) {
3162      // Is this the block we wanted?
3163      if (base[i] == requested_addr) {
3164        size[i] = bytes;
3165        break;
3166      }
3167
3168      // Does this overlap the block we wanted? Give back the overlapped
3169      // parts and try again.
3170
3171      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3172      if (top_overlap >= 0 && top_overlap < bytes) {
3173        unmap_memory(base[i], top_overlap);
3174        base[i] += top_overlap;
3175        size[i] = bytes - top_overlap;
3176      } else {
3177        size_t bottom_overlap = base[i] + bytes - requested_addr;
3178        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3179          unmap_memory(requested_addr, bottom_overlap);
3180          size[i] = bytes - bottom_overlap;
3181        } else {
3182          size[i] = bytes;
3183        }
3184      }
3185    }
3186  }
3187
3188  // Give back the unused reserved pieces.
3189
3190  for (int j = 0; j < i; ++j) {
3191    if (base[j] != NULL) {
3192      unmap_memory(base[j], size[j]);
3193    }
3194  }
3195
3196  if (i < max_tries) {
3197    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3198    return requested_addr;
3199  } else {
3200    _highest_vm_reserved_address = old_highest;
3201    return NULL;
3202  }
3203}
3204
3205size_t os::read(int fd, void *buf, unsigned int nBytes) {
3206  return ::read(fd, buf, nBytes);
3207}
3208
3209// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3210// Solaris uses poll(), linux uses park().
3211// Poll() is likely a better choice, assuming that Thread.interrupt()
3212// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3213// SIGSEGV, see 4355769.
3214
3215const int NANOSECS_PER_MILLISECS = 1000000;
3216
3217int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3218  assert(thread == Thread::current(),  "thread consistency check");
3219
3220  ParkEvent * const slp = thread->_SleepEvent ;
3221  slp->reset() ;
3222  OrderAccess::fence() ;
3223
3224  if (interruptible) {
3225    jlong prevtime = javaTimeNanos();
3226
3227    for (;;) {
3228      if (os::is_interrupted(thread, true)) {
3229        return OS_INTRPT;
3230      }
3231
3232      jlong newtime = javaTimeNanos();
3233
3234      if (newtime - prevtime < 0) {
3235        // time moving backwards, should only happen if no monotonic clock
3236        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3237        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3238      } else {
3239        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3240      }
3241
3242      if(millis <= 0) {
3243        return OS_OK;
3244      }
3245
3246      prevtime = newtime;
3247
3248      {
3249        assert(thread->is_Java_thread(), "sanity check");
3250        JavaThread *jt = (JavaThread *) thread;
3251        ThreadBlockInVM tbivm(jt);
3252        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3253
3254        jt->set_suspend_equivalent();
3255        // cleared by handle_special_suspend_equivalent_condition() or
3256        // java_suspend_self() via check_and_wait_while_suspended()
3257
3258        slp->park(millis);
3259
3260        // were we externally suspended while we were waiting?
3261        jt->check_and_wait_while_suspended();
3262      }
3263    }
3264  } else {
3265    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3266    jlong prevtime = javaTimeNanos();
3267
3268    for (;;) {
3269      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3270      // the 1st iteration ...
3271      jlong newtime = javaTimeNanos();
3272
3273      if (newtime - prevtime < 0) {
3274        // time moving backwards, should only happen if no monotonic clock
3275        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3276        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3277      } else {
3278        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3279      }
3280
3281      if(millis <= 0) break ;
3282
3283      prevtime = newtime;
3284      slp->park(millis);
3285    }
3286    return OS_OK ;
3287  }
3288}
3289
3290int os::naked_sleep() {
3291  // %% make the sleep time an integer flag. for now use 1 millisec.
3292  return os::sleep(Thread::current(), 1, false);
3293}
3294
3295// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3296void os::infinite_sleep() {
3297  while (true) {    // sleep forever ...
3298    ::sleep(100);   // ... 100 seconds at a time
3299  }
3300}
3301
3302// Used to convert frequent JVM_Yield() to nops
3303bool os::dont_yield() {
3304  return DontYieldALot;
3305}
3306
3307void os::yield() {
3308  sched_yield();
3309}
3310
3311os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3312
3313void os::yield_all(int attempts) {
3314  // Yields to all threads, including threads with lower priorities
3315  // Threads on Linux are all with same priority. The Solaris style
3316  // os::yield_all() with nanosleep(1ms) is not necessary.
3317  sched_yield();
3318}
3319
3320// Called from the tight loops to possibly influence time-sharing heuristics
3321void os::loop_breaker(int attempts) {
3322  os::yield_all(attempts);
3323}
3324
3325////////////////////////////////////////////////////////////////////////////////
3326// thread priority support
3327
3328// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3329// only supports dynamic priority, static priority must be zero. For real-time
3330// applications, Linux supports SCHED_RR which allows static priority (1-99).
3331// However, for large multi-threaded applications, SCHED_RR is not only slower
3332// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3333// of 5 runs - Sep 2005).
3334//
3335// The following code actually changes the niceness of kernel-thread/LWP. It
3336// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3337// not the entire user process, and user level threads are 1:1 mapped to kernel
3338// threads. It has always been the case, but could change in the future. For
3339// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3340// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3341
3342int os::java_to_os_priority[MaxPriority + 1] = {
3343  19,              // 0 Entry should never be used
3344
3345   4,              // 1 MinPriority
3346   3,              // 2
3347   2,              // 3
3348
3349   1,              // 4
3350   0,              // 5 NormPriority
3351  -1,              // 6
3352
3353  -2,              // 7
3354  -3,              // 8
3355  -4,              // 9 NearMaxPriority
3356
3357  -5               // 10 MaxPriority
3358};
3359
3360static int prio_init() {
3361  if (ThreadPriorityPolicy == 1) {
3362    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3363    // if effective uid is not root. Perhaps, a more elegant way of doing
3364    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3365    if (geteuid() != 0) {
3366      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3367        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3368      }
3369      ThreadPriorityPolicy = 0;
3370    }
3371  }
3372  return 0;
3373}
3374
3375OSReturn os::set_native_priority(Thread* thread, int newpri) {
3376  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3377
3378  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3379  return (ret == 0) ? OS_OK : OS_ERR;
3380}
3381
3382OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3383  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3384    *priority_ptr = java_to_os_priority[NormPriority];
3385    return OS_OK;
3386  }
3387
3388  errno = 0;
3389  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3390  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3391}
3392
3393// Hint to the underlying OS that a task switch would not be good.
3394// Void return because it's a hint and can fail.
3395void os::hint_no_preempt() {}
3396
3397////////////////////////////////////////////////////////////////////////////////
3398// suspend/resume support
3399
3400//  the low-level signal-based suspend/resume support is a remnant from the
3401//  old VM-suspension that used to be for java-suspension, safepoints etc,
3402//  within hotspot. Now there is a single use-case for this:
3403//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3404//      that runs in the watcher thread.
3405//  The remaining code is greatly simplified from the more general suspension
3406//  code that used to be used.
3407//
3408//  The protocol is quite simple:
3409//  - suspend:
3410//      - sends a signal to the target thread
3411//      - polls the suspend state of the osthread using a yield loop
3412//      - target thread signal handler (SR_handler) sets suspend state
3413//        and blocks in sigsuspend until continued
3414//  - resume:
3415//      - sets target osthread state to continue
3416//      - sends signal to end the sigsuspend loop in the SR_handler
3417//
3418//  Note that the SR_lock plays no role in this suspend/resume protocol.
3419//
3420
3421static void resume_clear_context(OSThread *osthread) {
3422  osthread->set_ucontext(NULL);
3423  osthread->set_siginfo(NULL);
3424
3425  // notify the suspend action is completed, we have now resumed
3426  osthread->sr.clear_suspended();
3427}
3428
3429static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3430  osthread->set_ucontext(context);
3431  osthread->set_siginfo(siginfo);
3432}
3433
3434//
3435// Handler function invoked when a thread's execution is suspended or
3436// resumed. We have to be careful that only async-safe functions are
3437// called here (Note: most pthread functions are not async safe and
3438// should be avoided.)
3439//
3440// Note: sigwait() is a more natural fit than sigsuspend() from an
3441// interface point of view, but sigwait() prevents the signal hander
3442// from being run. libpthread would get very confused by not having
3443// its signal handlers run and prevents sigwait()'s use with the
3444// mutex granting granting signal.
3445//
3446// Currently only ever called on the VMThread
3447//
3448static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3449  // Save and restore errno to avoid confusing native code with EINTR
3450  // after sigsuspend.
