os_linux.cpp revision 10367:1c53edac6621
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_linux.inline.hpp"
41#include "os_share_linux.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/init.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/objectMonitor.hpp"
55#include "runtime/orderAccess.inline.hpp"
56#include "runtime/osThread.hpp"
57#include "runtime/perfMemory.hpp"
58#include "runtime/sharedRuntime.hpp"
59#include "runtime/statSampler.hpp"
60#include "runtime/stubRoutines.hpp"
61#include "runtime/thread.inline.hpp"
62#include "runtime/threadCritical.hpp"
63#include "runtime/timer.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/elfFile.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/macros.hpp"
74#include "utilities/vmError.hpp"
75
76// put OS-includes here
77# include <sys/types.h>
78# include <sys/mman.h>
79# include <sys/stat.h>
80# include <sys/select.h>
81# include <pthread.h>
82# include <signal.h>
83# include <errno.h>
84# include <dlfcn.h>
85# include <stdio.h>
86# include <unistd.h>
87# include <sys/resource.h>
88# include <pthread.h>
89# include <sys/stat.h>
90# include <sys/time.h>
91# include <sys/times.h>
92# include <sys/utsname.h>
93# include <sys/socket.h>
94# include <sys/wait.h>
95# include <pwd.h>
96# include <poll.h>
97# include <semaphore.h>
98# include <fcntl.h>
99# include <string.h>
100# include <syscall.h>
101# include <sys/sysinfo.h>
102# include <gnu/libc-version.h>
103# include <sys/ipc.h>
104# include <sys/shm.h>
105# include <link.h>
106# include <stdint.h>
107# include <inttypes.h>
108# include <sys/ioctl.h>
109
110#ifndef _GNU_SOURCE
111  #define _GNU_SOURCE
112  #include <sched.h>
113  #undef _GNU_SOURCE
114#else
115  #include <sched.h>
116#endif
117
118// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
119// getrusage() is prepared to handle the associated failure.
120#ifndef RUSAGE_THREAD
121  #define RUSAGE_THREAD   (1)               /* only the calling thread */
122#endif
123
124#define MAX_PATH    (2 * K)
125
126#define MAX_SECS 100000000
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130
131#define LARGEPAGES_BIT (1 << 6)
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Linux::_physical_memory = 0;
135
136address   os::Linux::_initial_thread_stack_bottom = NULL;
137uintptr_t os::Linux::_initial_thread_stack_size   = 0;
138
139int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
142Mutex* os::Linux::_createThread_lock = NULL;
143pthread_t os::Linux::_main_thread;
144int os::Linux::_page_size = -1;
145const int os::Linux::_vm_default_page_size = (8 * K);
146bool os::Linux::_supports_fast_thread_cpu_time = false;
147const char * os::Linux::_glibc_version = NULL;
148const char * os::Linux::_libpthread_version = NULL;
149pthread_condattr_t os::Linux::_condattr[1];
150
151static jlong initial_time_count=0;
152
153static int clock_tics_per_sec = 100;
154
155// For diagnostics to print a message once. see run_periodic_checks
156static sigset_t check_signal_done;
157static bool check_signals = true;
158
159// Signal number used to suspend/resume a thread
160
161// do not use any signal number less than SIGSEGV, see 4355769
162static int SR_signum = SIGUSR2;
163sigset_t SR_sigset;
164
165// Declarations
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168// utility functions
169
170static int SR_initialize();
171
172julong os::available_memory() {
173  return Linux::available_memory();
174}
175
176julong os::Linux::available_memory() {
177  // values in struct sysinfo are "unsigned long"
178  struct sysinfo si;
179  sysinfo(&si);
180
181  return (julong)si.freeram * si.mem_unit;
182}
183
184julong os::physical_memory() {
185  return Linux::physical_memory();
186}
187
188// Return true if user is running as root.
189
190bool os::have_special_privileges() {
191  static bool init = false;
192  static bool privileges = false;
193  if (!init) {
194    privileges = (getuid() != geteuid()) || (getgid() != getegid());
195    init = true;
196  }
197  return privileges;
198}
199
200
201#ifndef SYS_gettid
202// i386: 224, ia64: 1105, amd64: 186, sparc 143
203  #ifdef __ia64__
204    #define SYS_gettid 1105
205  #else
206    #ifdef __i386__
207      #define SYS_gettid 224
208    #else
209      #ifdef __amd64__
210        #define SYS_gettid 186
211      #else
212        #ifdef __sparc__
213          #define SYS_gettid 143
214        #else
215          #error define gettid for the arch
216        #endif
217      #endif
218    #endif
219  #endif
220#endif
221
222// Cpu architecture string
223static char cpu_arch[] = HOTSPOT_LIB_ARCH;
224
225
226// pid_t gettid()
227//
228// Returns the kernel thread id of the currently running thread. Kernel
229// thread id is used to access /proc.
230pid_t os::Linux::gettid() {
231  int rslt = syscall(SYS_gettid);
232  assert(rslt != -1, "must be."); // old linuxthreads implementation?
233  return (pid_t)rslt;
234}
235
236// Most versions of linux have a bug where the number of processors are
237// determined by looking at the /proc file system.  In a chroot environment,
238// the system call returns 1.  This causes the VM to act as if it is
239// a single processor and elide locking (see is_MP() call).
240static bool unsafe_chroot_detected = false;
241static const char *unstable_chroot_error = "/proc file system not found.\n"
242                     "Java may be unstable running multithreaded in a chroot "
243                     "environment on Linux when /proc filesystem is not mounted.";
244
245void os::Linux::initialize_system_info() {
246  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
247  if (processor_count() == 1) {
248    pid_t pid = os::Linux::gettid();
249    char fname[32];
250    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
251    FILE *fp = fopen(fname, "r");
252    if (fp == NULL) {
253      unsafe_chroot_detected = true;
254    } else {
255      fclose(fp);
256    }
257  }
258  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
259  assert(processor_count() > 0, "linux error");
260}
261
262void os::init_system_properties_values() {
263  // The next steps are taken in the product version:
264  //
265  // Obtain the JAVA_HOME value from the location of libjvm.so.
266  // This library should be located at:
267  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
268  //
269  // If "/jre/lib/" appears at the right place in the path, then we
270  // assume libjvm.so is installed in a JDK and we use this path.
271  //
272  // Otherwise exit with message: "Could not create the Java virtual machine."
273  //
274  // The following extra steps are taken in the debugging version:
275  //
276  // If "/jre/lib/" does NOT appear at the right place in the path
277  // instead of exit check for $JAVA_HOME environment variable.
278  //
279  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
280  // then we append a fake suffix "hotspot/libjvm.so" to this path so
281  // it looks like libjvm.so is installed there
282  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
283  //
284  // Otherwise exit.
285  //
286  // Important note: if the location of libjvm.so changes this
287  // code needs to be changed accordingly.
288
289  // See ld(1):
290  //      The linker uses the following search paths to locate required
291  //      shared libraries:
292  //        1: ...
293  //        ...
294  //        7: The default directories, normally /lib and /usr/lib.
295#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
296  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
297#else
298  #define DEFAULT_LIBPATH "/lib:/usr/lib"
299#endif
300
301// Base path of extensions installed on the system.
302#define SYS_EXT_DIR     "/usr/java/packages"
303#define EXTENSIONS_DIR  "/lib/ext"
304
305  // Buffer that fits several sprintfs.
306  // Note that the space for the colon and the trailing null are provided
307  // by the nulls included by the sizeof operator.
308  const size_t bufsize =
309    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
310         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
311  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
312
313  // sysclasspath, java_home, dll_dir
314  {
315    char *pslash;
316    os::jvm_path(buf, bufsize);
317
318    // Found the full path to libjvm.so.
319    // Now cut the path to <java_home>/jre if we can.
320    pslash = strrchr(buf, '/');
321    if (pslash != NULL) {
322      *pslash = '\0';            // Get rid of /libjvm.so.
323    }
324    pslash = strrchr(buf, '/');
325    if (pslash != NULL) {
326      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
327    }
328    Arguments::set_dll_dir(buf);
329
330    if (pslash != NULL) {
331      pslash = strrchr(buf, '/');
332      if (pslash != NULL) {
333        *pslash = '\0';          // Get rid of /<arch>.
334        pslash = strrchr(buf, '/');
335        if (pslash != NULL) {
336          *pslash = '\0';        // Get rid of /lib.
337        }
338      }
339    }
340    Arguments::set_java_home(buf);
341    set_boot_path('/', ':');
342  }
343
344  // Where to look for native libraries.
345  //
346  // Note: Due to a legacy implementation, most of the library path
347  // is set in the launcher. This was to accomodate linking restrictions
348  // on legacy Linux implementations (which are no longer supported).
349  // Eventually, all the library path setting will be done here.
350  //
351  // However, to prevent the proliferation of improperly built native
352  // libraries, the new path component /usr/java/packages is added here.
353  // Eventually, all the library path setting will be done here.
354  {
355    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
356    // should always exist (until the legacy problem cited above is
357    // addressed).
358    const char *v = ::getenv("LD_LIBRARY_PATH");
359    const char *v_colon = ":";
360    if (v == NULL) { v = ""; v_colon = ""; }
361    // That's +1 for the colon and +1 for the trailing '\0'.
362    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
363                                                     strlen(v) + 1 +
364                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
365                                                     mtInternal);
366    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
367    Arguments::set_library_path(ld_library_path);
368    FREE_C_HEAP_ARRAY(char, ld_library_path);
369  }
370
371  // Extensions directories.
372  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
373  Arguments::set_ext_dirs(buf);
374
375  FREE_C_HEAP_ARRAY(char, buf);
376
377#undef DEFAULT_LIBPATH
378#undef SYS_EXT_DIR
379#undef EXTENSIONS_DIR
380}
381
382////////////////////////////////////////////////////////////////////////////////
383// breakpoint support
384
385void os::breakpoint() {
386  BREAKPOINT;
387}
388
389extern "C" void breakpoint() {
390  // use debugger to set breakpoint here
391}
392
393////////////////////////////////////////////////////////////////////////////////
394// signal support
395
396debug_only(static bool signal_sets_initialized = false);
397static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
398
399bool os::Linux::is_sig_ignored(int sig) {
400  struct sigaction oact;
401  sigaction(sig, (struct sigaction*)NULL, &oact);
402  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
403                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
404  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
405    return true;
406  } else {
407    return false;
408  }
409}
410
411void os::Linux::signal_sets_init() {
412  // Should also have an assertion stating we are still single-threaded.
413  assert(!signal_sets_initialized, "Already initialized");
414  // Fill in signals that are necessarily unblocked for all threads in
415  // the VM. Currently, we unblock the following signals:
416  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
417  //                         by -Xrs (=ReduceSignalUsage));
418  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
419  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
420  // the dispositions or masks wrt these signals.
421  // Programs embedding the VM that want to use the above signals for their
422  // own purposes must, at this time, use the "-Xrs" option to prevent
423  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
424  // (See bug 4345157, and other related bugs).
425  // In reality, though, unblocking these signals is really a nop, since
426  // these signals are not blocked by default.
