os_linux.cpp revision 1929:2d4762ec74af
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# define __STDC_FORMAT_MACROS
26
27// no precompiled headers
28#include "classfile/classLoader.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "compiler/compileBroker.hpp"
34#include "interpreter/interpreter.hpp"
35#include "jvm_linux.h"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/extendedPC.hpp"
46#include "runtime/globals.hpp"
47#include "runtime/hpi.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/osThread.hpp"
54#include "runtime/perfMemory.hpp"
55#include "runtime/sharedRuntime.hpp"
56#include "runtime/statSampler.hpp"
57#include "runtime/stubRoutines.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/runtimeService.hpp"
62#include "thread_linux.inline.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/growableArray.hpp"
67#include "utilities/vmError.hpp"
68#ifdef TARGET_ARCH_x86
69# include "assembler_x86.inline.hpp"
70# include "nativeInst_x86.hpp"
71#endif
72#ifdef TARGET_ARCH_sparc
73# include "assembler_sparc.inline.hpp"
74# include "nativeInst_sparc.hpp"
75#endif
76#ifdef TARGET_ARCH_zero
77# include "assembler_zero.inline.hpp"
78# include "nativeInst_zero.hpp"
79#endif
80#ifdef COMPILER1
81#include "c1/c1_Runtime1.hpp"
82#endif
83#ifdef COMPILER2
84#include "opto/runtime.hpp"
85#endif
86
87// put OS-includes here
88# include <sys/types.h>
89# include <sys/mman.h>
90# include <sys/stat.h>
91# include <sys/select.h>
92# include <pthread.h>
93# include <signal.h>
94# include <errno.h>
95# include <dlfcn.h>
96# include <stdio.h>
97# include <unistd.h>
98# include <sys/resource.h>
99# include <pthread.h>
100# include <sys/stat.h>
101# include <sys/time.h>
102# include <sys/times.h>
103# include <sys/utsname.h>
104# include <sys/socket.h>
105# include <sys/wait.h>
106# include <pwd.h>
107# include <poll.h>
108# include <semaphore.h>
109# include <fcntl.h>
110# include <string.h>
111# include <syscall.h>
112# include <sys/sysinfo.h>
113# include <gnu/libc-version.h>
114# include <sys/ipc.h>
115# include <sys/shm.h>
116# include <link.h>
117# include <stdint.h>
118# include <inttypes.h>
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124#define SEC_IN_NANOSECS  1000000000LL
125
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Linux::_physical_memory = 0;
129
130address   os::Linux::_initial_thread_stack_bottom = NULL;
131uintptr_t os::Linux::_initial_thread_stack_size   = 0;
132
133int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
134int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
135Mutex* os::Linux::_createThread_lock = NULL;
136pthread_t os::Linux::_main_thread;
137int os::Linux::_page_size = -1;
138bool os::Linux::_is_floating_stack = false;
139bool os::Linux::_is_NPTL = false;
140bool os::Linux::_supports_fast_thread_cpu_time = false;
141const char * os::Linux::_glibc_version = NULL;
142const char * os::Linux::_libpthread_version = NULL;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;;
151
152static pid_t _initial_pid = 0;
153
154/* Signal number used to suspend/resume a thread */
155
156/* do not use any signal number less than SIGSEGV, see 4355769 */
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160/* Used to protect dlsym() calls */
161static pthread_mutex_t dl_mutex;
162
163////////////////////////////////////////////////////////////////////////////////
164// utility functions
165
166static int SR_initialize();
167static int SR_finalize();
168
169julong os::available_memory() {
170  return Linux::available_memory();
171}
172
173julong os::Linux::available_memory() {
174  // values in struct sysinfo are "unsigned long"
175  struct sysinfo si;
176  sysinfo(&si);
177
178  return (julong)si.freeram * si.mem_unit;
179}
180
181julong os::physical_memory() {
182  return Linux::physical_memory();
183}
184
185julong os::allocatable_physical_memory(julong size) {
186#ifdef _LP64
187  return size;
188#else
189  julong result = MIN2(size, (julong)3800*M);
190   if (!is_allocatable(result)) {
191     // See comments under solaris for alignment considerations
192     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
193     result =  MIN2(size, reasonable_size);
194   }
195   return result;
196#endif // _LP64
197}
198
199////////////////////////////////////////////////////////////////////////////////
200// environment support
201
202bool os::getenv(const char* name, char* buf, int len) {
203  const char* val = ::getenv(name);
204  if (val != NULL && strlen(val) < (size_t)len) {
205    strcpy(buf, val);
206    return true;
207  }
208  if (len > 0) buf[0] = 0;  // return a null string
209  return false;
210}
211
212
213// Return true if user is running as root.
214
215bool os::have_special_privileges() {
216  static bool init = false;
217  static bool privileges = false;
218  if (!init) {
219    privileges = (getuid() != geteuid()) || (getgid() != getegid());
220    init = true;
221  }
222  return privileges;
223}
224
225
226#ifndef SYS_gettid
227// i386: 224, ia64: 1105, amd64: 186, sparc 143
228#ifdef __ia64__
229#define SYS_gettid 1105
230#elif __i386__
231#define SYS_gettid 224
232#elif __amd64__
233#define SYS_gettid 186
234#elif __sparc__
235#define SYS_gettid 143
236#else
237#error define gettid for the arch
238#endif
239#endif
240
241// Cpu architecture string
242#if   defined(ZERO)
243static char cpu_arch[] = ZERO_LIBARCH;
244#elif defined(IA64)
245static char cpu_arch[] = "ia64";
246#elif defined(IA32)
247static char cpu_arch[] = "i386";
248#elif defined(AMD64)
249static char cpu_arch[] = "amd64";
250#elif defined(ARM)
251static char cpu_arch[] = "arm";
252#elif defined(PPC)
253static char cpu_arch[] = "ppc";
254#elif defined(SPARC)
255#  ifdef _LP64
256static char cpu_arch[] = "sparcv9";
257#  else
258static char cpu_arch[] = "sparc";
259#  endif
260#else
261#error Add appropriate cpu_arch setting
262#endif
263
264
265// pid_t gettid()
266//
267// Returns the kernel thread id of the currently running thread. Kernel
268// thread id is used to access /proc.
269//
270// (Note that getpid() on LinuxThreads returns kernel thread id too; but
271// on NPTL, it returns the same pid for all threads, as required by POSIX.)
272//
273pid_t os::Linux::gettid() {
274  int rslt = syscall(SYS_gettid);
275  if (rslt == -1) {
276     // old kernel, no NPTL support
277     return getpid();
278  } else {
279     return (pid_t)rslt;
280  }
281}
282
283// Most versions of linux have a bug where the number of processors are
284// determined by looking at the /proc file system.  In a chroot environment,
285// the system call returns 1.  This causes the VM to act as if it is
286// a single processor and elide locking (see is_MP() call).
287static bool unsafe_chroot_detected = false;
288static const char *unstable_chroot_error = "/proc file system not found.\n"
289                     "Java may be unstable running multithreaded in a chroot "
290                     "environment on Linux when /proc filesystem is not mounted.";
291
292void os::Linux::initialize_system_info() {
293  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
294  if (processor_count() == 1) {
295    pid_t pid = os::Linux::gettid();
296    char fname[32];
297    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
298    FILE *fp = fopen(fname, "r");
299    if (fp == NULL) {
300      unsafe_chroot_detected = true;
301    } else {
302      fclose(fp);
303    }
304  }
305  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
306  assert(processor_count() > 0, "linux error");
307}
308
309void os::init_system_properties_values() {
310//  char arch[12];
311//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
312
313  // The next steps are taken in the product version:
314  //
315  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
316  // This library should be located at:
317  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
318  //
319  // If "/jre/lib/" appears at the right place in the path, then we
320  // assume libjvm[_g].so is installed in a JDK and we use this path.
321  //
322  // Otherwise exit with message: "Could not create the Java virtual machine."
323  //
324  // The following extra steps are taken in the debugging version:
325  //
326  // If "/jre/lib/" does NOT appear at the right place in the path
327  // instead of exit check for $JAVA_HOME environment variable.
328  //
329  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
330  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
331  // it looks like libjvm[_g].so is installed there
332  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
333  //
334  // Otherwise exit.
335  //
336  // Important note: if the location of libjvm.so changes this
337  // code needs to be changed accordingly.
338
339  // The next few definitions allow the code to be verbatim:
340#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
341#define getenv(n) ::getenv(n)
342
343/*
344 * See ld(1):
345 *      The linker uses the following search paths to locate required
346 *      shared libraries:
347 *        1: ...
348 *        ...
349 *        7: The default directories, normally /lib and /usr/lib.
350 */
351#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
352#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
353#else
354#define DEFAULT_LIBPATH "/lib:/usr/lib"
355#endif
356
357#define EXTENSIONS_DIR  "/lib/ext"
358#define ENDORSED_DIR    "/lib/endorsed"
359#define REG_DIR         "/usr/java/packages"
360
361  {
362    /* sysclasspath, java_home, dll_dir */
363    {
364        char *home_path;
365        char *dll_path;
366        char *pslash;
367        char buf[MAXPATHLEN];
368        os::jvm_path(buf, sizeof(buf));
369
370        // Found the full path to libjvm.so.
371        // Now cut the path to <java_home>/jre if we can.
372        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
373        pslash = strrchr(buf, '/');
374        if (pslash != NULL)
375            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
376        dll_path = malloc(strlen(buf) + 1);
377        if (dll_path == NULL)
378            return;
379        strcpy(dll_path, buf);
380        Arguments::set_dll_dir(dll_path);
381
382        if (pslash != NULL) {
383            pslash = strrchr(buf, '/');
384            if (pslash != NULL) {
385                *pslash = '\0';       /* get rid of /<arch> */
386                pslash = strrchr(buf, '/');
387                if (pslash != NULL)
388                    *pslash = '\0';   /* get rid of /lib */
389            }
390        }
391
392        home_path = malloc(strlen(buf) + 1);
393        if (home_path == NULL)
394            return;
395        strcpy(home_path, buf);
396        Arguments::set_java_home(home_path);
397
398        if (!set_boot_path('/', ':'))
399            return;
400    }
401
402    /*
403     * Where to look for native libraries
404     *
405     * Note: Due to a legacy implementation, most of the library path
406     * is set in the launcher.  This was to accomodate linking restrictions
407     * on legacy Linux implementations (which are no longer supported).
408     * Eventually, all the library path setting will be done here.
409     *
410     * However, to prevent the proliferation of improperly built native
411     * libraries, the new path component /usr/java/packages is added here.
412     * Eventually, all the library path setting will be done here.
413     */
414    {
415        char *ld_library_path;
416
417        /*
418         * Construct the invariant part of ld_library_path. Note that the
419         * space for the colon and the trailing null are provided by the
420         * nulls included by the sizeof operator (so actually we allocate
421         * a byte more than necessary).
422         */
423        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
424            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
425        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
426
427        /*
428         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
429         * should always exist (until the legacy problem cited above is
430         * addressed).
431         */
432        char *v = getenv("LD_LIBRARY_PATH");
433        if (v != NULL) {
434            char *t = ld_library_path;
435            /* That's +1 for the colon and +1 for the trailing '\0' */
436            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
437            sprintf(ld_library_path, "%s:%s", v, t);
438        }
439        Arguments::set_library_path(ld_library_path);
440    }
441
442    /*
443     * Extensions directories.
444     *
445     * Note that the space for the colon and the trailing null are provided
446     * by the nulls included by the sizeof operator (so actually one byte more
447     * than necessary is allocated).
448     */
449    {
450        char *buf = malloc(strlen(Arguments::get_java_home()) +
451            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
452        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
453            Arguments::get_java_home());
454        Arguments::set_ext_dirs(buf);
455    }
456
457    /* Endorsed standards default directory. */
458    {
459        char * buf;
460        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
461        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
462        Arguments::set_endorsed_dirs(buf);
463    }
464  }
465
466#undef malloc
467#undef getenv
468#undef EXTENSIONS_DIR
469#undef ENDORSED_DIR
470
471  // Done
472  return;
473}
474
475////////////////////////////////////////////////////////////////////////////////
476// breakpoint support
477
478void os::breakpoint() {
479  BREAKPOINT;
480}
481
482extern "C" void breakpoint() {
483  // use debugger to set breakpoint here
484}
485
486////////////////////////////////////////////////////////////////////////////////
487// signal support
488
489debug_only(static bool signal_sets_initialized = false);
490static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
491
492bool os::Linux::is_sig_ignored(int sig) {
493      struct sigaction oact;
494      sigaction(sig, (struct sigaction*)NULL, &oact);
495      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
496                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
497      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
498           return true;
499      else
500           return false;
501}
502
503void os::Linux::signal_sets_init() {
504  // Should also have an assertion stating we are still single-threaded.
505  assert(!signal_sets_initialized, "Already initialized");
506  // Fill in signals that are necessarily unblocked for all threads in
507  // the VM. Currently, we unblock the following signals:
508  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
509  //                         by -Xrs (=ReduceSignalUsage));
510  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
511  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
512  // the dispositions or masks wrt these signals.
513  // Programs embedding the VM that want to use the above signals for their
514  // own purposes must, at this time, use the "-Xrs" option to prevent
515  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
516  // (See bug 4345157, and other related bugs).
517  // In reality, though, unblocking these signals is really a nop, since
518  // these signals are not blocked by default.
519  sigemptyset(&unblocked_sigs);
520  sigemptyset(&allowdebug_blocked_sigs);
521  sigaddset(&unblocked_sigs, SIGILL);
522  sigaddset(&unblocked_sigs, SIGSEGV);
523  sigaddset(&unblocked_sigs, SIGBUS);
524  sigaddset(&unblocked_sigs, SIGFPE);
525  sigaddset(&unblocked_sigs, SR_signum);
526
527  if (!ReduceSignalUsage) {
528   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
529      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
530      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
531   }
532   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
533      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
534      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
535   }
536   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
537      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
538      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
539   }
540  }
541  // Fill in signals that are blocked by all but the VM thread.
542  sigemptyset(&vm_sigs);
543  if (!ReduceSignalUsage)
544    sigaddset(&vm_sigs, BREAK_SIGNAL);
545  debug_only(signal_sets_initialized = true);
546
547}
548
549// These are signals that are unblocked while a thread is running Java.
550// (For some reason, they get blocked by default.)
551sigset_t* os::Linux::unblocked_signals() {
552  assert(signal_sets_initialized, "Not initialized");
553  return &unblocked_sigs;
554}
555
556// These are the signals that are blocked while a (non-VM) thread is
557// running Java. Only the VM thread handles these signals.
558sigset_t* os::Linux::vm_signals() {
559  assert(signal_sets_initialized, "Not initialized");
560  return &vm_sigs;
561}
562
563// These are signals that are blocked during cond_wait to allow debugger in
564sigset_t* os::Linux::allowdebug_blocked_signals() {
565  assert(signal_sets_initialized, "Not initialized");
566  return &allowdebug_blocked_sigs;
567}
568
569void os::Linux::hotspot_sigmask(Thread* thread) {
570
571  //Save caller's signal mask before setting VM signal mask
572  sigset_t caller_sigmask;
573  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
574
575  OSThread* osthread = thread->osthread();
576  osthread->set_caller_sigmask(caller_sigmask);
577
578  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
579
580  if (!ReduceSignalUsage) {
581    if (thread->is_VM_thread()) {
582      // Only the VM thread handles BREAK_SIGNAL ...
583      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
584    } else {
585      // ... all other threads block BREAK_SIGNAL
586      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
587    }
588  }
589}
590
591//////////////////////////////////////////////////////////////////////////////
592// detecting pthread library
593
594void os::Linux::libpthread_init() {
595  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
596  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
597  // generic name for earlier versions.
598  // Define macros here so we can build HotSpot on old systems.
599# ifndef _CS_GNU_LIBC_VERSION
600# define _CS_GNU_LIBC_VERSION 2
601# endif
602# ifndef _CS_GNU_LIBPTHREAD_VERSION
603# define _CS_GNU_LIBPTHREAD_VERSION 3
604# endif
605
606  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
607  if (n > 0) {
608     char *str = (char *)malloc(n);
609     confstr(_CS_GNU_LIBC_VERSION, str, n);
610     os::Linux::set_glibc_version(str);
611  } else {
612     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
613     static char _gnu_libc_version[32];
614     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
615              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
616     os::Linux::set_glibc_version(_gnu_libc_version);
617  }
618
619  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
620  if (n > 0) {
621     char *str = (char *)malloc(n);
622     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
623     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
624     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
625     // is the case. LinuxThreads has a hard limit on max number of threads.
626     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
627     // On the other hand, NPTL does not have such a limit, sysconf()
628     // will return -1 and errno is not changed. Check if it is really NPTL.
629     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
630         strstr(str, "NPTL") &&
631         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
632       free(str);
633       os::Linux::set_libpthread_version("linuxthreads");
634     } else {
635       os::Linux::set_libpthread_version(str);
636     }
637  } else {
638    // glibc before 2.3.2 only has LinuxThreads.
639    os::Linux::set_libpthread_version("linuxthreads");
640  }
641
642  if (strstr(libpthread_version(), "NPTL")) {
643     os::Linux::set_is_NPTL();
644  } else {
645     os::Linux::set_is_LinuxThreads();
646  }
647
648  // LinuxThreads have two flavors: floating-stack mode, which allows variable
649  // stack size; and fixed-stack mode. NPTL is always floating-stack.
650  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
651     os::Linux::set_is_floating_stack();
652  }
653}
654
655/////////////////////////////////////////////////////////////////////////////
656// thread stack
657
658// Force Linux kernel to expand current thread stack. If "bottom" is close
659// to the stack guard, caller should block all signals.
660//
661// MAP_GROWSDOWN:
662//   A special mmap() flag that is used to implement thread stacks. It tells
663//   kernel that the memory region should extend downwards when needed. This
664//   allows early versions of LinuxThreads to only mmap the first few pages
665//   when creating a new thread. Linux kernel will automatically expand thread
666//   stack as needed (on page faults).
667//
668//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
669//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
670//   region, it's hard to tell if the fault is due to a legitimate stack
671//   access or because of reading/writing non-exist memory (e.g. buffer
672//   overrun). As a rule, if the fault happens below current stack pointer,
673//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
674//   application (see Linux kernel fault.c).
675//
676//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
677//   stack overflow detection.
678//
679//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
680//   not use this flag. However, the stack of initial thread is not created
681//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
682//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
683//   and then attach the thread to JVM.
684//
685// To get around the problem and allow stack banging on Linux, we need to
686// manually expand thread stack after receiving the SIGSEGV.
687//
688// There are two ways to expand thread stack to address "bottom", we used
689// both of them in JVM before 1.5:
690//   1. adjust stack pointer first so that it is below "bottom", and then
691//      touch "bottom"
692//   2. mmap() the page in question
693//
694// Now alternate signal stack is gone, it's harder to use 2. For instance,
695// if current sp is already near the lower end of page 101, and we need to
696// call mmap() to map page 100, it is possible that part of the mmap() frame
697// will be placed in page 100. When page 100 is mapped, it is zero-filled.
698// That will destroy the mmap() frame and cause VM to crash.
699//
700// The following code works by adjusting sp first, then accessing the "bottom"
701// page to force a page fault. Linux kernel will then automatically expand the
702// stack mapping.