3451  int old_errno = errno;
3452
3453  Thread* thread = Thread::current();
3454  OSThread* osthread = thread->osthread();
3455  assert(thread->is_VM_thread(), "Must be VMThread");
3456  // read current suspend action
3457  int action = osthread->sr.suspend_action();
3458  if (action == SR_SUSPEND) {
3459    suspend_save_context(osthread, siginfo, context);
3460
3461    // Notify the suspend action is about to be completed. do_suspend()
3462    // waits until SR_SUSPENDED is set and then returns. We will wait
3463    // here for a resume signal and that completes the suspend-other
3464    // action. do_suspend/do_resume is always called as a pair from
3465    // the same thread - so there are no races
3466
3467    // notify the caller
3468    osthread->sr.set_suspended();
3469
3470    sigset_t suspend_set;  // signals for sigsuspend()
3471
3472    // get current set of blocked signals and unblock resume signal
3473    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3474    sigdelset(&suspend_set, SR_signum);
3475
3476    // wait here until we are resumed
3477    do {
3478      sigsuspend(&suspend_set);
3479      // ignore all returns until we get a resume signal
3480    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3481
3482    resume_clear_context(osthread);
3483
3484  } else {
3485    assert(action == SR_CONTINUE, "unexpected sr action");
3486    // nothing special to do - just leave the handler
3487  }
3488
3489  errno = old_errno;
3490}
3491
3492
3493static int SR_initialize() {
3494  struct sigaction act;
3495  char *s;
3496  /* Get signal number to use for suspend/resume */
3497  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3498    int sig = ::strtol(s, 0, 10);
3499    if (sig > 0 || sig < _NSIG) {
3500        SR_signum = sig;
3501    }
3502  }
3503
3504  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3505        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3506
3507  sigemptyset(&SR_sigset);
3508  sigaddset(&SR_sigset, SR_signum);
3509
3510  /* Set up signal handler for suspend/resume */
3511  act.sa_flags = SA_RESTART|SA_SIGINFO;
3512  act.sa_handler = (void (*)(int)) SR_handler;
3513
3514  // SR_signum is blocked by default.
3515  // 4528190 - We also need to block pthread restart signal (32 on all
3516  // supported Linux platforms). Note that LinuxThreads need to block
3517  // this signal for all threads to work properly. So we don't have
3518  // to use hard-coded signal number when setting up the mask.
3519  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3520
3521  if (sigaction(SR_signum, &act, 0) == -1) {
3522    return -1;
3523  }
3524
3525  // Save signal flag
3526  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3527  return 0;
3528}
3529
3530static int SR_finalize() {
3531  return 0;
3532}
3533
3534
3535// returns true on success and false on error - really an error is fatal
3536// but this seems the normal response to library errors
3537static bool do_suspend(OSThread* osthread) {
3538  // mark as suspended and send signal
3539  osthread->sr.set_suspend_action(SR_SUSPEND);
3540  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3541  assert_status(status == 0, status, "pthread_kill");
3542
3543  // check status and wait until notified of suspension
3544  if (status == 0) {
3545    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3546      os::yield_all(i);
3547    }
3548    osthread->sr.set_suspend_action(SR_NONE);
3549    return true;
3550  }
3551  else {
3552    osthread->sr.set_suspend_action(SR_NONE);
3553    return false;
3554  }
3555}
3556
3557static void do_resume(OSThread* osthread) {
3558  assert(osthread->sr.is_suspended(), "thread should be suspended");
3559  osthread->sr.set_suspend_action(SR_CONTINUE);
3560
3561  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3562  assert_status(status == 0, status, "pthread_kill");
3563  // check status and wait unit notified of resumption
3564  if (status == 0) {
3565    for (int i = 0; osthread->sr.is_suspended(); i++) {
3566      os::yield_all(i);
3567    }
3568  }
3569  osthread->sr.set_suspend_action(SR_NONE);
3570}
3571
3572////////////////////////////////////////////////////////////////////////////////
3573// interrupt support
3574
3575void os::interrupt(Thread* thread) {
3576  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3577    "possibility of dangling Thread pointer");
3578
3579  OSThread* osthread = thread->osthread();
3580
3581  if (!osthread->interrupted()) {
3582    osthread->set_interrupted(true);
3583    // More than one thread can get here with the same value of osthread,
3584    // resulting in multiple notifications.  We do, however, want the store
3585    // to interrupted() to be visible to other threads before we execute unpark().
3586    OrderAccess::fence();
3587    ParkEvent * const slp = thread->_SleepEvent ;
3588    if (slp != NULL) slp->unpark() ;
3589  }
3590
3591  // For JSR166. Unpark even if interrupt status already was set
3592  if (thread->is_Java_thread())
3593    ((JavaThread*)thread)->parker()->unpark();
3594
3595  ParkEvent * ev = thread->_ParkEvent ;
3596  if (ev != NULL) ev->unpark() ;
3597
3598}
3599
3600bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3601  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3602    "possibility of dangling Thread pointer");
3603
3604  OSThread* osthread = thread->osthread();
3605
3606  bool interrupted = osthread->interrupted();
3607
3608  if (interrupted && clear_interrupted) {
3609    osthread->set_interrupted(false);
3610    // consider thread->_SleepEvent->reset() ... optional optimization
3611  }
3612
3613  return interrupted;
3614}
3615
3616///////////////////////////////////////////////////////////////////////////////////
3617// signal handling (except suspend/resume)
3618
3619// This routine may be used by user applications as a "hook" to catch signals.
3620// The user-defined signal handler must pass unrecognized signals to this
3621// routine, and if it returns true (non-zero), then the signal handler must
3622// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3623// routine will never retun false (zero), but instead will execute a VM panic
3624// routine kill the process.
3625//
3626// If this routine returns false, it is OK to call it again.  This allows
3627// the user-defined signal handler to perform checks either before or after
3628// the VM performs its own checks.  Naturally, the user code would be making
3629// a serious error if it tried to handle an exception (such as a null check
3630// or breakpoint) that the VM was generating for its own correct operation.
3631//
3632// This routine may recognize any of the following kinds of signals:
3633//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3634// It should be consulted by handlers for any of those signals.
3635//
3636// The caller of this routine must pass in the three arguments supplied
3637// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3638// field of the structure passed to sigaction().  This routine assumes that
3639// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3640//
3641// Note that the VM will print warnings if it detects conflicting signal
3642// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3643//
3644extern "C" JNIEXPORT int
3645JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3646                        void* ucontext, int abort_if_unrecognized);
3647
3648void signalHandler(int sig, siginfo_t* info, void* uc) {
3649  assert(info != NULL && uc != NULL, "it must be old kernel");
3650  JVM_handle_linux_signal(sig, info, uc, true);
3651}
3652
3653
3654// This boolean allows users to forward their own non-matching signals
3655// to JVM_handle_linux_signal, harmlessly.
3656bool os::Linux::signal_handlers_are_installed = false;
3657
3658// For signal-chaining
3659struct sigaction os::Linux::sigact[MAXSIGNUM];
3660unsigned int os::Linux::sigs = 0;
3661bool os::Linux::libjsig_is_loaded = false;
3662typedef struct sigaction *(*get_signal_t)(int);
3663get_signal_t os::Linux::get_signal_action = NULL;
3664
3665struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3666  struct sigaction *actp = NULL;
3667
3668  if (libjsig_is_loaded) {
3669    // Retrieve the old signal handler from libjsig
3670    actp = (*get_signal_action)(sig);
3671  }
3672  if (actp == NULL) {
3673    // Retrieve the preinstalled signal handler from jvm
3674    actp = get_preinstalled_handler(sig);
3675  }
3676
3677  return actp;
3678}
3679
3680static bool call_chained_handler(struct sigaction *actp, int sig,
3681                                 siginfo_t *siginfo, void *context) {
3682  // Call the old signal handler
3683  if (actp->sa_handler == SIG_DFL) {
3684    // It's more reasonable to let jvm treat it as an unexpected exception
3685    // instead of taking the default action.
3686    return false;
3687  } else if (actp->sa_handler != SIG_IGN) {
3688    if ((actp->sa_flags & SA_NODEFER) == 0) {
3689      // automaticlly block the signal
3690      sigaddset(&(actp->sa_mask), sig);
3691    }
3692
3693    sa_handler_t hand;
3694    sa_sigaction_t sa;
3695    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3696    // retrieve the chained handler
3697    if (siginfo_flag_set) {
3698      sa = actp->sa_sigaction;
3699    } else {
3700      hand = actp->sa_handler;
3701    }
3702
3703    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3704      actp->sa_handler = SIG_DFL;
3705    }
3706
3707    // try to honor the signal mask
3708    sigset_t oset;
3709    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3710
3711    // call into the chained handler
3712    if (siginfo_flag_set) {
3713      (*sa)(sig, siginfo, context);
3714    } else {
3715      (*hand)(sig);
3716    }
3717
3718    // restore the signal mask
3719    pthread_sigmask(SIG_SETMASK, &oset, 0);
3720  }
3721  // Tell jvm's signal handler the signal is taken care of.