427  sigemptyset(&unblocked_sigs);
428  sigemptyset(&allowdebug_blocked_sigs);
429  sigaddset(&unblocked_sigs, SIGILL);
430  sigaddset(&unblocked_sigs, SIGSEGV);
431  sigaddset(&unblocked_sigs, SIGBUS);
432  sigaddset(&unblocked_sigs, SIGFPE);
433#if defined(PPC64)
434  sigaddset(&unblocked_sigs, SIGTRAP);
435#endif
436  sigaddset(&unblocked_sigs, SR_signum);
437
438  if (!ReduceSignalUsage) {
439    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
442    }
443    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
444      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
445      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
446    }
447    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
448      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
449      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
450    }
451  }
452  // Fill in signals that are blocked by all but the VM thread.
453  sigemptyset(&vm_sigs);
454  if (!ReduceSignalUsage) {
455    sigaddset(&vm_sigs, BREAK_SIGNAL);
456  }
457  debug_only(signal_sets_initialized = true);
458
459}
460
461// These are signals that are unblocked while a thread is running Java.
462// (For some reason, they get blocked by default.)
463sigset_t* os::Linux::unblocked_signals() {
464  assert(signal_sets_initialized, "Not initialized");
465  return &unblocked_sigs;
466}
467
468// These are the signals that are blocked while a (non-VM) thread is
469// running Java. Only the VM thread handles these signals.
470sigset_t* os::Linux::vm_signals() {
471  assert(signal_sets_initialized, "Not initialized");
472  return &vm_sigs;
473}
474
475// These are signals that are blocked during cond_wait to allow debugger in
476sigset_t* os::Linux::allowdebug_blocked_signals() {
477  assert(signal_sets_initialized, "Not initialized");
478  return &allowdebug_blocked_sigs;
479}
480
481void os::Linux::hotspot_sigmask(Thread* thread) {
482
483  //Save caller's signal mask before setting VM signal mask
484  sigset_t caller_sigmask;
485  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
486
487  OSThread* osthread = thread->osthread();
488  osthread->set_caller_sigmask(caller_sigmask);
489
490  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
491
492  if (!ReduceSignalUsage) {
493    if (thread->is_VM_thread()) {
494      // Only the VM thread handles BREAK_SIGNAL ...
495      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
496    } else {
497      // ... all other threads block BREAK_SIGNAL
498      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
499    }
500  }
501}
502
503//////////////////////////////////////////////////////////////////////////////
504// detecting pthread library
505
506void os::Linux::libpthread_init() {
507  // Save glibc and pthread version strings.
508#if !defined(_CS_GNU_LIBC_VERSION) || \
509    !defined(_CS_GNU_LIBPTHREAD_VERSION)
510  #error "glibc too old (< 2.3.2)"
511#endif
512
513  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
514  assert(n > 0, "cannot retrieve glibc version");
515  char *str = (char *)malloc(n, mtInternal);
516  confstr(_CS_GNU_LIBC_VERSION, str, n);
517  os::Linux::set_glibc_version(str);
518
519  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
520  assert(n > 0, "cannot retrieve pthread version");
521  str = (char *)malloc(n, mtInternal);
522  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
523  os::Linux::set_libpthread_version(str);
524}
525
526/////////////////////////////////////////////////////////////////////////////
527// thread stack expansion
528
529// os::Linux::manually_expand_stack() takes care of expanding the thread
530// stack. Note that this is normally not needed: pthread stacks allocate
531// thread stack using mmap() without MAP_NORESERVE, so the stack is already
532// committed. Therefore it is not necessary to expand the stack manually.
533//
534// Manually expanding the stack was historically needed on LinuxThreads
535// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
536// it is kept to deal with very rare corner cases:
537//
538// For one, user may run the VM on an own implementation of threads
539// whose stacks are - like the old LinuxThreads - implemented using
540// mmap(MAP_GROWSDOWN).
541//
542// Also, this coding may be needed if the VM is running on the primordial
543// thread. Normally we avoid running on the primordial thread; however,
544// user may still invoke the VM on the primordial thread.
545//
546// The following historical comment describes the details about running
547// on a thread stack allocated with mmap(MAP_GROWSDOWN):
548
549
550// Force Linux kernel to expand current thread stack. If "bottom" is close
551// to the stack guard, caller should block all signals.
552//
553// MAP_GROWSDOWN:
554//   A special mmap() flag that is used to implement thread stacks. It tells
555//   kernel that the memory region should extend downwards when needed. This
556//   allows early versions of LinuxThreads to only mmap the first few pages
557//   when creating a new thread. Linux kernel will automatically expand thread
558//   stack as needed (on page faults).
559//
560//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
561//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
562//   region, it's hard to tell if the fault is due to a legitimate stack
563//   access or because of reading/writing non-exist memory (e.g. buffer
564//   overrun). As a rule, if the fault happens below current stack pointer,
565//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
566//   application (see Linux kernel fault.c).
567//
568//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
569//   stack overflow detection.
570//
571//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
572//   not use MAP_GROWSDOWN.
573//
574// To get around the problem and allow stack banging on Linux, we need to
575// manually expand thread stack after receiving the SIGSEGV.
576//
577// There are two ways to expand thread stack to address "bottom", we used
578// both of them in JVM before 1.5:
579//   1. adjust stack pointer first so that it is below "bottom", and then
580//      touch "bottom"
581//   2. mmap() the page in question
582//
583// Now alternate signal stack is gone, it's harder to use 2. For instance,
584// if current sp is already near the lower end of page 101, and we need to
585// call mmap() to map page 100, it is possible that part of the mmap() frame
586// will be placed in page 100. When page 100 is mapped, it is zero-filled.
587// That will destroy the mmap() frame and cause VM to crash.
588//
589// The following code works by adjusting sp first, then accessing the "bottom"
590// page to force a page fault. Linux kernel will then automatically expand the
591// stack mapping.
592//
593// _expand_stack_to() assumes its frame size is less than page size, which
594// should always be true if the function is not inlined.
595
596#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
597  #define NOINLINE
598#else
599  #define NOINLINE __attribute__ ((noinline))
600#endif
601
602static void _expand_stack_to(address bottom) NOINLINE;
603
604static void _expand_stack_to(address bottom) {
605  address sp;
606  size_t size;
607  volatile char *p;
608
609  // Adjust bottom to point to the largest address within the same page, it
610  // gives us a one-page buffer if alloca() allocates slightly more memory.
611  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
612  bottom += os::Linux::page_size() - 1;
613
614  // sp might be slightly above current stack pointer; if that's the case, we
615  // will alloca() a little more space than necessary, which is OK. Don't use
616  // os::current_stack_pointer(), as its result can be slightly below current
617  // stack pointer, causing us to not alloca enough to reach "bottom".
618  sp = (address)&sp;
619
620  if (sp > bottom) {
621    size = sp - bottom;
622    p = (volatile char *)alloca(size);
623    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
624    p[0] = '\0';
625  }
626}
627
628bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
629  assert(t!=NULL, "just checking");
630  assert(t->osthread()->expanding_stack(), "expand should be set");
631  assert(t->stack_base() != NULL, "stack_base was not initialized");
632
633  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
634    sigset_t mask_all, old_sigset;
635    sigfillset(&mask_all);
636    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
637    _expand_stack_to(addr);
638    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
639    return true;
640  }
641  return false;
642}
643
644//////////////////////////////////////////////////////////////////////////////
645// create new thread
646
647// Thread start routine for all newly created threads
648static void *java_start(Thread *thread) {
649  // Try to randomize the cache line index of hot stack frames.
650  // This helps when threads of the same stack traces evict each other's
651  // cache lines. The threads can be either from the same JVM instance, or
652  // from different JVM instances. The benefit is especially true for
653  // processors with hyperthreading technology.
654  static int counter = 0;
655  int pid = os::current_process_id();
656  alloca(((pid ^ counter++) & 7) * 128);
657
658  thread->initialize_thread_current();
659
660  OSThread* osthread = thread->osthread();
661  Monitor* sync = osthread->startThread_lock();
662
663  osthread->set_thread_id(os::current_thread_id());
664
665  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
666    os::current_thread_id(), (uintx) pthread_self());
667
668  if (UseNUMA) {
669    int lgrp_id = os::numa_get_group_id();
670    if (lgrp_id != -1) {
671      thread->set_lgrp_id(lgrp_id);
672    }
673  }
674  // initialize signal mask for this thread
675  os::Linux::hotspot_sigmask(thread);
676
677  // initialize floating point control register
678  os::Linux::init_thread_fpu_state();
679
680  // handshaking with parent thread
681  {
682    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
683
684    // notify parent thread
685    osthread->set_state(INITIALIZED);
686    sync->notify_all();
687
688    // wait until os::start_thread()
689    while (osthread->get_state() == INITIALIZED) {
690      sync->wait(Mutex::_no_safepoint_check_flag);
691    }
692  }
693
694  // call one more level start routine
695  thread->run();
696
697  log_info(os, thread)("Thread finished (tid " UINTX_FORMAT ", pthread id " UINTX_FORMAT ").",
698    os::current_thread_id(), (uintx) pthread_self());
699
700  return 0;
701}
702
703bool os::create_thread(Thread* thread, ThreadType thr_type,
704                       size_t stack_size) {
705  assert(thread->osthread() == NULL, "caller responsible");
706
707  // Allocate the OSThread object
708  OSThread* osthread = new OSThread(NULL, NULL);
709  if (osthread == NULL) {
710    return false;
711  }
712
713  // set the correct thread state
714  osthread->set_thread_type(thr_type);
715
716  // Initial state is ALLOCATED but not INITIALIZED
717  osthread->set_state(ALLOCATED);
718
719  thread->set_osthread(osthread);
720
721  // init thread attributes
722  pthread_attr_t attr;
723  pthread_attr_init(&attr);
724  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
725
726  // stack size
727  // calculate stack size if it's not specified by caller
728  if (stack_size == 0) {
729    stack_size = os::Linux::default_stack_size(thr_type);
730
731    switch (thr_type) {
732    case os::java_thread:
733      // Java threads use ThreadStackSize which default value can be
734      // changed with the flag -Xss
735      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
736      stack_size = JavaThread::stack_size_at_create();
737      break;
738    case os::compiler_thread:
739      if (CompilerThreadStackSize > 0) {
740        stack_size = (size_t)(CompilerThreadStackSize * K);
741        break;
742      } // else fall through:
743        // use VMThreadStackSize if CompilerThreadStackSize is not defined
744    case os::vm_thread:
745    case os::pgc_thread:
746    case os::cgc_thread:
747    case os::watcher_thread:
748      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
749      break;
750    }
751  }
752
753  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
754  pthread_attr_setstacksize(&attr, stack_size);
755
756  // glibc guard page
757  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
758
759  ThreadState state;
760
761  {
762    pthread_t tid;
763    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
764
765    char buf[64];
766    if (ret == 0) {
767      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
768        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
769    } else {
770      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
771        strerror(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
772    }
773
774    pthread_attr_destroy(&attr);
775
776    if (ret != 0) {
777      // Need to clean up stuff we've allocated so far
778      thread->set_osthread(NULL);
779      delete osthread;
780      return false;
781    }
782
783    // Store pthread info into the OSThread
784    osthread->set_pthread_id(tid);
785
786    // Wait until child thread is either initialized or aborted
787    {
788      Monitor* sync_with_child = osthread->startThread_lock();
789      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
790      while ((state = osthread->get_state()) == ALLOCATED) {
791        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
792      }
793    }
794  }
795
796  // Aborted due to thread limit being reached
797  if (state == ZOMBIE) {
798    thread->set_osthread(NULL);
799    delete osthread;
800    return false;
801  }
802
803  // The thread is returned suspended (in state INITIALIZED),
804  // and is started higher up in the call chain
805  assert(state == INITIALIZED, "race condition");
806  return true;
807}
808
809/////////////////////////////////////////////////////////////////////////////
810// attach existing thread
811
812// bootstrap the main thread
813bool os::create_main_thread(JavaThread* thread) {
814  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
815  return create_attached_thread(thread);
816}
817
818bool os::create_attached_thread(JavaThread* thread) {
819#ifdef ASSERT
820  thread->verify_not_published();
821#endif
822
823  // Allocate the OSThread object
824  OSThread* osthread = new OSThread(NULL, NULL);
825
826  if (osthread == NULL) {
827    return false;
828  }
829
830  // Store pthread info into the OSThread
831  osthread->set_thread_id(os::Linux::gettid());
832  osthread->set_pthread_id(::pthread_self());
833
834  // initialize floating point control register
835  os::Linux::init_thread_fpu_state();
836
837  // Initial thread state is RUNNABLE
838  osthread->set_state(RUNNABLE);
839
840  thread->set_osthread(osthread);
841
842  if (UseNUMA) {
843    int lgrp_id = os::numa_get_group_id();
844    if (lgrp_id != -1) {
845      thread->set_lgrp_id(lgrp_id);
846    }
847  }
848
849  if (os::Linux::is_initial_thread()) {
850    // If current thread is initial thread, its stack is mapped on demand,
851    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
852    // the entire stack region to avoid SEGV in stack banging.
