os_linux.cpp revision 235:9c2ecc2ffb12
1/*
2 * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdio.h>
36# include <unistd.h>
37# include <sys/resource.h>
38# include <pthread.h>
39# include <sys/stat.h>
40# include <sys/time.h>
41# include <sys/times.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <semaphore.h>
48# include <fcntl.h>
49# include <string.h>
50# include <syscall.h>
51# include <sys/sysinfo.h>
52# include <gnu/libc-version.h>
53# include <sys/ipc.h>
54# include <sys/shm.h>
55# include <link.h>
56
57#define MAX_PATH    (2 * K)
58
59// for timer info max values which include all bits
60#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
61#define SEC_IN_NANOSECS  1000000000LL
62
63////////////////////////////////////////////////////////////////////////////////
64// global variables
65julong os::Linux::_physical_memory = 0;
66
67address   os::Linux::_initial_thread_stack_bottom = NULL;
68uintptr_t os::Linux::_initial_thread_stack_size   = 0;
69
70int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
71int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
72Mutex* os::Linux::_createThread_lock = NULL;
73pthread_t os::Linux::_main_thread;
74int os::Linux::_page_size = -1;
75bool os::Linux::_is_floating_stack = false;
76bool os::Linux::_is_NPTL = false;
77bool os::Linux::_supports_fast_thread_cpu_time = false;
78const char * os::Linux::_glibc_version = NULL;
79const char * os::Linux::_libpthread_version = NULL;
80
81static jlong initial_time_count=0;
82
83static int clock_tics_per_sec = 100;
84
85// For diagnostics to print a message once. see run_periodic_checks
86static sigset_t check_signal_done;
87static bool check_signals = true;;
88
89static pid_t _initial_pid = 0;
90
91/* Signal number used to suspend/resume a thread */
92
93/* do not use any signal number less than SIGSEGV, see 4355769 */
94static int SR_signum = SIGUSR2;
95sigset_t SR_sigset;
96
97////////////////////////////////////////////////////////////////////////////////
98// utility functions
99
100static int SR_initialize();
101static int SR_finalize();
102
103julong os::available_memory() {
104  return Linux::available_memory();
105}
106
107julong os::Linux::available_memory() {
108  // values in struct sysinfo are "unsigned long"
109  struct sysinfo si;
110  sysinfo(&si);
111
112  return (julong)si.freeram * si.mem_unit;
113}
114
115julong os::physical_memory() {
116  return Linux::physical_memory();
117}
118
119julong os::allocatable_physical_memory(julong size) {
120#ifdef _LP64
121  return size;
122#else
123  julong result = MIN2(size, (julong)3800*M);
124   if (!is_allocatable(result)) {
125     // See comments under solaris for alignment considerations
126     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
127     result =  MIN2(size, reasonable_size);
128   }
129   return result;
130#endif // _LP64
131}
132
133////////////////////////////////////////////////////////////////////////////////
134// environment support
135
136bool os::getenv(const char* name, char* buf, int len) {
137  const char* val = ::getenv(name);
138  if (val != NULL && strlen(val) < (size_t)len) {
139    strcpy(buf, val);
140    return true;
141  }
142  if (len > 0) buf[0] = 0;  // return a null string
143  return false;
144}
145
146
147// Return true if user is running as root.
148
149bool os::have_special_privileges() {
150  static bool init = false;
151  static bool privileges = false;
152  if (!init) {
153    privileges = (getuid() != geteuid()) || (getgid() != getegid());
154    init = true;
155  }
156  return privileges;
157}
158
159
160#ifndef SYS_gettid
161// i386: 224, ia64: 1105, amd64: 186, sparc 143
162#ifdef __ia64__
163#define SYS_gettid 1105
164#elif __i386__
165#define SYS_gettid 224
166#elif __amd64__
167#define SYS_gettid 186
168#elif __sparc__
169#define SYS_gettid 143
170#else
171#error define gettid for the arch
172#endif
173#endif
174
175// Cpu architecture string
176#if   defined(IA64)
177static char cpu_arch[] = "ia64";
178#elif defined(IA32)
179static char cpu_arch[] = "i386";
180#elif defined(AMD64)
181static char cpu_arch[] = "amd64";
182#elif defined(SPARC)
183#  ifdef _LP64
184static char cpu_arch[] = "sparcv9";
185#  else
186static char cpu_arch[] = "sparc";
187#  endif
188#else
189#error Add appropriate cpu_arch setting
190#endif
191
192
193// pid_t gettid()
194//
195// Returns the kernel thread id of the currently running thread. Kernel
196// thread id is used to access /proc.
197//
198// (Note that getpid() on LinuxThreads returns kernel thread id too; but
199// on NPTL, it returns the same pid for all threads, as required by POSIX.)
200//
201pid_t os::Linux::gettid() {
202  int rslt = syscall(SYS_gettid);
203  if (rslt == -1) {
204     // old kernel, no NPTL support
205     return getpid();
206  } else {
207     return (pid_t)rslt;
208  }
209}
210
211// Most versions of linux have a bug where the number of processors are
212// determined by looking at the /proc file system.  In a chroot environment,
213// the system call returns 1.  This causes the VM to act as if it is
214// a single processor and elide locking (see is_MP() call).
215static bool unsafe_chroot_detected = false;
216static const char *unstable_chroot_error = "/proc file system not found.\n"
217                     "Java may be unstable running multithreaded in a chroot "
218                     "environment on Linux when /proc filesystem is not mounted.";
219
220void os::Linux::initialize_system_info() {
221  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
222  if (_processor_count == 1) {
223    pid_t pid = os::Linux::gettid();
224    char fname[32];
225    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
226    FILE *fp = fopen(fname, "r");
227    if (fp == NULL) {
228      unsafe_chroot_detected = true;
229    } else {
230      fclose(fp);
231    }
232  }
233  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
234  assert(_processor_count > 0, "linux error");
235}
236
237void os::init_system_properties_values() {
238//  char arch[12];
239//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
240
241  // The next steps are taken in the product version:
242  //
243  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
244  // This library should be located at:
245  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
246  //
247  // If "/jre/lib/" appears at the right place in the path, then we
248  // assume libjvm[_g].so is installed in a JDK and we use this path.
249  //
250  // Otherwise exit with message: "Could not create the Java virtual machine."
251  //
252  // The following extra steps are taken in the debugging version:
253  //
254  // If "/jre/lib/" does NOT appear at the right place in the path
255  // instead of exit check for $JAVA_HOME environment variable.
256  //
257  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
258  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
259  // it looks like libjvm[_g].so is installed there
260  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
261  //
262  // Otherwise exit.
263  //
264  // Important note: if the location of libjvm.so changes this
265  // code needs to be changed accordingly.
266
267  // The next few definitions allow the code to be verbatim:
268#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
269#define getenv(n) ::getenv(n)
270
271/*
272 * See ld(1):
273 *      The linker uses the following search paths to locate required
274 *      shared libraries:
275 *        1: ...
276 *        ...
277 *        7: The default directories, normally /lib and /usr/lib.
278 */
279#define DEFAULT_LIBPATH "/lib:/usr/lib"
280
281#define EXTENSIONS_DIR  "/lib/ext"
282#define ENDORSED_DIR    "/lib/endorsed"
283#define REG_DIR         "/usr/java/packages"
284
285  {
286    /* sysclasspath, java_home, dll_dir */
287    {
288        char *home_path;
289        char *dll_path;
290        char *pslash;
291        char buf[MAXPATHLEN];
292        os::jvm_path(buf, sizeof(buf));
293
294        // Found the full path to libjvm.so.
295        // Now cut the path to <java_home>/jre if we can.
296        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
297        pslash = strrchr(buf, '/');
298        if (pslash != NULL)
299            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
300        dll_path = malloc(strlen(buf) + 1);
301        if (dll_path == NULL)
302            return;
303        strcpy(dll_path, buf);
304        Arguments::set_dll_dir(dll_path);
305
306        if (pslash != NULL) {
307            pslash = strrchr(buf, '/');
308            if (pslash != NULL) {
309                *pslash = '\0';       /* get rid of /<arch> */
310                pslash = strrchr(buf, '/');
311                if (pslash != NULL)
312                    *pslash = '\0';   /* get rid of /lib */
313            }
314        }
315
316        home_path = malloc(strlen(buf) + 1);
317        if (home_path == NULL)
318            return;
319        strcpy(home_path, buf);
320        Arguments::set_java_home(home_path);
321
322        if (!set_boot_path('/', ':'))
323            return;
324    }
325
326    /*
327     * Where to look for native libraries
328     *
329     * Note: Due to a legacy implementation, most of the library path
330     * is set in the launcher.  This was to accomodate linking restrictions
331     * on legacy Linux implementations (which are no longer supported).
332     * Eventually, all the library path setting will be done here.
333     *
334     * However, to prevent the proliferation of improperly built native
335     * libraries, the new path component /usr/java/packages is added here.
336     * Eventually, all the library path setting will be done here.
337     */
338    {
339        char *ld_library_path;
340
341        /*
342         * Construct the invariant part of ld_library_path. Note that the
343         * space for the colon and the trailing null are provided by the
344         * nulls included by the sizeof operator (so actually we allocate
345         * a byte more than necessary).
346         */
347        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
348            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
349        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
350
351        /*
352         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
353         * should always exist (until the legacy problem cited above is
354         * addressed).
355         */
356        char *v = getenv("LD_LIBRARY_PATH");
357        if (v != NULL) {
358            char *t = ld_library_path;
359            /* That's +1 for the colon and +1 for the trailing '\0' */
360            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
361            sprintf(ld_library_path, "%s:%s", v, t);
362        }
363        Arguments::set_library_path(ld_library_path);
364    }
365
366    /*
367     * Extensions directories.
368     *
369     * Note that the space for the colon and the trailing null are provided
370     * by the nulls included by the sizeof operator (so actually one byte more
371     * than necessary is allocated).
372     */
373    {
374        char *buf = malloc(strlen(Arguments::get_java_home()) +
375            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
376        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
377            Arguments::get_java_home());
378        Arguments::set_ext_dirs(buf);
379    }
380
381    /* Endorsed standards default directory. */
382    {
383        char * buf;
384        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
385        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
386        Arguments::set_endorsed_dirs(buf);
387    }
388  }
389
390#undef malloc
391#undef getenv
392#undef EXTENSIONS_DIR
393#undef ENDORSED_DIR
394
395  // Done
396  return;
397}
398
399////////////////////////////////////////////////////////////////////////////////
400// breakpoint support
401
402void os::breakpoint() {
403  BREAKPOINT;
404}
405
406extern "C" void breakpoint() {
407  // use debugger to set breakpoint here
408}
409
410////////////////////////////////////////////////////////////////////////////////
411// signal support
412
413debug_only(static bool signal_sets_initialized = false);
414static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
415
416bool os::Linux::is_sig_ignored(int sig) {
417      struct sigaction oact;
418      sigaction(sig, (struct sigaction*)NULL, &oact);
419      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
420                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
421      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
422           return true;
423      else
424           return false;
425}
426
427void os::Linux::signal_sets_init() {
428  // Should also have an assertion stating we are still single-threaded.
429  assert(!signal_sets_initialized, "Already initialized");
430  // Fill in signals that are necessarily unblocked for all threads in
431  // the VM. Currently, we unblock the following signals:
432  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
433  //                         by -Xrs (=ReduceSignalUsage));
434  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
435  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
436  // the dispositions or masks wrt these signals.
437  // Programs embedding the VM that want to use the above signals for their
438  // own purposes must, at this time, use the "-Xrs" option to prevent
439  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
440  // (See bug 4345157, and other related bugs).
441  // In reality, though, unblocking these signals is really a nop, since
442  // these signals are not blocked by default.
443  sigemptyset(&unblocked_sigs);
444  sigemptyset(&allowdebug_blocked_sigs);
445  sigaddset(&unblocked_sigs, SIGILL);
446  sigaddset(&unblocked_sigs, SIGSEGV);
447  sigaddset(&unblocked_sigs, SIGBUS);
448  sigaddset(&unblocked_sigs, SIGFPE);
449  sigaddset(&unblocked_sigs, SR_signum);
450
451  if (!ReduceSignalUsage) {
452   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
453      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
454      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
455   }
456   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
457      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
458      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
459   }
460   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
461      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
462      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
463   }
464  }
465  // Fill in signals that are blocked by all but the VM thread.
466  sigemptyset(&vm_sigs);
467  if (!ReduceSignalUsage)
468    sigaddset(&vm_sigs, BREAK_SIGNAL);
469  debug_only(signal_sets_initialized = true);
470
471}
472
473// These are signals that are unblocked while a thread is running Java.
474// (For some reason, they get blocked by default.)
475sigset_t* os::Linux::unblocked_signals() {
476  assert(signal_sets_initialized, "Not initialized");
477  return &unblocked_sigs;
478}
479
480// These are the signals that are blocked while a (non-VM) thread is
481// running Java. Only the VM thread handles these signals.
482sigset_t* os::Linux::vm_signals() {
483  assert(signal_sets_initialized, "Not initialized");
484  return &vm_sigs;
485}
486
487// These are signals that are blocked during cond_wait to allow debugger in
488sigset_t* os::Linux::allowdebug_blocked_signals() {
489  assert(signal_sets_initialized, "Not initialized");
490  return &allowdebug_blocked_sigs;
491}
492
493void os::Linux::hotspot_sigmask(Thread* thread) {
494
495  //Save caller's signal mask before setting VM signal mask
496  sigset_t caller_sigmask;
497  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
498
499  OSThread* osthread = thread->osthread();
500  osthread->set_caller_sigmask(caller_sigmask);
501
502  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
503
504  if (!ReduceSignalUsage) {
505    if (thread->is_VM_thread()) {
506      // Only the VM thread handles BREAK_SIGNAL ...
507      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
508    } else {
509      // ... all other threads block BREAK_SIGNAL
510      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
511    }
512  }
513}
514
515//////////////////////////////////////////////////////////////////////////////
516// detecting pthread library
517
518void os::Linux::libpthread_init() {
519  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
520  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
521  // generic name for earlier versions.
522  // Define macros here so we can build HotSpot on old systems.
523# ifndef _CS_GNU_LIBC_VERSION
524# define _CS_GNU_LIBC_VERSION 2
525# endif
526# ifndef _CS_GNU_LIBPTHREAD_VERSION
527# define _CS_GNU_LIBPTHREAD_VERSION 3
528# endif
529
530  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
531  if (n > 0) {
532     char *str = (char *)malloc(n);
533     confstr(_CS_GNU_LIBC_VERSION, str, n);
534     os::Linux::set_glibc_version(str);
535  } else {
536     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
537     static char _gnu_libc_version[32];
538     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
539              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
540     os::Linux::set_glibc_version(_gnu_libc_version);
541  }
542
543  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
544  if (n > 0) {
545     char *str = (char *)malloc(n);
546     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
547     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
548     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
549     // is the case. LinuxThreads has a hard limit on max number of threads.
550     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
551     // On the other hand, NPTL does not have such a limit, sysconf()
552     // will return -1 and errno is not changed. Check if it is really NPTL.
553     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
554         strstr(str, "NPTL") &&
555         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
556       free(str);
557       os::Linux::set_libpthread_version("linuxthreads");
558     } else {
559       os::Linux::set_libpthread_version(str);
560     }
561  } else {
562    // glibc before 2.3.2 only has LinuxThreads.
563    os::Linux::set_libpthread_version("linuxthreads");
564  }
565
566  if (strstr(libpthread_version(), "NPTL")) {
567     os::Linux::set_is_NPTL();
568  } else {
569     os::Linux::set_is_LinuxThreads();
570  }
571
572  // LinuxThreads have two flavors: floating-stack mode, which allows variable
573  // stack size; and fixed-stack mode. NPTL is always floating-stack.
574  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
575     os::Linux::set_is_floating_stack();
576  }
577}
578
579/////////////////////////////////////////////////////////////////////////////
580// thread stack
581
582// Force Linux kernel to expand current thread stack. If "bottom" is close
583// to the stack guard, caller should block all signals.
584//
585// MAP_GROWSDOWN:
586//   A special mmap() flag that is used to implement thread stacks. It tells
587//   kernel that the memory region should extend downwards when needed. This
588//   allows early versions of LinuxThreads to only mmap the first few pages
589//   when creating a new thread. Linux kernel will automatically expand thread
590//   stack as needed (on page faults).
591//
592//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
593//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
594//   region, it's hard to tell if the fault is due to a legitimate stack
595//   access or because of reading/writing non-exist memory (e.g. buffer
596//   overrun). As a rule, if the fault happens below current stack pointer,
597//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
598//   application (see Linux kernel fault.c).
599//
600//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
601//   stack overflow detection.
602//
603//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
604//   not use this flag. However, the stack of initial thread is not created
605//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
606//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
607//   and then attach the thread to JVM.
608//
609// To get around the problem and allow stack banging on Linux, we need to
610// manually expand thread stack after receiving the SIGSEGV.
611//
612// There are two ways to expand thread stack to address "bottom", we used
613// both of them in JVM before 1.5:
614//   1. adjust stack pointer first so that it is below "bottom", and then
615//      touch "bottom"
616//   2. mmap() the page in question
617//
618// Now alternate signal stack is gone, it's harder to use 2. For instance,
619// if current sp is already near the lower end of page 101, and we need to
620// call mmap() to map page 100, it is possible that part of the mmap() frame
621// will be placed in page 100. When page 100 is mapped, it is zero-filled.
622// That will destroy the mmap() frame and cause VM to crash.
623//
624// The following code works by adjusting sp first, then accessing the "bottom"
625// page to force a page fault. Linux kernel will then automatically expand the
626// stack mapping.