3722  return true;
3723}
3724
3725bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3726  bool chained = false;
3727  // signal-chaining
3728  if (UseSignalChaining) {
3729    struct sigaction *actp = get_chained_signal_action(sig);
3730    if (actp != NULL) {
3731      chained = call_chained_handler(actp, sig, siginfo, context);
3732    }
3733  }
3734  return chained;
3735}
3736
3737struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3738  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3739    return &sigact[sig];
3740  }
3741  return NULL;
3742}
3743
3744void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3745  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3746  sigact[sig] = oldAct;
3747  sigs |= (unsigned int)1 << sig;
3748}
3749
3750// for diagnostic
3751int os::Linux::sigflags[MAXSIGNUM];
3752
3753int os::Linux::get_our_sigflags(int sig) {
3754  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3755  return sigflags[sig];
3756}
3757
3758void os::Linux::set_our_sigflags(int sig, int flags) {
3759  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3760  sigflags[sig] = flags;
3761}
3762
3763void os::Linux::set_signal_handler(int sig, bool set_installed) {
3764  // Check for overwrite.
3765  struct sigaction oldAct;
3766  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3767
3768  void* oldhand = oldAct.sa_sigaction
3769                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3770                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3771  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3772      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3773      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3774    if (AllowUserSignalHandlers || !set_installed) {
3775      // Do not overwrite; user takes responsibility to forward to us.
3776      return;
3777    } else if (UseSignalChaining) {
3778      // save the old handler in jvm
3779      save_preinstalled_handler(sig, oldAct);
3780      // libjsig also interposes the sigaction() call below and saves the
3781      // old sigaction on it own.
3782    } else {
3783      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3784                    "%#lx for signal %d.", (long)oldhand, sig));
3785    }
3786  }
3787
3788  struct sigaction sigAct;
3789  sigfillset(&(sigAct.sa_mask));
3790  sigAct.sa_handler = SIG_DFL;
3791  if (!set_installed) {
3792    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3793  } else {
3794    sigAct.sa_sigaction = signalHandler;
3795    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3796  }
3797  // Save flags, which are set by ours
3798  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3799  sigflags[sig] = sigAct.sa_flags;
3800
3801  int ret = sigaction(sig, &sigAct, &oldAct);
3802  assert(ret == 0, "check");
3803
3804  void* oldhand2  = oldAct.sa_sigaction
3805                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3806                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3807  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3808}
3809
3810// install signal handlers for signals that HotSpot needs to
3811// handle in order to support Java-level exception handling.
3812
3813void os::Linux::install_signal_handlers() {
3814  if (!signal_handlers_are_installed) {
3815    signal_handlers_are_installed = true;
3816
3817    // signal-chaining
3818    typedef void (*signal_setting_t)();
3819    signal_setting_t begin_signal_setting = NULL;
3820    signal_setting_t end_signal_setting = NULL;
3821    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3822                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3823    if (begin_signal_setting != NULL) {
3824      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3825                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3826      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3827                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3828      libjsig_is_loaded = true;
3829      assert(UseSignalChaining, "should enable signal-chaining");
3830    }
3831    if (libjsig_is_loaded) {
3832      // Tell libjsig jvm is setting signal handlers
3833      (*begin_signal_setting)();
3834    }
3835
3836    set_signal_handler(SIGSEGV, true);
3837    set_signal_handler(SIGPIPE, true);
3838    set_signal_handler(SIGBUS, true);
3839    set_signal_handler(SIGILL, true);
3840    set_signal_handler(SIGFPE, true);
3841    set_signal_handler(SIGXFSZ, true);
3842
3843    if (libjsig_is_loaded) {
3844      // Tell libjsig jvm finishes setting signal handlers
3845      (*end_signal_setting)();
3846    }
3847
3848    // We don't activate signal checker if libjsig is in place, we trust ourselves
3849    // and if UserSignalHandler is installed all bets are off
3850    if (CheckJNICalls) {
3851      if (libjsig_is_loaded) {
3852        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3853        check_signals = false;
3854      }
3855      if (AllowUserSignalHandlers) {
3856        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3857        check_signals = false;
3858      }
3859    }
3860  }
3861}
3862
3863// This is the fastest way to get thread cpu time on Linux.
3864// Returns cpu time (user+sys) for any thread, not only for current.
3865// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3866// It might work on 2.6.10+ with a special kernel/glibc patch.
3867// For reference, please, see IEEE Std 1003.1-2004:
3868//   http://www.unix.org/single_unix_specification
3869
3870jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3871  struct timespec tp;
3872  int rc = os::Linux::clock_gettime(clockid, &tp);
3873  assert(rc == 0, "clock_gettime is expected to return 0 code");
3874
3875  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3876}
3877
3878/////
3879// glibc on Linux platform uses non-documented flag
3880// to indicate, that some special sort of signal
3881// trampoline is used.
3882// We will never set this flag, and we should
3883// ignore this flag in our diagnostic
3884#ifdef SIGNIFICANT_SIGNAL_MASK
3885#undef SIGNIFICANT_SIGNAL_MASK
3886#endif
3887#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3888
3889static const char* get_signal_handler_name(address handler,
3890                                           char* buf, int buflen) {
3891  int offset;
3892  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3893  if (found) {
3894    // skip directory names
3895    const char *p1, *p2;
3896    p1 = buf;
3897    size_t len = strlen(os::file_separator());
3898    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3899    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3900  } else {
3901    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3902  }
3903  return buf;
3904}
3905
3906static void print_signal_handler(outputStream* st, int sig,
3907                                 char* buf, size_t buflen) {
3908  struct sigaction sa;
3909
3910  sigaction(sig, NULL, &sa);
3911
3912  // See comment for SIGNIFICANT_SIGNAL_MASK define
3913  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3914
3915  st->print("%s: ", os::exception_name(sig, buf, buflen));
3916
3917  address handler = (sa.sa_flags & SA_SIGINFO)
3918    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3919    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3920
3921  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3922    st->print("SIG_DFL");
3923  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3924    st->print("SIG_IGN");
3925  } else {
3926    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3927  }
3928
3929  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3930
3931  address rh = VMError::get_resetted_sighandler(sig);
3932  // May be, handler was resetted by VMError?
3933  if(rh != NULL) {
3934    handler = rh;
3935    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3936  }
3937
3938  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3939
3940  // Check: is it our handler?
3941  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3942     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3943    // It is our signal handler
3944    // check for flags, reset system-used one!
3945    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3946      st->print(
3947                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3948                os::Linux::get_our_sigflags(sig));
3949    }
3950  }
3951  st->cr();
3952}
3953
3954
3955#define DO_SIGNAL_CHECK(sig) \
3956  if (!sigismember(&check_signal_done, sig)) \
3957    os::Linux::check_signal_handler(sig)
3958
3959// This method is a periodic task to check for misbehaving JNI applications
3960// under CheckJNI, we can add any periodic checks here
3961
3962void os::run_periodic_checks() {
3963
3964  if (check_signals == false) return;
3965
3966  // SEGV and BUS if overridden could potentially prevent
3967  // generation of hs*.log in the event of a crash, debugging
3968  // such a case can be very challenging, so we absolutely
3969  // check the following for a good measure:
3970  DO_SIGNAL_CHECK(SIGSEGV);
3971  DO_SIGNAL_CHECK(SIGILL);
3972  DO_SIGNAL_CHECK(SIGFPE);
3973  DO_SIGNAL_CHECK(SIGBUS);
3974  DO_SIGNAL_CHECK(SIGPIPE);
3975  DO_SIGNAL_CHECK(SIGXFSZ);
3976
3977
3978  // ReduceSignalUsage allows the user to override these handlers
3979  // see comments at the very top and jvm_solaris.h
3980  if (!ReduceSignalUsage) {
3981    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3982    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3983    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3984    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3985  }
3986
3987  DO_SIGNAL_CHECK(SR_signum);
3988  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3989}
3990
3991typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3992
3993static os_sigaction_t os_sigaction = NULL;
3994
3995void os::Linux::check_signal_handler(int sig) {
3996  char buf[O_BUFLEN];
3997  address jvmHandler = NULL;
3998
3999
4000  struct sigaction act;
4001  if (os_sigaction == NULL) {
4002    // only trust the default sigaction, in case it has been interposed
4003    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4004    if (os_sigaction == NULL) return;
4005  }
4006
4007  os_sigaction(sig, (struct sigaction*)NULL, &act);
4008
4009
4010  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4011
4012  address thisHandler = (act.sa_flags & SA_SIGINFO)
4013    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4014    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4015
4016
4017  switch(sig) {
4018  case SIGSEGV:
4019  case SIGBUS:
4020  case SIGFPE:
4021  case SIGPIPE:
4022  case SIGILL:
4023  case SIGXFSZ:
4024    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4025    break;
4026
4027  case SHUTDOWN1_SIGNAL:
4028  case SHUTDOWN2_SIGNAL:
4029  case SHUTDOWN3_SIGNAL:
4030  case BREAK_SIGNAL:
4031    jvmHandler = (address)user_handler();
4032    break;
4033
4034  case INTERRUPT_SIGNAL:
4035    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4036    break;
4037
4038  default:
4039    if (sig == SR_signum) {
4040      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4041    } else {
4042      return;
4043    }
4044    break;
4045  }
4046
4047  if (thisHandler != jvmHandler) {
4048    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4049    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4050    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4051    // No need to check this sig any longer
4052    sigaddset(&check_signal_done, sig);
4053  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4054    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4055    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4056    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4057    // No need to check this sig any longer
4058    sigaddset(&check_signal_done, sig);
4059  }
4060
4061  // Dump all the signal
4062  if (sigismember(&check_signal_done, sig)) {
4063    print_signal_handlers(tty, buf, O_BUFLEN);
4064  }
4065}
4066
4067extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4068
4069extern bool signal_name(int signo, char* buf, size_t len);
4070
4071const char* os::exception_name(int exception_code, char* buf, size_t size) {
4072  if (0 < exception_code && exception_code <= SIGRTMAX) {
4073    // signal
4074    if (!signal_name(exception_code, buf, size)) {
4075      jio_snprintf(buf, size, "SIG%d", exception_code);
4076    }
4077    return buf;
4078  } else {
4079    return NULL;
4080  }
4081}
4082
4083// this is called _before_ the most of global arguments have been parsed
4084void os::init(void) {
4085  char dummy;   /* used to get a guess on initial stack address */
4086//  first_hrtime = gethrtime();
4087
4088  // With LinuxThreads the JavaMain thread pid (primordial thread)
4089  // is different than the pid of the java launcher thread.