853    // It is also useful to get around the heap-stack-gap problem on SuSE
854    // kernel (see 4821821 for details). We first expand stack to the top
855    // of yellow zone, then enable stack yellow zone (order is significant,
856    // enabling yellow zone first will crash JVM on SuSE Linux), so there
857    // is no gap between the last two virtual memory regions.
858
859    JavaThread *jt = (JavaThread *)thread;
860    address addr = jt->stack_reserved_zone_base();
861    assert(addr != NULL, "initialization problem?");
862    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
863
864    osthread->set_expanding_stack();
865    os::Linux::manually_expand_stack(jt, addr);
866    osthread->clear_expanding_stack();
867  }
868
869  // initialize signal mask for this thread
870  // and save the caller's signal mask
871  os::Linux::hotspot_sigmask(thread);
872
873  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
874    os::current_thread_id(), (uintx) pthread_self());
875
876  return true;
877}
878
879void os::pd_start_thread(Thread* thread) {
880  OSThread * osthread = thread->osthread();
881  assert(osthread->get_state() != INITIALIZED, "just checking");
882  Monitor* sync_with_child = osthread->startThread_lock();
883  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
884  sync_with_child->notify();
885}
886
887// Free Linux resources related to the OSThread
888void os::free_thread(OSThread* osthread) {
889  assert(osthread != NULL, "osthread not set");
890
891  if (Thread::current()->osthread() == osthread) {
892    // Restore caller's signal mask
893    sigset_t sigmask = osthread->caller_sigmask();
894    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
895  }
896
897  delete osthread;
898}
899
900//////////////////////////////////////////////////////////////////////////////
901// initial thread
902
903// Check if current thread is the initial thread, similar to Solaris thr_main.
904bool os::Linux::is_initial_thread(void) {
905  char dummy;
906  // If called before init complete, thread stack bottom will be null.
907  // Can be called if fatal error occurs before initialization.
908  if (initial_thread_stack_bottom() == NULL) return false;
909  assert(initial_thread_stack_bottom() != NULL &&
910         initial_thread_stack_size()   != 0,
911         "os::init did not locate initial thread's stack region");
912  if ((address)&dummy >= initial_thread_stack_bottom() &&
913      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
914    return true;
915  } else {
916    return false;
917  }
918}
919
920// Find the virtual memory area that contains addr
921static bool find_vma(address addr, address* vma_low, address* vma_high) {
922  FILE *fp = fopen("/proc/self/maps", "r");
923  if (fp) {
924    address low, high;
925    while (!feof(fp)) {
926      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
927        if (low <= addr && addr < high) {
928          if (vma_low)  *vma_low  = low;
929          if (vma_high) *vma_high = high;
930          fclose(fp);
931          return true;
932        }
933      }
934      for (;;) {
935        int ch = fgetc(fp);
936        if (ch == EOF || ch == (int)'\n') break;
937      }
938    }
939    fclose(fp);
940  }
941  return false;
942}
943
944// Locate initial thread stack. This special handling of initial thread stack
945// is needed because pthread_getattr_np() on most (all?) Linux distros returns
946// bogus value for initial thread.
947void os::Linux::capture_initial_stack(size_t max_size) {
948  // stack size is the easy part, get it from RLIMIT_STACK
949  size_t stack_size;
950  struct rlimit rlim;
951  getrlimit(RLIMIT_STACK, &rlim);
952  stack_size = rlim.rlim_cur;
953
954  // 6308388: a bug in ld.so will relocate its own .data section to the
955  //   lower end of primordial stack; reduce ulimit -s value a little bit
956  //   so we won't install guard page on ld.so's data section.
957  stack_size -= 2 * page_size();
958
959  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
960  //   7.1, in both cases we will get 2G in return value.
961  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
962  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
963  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
964  //   in case other parts in glibc still assumes 2M max stack size.
965  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
966  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
967  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
968    stack_size = 2 * K * K IA64_ONLY(*2);
969  }
970  // Try to figure out where the stack base (top) is. This is harder.
971  //
972  // When an application is started, glibc saves the initial stack pointer in
973  // a global variable "__libc_stack_end", which is then used by system
974  // libraries. __libc_stack_end should be pretty close to stack top. The
975  // variable is available since the very early days. However, because it is
976  // a private interface, it could disappear in the future.
977  //
978  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
979  // to __libc_stack_end, it is very close to stack top, but isn't the real
980  // stack top. Note that /proc may not exist if VM is running as a chroot
981  // program, so reading /proc/<pid>/stat could fail. Also the contents of
982  // /proc/<pid>/stat could change in the future (though unlikely).
983  //
984  // We try __libc_stack_end first. If that doesn't work, look for
985  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
986  // as a hint, which should work well in most cases.
987
988  uintptr_t stack_start;
989
990  // try __libc_stack_end first
991  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
992  if (p && *p) {
993    stack_start = *p;
994  } else {
995    // see if we can get the start_stack field from /proc/self/stat
996    FILE *fp;
997    int pid;
998    char state;
999    int ppid;
1000    int pgrp;
1001    int session;
1002    int nr;
1003    int tpgrp;
1004    unsigned long flags;
1005    unsigned long minflt;
1006    unsigned long cminflt;
1007    unsigned long majflt;
1008    unsigned long cmajflt;
1009    unsigned long utime;
1010    unsigned long stime;
1011    long cutime;
1012    long cstime;
1013    long prio;
1014    long nice;
1015    long junk;
1016    long it_real;
1017    uintptr_t start;
1018    uintptr_t vsize;
1019    intptr_t rss;
1020    uintptr_t rsslim;
1021    uintptr_t scodes;
1022    uintptr_t ecode;
1023    int i;
1024
1025    // Figure what the primordial thread stack base is. Code is inspired
1026    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1027    // followed by command name surrounded by parentheses, state, etc.
1028    char stat[2048];
1029    int statlen;
1030
1031    fp = fopen("/proc/self/stat", "r");
1032    if (fp) {
1033      statlen = fread(stat, 1, 2047, fp);
1034      stat[statlen] = '\0';
1035      fclose(fp);
1036
1037      // Skip pid and the command string. Note that we could be dealing with
1038      // weird command names, e.g. user could decide to rename java launcher
1039      // to "java 1.4.2 :)", then the stat file would look like
1040      //                1234 (java 1.4.2 :)) R ... ...
1041      // We don't really need to know the command string, just find the last
1042      // occurrence of ")" and then start parsing from there. See bug 4726580.
1043      char * s = strrchr(stat, ')');
1044
1045      i = 0;
1046      if (s) {
1047        // Skip blank chars
1048        do { s++; } while (s && isspace(*s));
1049
1050#define _UFM UINTX_FORMAT
1051#define _DFM INTX_FORMAT
1052
1053        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1054        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1055        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1056                   &state,          // 3  %c
1057                   &ppid,           // 4  %d
1058                   &pgrp,           // 5  %d
1059                   &session,        // 6  %d
1060                   &nr,             // 7  %d
1061                   &tpgrp,          // 8  %d
1062                   &flags,          // 9  %lu
1063                   &minflt,         // 10 %lu
1064                   &cminflt,        // 11 %lu
1065                   &majflt,         // 12 %lu
1066                   &cmajflt,        // 13 %lu
1067                   &utime,          // 14 %lu
1068                   &stime,          // 15 %lu
1069                   &cutime,         // 16 %ld
1070                   &cstime,         // 17 %ld
1071                   &prio,           // 18 %ld
1072                   &nice,           // 19 %ld
1073                   &junk,           // 20 %ld
1074                   &it_real,        // 21 %ld
1075                   &start,          // 22 UINTX_FORMAT
1076                   &vsize,          // 23 UINTX_FORMAT
1077                   &rss,            // 24 INTX_FORMAT
1078                   &rsslim,         // 25 UINTX_FORMAT
1079                   &scodes,         // 26 UINTX_FORMAT
1080                   &ecode,          // 27 UINTX_FORMAT
1081                   &stack_start);   // 28 UINTX_FORMAT
1082      }
1083
1084#undef _UFM
1085#undef _DFM
1086
1087      if (i != 28 - 2) {
1088        assert(false, "Bad conversion from /proc/self/stat");
1089        // product mode - assume we are the initial thread, good luck in the
1090        // embedded case.
1091        warning("Can't detect initial thread stack location - bad conversion");
1092        stack_start = (uintptr_t) &rlim;
1093      }
1094    } else {
1095      // For some reason we can't open /proc/self/stat (for example, running on
1096      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1097      // most cases, so don't abort:
1098      warning("Can't detect initial thread stack location - no /proc/self/stat");
1099      stack_start = (uintptr_t) &rlim;
1100    }
1101  }
1102
1103  // Now we have a pointer (stack_start) very close to the stack top, the
1104  // next thing to do is to figure out the exact location of stack top. We
1105  // can find out the virtual memory area that contains stack_start by
1106  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1107  // and its upper limit is the real stack top. (again, this would fail if
1108  // running inside chroot, because /proc may not exist.)
1109
1110  uintptr_t stack_top;
1111  address low, high;
1112  if (find_vma((address)stack_start, &low, &high)) {
1113    // success, "high" is the true stack top. (ignore "low", because initial
1114    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1115    stack_top = (uintptr_t)high;
1116  } else {
1117    // failed, likely because /proc/self/maps does not exist
1118    warning("Can't detect initial thread stack location - find_vma failed");
1119    // best effort: stack_start is normally within a few pages below the real
1120    // stack top, use it as stack top, and reduce stack size so we won't put
1121    // guard page outside stack.