627//
628// _expand_stack_to() assumes its frame size is less than page size, which
629// should always be true if the function is not inlined.
630
631#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
632#define NOINLINE
633#else
634#define NOINLINE __attribute__ ((noinline))
635#endif
636
637static void _expand_stack_to(address bottom) NOINLINE;
638
639static void _expand_stack_to(address bottom) {
640  address sp;
641  size_t size;
642  volatile char *p;
643
644  // Adjust bottom to point to the largest address within the same page, it
645  // gives us a one-page buffer if alloca() allocates slightly more memory.
646  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
647  bottom += os::Linux::page_size() - 1;
648
649  // sp might be slightly above current stack pointer; if that's the case, we
650  // will alloca() a little more space than necessary, which is OK. Don't use
651  // os::current_stack_pointer(), as its result can be slightly below current
652  // stack pointer, causing us to not alloca enough to reach "bottom".
653  sp = (address)&sp;
654
655  if (sp > bottom) {
656    size = sp - bottom;
657    p = (volatile char *)alloca(size);
658    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
659    p[0] = '\0';
660  }
661}
662
663bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
664  assert(t!=NULL, "just checking");
665  assert(t->osthread()->expanding_stack(), "expand should be set");
666  assert(t->stack_base() != NULL, "stack_base was not initialized");
667
668  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
669    sigset_t mask_all, old_sigset;
670    sigfillset(&mask_all);
671    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
672    _expand_stack_to(addr);
673    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
674    return true;
675  }
676  return false;
677}
678
679//////////////////////////////////////////////////////////////////////////////
680// create new thread
681
682static address highest_vm_reserved_address();
683
684// check if it's safe to start a new thread
685static bool _thread_safety_check(Thread* thread) {
686  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
687    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
688    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
689    //   allocated (MAP_FIXED) from high address space. Every thread stack
690    //   occupies a fixed size slot (usually 2Mbytes, but user can change
691    //   it to other values if they rebuild LinuxThreads).
692    //
693    // Problem with MAP_FIXED is that mmap() can still succeed even part of
694    // the memory region has already been mmap'ed. That means if we have too
695    // many threads and/or very large heap, eventually thread stack will
696    // collide with heap.
697    //
698    // Here we try to prevent heap/stack collision by comparing current
699    // stack bottom with the highest address that has been mmap'ed by JVM
700    // plus a safety margin for memory maps created by native code.
701    //
702    // This feature can be disabled by setting ThreadSafetyMargin to 0
703    //
704    if (ThreadSafetyMargin > 0) {
705      address stack_bottom = os::current_stack_base() - os::current_stack_size();
706
707      // not safe if our stack extends below the safety margin
708      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
709    } else {
710      return true;
711    }
712  } else {
713    // Floating stack LinuxThreads or NPTL:
714    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
715    //   there's not enough space left, pthread_create() will fail. If we come
716    //   here, that means enough space has been reserved for stack.
717    return true;
718  }
719}
720
721// Thread start routine for all newly created threads
722static void *java_start(Thread *thread) {
723  // Try to randomize the cache line index of hot stack frames.
724  // This helps when threads of the same stack traces evict each other's
725  // cache lines. The threads can be either from the same JVM instance, or
726  // from different JVM instances. The benefit is especially true for
727  // processors with hyperthreading technology.
728  static int counter = 0;
729  int pid = os::current_process_id();
730  alloca(((pid ^ counter++) & 7) * 128);
731
732  ThreadLocalStorage::set_thread(thread);
733
734  OSThread* osthread = thread->osthread();
735  Monitor* sync = osthread->startThread_lock();
736
737  // non floating stack LinuxThreads needs extra check, see above
738  if (!_thread_safety_check(thread)) {
739    // notify parent thread
740    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
741    osthread->set_state(ZOMBIE);
742    sync->notify_all();
743    return NULL;
744  }
745
746  // thread_id is kernel thread id (similar to Solaris LWP id)
747  osthread->set_thread_id(os::Linux::gettid());
748
749  if (UseNUMA) {
750    int lgrp_id = os::numa_get_group_id();
751    if (lgrp_id != -1) {
752      thread->set_lgrp_id(lgrp_id);
753    }
754  }
755  // initialize signal mask for this thread
756  os::Linux::hotspot_sigmask(thread);
757
758  // initialize floating point control register
759  os::Linux::init_thread_fpu_state();
760
761  // handshaking with parent thread
762  {
763    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
764
765    // notify parent thread
766    osthread->set_state(INITIALIZED);
767    sync->notify_all();
768
769    // wait until os::start_thread()
770    while (osthread->get_state() == INITIALIZED) {
771      sync->wait(Mutex::_no_safepoint_check_flag);
772    }
773  }
774
775  // call one more level start routine
776  thread->run();
777
778  return 0;
779}
780
781bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
782  assert(thread->osthread() == NULL, "caller responsible");
783
784  // Allocate the OSThread object
785  OSThread* osthread = new OSThread(NULL, NULL);
786  if (osthread == NULL) {
787    return false;
788  }
789
790  // set the correct thread state
791  osthread->set_thread_type(thr_type);
792
793  // Initial state is ALLOCATED but not INITIALIZED
794  osthread->set_state(ALLOCATED);
795
796  thread->set_osthread(osthread);
797
798  // init thread attributes
799  pthread_attr_t attr;
800  pthread_attr_init(&attr);
801  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
802
803  // stack size
804  if (os::Linux::supports_variable_stack_size()) {
805    // calculate stack size if it's not specified by caller
806    if (stack_size == 0) {
807      stack_size = os::Linux::default_stack_size(thr_type);
808
809      switch (thr_type) {
810      case os::java_thread:
811        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
812        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
813        break;
814      case os::compiler_thread:
815        if (CompilerThreadStackSize > 0) {
816          stack_size = (size_t)(CompilerThreadStackSize * K);
817          break;
818        } // else fall through:
819          // use VMThreadStackSize if CompilerThreadStackSize is not defined
820      case os::vm_thread:
821      case os::pgc_thread:
822      case os::cgc_thread:
823      case os::watcher_thread:
824        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
825        break;
826      }
827    }
828
829    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
830    pthread_attr_setstacksize(&attr, stack_size);
831  } else {
832    // let pthread_create() pick the default value.
833  }
834
835  // glibc guard page
836  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
837
838  ThreadState state;
839
840  {
841    // Serialize thread creation if we are running with fixed stack LinuxThreads
842    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
843    if (lock) {
844      os::Linux::createThread_lock()->lock_without_safepoint_check();
845    }
846
847    pthread_t tid;
848    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
849
850    pthread_attr_destroy(&attr);
851
852    if (ret != 0) {
853      if (PrintMiscellaneous && (Verbose || WizardMode)) {
854        perror("pthread_create()");
855      }
856      // Need to clean up stuff we've allocated so far
857      thread->set_osthread(NULL);
858      delete osthread;
859      if (lock) os::Linux::createThread_lock()->unlock();
860      return false;
861    }
862
863    // Store pthread info into the OSThread
864    osthread->set_pthread_id(tid);
865
866    // Wait until child thread is either initialized or aborted
867    {
868      Monitor* sync_with_child = osthread->startThread_lock();
869      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
870      while ((state = osthread->get_state()) == ALLOCATED) {
871        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
872      }
873    }
874
875    if (lock) {
876      os::Linux::createThread_lock()->unlock();
877    }
878  }
879
880  // Aborted due to thread limit being reached
881  if (state == ZOMBIE) {
882      thread->set_osthread(NULL);
883      delete osthread;
884      return false;
885  }
886
887  // The thread is returned suspended (in state INITIALIZED),
888  // and is started higher up in the call chain
889  assert(state == INITIALIZED, "race condition");
890  return true;
891}
892
893/////////////////////////////////////////////////////////////////////////////
894// attach existing thread
895
896// bootstrap the main thread
897bool os::create_main_thread(JavaThread* thread) {
898  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
899  return create_attached_thread(thread);
900}
901
902bool os::create_attached_thread(JavaThread* thread) {
903#ifdef ASSERT
904    thread->verify_not_published();
905#endif
906
907  // Allocate the OSThread object
908  OSThread* osthread = new OSThread(NULL, NULL);
909
910  if (osthread == NULL) {
911    return false;
912  }
913
914  // Store pthread info into the OSThread
915  osthread->set_thread_id(os::Linux::gettid());
916  osthread->set_pthread_id(::pthread_self());
917
918  // initialize floating point control register
919  os::Linux::init_thread_fpu_state();
920
921  // Initial thread state is RUNNABLE
922  osthread->set_state(RUNNABLE);
923
924  thread->set_osthread(osthread);
925
926  if (UseNUMA) {
927    int lgrp_id = os::numa_get_group_id();
928    if (lgrp_id != -1) {
929      thread->set_lgrp_id(lgrp_id);
930    }
931  }
932
933  if (os::Linux::is_initial_thread()) {
934    // If current thread is initial thread, its stack is mapped on demand,
935    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
936    // the entire stack region to avoid SEGV in stack banging.
937    // It is also useful to get around the heap-stack-gap problem on SuSE
938    // kernel (see 4821821 for details). We first expand stack to the top
939    // of yellow zone, then enable stack yellow zone (order is significant,
940    // enabling yellow zone first will crash JVM on SuSE Linux), so there
941    // is no gap between the last two virtual memory regions.
942
943    JavaThread *jt = (JavaThread *)thread;
944    address addr = jt->stack_yellow_zone_base();
945    assert(addr != NULL, "initialization problem?");
946    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
947
948    osthread->set_expanding_stack();
949    os::Linux::manually_expand_stack(jt, addr);
950    osthread->clear_expanding_stack();
951  }
952
953  // initialize signal mask for this thread
954  // and save the caller's signal mask
955  os::Linux::hotspot_sigmask(thread);
956
957  return true;
958}
959
960void os::pd_start_thread(Thread* thread) {
961  OSThread * osthread = thread->osthread();
962  assert(osthread->get_state() != INITIALIZED, "just checking");
963  Monitor* sync_with_child = osthread->startThread_lock();
964  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
965  sync_with_child->notify();
966}
967
968// Free Linux resources related to the OSThread
969void os::free_thread(OSThread* osthread) {
970  assert(osthread != NULL, "osthread not set");
971
972  if (Thread::current()->osthread() == osthread) {
973    // Restore caller's signal mask
974    sigset_t sigmask = osthread->caller_sigmask();
975    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
976   }
977
978  delete osthread;
979}
980
981//////////////////////////////////////////////////////////////////////////////
982// thread local storage
983
984int os::allocate_thread_local_storage() {
985  pthread_key_t key;
986  int rslt = pthread_key_create(&key, NULL);
987  assert(rslt == 0, "cannot allocate thread local storage");
988  return (int)key;
989}
990
991// Note: This is currently not used by VM, as we don't destroy TLS key
992// on VM exit.
993void os::free_thread_local_storage(int index) {
994  int rslt = pthread_key_delete((pthread_key_t)index);
995  assert(rslt == 0, "invalid index");
996}
997
998void os::thread_local_storage_at_put(int index, void* value) {
999  int rslt = pthread_setspecific((pthread_key_t)index, value);
1000  assert(rslt == 0, "pthread_setspecific failed");
1001}
1002
1003extern "C" Thread* get_thread() {
1004  return ThreadLocalStorage::thread();
1005}
1006
1007//////////////////////////////////////////////////////////////////////////////
1008// initial thread
1009
1010// Check if current thread is the initial thread, similar to Solaris thr_main.
1011bool os::Linux::is_initial_thread(void) {
1012  char dummy;
1013  // If called before init complete, thread stack bottom will be null.
1014  // Can be called if fatal error occurs before initialization.
1015  if (initial_thread_stack_bottom() == NULL) return false;
1016  assert(initial_thread_stack_bottom() != NULL &&
1017         initial_thread_stack_size()   != 0,
1018         "os::init did not locate initial thread's stack region");
1019  if ((address)&dummy >= initial_thread_stack_bottom() &&
1020      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1021       return true;
1022  else return false;
1023}
1024
1025// Find the virtual memory area that contains addr
1026static bool find_vma(address addr, address* vma_low, address* vma_high) {
1027  FILE *fp = fopen("/proc/self/maps", "r");
1028  if (fp) {
1029    address low, high;
1030    while (!feof(fp)) {
1031      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1032        if (low <= addr && addr < high) {
1033           if (vma_low)  *vma_low  = low;
1034           if (vma_high) *vma_high = high;
1035           fclose (fp);
1036           return true;
1037        }
1038      }
1039      for (;;) {
1040        int ch = fgetc(fp);
1041        if (ch == EOF || ch == (int)'\n') break;
1042      }
1043    }
1044    fclose(fp);
1045  }
1046  return false;
1047}
1048
1049// Locate initial thread stack. This special handling of initial thread stack
1050// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1051// bogus value for initial thread.
1052void os::Linux::capture_initial_stack(size_t max_size) {
1053  // stack size is the easy part, get it from RLIMIT_STACK
1054  size_t stack_size;
1055  struct rlimit rlim;
1056  getrlimit(RLIMIT_STACK, &rlim);
1057  stack_size = rlim.rlim_cur;
1058
1059  // 6308388: a bug in ld.so will relocate its own .data section to the
1060  //   lower end of primordial stack; reduce ulimit -s value a little bit
1061  //   so we won't install guard page on ld.so's data section.
1062  stack_size -= 2 * page_size();
1063
1064  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1065  //   7.1, in both cases we will get 2G in return value.
1066  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1067  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1068  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1069  //   in case other parts in glibc still assumes 2M max stack size.
1070  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1071#ifndef IA64
1072  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1073#else
1074  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1075  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1076#endif
1077
1078  // Try to figure out where the stack base (top) is. This is harder.
1079  //
1080  // When an application is started, glibc saves the initial stack pointer in
1081  // a global variable "__libc_stack_end", which is then used by system
1082  // libraries. __libc_stack_end should be pretty close to stack top. The
1083  // variable is available since the very early days. However, because it is
1084  // a private interface, it could disappear in the future.
1085  //
1086  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1087  // to __libc_stack_end, it is very close to stack top, but isn't the real
1088  // stack top. Note that /proc may not exist if VM is running as a chroot
1089  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1090  // /proc/<pid>/stat could change in the future (though unlikely).
1091  //
1092  // We try __libc_stack_end first. If that doesn't work, look for
1093  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1094  // as a hint, which should work well in most cases.
1095
1096  uintptr_t stack_start;
1097
1098  // try __libc_stack_end first
1099  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1100  if (p && *p) {
1101    stack_start = *p;
1102  } else {
1103    // see if we can get the start_stack field from /proc/self/stat
1104    FILE *fp;
1105    int pid;
1106    char state;
1107    int ppid;
1108    int pgrp;
1109    int session;
1110    int nr;
1111    int tpgrp;
1112    unsigned long flags;
1113    unsigned long minflt;
1114    unsigned long cminflt;
1115    unsigned long majflt;
1116    unsigned long cmajflt;
1117    unsigned long utime;
1118    unsigned long stime;
1119    long cutime;
1120    long cstime;
1121    long prio;
1122    long nice;
1123    long junk;
1124    long it_real;
1125    uintptr_t start;
1126    uintptr_t vsize;
1127    uintptr_t rss;
1128    unsigned long rsslim;
1129    uintptr_t scodes;
1130    uintptr_t ecode;
1131    int i;
1132
1133    // Figure what the primordial thread stack base is. Code is inspired
1134    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1135    // followed by command name surrounded by parentheses, state, etc.
1136    char stat[2048];
1137    int statlen;
1138
1139    fp = fopen("/proc/self/stat", "r");
1140    if (fp) {
1141      statlen = fread(stat, 1, 2047, fp);
1142      stat[statlen] = '\0';
1143      fclose(fp);
1144
1145      // Skip pid and the command string. Note that we could be dealing with
1146      // weird command names, e.g. user could decide to rename java launcher
1147      // to "java 1.4.2 :)", then the stat file would look like
1148      //                1234 (java 1.4.2 :)) R ... ...
1149      // We don't really need to know the command string, just find the last
1150      // occurrence of ")" and then start parsing from there. See bug 4726580.
1151      char * s = strrchr(stat, ')');
1152
1153      i = 0;
1154      if (s) {
1155        // Skip blank chars
1156        do s++; while (isspace(*s));
1157
1158        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1159        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1160        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
1161             &state,          /* 3  %c  */
1162             &ppid,           /* 4  %d  */
1163             &pgrp,           /* 5  %d  */
1164             &session,        /* 6  %d  */
1165             &nr,             /* 7  %d  */
1166             &tpgrp,          /* 8  %d  */
1167             &flags,          /* 9  %lu  */
1168             &minflt,         /* 10 %lu  */
1169             &cminflt,        /* 11 %lu  */
1170             &majflt,         /* 12 %lu  */
1171             &cmajflt,        /* 13 %lu  */
1172             &utime,          /* 14 %lu  */
1173             &stime,          /* 15 %lu  */
1174             &cutime,         /* 16 %ld  */
1175             &cstime,         /* 17 %ld  */
1176             &prio,           /* 18 %ld  */
1177             &nice,           /* 19 %ld  */
1178             &junk,           /* 20 %ld  */
1179             &it_real,        /* 21 %ld  */
1180             &start,          /* 22 %lu  */
1181             &vsize,          /* 23 %lu  */
1182             &rss,            /* 24 %ld  */
1183             &rsslim,         /* 25 %lu  */
1184             &scodes,         /* 26 %lu  */
1185             &ecode,          /* 27 %lu  */
1186             &stack_start);   /* 28 %lu  */
1187      }
1188
1189      if (i != 28 - 2) {
1190         assert(false, "Bad conversion from /proc/self/stat");
1191         // product mode - assume we are the initial thread, good luck in the
1192         // embedded case.