4090  // So, on Linux, the launcher thread pid is passed to the VM
4091  // via the sun.java.launcher.pid property.
4092  // Use this property instead of getpid() if it was correctly passed.
4093  // See bug 6351349.
4094  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4095
4096  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4097
4098  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4099
4100  init_random(1234567);
4101
4102  ThreadCritical::initialize();
4103
4104  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4105  if (Linux::page_size() == -1) {
4106    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4107                  strerror(errno)));
4108  }
4109  init_page_sizes((size_t) Linux::page_size());
4110
4111  Linux::initialize_system_info();
4112
4113  // main_thread points to the aboriginal thread
4114  Linux::_main_thread = pthread_self();
4115
4116  Linux::clock_init();
4117  initial_time_count = os::elapsed_counter();
4118  pthread_mutex_init(&dl_mutex, NULL);
4119}
4120
4121// To install functions for atexit system call
4122extern "C" {
4123  static void perfMemory_exit_helper() {
4124    perfMemory_exit();
4125  }
4126}
4127
4128// this is called _after_ the global arguments have been parsed
4129jint os::init_2(void)
4130{
4131  Linux::fast_thread_clock_init();
4132
4133  // Allocate a single page and mark it as readable for safepoint polling
4134  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4135  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4136
4137  os::set_polling_page( polling_page );
4138
4139#ifndef PRODUCT
4140  if(Verbose && PrintMiscellaneous)
4141    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4142#endif
4143
4144  if (!UseMembar) {
4145    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4146    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4147    os::set_memory_serialize_page( mem_serialize_page );
4148
4149#ifndef PRODUCT
4150    if(Verbose && PrintMiscellaneous)
4151      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4152#endif
4153  }
4154
4155  os::large_page_init();
4156
4157  // initialize suspend/resume support - must do this before signal_sets_init()
4158  if (SR_initialize() != 0) {
4159    perror("SR_initialize failed");
4160    return JNI_ERR;
4161  }
4162
4163  Linux::signal_sets_init();
4164  Linux::install_signal_handlers();
4165
4166  // Check minimum allowable stack size for thread creation and to initialize
4167  // the java system classes, including StackOverflowError - depends on page
4168  // size.  Add a page for compiler2 recursion in main thread.
4169  // Add in 2*BytesPerWord times page size to account for VM stack during
4170  // class initialization depending on 32 or 64 bit VM.
4171  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4172            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4173                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4174
4175  size_t threadStackSizeInBytes = ThreadStackSize * K;
4176  if (threadStackSizeInBytes != 0 &&
4177      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4178        tty->print_cr("\nThe stack size specified is too small, "
4179                      "Specify at least %dk",
4180                      os::Linux::min_stack_allowed/ K);
4181        return JNI_ERR;
4182  }
4183
4184  // Make the stack size a multiple of the page size so that
4185  // the yellow/red zones can be guarded.
4186  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4187        vm_page_size()));
4188
4189  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4190
4191  Linux::libpthread_init();
4192  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4193     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4194          Linux::glibc_version(), Linux::libpthread_version(),
4195          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4196  }
4197
4198  if (UseNUMA) {
4199    if (!Linux::libnuma_init()) {
4200      UseNUMA = false;
4201    } else {
4202      if ((Linux::numa_max_node() < 1)) {
4203        // There's only one node(they start from 0), disable NUMA.
4204        UseNUMA = false;
4205      }
4206    }
4207    // With SHM large pages we cannot uncommit a page, so there's not way
4208    // we can make the adaptive lgrp chunk resizing work. If the user specified
4209    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4210    // disable adaptive resizing.
4211    if (UseNUMA && UseLargePages && UseSHM) {
4212      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4213        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4214          UseLargePages = false;
4215        } else {
4216          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4217          UseAdaptiveSizePolicy = false;
4218          UseAdaptiveNUMAChunkSizing = false;
4219        }
4220      } else {
4221        UseNUMA = false;
4222      }
4223    }
4224    if (!UseNUMA && ForceNUMA) {
4225      UseNUMA = true;
4226    }
4227  }
4228
4229  if (MaxFDLimit) {
4230    // set the number of file descriptors to max. print out error
4231    // if getrlimit/setrlimit fails but continue regardless.
4232    struct rlimit nbr_files;
4233    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4234    if (status != 0) {
4235      if (PrintMiscellaneous && (Verbose || WizardMode))
4236        perror("os::init_2 getrlimit failed");
4237    } else {
4238      nbr_files.rlim_cur = nbr_files.rlim_max;
4239      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4240      if (status != 0) {
4241        if (PrintMiscellaneous && (Verbose || WizardMode))
4242          perror("os::init_2 setrlimit failed");
4243      }
4244    }
4245  }
4246
4247  // Initialize lock used to serialize thread creation (see os::create_thread)
4248  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4249
4250  // at-exit methods are called in the reverse order of their registration.
4251  // atexit functions are called on return from main or as a result of a
4252  // call to exit(3C). There can be only 32 of these functions registered
4253  // and atexit() does not set errno.
4254
4255  if (PerfAllowAtExitRegistration) {
4256    // only register atexit functions if PerfAllowAtExitRegistration is set.
4257    // atexit functions can be delayed until process exit time, which
4258    // can be problematic for embedded VM situations. Embedded VMs should
4259    // call DestroyJavaVM() to assure that VM resources are released.
4260
4261    // note: perfMemory_exit_helper atexit function may be removed in
4262    // the future if the appropriate cleanup code can be added to the
4263    // VM_Exit VMOperation's doit method.
4264    if (atexit(perfMemory_exit_helper) != 0) {
4265      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4266    }
4267  }
4268
4269  // initialize thread priority policy
4270  prio_init();
4271
4272  return JNI_OK;
4273}
4274
4275// this is called at the end of vm_initialization
4276void os::init_3(void)
4277{
4278#ifdef JAVASE_EMBEDDED
4279  // Start the MemNotifyThread
4280  if (LowMemoryProtection) {
4281    MemNotifyThread::start();
4282  }
4283  return;
4284#endif
4285}
4286
4287// Mark the polling page as unreadable
4288void os::make_polling_page_unreadable(void) {
4289  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4290    fatal("Could not disable polling page");
4291};
4292
4293// Mark the polling page as readable
4294void os::make_polling_page_readable(void) {
4295  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4296    fatal("Could not enable polling page");
4297  }
4298};
4299
4300int os::active_processor_count() {
4301  // Linux doesn't yet have a (official) notion of processor sets,
4302  // so just return the number of online processors.
4303  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4304  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4305  return online_cpus;
4306}
4307
4308bool os::distribute_processes(uint length, uint* distribution) {
4309  // Not yet implemented.
4310  return false;
4311}
4312
4313bool os::bind_to_processor(uint processor_id) {
4314  // Not yet implemented.