703//
704// _expand_stack_to() assumes its frame size is less than page size, which
705// should always be true if the function is not inlined.
706
707#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
708#define NOINLINE
709#else
710#define NOINLINE __attribute__ ((noinline))
711#endif
712
713static void _expand_stack_to(address bottom) NOINLINE;
714
715static void _expand_stack_to(address bottom) {
716  address sp;
717  size_t size;
718  volatile char *p;
719
720  // Adjust bottom to point to the largest address within the same page, it
721  // gives us a one-page buffer if alloca() allocates slightly more memory.
722  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
723  bottom += os::Linux::page_size() - 1;
724
725  // sp might be slightly above current stack pointer; if that's the case, we
726  // will alloca() a little more space than necessary, which is OK. Don't use
727  // os::current_stack_pointer(), as its result can be slightly below current
728  // stack pointer, causing us to not alloca enough to reach "bottom".
729  sp = (address)&sp;
730
731  if (sp > bottom) {
732    size = sp - bottom;
733    p = (volatile char *)alloca(size);
734    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
735    p[0] = '\0';
736  }
737}
738
739bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
740  assert(t!=NULL, "just checking");
741  assert(t->osthread()->expanding_stack(), "expand should be set");
742  assert(t->stack_base() != NULL, "stack_base was not initialized");
743
744  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
745    sigset_t mask_all, old_sigset;
746    sigfillset(&mask_all);
747    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
748    _expand_stack_to(addr);
749    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
750    return true;
751  }
752  return false;
753}
754
755//////////////////////////////////////////////////////////////////////////////
756// create new thread
757
758static address highest_vm_reserved_address();
759
760// check if it's safe to start a new thread
761static bool _thread_safety_check(Thread* thread) {
762  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
763    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
764    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
765    //   allocated (MAP_FIXED) from high address space. Every thread stack
766    //   occupies a fixed size slot (usually 2Mbytes, but user can change
767    //   it to other values if they rebuild LinuxThreads).
768    //
769    // Problem with MAP_FIXED is that mmap() can still succeed even part of
770    // the memory region has already been mmap'ed. That means if we have too
771    // many threads and/or very large heap, eventually thread stack will
772    // collide with heap.
773    //
774    // Here we try to prevent heap/stack collision by comparing current
775    // stack bottom with the highest address that has been mmap'ed by JVM
776    // plus a safety margin for memory maps created by native code.
777    //
778    // This feature can be disabled by setting ThreadSafetyMargin to 0
779    //
780    if (ThreadSafetyMargin > 0) {
781      address stack_bottom = os::current_stack_base() - os::current_stack_size();
782
783      // not safe if our stack extends below the safety margin
784      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
785    } else {
786      return true;
787    }
788  } else {
789    // Floating stack LinuxThreads or NPTL:
790    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
791    //   there's not enough space left, pthread_create() will fail. If we come
792    //   here, that means enough space has been reserved for stack.
793    return true;
794  }
795}
796
797// Thread start routine for all newly created threads
798static void *java_start(Thread *thread) {
799  // Try to randomize the cache line index of hot stack frames.
800  // This helps when threads of the same stack traces evict each other's
801  // cache lines. The threads can be either from the same JVM instance, or
802  // from different JVM instances. The benefit is especially true for
803  // processors with hyperthreading technology.
804  static int counter = 0;
805  int pid = os::current_process_id();
806  alloca(((pid ^ counter++) & 7) * 128);
807
808  ThreadLocalStorage::set_thread(thread);
809
810  OSThread* osthread = thread->osthread();
811  Monitor* sync = osthread->startThread_lock();
812
813  // non floating stack LinuxThreads needs extra check, see above
814  if (!_thread_safety_check(thread)) {
815    // notify parent thread
816    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
817    osthread->set_state(ZOMBIE);
818    sync->notify_all();
819    return NULL;
820  }
821
822  // thread_id is kernel thread id (similar to Solaris LWP id)
823  osthread->set_thread_id(os::Linux::gettid());
824
825  if (UseNUMA) {
826    int lgrp_id = os::numa_get_group_id();
827    if (lgrp_id != -1) {
828      thread->set_lgrp_id(lgrp_id);
829    }
830  }
831  // initialize signal mask for this thread
832  os::Linux::hotspot_sigmask(thread);
833
834  // initialize floating point control register
835  os::Linux::init_thread_fpu_state();
836
837  // handshaking with parent thread
838  {
839    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
840
841    // notify parent thread
842    osthread->set_state(INITIALIZED);
843    sync->notify_all();
844
845    // wait until os::start_thread()
846    while (osthread->get_state() == INITIALIZED) {
847      sync->wait(Mutex::_no_safepoint_check_flag);
848    }
849  }
850
851  // call one more level start routine
852  thread->run();
853
854  return 0;
855}
856
857bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
858  assert(thread->osthread() == NULL, "caller responsible");
859
860  // Allocate the OSThread object
861  OSThread* osthread = new OSThread(NULL, NULL);
862  if (osthread == NULL) {
863    return false;
864  }
865
866  // set the correct thread state
867  osthread->set_thread_type(thr_type);
868
869  // Initial state is ALLOCATED but not INITIALIZED
870  osthread->set_state(ALLOCATED);
871
872  thread->set_osthread(osthread);
873
874  // init thread attributes
875  pthread_attr_t attr;
876  pthread_attr_init(&attr);
877  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
878
879  // stack size
880  if (os::Linux::supports_variable_stack_size()) {
881    // calculate stack size if it's not specified by caller
882    if (stack_size == 0) {
883      stack_size = os::Linux::default_stack_size(thr_type);
884
885      switch (thr_type) {
886      case os::java_thread:
887        // Java threads use ThreadStackSize which default value can be
888        // changed with the flag -Xss
889        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
890        stack_size = JavaThread::stack_size_at_create();
891        break;
892      case os::compiler_thread:
893        if (CompilerThreadStackSize > 0) {
894          stack_size = (size_t)(CompilerThreadStackSize * K);
895          break;
896        } // else fall through:
897          // use VMThreadStackSize if CompilerThreadStackSize is not defined
898      case os::vm_thread:
899      case os::pgc_thread:
900      case os::cgc_thread:
901      case os::watcher_thread:
902        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
903        break;
904      }
905    }
906
907    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
908    pthread_attr_setstacksize(&attr, stack_size);
909  } else {
910    // let pthread_create() pick the default value.
911  }
912
913  // glibc guard page
914  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
915
916  ThreadState state;
917
918  {
919    // Serialize thread creation if we are running with fixed stack LinuxThreads
920    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
921    if (lock) {
922      os::Linux::createThread_lock()->lock_without_safepoint_check();
923    }
924
925    pthread_t tid;
926    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
927
928    pthread_attr_destroy(&attr);
929
930    if (ret != 0) {
931      if (PrintMiscellaneous && (Verbose || WizardMode)) {
932        perror("pthread_create()");
933      }
934      // Need to clean up stuff we've allocated so far
935      thread->set_osthread(NULL);
936      delete osthread;
937      if (lock) os::Linux::createThread_lock()->unlock();
938      return false;
939    }
940
941    // Store pthread info into the OSThread
942    osthread->set_pthread_id(tid);
943
944    // Wait until child thread is either initialized or aborted
945    {
946      Monitor* sync_with_child = osthread->startThread_lock();
947      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
948      while ((state = osthread->get_state()) == ALLOCATED) {
949        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
950      }
951    }
952
953    if (lock) {
954      os::Linux::createThread_lock()->unlock();
955    }
956  }
957
958  // Aborted due to thread limit being reached
959  if (state == ZOMBIE) {
960      thread->set_osthread(NULL);
961      delete osthread;
962      return false;
963  }
964
965  // The thread is returned suspended (in state INITIALIZED),
966  // and is started higher up in the call chain
967  assert(state == INITIALIZED, "race condition");
968  return true;
969}
970
971/////////////////////////////////////////////////////////////////////////////
972// attach existing thread
973
974// bootstrap the main thread
975bool os::create_main_thread(JavaThread* thread) {
976  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
977  return create_attached_thread(thread);
978}
979
980bool os::create_attached_thread(JavaThread* thread) {
981#ifdef ASSERT
982    thread->verify_not_published();
983#endif
984
985  // Allocate the OSThread object
986  OSThread* osthread = new OSThread(NULL, NULL);
987
988  if (osthread == NULL) {
989    return false;
990  }
991
992  // Store pthread info into the OSThread
993  osthread->set_thread_id(os::Linux::gettid());
994  osthread->set_pthread_id(::pthread_self());
995
996  // initialize floating point control register
997  os::Linux::init_thread_fpu_state();
998
999  // Initial thread state is RUNNABLE
1000  osthread->set_state(RUNNABLE);
1001
1002  thread->set_osthread(osthread);
1003
1004  if (UseNUMA) {
1005    int lgrp_id = os::numa_get_group_id();
1006    if (lgrp_id != -1) {
1007      thread->set_lgrp_id(lgrp_id);
1008    }
1009  }
1010
1011  if (os::Linux::is_initial_thread()) {
1012    // If current thread is initial thread, its stack is mapped on demand,
1013    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1014    // the entire stack region to avoid SEGV in stack banging.
1015    // It is also useful to get around the heap-stack-gap problem on SuSE
1016    // kernel (see 4821821 for details). We first expand stack to the top
1017    // of yellow zone, then enable stack yellow zone (order is significant,
1018    // enabling yellow zone first will crash JVM on SuSE Linux), so there
1019    // is no gap between the last two virtual memory regions.
1020
1021    JavaThread *jt = (JavaThread *)thread;
1022    address addr = jt->stack_yellow_zone_base();
1023    assert(addr != NULL, "initialization problem?");
1024    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1025
1026    osthread->set_expanding_stack();
1027    os::Linux::manually_expand_stack(jt, addr);
1028    osthread->clear_expanding_stack();
1029  }
1030
1031  // initialize signal mask for this thread
1032  // and save the caller's signal mask
1033  os::Linux::hotspot_sigmask(thread);
1034
1035  return true;
1036}
1037
1038void os::pd_start_thread(Thread* thread) {
1039  OSThread * osthread = thread->osthread();
1040  assert(osthread->get_state() != INITIALIZED, "just checking");
1041  Monitor* sync_with_child = osthread->startThread_lock();
1042  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1043  sync_with_child->notify();
1044}
1045
1046// Free Linux resources related to the OSThread
1047void os::free_thread(OSThread* osthread) {
1048  assert(osthread != NULL, "osthread not set");
1049
1050  if (Thread::current()->osthread() == osthread) {
1051    // Restore caller's signal mask
1052    sigset_t sigmask = osthread->caller_sigmask();
1053    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1054   }
1055
1056  delete osthread;
1057}
1058
1059//////////////////////////////////////////////////////////////////////////////
1060// thread local storage
1061
1062int os::allocate_thread_local_storage() {
1063  pthread_key_t key;
1064  int rslt = pthread_key_create(&key, NULL);
1065  assert(rslt == 0, "cannot allocate thread local storage");
1066  return (int)key;
1067}
1068
1069// Note: This is currently not used by VM, as we don't destroy TLS key
1070// on VM exit.
1071void os::free_thread_local_storage(int index) {
1072  int rslt = pthread_key_delete((pthread_key_t)index);
1073  assert(rslt == 0, "invalid index");
1074}
1075
1076void os::thread_local_storage_at_put(int index, void* value) {
1077  int rslt = pthread_setspecific((pthread_key_t)index, value);
1078  assert(rslt == 0, "pthread_setspecific failed");
1079}
1080
1081extern "C" Thread* get_thread() {
1082  return ThreadLocalStorage::thread();
1083}
1084
1085//////////////////////////////////////////////////////////////////////////////
1086// initial thread
1087
1088// Check if current thread is the initial thread, similar to Solaris thr_main.
1089bool os::Linux::is_initial_thread(void) {
1090  char dummy;
1091  // If called before init complete, thread stack bottom will be null.
1092  // Can be called if fatal error occurs before initialization.
1093  if (initial_thread_stack_bottom() == NULL) return false;
1094  assert(initial_thread_stack_bottom() != NULL &&
1095         initial_thread_stack_size()   != 0,
1096         "os::init did not locate initial thread's stack region");
1097  if ((address)&dummy >= initial_thread_stack_bottom() &&
1098      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1099       return true;
1100  else return false;
1101}
1102
1103// Find the virtual memory area that contains addr
1104static bool find_vma(address addr, address* vma_low, address* vma_high) {
1105  FILE *fp = fopen("/proc/self/maps", "r");
1106  if (fp) {
1107    address low, high;
1108    while (!feof(fp)) {
1109      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1110        if (low <= addr && addr < high) {
1111           if (vma_low)  *vma_low  = low;
1112           if (vma_high) *vma_high = high;
1113           fclose (fp);
1114           return true;
1115        }
1116      }
1117      for (;;) {
1118        int ch = fgetc(fp);
1119        if (ch == EOF || ch == (int)'\n') break;
1120      }
1121    }
1122    fclose(fp);
1123  }
1124  return false;
1125}
1126
1127// Locate initial thread stack. This special handling of initial thread stack
1128// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1129// bogus value for initial thread.
1130void os::Linux::capture_initial_stack(size_t max_size) {
1131  // stack size is the easy part, get it from RLIMIT_STACK
1132  size_t stack_size;
1133  struct rlimit rlim;
1134  getrlimit(RLIMIT_STACK, &rlim);
1135  stack_size = rlim.rlim_cur;
1136
1137  // 6308388: a bug in ld.so will relocate its own .data section to the
1138  //   lower end of primordial stack; reduce ulimit -s value a little bit
1139  //   so we won't install guard page on ld.so's data section.
1140  stack_size -= 2 * page_size();
1141
1142  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1143  //   7.1, in both cases we will get 2G in return value.
1144  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1145  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1146  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1147  //   in case other parts in glibc still assumes 2M max stack size.
1148  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1149#ifndef IA64
1150  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1151#else
1152  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1153  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1154#endif
1155
1156  // Try to figure out where the stack base (top) is. This is harder.
1157  //
1158  // When an application is started, glibc saves the initial stack pointer in
1159  // a global variable "__libc_stack_end", which is then used by system
1160  // libraries. __libc_stack_end should be pretty close to stack top. The
1161  // variable is available since the very early days. However, because it is
1162  // a private interface, it could disappear in the future.
1163  //
1164  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1165  // to __libc_stack_end, it is very close to stack top, but isn't the real
1166  // stack top. Note that /proc may not exist if VM is running as a chroot
1167  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1168  // /proc/<pid>/stat could change in the future (though unlikely).
1169  //
1170  // We try __libc_stack_end first. If that doesn't work, look for
1171  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1172  // as a hint, which should work well in most cases.
1173
1174  uintptr_t stack_start;
1175
1176  // try __libc_stack_end first
1177  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1178  if (p && *p) {
1179    stack_start = *p;
1180  } else {
1181    // see if we can get the start_stack field from /proc/self/stat
1182    FILE *fp;
1183    int pid;
1184    char state;
1185    int ppid;
1186    int pgrp;
1187    int session;
1188    int nr;
1189    int tpgrp;
1190    unsigned long flags;
1191    unsigned long minflt;
1192    unsigned long cminflt;
1193    unsigned long majflt;
1194    unsigned long cmajflt;
1195    unsigned long utime;
1196    unsigned long stime;
1197    long cutime;
1198    long cstime;
1199    long prio;
1200    long nice;
1201    long junk;
1202    long it_real;
1203    uintptr_t start;
1204    uintptr_t vsize;
1205    intptr_t rss;
1206    uintptr_t rsslim;
1207    uintptr_t scodes;
1208    uintptr_t ecode;
1209    int i;
1210
1211    // Figure what the primordial thread stack base is. Code is inspired
1212    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1213    // followed by command name surrounded by parentheses, state, etc.
1214    char stat[2048];
1215    int statlen;
1216
1217    fp = fopen("/proc/self/stat", "r");
1218    if (fp) {
1219      statlen = fread(stat, 1, 2047, fp);
1220      stat[statlen] = '\0';
1221      fclose(fp);
1222
1223      // Skip pid and the command string. Note that we could be dealing with
1224      // weird command names, e.g. user could decide to rename java launcher
1225      // to "java 1.4.2 :)", then the stat file would look like
1226      //                1234 (java 1.4.2 :)) R ... ...
1227      // We don't really need to know the command string, just find the last
1228      // occurrence of ")" and then start parsing from there. See bug 4726580.
1229      char * s = strrchr(stat, ')');
1230
1231      i = 0;
1232      if (s) {
1233        // Skip blank chars
1234        do s++; while (isspace(*s));
1235
1236#define _UFM UINTX_FORMAT
1237#define _DFM INTX_FORMAT
1238
1239        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1240        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1241        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1242             &state,          /* 3  %c  */
1243             &ppid,           /* 4  %d  */
1244             &pgrp,           /* 5  %d  */
1245             &session,        /* 6  %d  */
1246             &nr,             /* 7  %d  */
1247             &tpgrp,          /* 8  %d  */
1248             &flags,          /* 9  %lu  */
1249             &minflt,         /* 10 %lu  */
1250             &cminflt,        /* 11 %lu  */
1251             &majflt,         /* 12 %lu  */
1252             &cmajflt,        /* 13 %lu  */
1253             &utime,          /* 14 %lu  */
1254             &stime,          /* 15 %lu  */
1255             &cutime,         /* 16 %ld  */
1256             &cstime,         /* 17 %ld  */
1257             &prio,           /* 18 %ld  */
1258             &nice,           /* 19 %ld  */
1259             &junk,           /* 20 %ld  */
1260             &it_real,        /* 21 %ld  */
1261             &start,          /* 22 UINTX_FORMAT */
1262             &vsize,          /* 23 UINTX_FORMAT */
1263             &rss,            /* 24 INTX_FORMAT  */
1264             &rsslim,         /* 25 UINTX_FORMAT */
1265             &scodes,         /* 26 UINTX_FORMAT */
1266             &ecode,          /* 27 UINTX_FORMAT */
1267             &stack_start);   /* 28 UINTX_FORMAT */
1268      }
1269
1270#undef _UFM
1271#undef _DFM
1272
1273      if (i != 28 - 2) {
1274         assert(false, "Bad conversion from /proc/self/stat");
1275         // product mode - assume we are the initial thread, good luck in the
1276         // embedded case.
1277         warning("Can't detect initial thread stack location - bad conversion");
1278         stack_start = (uintptr_t) &rlim;
1279      }
1280    } else {
1281      // For some reason we can't open /proc/self/stat (for example, running on
1282      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1283      // most cases, so don't abort:
1284      warning("Can't detect initial thread stack location - no /proc/self/stat");
1285      stack_start = (uintptr_t) &rlim;
1286    }
1287  }
1288
1289  // Now we have a pointer (stack_start) very close to the stack top, the
1290  // next thing to do is to figure out the exact location of stack top. We
1291  // can find out the virtual memory area that contains stack_start by
1292  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1293  // and its upper limit is the real stack top. (again, this would fail if
1294  // running inside chroot, because /proc may not exist.)