1193         warning("Can't detect initial thread stack location - bad conversion");
1194         stack_start = (uintptr_t) &rlim;
1195      }
1196    } else {
1197      // For some reason we can't open /proc/self/stat (for example, running on
1198      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1199      // most cases, so don't abort:
1200      warning("Can't detect initial thread stack location - no /proc/self/stat");
1201      stack_start = (uintptr_t) &rlim;
1202    }
1203  }
1204
1205  // Now we have a pointer (stack_start) very close to the stack top, the
1206  // next thing to do is to figure out the exact location of stack top. We
1207  // can find out the virtual memory area that contains stack_start by
1208  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1209  // and its upper limit is the real stack top. (again, this would fail if
1210  // running inside chroot, because /proc may not exist.)
1211
1212  uintptr_t stack_top;
1213  address low, high;
1214  if (find_vma((address)stack_start, &low, &high)) {
1215    // success, "high" is the true stack top. (ignore "low", because initial
1216    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1217    stack_top = (uintptr_t)high;
1218  } else {
1219    // failed, likely because /proc/self/maps does not exist
1220    warning("Can't detect initial thread stack location - find_vma failed");
1221    // best effort: stack_start is normally within a few pages below the real
1222    // stack top, use it as stack top, and reduce stack size so we won't put
1223    // guard page outside stack.
1224    stack_top = stack_start;
1225    stack_size -= 16 * page_size();
1226  }
1227
1228  // stack_top could be partially down the page so align it
1229  stack_top = align_size_up(stack_top, page_size());
1230
1231  if (max_size && stack_size > max_size) {
1232     _initial_thread_stack_size = max_size;
1233  } else {
1234     _initial_thread_stack_size = stack_size;
1235  }
1236
1237  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1238  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1239}
1240
1241////////////////////////////////////////////////////////////////////////////////
1242// time support
1243
1244// Time since start-up in seconds to a fine granularity.
1245// Used by VMSelfDestructTimer and the MemProfiler.
1246double os::elapsedTime() {
1247
1248  return (double)(os::elapsed_counter()) * 0.000001;
1249}
1250
1251jlong os::elapsed_counter() {
1252  timeval time;
1253  int status = gettimeofday(&time, NULL);
1254  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1255}
1256
1257jlong os::elapsed_frequency() {
1258  return (1000 * 1000);
1259}
1260
1261jlong os::javaTimeMillis() {
1262  timeval time;
1263  int status = gettimeofday(&time, NULL);
1264  assert(status != -1, "linux error");
1265  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1266}
1267
1268#ifndef CLOCK_MONOTONIC
1269#define CLOCK_MONOTONIC (1)
1270#endif
1271
1272void os::Linux::clock_init() {
1273  // we do dlopen's in this particular order due to bug in linux
1274  // dynamical loader (see 6348968) leading to crash on exit
1275  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1276  if (handle == NULL) {
1277    handle = dlopen("librt.so", RTLD_LAZY);
1278  }
1279
1280  if (handle) {
1281    int (*clock_getres_func)(clockid_t, struct timespec*) =
1282           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1283    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1284           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1285    if (clock_getres_func && clock_gettime_func) {
1286      // See if monotonic clock is supported by the kernel. Note that some
1287      // early implementations simply return kernel jiffies (updated every
1288      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1289      // for nano time (though the monotonic property is still nice to have).
1290      // It's fixed in newer kernels, however clock_getres() still returns
1291      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1292      // resolution for now. Hopefully as people move to new kernels, this
1293      // won't be a problem.
1294      struct timespec res;
1295      struct timespec tp;
1296      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1297          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1298        // yes, monotonic clock is supported
1299        _clock_gettime = clock_gettime_func;
1300      } else {
1301        // close librt if there is no monotonic clock
1302        dlclose(handle);
1303      }
1304    }
1305  }
1306}
1307
1308#ifndef SYS_clock_getres
1309
1310#if defined(IA32) || defined(AMD64)
1311#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1312#else
1313#error Value of SYS_clock_getres not known on this platform
1314#endif
1315
1316#endif
1317
1318#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1319
1320void os::Linux::fast_thread_clock_init() {
1321  if (!UseLinuxPosixThreadCPUClocks) {
1322    return;
1323  }
1324  clockid_t clockid;
1325  struct timespec tp;
1326  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1327      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1328
1329  // Switch to using fast clocks for thread cpu time if
1330  // the sys_clock_getres() returns 0 error code.
1331  // Note, that some kernels may support the current thread
1332  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1333  // returned by the pthread_getcpuclockid().
1334  // If the fast Posix clocks are supported then the sys_clock_getres()
1335  // must return at least tp.tv_sec == 0 which means a resolution
1336  // better than 1 sec. This is extra check for reliability.
1337
1338  if(pthread_getcpuclockid_func &&
1339     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1340     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1341
1342    _supports_fast_thread_cpu_time = true;
1343    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1344  }
1345}
1346
1347jlong os::javaTimeNanos() {
1348  if (Linux::supports_monotonic_clock()) {
1349    struct timespec tp;
1350    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1351    assert(status == 0, "gettime error");
1352    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1353    return result;
1354  } else {
1355    timeval time;
1356    int status = gettimeofday(&time, NULL);
1357    assert(status != -1, "linux error");
1358    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1359    return 1000 * usecs;
1360  }
1361}
1362
1363void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1364  if (Linux::supports_monotonic_clock()) {
1365    info_ptr->max_value = ALL_64_BITS;
1366
1367    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1368    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1369    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1370  } else {
1371    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1372    info_ptr->max_value = ALL_64_BITS;
1373
1374    // gettimeofday is a real time clock so it skips
1375    info_ptr->may_skip_backward = true;
1376    info_ptr->may_skip_forward = true;
1377  }
1378
1379  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1380}
1381
1382// Return the real, user, and system times in seconds from an
1383// arbitrary fixed point in the past.
1384bool os::getTimesSecs(double* process_real_time,
1385                      double* process_user_time,
1386                      double* process_system_time) {
1387  struct tms ticks;
1388  clock_t real_ticks = times(&ticks);
1389
1390  if (real_ticks == (clock_t) (-1)) {
1391    return false;
1392  } else {
1393    double ticks_per_second = (double) clock_tics_per_sec;
1394    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1395    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1396    *process_real_time = ((double) real_ticks) / ticks_per_second;
1397
1398    return true;
1399  }
1400}
1401
1402
1403char * os::local_time_string(char *buf, size_t buflen) {
1404  struct tm t;
1405  time_t long_time;
1406  time(&long_time);
1407  localtime_r(&long_time, &t);
1408  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1409               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1410               t.tm_hour, t.tm_min, t.tm_sec);
1411  return buf;
1412}
1413
1414////////////////////////////////////////////////////////////////////////////////
1415// runtime exit support
1416
1417// Note: os::shutdown() might be called very early during initialization, or
1418// called from signal handler. Before adding something to os::shutdown(), make
1419// sure it is async-safe and can handle partially initialized VM.
1420void os::shutdown() {
1421
1422  // allow PerfMemory to attempt cleanup of any persistent resources
1423  perfMemory_exit();
1424
1425  // needs to remove object in file system
1426  AttachListener::abort();
1427
1428  // flush buffered output, finish log files
1429  ostream_abort();
1430
1431  // Check for abort hook
1432  abort_hook_t abort_hook = Arguments::abort_hook();
1433  if (abort_hook != NULL) {
1434    abort_hook();
1435  }
1436
1437}
1438
1439// Note: os::abort() might be called very early during initialization, or
1440// called from signal handler. Before adding something to os::abort(), make
1441// sure it is async-safe and can handle partially initialized VM.
1442void os::abort(bool dump_core) {
1443  os::shutdown();
1444  if (dump_core) {
1445#ifndef PRODUCT
1446    fdStream out(defaultStream::output_fd());
1447    out.print_raw("Current thread is ");
1448    char buf[16];
1449    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1450    out.print_raw_cr(buf);
1451    out.print_raw_cr("Dumping core ...");
1452#endif
1453    ::abort(); // dump core
1454  }
1455
1456  ::exit(1);
1457}
1458
1459// Die immediately, no exit hook, no abort hook, no cleanup.
1460void os::die() {
1461  // _exit() on LinuxThreads only kills current thread
1462  ::abort();
1463}
1464
1465// unused on linux for now.
1466void os::set_error_file(const char *logfile) {}
1467
1468intx os::current_thread_id() { return (intx)pthread_self(); }
1469int os::current_process_id() {
1470
1471  // Under the old linux thread library, linux gives each thread
1472  // its own process id. Because of this each thread will return
1473  // a different pid if this method were to return the result
1474  // of getpid(2). Linux provides no api that returns the pid
1475  // of the launcher thread for the vm. This implementation
1476  // returns a unique pid, the pid of the launcher thread
1477  // that starts the vm 'process'.
1478
1479  // Under the NPTL, getpid() returns the same pid as the
1480  // launcher thread rather than a unique pid per thread.
1481  // Use gettid() if you want the old pre NPTL behaviour.
1482
1483  // if you are looking for the result of a call to getpid() that
1484  // returns a unique pid for the calling thread, then look at the
1485  // OSThread::thread_id() method in osThread_linux.hpp file
1486
1487  return (int)(_initial_pid ? _initial_pid : getpid());
1488}
1489
1490// DLL functions
1491
1492const char* os::dll_file_extension() { return ".so"; }
1493
1494const char* os::get_temp_directory() { return "/tmp/"; }
1495
1496const char* os::get_current_directory(char *buf, int buflen) {
1497  return getcwd(buf, buflen);
1498}
1499
1500// check if addr is inside libjvm[_g].so
1501bool os::address_is_in_vm(address addr) {
1502  static address libjvm_base_addr;
1503  Dl_info dlinfo;
1504
1505  if (libjvm_base_addr == NULL) {
1506    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1507    libjvm_base_addr = (address)dlinfo.dli_fbase;
1508    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1509  }
1510
1511  if (dladdr((void *)addr, &dlinfo)) {
1512    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1513  }
1514
1515  return false;
1516}
1517
1518bool os::dll_address_to_function_name(address addr, char *buf,
1519                                      int buflen, int *offset) {
1520  Dl_info dlinfo;
1521
1522  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1523    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1524    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1525    return true;
1526  } else {
1527    if (buf) buf[0] = '\0';
1528    if (offset) *offset = -1;
1529    return false;
1530  }
1531}
1532
1533struct _address_to_library_name {
1534  address addr;          // input : memory address
1535  size_t  buflen;        //         size of fname
1536  char*   fname;         // output: library name
1537  address base;          //         library base addr
1538};
1539
1540static int address_to_library_name_callback(struct dl_phdr_info *info,
1541                                            size_t size, void *data) {
1542  int i;
1543  bool found = false;
1544  address libbase = NULL;
1545  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1546
1547  // iterate through all loadable segments
1548  for (i = 0; i < info->dlpi_phnum; i++) {
1549    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1550    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1551      // base address of a library is the lowest address of its loaded
1552      // segments.
1553      if (libbase == NULL || libbase > segbase) {
1554        libbase = segbase;
1555      }
1556      // see if 'addr' is within current segment
1557      if (segbase <= d->addr &&
1558          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1559        found = true;
1560      }
1561    }
1562  }
1563
1564  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1565  // so dll_address_to_library_name() can fall through to use dladdr() which
1566  // can figure out executable name from argv[0].
1567  if (found && info->dlpi_name && info->dlpi_name[0]) {
1568    d->base = libbase;
1569    if (d->fname) {
1570      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1571    }
1572    return 1;
1573  }
1574  return 0;
1575}
1576
1577bool os::dll_address_to_library_name(address addr, char* buf,
1578                                     int buflen, int* offset) {
1579  Dl_info dlinfo;
1580  struct _address_to_library_name data;
1581
1582  // There is a bug in old glibc dladdr() implementation that it could resolve
1583  // to wrong library name if the .so file has a base address != NULL. Here
1584  // we iterate through the program headers of all loaded libraries to find
1585  // out which library 'addr' really belongs to. This workaround can be
1586  // removed once the minimum requirement for glibc is moved to 2.3.x.
1587  data.addr = addr;
1588  data.fname = buf;
1589  data.buflen = buflen;
1590  data.base = NULL;
1591  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1592
1593  if (rslt) {
1594     // buf already contains library name
1595     if (offset) *offset = addr - data.base;
1596     return true;
1597  } else if (dladdr((void*)addr, &dlinfo)){
1598     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1599     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1600     return true;
1601  } else {
1602     if (buf) buf[0] = '\0';
1603     if (offset) *offset = -1;
1604     return false;
1605  }
1606}
1607
1608  // Loads .dll/.so and
1609  // in case of error it checks if .dll/.so was built for the
1610  // same architecture as Hotspot is running on
1611
1612void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1613{
1614  void * result= ::dlopen(filename, RTLD_LAZY);
1615  if (result != NULL) {
1616    // Successful loading
1617    return result;
1618  }
1619
1620  Elf32_Ehdr elf_head;
1621
1622  // Read system error message into ebuf
1623  // It may or may not be overwritten below
1624  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1625  ebuf[ebuflen-1]='\0';
1626  int diag_msg_max_length=ebuflen-strlen(ebuf);
1627  char* diag_msg_buf=ebuf+strlen(ebuf);
1628
1629  if (diag_msg_max_length==0) {
1630    // No more space in ebuf for additional diagnostics message
1631    return NULL;
1632  }
1633
1634
1635  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1636
1637  if (file_descriptor < 0) {
1638    // Can't open library, report dlerror() message
1639    return NULL;
1640  }
1641
1642  bool failed_to_read_elf_head=
1643    (sizeof(elf_head)!=
1644        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1645
1646  ::close(file_descriptor);
1647  if (failed_to_read_elf_head) {
1648    // file i/o error - report dlerror() msg
1649    return NULL;
1650  }
1651
1652  typedef struct {
1653    Elf32_Half  code;         // Actual value as defined in elf.h
1654    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1655    char        elf_class;    // 32 or 64 bit
1656    char        endianess;    // MSB or LSB
1657    char*       name;         // String representation
1658  } arch_t;
1659
1660  #ifndef EM_486
1661  #define EM_486          6               /* Intel 80486 */
1662  #endif
1663
1664  static const arch_t arch_array[]={
1665    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1666    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1667    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1668    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1669    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1670    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1671    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1672    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1673    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1674  };
1675
1676  #if  (defined IA32)
1677    static  Elf32_Half running_arch_code=EM_386;
1678  #elif   (defined AMD64)
1679    static  Elf32_Half running_arch_code=EM_X86_64;
1680  #elif  (defined IA64)
1681    static  Elf32_Half running_arch_code=EM_IA_64;
1682  #elif  (defined __sparc) && (defined _LP64)
1683    static  Elf32_Half running_arch_code=EM_SPARCV9;
1684  #elif  (defined __sparc) && (!defined _LP64)
1685    static  Elf32_Half running_arch_code=EM_SPARC;
1686  #elif  (defined __powerpc64__)
1687    static  Elf32_Half running_arch_code=EM_PPC64;
1688  #elif  (defined __powerpc__)
1689    static  Elf32_Half running_arch_code=EM_PPC;
1690  #else
1691    #error Method os::dll_load requires that one of following is defined:\
1692         IA32, AMD64, IA64, __sparc, __powerpc__
1693  #endif
1694
1695  // Identify compatability class for VM's architecture and library's architecture
1696  // Obtain string descriptions for architectures
1697
1698  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1699  int running_arch_index=-1;
1700
1701  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1702    if (running_arch_code == arch_array[i].code) {
1703      running_arch_index    = i;
1704    }
1705    if (lib_arch.code == arch_array[i].code) {
1706      lib_arch.compat_class = arch_array[i].compat_class;
1707      lib_arch.name         = arch_array[i].name;
1708    }
1709  }
1710
1711  assert(running_arch_index != -1,
1712    "Didn't find running architecture code (running_arch_code) in arch_array");
1713  if (running_arch_index == -1) {
1714    // Even though running architecture detection failed
1715    // we may still continue with reporting dlerror() message
1716    return NULL;
1717  }
1718
1719  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1720    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1721    return NULL;
1722  }
1723
1724  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1725    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1726    return NULL;
1727  }
1728
1729  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1730    if ( lib_arch.name!=NULL ) {
1731      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1732        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1733        lib_arch.name, arch_array[running_arch_index].name);
1734    } else {
1735      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1736      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1737        lib_arch.code,
1738        arch_array[running_arch_index].name);
1739    }
1740  }
1741
1742  return NULL;
1743}
1744
1745
1746
1747
1748bool _print_ascii_file(const char* filename, outputStream* st) {
1749  int fd = open(filename, O_RDONLY);
1750  if (fd == -1) {
1751     return false;
1752  }
1753
1754  char buf[32];
1755  int bytes;
1756  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1757    st->print_raw(buf, bytes);
1758  }
1759
1760  close(fd);
1761
1762  return true;
1763}
1764
1765void os::print_dll_info(outputStream *st) {
1766   st->print_cr("Dynamic libraries:");
1767
1768   char fname[32];
1769   pid_t pid = os::Linux::gettid();
1770
1771   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1772
1773   if (!_print_ascii_file(fname, st)) {
1774     st->print("Can not get library information for pid = %d\n", pid);
1775   }
1776}
1777
1778
1779void os::print_os_info(outputStream* st) {
1780  st->print("OS:");
1781
1782  // Try to identify popular distros.
1783  // Most Linux distributions have /etc/XXX-release file, which contains
1784  // the OS version string. Some have more than one /etc/XXX-release file
1785  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1786  // so the order is important.