1122    stack_top = stack_start;
1123    stack_size -= 16 * page_size();
1124  }
1125
1126  // stack_top could be partially down the page so align it
1127  stack_top = align_size_up(stack_top, page_size());
1128
1129  if (max_size && stack_size > max_size) {
1130    _initial_thread_stack_size = max_size;
1131  } else {
1132    _initial_thread_stack_size = stack_size;
1133  }
1134
1135  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1136  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1137}
1138
1139////////////////////////////////////////////////////////////////////////////////
1140// time support
1141
1142// Time since start-up in seconds to a fine granularity.
1143// Used by VMSelfDestructTimer and the MemProfiler.
1144double os::elapsedTime() {
1145
1146  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1147}
1148
1149jlong os::elapsed_counter() {
1150  return javaTimeNanos() - initial_time_count;
1151}
1152
1153jlong os::elapsed_frequency() {
1154  return NANOSECS_PER_SEC; // nanosecond resolution
1155}
1156
1157bool os::supports_vtime() { return true; }
1158bool os::enable_vtime()   { return false; }
1159bool os::vtime_enabled()  { return false; }
1160
1161double os::elapsedVTime() {
1162  struct rusage usage;
1163  int retval = getrusage(RUSAGE_THREAD, &usage);
1164  if (retval == 0) {
1165    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1166  } else {
1167    // better than nothing, but not much
1168    return elapsedTime();
1169  }
1170}
1171
1172jlong os::javaTimeMillis() {
1173  timeval time;
1174  int status = gettimeofday(&time, NULL);
1175  assert(status != -1, "linux error");
1176  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1177}
1178
1179void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1180  timeval time;
1181  int status = gettimeofday(&time, NULL);
1182  assert(status != -1, "linux error");
1183  seconds = jlong(time.tv_sec);
1184  nanos = jlong(time.tv_usec) * 1000;
1185}
1186
1187
1188#ifndef CLOCK_MONOTONIC
1189  #define CLOCK_MONOTONIC (1)
1190#endif
1191
1192void os::Linux::clock_init() {
1193  // we do dlopen's in this particular order due to bug in linux
1194  // dynamical loader (see 6348968) leading to crash on exit
1195  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1196  if (handle == NULL) {
1197    handle = dlopen("librt.so", RTLD_LAZY);
1198  }
1199
1200  if (handle) {
1201    int (*clock_getres_func)(clockid_t, struct timespec*) =
1202           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1203    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1204           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1205    if (clock_getres_func && clock_gettime_func) {
1206      // See if monotonic clock is supported by the kernel. Note that some
1207      // early implementations simply return kernel jiffies (updated every
1208      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1209      // for nano time (though the monotonic property is still nice to have).
1210      // It's fixed in newer kernels, however clock_getres() still returns
1211      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1212      // resolution for now. Hopefully as people move to new kernels, this
1213      // won't be a problem.
1214      struct timespec res;
1215      struct timespec tp;
1216      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1217          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1218        // yes, monotonic clock is supported
1219        _clock_gettime = clock_gettime_func;
1220        return;
1221      } else {
1222        // close librt if there is no monotonic clock
1223        dlclose(handle);
1224      }
1225    }
1226  }
1227  warning("No monotonic clock was available - timed services may " \
1228          "be adversely affected if the time-of-day clock changes");
1229}
1230
1231#ifndef SYS_clock_getres
1232  #if defined(IA32) || defined(AMD64)
1233    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1234    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235  #else
1236    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1237    #define sys_clock_getres(x,y)  -1
1238  #endif
1239#else
1240  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241#endif
1242
1243void os::Linux::fast_thread_clock_init() {
1244  if (!UseLinuxPosixThreadCPUClocks) {
1245    return;
1246  }
1247  clockid_t clockid;
1248  struct timespec tp;
1249  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1250      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1251
1252  // Switch to using fast clocks for thread cpu time if
1253  // the sys_clock_getres() returns 0 error code.
1254  // Note, that some kernels may support the current thread
1255  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1256  // returned by the pthread_getcpuclockid().
1257  // If the fast Posix clocks are supported then the sys_clock_getres()
1258  // must return at least tp.tv_sec == 0 which means a resolution
1259  // better than 1 sec. This is extra check for reliability.
1260
1261  if (pthread_getcpuclockid_func &&
1262      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1263      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1264    _supports_fast_thread_cpu_time = true;
1265    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1266  }
1267}
1268
1269jlong os::javaTimeNanos() {
1270  if (os::supports_monotonic_clock()) {
1271    struct timespec tp;
1272    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1273    assert(status == 0, "gettime error");
1274    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1275    return result;
1276  } else {
1277    timeval time;
1278    int status = gettimeofday(&time, NULL);
1279    assert(status != -1, "linux error");
1280    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1281    return 1000 * usecs;
1282  }
1283}
1284
1285void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1286  if (os::supports_monotonic_clock()) {
1287    info_ptr->max_value = ALL_64_BITS;
1288
1289    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1290    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1291    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1292  } else {
1293    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1294    info_ptr->max_value = ALL_64_BITS;
1295
1296    // gettimeofday is a real time clock so it skips
1297    info_ptr->may_skip_backward = true;
1298    info_ptr->may_skip_forward = true;
1299  }
1300
1301  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1302}
1303
1304// Return the real, user, and system times in seconds from an
1305// arbitrary fixed point in the past.
1306bool os::getTimesSecs(double* process_real_time,
1307                      double* process_user_time,
1308                      double* process_system_time) {
1309  struct tms ticks;
1310  clock_t real_ticks = times(&ticks);
1311
1312  if (real_ticks == (clock_t) (-1)) {
1313    return false;
1314  } else {
1315    double ticks_per_second = (double) clock_tics_per_sec;
1316    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1317    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1318    *process_real_time = ((double) real_ticks) / ticks_per_second;
1319
1320    return true;
1321  }
1322}
1323
1324
1325char * os::local_time_string(char *buf, size_t buflen) {
1326  struct tm t;
1327  time_t long_time;
1328  time(&long_time);
1329  localtime_r(&long_time, &t);
1330  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1331               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1332               t.tm_hour, t.tm_min, t.tm_sec);
1333  return buf;
1334}
1335
1336struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1337  return localtime_r(clock, res);
1338}
1339
1340////////////////////////////////////////////////////////////////////////////////
1341// runtime exit support
1342
1343// Note: os::shutdown() might be called very early during initialization, or
1344// called from signal handler. Before adding something to os::shutdown(), make
1345// sure it is async-safe and can handle partially initialized VM.
1346void os::shutdown() {
1347
1348  // allow PerfMemory to attempt cleanup of any persistent resources
1349  perfMemory_exit();
1350
1351  // needs to remove object in file system
1352  AttachListener::abort();
1353
1354  // flush buffered output, finish log files
1355  ostream_abort();
1356
1357  // Check for abort hook
1358  abort_hook_t abort_hook = Arguments::abort_hook();
1359  if (abort_hook != NULL) {
1360    abort_hook();
1361  }
1362
1363}
1364
1365// Note: os::abort() might be called very early during initialization, or
1366// called from signal handler. Before adding something to os::abort(), make
1367// sure it is async-safe and can handle partially initialized VM.
1368void os::abort(bool dump_core, void* siginfo, const void* context) {
1369  os::shutdown();
1370  if (dump_core) {
1371#ifndef PRODUCT
1372    fdStream out(defaultStream::output_fd());
1373    out.print_raw("Current thread is ");
1374    char buf[16];
1375    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1376    out.print_raw_cr(buf);
1377    out.print_raw_cr("Dumping core ...");
1378#endif
1379    ::abort(); // dump core
1380  }
1381
1382  ::exit(1);
1383}
1384
1385// Die immediately, no exit hook, no abort hook, no cleanup.
1386void os::die() {
1387  ::abort();
1388}
1389
1390
1391// This method is a copy of JDK's sysGetLastErrorString
1392// from src/solaris/hpi/src/system_md.c
1393
1394size_t os::lasterror(char *buf, size_t len) {
1395  if (errno == 0)  return 0;
1396
1397  const char *s = ::strerror(errno);
1398  size_t n = ::strlen(s);
1399  if (n >= len) {
1400    n = len - 1;
1401  }
1402  ::strncpy(buf, s, n);
1403  buf[n] = '\0';
1404  return n;
1405}
1406
1407// thread_id is kernel thread id (similar to Solaris LWP id)
1408intx os::current_thread_id() { return os::Linux::gettid(); }
1409int os::current_process_id() {
1410  return ::getpid();
1411}
1412
1413// DLL functions
1414
1415const char* os::dll_file_extension() { return ".so"; }
1416
1417// This must be hard coded because it's the system's temporary
1418// directory not the java application's temp directory, ala java.io.tmpdir.
1419const char* os::get_temp_directory() { return "/tmp"; }
1420
1421static bool file_exists(const char* filename) {
1422  struct stat statbuf;
1423  if (filename == NULL || strlen(filename) == 0) {
1424    return false;
1425  }
1426  return os::stat(filename, &statbuf) == 0;
1427}
1428
1429bool os::dll_build_name(char* buffer, size_t buflen,
1430                        const char* pname, const char* fname) {
1431  bool retval = false;
1432  // Copied from libhpi
1433  const size_t pnamelen = pname ? strlen(pname) : 0;
1434
1435  // Return error on buffer overflow.
1436  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1437    return retval;
1438  }
1439
1440  if (pnamelen == 0) {
1441    snprintf(buffer, buflen, "lib%s.so", fname);
1442    retval = true;
1443  } else if (strchr(pname, *os::path_separator()) != NULL) {
1444    int n;
1445    char** pelements = split_path(pname, &n);
1446    if (pelements == NULL) {
1447      return false;
1448    }
1449    for (int i = 0; i < n; i++) {
1450      // Really shouldn't be NULL, but check can't hurt
1451      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1452        continue; // skip the empty path values
1453      }
1454      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1455      if (file_exists(buffer)) {
1456        retval = true;
1457        break;
1458      }
1459    }
1460    // release the storage
1461    for (int i = 0; i < n; i++) {
1462      if (pelements[i] != NULL) {
1463        FREE_C_HEAP_ARRAY(char, pelements[i]);
1464      }
1465    }
1466    if (pelements != NULL) {
1467      FREE_C_HEAP_ARRAY(char*, pelements);
1468    }
1469  } else {
1470    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1471    retval = true;
1472  }
1473  return retval;
1474}
1475
1476// check if addr is inside libjvm.so
1477bool os::address_is_in_vm(address addr) {
1478  static address libjvm_base_addr;
1479  Dl_info dlinfo;
1480
1481  if (libjvm_base_addr == NULL) {
1482    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1483      libjvm_base_addr = (address)dlinfo.dli_fbase;
1484    }
1485    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1486  }
1487
1488  if (dladdr((void *)addr, &dlinfo) != 0) {
1489    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1490  }
1491
1492  return false;
1493}
1494
1495bool os::dll_address_to_function_name(address addr, char *buf,
1496                                      int buflen, int *offset,
1497                                      bool demangle) {
1498  // buf is not optional, but offset is optional
1499  assert(buf != NULL, "sanity check");
1500
1501  Dl_info dlinfo;
1502
1503  if (dladdr((void*)addr, &dlinfo) != 0) {
1504    // see if we have a matching symbol
1505    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1506      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1507        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1508      }
1509      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1510      return true;
1511    }
1512    // no matching symbol so try for just file info
1513    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1514      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1515                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1516        return true;
1517      }
1518    }
1519  }
1520
1521  buf[0] = '\0';
1522  if (offset != NULL) *offset = -1;
1523  return false;
1524}
1525
1526struct _address_to_library_name {
1527  address addr;          // input : memory address
1528  size_t  buflen;        //         size of fname
1529  char*   fname;         // output: library name
1530  address base;          //         library base addr
1531};
1532
1533static int address_to_library_name_callback(struct dl_phdr_info *info,
1534                                            size_t size, void *data) {
1535  int i;
1536  bool found = false;
1537  address libbase = NULL;
1538  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1539
1540  // iterate through all loadable segments
1541  for (i = 0; i < info->dlpi_phnum; i++) {
1542    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1543    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1544      // base address of a library is the lowest address of its loaded
1545      // segments.