1295
1296  uintptr_t stack_top;
1297  address low, high;
1298  if (find_vma((address)stack_start, &low, &high)) {
1299    // success, "high" is the true stack top. (ignore "low", because initial
1300    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1301    stack_top = (uintptr_t)high;
1302  } else {
1303    // failed, likely because /proc/self/maps does not exist
1304    warning("Can't detect initial thread stack location - find_vma failed");
1305    // best effort: stack_start is normally within a few pages below the real
1306    // stack top, use it as stack top, and reduce stack size so we won't put
1307    // guard page outside stack.
1308    stack_top = stack_start;
1309    stack_size -= 16 * page_size();
1310  }
1311
1312  // stack_top could be partially down the page so align it
1313  stack_top = align_size_up(stack_top, page_size());
1314
1315  if (max_size && stack_size > max_size) {
1316     _initial_thread_stack_size = max_size;
1317  } else {
1318     _initial_thread_stack_size = stack_size;
1319  }
1320
1321  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1322  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1323}
1324
1325////////////////////////////////////////////////////////////////////////////////
1326// time support
1327
1328// Time since start-up in seconds to a fine granularity.
1329// Used by VMSelfDestructTimer and the MemProfiler.
1330double os::elapsedTime() {
1331
1332  return (double)(os::elapsed_counter()) * 0.000001;
1333}
1334
1335jlong os::elapsed_counter() {
1336  timeval time;
1337  int status = gettimeofday(&time, NULL);
1338  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1339}
1340
1341jlong os::elapsed_frequency() {
1342  return (1000 * 1000);
1343}
1344
1345// For now, we say that linux does not support vtime.  I have no idea
1346// whether it can actually be made to (DLD, 9/13/05).
1347
1348bool os::supports_vtime() { return false; }
1349bool os::enable_vtime()   { return false; }
1350bool os::vtime_enabled()  { return false; }
1351double os::elapsedVTime() {
1352  // better than nothing, but not much
1353  return elapsedTime();
1354}
1355
1356jlong os::javaTimeMillis() {
1357  timeval time;
1358  int status = gettimeofday(&time, NULL);
1359  assert(status != -1, "linux error");
1360  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1361}
1362
1363#ifndef CLOCK_MONOTONIC
1364#define CLOCK_MONOTONIC (1)
1365#endif
1366
1367void os::Linux::clock_init() {
1368  // we do dlopen's in this particular order due to bug in linux
1369  // dynamical loader (see 6348968) leading to crash on exit
1370  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1371  if (handle == NULL) {
1372    handle = dlopen("librt.so", RTLD_LAZY);
1373  }
1374
1375  if (handle) {
1376    int (*clock_getres_func)(clockid_t, struct timespec*) =
1377           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1378    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1379           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1380    if (clock_getres_func && clock_gettime_func) {
1381      // See if monotonic clock is supported by the kernel. Note that some
1382      // early implementations simply return kernel jiffies (updated every
1383      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1384      // for nano time (though the monotonic property is still nice to have).
1385      // It's fixed in newer kernels, however clock_getres() still returns
1386      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1387      // resolution for now. Hopefully as people move to new kernels, this
1388      // won't be a problem.
1389      struct timespec res;
1390      struct timespec tp;
1391      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1392          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1393        // yes, monotonic clock is supported
1394        _clock_gettime = clock_gettime_func;
1395      } else {
1396        // close librt if there is no monotonic clock
1397        dlclose(handle);
1398      }
1399    }
1400  }
1401}
1402
1403#ifndef SYS_clock_getres
1404
1405#if defined(IA32) || defined(AMD64)
1406#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1407#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1408#else
1409#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1410#define sys_clock_getres(x,y)  -1
1411#endif
1412
1413#else
1414#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1415#endif
1416
1417void os::Linux::fast_thread_clock_init() {
1418  if (!UseLinuxPosixThreadCPUClocks) {
1419    return;
1420  }
1421  clockid_t clockid;
1422  struct timespec tp;
1423  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1424      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1425
1426  // Switch to using fast clocks for thread cpu time if
1427  // the sys_clock_getres() returns 0 error code.
1428  // Note, that some kernels may support the current thread
1429  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1430  // returned by the pthread_getcpuclockid().
1431  // If the fast Posix clocks are supported then the sys_clock_getres()
1432  // must return at least tp.tv_sec == 0 which means a resolution
1433  // better than 1 sec. This is extra check for reliability.
1434
1435  if(pthread_getcpuclockid_func &&
1436     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1437     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1438
1439    _supports_fast_thread_cpu_time = true;
1440    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1441  }
1442}
1443
1444jlong os::javaTimeNanos() {
1445  if (Linux::supports_monotonic_clock()) {
1446    struct timespec tp;
1447    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1448    assert(status == 0, "gettime error");
1449    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1450    return result;
1451  } else {
1452    timeval time;
1453    int status = gettimeofday(&time, NULL);
1454    assert(status != -1, "linux error");
1455    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1456    return 1000 * usecs;
1457  }
1458}
1459
1460void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1461  if (Linux::supports_monotonic_clock()) {
1462    info_ptr->max_value = ALL_64_BITS;
1463
1464    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1465    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1466    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1467  } else {
1468    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1469    info_ptr->max_value = ALL_64_BITS;
1470
1471    // gettimeofday is a real time clock so it skips
1472    info_ptr->may_skip_backward = true;
1473    info_ptr->may_skip_forward = true;
1474  }
1475
1476  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1477}
1478
1479// Return the real, user, and system times in seconds from an
1480// arbitrary fixed point in the past.
1481bool os::getTimesSecs(double* process_real_time,
1482                      double* process_user_time,
1483                      double* process_system_time) {
1484  struct tms ticks;
1485  clock_t real_ticks = times(&ticks);
1486
1487  if (real_ticks == (clock_t) (-1)) {
1488    return false;
1489  } else {
1490    double ticks_per_second = (double) clock_tics_per_sec;
1491    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1492    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1493    *process_real_time = ((double) real_ticks) / ticks_per_second;
1494
1495    return true;
1496  }
1497}
1498
1499
1500char * os::local_time_string(char *buf, size_t buflen) {
1501  struct tm t;
1502  time_t long_time;
1503  time(&long_time);
1504  localtime_r(&long_time, &t);
1505  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1506               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1507               t.tm_hour, t.tm_min, t.tm_sec);
1508  return buf;
1509}
1510
1511struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1512  return localtime_r(clock, res);
1513}
1514
1515////////////////////////////////////////////////////////////////////////////////
1516// runtime exit support
1517
1518// Note: os::shutdown() might be called very early during initialization, or
1519// called from signal handler. Before adding something to os::shutdown(), make
1520// sure it is async-safe and can handle partially initialized VM.
1521void os::shutdown() {
1522
1523  // allow PerfMemory to attempt cleanup of any persistent resources
1524  perfMemory_exit();
1525
1526  // needs to remove object in file system
1527  AttachListener::abort();
1528
1529  // flush buffered output, finish log files
1530  ostream_abort();
1531
1532  // Check for abort hook
1533  abort_hook_t abort_hook = Arguments::abort_hook();
1534  if (abort_hook != NULL) {
1535    abort_hook();
1536  }
1537
1538}
1539
1540// Note: os::abort() might be called very early during initialization, or
1541// called from signal handler. Before adding something to os::abort(), make
1542// sure it is async-safe and can handle partially initialized VM.
1543void os::abort(bool dump_core) {
1544  os::shutdown();
1545  if (dump_core) {
1546#ifndef PRODUCT
1547    fdStream out(defaultStream::output_fd());
1548    out.print_raw("Current thread is ");
1549    char buf[16];
1550    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1551    out.print_raw_cr(buf);
1552    out.print_raw_cr("Dumping core ...");
1553#endif
1554    ::abort(); // dump core
1555  }
1556
1557  ::exit(1);
1558}
1559
1560// Die immediately, no exit hook, no abort hook, no cleanup.
1561void os::die() {
1562  // _exit() on LinuxThreads only kills current thread
1563  ::abort();
1564}
1565
1566// unused on linux for now.
1567void os::set_error_file(const char *logfile) {}
1568
1569intx os::current_thread_id() { return (intx)pthread_self(); }
1570int os::current_process_id() {
1571
1572  // Under the old linux thread library, linux gives each thread
1573  // its own process id. Because of this each thread will return
1574  // a different pid if this method were to return the result
1575  // of getpid(2). Linux provides no api that returns the pid
1576  // of the launcher thread for the vm. This implementation
1577  // returns a unique pid, the pid of the launcher thread
1578  // that starts the vm 'process'.
1579
1580  // Under the NPTL, getpid() returns the same pid as the
1581  // launcher thread rather than a unique pid per thread.
1582  // Use gettid() if you want the old pre NPTL behaviour.
1583
1584  // if you are looking for the result of a call to getpid() that
1585  // returns a unique pid for the calling thread, then look at the
1586  // OSThread::thread_id() method in osThread_linux.hpp file
1587
1588  return (int)(_initial_pid ? _initial_pid : getpid());
1589}
1590
1591// DLL functions
1592
1593const char* os::dll_file_extension() { return ".so"; }
1594
1595const char* os::get_temp_directory() {
1596  const char *prop = Arguments::get_property("java.io.tmpdir");
1597  return prop == NULL ? "/tmp" : prop;
1598}
1599
1600static bool file_exists(const char* filename) {
1601  struct stat statbuf;
1602  if (filename == NULL || strlen(filename) == 0) {
1603    return false;
1604  }
1605  return os::stat(filename, &statbuf) == 0;
1606}
1607
1608void os::dll_build_name(char* buffer, size_t buflen,
1609                        const char* pname, const char* fname) {
1610  // Copied from libhpi
1611  const size_t pnamelen = pname ? strlen(pname) : 0;
1612
1613  // Quietly truncate on buffer overflow.  Should be an error.
1614  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1615      *buffer = '\0';
1616      return;
1617  }
1618
1619  if (pnamelen == 0) {
1620    snprintf(buffer, buflen, "lib%s.so", fname);
1621  } else if (strchr(pname, *os::path_separator()) != NULL) {
1622    int n;
1623    char** pelements = split_path(pname, &n);
1624    for (int i = 0 ; i < n ; i++) {
1625      // Really shouldn't be NULL, but check can't hurt
1626      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1627        continue; // skip the empty path values
1628      }
1629      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1630      if (file_exists(buffer)) {
1631        break;
1632      }
1633    }
1634    // release the storage
1635    for (int i = 0 ; i < n ; i++) {
1636      if (pelements[i] != NULL) {
1637        FREE_C_HEAP_ARRAY(char, pelements[i]);
1638      }
1639    }
1640    if (pelements != NULL) {
1641      FREE_C_HEAP_ARRAY(char*, pelements);
1642    }
1643  } else {
1644    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1645  }
1646}
1647
1648const char* os::get_current_directory(char *buf, int buflen) {
1649  return getcwd(buf, buflen);
1650}
1651
1652// check if addr is inside libjvm[_g].so
1653bool os::address_is_in_vm(address addr) {
1654  static address libjvm_base_addr;
1655  Dl_info dlinfo;
1656
1657  if (libjvm_base_addr == NULL) {
1658    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1659    libjvm_base_addr = (address)dlinfo.dli_fbase;
1660    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1661  }
1662
1663  if (dladdr((void *)addr, &dlinfo)) {
1664    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1665  }
1666
1667  return false;
1668}
1669
1670bool os::dll_address_to_function_name(address addr, char *buf,
1671                                      int buflen, int *offset) {
1672  Dl_info dlinfo;
1673
1674  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1675    if (buf != NULL) {
1676      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1677        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1678      }
1679    }
1680    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1681    return true;
1682  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1683    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1684       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1685       return true;
1686    }
1687  }
1688
1689  if (buf != NULL) buf[0] = '\0';
1690  if (offset != NULL) *offset = -1;
1691  return false;
1692}
1693
1694struct _address_to_library_name {
1695  address addr;          // input : memory address
1696  size_t  buflen;        //         size of fname
1697  char*   fname;         // output: library name
1698  address base;          //         library base addr
1699};
1700
1701static int address_to_library_name_callback(struct dl_phdr_info *info,
1702                                            size_t size, void *data) {
1703  int i;
1704  bool found = false;
1705  address libbase = NULL;
1706  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1707
1708  // iterate through all loadable segments
1709  for (i = 0; i < info->dlpi_phnum; i++) {
1710    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1711    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1712      // base address of a library is the lowest address of its loaded
1713      // segments.
1714      if (libbase == NULL || libbase > segbase) {
1715        libbase = segbase;
1716      }
1717      // see if 'addr' is within current segment
1718      if (segbase <= d->addr &&
1719          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1720        found = true;
1721      }
1722    }
1723  }
1724
1725  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1726  // so dll_address_to_library_name() can fall through to use dladdr() which
1727  // can figure out executable name from argv[0].
1728  if (found && info->dlpi_name && info->dlpi_name[0]) {
1729    d->base = libbase;
1730    if (d->fname) {
1731      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1732    }
1733    return 1;
1734  }
1735  return 0;
1736}
1737
1738bool os::dll_address_to_library_name(address addr, char* buf,
1739                                     int buflen, int* offset) {
1740  Dl_info dlinfo;
1741  struct _address_to_library_name data;
1742
1743  // There is a bug in old glibc dladdr() implementation that it could resolve
1744  // to wrong library name if the .so file has a base address != NULL. Here
1745  // we iterate through the program headers of all loaded libraries to find
1746  // out which library 'addr' really belongs to. This workaround can be
1747  // removed once the minimum requirement for glibc is moved to 2.3.x.
1748  data.addr = addr;
1749  data.fname = buf;
1750  data.buflen = buflen;
1751  data.base = NULL;
1752  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1753
1754  if (rslt) {
1755     // buf already contains library name
1756     if (offset) *offset = addr - data.base;
1757     return true;
1758  } else if (dladdr((void*)addr, &dlinfo)){
1759     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1760     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1761     return true;
1762  } else {
1763     if (buf) buf[0] = '\0';
1764     if (offset) *offset = -1;
1765     return false;
1766  }
1767}
1768
1769  // Loads .dll/.so and
1770  // in case of error it checks if .dll/.so was built for the
1771  // same architecture as Hotspot is running on
1772
1773void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1774{
1775  void * result= ::dlopen(filename, RTLD_LAZY);
1776  if (result != NULL) {
1777    // Successful loading
1778    return result;
1779  }
1780
1781  Elf32_Ehdr elf_head;
1782
1783  // Read system error message into ebuf
1784  // It may or may not be overwritten below
1785  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1786  ebuf[ebuflen-1]='\0';
1787  int diag_msg_max_length=ebuflen-strlen(ebuf);
1788  char* diag_msg_buf=ebuf+strlen(ebuf);
1789
1790  if (diag_msg_max_length==0) {
1791    // No more space in ebuf for additional diagnostics message
1792    return NULL;
1793  }
1794
1795
1796  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1797
1798  if (file_descriptor < 0) {
1799    // Can't open library, report dlerror() message
1800    return NULL;
1801  }
1802
1803  bool failed_to_read_elf_head=
1804    (sizeof(elf_head)!=
1805        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1806
1807  ::close(file_descriptor);
1808  if (failed_to_read_elf_head) {
1809    // file i/o error - report dlerror() msg
1810    return NULL;
1811  }
1812
1813  typedef struct {
1814    Elf32_Half  code;         // Actual value as defined in elf.h
1815    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1816    char        elf_class;    // 32 or 64 bit
1817    char        endianess;    // MSB or LSB
1818    char*       name;         // String representation
1819  } arch_t;
1820
1821  #ifndef EM_486
1822  #define EM_486          6               /* Intel 80486 */
1823  #endif
1824
1825  static const arch_t arch_array[]={
1826    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1827    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1828    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1829    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1830    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1831    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1832    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1833    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1834    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1835    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1836    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1837    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1838    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1839    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1840    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1841    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1842  };
1843
1844  #if  (defined IA32)
1845    static  Elf32_Half running_arch_code=EM_386;
1846  #elif   (defined AMD64)
1847    static  Elf32_Half running_arch_code=EM_X86_64;
1848  #elif  (defined IA64)
1849    static  Elf32_Half running_arch_code=EM_IA_64;
1850  #elif  (defined __sparc) && (defined _LP64)
1851    static  Elf32_Half running_arch_code=EM_SPARCV9;
1852  #elif  (defined __sparc) && (!defined _LP64)
1853    static  Elf32_Half running_arch_code=EM_SPARC;
1854  #elif  (defined __powerpc64__)
1855    static  Elf32_Half running_arch_code=EM_PPC64;
1856  #elif  (defined __powerpc__)
1857    static  Elf32_Half running_arch_code=EM_PPC;
1858  #elif  (defined ARM)
1859    static  Elf32_Half running_arch_code=EM_ARM;
1860  #elif  (defined S390)
1861    static  Elf32_Half running_arch_code=EM_S390;
1862  #elif  (defined ALPHA)
1863    static  Elf32_Half running_arch_code=EM_ALPHA;
1864  #elif  (defined MIPSEL)
1865    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1866  #elif  (defined PARISC)
1867    static  Elf32_Half running_arch_code=EM_PARISC;
1868  #elif  (defined MIPS)
1869    static  Elf32_Half running_arch_code=EM_MIPS;
1870  #elif  (defined M68K)
1871    static  Elf32_Half running_arch_code=EM_68K;
1872  #else
1873    #error Method os::dll_load requires that one of following is defined:\
1874         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1875  #endif
1876
1877  // Identify compatability class for VM's architecture and library's architecture
1878  // Obtain string descriptions for architectures
1879
1880  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1881  int running_arch_index=-1;
1882
1883  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1884    if (running_arch_code == arch_array[i].code) {
1885      running_arch_index    = i;
1886    }
1887    if (lib_arch.code == arch_array[i].code) {
1888      lib_arch.compat_class = arch_array[i].compat_class;
1889      lib_arch.name         = arch_array[i].name;
1890    }
1891  }
1892
1893  assert(running_arch_index != -1,
1894    "Didn't find running architecture code (running_arch_code) in arch_array");
1895  if (running_arch_index == -1) {
1896    // Even though running architecture detection failed
1897    // we may still continue with reporting dlerror() message
1898    return NULL;
1899  }
1900
1901  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1902    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1903    return NULL;
1904  }
1905
1906#ifndef S390
1907  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1908    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1909    return NULL;
1910  }
1911#endif // !S390
1912
1913  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1914    if ( lib_arch.name!=NULL ) {
1915      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1916        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1917        lib_arch.name, arch_array[running_arch_index].name);
1918    } else {
1919      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1920      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1921        lib_arch.code,
1922        arch_array[running_arch_index].name);
1923    }
1924  }
1925
1926  return NULL;
1927}
1928
1929/*
1930 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1931 * chances are you might want to run the generated bits against glibc-2.0
1932 * libdl.so, so always use locking for any version of glibc.
1933 */
1934void* os::dll_lookup(void* handle, const char* name) {
1935  pthread_mutex_lock(&dl_mutex);
1936  void* res = dlsym(handle, name);
1937  pthread_mutex_unlock(&dl_mutex);
1938  return res;
1939}
1940
1941
1942bool _print_ascii_file(const char* filename, outputStream* st) {
1943  int fd = open(filename, O_RDONLY);
1944  if (fd == -1) {
1945     return false;
1946  }
1947
1948  char buf[32];
1949  int bytes;
1950  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1951    st->print_raw(buf, bytes);
1952  }
1953
1954  close(fd);
1955
1956  return true;
1957}
1958
1959void os::print_dll_info(outputStream *st) {
1960   st->print_cr("Dynamic libraries:");
1961
1962   char fname[32];
1963   pid_t pid = os::Linux::gettid();
1964
1965   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1966
1967   if (!_print_ascii_file(fname, st)) {
1968     st->print("Can not get library information for pid = %d\n", pid);
1969   }
1970}
1971
1972
1973void os::print_os_info(outputStream* st) {
1974  st->print("OS:");
1975
1976  // Try to identify popular distros.