1787  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1788      !_print_ascii_file("/etc/sun-release", st) &&
1789      !_print_ascii_file("/etc/redhat-release", st) &&
1790      !_print_ascii_file("/etc/SuSE-release", st) &&
1791      !_print_ascii_file("/etc/turbolinux-release", st) &&
1792      !_print_ascii_file("/etc/gentoo-release", st) &&
1793      !_print_ascii_file("/etc/debian_version", st)) {
1794      st->print("Linux");
1795  }
1796  st->cr();
1797
1798  // kernel
1799  st->print("uname:");
1800  struct utsname name;
1801  uname(&name);
1802  st->print(name.sysname); st->print(" ");
1803  st->print(name.release); st->print(" ");
1804  st->print(name.version); st->print(" ");
1805  st->print(name.machine);
1806  st->cr();
1807
1808  // Print warning if unsafe chroot environment detected
1809  if (unsafe_chroot_detected) {
1810    st->print("WARNING!! ");
1811    st->print_cr(unstable_chroot_error);
1812  }
1813
1814  // libc, pthread
1815  st->print("libc:");
1816  st->print(os::Linux::glibc_version()); st->print(" ");
1817  st->print(os::Linux::libpthread_version()); st->print(" ");
1818  if (os::Linux::is_LinuxThreads()) {
1819     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1820  }
1821  st->cr();
1822
1823  // rlimit
1824  st->print("rlimit:");
1825  struct rlimit rlim;
1826
1827  st->print(" STACK ");
1828  getrlimit(RLIMIT_STACK, &rlim);
1829  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1830  else st->print("%uk", rlim.rlim_cur >> 10);
1831
1832  st->print(", CORE ");
1833  getrlimit(RLIMIT_CORE, &rlim);
1834  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1835  else st->print("%uk", rlim.rlim_cur >> 10);
1836
1837  st->print(", NPROC ");
1838  getrlimit(RLIMIT_NPROC, &rlim);
1839  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1840  else st->print("%d", rlim.rlim_cur);
1841
1842  st->print(", NOFILE ");
1843  getrlimit(RLIMIT_NOFILE, &rlim);
1844  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1845  else st->print("%d", rlim.rlim_cur);
1846
1847  st->print(", AS ");
1848  getrlimit(RLIMIT_AS, &rlim);
1849  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1850  else st->print("%uk", rlim.rlim_cur >> 10);
1851  st->cr();
1852
1853  // load average
1854  st->print("load average:");
1855  double loadavg[3];
1856  os::loadavg(loadavg, 3);
1857  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1858  st->cr();
1859}
1860
1861void os::print_memory_info(outputStream* st) {
1862
1863  st->print("Memory:");
1864  st->print(" %dk page", os::vm_page_size()>>10);
1865
1866  // values in struct sysinfo are "unsigned long"
1867  struct sysinfo si;
1868  sysinfo(&si);
1869
1870  st->print(", physical " UINT64_FORMAT "k",
1871            os::physical_memory() >> 10);
1872  st->print("(" UINT64_FORMAT "k free)",
1873            os::available_memory() >> 10);
1874  st->print(", swap " UINT64_FORMAT "k",
1875            ((jlong)si.totalswap * si.mem_unit) >> 10);
1876  st->print("(" UINT64_FORMAT "k free)",
1877            ((jlong)si.freeswap * si.mem_unit) >> 10);
1878  st->cr();
1879}
1880
1881// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1882// but they're the same for all the linux arch that we support
1883// and they're the same for solaris but there's no common place to put this.
1884const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1885                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1886                          "ILL_COPROC", "ILL_BADSTK" };
1887
1888const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1889                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1890                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1891
1892const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1893
1894const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1895
1896void os::print_siginfo(outputStream* st, void* siginfo) {
1897  st->print("siginfo:");
1898
1899  const int buflen = 100;
1900  char buf[buflen];
1901  siginfo_t *si = (siginfo_t*)siginfo;
1902  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1903  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1904    st->print("si_errno=%s", buf);
1905  } else {
1906    st->print("si_errno=%d", si->si_errno);
1907  }
1908  const int c = si->si_code;
1909  assert(c > 0, "unexpected si_code");
1910  switch (si->si_signo) {
1911  case SIGILL:
1912    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1913    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1914    break;
1915  case SIGFPE:
1916    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1917    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1918    break;
1919  case SIGSEGV:
1920    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1921    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1922    break;
1923  case SIGBUS:
1924    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1925    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1926    break;
1927  default:
1928    st->print(", si_code=%d", si->si_code);
1929    // no si_addr
1930  }
1931
1932  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1933      UseSharedSpaces) {
1934    FileMapInfo* mapinfo = FileMapInfo::current_info();
1935    if (mapinfo->is_in_shared_space(si->si_addr)) {
1936      st->print("\n\nError accessing class data sharing archive."   \
1937                " Mapped file inaccessible during execution, "      \
1938                " possible disk/network problem.");
1939    }
1940  }
1941  st->cr();
1942}
1943
1944
1945static void print_signal_handler(outputStream* st, int sig,
1946                                 char* buf, size_t buflen);
1947
1948void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1949  st->print_cr("Signal Handlers:");
1950  print_signal_handler(st, SIGSEGV, buf, buflen);
1951  print_signal_handler(st, SIGBUS , buf, buflen);
1952  print_signal_handler(st, SIGFPE , buf, buflen);
1953  print_signal_handler(st, SIGPIPE, buf, buflen);
1954  print_signal_handler(st, SIGXFSZ, buf, buflen);
1955  print_signal_handler(st, SIGILL , buf, buflen);
1956  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1957  print_signal_handler(st, SR_signum, buf, buflen);
1958  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1959  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1960  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1961  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1962}
1963
1964static char saved_jvm_path[MAXPATHLEN] = {0};
1965
1966// Find the full path to the current module, libjvm.so or libjvm_g.so
1967void os::jvm_path(char *buf, jint len) {
1968  // Error checking.
1969  if (len < MAXPATHLEN) {
1970    assert(false, "must use a large-enough buffer");
1971    buf[0] = '\0';
1972    return;
1973  }
1974  // Lazy resolve the path to current module.
1975  if (saved_jvm_path[0] != 0) {
1976    strcpy(buf, saved_jvm_path);
1977    return;
1978  }
1979
1980  char dli_fname[MAXPATHLEN];
1981  bool ret = dll_address_to_library_name(
1982                CAST_FROM_FN_PTR(address, os::jvm_path),
1983                dli_fname, sizeof(dli_fname), NULL);
1984  assert(ret != 0, "cannot locate libjvm");
1985  realpath(dli_fname, buf);
1986
1987  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
1988    // Support for the gamma launcher.  Typical value for buf is
1989    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
1990    // the right place in the string, then assume we are installed in a JDK and
1991    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
1992    // up the path so it looks like libjvm.so is installed there (append a
1993    // fake suffix hotspot/libjvm.so).
1994    const char *p = buf + strlen(buf) - 1;
1995    for (int count = 0; p > buf && count < 5; ++count) {
1996      for (--p; p > buf && *p != '/'; --p)
1997        /* empty */ ;
1998    }
1999
2000    if (strncmp(p, "/jre/lib/", 9) != 0) {
2001      // Look for JAVA_HOME in the environment.
2002      char* java_home_var = ::getenv("JAVA_HOME");
2003      if (java_home_var != NULL && java_home_var[0] != 0) {
2004        // Check the current module name "libjvm.so" or "libjvm_g.so".
2005        p = strrchr(buf, '/');
2006        assert(strstr(p, "/libjvm") == p, "invalid library name");
2007        p = strstr(p, "_g") ? "_g" : "";
2008
2009        realpath(java_home_var, buf);
2010        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2011        if (0 == access(buf, F_OK)) {
2012          // Use current module name "libjvm[_g].so" instead of
2013          // "libjvm"debug_only("_g")".so" since for fastdebug version
2014          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2015          // It is used when we are choosing the HPI library's name
2016          // "libhpi[_g].so" in hpi::initialize_get_interface().
2017          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2018        } else {
2019          // Go back to path of .so
2020          realpath(dli_fname, buf);
2021        }
2022      }
2023    }
2024  }
2025
2026  strcpy(saved_jvm_path, buf);
2027}
2028
2029void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2030  // no prefix required, not even "_"
2031}
2032
2033void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2034  // no suffix required
2035}
2036
2037////////////////////////////////////////////////////////////////////////////////
2038// sun.misc.Signal support
2039
2040static volatile jint sigint_count = 0;
2041
2042static void
2043UserHandler(int sig, void *siginfo, void *context) {
2044  // 4511530 - sem_post is serialized and handled by the manager thread. When
2045  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2046  // don't want to flood the manager thread with sem_post requests.
2047  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2048      return;
2049
2050  // Ctrl-C is pressed during error reporting, likely because the error
2051  // handler fails to abort. Let VM die immediately.
2052  if (sig == SIGINT && is_error_reported()) {
2053     os::die();
2054  }
2055
2056  os::signal_notify(sig);
2057}
2058
2059void* os::user_handler() {
2060  return CAST_FROM_FN_PTR(void*, UserHandler);
2061}
2062
2063extern "C" {
2064  typedef void (*sa_handler_t)(int);
2065  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2066}
2067
2068void* os::signal(int signal_number, void* handler) {
2069  struct sigaction sigAct, oldSigAct;
2070
2071  sigfillset(&(sigAct.sa_mask));
2072  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2073  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2074
2075  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2076    // -1 means registration failed
2077    return (void *)-1;
2078  }
2079
2080  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2081}
2082
2083void os::signal_raise(int signal_number) {
2084  ::raise(signal_number);
2085}
2086
2087/*
2088 * The following code is moved from os.cpp for making this
2089 * code platform specific, which it is by its very nature.
2090 */
2091
2092// Will be modified when max signal is changed to be dynamic
2093int os::sigexitnum_pd() {
2094  return NSIG;
2095}
2096
2097// a counter for each possible signal value
2098static volatile jint pending_signals[NSIG+1] = { 0 };
2099
2100// Linux(POSIX) specific hand shaking semaphore.
2101static sem_t sig_sem;
2102
2103void os::signal_init_pd() {
2104  // Initialize signal structures
2105  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2106
2107  // Initialize signal semaphore
2108  ::sem_init(&sig_sem, 0, 0);
2109}
2110
2111void os::signal_notify(int sig) {
2112  Atomic::inc(&pending_signals[sig]);
2113  ::sem_post(&sig_sem);
2114}
2115
2116static int check_pending_signals(bool wait) {
2117  Atomic::store(0, &sigint_count);
2118  for (;;) {
2119    for (int i = 0; i < NSIG + 1; i++) {
2120      jint n = pending_signals[i];
2121      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2122        return i;
2123      }
2124    }
2125    if (!wait) {
2126      return -1;
2127    }
2128    JavaThread *thread = JavaThread::current();
2129    ThreadBlockInVM tbivm(thread);
2130
2131    bool threadIsSuspended;
2132    do {
2133      thread->set_suspend_equivalent();
2134      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2135      ::sem_wait(&sig_sem);
2136
2137      // were we externally suspended while we were waiting?
2138      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2139      if (threadIsSuspended) {
2140        //
2141        // The semaphore has been incremented, but while we were waiting
2142        // another thread suspended us. We don't want to continue running
2143        // while suspended because that would surprise the thread that
2144        // suspended us.
2145        //
2146        ::sem_post(&sig_sem);
2147
2148        thread->java_suspend_self();
2149      }
2150    } while (threadIsSuspended);
2151  }
2152}
2153
2154int os::signal_lookup() {
2155  return check_pending_signals(false);
2156}
2157
2158int os::signal_wait() {
2159  return check_pending_signals(true);
2160}
2161
2162////////////////////////////////////////////////////////////////////////////////
2163// Virtual Memory
2164
2165int os::vm_page_size() {
2166  // Seems redundant as all get out
2167  assert(os::Linux::page_size() != -1, "must call os::init");
2168  return os::Linux::page_size();
2169}
2170
2171// Solaris allocates memory by pages.
2172int os::vm_allocation_granularity() {
2173  assert(os::Linux::page_size() != -1, "must call os::init");
2174  return os::Linux::page_size();
2175}
2176
2177// Rationale behind this function:
2178//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2179//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2180//  samples for JITted code. Here we create private executable mapping over the code cache
2181//  and then we can use standard (well, almost, as mapping can change) way to provide
2182//  info for the reporting script by storing timestamp and location of symbol
2183void linux_wrap_code(char* base, size_t size) {
2184  static volatile jint cnt = 0;
2185
2186  if (!UseOprofile) {
2187    return;
2188  }
2189
2190  char buf[40];
2191  int num = Atomic::add(1, &cnt);
2192
2193  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2194  unlink(buf);
2195
2196  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2197
2198  if (fd != -1) {
2199    off_t rv = lseek(fd, size-2, SEEK_SET);
2200    if (rv != (off_t)-1) {
2201      if (write(fd, "", 1) == 1) {
2202        mmap(base, size,
2203             PROT_READ|PROT_WRITE|PROT_EXEC,
2204             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2205      }
2206    }
2207    close(fd);
2208    unlink(buf);
2209  }
2210}
2211
2212// NOTE: Linux kernel does not really reserve the pages for us.
2213//       All it does is to check if there are enough free pages
2214//       left at the time of mmap(). This could be a potential
2215//       problem.
2216bool os::commit_memory(char* addr, size_t size) {
2217  uintptr_t res = (uintptr_t) ::mmap(addr, size,
2218                                   PROT_READ|PROT_WRITE|PROT_EXEC,
2219                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2220  return res != (uintptr_t) MAP_FAILED;
2221}
2222
2223bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2224  return commit_memory(addr, size);
2225}
2226
2227void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2228
2229void os::free_memory(char *addr, size_t bytes) {
2230  uncommit_memory(addr, bytes);
2231}
2232
2233void os::numa_make_global(char *addr, size_t bytes)    { }
2234
2235void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2236  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2237}
2238
2239bool os::numa_topology_changed()   { return false; }
2240
2241size_t os::numa_get_groups_num() {
2242  int max_node = Linux::numa_max_node();
2243  return max_node > 0 ? max_node + 1 : 1;
2244}
2245
2246int os::numa_get_group_id() {
2247  int cpu_id = Linux::sched_getcpu();
2248  if (cpu_id != -1) {
2249    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2250    if (lgrp_id != -1) {
2251      return lgrp_id;
2252    }
2253  }
2254  return 0;
2255}
2256
2257size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2258  for (size_t i = 0; i < size; i++) {
2259    ids[i] = i;
2260  }
2261  return size;
2262}
2263
2264bool os::get_page_info(char *start, page_info* info) {
2265  return false;
2266}
2267
2268char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2269  return end;
2270}
2271
2272extern "C" void numa_warn(int number, char *where, ...) { }
2273extern "C" void numa_error(char *where) { }
2274
2275void os::Linux::libnuma_init() {
2276  // sched_getcpu() should be in libc.
2277  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2278                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2279
2280  if (sched_getcpu() != -1) { // Does it work?
2281    void *handle = dlopen("libnuma.so", RTLD_LAZY);
2282    if (handle != NULL) {
2283      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2284                                           dlsym(handle, "numa_node_to_cpus")));
2285      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2286                                       dlsym(handle, "numa_max_node")));
2287      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2288                                        dlsym(handle, "numa_available")));
2289      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2290                                            dlsym(handle, "numa_tonode_memory")));
2291      if (numa_available() != -1) {
2292        // Create a cpu -> node mapping
2293        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2294        rebuild_cpu_to_node_map();
2295      }
2296    }
2297  }
2298}
2299
2300// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2301// The table is later used in get_node_by_cpu().
2302void os::Linux::rebuild_cpu_to_node_map() {
2303  int cpu_num = os::active_processor_count();
2304  cpu_to_node()->clear();
2305  cpu_to_node()->at_grow(cpu_num - 1);
2306  int node_num = numa_get_groups_num();
2307  int cpu_map_size = (cpu_num + BitsPerLong - 1) / BitsPerLong;
2308  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2309  for (int i = 0; i < node_num; i++) {
2310    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2311      for (int j = 0; j < cpu_map_size; j++) {
2312        if (cpu_map[j] != 0) {
2313          for (int k = 0; k < BitsPerLong; k++) {
2314            if (cpu_map[j] & (1UL << k)) {
2315              cpu_to_node()->at_put(j * BitsPerLong + k, i);
2316            }
2317          }
2318        }
2319      }
2320    }
2321  }
2322  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2323}
2324
2325int os::Linux::get_node_by_cpu(int cpu_id) {
2326  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2327    return cpu_to_node()->at(cpu_id);
2328  }
2329  return -1;
2330}
2331
2332GrowableArray<int>* os::Linux::_cpu_to_node;
2333os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2334os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2335os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2336os::Linux::numa_available_func_t os::Linux::_numa_available;
2337os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2338
2339
2340bool os::uncommit_memory(char* addr, size_t size) {
2341  return ::mmap(addr, size,
2342                PROT_READ|PROT_WRITE|PROT_EXEC,
2343                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2344    != MAP_FAILED;
2345}
2346
2347static address _highest_vm_reserved_address = NULL;
2348
2349// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2350// at 'requested_addr'. If there are existing memory mappings at the same
2351// location, however, they will be overwritten. If 'fixed' is false,
2352// 'requested_addr' is only treated as a hint, the return value may or
2353// may not start from the requested address. Unlike Linux mmap(), this
2354// function returns NULL to indicate failure.