4315  return false;
4316}
4317
4318///
4319
4320// Suspends the target using the signal mechanism and then grabs the PC before
4321// resuming the target. Used by the flat-profiler only
4322ExtendedPC os::get_thread_pc(Thread* thread) {
4323  // Make sure that it is called by the watcher for the VMThread
4324  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4325  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4326
4327  ExtendedPC epc;
4328
4329  OSThread* osthread = thread->osthread();
4330  if (do_suspend(osthread)) {
4331    if (osthread->ucontext() != NULL) {
4332      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4333    } else {
4334      // NULL context is unexpected, double-check this is the VMThread
4335      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4336    }
4337    do_resume(osthread);
4338  }
4339  // failure means pthread_kill failed for some reason - arguably this is
4340  // a fatal problem, but such problems are ignored elsewhere
4341
4342  return epc;
4343}
4344
4345int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4346{
4347   if (is_NPTL()) {
4348      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4349   } else {
4350#ifndef IA64
4351      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4352      // word back to default 64bit precision if condvar is signaled. Java
4353      // wants 53bit precision.  Save and restore current value.
4354      int fpu = get_fpu_control_word();
4355#endif // IA64
4356      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4357#ifndef IA64
4358      set_fpu_control_word(fpu);
4359#endif // IA64
4360      return status;
4361   }
4362}
4363
4364////////////////////////////////////////////////////////////////////////////////
4365// debug support
4366
4367static address same_page(address x, address y) {
4368  int page_bits = -os::vm_page_size();
4369  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4370    return x;
4371  else if (x > y)
4372    return (address)(intptr_t(y) | ~page_bits) + 1;
4373  else
4374    return (address)(intptr_t(y) & page_bits);
4375}
4376
4377bool os::find(address addr, outputStream* st) {
4378  Dl_info dlinfo;
4379  memset(&dlinfo, 0, sizeof(dlinfo));
4380  if (dladdr(addr, &dlinfo)) {
4381    st->print(PTR_FORMAT ": ", addr);
4382    if (dlinfo.dli_sname != NULL) {
4383      st->print("%s+%#x", dlinfo.dli_sname,
4384                 addr - (intptr_t)dlinfo.dli_saddr);
4385    } else if (dlinfo.dli_fname) {
4386      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4387    } else {
4388      st->print("<absolute address>");
4389    }
4390    if (dlinfo.dli_fname) {
4391      st->print(" in %s", dlinfo.dli_fname);
4392    }
4393    if (dlinfo.dli_fbase) {
4394      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4395    }
4396    st->cr();
4397
4398    if (Verbose) {
4399      // decode some bytes around the PC
4400      address begin = same_page(addr-40, addr);
4401      address end   = same_page(addr+40, addr);
4402      address       lowest = (address) dlinfo.dli_sname;
4403      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4404      if (begin < lowest)  begin = lowest;
4405      Dl_info dlinfo2;
4406      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4407          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4408        end = (address) dlinfo2.dli_saddr;
4409      Disassembler::decode(begin, end, st);
4410    }
4411    return true;
4412  }
4413  return false;
4414}
4415
4416////////////////////////////////////////////////////////////////////////////////
4417// misc
4418
4419// This does not do anything on Linux. This is basically a hook for being
4420// able to use structured exception handling (thread-local exception filters)
4421// on, e.g., Win32.
4422void
4423os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4424                         JavaCallArguments* args, Thread* thread) {
4425  f(value, method, args, thread);
4426}
4427
4428void os::print_statistics() {
4429}
4430
4431int os::message_box(const char* title, const char* message) {
4432  int i;
4433  fdStream err(defaultStream::error_fd());
4434  for (i = 0; i < 78; i++) err.print_raw("=");
4435  err.cr();
4436  err.print_raw_cr(title);
4437  for (i = 0; i < 78; i++) err.print_raw("-");
4438  err.cr();
4439  err.print_raw_cr(message);
4440  for (i = 0; i < 78; i++) err.print_raw("=");
4441  err.cr();
4442
4443  char buf[16];
4444  // Prevent process from exiting upon "read error" without consuming all CPU
4445  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4446
4447  return buf[0] == 'y' || buf[0] == 'Y';
4448}
4449
4450int os::stat(const char *path, struct stat *sbuf) {
4451  char pathbuf[MAX_PATH];
4452  if (strlen(path) > MAX_PATH - 1) {
4453    errno = ENAMETOOLONG;
4454    return -1;
4455  }
4456  os::native_path(strcpy(pathbuf, path));
4457  return ::stat(pathbuf, sbuf);
4458}
4459
4460bool os::check_heap(bool force) {
4461  return true;
4462}
4463
4464int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4465  return ::vsnprintf(buf, count, format, args);
4466}
4467
4468// Is a (classpath) directory empty?
4469bool os::dir_is_empty(const char* path) {
4470  DIR *dir = NULL;
4471  struct dirent *ptr;
4472
4473  dir = opendir(path);
4474  if (dir == NULL) return true;
4475
4476  /* Scan the directory */
4477  bool result = true;
4478  char buf[sizeof(struct dirent) + MAX_PATH];
4479  while (result && (ptr = ::readdir(dir)) != NULL) {
4480    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4481      result = false;
4482    }
4483  }
4484  closedir(dir);
4485  return result;
4486}
4487
4488// This code originates from JDK's sysOpen and open64_w
4489// from src/solaris/hpi/src/system_md.c
4490
4491#ifndef O_DELETE
4492#define O_DELETE 0x10000
4493#endif
4494
4495// Open a file. Unlink the file immediately after open returns
4496// if the specified oflag has the O_DELETE flag set.
4497// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4498
4499int os::open(const char *path, int oflag, int mode) {
4500
4501  if (strlen(path) > MAX_PATH - 1) {
4502    errno = ENAMETOOLONG;
4503    return -1;
4504  }
4505  int fd;
4506  int o_delete = (oflag & O_DELETE);
4507  oflag = oflag & ~O_DELETE;
4508
4509  fd = ::open64(path, oflag, mode);
4510  if (fd == -1) return -1;
4511
4512  //If the open succeeded, the file might still be a directory
4513  {
4514    struct stat64 buf64;
4515    int ret = ::fstat64(fd, &buf64);
4516    int st_mode = buf64.st_mode;
4517
4518    if (ret != -1) {
4519      if ((st_mode & S_IFMT) == S_IFDIR) {
4520        errno = EISDIR;
4521        ::close(fd);
4522        return -1;
4523      }
4524    } else {
4525      ::close(fd);
4526      return -1;
4527    }
4528  }
4529
4530    /*
4531     * All file descriptors that are opened in the JVM and not
4532     * specifically destined for a subprocess should have the
4533     * close-on-exec flag set.  If we don't set it, then careless 3rd
4534     * party native code might fork and exec without closing all
4535     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4536     * UNIXProcess.c), and this in turn might:
4537     *
4538     * - cause end-of-file to fail to be detected on some file
4539     *   descriptors, resulting in mysterious hangs, or
4540     *
4541     * - might cause an fopen in the subprocess to fail on a system
4542     *   suffering from bug 1085341.
4543     *
4544     * (Yes, the default setting of the close-on-exec flag is a Unix
4545     * design flaw)
4546     *
4547     * See:
4548     * 1085341: 32-bit stdio routines should support file descriptors >255
4549     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4550     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4551     */
4552#ifdef FD_CLOEXEC
4553    {
4554        int flags = ::fcntl(fd, F_GETFD);
4555        if (flags != -1)
4556            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4557    }
4558#endif
4559
4560  if (o_delete != 0) {
4561    ::unlink(path);
4562  }
4563  return fd;
4564}
4565
4566
4567// create binary file, rewriting existing file if required
4568int os::create_binary_file(const char* path, bool rewrite_existing) {
4569  int oflags = O_WRONLY | O_CREAT;
4570  if (!rewrite_existing) {
4571    oflags |= O_EXCL;
4572  }
4573  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4574}
4575
4576// return current position of file pointer
4577jlong os::current_file_offset(int fd) {
4578  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4579}
4580
4581// move file pointer to the specified offset
4582jlong os::seek_to_file_offset(int fd, jlong offset) {
4583  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4584}
4585
4586// This code originates from JDK's sysAvailable
4587// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4588
4589int os::available(int fd, jlong *bytes) {
4590  jlong cur, end;
4591  int mode;
4592  struct stat64 buf64;
4593
4594  if (::fstat64(fd, &buf64) >= 0) {
4595    mode = buf64.st_mode;
4596    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4597      /*
4598      * XXX: is the following call interruptible? If so, this might
4599      * need to go through the INTERRUPT_IO() wrapper as for other
4600      * blocking, interruptible calls in this file.