1977  // Most Linux distributions have /etc/XXX-release file, which contains
1978  // the OS version string. Some have more than one /etc/XXX-release file
1979  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1980  // so the order is important.
1981  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1982      !_print_ascii_file("/etc/sun-release", st) &&
1983      !_print_ascii_file("/etc/redhat-release", st) &&
1984      !_print_ascii_file("/etc/SuSE-release", st) &&
1985      !_print_ascii_file("/etc/turbolinux-release", st) &&
1986      !_print_ascii_file("/etc/gentoo-release", st) &&
1987      !_print_ascii_file("/etc/debian_version", st) &&
1988      !_print_ascii_file("/etc/ltib-release", st) &&
1989      !_print_ascii_file("/etc/angstrom-version", st)) {
1990      st->print("Linux");
1991  }
1992  st->cr();
1993
1994  // kernel
1995  st->print("uname:");
1996  struct utsname name;
1997  uname(&name);
1998  st->print(name.sysname); st->print(" ");
1999  st->print(name.release); st->print(" ");
2000  st->print(name.version); st->print(" ");
2001  st->print(name.machine);
2002  st->cr();
2003
2004  // Print warning if unsafe chroot environment detected
2005  if (unsafe_chroot_detected) {
2006    st->print("WARNING!! ");
2007    st->print_cr(unstable_chroot_error);
2008  }
2009
2010  // libc, pthread
2011  st->print("libc:");
2012  st->print(os::Linux::glibc_version()); st->print(" ");
2013  st->print(os::Linux::libpthread_version()); st->print(" ");
2014  if (os::Linux::is_LinuxThreads()) {
2015     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2016  }
2017  st->cr();
2018
2019  // rlimit
2020  st->print("rlimit:");
2021  struct rlimit rlim;
2022
2023  st->print(" STACK ");
2024  getrlimit(RLIMIT_STACK, &rlim);
2025  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2026  else st->print("%uk", rlim.rlim_cur >> 10);
2027
2028  st->print(", CORE ");
2029  getrlimit(RLIMIT_CORE, &rlim);
2030  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2031  else st->print("%uk", rlim.rlim_cur >> 10);
2032
2033  st->print(", NPROC ");
2034  getrlimit(RLIMIT_NPROC, &rlim);
2035  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2036  else st->print("%d", rlim.rlim_cur);
2037
2038  st->print(", NOFILE ");
2039  getrlimit(RLIMIT_NOFILE, &rlim);
2040  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2041  else st->print("%d", rlim.rlim_cur);
2042
2043  st->print(", AS ");
2044  getrlimit(RLIMIT_AS, &rlim);
2045  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2046  else st->print("%uk", rlim.rlim_cur >> 10);
2047  st->cr();
2048
2049  // load average
2050  st->print("load average:");
2051  double loadavg[3];
2052  os::loadavg(loadavg, 3);
2053  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2054  st->cr();
2055
2056  // meminfo
2057  st->print("\n/proc/meminfo:\n");
2058  _print_ascii_file("/proc/meminfo", st);
2059  st->cr();
2060}
2061
2062void os::print_memory_info(outputStream* st) {
2063
2064  st->print("Memory:");
2065  st->print(" %dk page", os::vm_page_size()>>10);
2066
2067  // values in struct sysinfo are "unsigned long"
2068  struct sysinfo si;
2069  sysinfo(&si);
2070
2071  st->print(", physical " UINT64_FORMAT "k",
2072            os::physical_memory() >> 10);
2073  st->print("(" UINT64_FORMAT "k free)",
2074            os::available_memory() >> 10);
2075  st->print(", swap " UINT64_FORMAT "k",
2076            ((jlong)si.totalswap * si.mem_unit) >> 10);
2077  st->print("(" UINT64_FORMAT "k free)",
2078            ((jlong)si.freeswap * si.mem_unit) >> 10);
2079  st->cr();
2080}
2081
2082// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2083// but they're the same for all the linux arch that we support
2084// and they're the same for solaris but there's no common place to put this.
2085const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2086                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2087                          "ILL_COPROC", "ILL_BADSTK" };
2088
2089const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2090                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2091                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2092
2093const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2094
2095const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2096
2097void os::print_siginfo(outputStream* st, void* siginfo) {
2098  st->print("siginfo:");
2099
2100  const int buflen = 100;
2101  char buf[buflen];
2102  siginfo_t *si = (siginfo_t*)siginfo;
2103  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2104  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2105    st->print("si_errno=%s", buf);
2106  } else {
2107    st->print("si_errno=%d", si->si_errno);
2108  }
2109  const int c = si->si_code;
2110  assert(c > 0, "unexpected si_code");
2111  switch (si->si_signo) {
2112  case SIGILL:
2113    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2114    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2115    break;
2116  case SIGFPE:
2117    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2118    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2119    break;
2120  case SIGSEGV:
2121    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2122    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2123    break;
2124  case SIGBUS:
2125    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2126    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2127    break;
2128  default:
2129    st->print(", si_code=%d", si->si_code);
2130    // no si_addr
2131  }
2132
2133  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2134      UseSharedSpaces) {
2135    FileMapInfo* mapinfo = FileMapInfo::current_info();
2136    if (mapinfo->is_in_shared_space(si->si_addr)) {
2137      st->print("\n\nError accessing class data sharing archive."   \
2138                " Mapped file inaccessible during execution, "      \
2139                " possible disk/network problem.");
2140    }
2141  }
2142  st->cr();
2143}
2144
2145
2146static void print_signal_handler(outputStream* st, int sig,
2147                                 char* buf, size_t buflen);
2148
2149void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2150  st->print_cr("Signal Handlers:");
2151  print_signal_handler(st, SIGSEGV, buf, buflen);
2152  print_signal_handler(st, SIGBUS , buf, buflen);
2153  print_signal_handler(st, SIGFPE , buf, buflen);
2154  print_signal_handler(st, SIGPIPE, buf, buflen);
2155  print_signal_handler(st, SIGXFSZ, buf, buflen);
2156  print_signal_handler(st, SIGILL , buf, buflen);
2157  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2158  print_signal_handler(st, SR_signum, buf, buflen);
2159  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2160  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2161  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2162  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2163}
2164
2165static char saved_jvm_path[MAXPATHLEN] = {0};
2166
2167// Find the full path to the current module, libjvm.so or libjvm_g.so
2168void os::jvm_path(char *buf, jint buflen) {
2169  // Error checking.
2170  if (buflen < MAXPATHLEN) {
2171    assert(false, "must use a large-enough buffer");
2172    buf[0] = '\0';
2173    return;
2174  }
2175  // Lazy resolve the path to current module.
2176  if (saved_jvm_path[0] != 0) {
2177    strcpy(buf, saved_jvm_path);
2178    return;
2179  }
2180
2181  char dli_fname[MAXPATHLEN];
2182  bool ret = dll_address_to_library_name(
2183                CAST_FROM_FN_PTR(address, os::jvm_path),
2184                dli_fname, sizeof(dli_fname), NULL);
2185  assert(ret != 0, "cannot locate libjvm");
2186  char *rp = realpath(dli_fname, buf);
2187  if (rp == NULL)
2188    return;
2189
2190  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2191    // Support for the gamma launcher.  Typical value for buf is
2192    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2193    // the right place in the string, then assume we are installed in a JDK and
2194    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2195    // up the path so it looks like libjvm.so is installed there (append a
2196    // fake suffix hotspot/libjvm.so).
2197    const char *p = buf + strlen(buf) - 1;
2198    for (int count = 0; p > buf && count < 5; ++count) {
2199      for (--p; p > buf && *p != '/'; --p)
2200        /* empty */ ;
2201    }
2202
2203    if (strncmp(p, "/jre/lib/", 9) != 0) {
2204      // Look for JAVA_HOME in the environment.
2205      char* java_home_var = ::getenv("JAVA_HOME");
2206      if (java_home_var != NULL && java_home_var[0] != 0) {
2207        char* jrelib_p;
2208        int len;
2209
2210        // Check the current module name "libjvm.so" or "libjvm_g.so".
2211        p = strrchr(buf, '/');
2212        assert(strstr(p, "/libjvm") == p, "invalid library name");
2213        p = strstr(p, "_g") ? "_g" : "";
2214
2215        rp = realpath(java_home_var, buf);
2216        if (rp == NULL)
2217          return;
2218
2219        // determine if this is a legacy image or modules image
2220        // modules image doesn't have "jre" subdirectory
2221        len = strlen(buf);
2222        jrelib_p = buf + len;
2223        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2224        if (0 != access(buf, F_OK)) {
2225          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2226        }
2227
2228        if (0 == access(buf, F_OK)) {
2229          // Use current module name "libjvm[_g].so" instead of
2230          // "libjvm"debug_only("_g")".so" since for fastdebug version
2231          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2232          // It is used when we are choosing the HPI library's name
2233          // "libhpi[_g].so" in hpi::initialize_get_interface().
2234          len = strlen(buf);
2235          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2236        } else {
2237          // Go back to path of .so
2238          rp = realpath(dli_fname, buf);
2239          if (rp == NULL)
2240            return;
2241        }
2242      }
2243    }
2244  }
2245
2246  strcpy(saved_jvm_path, buf);
2247}
2248
2249void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2250  // no prefix required, not even "_"
2251}
2252
2253void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2254  // no suffix required
2255}
2256
2257////////////////////////////////////////////////////////////////////////////////
2258// sun.misc.Signal support
2259
2260static volatile jint sigint_count = 0;
2261
2262static void
2263UserHandler(int sig, void *siginfo, void *context) {
2264  // 4511530 - sem_post is serialized and handled by the manager thread. When
2265  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2266  // don't want to flood the manager thread with sem_post requests.
2267  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2268      return;
2269
2270  // Ctrl-C is pressed during error reporting, likely because the error
2271  // handler fails to abort. Let VM die immediately.
2272  if (sig == SIGINT && is_error_reported()) {
2273     os::die();
2274  }
2275
2276  os::signal_notify(sig);
2277}
2278
2279void* os::user_handler() {
2280  return CAST_FROM_FN_PTR(void*, UserHandler);
2281}
2282
2283extern "C" {
2284  typedef void (*sa_handler_t)(int);
2285  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2286}
2287
2288void* os::signal(int signal_number, void* handler) {
2289  struct sigaction sigAct, oldSigAct;
2290
2291  sigfillset(&(sigAct.sa_mask));
2292  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2293  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2294
2295  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2296    // -1 means registration failed
2297    return (void *)-1;
2298  }
2299
2300  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2301}
2302
2303void os::signal_raise(int signal_number) {
2304  ::raise(signal_number);
2305}
2306
2307/*
2308 * The following code is moved from os.cpp for making this
2309 * code platform specific, which it is by its very nature.
2310 */
2311
2312// Will be modified when max signal is changed to be dynamic
2313int os::sigexitnum_pd() {
2314  return NSIG;
2315}
2316
2317// a counter for each possible signal value
2318static volatile jint pending_signals[NSIG+1] = { 0 };
2319
2320// Linux(POSIX) specific hand shaking semaphore.
2321static sem_t sig_sem;
2322
2323void os::signal_init_pd() {
2324  // Initialize signal structures
2325  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2326
2327  // Initialize signal semaphore
2328  ::sem_init(&sig_sem, 0, 0);
2329}
2330
2331void os::signal_notify(int sig) {
2332  Atomic::inc(&pending_signals[sig]);
2333  ::sem_post(&sig_sem);
2334}
2335
2336static int check_pending_signals(bool wait) {
2337  Atomic::store(0, &sigint_count);
2338  for (;;) {
2339    for (int i = 0; i < NSIG + 1; i++) {
2340      jint n = pending_signals[i];
2341      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2342        return i;
2343      }
2344    }
2345    if (!wait) {
2346      return -1;
2347    }
2348    JavaThread *thread = JavaThread::current();
2349    ThreadBlockInVM tbivm(thread);
2350
2351    bool threadIsSuspended;
2352    do {
2353      thread->set_suspend_equivalent();
2354      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2355      ::sem_wait(&sig_sem);
2356
2357      // were we externally suspended while we were waiting?
2358      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2359      if (threadIsSuspended) {
2360        //
2361        // The semaphore has been incremented, but while we were waiting
2362        // another thread suspended us. We don't want to continue running
2363        // while suspended because that would surprise the thread that
2364        // suspended us.
2365        //
2366        ::sem_post(&sig_sem);
2367
2368        thread->java_suspend_self();
2369      }
2370    } while (threadIsSuspended);
2371  }
2372}
2373
2374int os::signal_lookup() {
2375  return check_pending_signals(false);
2376}
2377
2378int os::signal_wait() {
2379  return check_pending_signals(true);
2380}
2381
2382////////////////////////////////////////////////////////////////////////////////
2383// Virtual Memory
2384
2385int os::vm_page_size() {
2386  // Seems redundant as all get out
2387  assert(os::Linux::page_size() != -1, "must call os::init");
2388  return os::Linux::page_size();
2389}
2390
2391// Solaris allocates memory by pages.
2392int os::vm_allocation_granularity() {
2393  assert(os::Linux::page_size() != -1, "must call os::init");
2394  return os::Linux::page_size();
2395}
2396
2397// Rationale behind this function:
2398//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2399//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2400//  samples for JITted code. Here we create private executable mapping over the code cache
2401//  and then we can use standard (well, almost, as mapping can change) way to provide
2402//  info for the reporting script by storing timestamp and location of symbol
2403void linux_wrap_code(char* base, size_t size) {
2404  static volatile jint cnt = 0;
2405
2406  if (!UseOprofile) {
2407    return;
2408  }
2409
2410  char buf[PATH_MAX+1];
2411  int num = Atomic::add(1, &cnt);
2412
2413  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2414           os::get_temp_directory(), os::current_process_id(), num);
2415  unlink(buf);
2416
2417  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2418
2419  if (fd != -1) {
2420    off_t rv = lseek(fd, size-2, SEEK_SET);
2421    if (rv != (off_t)-1) {
2422      if (write(fd, "", 1) == 1) {
2423        mmap(base, size,
2424             PROT_READ|PROT_WRITE|PROT_EXEC,
2425             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2426      }
2427    }
2428    close(fd);
2429    unlink(buf);
2430  }
2431}
2432
2433// NOTE: Linux kernel does not really reserve the pages for us.
2434//       All it does is to check if there are enough free pages
2435//       left at the time of mmap(). This could be a potential
2436//       problem.
2437bool os::commit_memory(char* addr, size_t size, bool exec) {
2438  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2439  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2440                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2441  return res != (uintptr_t) MAP_FAILED;
2442}
2443
2444bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2445                       bool exec) {
2446  return commit_memory(addr, size, exec);
2447}
2448
2449void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2450
2451void os::free_memory(char *addr, size_t bytes) {
2452  ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2453         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2454}
2455
2456void os::numa_make_global(char *addr, size_t bytes) {
2457  Linux::numa_interleave_memory(addr, bytes);
2458}
2459
2460void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2461  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2462}
2463
2464bool os::numa_topology_changed()   { return false; }
2465
2466size_t os::numa_get_groups_num() {
2467  int max_node = Linux::numa_max_node();
2468  return max_node > 0 ? max_node + 1 : 1;
2469}
2470
2471int os::numa_get_group_id() {
2472  int cpu_id = Linux::sched_getcpu();
2473  if (cpu_id != -1) {
2474    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2475    if (lgrp_id != -1) {
2476      return lgrp_id;
2477    }
2478  }
2479  return 0;
2480}
2481
2482size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2483  for (size_t i = 0; i < size; i++) {
2484    ids[i] = i;
2485  }
2486  return size;
2487}
2488
2489bool os::get_page_info(char *start, page_info* info) {
2490  return false;
2491}
2492
2493char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2494  return end;
2495}
2496
2497extern "C" void numa_warn(int number, char *where, ...) { }
2498extern "C" void numa_error(char *where) { }
2499
2500
2501// If we are running with libnuma version > 2, then we should
2502// be trying to use symbols with versions 1.1
2503// If we are running with earlier version, which did not have symbol versions,
2504// we should use the base version.
2505void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2506  void *f = dlvsym(handle, name, "libnuma_1.1");
2507  if (f == NULL) {
2508    f = dlsym(handle, name);
2509  }
2510  return f;
2511}
2512
2513bool os::Linux::libnuma_init() {
2514  // sched_getcpu() should be in libc.
2515  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2516                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2517
2518  if (sched_getcpu() != -1) { // Does it work?
2519    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2520    if (handle != NULL) {
2521      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2522                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2523      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2524                                       libnuma_dlsym(handle, "numa_max_node")));
2525      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2526                                        libnuma_dlsym(handle, "numa_available")));
2527      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2528                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2529      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2530                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2531
2532
2533      if (numa_available() != -1) {
2534        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2535        // Create a cpu -> node mapping
2536        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2537        rebuild_cpu_to_node_map();
2538        return true;
2539      }
2540    }
2541  }
2542  return false;
2543}
2544
2545// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2546// The table is later used in get_node_by_cpu().
2547void os::Linux::rebuild_cpu_to_node_map() {
2548  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2549                              // in libnuma (possible values are starting from 16,
2550                              // and continuing up with every other power of 2, but less
2551                              // than the maximum number of CPUs supported by kernel), and
2552                              // is a subject to change (in libnuma version 2 the requirements
2553                              // are more reasonable) we'll just hardcode the number they use
2554                              // in the library.
2555  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2556
2557  size_t cpu_num = os::active_processor_count();
2558  size_t cpu_map_size = NCPUS / BitsPerCLong;
2559  size_t cpu_map_valid_size =
2560    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2561
2562  cpu_to_node()->clear();
2563  cpu_to_node()->at_grow(cpu_num - 1);
2564  size_t node_num = numa_get_groups_num();
2565
2566  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2567  for (size_t i = 0; i < node_num; i++) {
2568    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2569      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2570        if (cpu_map[j] != 0) {
2571          for (size_t k = 0; k < BitsPerCLong; k++) {
2572            if (cpu_map[j] & (1UL << k)) {
2573              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2574            }
2575          }
2576        }
2577      }
2578    }
2579  }
2580  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2581}
2582
2583int os::Linux::get_node_by_cpu(int cpu_id) {
2584  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2585    return cpu_to_node()->at(cpu_id);
2586  }
2587  return -1;
2588}
2589
2590GrowableArray<int>* os::Linux::_cpu_to_node;
2591os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2592os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2593os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2594os::Linux::numa_available_func_t os::Linux::_numa_available;
2595os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2596os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2597unsigned long* os::Linux::_numa_all_nodes;
2598
2599bool os::uncommit_memory(char* addr, size_t size) {
2600  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2601                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2602  return res  != (uintptr_t) MAP_FAILED;
2603}
2604
2605// Linux uses a growable mapping for the stack, and if the mapping for
2606// the stack guard pages is not removed when we detach a thread the
2607// stack cannot grow beyond the pages where the stack guard was
2608// mapped.  If at some point later in the process the stack expands to
2609// that point, the Linux kernel cannot expand the stack any further
2610// because the guard pages are in the way, and a segfault occurs.