2355static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2356  char * addr;
2357  int flags;
2358
2359  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2360  if (fixed) {
2361    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2362    flags |= MAP_FIXED;
2363  }
2364
2365  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2366                       flags, -1, 0);
2367
2368  if (addr != MAP_FAILED) {
2369    // anon_mmap() should only get called during VM initialization,
2370    // don't need lock (actually we can skip locking even it can be called
2371    // from multiple threads, because _highest_vm_reserved_address is just a
2372    // hint about the upper limit of non-stack memory regions.)
2373    if ((address)addr + bytes > _highest_vm_reserved_address) {
2374      _highest_vm_reserved_address = (address)addr + bytes;
2375    }
2376  }
2377
2378  return addr == MAP_FAILED ? NULL : addr;
2379}
2380
2381// Don't update _highest_vm_reserved_address, because there might be memory
2382// regions above addr + size. If so, releasing a memory region only creates
2383// a hole in the address space, it doesn't help prevent heap-stack collision.
2384//
2385static int anon_munmap(char * addr, size_t size) {
2386  return ::munmap(addr, size) == 0;
2387}
2388
2389char* os::reserve_memory(size_t bytes, char* requested_addr,
2390                         size_t alignment_hint) {
2391  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2392}
2393
2394bool os::release_memory(char* addr, size_t size) {
2395  return anon_munmap(addr, size);
2396}
2397
2398static address highest_vm_reserved_address() {
2399  return _highest_vm_reserved_address;
2400}
2401
2402static bool linux_mprotect(char* addr, size_t size, int prot) {
2403  // Linux wants the mprotect address argument to be page aligned.
2404  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2405
2406  // According to SUSv3, mprotect() should only be used with mappings
2407  // established by mmap(), and mmap() always maps whole pages. Unaligned
2408  // 'addr' likely indicates problem in the VM (e.g. trying to change
2409  // protection of malloc'ed or statically allocated memory). Check the
2410  // caller if you hit this assert.
2411  assert(addr == bottom, "sanity check");
2412
2413  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2414  return ::mprotect(bottom, size, prot) == 0;
2415}
2416
2417bool os::protect_memory(char* addr, size_t size) {
2418  return linux_mprotect(addr, size, PROT_READ);
2419}
2420
2421bool os::guard_memory(char* addr, size_t size) {
2422  return linux_mprotect(addr, size, PROT_NONE);
2423}
2424
2425bool os::unguard_memory(char* addr, size_t size) {
2426  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2427}
2428
2429// Large page support
2430
2431static size_t _large_page_size = 0;
2432
2433bool os::large_page_init() {
2434  if (!UseLargePages) return false;
2435
2436  if (LargePageSizeInBytes) {
2437    _large_page_size = LargePageSizeInBytes;
2438  } else {
2439    // large_page_size on Linux is used to round up heap size. x86 uses either
2440    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2441    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2442    // page as large as 256M.
2443    //
2444    // Here we try to figure out page size by parsing /proc/meminfo and looking
2445    // for a line with the following format:
2446    //    Hugepagesize:     2048 kB
2447    //
2448    // If we can't determine the value (e.g. /proc is not mounted, or the text
2449    // format has been changed), we'll use the largest page size supported by
2450    // the processor.
2451
2452    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2453
2454    FILE *fp = fopen("/proc/meminfo", "r");
2455    if (fp) {
2456      while (!feof(fp)) {
2457        int x = 0;
2458        char buf[16];
2459        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2460          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2461            _large_page_size = x * K;
2462            break;
2463          }
2464        } else {
2465          // skip to next line
2466          for (;;) {
2467            int ch = fgetc(fp);
2468            if (ch == EOF || ch == (int)'\n') break;
2469          }
2470        }
2471      }
2472      fclose(fp);
2473    }
2474  }
2475
2476  const size_t default_page_size = (size_t)Linux::page_size();
2477  if (_large_page_size > default_page_size) {
2478    _page_sizes[0] = _large_page_size;
2479    _page_sizes[1] = default_page_size;
2480    _page_sizes[2] = 0;
2481  }
2482
2483  // Large page support is available on 2.6 or newer kernel, some vendors
2484  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2485  // We optimistically assume the support is available. If later it turns out
2486  // not true, VM will automatically switch to use regular page size.
2487  return true;
2488}
2489
2490#ifndef SHM_HUGETLB
2491#define SHM_HUGETLB 04000
2492#endif
2493
2494char* os::reserve_memory_special(size_t bytes) {
2495  assert(UseLargePages, "only for large pages");
2496
2497  key_t key = IPC_PRIVATE;
2498  char *addr;
2499
2500  bool warn_on_failure = UseLargePages &&
2501                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2502                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2503                        );
2504  char msg[128];
2505
2506  // Create a large shared memory region to attach to based on size.
2507  // Currently, size is the total size of the heap
2508  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2509  if (shmid == -1) {
2510     // Possible reasons for shmget failure:
2511     // 1. shmmax is too small for Java heap.
2512     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2513     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2514     // 2. not enough large page memory.
2515     //    > check available large pages: cat /proc/meminfo
2516     //    > increase amount of large pages:
2517     //          echo new_value > /proc/sys/vm/nr_hugepages
2518     //      Note 1: different Linux may use different name for this property,
2519     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2520     //      Note 2: it's possible there's enough physical memory available but
2521     //            they are so fragmented after a long run that they can't
2522     //            coalesce into large pages. Try to reserve large pages when
2523     //            the system is still "fresh".
2524     if (warn_on_failure) {
2525       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2526       warning(msg);
2527     }
2528     return NULL;
2529  }
2530
2531  // attach to the region
2532  addr = (char*)shmat(shmid, NULL, 0);
2533  int err = errno;
2534
2535  // Remove shmid. If shmat() is successful, the actual shared memory segment
2536  // will be deleted when it's detached by shmdt() or when the process
2537  // terminates. If shmat() is not successful this will remove the shared
2538  // segment immediately.
2539  shmctl(shmid, IPC_RMID, NULL);
2540
2541  if ((intptr_t)addr == -1) {
2542     if (warn_on_failure) {
2543       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2544       warning(msg);
2545     }
2546     return NULL;
2547  }
2548
2549  return addr;
2550}
2551
2552bool os::release_memory_special(char* base, size_t bytes) {
2553  // detaching the SHM segment will also delete it, see reserve_memory_special()
2554  int rslt = shmdt(base);
2555  return rslt == 0;
2556}
2557
2558size_t os::large_page_size() {
2559  return _large_page_size;
2560}
2561
2562// Linux does not support anonymous mmap with large page memory. The only way
2563// to reserve large page memory without file backing is through SysV shared
2564// memory API. The entire memory region is committed and pinned upfront.
2565// Hopefully this will change in the future...
2566bool os::can_commit_large_page_memory() {
2567  return false;
2568}
2569
2570bool os::can_execute_large_page_memory() {
2571  return false;
2572}
2573
2574// Reserve memory at an arbitrary address, only if that area is
2575// available (and not reserved for something else).
2576
2577char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2578  const int max_tries = 10;
2579  char* base[max_tries];
2580  size_t size[max_tries];
2581  const size_t gap = 0x000000;
2582
2583  // Assert only that the size is a multiple of the page size, since
2584  // that's all that mmap requires, and since that's all we really know
2585  // about at this low abstraction level.  If we need higher alignment,
2586  // we can either pass an alignment to this method or verify alignment
2587  // in one of the methods further up the call chain.  See bug 5044738.
2588  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2589
2590  // Repeatedly allocate blocks until the block is allocated at the
2591  // right spot. Give up after max_tries. Note that reserve_memory() will
2592  // automatically update _highest_vm_reserved_address if the call is
2593  // successful. The variable tracks the highest memory address every reserved
2594  // by JVM. It is used to detect heap-stack collision if running with
2595  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2596  // space than needed, it could confuse the collision detecting code. To
2597  // solve the problem, save current _highest_vm_reserved_address and
2598  // calculate the correct value before return.
2599  address old_highest = _highest_vm_reserved_address;
2600
2601  // Linux mmap allows caller to pass an address as hint; give it a try first,
2602  // if kernel honors the hint then we can return immediately.
2603  char * addr = anon_mmap(requested_addr, bytes, false);
2604  if (addr == requested_addr) {
2605     return requested_addr;
2606  }
2607
2608  if (addr != NULL) {
2609     // mmap() is successful but it fails to reserve at the requested address
2610     anon_munmap(addr, bytes);
2611  }
2612
2613  int i;
2614  for (i = 0; i < max_tries; ++i) {
2615    base[i] = reserve_memory(bytes);
2616
2617    if (base[i] != NULL) {
2618      // Is this the block we wanted?
2619      if (base[i] == requested_addr) {
2620        size[i] = bytes;
2621        break;
2622      }
2623
2624      // Does this overlap the block we wanted? Give back the overlapped
2625      // parts and try again.
2626
2627      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2628      if (top_overlap >= 0 && top_overlap < bytes) {
2629        unmap_memory(base[i], top_overlap);
2630        base[i] += top_overlap;
2631        size[i] = bytes - top_overlap;
2632      } else {
2633        size_t bottom_overlap = base[i] + bytes - requested_addr;
2634        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2635          unmap_memory(requested_addr, bottom_overlap);
2636          size[i] = bytes - bottom_overlap;
2637        } else {
2638          size[i] = bytes;
2639        }
2640      }
2641    }
2642  }
2643
2644  // Give back the unused reserved pieces.
2645
2646  for (int j = 0; j < i; ++j) {
2647    if (base[j] != NULL) {
2648      unmap_memory(base[j], size[j]);
2649    }
2650  }
2651
2652  if (i < max_tries) {
2653    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2654    return requested_addr;
2655  } else {
2656    _highest_vm_reserved_address = old_highest;
2657    return NULL;
2658  }
2659}
2660
2661size_t os::read(int fd, void *buf, unsigned int nBytes) {
2662  return ::read(fd, buf, nBytes);
2663}
2664
2665// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2666// Solaris uses poll(), linux uses park().
2667// Poll() is likely a better choice, assuming that Thread.interrupt()
2668// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2669// SIGSEGV, see 4355769.
2670
2671const int NANOSECS_PER_MILLISECS = 1000000;
2672
2673int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2674  assert(thread == Thread::current(),  "thread consistency check");
2675
2676  ParkEvent * const slp = thread->_SleepEvent ;
2677  slp->reset() ;
2678  OrderAccess::fence() ;
2679
2680  if (interruptible) {
2681    jlong prevtime = javaTimeNanos();
2682
2683    for (;;) {
2684      if (os::is_interrupted(thread, true)) {
2685        return OS_INTRPT;
2686      }
2687
2688      jlong newtime = javaTimeNanos();
2689
2690      if (newtime - prevtime < 0) {
2691        // time moving backwards, should only happen if no monotonic clock
2692        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2693        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2694      } else {
2695        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2696      }
2697
2698      if(millis <= 0) {
2699        return OS_OK;
2700      }
2701
2702      prevtime = newtime;
2703
2704      {
2705        assert(thread->is_Java_thread(), "sanity check");
2706        JavaThread *jt = (JavaThread *) thread;
2707        ThreadBlockInVM tbivm(jt);
2708        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2709
2710        jt->set_suspend_equivalent();
2711        // cleared by handle_special_suspend_equivalent_condition() or
2712        // java_suspend_self() via check_and_wait_while_suspended()
2713
2714        slp->park(millis);
2715
2716        // were we externally suspended while we were waiting?
2717        jt->check_and_wait_while_suspended();
2718      }
2719    }
2720  } else {
2721    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2722    jlong prevtime = javaTimeNanos();
2723
2724    for (;;) {
2725      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2726      // the 1st iteration ...
2727      jlong newtime = javaTimeNanos();
2728
2729      if (newtime - prevtime < 0) {
2730        // time moving backwards, should only happen if no monotonic clock
2731        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2732        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2733      } else {
2734        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2735      }
2736
2737      if(millis <= 0) break ;
2738
2739      prevtime = newtime;
2740      slp->park(millis);
2741    }
2742    return OS_OK ;
2743  }
2744}
2745
2746int os::naked_sleep() {
2747  // %% make the sleep time an integer flag. for now use 1 millisec.
2748  return os::sleep(Thread::current(), 1, false);
2749}
2750
2751// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2752void os::infinite_sleep() {
2753  while (true) {    // sleep forever ...
2754    ::sleep(100);   // ... 100 seconds at a time
2755  }
2756}
2757
2758// Used to convert frequent JVM_Yield() to nops
2759bool os::dont_yield() {
2760  return DontYieldALot;
2761}
2762
2763void os::yield() {
2764  sched_yield();
2765}
2766
2767os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2768
2769void os::yield_all(int attempts) {
2770  // Yields to all threads, including threads with lower priorities
2771  // Threads on Linux are all with same priority. The Solaris style
2772  // os::yield_all() with nanosleep(1ms) is not necessary.
2773  sched_yield();
2774}
2775
2776// Called from the tight loops to possibly influence time-sharing heuristics
2777void os::loop_breaker(int attempts) {
2778  os::yield_all(attempts);
2779}
2780
2781////////////////////////////////////////////////////////////////////////////////
2782// thread priority support
2783
2784// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2785// only supports dynamic priority, static priority must be zero. For real-time
2786// applications, Linux supports SCHED_RR which allows static priority (1-99).
2787// However, for large multi-threaded applications, SCHED_RR is not only slower
2788// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2789// of 5 runs - Sep 2005).
2790//
2791// The following code actually changes the niceness of kernel-thread/LWP. It
2792// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2793// not the entire user process, and user level threads are 1:1 mapped to kernel
2794// threads. It has always been the case, but could change in the future. For
2795// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2796// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2797
2798int os::java_to_os_priority[MaxPriority + 1] = {
2799  19,              // 0 Entry should never be used
2800
2801   4,              // 1 MinPriority
2802   3,              // 2
2803   2,              // 3
2804
2805   1,              // 4
2806   0,              // 5 NormPriority
2807  -1,              // 6
2808
2809  -2,              // 7
2810  -3,              // 8
2811  -4,              // 9 NearMaxPriority
2812
2813  -5               // 10 MaxPriority
2814};
2815
2816static int prio_init() {
2817  if (ThreadPriorityPolicy == 1) {
2818    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2819    // if effective uid is not root. Perhaps, a more elegant way of doing
2820    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2821    if (geteuid() != 0) {
2822      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2823        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2824      }
2825      ThreadPriorityPolicy = 0;
2826    }
2827  }
2828  return 0;
2829}
2830
2831OSReturn os::set_native_priority(Thread* thread, int newpri) {
2832  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2833
2834  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2835  return (ret == 0) ? OS_OK : OS_ERR;
2836}
2837
2838OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2839  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2840    *priority_ptr = java_to_os_priority[NormPriority];
2841    return OS_OK;
2842  }
2843
2844  errno = 0;
2845  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2846  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2847}
2848
2849// Hint to the underlying OS that a task switch would not be good.
2850// Void return because it's a hint and can fail.
2851void os::hint_no_preempt() {}
2852
2853////////////////////////////////////////////////////////////////////////////////
2854// suspend/resume support
2855
2856//  the low-level signal-based suspend/resume support is a remnant from the
2857//  old VM-suspension that used to be for java-suspension, safepoints etc,
2858//  within hotspot. Now there is a single use-case for this:
2859//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2860//      that runs in the watcher thread.
2861//  The remaining code is greatly simplified from the more general suspension
2862//  code that used to be used.
2863//
2864//  The protocol is quite simple:
2865//  - suspend:
2866//      - sends a signal to the target thread
2867//      - polls the suspend state of the osthread using a yield loop
2868//      - target thread signal handler (SR_handler) sets suspend state
2869//        and blocks in sigsuspend until continued
2870//  - resume:
2871//      - sets target osthread state to continue
2872//      - sends signal to end the sigsuspend loop in the SR_handler
2873//
2874//  Note that the SR_lock plays no role in this suspend/resume protocol.
2875//
2876
2877static void resume_clear_context(OSThread *osthread) {
2878  osthread->set_ucontext(NULL);
2879  osthread->set_siginfo(NULL);
2880
2881  // notify the suspend action is completed, we have now resumed
2882  osthread->sr.clear_suspended();
2883}
2884
2885static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2886  osthread->set_ucontext(context);
2887  osthread->set_siginfo(siginfo);
2888}
2889
2890//
2891// Handler function invoked when a thread's execution is suspended or
2892// resumed. We have to be careful that only async-safe functions are
2893// called here (Note: most pthread functions are not async safe and
2894// should be avoided.)
2895//
2896// Note: sigwait() is a more natural fit than sigsuspend() from an
2897// interface point of view, but sigwait() prevents the signal hander
2898// from being run. libpthread would get very confused by not having
2899// its signal handlers run and prevents sigwait()'s use with the
2900// mutex granting granting signal.
2901//
2902// Currently only ever called on the VMThread
2903//
2904static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2905  // Save and restore errno to avoid confusing native code with EINTR
2906  // after sigsuspend.