4601      */
4602      int n;
4603      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4604        *bytes = n;
4605        return 1;
4606      }
4607    }
4608  }
4609  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4610    return 0;
4611  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4612    return 0;
4613  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4614    return 0;
4615  }
4616  *bytes = end - cur;
4617  return 1;
4618}
4619
4620int os::socket_available(int fd, jint *pbytes) {
4621  // Linux doc says EINTR not returned, unlike Solaris
4622  int ret = ::ioctl(fd, FIONREAD, pbytes);
4623
4624  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4625  // is expected to return 0 on failure and 1 on success to the jdk.
4626  return (ret < 0) ? 0 : 1;
4627}
4628
4629// Map a block of memory.
4630char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4631                     char *addr, size_t bytes, bool read_only,
4632                     bool allow_exec) {
4633  int prot;
4634  int flags;
4635
4636  if (read_only) {
4637    prot = PROT_READ;
4638    flags = MAP_SHARED;
4639  } else {
4640    prot = PROT_READ | PROT_WRITE;
4641    flags = MAP_PRIVATE;
4642  }
4643
4644  if (allow_exec) {
4645    prot |= PROT_EXEC;
4646  }
4647
4648  if (addr != NULL) {
4649    flags |= MAP_FIXED;
4650  }
4651
4652  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4653                                     fd, file_offset);
4654  if (mapped_address == MAP_FAILED) {
4655    return NULL;
4656  }
4657  return mapped_address;
4658}
4659
4660
4661// Remap a block of memory.
4662char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4663                       char *addr, size_t bytes, bool read_only,
4664                       bool allow_exec) {
4665  // same as map_memory() on this OS
4666  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4667                        allow_exec);
4668}
4669
4670
4671// Unmap a block of memory.
4672bool os::unmap_memory(char* addr, size_t bytes) {
4673  return munmap(addr, bytes) == 0;
4674}
4675
4676static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4677
4678static clockid_t thread_cpu_clockid(Thread* thread) {
4679  pthread_t tid = thread->osthread()->pthread_id();
4680  clockid_t clockid;
4681
4682  // Get thread clockid
4683  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4684  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4685  return clockid;
4686}
4687
4688// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4689// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4690// of a thread.
4691//
4692// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4693// the fast estimate available on the platform.
4694
4695jlong os::current_thread_cpu_time() {
4696  if (os::Linux::supports_fast_thread_cpu_time()) {
4697    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4698  } else {
4699    // return user + sys since the cost is the same
4700    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4701  }
4702}
4703
4704jlong os::thread_cpu_time(Thread* thread) {
4705  // consistent with what current_thread_cpu_time() returns
4706  if (os::Linux::supports_fast_thread_cpu_time()) {
4707    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4708  } else {
4709    return slow_thread_cpu_time(thread, true /* user + sys */);
4710  }
4711}
4712
4713jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4714  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4715    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4716  } else {
4717    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4718  }
4719}
4720
4721jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4722  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4723    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4724  } else {
4725    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4726  }
4727}
4728
4729//
4730//  -1 on error.
4731//
4732
4733static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4734  static bool proc_pid_cpu_avail = true;
4735  static bool proc_task_unchecked = true;
4736  static const char *proc_stat_path = "/proc/%d/stat";
4737  pid_t  tid = thread->osthread()->thread_id();
4738  int i;
4739  char *s;
4740  char stat[2048];
4741  int statlen;
4742  char proc_name[64];
4743  int count;
4744  long sys_time, user_time;
4745  char string[64];
4746  char cdummy;
4747  int idummy;
4748  long ldummy;
4749  FILE *fp;
4750
4751  // We first try accessing /proc/<pid>/cpu since this is faster to
4752  // process.  If this file is not present (linux kernels 2.5 and above)
4753  // then we open /proc/<pid>/stat.
4754  if ( proc_pid_cpu_avail ) {
4755    sprintf(proc_name, "/proc/%d/cpu", tid);
4756    fp =  fopen(proc_name, "r");
4757    if ( fp != NULL ) {
4758      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4759      fclose(fp);
4760      if ( count != 3 ) return -1;
4761
4762      if (user_sys_cpu_time) {
4763        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4764      } else {
4765        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4766      }
4767    }
4768    else proc_pid_cpu_avail = false;
4769  }
4770
4771  // The /proc/<tid>/stat aggregates per-process usage on
4772  // new Linux kernels 2.6+ where NPTL is supported.
4773  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4774  // See bug 6328462.
4775  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4776  // and possibly in some other cases, so we check its availability.
4777  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4778    // This is executed only once
4779    proc_task_unchecked = false;
4780    fp = fopen("/proc/self/task", "r");
4781    if (fp != NULL) {
4782      proc_stat_path = "/proc/self/task/%d/stat";
4783      fclose(fp);
4784    }
4785  }
4786
4787  sprintf(proc_name, proc_stat_path, tid);
4788  fp = fopen(proc_name, "r");
4789  if ( fp == NULL ) return -1;
4790  statlen = fread(stat, 1, 2047, fp);
4791  stat[statlen] = '\0';
4792  fclose(fp);
4793
4794  // Skip pid and the command string. Note that we could be dealing with
4795  // weird command names, e.g. user could decide to rename java launcher
4796  // to "java 1.4.2 :)", then the stat file would look like
4797  //                1234 (java 1.4.2 :)) R ... ...
4798  // We don't really need to know the command string, just find the last
4799  // occurrence of ")" and then start parsing from there. See bug 4726580.
4800  s = strrchr(stat, ')');
4801  i = 0;
4802  if (s == NULL ) return -1;
4803
4804  // Skip blank chars
4805  do s++; while (isspace(*s));
4806
4807  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4808                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4809                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4810                 &user_time, &sys_time);
4811  if ( count != 13 ) return -1;
4812  if (user_sys_cpu_time) {
4813    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4814  } else {
4815    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4816  }
4817}
4818
4819void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4820  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4821  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4822  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4823  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4824}
4825
4826void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4827  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4828  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4829  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4830  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4831}
4832
4833bool os::is_thread_cpu_time_supported() {
4834  return true;
4835}
4836
4837// System loadavg support.  Returns -1 if load average cannot be obtained.
4838// Linux doesn't yet have a (official) notion of processor sets,
4839// so just return the system wide load average.
4840int os::loadavg(double loadavg[], int nelem) {
4841  return ::getloadavg(loadavg, nelem);
4842}
4843
4844void os::pause() {
4845  char filename[MAX_PATH];
4846  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4847    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4848  } else {
4849    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4850  }
4851
4852  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4853  if (fd != -1) {
4854    struct stat buf;
4855    ::close(fd);
4856    while (::stat(filename, &buf) == 0) {
4857      (void)::poll(NULL, 0, 100);
4858    }
4859  } else {
4860    jio_fprintf(stderr,
4861      "Could not open pause file '%s', continuing immediately.\n", filename);
4862  }
4863}
4864
4865
4866// Refer to the comments in os_solaris.cpp park-unpark.
4867//
4868// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4869// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4870// For specifics regarding the bug see GLIBC BUGID 261237 :
4871//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4872// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4873// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4874// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4875// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4876// and monitorenter when we're using 1-0 locking.  All those operations may result in
4877// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4878// of libpthread avoids the problem, but isn't practical.
4879//
4880// Possible remedies:
4881//
4882// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4883//      This is palliative and probabilistic, however.  If the thread is preempted
4884//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4885//      than the minimum period may have passed, and the abstime may be stale (in the
4886//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4887//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4888//
4889// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4890//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4891//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4892//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4893//      thread.
4894//
4895// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4896//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4897//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4898//      This also works well.  In fact it avoids kernel-level scalability impediments
4899//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4900//      timers in a graceful fashion.
4901//
4902// 4.   When the abstime value is in the past it appears that control returns
4903//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4904//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4905//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4906//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4907//      It may be possible to avoid reinitialization by checking the return
4908//      value from pthread_cond_timedwait().  In addition to reinitializing the
4909//      condvar we must establish the invariant that cond_signal() is only called
4910//      within critical sections protected by the adjunct mutex.  This prevents
4911//      cond_signal() from "seeing" a condvar that's in the midst of being
4912//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4913//      desirable signal-after-unlock optimization that avoids futile context switching.
4914//
4915//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4916//      structure when a condvar is used or initialized.  cond_destroy()  would
4917//      release the helper structure.  Our reinitialize-after-timedwait fix
4918//      put excessive stress on malloc/free and locks protecting the c-heap.
4919//
4920// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4921// It may be possible to refine (4) by checking the kernel and NTPL verisons
4922// and only enabling the work-around for vulnerable environments.