2611//
2612// However, it's essential not to split the stack region by unmapping
2613// a region (leaving a hole) that's already part of the stack mapping,
2614// so if the stack mapping has already grown beyond the guard pages at
2615// the time we create them, we have to truncate the stack mapping.
2616// So, we need to know the extent of the stack mapping when
2617// create_stack_guard_pages() is called.
2618
2619// Find the bounds of the stack mapping.  Return true for success.
2620//
2621// We only need this for stacks that are growable: at the time of
2622// writing thread stacks don't use growable mappings (i.e. those
2623// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2624// only applies to the main thread.
2625static bool
2626get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2627{
2628  FILE *f = fopen("/proc/self/maps", "r");
2629  if (f == NULL)
2630    return false;
2631
2632  while (!feof(f)) {
2633    size_t dummy;
2634    char *str = NULL;
2635    ssize_t len = getline(&str, &dummy, f);
2636    if (len == -1) {
2637      fclose(f);
2638      return false;
2639    }
2640
2641    if (len > 0 && str[len-1] == '\n') {
2642      str[len-1] = 0;
2643      len--;
2644    }
2645
2646    static const char *stack_str = "[stack]";
2647    if (len > (ssize_t)strlen(stack_str)
2648       && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2649      if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2650        uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2651        if (sp >= *bottom && sp <= *top) {
2652          free(str);
2653          fclose(f);
2654          return true;
2655        }
2656      }
2657    }
2658    free(str);
2659  }
2660  fclose(f);
2661  return false;
2662}
2663
2664// If the (growable) stack mapping already extends beyond the point
2665// where we're going to put our guard pages, truncate the mapping at
2666// that point by munmap()ping it.  This ensures that when we later
2667// munmap() the guard pages we don't leave a hole in the stack
2668// mapping. This only affects the main/initial thread, but guard
2669// against future OS changes
2670bool os::create_stack_guard_pages(char* addr, size_t size) {
2671  uintptr_t stack_extent, stack_base;
2672  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2673  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2674      assert(os::Linux::is_initial_thread(),
2675           "growable stack in non-initial thread");
2676    if (stack_extent < (uintptr_t)addr)
2677      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2678  }
2679
2680  return os::commit_memory(addr, size);
2681}
2682
2683// If this is a growable mapping, remove the guard pages entirely by
2684// munmap()ping them.  If not, just call uncommit_memory(). This only
2685// affects the main/initial thread, but guard against future OS changes
2686bool os::remove_stack_guard_pages(char* addr, size_t size) {
2687  uintptr_t stack_extent, stack_base;
2688  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2689  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2690      assert(os::Linux::is_initial_thread(),
2691           "growable stack in non-initial thread");
2692
2693    return ::munmap(addr, size) == 0;
2694  }
2695
2696  return os::uncommit_memory(addr, size);
2697}
2698
2699static address _highest_vm_reserved_address = NULL;
2700
2701// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2702// at 'requested_addr'. If there are existing memory mappings at the same
2703// location, however, they will be overwritten. If 'fixed' is false,
2704// 'requested_addr' is only treated as a hint, the return value may or
2705// may not start from the requested address. Unlike Linux mmap(), this
2706// function returns NULL to indicate failure.
2707static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2708  char * addr;
2709  int flags;
2710
2711  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2712  if (fixed) {
2713    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2714    flags |= MAP_FIXED;
2715  }
2716
2717  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2718  // to PROT_EXEC if executable when we commit the page.
2719  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2720                       flags, -1, 0);
2721
2722  if (addr != MAP_FAILED) {
2723    // anon_mmap() should only get called during VM initialization,
2724    // don't need lock (actually we can skip locking even it can be called
2725    // from multiple threads, because _highest_vm_reserved_address is just a
2726    // hint about the upper limit of non-stack memory regions.)
2727    if ((address)addr + bytes > _highest_vm_reserved_address) {
2728      _highest_vm_reserved_address = (address)addr + bytes;
2729    }
2730  }
2731
2732  return addr == MAP_FAILED ? NULL : addr;
2733}
2734
2735// Don't update _highest_vm_reserved_address, because there might be memory
2736// regions above addr + size. If so, releasing a memory region only creates
2737// a hole in the address space, it doesn't help prevent heap-stack collision.
2738//
2739static int anon_munmap(char * addr, size_t size) {
2740  return ::munmap(addr, size) == 0;
2741}
2742
2743char* os::reserve_memory(size_t bytes, char* requested_addr,
2744                         size_t alignment_hint) {
2745  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2746}
2747
2748bool os::release_memory(char* addr, size_t size) {
2749  return anon_munmap(addr, size);
2750}
2751
2752static address highest_vm_reserved_address() {
2753  return _highest_vm_reserved_address;
2754}
2755
2756static bool linux_mprotect(char* addr, size_t size, int prot) {
2757  // Linux wants the mprotect address argument to be page aligned.
2758  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2759
2760  // According to SUSv3, mprotect() should only be used with mappings
2761  // established by mmap(), and mmap() always maps whole pages. Unaligned
2762  // 'addr' likely indicates problem in the VM (e.g. trying to change
2763  // protection of malloc'ed or statically allocated memory). Check the
2764  // caller if you hit this assert.
2765  assert(addr == bottom, "sanity check");
2766
2767  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2768  return ::mprotect(bottom, size, prot) == 0;
2769}
2770
2771// Set protections specified
2772bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2773                        bool is_committed) {
2774  unsigned int p = 0;
2775  switch (prot) {
2776  case MEM_PROT_NONE: p = PROT_NONE; break;
2777  case MEM_PROT_READ: p = PROT_READ; break;
2778  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2779  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2780  default:
2781    ShouldNotReachHere();
2782  }
2783  // is_committed is unused.
2784  return linux_mprotect(addr, bytes, p);
2785}
2786
2787bool os::guard_memory(char* addr, size_t size) {
2788  return linux_mprotect(addr, size, PROT_NONE);
2789}
2790
2791bool os::unguard_memory(char* addr, size_t size) {
2792  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2793}
2794
2795// Large page support
2796
2797static size_t _large_page_size = 0;
2798
2799bool os::large_page_init() {
2800  if (!UseLargePages) return false;
2801
2802  if (LargePageSizeInBytes) {
2803    _large_page_size = LargePageSizeInBytes;
2804  } else {
2805    // large_page_size on Linux is used to round up heap size. x86 uses either
2806    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2807    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2808    // page as large as 256M.
2809    //
2810    // Here we try to figure out page size by parsing /proc/meminfo and looking
2811    // for a line with the following format:
2812    //    Hugepagesize:     2048 kB
2813    //
2814    // If we can't determine the value (e.g. /proc is not mounted, or the text
2815    // format has been changed), we'll use the largest page size supported by
2816    // the processor.
2817
2818#ifndef ZERO
2819    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2820                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2821#endif // ZERO
2822
2823    FILE *fp = fopen("/proc/meminfo", "r");
2824    if (fp) {
2825      while (!feof(fp)) {
2826        int x = 0;
2827        char buf[16];
2828        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2829          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2830            _large_page_size = x * K;
2831            break;
2832          }
2833        } else {
2834          // skip to next line
2835          for (;;) {
2836            int ch = fgetc(fp);
2837            if (ch == EOF || ch == (int)'\n') break;
2838          }
2839        }
2840      }
2841      fclose(fp);
2842    }
2843  }
2844
2845  const size_t default_page_size = (size_t)Linux::page_size();
2846  if (_large_page_size > default_page_size) {
2847    _page_sizes[0] = _large_page_size;
2848    _page_sizes[1] = default_page_size;
2849    _page_sizes[2] = 0;
2850  }
2851
2852  // Large page support is available on 2.6 or newer kernel, some vendors
2853  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2854  // We optimistically assume the support is available. If later it turns out
2855  // not true, VM will automatically switch to use regular page size.
2856  return true;
2857}
2858
2859#ifndef SHM_HUGETLB
2860#define SHM_HUGETLB 04000
2861#endif
2862
2863char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2864  // "exec" is passed in but not used.  Creating the shared image for
2865  // the code cache doesn't have an SHM_X executable permission to check.
2866  assert(UseLargePages, "only for large pages");
2867
2868  key_t key = IPC_PRIVATE;
2869  char *addr;
2870
2871  bool warn_on_failure = UseLargePages &&
2872                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2873                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2874                        );
2875  char msg[128];
2876
2877  // Create a large shared memory region to attach to based on size.
2878  // Currently, size is the total size of the heap
2879  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2880  if (shmid == -1) {
2881     // Possible reasons for shmget failure:
2882     // 1. shmmax is too small for Java heap.
2883     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2884     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2885     // 2. not enough large page memory.
2886     //    > check available large pages: cat /proc/meminfo
2887     //    > increase amount of large pages:
2888     //          echo new_value > /proc/sys/vm/nr_hugepages
2889     //      Note 1: different Linux may use different name for this property,
2890     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2891     //      Note 2: it's possible there's enough physical memory available but
2892     //            they are so fragmented after a long run that they can't
2893     //            coalesce into large pages. Try to reserve large pages when
2894     //            the system is still "fresh".
2895     if (warn_on_failure) {
2896       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2897       warning(msg);
2898     }
2899     return NULL;
2900  }
2901
2902  // attach to the region
2903  addr = (char*)shmat(shmid, req_addr, 0);
2904  int err = errno;
2905
2906  // Remove shmid. If shmat() is successful, the actual shared memory segment
2907  // will be deleted when it's detached by shmdt() or when the process
2908  // terminates. If shmat() is not successful this will remove the shared
2909  // segment immediately.
2910  shmctl(shmid, IPC_RMID, NULL);
2911
2912  if ((intptr_t)addr == -1) {
2913     if (warn_on_failure) {
2914       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2915       warning(msg);
2916     }
2917     return NULL;
2918  }
2919
2920  return addr;
2921}
2922
2923bool os::release_memory_special(char* base, size_t bytes) {
2924  // detaching the SHM segment will also delete it, see reserve_memory_special()
2925  int rslt = shmdt(base);
2926  return rslt == 0;
2927}
2928
2929size_t os::large_page_size() {
2930  return _large_page_size;
2931}
2932
2933// Linux does not support anonymous mmap with large page memory. The only way
2934// to reserve large page memory without file backing is through SysV shared
2935// memory API. The entire memory region is committed and pinned upfront.
2936// Hopefully this will change in the future...
2937bool os::can_commit_large_page_memory() {
2938  return false;
2939}
2940
2941bool os::can_execute_large_page_memory() {
2942  return false;
2943}
2944
2945// Reserve memory at an arbitrary address, only if that area is
2946// available (and not reserved for something else).
2947
2948char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2949  const int max_tries = 10;
2950  char* base[max_tries];
2951  size_t size[max_tries];
2952  const size_t gap = 0x000000;
2953
2954  // Assert only that the size is a multiple of the page size, since
2955  // that's all that mmap requires, and since that's all we really know
2956  // about at this low abstraction level.  If we need higher alignment,
2957  // we can either pass an alignment to this method or verify alignment
2958  // in one of the methods further up the call chain.  See bug 5044738.
2959  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2960
2961  // Repeatedly allocate blocks until the block is allocated at the
2962  // right spot. Give up after max_tries. Note that reserve_memory() will
2963  // automatically update _highest_vm_reserved_address if the call is
2964  // successful. The variable tracks the highest memory address every reserved
2965  // by JVM. It is used to detect heap-stack collision if running with
2966  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2967  // space than needed, it could confuse the collision detecting code. To
2968  // solve the problem, save current _highest_vm_reserved_address and
2969  // calculate the correct value before return.
2970  address old_highest = _highest_vm_reserved_address;
2971
2972  // Linux mmap allows caller to pass an address as hint; give it a try first,
2973  // if kernel honors the hint then we can return immediately.
2974  char * addr = anon_mmap(requested_addr, bytes, false);
2975  if (addr == requested_addr) {
2976     return requested_addr;
2977  }
2978
2979  if (addr != NULL) {
2980     // mmap() is successful but it fails to reserve at the requested address
2981     anon_munmap(addr, bytes);
2982  }
2983
2984  int i;
2985  for (i = 0; i < max_tries; ++i) {
2986    base[i] = reserve_memory(bytes);
2987
2988    if (base[i] != NULL) {
2989      // Is this the block we wanted?
2990      if (base[i] == requested_addr) {
2991        size[i] = bytes;
2992        break;
2993      }
2994
2995      // Does this overlap the block we wanted? Give back the overlapped
2996      // parts and try again.
2997
2998      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2999      if (top_overlap >= 0 && top_overlap < bytes) {
3000        unmap_memory(base[i], top_overlap);
3001        base[i] += top_overlap;
3002        size[i] = bytes - top_overlap;
3003      } else {
3004        size_t bottom_overlap = base[i] + bytes - requested_addr;
3005        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3006          unmap_memory(requested_addr, bottom_overlap);
3007          size[i] = bytes - bottom_overlap;
3008        } else {
3009          size[i] = bytes;
3010        }
3011      }
3012    }
3013  }
3014
3015  // Give back the unused reserved pieces.
3016
3017  for (int j = 0; j < i; ++j) {
3018    if (base[j] != NULL) {
3019      unmap_memory(base[j], size[j]);
3020    }
3021  }
3022
3023  if (i < max_tries) {
3024    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3025    return requested_addr;
3026  } else {
3027    _highest_vm_reserved_address = old_highest;
3028    return NULL;
3029  }
3030}
3031
3032size_t os::read(int fd, void *buf, unsigned int nBytes) {
3033  return ::read(fd, buf, nBytes);
3034}
3035
3036// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3037// Solaris uses poll(), linux uses park().
3038// Poll() is likely a better choice, assuming that Thread.interrupt()
3039// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3040// SIGSEGV, see 4355769.
3041
3042const int NANOSECS_PER_MILLISECS = 1000000;
3043
3044int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3045  assert(thread == Thread::current(),  "thread consistency check");
3046
3047  ParkEvent * const slp = thread->_SleepEvent ;
3048  slp->reset() ;
3049  OrderAccess::fence() ;
3050
3051  if (interruptible) {
3052    jlong prevtime = javaTimeNanos();
3053
3054    for (;;) {
3055      if (os::is_interrupted(thread, true)) {
3056        return OS_INTRPT;
3057      }
3058
3059      jlong newtime = javaTimeNanos();
3060
3061      if (newtime - prevtime < 0) {
3062        // time moving backwards, should only happen if no monotonic clock
3063        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3064        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3065      } else {
3066        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3067      }
3068
3069      if(millis <= 0) {
3070        return OS_OK;
3071      }
3072
3073      prevtime = newtime;
3074
3075      {
3076        assert(thread->is_Java_thread(), "sanity check");
3077        JavaThread *jt = (JavaThread *) thread;
3078        ThreadBlockInVM tbivm(jt);
3079        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3080
3081        jt->set_suspend_equivalent();
3082        // cleared by handle_special_suspend_equivalent_condition() or
3083        // java_suspend_self() via check_and_wait_while_suspended()
3084
3085        slp->park(millis);
3086
3087        // were we externally suspended while we were waiting?
3088        jt->check_and_wait_while_suspended();
3089      }
3090    }
3091  } else {
3092    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3093    jlong prevtime = javaTimeNanos();
3094
3095    for (;;) {
3096      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3097      // the 1st iteration ...
3098      jlong newtime = javaTimeNanos();
3099
3100      if (newtime - prevtime < 0) {
3101        // time moving backwards, should only happen if no monotonic clock
3102        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3103        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3104      } else {
3105        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3106      }
3107
3108      if(millis <= 0) break ;
3109
3110      prevtime = newtime;
3111      slp->park(millis);
3112    }
3113    return OS_OK ;
3114  }
3115}
3116
3117int os::naked_sleep() {
3118  // %% make the sleep time an integer flag. for now use 1 millisec.
3119  return os::sleep(Thread::current(), 1, false);
3120}
3121
3122// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3123void os::infinite_sleep() {
3124  while (true) {    // sleep forever ...
3125    ::sleep(100);   // ... 100 seconds at a time
3126  }
3127}
3128
3129// Used to convert frequent JVM_Yield() to nops
3130bool os::dont_yield() {
3131  return DontYieldALot;
3132}
3133
3134void os::yield() {
3135  sched_yield();
3136}
3137
3138os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3139
3140void os::yield_all(int attempts) {
3141  // Yields to all threads, including threads with lower priorities
3142  // Threads on Linux are all with same priority. The Solaris style
3143  // os::yield_all() with nanosleep(1ms) is not necessary.
3144  sched_yield();
3145}
3146
3147// Called from the tight loops to possibly influence time-sharing heuristics
3148void os::loop_breaker(int attempts) {
3149  os::yield_all(attempts);
3150}
3151
3152////////////////////////////////////////////////////////////////////////////////
3153// thread priority support
3154
3155// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3156// only supports dynamic priority, static priority must be zero. For real-time
3157// applications, Linux supports SCHED_RR which allows static priority (1-99).
3158// However, for large multi-threaded applications, SCHED_RR is not only slower
3159// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3160// of 5 runs - Sep 2005).
3161//
3162// The following code actually changes the niceness of kernel-thread/LWP. It
3163// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3164// not the entire user process, and user level threads are 1:1 mapped to kernel
3165// threads. It has always been the case, but could change in the future. For
3166// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3167// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3168
3169int os::java_to_os_priority[MaxPriority + 1] = {
3170  19,              // 0 Entry should never be used
3171
3172   4,              // 1 MinPriority
3173   3,              // 2
3174   2,              // 3
3175
3176   1,              // 4
3177   0,              // 5 NormPriority
3178  -1,              // 6
3179
3180  -2,              // 7
3181  -3,              // 8
3182  -4,              // 9 NearMaxPriority
3183
3184  -5               // 10 MaxPriority
3185};
3186
3187static int prio_init() {
3188  if (ThreadPriorityPolicy == 1) {
3189    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3190    // if effective uid is not root. Perhaps, a more elegant way of doing
3191    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3192    if (geteuid() != 0) {
3193      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3194        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3195      }
3196      ThreadPriorityPolicy = 0;
3197    }
3198  }
3199  return 0;
3200}
3201
3202OSReturn os::set_native_priority(Thread* thread, int newpri) {
3203  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3204
3205  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3206  return (ret == 0) ? OS_OK : OS_ERR;
3207}
3208
3209OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3210  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3211    *priority_ptr = java_to_os_priority[NormPriority];
3212    return OS_OK;
3213  }
3214
3215  errno = 0;
3216  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3217  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3218}
3219
3220// Hint to the underlying OS that a task switch would not be good.
3221// Void return because it's a hint and can fail.
3222void os::hint_no_preempt() {}
3223
3224////////////////////////////////////////////////////////////////////////////////
3225// suspend/resume support
3226
3227//  the low-level signal-based suspend/resume support is a remnant from the
3228//  old VM-suspension that used to be for java-suspension, safepoints etc,
3229//  within hotspot. Now there is a single use-case for this:
3230//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3231//      that runs in the watcher thread.