2907  int old_errno = errno;
2908
2909  Thread* thread = Thread::current();
2910  OSThread* osthread = thread->osthread();
2911  assert(thread->is_VM_thread(), "Must be VMThread");
2912  // read current suspend action
2913  int action = osthread->sr.suspend_action();
2914  if (action == SR_SUSPEND) {
2915    suspend_save_context(osthread, siginfo, context);
2916
2917    // Notify the suspend action is about to be completed. do_suspend()
2918    // waits until SR_SUSPENDED is set and then returns. We will wait
2919    // here for a resume signal and that completes the suspend-other
2920    // action. do_suspend/do_resume is always called as a pair from
2921    // the same thread - so there are no races
2922
2923    // notify the caller
2924    osthread->sr.set_suspended();
2925
2926    sigset_t suspend_set;  // signals for sigsuspend()
2927
2928    // get current set of blocked signals and unblock resume signal
2929    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2930    sigdelset(&suspend_set, SR_signum);
2931
2932    // wait here until we are resumed
2933    do {
2934      sigsuspend(&suspend_set);
2935      // ignore all returns until we get a resume signal
2936    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2937
2938    resume_clear_context(osthread);
2939
2940  } else {
2941    assert(action == SR_CONTINUE, "unexpected sr action");
2942    // nothing special to do - just leave the handler
2943  }
2944
2945  errno = old_errno;
2946}
2947
2948
2949static int SR_initialize() {
2950  struct sigaction act;
2951  char *s;
2952  /* Get signal number to use for suspend/resume */
2953  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2954    int sig = ::strtol(s, 0, 10);
2955    if (sig > 0 || sig < _NSIG) {
2956        SR_signum = sig;
2957    }
2958  }
2959
2960  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2961        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2962
2963  sigemptyset(&SR_sigset);
2964  sigaddset(&SR_sigset, SR_signum);
2965
2966  /* Set up signal handler for suspend/resume */
2967  act.sa_flags = SA_RESTART|SA_SIGINFO;
2968  act.sa_handler = (void (*)(int)) SR_handler;
2969
2970  // SR_signum is blocked by default.
2971  // 4528190 - We also need to block pthread restart signal (32 on all
2972  // supported Linux platforms). Note that LinuxThreads need to block
2973  // this signal for all threads to work properly. So we don't have
2974  // to use hard-coded signal number when setting up the mask.
2975  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2976
2977  if (sigaction(SR_signum, &act, 0) == -1) {
2978    return -1;
2979  }
2980
2981  // Save signal flag
2982  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
2983  return 0;
2984}
2985
2986static int SR_finalize() {
2987  return 0;
2988}
2989
2990
2991// returns true on success and false on error - really an error is fatal
2992// but this seems the normal response to library errors
2993static bool do_suspend(OSThread* osthread) {
2994  // mark as suspended and send signal
2995  osthread->sr.set_suspend_action(SR_SUSPEND);
2996  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2997  assert_status(status == 0, status, "pthread_kill");
2998
2999  // check status and wait until notified of suspension
3000  if (status == 0) {
3001    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3002      os::yield_all(i);
3003    }
3004    osthread->sr.set_suspend_action(SR_NONE);
3005    return true;
3006  }
3007  else {
3008    osthread->sr.set_suspend_action(SR_NONE);
3009    return false;
3010  }
3011}
3012
3013static void do_resume(OSThread* osthread) {
3014  assert(osthread->sr.is_suspended(), "thread should be suspended");
3015  osthread->sr.set_suspend_action(SR_CONTINUE);
3016
3017  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3018  assert_status(status == 0, status, "pthread_kill");
3019  // check status and wait unit notified of resumption
3020  if (status == 0) {
3021    for (int i = 0; osthread->sr.is_suspended(); i++) {
3022      os::yield_all(i);
3023    }
3024  }
3025  osthread->sr.set_suspend_action(SR_NONE);
3026}
3027
3028////////////////////////////////////////////////////////////////////////////////
3029// interrupt support
3030
3031void os::interrupt(Thread* thread) {
3032  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3033    "possibility of dangling Thread pointer");
3034
3035  OSThread* osthread = thread->osthread();
3036
3037  if (!osthread->interrupted()) {
3038    osthread->set_interrupted(true);
3039    // More than one thread can get here with the same value of osthread,
3040    // resulting in multiple notifications.  We do, however, want the store
3041    // to interrupted() to be visible to other threads before we execute unpark().
3042    OrderAccess::fence();
3043    ParkEvent * const slp = thread->_SleepEvent ;
3044    if (slp != NULL) slp->unpark() ;
3045  }
3046
3047  // For JSR166. Unpark even if interrupt status already was set
3048  if (thread->is_Java_thread())
3049    ((JavaThread*)thread)->parker()->unpark();
3050
3051  ParkEvent * ev = thread->_ParkEvent ;
3052  if (ev != NULL) ev->unpark() ;
3053
3054}
3055
3056bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3057  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3058    "possibility of dangling Thread pointer");
3059
3060  OSThread* osthread = thread->osthread();
3061
3062  bool interrupted = osthread->interrupted();
3063
3064  if (interrupted && clear_interrupted) {
3065    osthread->set_interrupted(false);
3066    // consider thread->_SleepEvent->reset() ... optional optimization
3067  }
3068
3069  return interrupted;
3070}
3071
3072///////////////////////////////////////////////////////////////////////////////////
3073// signal handling (except suspend/resume)
3074
3075// This routine may be used by user applications as a "hook" to catch signals.
3076// The user-defined signal handler must pass unrecognized signals to this
3077// routine, and if it returns true (non-zero), then the signal handler must
3078// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3079// routine will never retun false (zero), but instead will execute a VM panic
3080// routine kill the process.
3081//
3082// If this routine returns false, it is OK to call it again.  This allows
3083// the user-defined signal handler to perform checks either before or after
3084// the VM performs its own checks.  Naturally, the user code would be making
3085// a serious error if it tried to handle an exception (such as a null check
3086// or breakpoint) that the VM was generating for its own correct operation.
3087//
3088// This routine may recognize any of the following kinds of signals:
3089//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3090// It should be consulted by handlers for any of those signals.
3091//
3092// The caller of this routine must pass in the three arguments supplied
3093// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3094// field of the structure passed to sigaction().  This routine assumes that
3095// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3096//
3097// Note that the VM will print warnings if it detects conflicting signal
3098// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3099//
3100extern "C" int
3101JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3102                        void* ucontext, int abort_if_unrecognized);
3103
3104void signalHandler(int sig, siginfo_t* info, void* uc) {
3105  assert(info != NULL && uc != NULL, "it must be old kernel");
3106  JVM_handle_linux_signal(sig, info, uc, true);
3107}
3108
3109
3110// This boolean allows users to forward their own non-matching signals
3111// to JVM_handle_linux_signal, harmlessly.
3112bool os::Linux::signal_handlers_are_installed = false;
3113
3114// For signal-chaining
3115struct sigaction os::Linux::sigact[MAXSIGNUM];
3116unsigned int os::Linux::sigs = 0;
3117bool os::Linux::libjsig_is_loaded = false;
3118typedef struct sigaction *(*get_signal_t)(int);
3119get_signal_t os::Linux::get_signal_action = NULL;
3120
3121struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3122  struct sigaction *actp = NULL;
3123
3124  if (libjsig_is_loaded) {
3125    // Retrieve the old signal handler from libjsig
3126    actp = (*get_signal_action)(sig);
3127  }
3128  if (actp == NULL) {
3129    // Retrieve the preinstalled signal handler from jvm
3130    actp = get_preinstalled_handler(sig);
3131  }
3132
3133  return actp;
3134}
3135
3136static bool call_chained_handler(struct sigaction *actp, int sig,
3137                                 siginfo_t *siginfo, void *context) {
3138  // Call the old signal handler
3139  if (actp->sa_handler == SIG_DFL) {
3140    // It's more reasonable to let jvm treat it as an unexpected exception
3141    // instead of taking the default action.
3142    return false;
3143  } else if (actp->sa_handler != SIG_IGN) {
3144    if ((actp->sa_flags & SA_NODEFER) == 0) {
3145      // automaticlly block the signal
3146      sigaddset(&(actp->sa_mask), sig);
3147    }
3148
3149    sa_handler_t hand;
3150    sa_sigaction_t sa;
3151    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3152    // retrieve the chained handler
3153    if (siginfo_flag_set) {
3154      sa = actp->sa_sigaction;
3155    } else {
3156      hand = actp->sa_handler;
3157    }
3158
3159    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3160      actp->sa_handler = SIG_DFL;
3161    }
3162
3163    // try to honor the signal mask
3164    sigset_t oset;
3165    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3166
3167    // call into the chained handler
3168    if (siginfo_flag_set) {
3169      (*sa)(sig, siginfo, context);
3170    } else {
3171      (*hand)(sig);
3172    }
3173
3174    // restore the signal mask
3175    pthread_sigmask(SIG_SETMASK, &oset, 0);
3176  }
3177  // Tell jvm's signal handler the signal is taken care of.
3178  return true;
3179}
3180
3181bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3182  bool chained = false;
3183  // signal-chaining
3184  if (UseSignalChaining) {
3185    struct sigaction *actp = get_chained_signal_action(sig);
3186    if (actp != NULL) {
3187      chained = call_chained_handler(actp, sig, siginfo, context);
3188    }
3189  }
3190  return chained;
3191}
3192
3193struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3194  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3195    return &sigact[sig];
3196  }
3197  return NULL;
3198}
3199
3200void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3201  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3202  sigact[sig] = oldAct;
3203  sigs |= (unsigned int)1 << sig;
3204}
3205
3206// for diagnostic
3207int os::Linux::sigflags[MAXSIGNUM];
3208
3209int os::Linux::get_our_sigflags(int sig) {
3210  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3211  return sigflags[sig];
3212}
3213
3214void os::Linux::set_our_sigflags(int sig, int flags) {
3215  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3216  sigflags[sig] = flags;
3217}
3218
3219void os::Linux::set_signal_handler(int sig, bool set_installed) {
3220  // Check for overwrite.
3221  struct sigaction oldAct;
3222  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3223
3224  void* oldhand = oldAct.sa_sigaction
3225                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3226                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3227  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3228      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3229      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3230    if (AllowUserSignalHandlers || !set_installed) {
3231      // Do not overwrite; user takes responsibility to forward to us.
3232      return;
3233    } else if (UseSignalChaining) {
3234      // save the old handler in jvm
3235      save_preinstalled_handler(sig, oldAct);
3236      // libjsig also interposes the sigaction() call below and saves the
3237      // old sigaction on it own.
3238    } else {
3239      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3240    }
3241  }
3242
3243  struct sigaction sigAct;
3244  sigfillset(&(sigAct.sa_mask));
3245  sigAct.sa_handler = SIG_DFL;
3246  if (!set_installed) {
3247    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3248  } else {
3249    sigAct.sa_sigaction = signalHandler;
3250    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3251  }
3252  // Save flags, which are set by ours
3253  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3254  sigflags[sig] = sigAct.sa_flags;
3255
3256  int ret = sigaction(sig, &sigAct, &oldAct);
3257  assert(ret == 0, "check");
3258
3259  void* oldhand2  = oldAct.sa_sigaction
3260                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3261                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3262  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3263}
3264
3265// install signal handlers for signals that HotSpot needs to
3266// handle in order to support Java-level exception handling.
3267
3268void os::Linux::install_signal_handlers() {
3269  if (!signal_handlers_are_installed) {
3270    signal_handlers_are_installed = true;
3271
3272    // signal-chaining
3273    typedef void (*signal_setting_t)();
3274    signal_setting_t begin_signal_setting = NULL;
3275    signal_setting_t end_signal_setting = NULL;
3276    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3277                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3278    if (begin_signal_setting != NULL) {
3279      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3280                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3281      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3282                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3283      libjsig_is_loaded = true;
3284      assert(UseSignalChaining, "should enable signal-chaining");
3285    }
3286    if (libjsig_is_loaded) {
3287      // Tell libjsig jvm is setting signal handlers
3288      (*begin_signal_setting)();
3289    }
3290
3291    set_signal_handler(SIGSEGV, true);
3292    set_signal_handler(SIGPIPE, true);
3293    set_signal_handler(SIGBUS, true);
3294    set_signal_handler(SIGILL, true);
3295    set_signal_handler(SIGFPE, true);
3296    set_signal_handler(SIGXFSZ, true);
3297
3298    if (libjsig_is_loaded) {
3299      // Tell libjsig jvm finishes setting signal handlers
3300      (*end_signal_setting)();
3301    }
3302
3303    // We don't activate signal checker if libjsig is in place, we trust ourselves
3304    // and if UserSignalHandler is installed all bets are off
3305    if (CheckJNICalls) {
3306      if (libjsig_is_loaded) {
3307        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3308        check_signals = false;
3309      }
3310      if (AllowUserSignalHandlers) {
3311        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3312        check_signals = false;
3313      }
3314    }
3315  }
3316}
3317
3318// This is the fastest way to get thread cpu time on Linux.
3319// Returns cpu time (user+sys) for any thread, not only for current.
3320// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3321// It might work on 2.6.10+ with a special kernel/glibc patch.
3322// For reference, please, see IEEE Std 1003.1-2004:
3323//   http://www.unix.org/single_unix_specification
3324
3325jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3326  struct timespec tp;
3327  int rc = os::Linux::clock_gettime(clockid, &tp);
3328  assert(rc == 0, "clock_gettime is expected to return 0 code");
3329
3330  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3331}
3332
3333/////
3334// glibc on Linux platform uses non-documented flag
3335// to indicate, that some special sort of signal
3336// trampoline is used.
3337// We will never set this flag, and we should
3338// ignore this flag in our diagnostic
3339#ifdef SIGNIFICANT_SIGNAL_MASK
3340#undef SIGNIFICANT_SIGNAL_MASK
3341#endif
3342#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3343
3344static const char* get_signal_handler_name(address handler,
3345                                           char* buf, int buflen) {
3346  int offset;
3347  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3348  if (found) {
3349    // skip directory names
3350    const char *p1, *p2;
3351    p1 = buf;
3352    size_t len = strlen(os::file_separator());
3353    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3354    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3355  } else {
3356    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3357  }
3358  return buf;
3359}
3360
3361static void print_signal_handler(outputStream* st, int sig,
3362                                 char* buf, size_t buflen) {
3363  struct sigaction sa;
3364
3365  sigaction(sig, NULL, &sa);
3366
3367  // See comment for SIGNIFICANT_SIGNAL_MASK define
3368  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3369
3370  st->print("%s: ", os::exception_name(sig, buf, buflen));
3371
3372  address handler = (sa.sa_flags & SA_SIGINFO)
3373    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3374    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3375
3376  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3377    st->print("SIG_DFL");
3378  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3379    st->print("SIG_IGN");
3380  } else {
3381    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3382  }
3383
3384  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3385
3386  address rh = VMError::get_resetted_sighandler(sig);
3387  // May be, handler was resetted by VMError?
3388  if(rh != NULL) {
3389    handler = rh;
3390    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3391  }
3392
3393  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3394
3395  // Check: is it our handler?
3396  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3397     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3398    // It is our signal handler
3399    // check for flags, reset system-used one!
3400    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3401      st->print(
3402                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3403                os::Linux::get_our_sigflags(sig));
3404    }
3405  }
3406  st->cr();
3407}
3408
3409
3410#define DO_SIGNAL_CHECK(sig) \
3411  if (!sigismember(&check_signal_done, sig)) \
3412    os::Linux::check_signal_handler(sig)
3413
3414// This method is a periodic task to check for misbehaving JNI applications
3415// under CheckJNI, we can add any periodic checks here
3416
3417void os::run_periodic_checks() {
3418
3419  if (check_signals == false) return;
3420
3421  // SEGV and BUS if overridden could potentially prevent
3422  // generation of hs*.log in the event of a crash, debugging
3423  // such a case can be very challenging, so we absolutely
3424  // check the following for a good measure:
3425  DO_SIGNAL_CHECK(SIGSEGV);
3426  DO_SIGNAL_CHECK(SIGILL);
3427  DO_SIGNAL_CHECK(SIGFPE);
3428  DO_SIGNAL_CHECK(SIGBUS);
3429  DO_SIGNAL_CHECK(SIGPIPE);
3430  DO_SIGNAL_CHECK(SIGXFSZ);
3431
3432
3433  // ReduceSignalUsage allows the user to override these handlers
3434  // see comments at the very top and jvm_solaris.h
3435  if (!ReduceSignalUsage) {
3436    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3437    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3438    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3439    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3440  }
3441
3442  DO_SIGNAL_CHECK(SR_signum);
3443  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3444}
3445
3446typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3447
3448static os_sigaction_t os_sigaction = NULL;
3449
3450void os::Linux::check_signal_handler(int sig) {
3451  char buf[O_BUFLEN];
3452  address jvmHandler = NULL;
3453
3454
3455  struct sigaction act;
3456  if (os_sigaction == NULL) {
3457    // only trust the default sigaction, in case it has been interposed
3458    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3459    if (os_sigaction == NULL) return;
3460  }
3461
3462  os_sigaction(sig, (struct sigaction*)NULL, &act);
3463
3464
3465  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3466
3467  address thisHandler = (act.sa_flags & SA_SIGINFO)
3468    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3469    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3470
3471
3472  switch(sig) {
3473  case SIGSEGV:
3474  case SIGBUS:
3475  case SIGFPE:
3476  case SIGPIPE:
3477  case SIGILL:
3478  case SIGXFSZ:
3479    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3480    break;
3481
3482  case SHUTDOWN1_SIGNAL:
3483  case SHUTDOWN2_SIGNAL:
3484  case SHUTDOWN3_SIGNAL:
3485  case BREAK_SIGNAL:
3486    jvmHandler = (address)user_handler();
3487    break;
3488
3489  case INTERRUPT_SIGNAL:
3490    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3491    break;
3492
3493  default:
3494    if (sig == SR_signum) {
3495      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3496    } else {
3497      return;
3498    }
3499    break;
3500  }
3501
3502  if (thisHandler != jvmHandler) {
3503    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3504    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3505    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3506    // No need to check this sig any longer
3507    sigaddset(&check_signal_done, sig);
3508  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3509    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3510    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3511    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3512    // No need to check this sig any longer
3513    sigaddset(&check_signal_done, sig);
3514  }
3515
3516  // Dump all the signal
3517  if (sigismember(&check_signal_done, sig)) {
3518    print_signal_handlers(tty, buf, O_BUFLEN);
3519  }
3520}
3521
3522extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3523
3524extern bool signal_name(int signo, char* buf, size_t len);
3525
3526const char* os::exception_name(int exception_code, char* buf, size_t size) {
3527  if (0 < exception_code && exception_code <= SIGRTMAX) {
3528    // signal
3529    if (!signal_name(exception_code, buf, size)) {
3530      jio_snprintf(buf, size, "SIG%d", exception_code);
3531    }
3532    return buf;
3533  } else {
3534    return NULL;
3535  }
3536}
3537
3538// this is called _before_ the most of global arguments have been parsed
3539void os::init(void) {
3540  char dummy;   /* used to get a guess on initial stack address */
3541//  first_hrtime = gethrtime();
3542
3543  // With LinuxThreads the JavaMain thread pid (primordial thread)
3544  // is different than the pid of the java launcher thread.