1546      if (libbase == NULL || libbase > segbase) {
1547        libbase = segbase;
1548      }
1549      // see if 'addr' is within current segment
1550      if (segbase <= d->addr &&
1551          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1552        found = true;
1553      }
1554    }
1555  }
1556
1557  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1558  // so dll_address_to_library_name() can fall through to use dladdr() which
1559  // can figure out executable name from argv[0].
1560  if (found && info->dlpi_name && info->dlpi_name[0]) {
1561    d->base = libbase;
1562    if (d->fname) {
1563      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1564    }
1565    return 1;
1566  }
1567  return 0;
1568}
1569
1570bool os::dll_address_to_library_name(address addr, char* buf,
1571                                     int buflen, int* offset) {
1572  // buf is not optional, but offset is optional
1573  assert(buf != NULL, "sanity check");
1574
1575  Dl_info dlinfo;
1576  struct _address_to_library_name data;
1577
1578  // There is a bug in old glibc dladdr() implementation that it could resolve
1579  // to wrong library name if the .so file has a base address != NULL. Here
1580  // we iterate through the program headers of all loaded libraries to find
1581  // out which library 'addr' really belongs to. This workaround can be
1582  // removed once the minimum requirement for glibc is moved to 2.3.x.
1583  data.addr = addr;
1584  data.fname = buf;
1585  data.buflen = buflen;
1586  data.base = NULL;
1587  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1588
1589  if (rslt) {
1590    // buf already contains library name
1591    if (offset) *offset = addr - data.base;
1592    return true;
1593  }
1594  if (dladdr((void*)addr, &dlinfo) != 0) {
1595    if (dlinfo.dli_fname != NULL) {
1596      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1597    }
1598    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1599      *offset = addr - (address)dlinfo.dli_fbase;
1600    }
1601    return true;
1602  }
1603
1604  buf[0] = '\0';
1605  if (offset) *offset = -1;
1606  return false;
1607}
1608
1609// Loads .dll/.so and
1610// in case of error it checks if .dll/.so was built for the
1611// same architecture as Hotspot is running on
1612
1613
1614// Remember the stack's state. The Linux dynamic linker will change
1615// the stack to 'executable' at most once, so we must safepoint only once.
1616bool os::Linux::_stack_is_executable = false;
1617
1618// VM operation that loads a library.  This is necessary if stack protection
1619// of the Java stacks can be lost during loading the library.  If we
1620// do not stop the Java threads, they can stack overflow before the stacks
1621// are protected again.
1622class VM_LinuxDllLoad: public VM_Operation {
1623 private:
1624  const char *_filename;
1625  char *_ebuf;
1626  int _ebuflen;
1627  void *_lib;
1628 public:
1629  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1630    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1631  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1632  void doit() {
1633    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1634    os::Linux::_stack_is_executable = true;
1635  }
1636  void* loaded_library() { return _lib; }
1637};
1638
1639void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1640  void * result = NULL;
1641  bool load_attempted = false;
1642
1643  // Check whether the library to load might change execution rights
1644  // of the stack. If they are changed, the protection of the stack
1645  // guard pages will be lost. We need a safepoint to fix this.
1646  //
1647  // See Linux man page execstack(8) for more info.
1648  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1649    ElfFile ef(filename);
1650    if (!ef.specifies_noexecstack()) {
1651      if (!is_init_completed()) {
1652        os::Linux::_stack_is_executable = true;
1653        // This is OK - No Java threads have been created yet, and hence no
1654        // stack guard pages to fix.
1655        //
1656        // This should happen only when you are building JDK7 using a very
1657        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1658        //
1659        // Dynamic loader will make all stacks executable after
1660        // this function returns, and will not do that again.
1661        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1662      } else {
1663        warning("You have loaded library %s which might have disabled stack guard. "
1664                "The VM will try to fix the stack guard now.\n"
1665                "It's highly recommended that you fix the library with "
1666                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1667                filename);
1668
1669        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1670        JavaThread *jt = JavaThread::current();
1671        if (jt->thread_state() != _thread_in_native) {
1672          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1673          // that requires ExecStack. Cannot enter safe point. Let's give up.
1674          warning("Unable to fix stack guard. Giving up.");
1675        } else {
1676          if (!LoadExecStackDllInVMThread) {
1677            // This is for the case where the DLL has an static
1678            // constructor function that executes JNI code. We cannot
1679            // load such DLLs in the VMThread.
1680            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1681          }
1682
1683          ThreadInVMfromNative tiv(jt);
1684          debug_only(VMNativeEntryWrapper vew;)
1685
1686          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1687          VMThread::execute(&op);
1688          if (LoadExecStackDllInVMThread) {
1689            result = op.loaded_library();
1690          }
1691          load_attempted = true;
1692        }
1693      }
1694    }
1695  }
1696
1697  if (!load_attempted) {
1698    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699  }
1700
1701  if (result != NULL) {
1702    // Successful loading
1703    return result;
1704  }
1705
1706  Elf32_Ehdr elf_head;
1707  int diag_msg_max_length=ebuflen-strlen(ebuf);
1708  char* diag_msg_buf=ebuf+strlen(ebuf);
1709
1710  if (diag_msg_max_length==0) {
1711    // No more space in ebuf for additional diagnostics message
1712    return NULL;
1713  }
1714
1715
1716  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1717
1718  if (file_descriptor < 0) {
1719    // Can't open library, report dlerror() message
1720    return NULL;
1721  }
1722
1723  bool failed_to_read_elf_head=
1724    (sizeof(elf_head)!=
1725     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1726
1727  ::close(file_descriptor);
1728  if (failed_to_read_elf_head) {
1729    // file i/o error - report dlerror() msg
1730    return NULL;
1731  }
1732
1733  typedef struct {
1734    Elf32_Half  code;         // Actual value as defined in elf.h
1735    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1736    char        elf_class;    // 32 or 64 bit
1737    char        endianess;    // MSB or LSB
1738    char*       name;         // String representation
1739  } arch_t;
1740
1741#ifndef EM_486
1742  #define EM_486          6               /* Intel 80486 */
1743#endif
1744#ifndef EM_AARCH64
1745  #define EM_AARCH64    183               /* ARM AARCH64 */
1746#endif
1747
1748  static const arch_t arch_array[]={
1749    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1751    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1752    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1753    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1755    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1756    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1757#if defined(VM_LITTLE_ENDIAN)
1758    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1759#else
1760    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1761#endif
1762    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1763    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1764    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1765    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1766    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1767    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1768    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1769    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1770  };
1771
1772#if  (defined IA32)
1773  static  Elf32_Half running_arch_code=EM_386;
1774#elif   (defined AMD64)
1775  static  Elf32_Half running_arch_code=EM_X86_64;
1776#elif  (defined IA64)
1777  static  Elf32_Half running_arch_code=EM_IA_64;
1778#elif  (defined __sparc) && (defined _LP64)
1779  static  Elf32_Half running_arch_code=EM_SPARCV9;
1780#elif  (defined __sparc) && (!defined _LP64)
1781  static  Elf32_Half running_arch_code=EM_SPARC;
1782#elif  (defined __powerpc64__)
1783  static  Elf32_Half running_arch_code=EM_PPC64;
1784#elif  (defined __powerpc__)
1785  static  Elf32_Half running_arch_code=EM_PPC;
1786#elif  (defined ARM)
1787  static  Elf32_Half running_arch_code=EM_ARM;
1788#elif  (defined S390)
1789  static  Elf32_Half running_arch_code=EM_S390;
1790#elif  (defined ALPHA)
1791  static  Elf32_Half running_arch_code=EM_ALPHA;
1792#elif  (defined MIPSEL)
1793  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1794#elif  (defined PARISC)
1795  static  Elf32_Half running_arch_code=EM_PARISC;
1796#elif  (defined MIPS)
1797  static  Elf32_Half running_arch_code=EM_MIPS;
1798#elif  (defined M68K)
1799  static  Elf32_Half running_arch_code=EM_68K;
1800#elif  (defined AARCH64)
1801  static  Elf32_Half running_arch_code=EM_AARCH64;
1802#else
1803    #error Method os::dll_load requires that one of following is defined:\
1804         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1805#endif
1806
1807  // Identify compatability class for VM's architecture and library's architecture
1808  // Obtain string descriptions for architectures
1809
1810  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1811  int running_arch_index=-1;
1812
1813  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1814    if (running_arch_code == arch_array[i].code) {
1815      running_arch_index    = i;
1816    }
1817    if (lib_arch.code == arch_array[i].code) {
1818      lib_arch.compat_class = arch_array[i].compat_class;
1819      lib_arch.name         = arch_array[i].name;
1820    }
1821  }
1822
1823  assert(running_arch_index != -1,
1824         "Didn't find running architecture code (running_arch_code) in arch_array");
1825  if (running_arch_index == -1) {
1826    // Even though running architecture detection failed
1827    // we may still continue with reporting dlerror() message
1828    return NULL;
1829  }
1830
1831  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1832    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1833    return NULL;
1834  }
1835
1836#ifndef S390
1837  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1838    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1839    return NULL;
1840  }
1841#endif // !S390
1842
1843  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1844    if (lib_arch.name!=NULL) {
1845      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1847                 lib_arch.name, arch_array[running_arch_index].name);
1848    } else {
1849      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1851                 lib_arch.code,
1852                 arch_array[running_arch_index].name);
1853    }
1854  }
1855
1856  return NULL;
1857}
1858
1859void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1860                                int ebuflen) {
1861  void * result = ::dlopen(filename, RTLD_LAZY);
1862  if (result == NULL) {
1863    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1864    ebuf[ebuflen-1] = '\0';
1865  }
1866  return result;
1867}
1868
1869void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1870                                       int ebuflen) {
1871  void * result = NULL;
1872  if (LoadExecStackDllInVMThread) {
1873    result = dlopen_helper(filename, ebuf, ebuflen);
1874  }
1875
1876  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1877  // library that requires an executable stack, or which does not have this
1878  // stack attribute set, dlopen changes the stack attribute to executable. The
1879  // read protection of the guard pages gets lost.