3232//  The remaining code is greatly simplified from the more general suspension
3233//  code that used to be used.
3234//
3235//  The protocol is quite simple:
3236//  - suspend:
3237//      - sends a signal to the target thread
3238//      - polls the suspend state of the osthread using a yield loop
3239//      - target thread signal handler (SR_handler) sets suspend state
3240//        and blocks in sigsuspend until continued
3241//  - resume:
3242//      - sets target osthread state to continue
3243//      - sends signal to end the sigsuspend loop in the SR_handler
3244//
3245//  Note that the SR_lock plays no role in this suspend/resume protocol.
3246//
3247
3248static void resume_clear_context(OSThread *osthread) {
3249  osthread->set_ucontext(NULL);
3250  osthread->set_siginfo(NULL);
3251
3252  // notify the suspend action is completed, we have now resumed
3253  osthread->sr.clear_suspended();
3254}
3255
3256static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3257  osthread->set_ucontext(context);
3258  osthread->set_siginfo(siginfo);
3259}
3260
3261//
3262// Handler function invoked when a thread's execution is suspended or
3263// resumed. We have to be careful that only async-safe functions are
3264// called here (Note: most pthread functions are not async safe and
3265// should be avoided.)
3266//
3267// Note: sigwait() is a more natural fit than sigsuspend() from an
3268// interface point of view, but sigwait() prevents the signal hander
3269// from being run. libpthread would get very confused by not having
3270// its signal handlers run and prevents sigwait()'s use with the
3271// mutex granting granting signal.
3272//
3273// Currently only ever called on the VMThread
3274//
3275static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3276  // Save and restore errno to avoid confusing native code with EINTR
3277  // after sigsuspend.
3278  int old_errno = errno;
3279
3280  Thread* thread = Thread::current();
3281  OSThread* osthread = thread->osthread();
3282  assert(thread->is_VM_thread(), "Must be VMThread");
3283  // read current suspend action
3284  int action = osthread->sr.suspend_action();
3285  if (action == SR_SUSPEND) {
3286    suspend_save_context(osthread, siginfo, context);
3287
3288    // Notify the suspend action is about to be completed. do_suspend()
3289    // waits until SR_SUSPENDED is set and then returns. We will wait
3290    // here for a resume signal and that completes the suspend-other
3291    // action. do_suspend/do_resume is always called as a pair from
3292    // the same thread - so there are no races
3293
3294    // notify the caller
3295    osthread->sr.set_suspended();
3296
3297    sigset_t suspend_set;  // signals for sigsuspend()
3298
3299    // get current set of blocked signals and unblock resume signal
3300    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3301    sigdelset(&suspend_set, SR_signum);
3302
3303    // wait here until we are resumed
3304    do {
3305      sigsuspend(&suspend_set);
3306      // ignore all returns until we get a resume signal
3307    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3308
3309    resume_clear_context(osthread);
3310
3311  } else {
3312    assert(action == SR_CONTINUE, "unexpected sr action");
3313    // nothing special to do - just leave the handler
3314  }
3315
3316  errno = old_errno;
3317}
3318
3319
3320static int SR_initialize() {
3321  struct sigaction act;
3322  char *s;
3323  /* Get signal number to use for suspend/resume */
3324  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3325    int sig = ::strtol(s, 0, 10);
3326    if (sig > 0 || sig < _NSIG) {
3327        SR_signum = sig;
3328    }
3329  }
3330
3331  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3332        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3333
3334  sigemptyset(&SR_sigset);
3335  sigaddset(&SR_sigset, SR_signum);
3336
3337  /* Set up signal handler for suspend/resume */
3338  act.sa_flags = SA_RESTART|SA_SIGINFO;
3339  act.sa_handler = (void (*)(int)) SR_handler;
3340
3341  // SR_signum is blocked by default.
3342  // 4528190 - We also need to block pthread restart signal (32 on all
3343  // supported Linux platforms). Note that LinuxThreads need to block
3344  // this signal for all threads to work properly. So we don't have
3345  // to use hard-coded signal number when setting up the mask.
3346  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3347
3348  if (sigaction(SR_signum, &act, 0) == -1) {
3349    return -1;
3350  }
3351
3352  // Save signal flag
3353  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3354  return 0;
3355}
3356
3357static int SR_finalize() {
3358  return 0;
3359}
3360
3361
3362// returns true on success and false on error - really an error is fatal
3363// but this seems the normal response to library errors
3364static bool do_suspend(OSThread* osthread) {
3365  // mark as suspended and send signal
3366  osthread->sr.set_suspend_action(SR_SUSPEND);
3367  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3368  assert_status(status == 0, status, "pthread_kill");
3369
3370  // check status and wait until notified of suspension
3371  if (status == 0) {
3372    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3373      os::yield_all(i);
3374    }
3375    osthread->sr.set_suspend_action(SR_NONE);
3376    return true;
3377  }
3378  else {
3379    osthread->sr.set_suspend_action(SR_NONE);
3380    return false;
3381  }
3382}
3383
3384static void do_resume(OSThread* osthread) {
3385  assert(osthread->sr.is_suspended(), "thread should be suspended");
3386  osthread->sr.set_suspend_action(SR_CONTINUE);
3387
3388  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3389  assert_status(status == 0, status, "pthread_kill");
3390  // check status and wait unit notified of resumption
3391  if (status == 0) {
3392    for (int i = 0; osthread->sr.is_suspended(); i++) {
3393      os::yield_all(i);
3394    }
3395  }
3396  osthread->sr.set_suspend_action(SR_NONE);
3397}
3398
3399////////////////////////////////////////////////////////////////////////////////
3400// interrupt support
3401
3402void os::interrupt(Thread* thread) {
3403  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3404    "possibility of dangling Thread pointer");
3405
3406  OSThread* osthread = thread->osthread();
3407
3408  if (!osthread->interrupted()) {
3409    osthread->set_interrupted(true);
3410    // More than one thread can get here with the same value of osthread,
3411    // resulting in multiple notifications.  We do, however, want the store
3412    // to interrupted() to be visible to other threads before we execute unpark().
3413    OrderAccess::fence();
3414    ParkEvent * const slp = thread->_SleepEvent ;
3415    if (slp != NULL) slp->unpark() ;
3416  }
3417
3418  // For JSR166. Unpark even if interrupt status already was set
3419  if (thread->is_Java_thread())
3420    ((JavaThread*)thread)->parker()->unpark();
3421
3422  ParkEvent * ev = thread->_ParkEvent ;
3423  if (ev != NULL) ev->unpark() ;
3424
3425}
3426
3427bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3428  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3429    "possibility of dangling Thread pointer");
3430
3431  OSThread* osthread = thread->osthread();
3432
3433  bool interrupted = osthread->interrupted();
3434
3435  if (interrupted && clear_interrupted) {
3436    osthread->set_interrupted(false);
3437    // consider thread->_SleepEvent->reset() ... optional optimization
3438  }
3439
3440  return interrupted;
3441}
3442
3443///////////////////////////////////////////////////////////////////////////////////
3444// signal handling (except suspend/resume)
3445
3446// This routine may be used by user applications as a "hook" to catch signals.
3447// The user-defined signal handler must pass unrecognized signals to this
3448// routine, and if it returns true (non-zero), then the signal handler must
3449// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3450// routine will never retun false (zero), but instead will execute a VM panic
3451// routine kill the process.
3452//
3453// If this routine returns false, it is OK to call it again.  This allows
3454// the user-defined signal handler to perform checks either before or after
3455// the VM performs its own checks.  Naturally, the user code would be making
3456// a serious error if it tried to handle an exception (such as a null check
3457// or breakpoint) that the VM was generating for its own correct operation.
3458//
3459// This routine may recognize any of the following kinds of signals:
3460//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3461// It should be consulted by handlers for any of those signals.
3462//
3463// The caller of this routine must pass in the three arguments supplied
3464// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3465// field of the structure passed to sigaction().  This routine assumes that
3466// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3467//
3468// Note that the VM will print warnings if it detects conflicting signal
3469// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3470//
3471extern "C" int
3472JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3473                        void* ucontext, int abort_if_unrecognized);
3474
3475void signalHandler(int sig, siginfo_t* info, void* uc) {
3476  assert(info != NULL && uc != NULL, "it must be old kernel");
3477  JVM_handle_linux_signal(sig, info, uc, true);
3478}
3479
3480
3481// This boolean allows users to forward their own non-matching signals
3482// to JVM_handle_linux_signal, harmlessly.
3483bool os::Linux::signal_handlers_are_installed = false;
3484
3485// For signal-chaining
3486struct sigaction os::Linux::sigact[MAXSIGNUM];
3487unsigned int os::Linux::sigs = 0;
3488bool os::Linux::libjsig_is_loaded = false;
3489typedef struct sigaction *(*get_signal_t)(int);
3490get_signal_t os::Linux::get_signal_action = NULL;
3491
3492struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3493  struct sigaction *actp = NULL;
3494
3495  if (libjsig_is_loaded) {
3496    // Retrieve the old signal handler from libjsig
3497    actp = (*get_signal_action)(sig);
3498  }
3499  if (actp == NULL) {
3500    // Retrieve the preinstalled signal handler from jvm
3501    actp = get_preinstalled_handler(sig);
3502  }
3503
3504  return actp;
3505}
3506
3507static bool call_chained_handler(struct sigaction *actp, int sig,
3508                                 siginfo_t *siginfo, void *context) {
3509  // Call the old signal handler
3510  if (actp->sa_handler == SIG_DFL) {
3511    // It's more reasonable to let jvm treat it as an unexpected exception
3512    // instead of taking the default action.
3513    return false;
3514  } else if (actp->sa_handler != SIG_IGN) {
3515    if ((actp->sa_flags & SA_NODEFER) == 0) {
3516      // automaticlly block the signal
3517      sigaddset(&(actp->sa_mask), sig);
3518    }
3519
3520    sa_handler_t hand;
3521    sa_sigaction_t sa;
3522    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3523    // retrieve the chained handler
3524    if (siginfo_flag_set) {
3525      sa = actp->sa_sigaction;
3526    } else {
3527      hand = actp->sa_handler;
3528    }
3529
3530    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3531      actp->sa_handler = SIG_DFL;
3532    }
3533
3534    // try to honor the signal mask
3535    sigset_t oset;
3536    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3537
3538    // call into the chained handler
3539    if (siginfo_flag_set) {
3540      (*sa)(sig, siginfo, context);
3541    } else {
3542      (*hand)(sig);
3543    }
3544
3545    // restore the signal mask
3546    pthread_sigmask(SIG_SETMASK, &oset, 0);
3547  }
3548  // Tell jvm's signal handler the signal is taken care of.
3549  return true;
3550}
3551
3552bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3553  bool chained = false;
3554  // signal-chaining
3555  if (UseSignalChaining) {
3556    struct sigaction *actp = get_chained_signal_action(sig);
3557    if (actp != NULL) {
3558      chained = call_chained_handler(actp, sig, siginfo, context);
3559    }
3560  }
3561  return chained;
3562}
3563
3564struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3565  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3566    return &sigact[sig];
3567  }
3568  return NULL;
3569}
3570
3571void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3572  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3573  sigact[sig] = oldAct;
3574  sigs |= (unsigned int)1 << sig;
3575}
3576
3577// for diagnostic
3578int os::Linux::sigflags[MAXSIGNUM];
3579
3580int os::Linux::get_our_sigflags(int sig) {
3581  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3582  return sigflags[sig];
3583}
3584
3585void os::Linux::set_our_sigflags(int sig, int flags) {
3586  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3587  sigflags[sig] = flags;
3588}
3589
3590void os::Linux::set_signal_handler(int sig, bool set_installed) {
3591  // Check for overwrite.
3592  struct sigaction oldAct;
3593  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3594
3595  void* oldhand = oldAct.sa_sigaction
3596                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3597                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3598  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3599      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3600      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3601    if (AllowUserSignalHandlers || !set_installed) {
3602      // Do not overwrite; user takes responsibility to forward to us.
3603      return;
3604    } else if (UseSignalChaining) {
3605      // save the old handler in jvm
3606      save_preinstalled_handler(sig, oldAct);
3607      // libjsig also interposes the sigaction() call below and saves the
3608      // old sigaction on it own.
3609    } else {
3610      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3611                    "%#lx for signal %d.", (long)oldhand, sig));
3612    }
3613  }
3614
3615  struct sigaction sigAct;
3616  sigfillset(&(sigAct.sa_mask));
3617  sigAct.sa_handler = SIG_DFL;
3618  if (!set_installed) {
3619    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3620  } else {
3621    sigAct.sa_sigaction = signalHandler;
3622    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3623  }
3624  // Save flags, which are set by ours
3625  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3626  sigflags[sig] = sigAct.sa_flags;
3627
3628  int ret = sigaction(sig, &sigAct, &oldAct);
3629  assert(ret == 0, "check");
3630
3631  void* oldhand2  = oldAct.sa_sigaction
3632                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3633                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3634  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3635}
3636
3637// install signal handlers for signals that HotSpot needs to
3638// handle in order to support Java-level exception handling.
3639
3640void os::Linux::install_signal_handlers() {
3641  if (!signal_handlers_are_installed) {
3642    signal_handlers_are_installed = true;
3643
3644    // signal-chaining
3645    typedef void (*signal_setting_t)();
3646    signal_setting_t begin_signal_setting = NULL;
3647    signal_setting_t end_signal_setting = NULL;
3648    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3649                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3650    if (begin_signal_setting != NULL) {
3651      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3652                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3653      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3654                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3655      libjsig_is_loaded = true;
3656      assert(UseSignalChaining, "should enable signal-chaining");
3657    }
3658    if (libjsig_is_loaded) {
3659      // Tell libjsig jvm is setting signal handlers
3660      (*begin_signal_setting)();
3661    }
3662
3663    set_signal_handler(SIGSEGV, true);
3664    set_signal_handler(SIGPIPE, true);
3665    set_signal_handler(SIGBUS, true);
3666    set_signal_handler(SIGILL, true);
3667    set_signal_handler(SIGFPE, true);
3668    set_signal_handler(SIGXFSZ, true);
3669
3670    if (libjsig_is_loaded) {
3671      // Tell libjsig jvm finishes setting signal handlers
3672      (*end_signal_setting)();
3673    }
3674
3675    // We don't activate signal checker if libjsig is in place, we trust ourselves
3676    // and if UserSignalHandler is installed all bets are off
3677    if (CheckJNICalls) {
3678      if (libjsig_is_loaded) {
3679        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3680        check_signals = false;
3681      }
3682      if (AllowUserSignalHandlers) {
3683        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3684        check_signals = false;
3685      }
3686    }
3687  }
3688}
3689
3690// This is the fastest way to get thread cpu time on Linux.
3691// Returns cpu time (user+sys) for any thread, not only for current.
3692// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3693// It might work on 2.6.10+ with a special kernel/glibc patch.
3694// For reference, please, see IEEE Std 1003.1-2004:
3695//   http://www.unix.org/single_unix_specification
3696
3697jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3698  struct timespec tp;
3699  int rc = os::Linux::clock_gettime(clockid, &tp);
3700  assert(rc == 0, "clock_gettime is expected to return 0 code");
3701
3702  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3703}
3704
3705/////
3706// glibc on Linux platform uses non-documented flag
3707// to indicate, that some special sort of signal
3708// trampoline is used.
3709// We will never set this flag, and we should
3710// ignore this flag in our diagnostic
3711#ifdef SIGNIFICANT_SIGNAL_MASK
3712#undef SIGNIFICANT_SIGNAL_MASK
3713#endif
3714#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3715
3716static const char* get_signal_handler_name(address handler,
3717                                           char* buf, int buflen) {
3718  int offset;
3719  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3720  if (found) {
3721    // skip directory names
3722    const char *p1, *p2;
3723    p1 = buf;
3724    size_t len = strlen(os::file_separator());
3725    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3726    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3727  } else {
3728    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3729  }
3730  return buf;
3731}
3732
3733static void print_signal_handler(outputStream* st, int sig,
3734                                 char* buf, size_t buflen) {
3735  struct sigaction sa;
3736
3737  sigaction(sig, NULL, &sa);
3738
3739  // See comment for SIGNIFICANT_SIGNAL_MASK define
3740  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3741
3742  st->print("%s: ", os::exception_name(sig, buf, buflen));
3743
3744  address handler = (sa.sa_flags & SA_SIGINFO)
3745    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3746    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3747
3748  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3749    st->print("SIG_DFL");
3750  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3751    st->print("SIG_IGN");
3752  } else {
3753    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3754  }
3755
3756  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3757
3758  address rh = VMError::get_resetted_sighandler(sig);
3759  // May be, handler was resetted by VMError?
3760  if(rh != NULL) {
3761    handler = rh;
3762    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3763  }
3764
3765  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3766
3767  // Check: is it our handler?
3768  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3769     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3770    // It is our signal handler
3771    // check for flags, reset system-used one!
3772    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3773      st->print(
3774                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3775                os::Linux::get_our_sigflags(sig));
3776    }
3777  }
3778  st->cr();
3779}
3780
3781
3782#define DO_SIGNAL_CHECK(sig) \
3783  if (!sigismember(&check_signal_done, sig)) \
3784    os::Linux::check_signal_handler(sig)
3785
3786// This method is a periodic task to check for misbehaving JNI applications
3787// under CheckJNI, we can add any periodic checks here
3788
3789void os::run_periodic_checks() {
3790
3791  if (check_signals == false) return;
3792
3793  // SEGV and BUS if overridden could potentially prevent
3794  // generation of hs*.log in the event of a crash, debugging
3795  // such a case can be very challenging, so we absolutely
3796  // check the following for a good measure:
3797  DO_SIGNAL_CHECK(SIGSEGV);
3798  DO_SIGNAL_CHECK(SIGILL);
3799  DO_SIGNAL_CHECK(SIGFPE);
3800  DO_SIGNAL_CHECK(SIGBUS);
3801  DO_SIGNAL_CHECK(SIGPIPE);
3802  DO_SIGNAL_CHECK(SIGXFSZ);
3803
3804
3805  // ReduceSignalUsage allows the user to override these handlers
3806  // see comments at the very top and jvm_solaris.h
3807  if (!ReduceSignalUsage) {
3808    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3809    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3810    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3811    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3812  }
3813
3814  DO_SIGNAL_CHECK(SR_signum);
3815  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3816}
3817
3818typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3819
3820static os_sigaction_t os_sigaction = NULL;
3821
3822void os::Linux::check_signal_handler(int sig) {
3823  char buf[O_BUFLEN];
3824  address jvmHandler = NULL;
3825
3826
3827  struct sigaction act;
3828  if (os_sigaction == NULL) {
3829    // only trust the default sigaction, in case it has been interposed
3830    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3831    if (os_sigaction == NULL) return;
3832  }
3833
3834  os_sigaction(sig, (struct sigaction*)NULL, &act);
3835
3836
3837  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3838
3839  address thisHandler = (act.sa_flags & SA_SIGINFO)
3840    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3841    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3842
3843
3844  switch(sig) {
3845  case SIGSEGV:
3846  case SIGBUS:
3847  case SIGFPE:
3848  case SIGPIPE:
3849  case SIGILL:
3850  case SIGXFSZ:
3851    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3852    break;
3853
3854  case SHUTDOWN1_SIGNAL:
3855  case SHUTDOWN2_SIGNAL:
3856  case SHUTDOWN3_SIGNAL:
3857  case BREAK_SIGNAL:
3858    jvmHandler = (address)user_handler();
3859    break;
3860
3861  case INTERRUPT_SIGNAL:
3862    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3863    break;
3864
3865  default:
3866    if (sig == SR_signum) {
3867      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3868    } else {
3869      return;
3870    }
3871    break;
3872  }
3873
3874  if (thisHandler != jvmHandler) {
3875    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3876    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3877    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3878    // No need to check this sig any longer
3879    sigaddset(&check_signal_done, sig);
3880  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3881    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3882    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3883    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3884    // No need to check this sig any longer
3885    sigaddset(&check_signal_done, sig);
3886  }
3887
3888  // Dump all the signal
3889  if (sigismember(&check_signal_done, sig)) {
3890    print_signal_handlers(tty, buf, O_BUFLEN);
3891  }
3892}
3893
3894extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3895
3896extern bool signal_name(int signo, char* buf, size_t len);
3897
3898const char* os::exception_name(int exception_code, char* buf, size_t size) {
3899  if (0 < exception_code && exception_code <= SIGRTMAX) {
3900    // signal
3901    if (!signal_name(exception_code, buf, size)) {
3902      jio_snprintf(buf, size, "SIG%d", exception_code);
3903    }
3904    return buf;
3905  } else {
3906    return NULL;
3907  }
3908}
3909
3910// this is called _before_ the most of global arguments have been parsed
3911void os::init(void) {
3912  char dummy;   /* used to get a guess on initial stack address */
3913//  first_hrtime = gethrtime();
3914
3915  // With LinuxThreads the JavaMain thread pid (primordial thread)
3916  // is different than the pid of the java launcher thread.