4923
4924// utility to compute the abstime argument to timedwait:
4925// millis is the relative timeout time
4926// abstime will be the absolute timeout time
4927// TODO: replace compute_abstime() with unpackTime()
4928
4929static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4930  if (millis < 0)  millis = 0;
4931  struct timeval now;
4932  int status = gettimeofday(&now, NULL);
4933  assert(status == 0, "gettimeofday");
4934  jlong seconds = millis / 1000;
4935  millis %= 1000;
4936  if (seconds > 50000000) { // see man cond_timedwait(3T)
4937    seconds = 50000000;
4938  }
4939  abstime->tv_sec = now.tv_sec  + seconds;
4940  long       usec = now.tv_usec + millis * 1000;
4941  if (usec >= 1000000) {
4942    abstime->tv_sec += 1;
4943    usec -= 1000000;
4944  }
4945  abstime->tv_nsec = usec * 1000;
4946  return abstime;
4947}
4948
4949
4950// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4951// Conceptually TryPark() should be equivalent to park(0).
4952
4953int os::PlatformEvent::TryPark() {
4954  for (;;) {
4955    const int v = _Event ;
4956    guarantee ((v == 0) || (v == 1), "invariant") ;
4957    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4958  }
4959}
4960
4961void os::PlatformEvent::park() {       // AKA "down()"
4962  // Invariant: Only the thread associated with the Event/PlatformEvent
4963  // may call park().
4964  // TODO: assert that _Assoc != NULL or _Assoc == Self
4965  int v ;
4966  for (;;) {
4967      v = _Event ;
4968      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4969  }
4970  guarantee (v >= 0, "invariant") ;
4971  if (v == 0) {
4972     // Do this the hard way by blocking ...
4973     int status = pthread_mutex_lock(_mutex);
4974     assert_status(status == 0, status, "mutex_lock");
4975     guarantee (_nParked == 0, "invariant") ;
4976     ++ _nParked ;
4977     while (_Event < 0) {
4978        status = pthread_cond_wait(_cond, _mutex);
4979        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4980        // Treat this the same as if the wait was interrupted
4981        if (status == ETIME) { status = EINTR; }
4982        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4983     }
4984     -- _nParked ;
4985
4986    // In theory we could move the ST of 0 into _Event past the unlock(),
4987    // but then we'd need a MEMBAR after the ST.
4988    _Event = 0 ;
4989     status = pthread_mutex_unlock(_mutex);
4990     assert_status(status == 0, status, "mutex_unlock");
4991  }
4992  guarantee (_Event >= 0, "invariant") ;
4993}
4994
4995int os::PlatformEvent::park(jlong millis) {
4996  guarantee (_nParked == 0, "invariant") ;
4997
4998  int v ;
4999  for (;;) {
5000      v = _Event ;
5001      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5002  }
5003  guarantee (v >= 0, "invariant") ;
5004  if (v != 0) return OS_OK ;
5005
5006  // We do this the hard way, by blocking the thread.
5007  // Consider enforcing a minimum timeout value.
5008  struct timespec abst;
5009  compute_abstime(&abst, millis);
5010
5011  int ret = OS_TIMEOUT;
5012  int status = pthread_mutex_lock(_mutex);
5013  assert_status(status == 0, status, "mutex_lock");
5014  guarantee (_nParked == 0, "invariant") ;
5015  ++_nParked ;
5016
5017  // Object.wait(timo) will return because of
5018  // (a) notification
5019  // (b) timeout
5020  // (c) thread.interrupt
5021  //
5022  // Thread.interrupt and object.notify{All} both call Event::set.
5023  // That is, we treat thread.interrupt as a special case of notification.
5024  // The underlying Solaris implementation, cond_timedwait, admits
5025  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5026  // JVM from making those visible to Java code.  As such, we must
5027  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5028  //
5029  // TODO: properly differentiate simultaneous notify+interrupt.
5030  // In that case, we should propagate the notify to another waiter.
5031
5032  while (_Event < 0) {
5033    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5034    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5035      pthread_cond_destroy (_cond);
5036      pthread_cond_init (_cond, NULL) ;
5037    }
5038    assert_status(status == 0 || status == EINTR ||
5039                  status == ETIME || status == ETIMEDOUT,
5040                  status, "cond_timedwait");
5041    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5042    if (status == ETIME || status == ETIMEDOUT) break ;
5043    // We consume and ignore EINTR and spurious wakeups.
5044  }
5045  --_nParked ;
5046  if (_Event >= 0) {
5047     ret = OS_OK;
5048  }
5049  _Event = 0 ;
5050  status = pthread_mutex_unlock(_mutex);
5051  assert_status(status == 0, status, "mutex_unlock");
5052  assert (_nParked == 0, "invariant") ;
5053  return ret;
5054}
5055
5056void os::PlatformEvent::unpark() {
5057  int v, AnyWaiters ;
5058  for (;;) {
5059      v = _Event ;
5060      if (v > 0) {
5061         // The LD of _Event could have reordered or be satisfied
5062         // by a read-aside from this processor's write buffer.
5063         // To avoid problems execute a barrier and then
5064         // ratify the value.
5065         OrderAccess::fence() ;
5066         if (_Event == v) return ;
5067         continue ;
5068      }
5069      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5070  }
5071  if (v < 0) {
5072     // Wait for the thread associated with the event to vacate
5073     int status = pthread_mutex_lock(_mutex);
5074     assert_status(status == 0, status, "mutex_lock");
5075     AnyWaiters = _nParked ;
5076     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5077     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5078        AnyWaiters = 0 ;
5079        pthread_cond_signal (_cond);
5080     }
5081     status = pthread_mutex_unlock(_mutex);
5082     assert_status(status == 0, status, "mutex_unlock");
5083     if (AnyWaiters != 0) {
5084        status = pthread_cond_signal(_cond);
5085        assert_status(status == 0, status, "cond_signal");
5086     }
5087  }
5088
5089  // Note that we signal() _after dropping the lock for "immortal" Events.
5090  // This is safe and avoids a common class of  futile wakeups.  In rare
5091  // circumstances this can cause a thread to return prematurely from
5092  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5093  // simply re-test the condition and re-park itself.
5094}
5095
5096
5097// JSR166
5098// -------------------------------------------------------
5099
5100/*
5101 * The solaris and linux implementations of park/unpark are fairly
5102 * conservative for now, but can be improved. They currently use a
5103 * mutex/condvar pair, plus a a count.
5104 * Park decrements count if > 0, else does a condvar wait.  Unpark
5105 * sets count to 1 and signals condvar.  Only one thread ever waits
5106 * on the condvar. Contention seen when trying to park implies that someone
5107 * is unparking you, so don't wait. And spurious returns are fine, so there
5108 * is no need to track notifications.
5109 */
5110
5111
5112#define NANOSECS_PER_SEC 1000000000
5113#define NANOSECS_PER_MILLISEC 1000000
5114#define MAX_SECS 100000000
5115/*
5116 * This code is common to linux and solaris and will be moved to a
5117 * common place in dolphin.
5118 *
5119 * The passed in time value is either a relative time in nanoseconds
5120 * or an absolute time in milliseconds. Either way it has to be unpacked
5121 * into suitable seconds and nanoseconds components and stored in the
5122 * given timespec structure.
5123 * Given time is a 64-bit value and the time_t used in the timespec is only
5124 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5125 * overflow if times way in the future are given. Further on Solaris versions
5126 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5127 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5128 * As it will be 28 years before "now + 100000000" will overflow we can
5129 * ignore overflow and just impose a hard-limit on seconds using the value
5130 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5131 * years from "now".
5132 */
5133
5134static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5135  assert (time > 0, "convertTime");
5136
5137  struct timeval now;
5138  int status = gettimeofday(&now, NULL);
5139  assert(status == 0, "gettimeofday");
5140
5141  time_t max_secs = now.tv_sec + MAX_SECS;
5142
5143  if (isAbsolute) {
5144    jlong secs = time / 1000;
5145    if (secs > max_secs) {
5146      absTime->tv_sec = max_secs;
5147    }
5148    else {
5149      absTime->tv_sec = secs;
5150    }
5151    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5152  }
5153  else {
5154    jlong secs = time / NANOSECS_PER_SEC;
5155    if (secs >= MAX_SECS) {
5156      absTime->tv_sec = max_secs;
5157      absTime->tv_nsec = 0;
5158    }
5159    else {
5160      absTime->tv_sec = now.tv_sec + secs;
5161      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5162      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5163        absTime->tv_nsec -= NANOSECS_PER_SEC;
5164        ++absTime->tv_sec; // note: this must be <= max_secs
5165      }
5166    }
5167  }
5168  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5169  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5170  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5171  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5172}
5173
5174void Parker::park(bool isAbsolute, jlong time) {
5175  // Optional fast-path check:
5176  // Return immediately if a permit is available.
5177  if (_counter > 0) {
5178      _counter = 0 ;
5179      OrderAccess::fence();
5180      return ;
5181  }
5182
5183  Thread* thread = Thread::current();
5184  assert(thread->is_Java_thread(), "Must be JavaThread");
5185  JavaThread *jt = (JavaThread *)thread;
5186
5187  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5188  // Check interrupt before trying to wait
5189  if (Thread::is_interrupted(thread, false)) {
5190    return;
5191  }
5192
5193  // Next, demultiplex/decode time arguments
5194  timespec absTime;
5195  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5196    return;
5197  }
5198  if (time > 0) {
5199    unpackTime(&absTime, isAbsolute, time);
5200  }
5201
5202
5203  // Enter safepoint region
5204  // Beware of deadlocks such as 6317397.