1880  //
1881  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1882  // may have been queued at the same time.
1883
1884  if (!_stack_is_executable) {
1885    JavaThread *jt = Threads::first();
1886
1887    while (jt) {
1888      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1889          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1890        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1891          warning("Attempt to reguard stack yellow zone failed.");
1892        }
1893      }
1894      jt = jt->next();
1895    }
1896  }
1897
1898  return result;
1899}
1900
1901void* os::dll_lookup(void* handle, const char* name) {
1902  void* res = dlsym(handle, name);
1903  return res;
1904}
1905
1906void* os::get_default_process_handle() {
1907  return (void*)::dlopen(NULL, RTLD_LAZY);
1908}
1909
1910static bool _print_ascii_file(const char* filename, outputStream* st) {
1911  int fd = ::open(filename, O_RDONLY);
1912  if (fd == -1) {
1913    return false;
1914  }
1915
1916  char buf[32];
1917  int bytes;
1918  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1919    st->print_raw(buf, bytes);
1920  }
1921
1922  ::close(fd);
1923
1924  return true;
1925}
1926
1927void os::print_dll_info(outputStream *st) {
1928  st->print_cr("Dynamic libraries:");
1929
1930  char fname[32];
1931  pid_t pid = os::Linux::gettid();
1932
1933  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1934
1935  if (!_print_ascii_file(fname, st)) {
1936    st->print("Can not get library information for pid = %d\n", pid);
1937  }
1938}
1939
1940int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1941  FILE *procmapsFile = NULL;
1942
1943  // Open the procfs maps file for the current process
1944  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1945    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1946    char line[PATH_MAX + 100];
1947
1948    // Read line by line from 'file'
1949    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1950      u8 base, top, offset, inode;
1951      char permissions[5];
1952      char device[6];
1953      char name[PATH_MAX + 1];
1954
1955      // Parse fields from line
1956      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1957             &base, &top, permissions, &offset, device, &inode, name);
1958
1959      // Filter by device id '00:00' so that we only get file system mapped files.
1960      if (strcmp(device, "00:00") != 0) {
1961
1962        // Call callback with the fields of interest
1963        if(callback(name, (address)base, (address)top, param)) {
1964          // Oops abort, callback aborted
1965          fclose(procmapsFile);
1966          return 1;
1967        }
1968      }
1969    }
1970    fclose(procmapsFile);
1971  }
1972  return 0;
1973}
1974
1975void os::print_os_info_brief(outputStream* st) {
1976  os::Linux::print_distro_info(st);
1977
1978  os::Posix::print_uname_info(st);
1979
1980  os::Linux::print_libversion_info(st);
1981
1982}
1983
1984void os::print_os_info(outputStream* st) {
1985  st->print("OS:");
1986
1987  os::Linux::print_distro_info(st);
1988
1989  os::Posix::print_uname_info(st);
1990
1991  // Print warning if unsafe chroot environment detected
1992  if (unsafe_chroot_detected) {
1993    st->print("WARNING!! ");
1994    st->print_cr("%s", unstable_chroot_error);
1995  }
1996
1997  os::Linux::print_libversion_info(st);
1998
1999  os::Posix::print_rlimit_info(st);
2000
2001  os::Posix::print_load_average(st);
2002
2003  os::Linux::print_full_memory_info(st);
2004}
2005
2006// Try to identify popular distros.
2007// Most Linux distributions have a /etc/XXX-release file, which contains
2008// the OS version string. Newer Linux distributions have a /etc/lsb-release
2009// file that also contains the OS version string. Some have more than one
2010// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2011// /etc/redhat-release.), so the order is important.
2012// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2013// their own specific XXX-release file as well as a redhat-release file.
2014// Because of this the XXX-release file needs to be searched for before the
2015// redhat-release file.
2016// Since Red Hat has a lsb-release file that is not very descriptive the
2017// search for redhat-release needs to be before lsb-release.
2018// Since the lsb-release file is the new standard it needs to be searched
2019// before the older style release files.
2020// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2021// next to last resort.  The os-release file is a new standard that contains
2022// distribution information and the system-release file seems to be an old
2023// standard that has been replaced by the lsb-release and os-release files.
2024// Searching for the debian_version file is the last resort.  It contains
2025// an informative string like "6.0.6" or "wheezy/sid". Because of this
2026// "Debian " is printed before the contents of the debian_version file.
2027
2028const char* distro_files[] = {
2029  "/etc/oracle-release",
2030  "/etc/mandriva-release",
2031  "/etc/mandrake-release",
2032  "/etc/sun-release",
2033  "/etc/redhat-release",
2034  "/etc/lsb-release",
2035  "/etc/SuSE-release",
2036  "/etc/turbolinux-release",
2037  "/etc/gentoo-release",
2038  "/etc/ltib-release",
2039  "/etc/angstrom-version",
2040  "/etc/system-release",
2041  "/etc/os-release",
2042  NULL };
2043
2044void os::Linux::print_distro_info(outputStream* st) {
2045  for (int i = 0;; i++) {
2046    const char* file = distro_files[i];
2047    if (file == NULL) {
2048      break;  // done
2049    }
2050    // If file prints, we found it.
2051    if (_print_ascii_file(file, st)) {
2052      return;
2053    }
2054  }
2055
2056  if (file_exists("/etc/debian_version")) {
2057    st->print("Debian ");
2058    _print_ascii_file("/etc/debian_version", st);
2059  } else {
2060    st->print("Linux");
2061  }
2062  st->cr();
2063}
2064
2065static void parse_os_info(char* distro, size_t length, const char* file) {
2066  FILE* fp = fopen(file, "r");
2067  if (fp != NULL) {
2068    char buf[256];
2069    // get last line of the file.
2070    while (fgets(buf, sizeof(buf), fp)) { }
2071    // Edit out extra stuff in expected ubuntu format
2072    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2073      char* ptr = strstr(buf, "\"");  // the name is in quotes
2074      if (ptr != NULL) {
2075        ptr++; // go beyond first quote
2076        char* nl = strchr(ptr, '\"');
2077        if (nl != NULL) *nl = '\0';
2078        strncpy(distro, ptr, length);
2079      } else {
2080        ptr = strstr(buf, "=");
2081        ptr++; // go beyond equals then
2082        char* nl = strchr(ptr, '\n');
2083        if (nl != NULL) *nl = '\0';
2084        strncpy(distro, ptr, length);
2085      }
2086    } else {
2087      // if not in expected Ubuntu format, print out whole line minus \n
2088      char* nl = strchr(buf, '\n');
2089      if (nl != NULL) *nl = '\0';
2090      strncpy(distro, buf, length);
2091    }
2092    // close distro file
2093    fclose(fp);
2094  }
2095}
2096
2097void os::get_summary_os_info(char* buf, size_t buflen) {
2098  for (int i = 0;; i++) {
2099    const char* file = distro_files[i];
2100    if (file == NULL) {
2101      break; // ran out of distro_files
2102    }
2103    if (file_exists(file)) {
2104      parse_os_info(buf, buflen, file);
2105      return;
2106    }
2107  }
2108  // special case for debian
2109  if (file_exists("/etc/debian_version")) {
2110    strncpy(buf, "Debian ", buflen);
2111    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2112  } else {
2113    strncpy(buf, "Linux", buflen);
2114  }
2115}
2116
2117void os::Linux::print_libversion_info(outputStream* st) {
2118  // libc, pthread
2119  st->print("libc:");
2120  st->print("%s ", os::Linux::glibc_version());
2121  st->print("%s ", os::Linux::libpthread_version());
2122  st->cr();
2123}
2124
2125void os::Linux::print_full_memory_info(outputStream* st) {
2126  st->print("\n/proc/meminfo:\n");
2127  _print_ascii_file("/proc/meminfo", st);
2128  st->cr();
2129}
2130
2131void os::print_memory_info(outputStream* st) {
2132
2133  st->print("Memory:");
2134  st->print(" %dk page", os::vm_page_size()>>10);
2135
2136  // values in struct sysinfo are "unsigned long"
2137  struct sysinfo si;
2138  sysinfo(&si);
2139
2140  st->print(", physical " UINT64_FORMAT "k",
2141            os::physical_memory() >> 10);
2142  st->print("(" UINT64_FORMAT "k free)",
2143            os::available_memory() >> 10);
2144  st->print(", swap " UINT64_FORMAT "k",
2145            ((jlong)si.totalswap * si.mem_unit) >> 10);
2146  st->print("(" UINT64_FORMAT "k free)",
2147            ((jlong)si.freeswap * si.mem_unit) >> 10);
2148  st->cr();
2149}
2150
2151// Print the first "model name" line and the first "flags" line
2152// that we find and nothing more. We assume "model name" comes
2153// before "flags" so if we find a second "model name", then the
2154// "flags" field is considered missing.
2155static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2156#if defined(IA32) || defined(AMD64)
2157  // Other platforms have less repetitive cpuinfo files
2158  FILE *fp = fopen("/proc/cpuinfo", "r");
2159  if (fp) {
2160    while (!feof(fp)) {
2161      if (fgets(buf, buflen, fp)) {
2162        // Assume model name comes before flags
2163        bool model_name_printed = false;
2164        if (strstr(buf, "model name") != NULL) {
2165          if (!model_name_printed) {
2166            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2167            st->print_raw(buf);
2168            model_name_printed = true;
2169          } else {
2170            // model name printed but not flags?  Odd, just return
2171            fclose(fp);
2172            return true;
2173          }
2174        }
2175        // print the flags line too
2176        if (strstr(buf, "flags") != NULL) {
2177          st->print_raw(buf);
2178          fclose(fp);
2179          return true;
2180        }
2181      }
2182    }
2183    fclose(fp);
2184  }
2185#endif // x86 platforms
2186  return false;
2187}
2188
2189void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2190  // Only print the model name if the platform provides this as a summary
2191  if (!print_model_name_and_flags(st, buf, buflen)) {
2192    st->print("\n/proc/cpuinfo:\n");
2193    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2194      st->print_cr("  <Not Available>");
2195    }
2196  }
2197}
2198
2199#if defined(AMD64) || defined(IA32) || defined(X32)
2200const char* search_string = "model name";
2201#elif defined(SPARC)
2202const char* search_string = "cpu";
2203#elif defined(PPC64)
2204const char* search_string = "cpu";
2205#else
2206const char* search_string = "Processor";
2207#endif
2208
2209// Parses the cpuinfo file for string representing the model name.
2210void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2211  FILE* fp = fopen("/proc/cpuinfo", "r");
2212  if (fp != NULL) {
2213    while (!feof(fp)) {
2214      char buf[256];
2215      if (fgets(buf, sizeof(buf), fp)) {
2216        char* start = strstr(buf, search_string);
2217        if (start != NULL) {
2218          char *ptr = start + strlen(search_string);
2219          char *end = buf + strlen(buf);
2220          while (ptr != end) {
2221             // skip whitespace and colon for the rest of the name.