3917  // So, on Linux, the launcher thread pid is passed to the VM
3918  // via the sun.java.launcher.pid property.
3919  // Use this property instead of getpid() if it was correctly passed.
3920  // See bug 6351349.
3921  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3922
3923  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3924
3925  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3926
3927  init_random(1234567);
3928
3929  ThreadCritical::initialize();
3930
3931  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3932  if (Linux::page_size() == -1) {
3933    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3934                  strerror(errno)));
3935  }
3936  init_page_sizes((size_t) Linux::page_size());
3937
3938  Linux::initialize_system_info();
3939
3940  // main_thread points to the aboriginal thread
3941  Linux::_main_thread = pthread_self();
3942
3943  Linux::clock_init();
3944  initial_time_count = os::elapsed_counter();
3945  pthread_mutex_init(&dl_mutex, NULL);
3946}
3947
3948// To install functions for atexit system call
3949extern "C" {
3950  static void perfMemory_exit_helper() {
3951    perfMemory_exit();
3952  }
3953}
3954
3955// this is called _after_ the global arguments have been parsed
3956jint os::init_2(void)
3957{
3958  Linux::fast_thread_clock_init();
3959
3960  // Allocate a single page and mark it as readable for safepoint polling
3961  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3962  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3963
3964  os::set_polling_page( polling_page );
3965
3966#ifndef PRODUCT
3967  if(Verbose && PrintMiscellaneous)
3968    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3969#endif
3970
3971  if (!UseMembar) {
3972    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3973    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3974    os::set_memory_serialize_page( mem_serialize_page );
3975
3976#ifndef PRODUCT
3977    if(Verbose && PrintMiscellaneous)
3978      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3979#endif
3980  }
3981
3982  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3983
3984  // initialize suspend/resume support - must do this before signal_sets_init()
3985  if (SR_initialize() != 0) {
3986    perror("SR_initialize failed");
3987    return JNI_ERR;
3988  }
3989
3990  Linux::signal_sets_init();
3991  Linux::install_signal_handlers();
3992
3993  // Check minimum allowable stack size for thread creation and to initialize
3994  // the java system classes, including StackOverflowError - depends on page
3995  // size.  Add a page for compiler2 recursion in main thread.
3996  // Add in 2*BytesPerWord times page size to account for VM stack during
3997  // class initialization depending on 32 or 64 bit VM.
3998  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
3999            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4000                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4001
4002  size_t threadStackSizeInBytes = ThreadStackSize * K;
4003  if (threadStackSizeInBytes != 0 &&
4004      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4005        tty->print_cr("\nThe stack size specified is too small, "
4006                      "Specify at least %dk",
4007                      os::Linux::min_stack_allowed/ K);
4008        return JNI_ERR;
4009  }
4010
4011  // Make the stack size a multiple of the page size so that
4012  // the yellow/red zones can be guarded.
4013  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4014        vm_page_size()));
4015
4016  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4017
4018  Linux::libpthread_init();
4019  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4020     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4021          Linux::glibc_version(), Linux::libpthread_version(),
4022          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4023  }
4024
4025  if (UseNUMA) {
4026    if (!Linux::libnuma_init()) {
4027      UseNUMA = false;
4028    } else {
4029      if ((Linux::numa_max_node() < 1)) {
4030        // There's only one node(they start from 0), disable NUMA.
4031        UseNUMA = false;
4032      }
4033    }
4034    if (!UseNUMA && ForceNUMA) {
4035      UseNUMA = true;
4036    }
4037  }
4038
4039  if (MaxFDLimit) {
4040    // set the number of file descriptors to max. print out error
4041    // if getrlimit/setrlimit fails but continue regardless.
4042    struct rlimit nbr_files;
4043    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4044    if (status != 0) {
4045      if (PrintMiscellaneous && (Verbose || WizardMode))
4046        perror("os::init_2 getrlimit failed");
4047    } else {
4048      nbr_files.rlim_cur = nbr_files.rlim_max;
4049      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4050      if (status != 0) {
4051        if (PrintMiscellaneous && (Verbose || WizardMode))
4052          perror("os::init_2 setrlimit failed");
4053      }
4054    }
4055  }
4056
4057  // Initialize lock used to serialize thread creation (see os::create_thread)
4058  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4059
4060  // Initialize HPI.
4061  jint hpi_result = hpi::initialize();
4062  if (hpi_result != JNI_OK) {
4063    tty->print_cr("There was an error trying to initialize the HPI library.");
4064    return hpi_result;
4065  }
4066
4067  // at-exit methods are called in the reverse order of their registration.
4068  // atexit functions are called on return from main or as a result of a
4069  // call to exit(3C). There can be only 32 of these functions registered
4070  // and atexit() does not set errno.
4071
4072  if (PerfAllowAtExitRegistration) {
4073    // only register atexit functions if PerfAllowAtExitRegistration is set.
4074    // atexit functions can be delayed until process exit time, which
4075    // can be problematic for embedded VM situations. Embedded VMs should
4076    // call DestroyJavaVM() to assure that VM resources are released.
4077
4078    // note: perfMemory_exit_helper atexit function may be removed in
4079    // the future if the appropriate cleanup code can be added to the
4080    // VM_Exit VMOperation's doit method.
4081    if (atexit(perfMemory_exit_helper) != 0) {
4082      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4083    }
4084  }
4085
4086  // initialize thread priority policy
4087  prio_init();
4088
4089  return JNI_OK;
4090}
4091
4092// this is called at the end of vm_initialization
4093void os::init_3(void) { }
4094
4095// Mark the polling page as unreadable
4096void os::make_polling_page_unreadable(void) {
4097  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4098    fatal("Could not disable polling page");
4099};
4100
4101// Mark the polling page as readable
4102void os::make_polling_page_readable(void) {
4103  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4104    fatal("Could not enable polling page");
4105  }
4106};
4107
4108int os::active_processor_count() {
4109  // Linux doesn't yet have a (official) notion of processor sets,
4110  // so just return the number of online processors.
4111  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4112  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4113  return online_cpus;
4114}
4115
4116bool os::distribute_processes(uint length, uint* distribution) {
4117  // Not yet implemented.
4118  return false;
4119}
4120
4121bool os::bind_to_processor(uint processor_id) {
4122  // Not yet implemented.
4123  return false;
4124}
4125
4126///
4127
4128// Suspends the target using the signal mechanism and then grabs the PC before
4129// resuming the target. Used by the flat-profiler only
4130ExtendedPC os::get_thread_pc(Thread* thread) {
4131  // Make sure that it is called by the watcher for the VMThread
4132  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4133  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4134
4135  ExtendedPC epc;
4136
4137  OSThread* osthread = thread->osthread();
4138  if (do_suspend(osthread)) {
4139    if (osthread->ucontext() != NULL) {
4140      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4141    } else {
4142      // NULL context is unexpected, double-check this is the VMThread
4143      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4144    }
4145    do_resume(osthread);
4146  }
4147  // failure means pthread_kill failed for some reason - arguably this is
4148  // a fatal problem, but such problems are ignored elsewhere
4149
4150  return epc;
4151}
4152
4153int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4154{
4155   if (is_NPTL()) {
4156      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4157   } else {
4158#ifndef IA64
4159      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4160      // word back to default 64bit precision if condvar is signaled. Java
4161      // wants 53bit precision.  Save and restore current value.
4162      int fpu = get_fpu_control_word();
4163#endif // IA64
4164      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4165#ifndef IA64
4166      set_fpu_control_word(fpu);
4167#endif // IA64
4168      return status;
4169   }
4170}
4171
4172////////////////////////////////////////////////////////////////////////////////
4173// debug support
4174
4175static address same_page(address x, address y) {
4176  int page_bits = -os::vm_page_size();
4177  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4178    return x;
4179  else if (x > y)
4180    return (address)(intptr_t(y) | ~page_bits) + 1;
4181  else
4182    return (address)(intptr_t(y) & page_bits);
4183}
4184
4185bool os::find(address addr, outputStream* st) {
4186  Dl_info dlinfo;
4187  memset(&dlinfo, 0, sizeof(dlinfo));
4188  if (dladdr(addr, &dlinfo)) {
4189    st->print(PTR_FORMAT ": ", addr);
4190    if (dlinfo.dli_sname != NULL) {
4191      st->print("%s+%#x", dlinfo.dli_sname,
4192                 addr - (intptr_t)dlinfo.dli_saddr);
4193    } else if (dlinfo.dli_fname) {
4194      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4195    } else {
4196      st->print("<absolute address>");
4197    }
4198    if (dlinfo.dli_fname) {
4199      st->print(" in %s", dlinfo.dli_fname);
4200    }
4201    if (dlinfo.dli_fbase) {
4202      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4203    }
4204    st->cr();
4205
4206    if (Verbose) {
4207      // decode some bytes around the PC
4208      address begin = same_page(addr-40, addr);
4209      address end   = same_page(addr+40, addr);
4210      address       lowest = (address) dlinfo.dli_sname;
4211      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4212      if (begin < lowest)  begin = lowest;
4213      Dl_info dlinfo2;
4214      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4215          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4216        end = (address) dlinfo2.dli_saddr;
4217      Disassembler::decode(begin, end, st);
4218    }
4219    return true;
4220  }
4221  return false;
4222}
4223
4224////////////////////////////////////////////////////////////////////////////////
4225// misc
4226
4227// This does not do anything on Linux. This is basically a hook for being
4228// able to use structured exception handling (thread-local exception filters)
4229// on, e.g., Win32.
4230void
4231os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4232                         JavaCallArguments* args, Thread* thread) {
4233  f(value, method, args, thread);
4234}
4235
4236void os::print_statistics() {
4237}
4238
4239int os::message_box(const char* title, const char* message) {
4240  int i;
4241  fdStream err(defaultStream::error_fd());
4242  for (i = 0; i < 78; i++) err.print_raw("=");
4243  err.cr();
4244  err.print_raw_cr(title);
4245  for (i = 0; i < 78; i++) err.print_raw("-");
4246  err.cr();
4247  err.print_raw_cr(message);
4248  for (i = 0; i < 78; i++) err.print_raw("=");
4249  err.cr();
4250
4251  char buf[16];
4252  // Prevent process from exiting upon "read error" without consuming all CPU
4253  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4254
4255  return buf[0] == 'y' || buf[0] == 'Y';
4256}
4257
4258int os::stat(const char *path, struct stat *sbuf) {
4259  char pathbuf[MAX_PATH];
4260  if (strlen(path) > MAX_PATH - 1) {
4261    errno = ENAMETOOLONG;
4262    return -1;
4263  }
4264  hpi::native_path(strcpy(pathbuf, path));
4265  return ::stat(pathbuf, sbuf);
4266}
4267
4268bool os::check_heap(bool force) {
4269  return true;
4270}
4271
4272int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4273  return ::vsnprintf(buf, count, format, args);
4274}
4275
4276// Is a (classpath) directory empty?
4277bool os::dir_is_empty(const char* path) {
4278  DIR *dir = NULL;
4279  struct dirent *ptr;
4280
4281  dir = opendir(path);
4282  if (dir == NULL) return true;
4283
4284  /* Scan the directory */
4285  bool result = true;
4286  char buf[sizeof(struct dirent) + MAX_PATH];
4287  while (result && (ptr = ::readdir(dir)) != NULL) {
4288    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4289      result = false;
4290    }
4291  }
4292  closedir(dir);
4293  return result;
4294}
4295
4296// create binary file, rewriting existing file if required
4297int os::create_binary_file(const char* path, bool rewrite_existing) {
4298  int oflags = O_WRONLY | O_CREAT;
4299  if (!rewrite_existing) {
4300    oflags |= O_EXCL;
4301  }
4302  return ::open64(path, oflags, S_IREAD | S_IWRITE);
4303}
4304
4305// return current position of file pointer
4306jlong os::current_file_offset(int fd) {
4307  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4308}
4309
4310// move file pointer to the specified offset
4311jlong os::seek_to_file_offset(int fd, jlong offset) {
4312  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4313}
4314
4315// Map a block of memory.
4316char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4317                     char *addr, size_t bytes, bool read_only,
4318                     bool allow_exec) {
4319  int prot;
4320  int flags;
4321
4322  if (read_only) {
4323    prot = PROT_READ;
4324    flags = MAP_SHARED;
4325  } else {
4326    prot = PROT_READ | PROT_WRITE;
4327    flags = MAP_PRIVATE;
4328  }
4329
4330  if (allow_exec) {
4331    prot |= PROT_EXEC;
4332  }
4333
4334  if (addr != NULL) {
4335    flags |= MAP_FIXED;
4336  }
4337
4338  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4339                                     fd, file_offset);
4340  if (mapped_address == MAP_FAILED) {
4341    return NULL;
4342  }
4343  return mapped_address;
4344}
4345
4346
4347// Remap a block of memory.
4348char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4349                       char *addr, size_t bytes, bool read_only,
4350                       bool allow_exec) {
4351  // same as map_memory() on this OS
4352  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4353                        allow_exec);
4354}
4355
4356
4357// Unmap a block of memory.
4358bool os::unmap_memory(char* addr, size_t bytes) {
4359  return munmap(addr, bytes) == 0;
4360}
4361
4362static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4363
4364static clockid_t thread_cpu_clockid(Thread* thread) {
4365  pthread_t tid = thread->osthread()->pthread_id();
4366  clockid_t clockid;
4367
4368  // Get thread clockid
4369  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4370  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4371  return clockid;
4372}
4373
4374// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4375// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4376// of a thread.
4377//
4378// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4379// the fast estimate available on the platform.
4380
4381jlong os::current_thread_cpu_time() {
4382  if (os::Linux::supports_fast_thread_cpu_time()) {
4383    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4384  } else {
4385    // return user + sys since the cost is the same
4386    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4387  }
4388}
4389
4390jlong os::thread_cpu_time(Thread* thread) {
4391  // consistent with what current_thread_cpu_time() returns
4392  if (os::Linux::supports_fast_thread_cpu_time()) {
4393    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4394  } else {
4395    return slow_thread_cpu_time(thread, true /* user + sys */);
4396  }
4397}
4398
4399jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4400  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4401    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4402  } else {
4403    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4404  }
4405}
4406
4407jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4408  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4409    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4410  } else {
4411    return slow_thread_cpu_time(thread, user_sys_cpu_time);
4412  }
4413}
4414
4415//
4416//  -1 on error.
4417//
4418
4419static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4420  static bool proc_pid_cpu_avail = true;
4421  static bool proc_task_unchecked = true;
4422  static const char *proc_stat_path = "/proc/%d/stat";
4423  pid_t  tid = thread->osthread()->thread_id();
4424  int i;
4425  char *s;
4426  char stat[2048];
4427  int statlen;
4428  char proc_name[64];
4429  int count;
4430  long sys_time, user_time;
4431  char string[64];
4432  char cdummy;
4433  int idummy;
4434  long ldummy;
4435  FILE *fp;
4436
4437  // We first try accessing /proc/<pid>/cpu since this is faster to
4438  // process.  If this file is not present (linux kernels 2.5 and above)
4439  // then we open /proc/<pid>/stat.
4440  if ( proc_pid_cpu_avail ) {
4441    sprintf(proc_name, "/proc/%d/cpu", tid);
4442    fp =  fopen(proc_name, "r");
4443    if ( fp != NULL ) {
4444      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4445      fclose(fp);
4446      if ( count != 3 ) return -1;
4447
4448      if (user_sys_cpu_time) {
4449        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4450      } else {
4451        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4452      }
4453    }
4454    else proc_pid_cpu_avail = false;
4455  }
4456
4457  // The /proc/<tid>/stat aggregates per-process usage on
4458  // new Linux kernels 2.6+ where NPTL is supported.
4459  // The /proc/self/task/<tid>/stat still has the per-thread usage.
4460  // See bug 6328462.
4461  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4462  // and possibly in some other cases, so we check its availability.
4463  if (proc_task_unchecked && os::Linux::is_NPTL()) {
4464    // This is executed only once
4465    proc_task_unchecked = false;
4466    fp = fopen("/proc/self/task", "r");
4467    if (fp != NULL) {
4468      proc_stat_path = "/proc/self/task/%d/stat";
4469      fclose(fp);
4470    }
4471  }
4472
4473  sprintf(proc_name, proc_stat_path, tid);
4474  fp = fopen(proc_name, "r");
4475  if ( fp == NULL ) return -1;
4476  statlen = fread(stat, 1, 2047, fp);
4477  stat[statlen] = '\0';
4478  fclose(fp);
4479
4480  // Skip pid and the command string. Note that we could be dealing with
4481  // weird command names, e.g. user could decide to rename java launcher
4482  // to "java 1.4.2 :)", then the stat file would look like
4483  //                1234 (java 1.4.2 :)) R ... ...
4484  // We don't really need to know the command string, just find the last
4485  // occurrence of ")" and then start parsing from there. See bug 4726580.
4486  s = strrchr(stat, ')');
4487  i = 0;
4488  if (s == NULL ) return -1;
4489
4490  // Skip blank chars
4491  do s++; while (isspace(*s));
4492
4493  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4494                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4495                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4496                 &user_time, &sys_time);
4497  if ( count != 13 ) return -1;
4498  if (user_sys_cpu_time) {
4499    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4500  } else {
4501    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4502  }
4503}
4504
4505void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4506  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4507  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4508  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4509  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4510}
4511
4512void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4513  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4514  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4515  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4516  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4517}
4518
4519bool os::is_thread_cpu_time_supported() {
4520  return true;
4521}
4522
4523// System loadavg support.  Returns -1 if load average cannot be obtained.