3545  // So, on Linux, the launcher thread pid is passed to the VM
3546  // via the sun.java.launcher.pid property.
3547  // Use this property instead of getpid() if it was correctly passed.
3548  // See bug 6351349.
3549  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3550
3551  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3552
3553  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3554
3555  init_random(1234567);
3556
3557  ThreadCritical::initialize();
3558
3559  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3560  if (Linux::page_size() == -1) {
3561    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3562  }
3563  init_page_sizes((size_t) Linux::page_size());
3564
3565  Linux::initialize_system_info();
3566
3567  // main_thread points to the aboriginal thread
3568  Linux::_main_thread = pthread_self();
3569
3570  Linux::clock_init();
3571  initial_time_count = os::elapsed_counter();
3572}
3573
3574// To install functions for atexit system call
3575extern "C" {
3576  static void perfMemory_exit_helper() {
3577    perfMemory_exit();
3578  }
3579}
3580
3581// this is called _after_ the global arguments have been parsed
3582jint os::init_2(void)
3583{
3584  Linux::fast_thread_clock_init();
3585
3586  // Allocate a single page and mark it as readable for safepoint polling
3587  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3588  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3589
3590  os::set_polling_page( polling_page );
3591
3592#ifndef PRODUCT
3593  if(Verbose && PrintMiscellaneous)
3594    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3595#endif
3596
3597  if (!UseMembar) {
3598    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3599    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3600    os::set_memory_serialize_page( mem_serialize_page );
3601
3602#ifndef PRODUCT
3603    if(Verbose && PrintMiscellaneous)
3604      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3605#endif
3606  }
3607
3608  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3609
3610  // initialize suspend/resume support - must do this before signal_sets_init()
3611  if (SR_initialize() != 0) {
3612    perror("SR_initialize failed");
3613    return JNI_ERR;
3614  }
3615
3616  Linux::signal_sets_init();
3617  Linux::install_signal_handlers();
3618
3619  size_t threadStackSizeInBytes = ThreadStackSize * K;
3620  if (threadStackSizeInBytes != 0 &&
3621      threadStackSizeInBytes < Linux::min_stack_allowed) {
3622        tty->print_cr("\nThe stack size specified is too small, "
3623                      "Specify at least %dk",
3624                      Linux::min_stack_allowed / K);
3625        return JNI_ERR;
3626  }
3627
3628  // Make the stack size a multiple of the page size so that
3629  // the yellow/red zones can be guarded.
3630  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3631        vm_page_size()));
3632
3633  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3634
3635  Linux::libpthread_init();
3636  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3637     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3638          Linux::glibc_version(), Linux::libpthread_version(),
3639          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3640  }
3641
3642  if (UseNUMA) {
3643    Linux::libnuma_init();
3644  }
3645
3646  if (MaxFDLimit) {
3647    // set the number of file descriptors to max. print out error
3648    // if getrlimit/setrlimit fails but continue regardless.
3649    struct rlimit nbr_files;
3650    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3651    if (status != 0) {
3652      if (PrintMiscellaneous && (Verbose || WizardMode))
3653        perror("os::init_2 getrlimit failed");
3654    } else {
3655      nbr_files.rlim_cur = nbr_files.rlim_max;
3656      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3657      if (status != 0) {
3658        if (PrintMiscellaneous && (Verbose || WizardMode))
3659          perror("os::init_2 setrlimit failed");
3660      }
3661    }
3662  }
3663
3664  // Initialize lock used to serialize thread creation (see os::create_thread)
3665  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3666
3667  // Initialize HPI.
3668  jint hpi_result = hpi::initialize();
3669  if (hpi_result != JNI_OK) {
3670    tty->print_cr("There was an error trying to initialize the HPI library.");
3671    return hpi_result;
3672  }
3673
3674  // at-exit methods are called in the reverse order of their registration.
3675  // atexit functions are called on return from main or as a result of a
3676  // call to exit(3C). There can be only 32 of these functions registered
3677  // and atexit() does not set errno.
3678
3679  if (PerfAllowAtExitRegistration) {
3680    // only register atexit functions if PerfAllowAtExitRegistration is set.
3681    // atexit functions can be delayed until process exit time, which
3682    // can be problematic for embedded VM situations. Embedded VMs should
3683    // call DestroyJavaVM() to assure that VM resources are released.
3684
3685    // note: perfMemory_exit_helper atexit function may be removed in
3686    // the future if the appropriate cleanup code can be added to the
3687    // VM_Exit VMOperation's doit method.
3688    if (atexit(perfMemory_exit_helper) != 0) {
3689      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3690    }
3691  }
3692
3693  // initialize thread priority policy
3694  prio_init();
3695
3696  return JNI_OK;
3697}
3698
3699// Mark the polling page as unreadable
3700void os::make_polling_page_unreadable(void) {
3701  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3702    fatal("Could not disable polling page");
3703};
3704
3705// Mark the polling page as readable
3706void os::make_polling_page_readable(void) {
3707  if( !protect_memory((char *)_polling_page, Linux::page_size()) )
3708    fatal("Could not enable polling page");
3709};
3710
3711int os::active_processor_count() {
3712  // Linux doesn't yet have a (official) notion of processor sets,
3713  // so just return the number of online processors.
3714  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3715  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3716  return online_cpus;
3717}
3718
3719bool os::distribute_processes(uint length, uint* distribution) {
3720  // Not yet implemented.
3721  return false;
3722}
3723
3724bool os::bind_to_processor(uint processor_id) {
3725  // Not yet implemented.
3726  return false;
3727}
3728
3729///
3730
3731// Suspends the target using the signal mechanism and then grabs the PC before
3732// resuming the target. Used by the flat-profiler only
3733ExtendedPC os::get_thread_pc(Thread* thread) {
3734  // Make sure that it is called by the watcher for the VMThread
3735  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3736  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3737
3738  ExtendedPC epc;
3739
3740  OSThread* osthread = thread->osthread();
3741  if (do_suspend(osthread)) {
3742    if (osthread->ucontext() != NULL) {
3743      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3744    } else {
3745      // NULL context is unexpected, double-check this is the VMThread
3746      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3747    }
3748    do_resume(osthread);
3749  }
3750  // failure means pthread_kill failed for some reason - arguably this is
3751  // a fatal problem, but such problems are ignored elsewhere
3752
3753  return epc;
3754}
3755
3756int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3757{
3758   if (is_NPTL()) {
3759      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3760   } else {
3761#ifndef IA64
3762      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3763      // word back to default 64bit precision if condvar is signaled. Java
3764      // wants 53bit precision.  Save and restore current value.
3765      int fpu = get_fpu_control_word();
3766#endif // IA64
3767      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3768#ifndef IA64
3769      set_fpu_control_word(fpu);
3770#endif // IA64
3771      return status;
3772   }
3773}
3774
3775////////////////////////////////////////////////////////////////////////////////
3776// debug support
3777
3778#ifndef PRODUCT
3779static address same_page(address x, address y) {
3780  int page_bits = -os::vm_page_size();
3781  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3782    return x;
3783  else if (x > y)
3784    return (address)(intptr_t(y) | ~page_bits) + 1;
3785  else
3786    return (address)(intptr_t(y) & page_bits);
3787}
3788
3789bool os::find(address addr) {
3790  Dl_info dlinfo;
3791  memset(&dlinfo, 0, sizeof(dlinfo));
3792  if (dladdr(addr, &dlinfo)) {
3793    tty->print(PTR_FORMAT ": ", addr);
3794    if (dlinfo.dli_sname != NULL) {
3795      tty->print("%s+%#x", dlinfo.dli_sname,
3796                 addr - (intptr_t)dlinfo.dli_saddr);
3797    } else if (dlinfo.dli_fname) {
3798      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3799    } else {
3800      tty->print("<absolute address>");
3801    }
3802    if (dlinfo.dli_fname) {
3803      tty->print(" in %s", dlinfo.dli_fname);
3804    }
3805    if (dlinfo.dli_fbase) {
3806      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3807    }
3808    tty->cr();
3809
3810    if (Verbose) {
3811      // decode some bytes around the PC
3812      address begin = same_page(addr-40, addr);
3813      address end   = same_page(addr+40, addr);
3814      address       lowest = (address) dlinfo.dli_sname;
3815      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3816      if (begin < lowest)  begin = lowest;
3817      Dl_info dlinfo2;
3818      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3819          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3820        end = (address) dlinfo2.dli_saddr;
3821      Disassembler::decode(begin, end);
3822    }
3823    return true;
3824  }
3825  return false;
3826}
3827
3828#endif
3829
3830////////////////////////////////////////////////////////////////////////////////
3831// misc
3832
3833// This does not do anything on Linux. This is basically a hook for being
3834// able to use structured exception handling (thread-local exception filters)
3835// on, e.g., Win32.
3836void
3837os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3838                         JavaCallArguments* args, Thread* thread) {
3839  f(value, method, args, thread);
3840}
3841
3842void os::print_statistics() {
3843}
3844
3845int os::message_box(const char* title, const char* message) {
3846  int i;
3847  fdStream err(defaultStream::error_fd());
3848  for (i = 0; i < 78; i++) err.print_raw("=");
3849  err.cr();
3850  err.print_raw_cr(title);
3851  for (i = 0; i < 78; i++) err.print_raw("-");
3852  err.cr();
3853  err.print_raw_cr(message);
3854  for (i = 0; i < 78; i++) err.print_raw("=");
3855  err.cr();
3856
3857  char buf[16];
3858  // Prevent process from exiting upon "read error" without consuming all CPU
3859  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3860
3861  return buf[0] == 'y' || buf[0] == 'Y';
3862}
3863
3864int os::stat(const char *path, struct stat *sbuf) {
3865  char pathbuf[MAX_PATH];
3866  if (strlen(path) > MAX_PATH - 1) {
3867    errno = ENAMETOOLONG;
3868    return -1;
3869  }
3870  hpi::native_path(strcpy(pathbuf, path));
3871  return ::stat(pathbuf, sbuf);
3872}
3873
3874bool os::check_heap(bool force) {
3875  return true;
3876}
3877
3878int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3879  return ::vsnprintf(buf, count, format, args);
3880}
3881
3882// Is a (classpath) directory empty?
3883bool os::dir_is_empty(const char* path) {
3884  DIR *dir = NULL;
3885  struct dirent *ptr;
3886
3887  dir = opendir(path);
3888  if (dir == NULL) return true;
3889
3890  /* Scan the directory */
3891  bool result = true;
3892  char buf[sizeof(struct dirent) + MAX_PATH];
3893  while (result && (ptr = ::readdir(dir)) != NULL) {
3894    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3895      result = false;
3896    }
3897  }
3898  closedir(dir);
3899  return result;
3900}
3901
3902// create binary file, rewriting existing file if required
3903int os::create_binary_file(const char* path, bool rewrite_existing) {
3904  int oflags = O_WRONLY | O_CREAT;
3905  if (!rewrite_existing) {
3906    oflags |= O_EXCL;
3907  }
3908  return ::open64(path, oflags, S_IREAD | S_IWRITE);
3909}
3910
3911// return current position of file pointer
3912jlong os::current_file_offset(int fd) {
3913  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3914}
3915
3916// move file pointer to the specified offset
3917jlong os::seek_to_file_offset(int fd, jlong offset) {
3918  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3919}
3920
3921// Map a block of memory.
3922char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3923                     char *addr, size_t bytes, bool read_only,
3924                     bool allow_exec) {
3925  int prot;
3926  int flags;
3927
3928  if (read_only) {
3929    prot = PROT_READ;
3930    flags = MAP_SHARED;
3931  } else {
3932    prot = PROT_READ | PROT_WRITE;
3933    flags = MAP_PRIVATE;
3934  }
3935
3936  if (allow_exec) {
3937    prot |= PROT_EXEC;
3938  }
3939
3940  if (addr != NULL) {
3941    flags |= MAP_FIXED;
3942  }
3943
3944  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3945                                     fd, file_offset);
3946  if (mapped_address == MAP_FAILED) {
3947    return NULL;
3948  }
3949  return mapped_address;
3950}
3951
3952
3953// Remap a block of memory.
3954char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3955                       char *addr, size_t bytes, bool read_only,
3956                       bool allow_exec) {
3957  // same as map_memory() on this OS
3958  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3959                        allow_exec);
3960}
3961
3962
3963// Unmap a block of memory.
3964bool os::unmap_memory(char* addr, size_t bytes) {
3965  return munmap(addr, bytes) == 0;
3966}
3967
3968static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
3969
3970static clockid_t thread_cpu_clockid(Thread* thread) {
3971  pthread_t tid = thread->osthread()->pthread_id();
3972  clockid_t clockid;
3973
3974  // Get thread clockid
3975  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
3976  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
3977  return clockid;
3978}
3979
3980// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3981// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3982// of a thread.
3983//
3984// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3985// the fast estimate available on the platform.
3986
3987jlong os::current_thread_cpu_time() {
3988  if (os::Linux::supports_fast_thread_cpu_time()) {
3989    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
3990  } else {
3991    // return user + sys since the cost is the same
3992    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
3993  }
3994}
3995
3996jlong os::thread_cpu_time(Thread* thread) {
3997  // consistent with what current_thread_cpu_time() returns
3998  if (os::Linux::supports_fast_thread_cpu_time()) {
3999    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4000  } else {
4001    return slow_thread_cpu_time(thread, true /* user + sys */);
4002  }
4003}
4004
4005jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4006  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4007    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4008  } else {
4009    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4010  }
4011}
4012
4013jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4014  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4015    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4016  } else {
4017    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4018  }
4019}
4020
4021//
4022//  -1 on error.
4023//
4024
4025static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4026  static bool proc_pid_cpu_avail = true;
4027  static bool proc_task_unchecked = true;
4028  static const char *proc_stat_path = "/proc/%d/stat";
4029  pid_t  tid = thread->osthread()->thread_id();
4030  int i;
4031  char *s;
4032  char stat[2048];
4033  int statlen;
4034  char proc_name[64];
4035  int count;
4036  long sys_time, user_time;
4037  char string[64];
4038  int idummy;
4039  long ldummy;
4040  FILE *fp;
4041
4042  // We first try accessing /proc/<pid>/cpu since this is faster to
4043  // process.  If this file is not present (linux kernels 2.5 and above)
4044  // then we open /proc/<pid>/stat.
4045  if ( proc_pid_cpu_avail ) {
4046    sprintf(proc_name, "/proc/%d/cpu", tid);
4047    fp =  fopen(proc_name, "r");
4048    if ( fp != NULL ) {
4049      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4050      fclose(fp);
4051      if ( count != 3 ) return -1;
4052
4053      if (user_sys_cpu_time) {
4054        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4055      } else {
4056        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4057      }
4058    }
4059    else proc_pid_cpu_avail = false;
4060  }
4061
4062  // The /proc/<tid>/stat aggregates per-process usage on
4063  // new Linux kernels 2.6+ where NPTL is supported.
4064  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4065  // See bug 6328462.
4066  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4067  // and possibly in some other cases, so we check its availability.
4068  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4069    // This is executed only once
4070    proc_task_unchecked = false;
4071    fp = fopen("/proc/self/task", "r");
4072    if (fp != NULL) {
4073      proc_stat_path = "/proc/self/task/%d/stat";
4074      fclose(fp);
4075    }
4076  }
4077
4078  sprintf(proc_name, proc_stat_path, tid);
4079  fp = fopen(proc_name, "r");
4080  if ( fp == NULL ) return -1;
4081  statlen = fread(stat, 1, 2047, fp);
4082  stat[statlen] = '\0';
4083  fclose(fp);
4084
4085  // Skip pid and the command string. Note that we could be dealing with
4086  // weird command names, e.g. user could decide to rename java launcher
4087  // to "java 1.4.2 :)", then the stat file would look like
4088  //                1234 (java 1.4.2 :)) R ... ...
4089  // We don't really need to know the command string, just find the last
4090  // occurrence of ")" and then start parsing from there. See bug 4726580.
4091  s = strrchr(stat, ')');
4092  i = 0;
4093  if (s == NULL ) return -1;
4094
4095  // Skip blank chars
4096  do s++; while (isspace(*s));
4097
4098  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4099                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4100                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4101                 &user_time, &sys_time);
4102  if ( count != 13 ) return -1;
4103  if (user_sys_cpu_time) {
4104    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4105  } else {
4106    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4107  }
4108}
4109
4110void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4111  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4112  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4113  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4114  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4115}
4116
4117void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4118  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4119  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4120  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4121  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4122}
4123
4124bool os::is_thread_cpu_time_supported() {
4125  return true;
4126}
4127
4128// System loadavg support.  Returns -1 if load average cannot be obtained.
4129// Linux doesn't yet have a (official) notion of processor sets,
4130// so just return the system wide load average.