2222             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2223               break;
2224             }
2225             ptr++;
2226          }
2227          if (ptr != end) {
2228            // reasonable string, get rid of newline and keep the rest
2229            char* nl = strchr(buf, '\n');
2230            if (nl != NULL) *nl = '\0';
2231            strncpy(cpuinfo, ptr, length);
2232            fclose(fp);
2233            return;
2234          }
2235        }
2236      }
2237    }
2238    fclose(fp);
2239  }
2240  // cpuinfo not found or parsing failed, just print generic string.  The entire
2241  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2242#if defined(AMD64)
2243  strncpy(cpuinfo, "x86_64", length);
2244#elif defined(IA32)
2245  strncpy(cpuinfo, "x86_32", length);
2246#elif defined(IA64)
2247  strncpy(cpuinfo, "IA64", length);
2248#elif defined(SPARC)
2249  strncpy(cpuinfo, "sparcv9", length);
2250#elif defined(AARCH64)
2251  strncpy(cpuinfo, "AArch64", length);
2252#elif defined(ARM)
2253  strncpy(cpuinfo, "ARM", length);
2254#elif defined(PPC)
2255  strncpy(cpuinfo, "PPC64", length);
2256#elif defined(ZERO_LIBARCH)
2257  strncpy(cpuinfo, ZERO_LIBARCH, length);
2258#else
2259  strncpy(cpuinfo, "unknown", length);
2260#endif
2261}
2262
2263static void print_signal_handler(outputStream* st, int sig,
2264                                 char* buf, size_t buflen);
2265
2266void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2267  st->print_cr("Signal Handlers:");
2268  print_signal_handler(st, SIGSEGV, buf, buflen);
2269  print_signal_handler(st, SIGBUS , buf, buflen);
2270  print_signal_handler(st, SIGFPE , buf, buflen);
2271  print_signal_handler(st, SIGPIPE, buf, buflen);
2272  print_signal_handler(st, SIGXFSZ, buf, buflen);
2273  print_signal_handler(st, SIGILL , buf, buflen);
2274  print_signal_handler(st, SR_signum, buf, buflen);
2275  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2276  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2277  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2278  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2279#if defined(PPC64)
2280  print_signal_handler(st, SIGTRAP, buf, buflen);
2281#endif
2282}
2283
2284static char saved_jvm_path[MAXPATHLEN] = {0};
2285
2286// Find the full path to the current module, libjvm.so
2287void os::jvm_path(char *buf, jint buflen) {
2288  // Error checking.
2289  if (buflen < MAXPATHLEN) {
2290    assert(false, "must use a large-enough buffer");
2291    buf[0] = '\0';
2292    return;
2293  }
2294  // Lazy resolve the path to current module.
2295  if (saved_jvm_path[0] != 0) {
2296    strcpy(buf, saved_jvm_path);
2297    return;
2298  }
2299
2300  char dli_fname[MAXPATHLEN];
2301  bool ret = dll_address_to_library_name(
2302                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2303                                         dli_fname, sizeof(dli_fname), NULL);
2304  assert(ret, "cannot locate libjvm");
2305  char *rp = NULL;
2306  if (ret && dli_fname[0] != '\0') {
2307    rp = realpath(dli_fname, buf);
2308  }
2309  if (rp == NULL) {
2310    return;
2311  }
2312
2313  if (Arguments::sun_java_launcher_is_altjvm()) {
2314    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2315    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2316    // If "/jre/lib/" appears at the right place in the string, then
2317    // assume we are installed in a JDK and we're done. Otherwise, check
2318    // for a JAVA_HOME environment variable and fix up the path so it
2319    // looks like libjvm.so is installed there (append a fake suffix
2320    // hotspot/libjvm.so).
2321    const char *p = buf + strlen(buf) - 1;
2322    for (int count = 0; p > buf && count < 5; ++count) {
2323      for (--p; p > buf && *p != '/'; --p)
2324        /* empty */ ;
2325    }
2326
2327    if (strncmp(p, "/jre/lib/", 9) != 0) {
2328      // Look for JAVA_HOME in the environment.
2329      char* java_home_var = ::getenv("JAVA_HOME");
2330      if (java_home_var != NULL && java_home_var[0] != 0) {
2331        char* jrelib_p;
2332        int len;
2333
2334        // Check the current module name "libjvm.so".
2335        p = strrchr(buf, '/');
2336        if (p == NULL) {
2337          return;
2338        }
2339        assert(strstr(p, "/libjvm") == p, "invalid library name");
2340
2341        rp = realpath(java_home_var, buf);
2342        if (rp == NULL) {
2343          return;
2344        }
2345
2346        // determine if this is a legacy image or modules image
2347        // modules image doesn't have "jre" subdirectory
2348        len = strlen(buf);
2349        assert(len < buflen, "Ran out of buffer room");
2350        jrelib_p = buf + len;
2351        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2352        if (0 != access(buf, F_OK)) {
2353          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2354        }
2355
2356        if (0 == access(buf, F_OK)) {
2357          // Use current module name "libjvm.so"
2358          len = strlen(buf);
2359          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2360        } else {
2361          // Go back to path of .so
2362          rp = realpath(dli_fname, buf);
2363          if (rp == NULL) {
2364            return;
2365          }
2366        }
2367      }
2368    }
2369  }
2370
2371  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2372  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2373}
2374
2375void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2376  // no prefix required, not even "_"
2377}
2378
2379void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2380  // no suffix required
2381}
2382
2383////////////////////////////////////////////////////////////////////////////////
2384// sun.misc.Signal support
2385
2386static volatile jint sigint_count = 0;
2387
2388static void UserHandler(int sig, void *siginfo, void *context) {
2389  // 4511530 - sem_post is serialized and handled by the manager thread. When
2390  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2391  // don't want to flood the manager thread with sem_post requests.
2392  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2393    return;
2394  }
2395
2396  // Ctrl-C is pressed during error reporting, likely because the error
2397  // handler fails to abort. Let VM die immediately.
2398  if (sig == SIGINT && is_error_reported()) {
2399    os::die();
2400  }
2401
2402  os::signal_notify(sig);
2403}
2404
2405void* os::user_handler() {
2406  return CAST_FROM_FN_PTR(void*, UserHandler);
2407}
2408
2409struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2410  struct timespec ts;
2411  // Semaphore's are always associated with CLOCK_REALTIME
2412  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2413  // see unpackTime for discussion on overflow checking
2414  if (sec >= MAX_SECS) {
2415    ts.tv_sec += MAX_SECS;
2416    ts.tv_nsec = 0;
2417  } else {
2418    ts.tv_sec += sec;
2419    ts.tv_nsec += nsec;
2420    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2421      ts.tv_nsec -= NANOSECS_PER_SEC;
2422      ++ts.tv_sec; // note: this must be <= max_secs
2423    }
2424  }
2425
2426  return ts;
2427}
2428
2429extern "C" {
2430  typedef void (*sa_handler_t)(int);
2431  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2432}
2433
2434void* os::signal(int signal_number, void* handler) {
2435  struct sigaction sigAct, oldSigAct;
2436
2437  sigfillset(&(sigAct.sa_mask));
2438  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2439  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2440
2441  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2442    // -1 means registration failed
2443    return (void *)-1;
2444  }
2445
2446  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2447}
2448
2449void os::signal_raise(int signal_number) {
2450  ::raise(signal_number);
2451}
2452
2453// The following code is moved from os.cpp for making this
2454// code platform specific, which it is by its very nature.
2455
2456// Will be modified when max signal is changed to be dynamic
2457int os::sigexitnum_pd() {
2458  return NSIG;
2459}
2460
2461// a counter for each possible signal value
2462static volatile jint pending_signals[NSIG+1] = { 0 };
2463
2464// Linux(POSIX) specific hand shaking semaphore.
2465static sem_t sig_sem;
2466static PosixSemaphore sr_semaphore;
2467
2468void os::signal_init_pd() {
2469  // Initialize signal structures
2470  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2471
2472  // Initialize signal semaphore
2473  ::sem_init(&sig_sem, 0, 0);
2474}
2475
2476void os::signal_notify(int sig) {
2477  Atomic::inc(&pending_signals[sig]);
2478  ::sem_post(&sig_sem);
2479}
2480
2481static int check_pending_signals(bool wait) {
2482  Atomic::store(0, &sigint_count);
2483  for (;;) {
2484    for (int i = 0; i < NSIG + 1; i++) {
2485      jint n = pending_signals[i];
2486      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2487        return i;
2488      }
2489    }
2490    if (!wait) {
2491      return -1;
2492    }
2493    JavaThread *thread = JavaThread::current();
2494    ThreadBlockInVM tbivm(thread);
2495
2496    bool threadIsSuspended;
2497    do {
2498      thread->set_suspend_equivalent();
2499      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2500      ::sem_wait(&sig_sem);
2501
2502      // were we externally suspended while we were waiting?
2503      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2504      if (threadIsSuspended) {
2505        // The semaphore has been incremented, but while we were waiting
2506        // another thread suspended us. We don't want to continue running
2507        // while suspended because that would surprise the thread that
2508        // suspended us.
2509        ::sem_post(&sig_sem);
2510
2511        thread->java_suspend_self();
2512      }
2513    } while (threadIsSuspended);
2514  }
2515}
2516
2517int os::signal_lookup() {
2518  return check_pending_signals(false);
2519}
2520
2521int os::signal_wait() {
2522  return check_pending_signals(true);
2523}
2524
2525////////////////////////////////////////////////////////////////////////////////
2526// Virtual Memory
2527
2528int os::vm_page_size() {
2529  // Seems redundant as all get out
2530  assert(os::Linux::page_size() != -1, "must call os::init");
2531  return os::Linux::page_size();
2532}
2533
2534// Solaris allocates memory by pages.
2535int os::vm_allocation_granularity() {
2536  assert(os::Linux::page_size() != -1, "must call os::init");
2537  return os::Linux::page_size();
2538}
2539
2540// Rationale behind this function:
2541//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2542//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2543//  samples for JITted code. Here we create private executable mapping over the code cache
2544//  and then we can use standard (well, almost, as mapping can change) way to provide
2545//  info for the reporting script by storing timestamp and location of symbol
2546void linux_wrap_code(char* base, size_t size) {
2547  static volatile jint cnt = 0;
2548
2549  if (!UseOprofile) {
2550    return;
2551  }
2552
2553  char buf[PATH_MAX+1];
2554  int num = Atomic::add(1, &cnt);
2555
2556  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2557           os::get_temp_directory(), os::current_process_id(), num);
2558  unlink(buf);
2559
2560  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2561
2562  if (fd != -1) {
2563    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2564    if (rv != (off_t)-1) {
2565      if (::write(fd, "", 1) == 1) {
2566        mmap(base, size,
2567             PROT_READ|PROT_WRITE|PROT_EXEC,
2568             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2569      }
2570    }
2571    ::close(fd);
2572    unlink(buf);
2573  }
2574}
2575
2576static bool recoverable_mmap_error(int err) {
2577  // See if the error is one we can let the caller handle. This
2578  // list of errno values comes from JBS-6843484. I can't find a
2579  // Linux man page that documents this specific set of errno
2580  // values so while this list currently matches Solaris, it may
2581  // change as we gain experience with this failure mode.