4524// Linux doesn't yet have a (official) notion of processor sets,
4525// so just return the system wide load average.
4526int os::loadavg(double loadavg[], int nelem) {
4527  return ::getloadavg(loadavg, nelem);
4528}
4529
4530void os::pause() {
4531  char filename[MAX_PATH];
4532  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4533    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4534  } else {
4535    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4536  }
4537
4538  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4539  if (fd != -1) {
4540    struct stat buf;
4541    close(fd);
4542    while (::stat(filename, &buf) == 0) {
4543      (void)::poll(NULL, 0, 100);
4544    }
4545  } else {
4546    jio_fprintf(stderr,
4547      "Could not open pause file '%s', continuing immediately.\n", filename);
4548  }
4549}
4550
4551extern "C" {
4552
4553/**
4554 * NOTE: the following code is to keep the green threads code
4555 * in the libjava.so happy. Once the green threads is removed,
4556 * these code will no longer be needed.
4557 */
4558int
4559jdk_waitpid(pid_t pid, int* status, int options) {
4560    return waitpid(pid, status, options);
4561}
4562
4563int
4564fork1() {
4565    return fork();
4566}
4567
4568int
4569jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4570    return sem_init(sem, pshared, value);
4571}
4572
4573int
4574jdk_sem_post(sem_t *sem) {
4575    return sem_post(sem);
4576}
4577
4578int
4579jdk_sem_wait(sem_t *sem) {
4580    return sem_wait(sem);
4581}
4582
4583int
4584jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4585    return pthread_sigmask(how , newmask, oldmask);
4586}
4587
4588}
4589
4590// Refer to the comments in os_solaris.cpp park-unpark.
4591//
4592// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4593// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4594// For specifics regarding the bug see GLIBC BUGID 261237 :
4595//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4596// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4597// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4598// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4599// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4600// and monitorenter when we're using 1-0 locking.  All those operations may result in
4601// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4602// of libpthread avoids the problem, but isn't practical.
4603//
4604// Possible remedies:
4605//
4606// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4607//      This is palliative and probabilistic, however.  If the thread is preempted
4608//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4609//      than the minimum period may have passed, and the abstime may be stale (in the
4610//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4611//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4612//
4613// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4614//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4615//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4616//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4617//      thread.
4618//
4619// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4620//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4621//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4622//      This also works well.  In fact it avoids kernel-level scalability impediments
4623//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4624//      timers in a graceful fashion.
4625//
4626// 4.   When the abstime value is in the past it appears that control returns
4627//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4628//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4629//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4630//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4631//      It may be possible to avoid reinitialization by checking the return
4632//      value from pthread_cond_timedwait().  In addition to reinitializing the
4633//      condvar we must establish the invariant that cond_signal() is only called
4634//      within critical sections protected by the adjunct mutex.  This prevents
4635//      cond_signal() from "seeing" a condvar that's in the midst of being
4636//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4637//      desirable signal-after-unlock optimization that avoids futile context switching.
4638//
4639//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4640//      structure when a condvar is used or initialized.  cond_destroy()  would
4641//      release the helper structure.  Our reinitialize-after-timedwait fix
4642//      put excessive stress on malloc/free and locks protecting the c-heap.
4643//
4644// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4645// It may be possible to refine (4) by checking the kernel and NTPL verisons
4646// and only enabling the work-around for vulnerable environments.
4647
4648// utility to compute the abstime argument to timedwait:
4649// millis is the relative timeout time
4650// abstime will be the absolute timeout time
4651// TODO: replace compute_abstime() with unpackTime()
4652
4653static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4654  if (millis < 0)  millis = 0;
4655  struct timeval now;
4656  int status = gettimeofday(&now, NULL);
4657  assert(status == 0, "gettimeofday");
4658  jlong seconds = millis / 1000;
4659  millis %= 1000;
4660  if (seconds > 50000000) { // see man cond_timedwait(3T)
4661    seconds = 50000000;
4662  }
4663  abstime->tv_sec = now.tv_sec  + seconds;
4664  long       usec = now.tv_usec + millis * 1000;
4665  if (usec >= 1000000) {
4666    abstime->tv_sec += 1;
4667    usec -= 1000000;
4668  }
4669  abstime->tv_nsec = usec * 1000;
4670  return abstime;
4671}
4672
4673
4674// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4675// Conceptually TryPark() should be equivalent to park(0).
4676
4677int os::PlatformEvent::TryPark() {
4678  for (;;) {
4679    const int v = _Event ;
4680    guarantee ((v == 0) || (v == 1), "invariant") ;
4681    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4682  }
4683}
4684
4685void os::PlatformEvent::park() {       // AKA "down()"
4686  // Invariant: Only the thread associated with the Event/PlatformEvent
4687  // may call park().
4688  // TODO: assert that _Assoc != NULL or _Assoc == Self
4689  int v ;
4690  for (;;) {
4691      v = _Event ;
4692      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4693  }
4694  guarantee (v >= 0, "invariant") ;
4695  if (v == 0) {
4696     // Do this the hard way by blocking ...
4697     int status = pthread_mutex_lock(_mutex);
4698     assert_status(status == 0, status, "mutex_lock");
4699     guarantee (_nParked == 0, "invariant") ;
4700     ++ _nParked ;
4701     while (_Event < 0) {
4702        status = pthread_cond_wait(_cond, _mutex);
4703        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4704        // Treat this the same as if the wait was interrupted
4705        if (status == ETIME) { status = EINTR; }
4706        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4707     }
4708     -- _nParked ;
4709
4710    // In theory we could move the ST of 0 into _Event past the unlock(),
4711    // but then we'd need a MEMBAR after the ST.
4712    _Event = 0 ;
4713     status = pthread_mutex_unlock(_mutex);
4714     assert_status(status == 0, status, "mutex_unlock");
4715  }
4716  guarantee (_Event >= 0, "invariant") ;
4717}
4718
4719int os::PlatformEvent::park(jlong millis) {
4720  guarantee (_nParked == 0, "invariant") ;
4721
4722  int v ;
4723  for (;;) {
4724      v = _Event ;
4725      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4726  }
4727  guarantee (v >= 0, "invariant") ;
4728  if (v != 0) return OS_OK ;
4729
4730  // We do this the hard way, by blocking the thread.
4731  // Consider enforcing a minimum timeout value.
4732  struct timespec abst;
4733  compute_abstime(&abst, millis);
4734
4735  int ret = OS_TIMEOUT;
4736  int status = pthread_mutex_lock(_mutex);
4737  assert_status(status == 0, status, "mutex_lock");
4738  guarantee (_nParked == 0, "invariant") ;
4739  ++_nParked ;
4740
4741  // Object.wait(timo) will return because of
4742  // (a) notification
4743  // (b) timeout
4744  // (c) thread.interrupt
4745  //
4746  // Thread.interrupt and object.notify{All} both call Event::set.
4747  // That is, we treat thread.interrupt as a special case of notification.
4748  // The underlying Solaris implementation, cond_timedwait, admits
4749  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4750  // JVM from making those visible to Java code.  As such, we must
4751  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4752  //
4753  // TODO: properly differentiate simultaneous notify+interrupt.
4754  // In that case, we should propagate the notify to another waiter.
4755
4756  while (_Event < 0) {
4757    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4758    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4759      pthread_cond_destroy (_cond);
4760      pthread_cond_init (_cond, NULL) ;
4761    }
4762    assert_status(status == 0 || status == EINTR ||
4763                  status == ETIME || status == ETIMEDOUT,
4764                  status, "cond_timedwait");
4765    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4766    if (status == ETIME || status == ETIMEDOUT) break ;
4767    // We consume and ignore EINTR and spurious wakeups.
4768  }
4769  --_nParked ;
4770  if (_Event >= 0) {
4771     ret = OS_OK;
4772  }
4773  _Event = 0 ;
4774  status = pthread_mutex_unlock(_mutex);
4775  assert_status(status == 0, status, "mutex_unlock");
4776  assert (_nParked == 0, "invariant") ;
4777  return ret;
4778}
4779
4780void os::PlatformEvent::unpark() {
4781  int v, AnyWaiters ;
4782  for (;;) {
4783      v = _Event ;
4784      if (v > 0) {
4785         // The LD of _Event could have reordered or be satisfied
4786         // by a read-aside from this processor's write buffer.
4787         // To avoid problems execute a barrier and then
4788         // ratify the value.
4789         OrderAccess::fence() ;
4790         if (_Event == v) return ;
4791         continue ;
4792      }
4793      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4794  }
4795  if (v < 0) {
4796     // Wait for the thread associated with the event to vacate
4797     int status = pthread_mutex_lock(_mutex);
4798     assert_status(status == 0, status, "mutex_lock");
4799     AnyWaiters = _nParked ;
4800     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4801     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4802        AnyWaiters = 0 ;
4803        pthread_cond_signal (_cond);
4804     }
4805     status = pthread_mutex_unlock(_mutex);
4806     assert_status(status == 0, status, "mutex_unlock");
4807     if (AnyWaiters != 0) {
4808        status = pthread_cond_signal(_cond);
4809        assert_status(status == 0, status, "cond_signal");
4810     }
4811  }
4812
4813  // Note that we signal() _after dropping the lock for "immortal" Events.
4814  // This is safe and avoids a common class of  futile wakeups.  In rare
4815  // circumstances this can cause a thread to return prematurely from
4816  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4817  // simply re-test the condition and re-park itself.
4818}
4819
4820
4821// JSR166
4822// -------------------------------------------------------
4823
4824/*
4825 * The solaris and linux implementations of park/unpark are fairly
4826 * conservative for now, but can be improved. They currently use a
4827 * mutex/condvar pair, plus a a count.
4828 * Park decrements count if > 0, else does a condvar wait.  Unpark
4829 * sets count to 1 and signals condvar.  Only one thread ever waits
4830 * on the condvar. Contention seen when trying to park implies that someone
4831 * is unparking you, so don't wait. And spurious returns are fine, so there
4832 * is no need to track notifications.
4833 */
4834
4835
4836#define NANOSECS_PER_SEC 1000000000
4837#define NANOSECS_PER_MILLISEC 1000000
4838#define MAX_SECS 100000000
4839/*
4840 * This code is common to linux and solaris and will be moved to a
4841 * common place in dolphin.
4842 *
4843 * The passed in time value is either a relative time in nanoseconds
4844 * or an absolute time in milliseconds. Either way it has to be unpacked
4845 * into suitable seconds and nanoseconds components and stored in the
4846 * given timespec structure.
4847 * Given time is a 64-bit value and the time_t used in the timespec is only
4848 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4849 * overflow if times way in the future are given. Further on Solaris versions
4850 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4851 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4852 * As it will be 28 years before "now + 100000000" will overflow we can
4853 * ignore overflow and just impose a hard-limit on seconds using the value
4854 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4855 * years from "now".
4856 */
4857
4858static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4859  assert (time > 0, "convertTime");
4860
4861  struct timeval now;
4862  int status = gettimeofday(&now, NULL);
4863  assert(status == 0, "gettimeofday");
4864
4865  time_t max_secs = now.tv_sec + MAX_SECS;
4866
4867  if (isAbsolute) {
4868    jlong secs = time / 1000;
4869    if (secs > max_secs) {
4870      absTime->tv_sec = max_secs;
4871    }
4872    else {
4873      absTime->tv_sec = secs;
4874    }
4875    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4876  }
4877  else {
4878    jlong secs = time / NANOSECS_PER_SEC;
4879    if (secs >= MAX_SECS) {
4880      absTime->tv_sec = max_secs;
4881      absTime->tv_nsec = 0;
4882    }
4883    else {
4884      absTime->tv_sec = now.tv_sec + secs;
4885      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4886      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4887        absTime->tv_nsec -= NANOSECS_PER_SEC;
4888        ++absTime->tv_sec; // note: this must be <= max_secs
4889      }
4890    }
4891  }
4892  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4893  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4894  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4895  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4896}
4897
4898void Parker::park(bool isAbsolute, jlong time) {
4899  // Optional fast-path check:
4900  // Return immediately if a permit is available.
4901  if (_counter > 0) {
4902      _counter = 0 ;
4903      OrderAccess::fence();
4904      return ;
4905  }
4906
4907  Thread* thread = Thread::current();
4908  assert(thread->is_Java_thread(), "Must be JavaThread");
4909  JavaThread *jt = (JavaThread *)thread;
4910
4911  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4912  // Check interrupt before trying to wait
4913  if (Thread::is_interrupted(thread, false)) {
4914    return;
4915  }
4916
4917  // Next, demultiplex/decode time arguments
4918  timespec absTime;
4919  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4920    return;
4921  }
4922  if (time > 0) {
4923    unpackTime(&absTime, isAbsolute, time);
4924  }
4925
4926
4927  // Enter safepoint region
4928  // Beware of deadlocks such as 6317397.
4929  // The per-thread Parker:: mutex is a classic leaf-lock.
4930  // In particular a thread must never block on the Threads_lock while
4931  // holding the Parker:: mutex.  If safepoints are pending both the
4932  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4933  ThreadBlockInVM tbivm(jt);
4934
4935  // Don't wait if cannot get lock since interference arises from
4936  // unblocking.  Also. check interrupt before trying wait
4937  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4938    return;
4939  }
4940
4941  int status ;
4942  if (_counter > 0)  { // no wait needed
4943    _counter = 0;
4944    status = pthread_mutex_unlock(_mutex);
4945    assert (status == 0, "invariant") ;
4946    OrderAccess::fence();
4947    return;
4948  }
4949
4950#ifdef ASSERT
4951  // Don't catch signals while blocked; let the running threads have the signals.
4952  // (This allows a debugger to break into the running thread.)
4953  sigset_t oldsigs;
4954  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4955  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4956#endif
4957
4958  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4959  jt->set_suspend_equivalent();
4960  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4961
4962  if (time == 0) {
4963    status = pthread_cond_wait (_cond, _mutex) ;
4964  } else {
4965    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4966    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4967      pthread_cond_destroy (_cond) ;
4968      pthread_cond_init    (_cond, NULL);
4969    }
4970  }
4971  assert_status(status == 0 || status == EINTR ||
4972                status == ETIME || status == ETIMEDOUT,
4973                status, "cond_timedwait");
4974
4975#ifdef ASSERT
4976  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4977#endif
4978
4979  _counter = 0 ;
4980  status = pthread_mutex_unlock(_mutex) ;
4981  assert_status(status == 0, status, "invariant") ;
4982  // If externally suspended while waiting, re-suspend
4983  if (jt->handle_special_suspend_equivalent_condition()) {
4984    jt->java_suspend_self();
4985  }
4986
4987  OrderAccess::fence();
4988}
4989
4990void Parker::unpark() {
4991  int s, status ;
4992  status = pthread_mutex_lock(_mutex);
4993  assert (status == 0, "invariant") ;
4994  s = _counter;
4995  _counter = 1;
4996  if (s < 1) {
4997     if (WorkAroundNPTLTimedWaitHang) {
4998        status = pthread_cond_signal (_cond) ;
4999        assert (status == 0, "invariant") ;
5000        status = pthread_mutex_unlock(_mutex);
5001        assert (status == 0, "invariant") ;
5002     } else {
5003        status = pthread_mutex_unlock(_mutex);
5004        assert (status == 0, "invariant") ;
5005        status = pthread_cond_signal (_cond) ;
5006        assert (status == 0, "invariant") ;
5007     }
5008  } else {
5009    pthread_mutex_unlock(_mutex);
5010    assert (status == 0, "invariant") ;
5011  }
5012}
5013
5014
5015extern char** environ;
5016
5017#ifndef __NR_fork
5018#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5019#endif
5020
5021#ifndef __NR_execve
5022#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5023#endif
5024
5025// Run the specified command in a separate process. Return its exit value,
5026// or -1 on failure (e.g. can't fork a new process).
5027// Unlike system(), this function can be called from signal handler. It
5028// doesn't block SIGINT et al.
5029int os::fork_and_exec(char* cmd) {
5030  const char * argv[4] = {"sh", "-c", cmd, NULL};
5031
5032  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5033  // pthread_atfork handlers and reset pthread library. All we need is a
5034  // separate process to execve. Make a direct syscall to fork process.
5035  // On IA64 there's no fork syscall, we have to use fork() and hope for
5036  // the best...
5037  pid_t pid = NOT_IA64(syscall(__NR_fork);)
5038              IA64_ONLY(fork();)
5039
5040  if (pid < 0) {
5041    // fork failed
5042    return -1;
5043
5044  } else if (pid == 0) {
5045    // child process
5046
5047    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5048    // first to kill every thread on the thread list. Because this list is
5049    // not reset by fork() (see notes above), execve() will instead kill
5050    // every thread in the parent process. We know this is the only thread
5051    // in the new process, so make a system call directly.
5052    // IA64 should use normal execve() from glibc to match the glibc fork()
5053    // above.
5054    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5055    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5056
5057    // execve failed
5058    _exit(-1);
5059
5060  } else  {
5061    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5062    // care about the actual exit code, for now.
5063
5064    int status;
5065
5066    // Wait for the child process to exit.  This returns immediately if
5067    // the child has already exited. */
5068    while (waitpid(pid, &status, 0) < 0) {
5069        switch (errno) {
5070        case ECHILD: return 0;
5071        case EINTR: break;
5072        default: return -1;
5073        }
5074    }
5075
5076    if (WIFEXITED(status)) {
5077       // The child exited normally; get its exit code.
5078       return WEXITSTATUS(status);
5079    } else if (WIFSIGNALED(status)) {
5080       // The child exited because of a signal
5081       // The best value to return is 0x80 + signal number,
5082       // because that is what all Unix shells do, and because
5083       // it allows callers to distinguish between process exit and
5084       // process death by signal.
5085       return 0x80 + WTERMSIG(status);
5086    } else {
5087       // Unknown exit code; pass it through
5088       return status;
5089    }
5090  }
5091}
5092
5093// is_headless_jre()
5094//
5095// Test for the existence of libmawt in motif21 or xawt directories
5096// in order to report if we are running in a headless jre
5097//
5098bool os::is_headless_jre() {
5099    struct stat statbuf;
5100    char buf[MAXPATHLEN];
5101    char libmawtpath[MAXPATHLEN];
5102    const char *xawtstr  = "/xawt/libmawt.so";
5103    const char *motifstr = "/motif21/libmawt.so";
5104    char *p;
5105
5106    // Get path to libjvm.so
5107    os::jvm_path(buf, sizeof(buf));
5108
5109    // Get rid of libjvm.so
5110    p = strrchr(buf, '/');
5111    if (p == NULL) return false;
5112    else *p = '\0';
5113
5114    // Get rid of client or server
5115    p = strrchr(buf, '/');
5116    if (p == NULL) return false;
5117    else *p = '\0';
5118
5119    // check xawt/libmawt.so
5120    strcpy(libmawtpath, buf);
5121    strcat(libmawtpath, xawtstr);
5122    if (::stat(libmawtpath, &statbuf) == 0) return false;
5123
5124    // check motif21/libmawt.so
5125    strcpy(libmawtpath, buf);
5126    strcat(libmawtpath, motifstr);
5127    if (::stat(libmawtpath, &statbuf) == 0) return false;
5128
5129    return true;
5130}
5131
5132