5205  // The per-thread Parker:: mutex is a classic leaf-lock.
5206  // In particular a thread must never block on the Threads_lock while
5207  // holding the Parker:: mutex.  If safepoints are pending both the
5208  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5209  ThreadBlockInVM tbivm(jt);
5210
5211  // Don't wait if cannot get lock since interference arises from
5212  // unblocking.  Also. check interrupt before trying wait
5213  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5214    return;
5215  }
5216
5217  int status ;
5218  if (_counter > 0)  { // no wait needed
5219    _counter = 0;
5220    status = pthread_mutex_unlock(_mutex);
5221    assert (status == 0, "invariant") ;
5222    OrderAccess::fence();
5223    return;
5224  }
5225
5226#ifdef ASSERT
5227  // Don't catch signals while blocked; let the running threads have the signals.
5228  // (This allows a debugger to break into the running thread.)
5229  sigset_t oldsigs;
5230  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5231  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5232#endif
5233
5234  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5235  jt->set_suspend_equivalent();
5236  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5237
5238  if (time == 0) {
5239    status = pthread_cond_wait (_cond, _mutex) ;
5240  } else {
5241    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5242    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5243      pthread_cond_destroy (_cond) ;
5244      pthread_cond_init    (_cond, NULL);
5245    }
5246  }
5247  assert_status(status == 0 || status == EINTR ||
5248                status == ETIME || status == ETIMEDOUT,
5249                status, "cond_timedwait");
5250
5251#ifdef ASSERT
5252  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5253#endif
5254
5255  _counter = 0 ;
5256  status = pthread_mutex_unlock(_mutex) ;
5257  assert_status(status == 0, status, "invariant") ;
5258  // If externally suspended while waiting, re-suspend
5259  if (jt->handle_special_suspend_equivalent_condition()) {
5260    jt->java_suspend_self();
5261  }
5262
5263  OrderAccess::fence();
5264}
5265
5266void Parker::unpark() {
5267  int s, status ;
5268  status = pthread_mutex_lock(_mutex);
5269  assert (status == 0, "invariant") ;
5270  s = _counter;
5271  _counter = 1;
5272  if (s < 1) {
5273     if (WorkAroundNPTLTimedWaitHang) {
5274        status = pthread_cond_signal (_cond) ;
5275        assert (status == 0, "invariant") ;
5276        status = pthread_mutex_unlock(_mutex);
5277        assert (status == 0, "invariant") ;
5278     } else {
5279        status = pthread_mutex_unlock(_mutex);
5280        assert (status == 0, "invariant") ;
5281        status = pthread_cond_signal (_cond) ;
5282        assert (status == 0, "invariant") ;
5283     }
5284  } else {
5285    pthread_mutex_unlock(_mutex);
5286    assert (status == 0, "invariant") ;
5287  }
5288}
5289
5290
5291extern char** environ;
5292
5293#ifndef __NR_fork
5294#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5295#endif
5296
5297#ifndef __NR_execve
5298#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5299#endif
5300
5301// Run the specified command in a separate process. Return its exit value,
5302// or -1 on failure (e.g. can't fork a new process).
5303// Unlike system(), this function can be called from signal handler. It
5304// doesn't block SIGINT et al.
5305int os::fork_and_exec(char* cmd) {
5306  const char * argv[4] = {"sh", "-c", cmd, NULL};
5307
5308  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5309  // pthread_atfork handlers and reset pthread library. All we need is a
5310  // separate process to execve. Make a direct syscall to fork process.
5311  // On IA64 there's no fork syscall, we have to use fork() and hope for
5312  // the best...
5313  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5314              IA64_ONLY(fork();)
5315
5316  if (pid < 0) {
5317    // fork failed
5318    return -1;
5319
5320  } else if (pid == 0) {
5321    // child process
5322
5323    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5324    // first to kill every thread on the thread list. Because this list is
5325    // not reset by fork() (see notes above), execve() will instead kill
5326    // every thread in the parent process. We know this is the only thread
5327    // in the new process, so make a system call directly.
5328    // IA64 should use normal execve() from glibc to match the glibc fork()
5329    // above.
5330    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5331    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5332
5333    // execve failed
5334    _exit(-1);
5335
5336  } else  {
5337    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5338    // care about the actual exit code, for now.
5339
5340    int status;
5341
5342    // Wait for the child process to exit.  This returns immediately if
5343    // the child has already exited. */
5344    while (waitpid(pid, &status, 0) < 0) {
5345        switch (errno) {
5346        case ECHILD: return 0;
5347        case EINTR: break;
5348        default: return -1;
5349        }
5350    }
5351
5352    if (WIFEXITED(status)) {
5353       // The child exited normally; get its exit code.
5354       return WEXITSTATUS(status);
5355    } else if (WIFSIGNALED(status)) {
5356       // The child exited because of a signal
5357       // The best value to return is 0x80 + signal number,
5358       // because that is what all Unix shells do, and because
5359       // it allows callers to distinguish between process exit and
5360       // process death by signal.
5361       return 0x80 + WTERMSIG(status);
5362    } else {
5363       // Unknown exit code; pass it through
5364       return status;
5365    }
5366  }
5367}
5368
5369// is_headless_jre()
5370//
5371// Test for the existence of libmawt in motif21 or xawt directories
5372// in order to report if we are running in a headless jre
5373//
5374bool os::is_headless_jre() {
5375    struct stat statbuf;
5376    char buf[MAXPATHLEN];
5377    char libmawtpath[MAXPATHLEN];
5378    const char *xawtstr  = "/xawt/libmawt.so";
5379    const char *motifstr = "/motif21/libmawt.so";
5380    char *p;
5381
5382    // Get path to libjvm.so
5383    os::jvm_path(buf, sizeof(buf));
5384
5385    // Get rid of libjvm.so
5386    p = strrchr(buf, '/');
5387    if (p == NULL) return false;
5388    else *p = '\0';
5389
5390    // Get rid of client or server
5391    p = strrchr(buf, '/');
5392    if (p == NULL) return false;
5393    else *p = '\0';
5394
5395    // check xawt/libmawt.so
5396    strcpy(libmawtpath, buf);
5397    strcat(libmawtpath, xawtstr);
5398    if (::stat(libmawtpath, &statbuf) == 0) return false;
5399
5400    // check motif21/libmawt.so
5401    strcpy(libmawtpath, buf);
5402    strcat(libmawtpath, motifstr);
5403    if (::stat(libmawtpath, &statbuf) == 0) return false;
5404
5405    return true;
5406}
5407
5408
5409#ifdef JAVASE_EMBEDDED
5410//
5411// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5412//
5413MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5414
5415// ctor
5416//
5417MemNotifyThread::MemNotifyThread(int fd): Thread() {
5418  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5419  _fd = fd;
5420
5421  if (os::create_thread(this, os::os_thread)) {
5422    _memnotify_thread = this;
5423    os::set_priority(this, NearMaxPriority);
5424    os::start_thread(this);
5425  }
5426}
5427
5428// Where all the work gets done
5429//
5430void MemNotifyThread::run() {
5431  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5432
5433  // Set up the select arguments
5434  fd_set rfds;
5435  if (_fd != -1) {
5436    FD_ZERO(&rfds);
5437    FD_SET(_fd, &rfds);
5438  }
5439
5440  // Now wait for the mem_notify device to wake up
5441  while (1) {
5442    // Wait for the mem_notify device to signal us..
5443    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5444    if (rc == -1) {
5445      perror("select!\n");
5446      break;
5447    } else if (rc) {
5448      //ssize_t free_before = os::available_memory();
5449      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5450
5451      // The kernel is telling us there is not much memory left...
5452      // try to do something about that
5453
5454      // If we are not already in a GC, try one.
5455      if (!Universe::heap()->is_gc_active()) {
5456        Universe::heap()->collect(GCCause::_allocation_failure);
5457
5458        //ssize_t free_after = os::available_memory();
5459        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5460        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5461      }
5462      // We might want to do something like the following if we find the GC's are not helping...
5463      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5464    }
5465  }
5466}
5467
5468//
5469// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5470//
5471void MemNotifyThread::start() {
5472  int    fd;
5473  fd = open ("/dev/mem_notify", O_RDONLY, 0);
5474  if (fd < 0) {
5475      return;
5476  }
5477
5478  if (memnotify_thread() == NULL) {
5479    new MemNotifyThread(fd);
5480  }
5481}
5482#endif // JAVASE_EMBEDDED
5483