4131int os::loadavg(double loadavg[], int nelem) {
4132  return ::getloadavg(loadavg, nelem);
4133}
4134
4135void os::pause() {
4136  char filename[MAX_PATH];
4137  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4138    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4139  } else {
4140    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4141  }
4142
4143  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4144  if (fd != -1) {
4145    struct stat buf;
4146    close(fd);
4147    while (::stat(filename, &buf) == 0) {
4148      (void)::poll(NULL, 0, 100);
4149    }
4150  } else {
4151    jio_fprintf(stderr,
4152      "Could not open pause file '%s', continuing immediately.\n", filename);
4153  }
4154}
4155
4156extern "C" {
4157
4158/**
4159 * NOTE: the following code is to keep the green threads code
4160 * in the libjava.so happy. Once the green threads is removed,
4161 * these code will no longer be needed.
4162 */
4163int
4164jdk_waitpid(pid_t pid, int* status, int options) {
4165    return waitpid(pid, status, options);
4166}
4167
4168int
4169fork1() {
4170    return fork();
4171}
4172
4173int
4174jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4175    return sem_init(sem, pshared, value);
4176}
4177
4178int
4179jdk_sem_post(sem_t *sem) {
4180    return sem_post(sem);
4181}
4182
4183int
4184jdk_sem_wait(sem_t *sem) {
4185    return sem_wait(sem);
4186}
4187
4188int
4189jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4190    return pthread_sigmask(how , newmask, oldmask);
4191}
4192
4193}
4194
4195// Refer to the comments in os_solaris.cpp park-unpark.
4196//
4197// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4198// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4199// For specifics regarding the bug see GLIBC BUGID 261237 :
4200//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4201// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4202// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4203// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4204// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4205// and monitorenter when we're using 1-0 locking.  All those operations may result in
4206// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4207// of libpthread avoids the problem, but isn't practical.
4208//
4209// Possible remedies:
4210//
4211// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4212//      This is palliative and probabilistic, however.  If the thread is preempted
4213//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4214//      than the minimum period may have passed, and the abstime may be stale (in the
4215//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4216//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4217//
4218// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4219//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4220//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4221//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4222//      thread.
4223//
4224// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4225//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4226//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4227//      This also works well.  In fact it avoids kernel-level scalability impediments
4228//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4229//      timers in a graceful fashion.
4230//
4231// 4.   When the abstime value is in the past it appears that control returns
4232//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4233//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4234//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4235//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4236//      It may be possible to avoid reinitialization by checking the return
4237//      value from pthread_cond_timedwait().  In addition to reinitializing the
4238//      condvar we must establish the invariant that cond_signal() is only called
4239//      within critical sections protected by the adjunct mutex.  This prevents
4240//      cond_signal() from "seeing" a condvar that's in the midst of being
4241//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4242//      desirable signal-after-unlock optimization that avoids futile context switching.
4243//
4244//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4245//      structure when a condvar is used or initialized.  cond_destroy()  would
4246//      release the helper structure.  Our reinitialize-after-timedwait fix
4247//      put excessive stress on malloc/free and locks protecting the c-heap.
4248//
4249// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4250// It may be possible to refine (4) by checking the kernel and NTPL verisons
4251// and only enabling the work-around for vulnerable environments.
4252
4253// utility to compute the abstime argument to timedwait:
4254// millis is the relative timeout time
4255// abstime will be the absolute timeout time
4256// TODO: replace compute_abstime() with unpackTime()
4257
4258static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4259  if (millis < 0)  millis = 0;
4260  struct timeval now;
4261  int status = gettimeofday(&now, NULL);
4262  assert(status == 0, "gettimeofday");
4263  jlong seconds = millis / 1000;
4264  millis %= 1000;
4265  if (seconds > 50000000) { // see man cond_timedwait(3T)
4266    seconds = 50000000;
4267  }
4268  abstime->tv_sec = now.tv_sec  + seconds;
4269  long       usec = now.tv_usec + millis * 1000;
4270  if (usec >= 1000000) {
4271    abstime->tv_sec += 1;
4272    usec -= 1000000;
4273  }
4274  abstime->tv_nsec = usec * 1000;
4275  return abstime;
4276}
4277
4278
4279// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4280// Conceptually TryPark() should be equivalent to park(0).
4281
4282int os::PlatformEvent::TryPark() {
4283  for (;;) {
4284    const int v = _Event ;
4285    guarantee ((v == 0) || (v == 1), "invariant") ;
4286    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4287  }
4288}
4289
4290void os::PlatformEvent::park() {       // AKA "down()"
4291  // Invariant: Only the thread associated with the Event/PlatformEvent
4292  // may call park().
4293  // TODO: assert that _Assoc != NULL or _Assoc == Self
4294  int v ;
4295  for (;;) {
4296      v = _Event ;
4297      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4298  }
4299  guarantee (v >= 0, "invariant") ;
4300  if (v == 0) {
4301     // Do this the hard way by blocking ...
4302     int status = pthread_mutex_lock(_mutex);
4303     assert_status(status == 0, status, "mutex_lock");
4304     guarantee (_nParked == 0, "invariant") ;
4305     ++ _nParked ;
4306     while (_Event < 0) {
4307        status = pthread_cond_wait(_cond, _mutex);
4308        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4309        // Treat this the same as if the wait was interrupted
4310        if (status == ETIME) { status = EINTR; }
4311        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4312     }
4313     -- _nParked ;
4314
4315    // In theory we could move the ST of 0 into _Event past the unlock(),
4316    // but then we'd need a MEMBAR after the ST.
4317    _Event = 0 ;
4318     status = pthread_mutex_unlock(_mutex);
4319     assert_status(status == 0, status, "mutex_unlock");
4320  }
4321  guarantee (_Event >= 0, "invariant") ;
4322}
4323
4324int os::PlatformEvent::park(jlong millis) {
4325  guarantee (_nParked == 0, "invariant") ;
4326
4327  int v ;
4328  for (;;) {
4329      v = _Event ;
4330      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4331  }
4332  guarantee (v >= 0, "invariant") ;
4333  if (v != 0) return OS_OK ;
4334
4335  // We do this the hard way, by blocking the thread.
4336  // Consider enforcing a minimum timeout value.
4337  struct timespec abst;
4338  compute_abstime(&abst, millis);
4339
4340  int ret = OS_TIMEOUT;
4341  int status = pthread_mutex_lock(_mutex);
4342  assert_status(status == 0, status, "mutex_lock");
4343  guarantee (_nParked == 0, "invariant") ;
4344  ++_nParked ;
4345
4346  // Object.wait(timo) will return because of
4347  // (a) notification
4348  // (b) timeout
4349  // (c) thread.interrupt
4350  //
4351  // Thread.interrupt and object.notify{All} both call Event::set.
4352  // That is, we treat thread.interrupt as a special case of notification.
4353  // The underlying Solaris implementation, cond_timedwait, admits
4354  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4355  // JVM from making those visible to Java code.  As such, we must
4356  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4357  //
4358  // TODO: properly differentiate simultaneous notify+interrupt.
4359  // In that case, we should propagate the notify to another waiter.
4360
4361  while (_Event < 0) {
4362    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4363    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4364      pthread_cond_destroy (_cond);
4365      pthread_cond_init (_cond, NULL) ;
4366    }
4367    assert_status(status == 0 || status == EINTR ||
4368                  status == ETIME || status == ETIMEDOUT,
4369                  status, "cond_timedwait");
4370    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4371    if (status == ETIME || status == ETIMEDOUT) break ;
4372    // We consume and ignore EINTR and spurious wakeups.
4373  }
4374  --_nParked ;
4375  if (_Event >= 0) {
4376     ret = OS_OK;
4377  }
4378  _Event = 0 ;
4379  status = pthread_mutex_unlock(_mutex);
4380  assert_status(status == 0, status, "mutex_unlock");
4381  assert (_nParked == 0, "invariant") ;
4382  return ret;
4383}
4384
4385void os::PlatformEvent::unpark() {
4386  int v, AnyWaiters ;
4387  for (;;) {
4388      v = _Event ;
4389      if (v > 0) {
4390         // The LD of _Event could have reordered or be satisfied
4391         // by a read-aside from this processor's write buffer.
4392         // To avoid problems execute a barrier and then
4393         // ratify the value.
4394         OrderAccess::fence() ;
4395         if (_Event == v) return ;
4396         continue ;
4397      }
4398      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4399  }
4400  if (v < 0) {
4401     // Wait for the thread associated with the event to vacate
4402     int status = pthread_mutex_lock(_mutex);
4403     assert_status(status == 0, status, "mutex_lock");
4404     AnyWaiters = _nParked ;
4405     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4406     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4407        AnyWaiters = 0 ;
4408        pthread_cond_signal (_cond);
4409     }
4410     status = pthread_mutex_unlock(_mutex);
4411     assert_status(status == 0, status, "mutex_unlock");
4412     if (AnyWaiters != 0) {
4413        status = pthread_cond_signal(_cond);
4414        assert_status(status == 0, status, "cond_signal");
4415     }
4416  }
4417
4418  // Note that we signal() _after dropping the lock for "immortal" Events.
4419  // This is safe and avoids a common class of  futile wakeups.  In rare
4420  // circumstances this can cause a thread to return prematurely from
4421  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4422  // simply re-test the condition and re-park itself.
4423}
4424
4425
4426// JSR166
4427// -------------------------------------------------------
4428
4429/*
4430 * The solaris and linux implementations of park/unpark are fairly
4431 * conservative for now, but can be improved. They currently use a
4432 * mutex/condvar pair, plus a a count.
4433 * Park decrements count if > 0, else does a condvar wait.  Unpark
4434 * sets count to 1 and signals condvar.  Only one thread ever waits
4435 * on the condvar. Contention seen when trying to park implies that someone
4436 * is unparking you, so don't wait. And spurious returns are fine, so there
4437 * is no need to track notifications.
4438 */
4439
4440
4441#define NANOSECS_PER_SEC 1000000000
4442#define NANOSECS_PER_MILLISEC 1000000
4443#define MAX_SECS 100000000
4444/*
4445 * This code is common to linux and solaris and will be moved to a
4446 * common place in dolphin.
4447 *
4448 * The passed in time value is either a relative time in nanoseconds
4449 * or an absolute time in milliseconds. Either way it has to be unpacked
4450 * into suitable seconds and nanoseconds components and stored in the
4451 * given timespec structure.
4452 * Given time is a 64-bit value and the time_t used in the timespec is only
4453 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4454 * overflow if times way in the future are given. Further on Solaris versions
4455 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4456 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4457 * As it will be 28 years before "now + 100000000" will overflow we can
4458 * ignore overflow and just impose a hard-limit on seconds using the value
4459 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4460 * years from "now".
4461 */
4462
4463static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4464  assert (time > 0, "convertTime");
4465
4466  struct timeval now;
4467  int status = gettimeofday(&now, NULL);
4468  assert(status == 0, "gettimeofday");
4469
4470  time_t max_secs = now.tv_sec + MAX_SECS;
4471
4472  if (isAbsolute) {
4473    jlong secs = time / 1000;
4474    if (secs > max_secs) {
4475      absTime->tv_sec = max_secs;
4476    }
4477    else {
4478      absTime->tv_sec = secs;
4479    }
4480    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4481  }
4482  else {
4483    jlong secs = time / NANOSECS_PER_SEC;
4484    if (secs >= MAX_SECS) {
4485      absTime->tv_sec = max_secs;
4486      absTime->tv_nsec = 0;
4487    }
4488    else {
4489      absTime->tv_sec = now.tv_sec + secs;
4490      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4491      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4492        absTime->tv_nsec -= NANOSECS_PER_SEC;
4493        ++absTime->tv_sec; // note: this must be <= max_secs
4494      }
4495    }
4496  }
4497  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4498  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4499  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4500  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4501}
4502
4503void Parker::park(bool isAbsolute, jlong time) {
4504  // Optional fast-path check:
4505  // Return immediately if a permit is available.
4506  if (_counter > 0) {
4507      _counter = 0 ;
4508      return ;
4509  }
4510
4511  Thread* thread = Thread::current();
4512  assert(thread->is_Java_thread(), "Must be JavaThread");
4513  JavaThread *jt = (JavaThread *)thread;
4514
4515  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4516  // Check interrupt before trying to wait
4517  if (Thread::is_interrupted(thread, false)) {
4518    return;
4519  }
4520
4521  // Next, demultiplex/decode time arguments
4522  timespec absTime;
4523  if (time < 0) { // don't wait at all
4524    return;
4525  }
4526  if (time > 0) {
4527    unpackTime(&absTime, isAbsolute, time);
4528  }
4529
4530
4531  // Enter safepoint region
4532  // Beware of deadlocks such as 6317397.
4533  // The per-thread Parker:: mutex is a classic leaf-lock.
4534  // In particular a thread must never block on the Threads_lock while
4535  // holding the Parker:: mutex.  If safepoints are pending both the
4536  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4537  ThreadBlockInVM tbivm(jt);
4538
4539  // Don't wait if cannot get lock since interference arises from
4540  // unblocking.  Also. check interrupt before trying wait
4541  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4542    return;
4543  }
4544
4545  int status ;
4546  if (_counter > 0)  { // no wait needed
4547    _counter = 0;
4548    status = pthread_mutex_unlock(_mutex);
4549    assert (status == 0, "invariant") ;
4550    return;
4551  }
4552
4553#ifdef ASSERT
4554  // Don't catch signals while blocked; let the running threads have the signals.
4555  // (This allows a debugger to break into the running thread.)
4556  sigset_t oldsigs;
4557  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4558  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4559#endif
4560
4561  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4562  jt->set_suspend_equivalent();
4563  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4564
4565  if (time == 0) {
4566    status = pthread_cond_wait (_cond, _mutex) ;
4567  } else {
4568    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4569    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4570      pthread_cond_destroy (_cond) ;
4571      pthread_cond_init    (_cond, NULL);
4572    }
4573  }
4574  assert_status(status == 0 || status == EINTR ||
4575                status == ETIME || status == ETIMEDOUT,
4576                status, "cond_timedwait");
4577
4578#ifdef ASSERT
4579  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4580#endif
4581
4582  _counter = 0 ;
4583  status = pthread_mutex_unlock(_mutex) ;
4584  assert_status(status == 0, status, "invariant") ;
4585  // If externally suspended while waiting, re-suspend
4586  if (jt->handle_special_suspend_equivalent_condition()) {
4587    jt->java_suspend_self();
4588  }
4589
4590}
4591
4592void Parker::unpark() {
4593  int s, status ;
4594  status = pthread_mutex_lock(_mutex);
4595  assert (status == 0, "invariant") ;
4596  s = _counter;
4597  _counter = 1;
4598  if (s < 1) {
4599     if (WorkAroundNPTLTimedWaitHang) {
4600        status = pthread_cond_signal (_cond) ;
4601        assert (status == 0, "invariant") ;
4602        status = pthread_mutex_unlock(_mutex);
4603        assert (status == 0, "invariant") ;
4604     } else {
4605        status = pthread_mutex_unlock(_mutex);
4606        assert (status == 0, "invariant") ;
4607        status = pthread_cond_signal (_cond) ;
4608        assert (status == 0, "invariant") ;
4609     }
4610  } else {
4611    pthread_mutex_unlock(_mutex);
4612    assert (status == 0, "invariant") ;
4613  }
4614}
4615
4616
4617extern char** environ;
4618
4619#ifndef __NR_fork
4620#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4621#endif
4622
4623#ifndef __NR_execve
4624#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4625#endif
4626
4627// Run the specified command in a separate process. Return its exit value,
4628// or -1 on failure (e.g. can't fork a new process).
4629// Unlike system(), this function can be called from signal handler. It
4630// doesn't block SIGINT et al.
4631int os::fork_and_exec(char* cmd) {
4632  const char * argv[4] = {"sh", "-c", cmd, NULL};
4633
4634  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4635  // pthread_atfork handlers and reset pthread library. All we need is a
4636  // separate process to execve. Make a direct syscall to fork process.
4637  // On IA64 there's no fork syscall, we have to use fork() and hope for
4638  // the best...
4639  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4640              IA64_ONLY(fork();)
4641
4642  if (pid < 0) {
4643    // fork failed
4644    return -1;
4645
4646  } else if (pid == 0) {
4647    // child process
4648
4649    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4650    // first to kill every thread on the thread list. Because this list is
4651    // not reset by fork() (see notes above), execve() will instead kill
4652    // every thread in the parent process. We know this is the only thread
4653    // in the new process, so make a system call directly.
4654    // IA64 should use normal execve() from glibc to match the glibc fork()
4655    // above.
4656    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4657    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4658
4659    // execve failed
4660    _exit(-1);
4661
4662  } else  {
4663    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4664    // care about the actual exit code, for now.
4665
4666    int status;
4667
4668    // Wait for the child process to exit.  This returns immediately if
4669    // the child has already exited. */
4670    while (waitpid(pid, &status, 0) < 0) {
4671        switch (errno) {
4672        case ECHILD: return 0;
4673        case EINTR: break;
4674        default: return -1;
4675        }
4676    }
4677
4678    if (WIFEXITED(status)) {
4679       // The child exited normally; get its exit code.
4680       return WEXITSTATUS(status);
4681    } else if (WIFSIGNALED(status)) {
4682       // The child exited because of a signal
4683       // The best value to return is 0x80 + signal number,
4684       // because that is what all Unix shells do, and because
4685       // it allows callers to distinguish between process exit and
4686       // process death by signal.
4687       return 0x80 + WTERMSIG(status);
4688    } else {
4689       // Unknown exit code; pass it through
4690       return status;
4691    }
4692  }
4693}
4694