2582  switch (err) {
2583  case EBADF:
2584  case EINVAL:
2585  case ENOTSUP:
2586    // let the caller deal with these errors
2587    return true;
2588
2589  default:
2590    // Any remaining errors on this OS can cause our reserved mapping
2591    // to be lost. That can cause confusion where different data
2592    // structures think they have the same memory mapped. The worst
2593    // scenario is if both the VM and a library think they have the
2594    // same memory mapped.
2595    return false;
2596  }
2597}
2598
2599static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2600                                    int err) {
2601  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2602          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2603          strerror(err), err);
2604}
2605
2606static void warn_fail_commit_memory(char* addr, size_t size,
2607                                    size_t alignment_hint, bool exec,
2608                                    int err) {
2609  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2610          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2611          alignment_hint, exec, strerror(err), err);
2612}
2613
2614// NOTE: Linux kernel does not really reserve the pages for us.
2615//       All it does is to check if there are enough free pages
2616//       left at the time of mmap(). This could be a potential
2617//       problem.
2618int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2619  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2620  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2621                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2622  if (res != (uintptr_t) MAP_FAILED) {
2623    if (UseNUMAInterleaving) {
2624      numa_make_global(addr, size);
2625    }
2626    return 0;
2627  }
2628
2629  int err = errno;  // save errno from mmap() call above
2630
2631  if (!recoverable_mmap_error(err)) {
2632    warn_fail_commit_memory(addr, size, exec, err);
2633    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2634  }
2635
2636  return err;
2637}
2638
2639bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2640  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2641}
2642
2643void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2644                                  const char* mesg) {
2645  assert(mesg != NULL, "mesg must be specified");
2646  int err = os::Linux::commit_memory_impl(addr, size, exec);
2647  if (err != 0) {
2648    // the caller wants all commit errors to exit with the specified mesg:
2649    warn_fail_commit_memory(addr, size, exec, err);
2650    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2651  }
2652}
2653
2654// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2655#ifndef MAP_HUGETLB
2656  #define MAP_HUGETLB 0x40000
2657#endif
2658
2659// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2660#ifndef MADV_HUGEPAGE
2661  #define MADV_HUGEPAGE 14
2662#endif
2663
2664int os::Linux::commit_memory_impl(char* addr, size_t size,
2665                                  size_t alignment_hint, bool exec) {
2666  int err = os::Linux::commit_memory_impl(addr, size, exec);
2667  if (err == 0) {
2668    realign_memory(addr, size, alignment_hint);
2669  }
2670  return err;
2671}
2672
2673bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2674                          bool exec) {
2675  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2676}
2677
2678void os::pd_commit_memory_or_exit(char* addr, size_t size,
2679                                  size_t alignment_hint, bool exec,
2680                                  const char* mesg) {
2681  assert(mesg != NULL, "mesg must be specified");
2682  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2683  if (err != 0) {
2684    // the caller wants all commit errors to exit with the specified mesg:
2685    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2686    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2687  }
2688}
2689
2690void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2691  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2692    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2693    // be supported or the memory may already be backed by huge pages.
2694    ::madvise(addr, bytes, MADV_HUGEPAGE);
2695  }
2696}
2697
2698void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2699  // This method works by doing an mmap over an existing mmaping and effectively discarding
2700  // the existing pages. However it won't work for SHM-based large pages that cannot be
2701  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2702  // small pages on top of the SHM segment. This method always works for small pages, so we
2703  // allow that in any case.
2704  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2705    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2706  }
2707}
2708
2709void os::numa_make_global(char *addr, size_t bytes) {
2710  Linux::numa_interleave_memory(addr, bytes);
2711}
2712
2713// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2714// bind policy to MPOL_PREFERRED for the current thread.
2715#define USE_MPOL_PREFERRED 0
2716
2717void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2718  // To make NUMA and large pages more robust when both enabled, we need to ease
2719  // the requirements on where the memory should be allocated. MPOL_BIND is the
2720  // default policy and it will force memory to be allocated on the specified
2721  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2722  // the specified node, but will not force it. Using this policy will prevent
2723  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2724  // free large pages.
2725  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2726  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2727}
2728
2729bool os::numa_topology_changed() { return false; }
2730
2731size_t os::numa_get_groups_num() {
2732  int max_node = Linux::numa_max_node();
2733  return max_node > 0 ? max_node + 1 : 1;
2734}
2735
2736int os::numa_get_group_id() {
2737  int cpu_id = Linux::sched_getcpu();
2738  if (cpu_id != -1) {
2739    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2740    if (lgrp_id != -1) {
2741      return lgrp_id;
2742    }
2743  }
2744  return 0;
2745}
2746
2747size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2748  for (size_t i = 0; i < size; i++) {
2749    ids[i] = i;
2750  }
2751  return size;
2752}
2753
2754bool os::get_page_info(char *start, page_info* info) {
2755  return false;
2756}
2757
2758char *os::scan_pages(char *start, char* end, page_info* page_expected,
2759                     page_info* page_found) {
2760  return end;
2761}
2762
2763
2764int os::Linux::sched_getcpu_syscall(void) {
2765  unsigned int cpu = 0;
2766  int retval = -1;
2767
2768#if defined(IA32)
2769  #ifndef SYS_getcpu
2770    #define SYS_getcpu 318
2771  #endif
2772  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2773#elif defined(AMD64)
2774// Unfortunately we have to bring all these macros here from vsyscall.h
2775// to be able to compile on old linuxes.
2776  #define __NR_vgetcpu 2
2777  #define VSYSCALL_START (-10UL << 20)
2778  #define VSYSCALL_SIZE 1024
2779  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2780  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2781  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2782  retval = vgetcpu(&cpu, NULL, NULL);
2783#endif
2784
2785  return (retval == -1) ? retval : cpu;
2786}
2787
2788// Something to do with the numa-aware allocator needs these symbols
2789extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2790extern "C" JNIEXPORT void numa_error(char *where) { }
2791
2792
2793// If we are running with libnuma version > 2, then we should
2794// be trying to use symbols with versions 1.1
2795// If we are running with earlier version, which did not have symbol versions,
2796// we should use the base version.
2797void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2798  void *f = dlvsym(handle, name, "libnuma_1.1");
2799  if (f == NULL) {
2800    f = dlsym(handle, name);
2801  }
2802  return f;
2803}
2804
2805bool os::Linux::libnuma_init() {
2806  // sched_getcpu() should be in libc.
2807  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2808                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2809
2810  // If it's not, try a direct syscall.
2811  if (sched_getcpu() == -1) {
2812    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2813                                    (void*)&sched_getcpu_syscall));
2814  }
2815
2816  if (sched_getcpu() != -1) { // Does it work?
2817    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2818    if (handle != NULL) {
2819      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2820                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2821      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2822                                       libnuma_dlsym(handle, "numa_max_node")));
2823      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2824                                        libnuma_dlsym(handle, "numa_available")));
2825      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2826                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2827      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2828                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2829      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2830                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2831
2832
2833      if (numa_available() != -1) {
2834        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2835        // Create a cpu -> node mapping
2836        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2837        rebuild_cpu_to_node_map();
2838        return true;
2839      }
2840    }
2841  }
2842  return false;
2843}
2844
2845// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2846// The table is later used in get_node_by_cpu().
2847void os::Linux::rebuild_cpu_to_node_map() {
2848  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2849                              // in libnuma (possible values are starting from 16,
2850                              // and continuing up with every other power of 2, but less
2851                              // than the maximum number of CPUs supported by kernel), and
2852                              // is a subject to change (in libnuma version 2 the requirements
2853                              // are more reasonable) we'll just hardcode the number they use
2854                              // in the library.
2855  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2856
2857  size_t cpu_num = os::active_processor_count();
2858  size_t cpu_map_size = NCPUS / BitsPerCLong;
2859  size_t cpu_map_valid_size =
2860    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2861
2862  cpu_to_node()->clear();
2863  cpu_to_node()->at_grow(cpu_num - 1);
2864  size_t node_num = numa_get_groups_num();
2865
2866  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2867  for (size_t i = 0; i < node_num; i++) {
2868    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2869      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2870        if (cpu_map[j] != 0) {
2871          for (size_t k = 0; k < BitsPerCLong; k++) {
2872            if (cpu_map[j] & (1UL << k)) {
2873              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2874            }
2875          }
2876        }
2877      }
2878    }
2879  }
2880  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2881}
2882
2883int os::Linux::get_node_by_cpu(int cpu_id) {
2884  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2885    return cpu_to_node()->at(cpu_id);
2886  }
2887  return -1;
2888}
2889
2890GrowableArray<int>* os::Linux::_cpu_to_node;
2891os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2892os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2893os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2894os::Linux::numa_available_func_t os::Linux::_numa_available;
2895os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2896os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2897os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2898unsigned long* os::Linux::_numa_all_nodes;
2899
2900bool os::pd_uncommit_memory(char* addr, size_t size) {
2901  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2902                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2903  return res  != (uintptr_t) MAP_FAILED;
2904}
2905
2906static address get_stack_commited_bottom(address bottom, size_t size) {
2907  address nbot = bottom;
2908  address ntop = bottom + size;
2909
2910  size_t page_sz = os::vm_page_size();
2911  unsigned pages = size / page_sz;
2912
2913  unsigned char vec[1];
2914  unsigned imin = 1, imax = pages + 1, imid;
2915  int mincore_return_value = 0;
2916
2917  assert(imin <= imax, "Unexpected page size");
2918
2919  while (imin < imax) {
2920    imid = (imax + imin) / 2;
2921    nbot = ntop - (imid * page_sz);
2922
2923    // Use a trick with mincore to check whether the page is mapped or not.
2924    // mincore sets vec to 1 if page resides in memory and to 0 if page
2925    // is swapped output but if page we are asking for is unmapped
2926    // it returns -1,ENOMEM
2927    mincore_return_value = mincore(nbot, page_sz, vec);
2928
2929    if (mincore_return_value == -1) {
2930      // Page is not mapped go up
2931      // to find first mapped page
2932      if (errno != EAGAIN) {
2933        assert(errno == ENOMEM, "Unexpected mincore errno");
2934        imax = imid;
2935      }
2936    } else {
2937      // Page is mapped go down
2938      // to find first not mapped page
2939      imin = imid + 1;
2940    }
2941  }
2942
2943  nbot = nbot + page_sz;
2944
2945  // Adjust stack bottom one page up if last checked page is not mapped
2946  if (mincore_return_value == -1) {
2947    nbot = nbot + page_sz;
2948  }
2949
2950  return nbot;
2951}
2952
2953
2954// Linux uses a growable mapping for the stack, and if the mapping for
2955// the stack guard pages is not removed when we detach a thread the
2956// stack cannot grow beyond the pages where the stack guard was
2957// mapped.  If at some point later in the process the stack expands to
2958// that point, the Linux kernel cannot expand the stack any further
2959// because the guard pages are in the way, and a segfault occurs.
2960//
2961// However, it's essential not to split the stack region by unmapping
2962// a region (leaving a hole) that's already part of the stack mapping,
2963// so if the stack mapping has already grown beyond the guard pages at
2964// the time we create them, we have to truncate the stack mapping.
2965// So, we need to know the extent of the stack mapping when
2966// create_stack_guard_pages() is called.
2967
2968// We only need this for stacks that are growable: at the time of
2969// writing thread stacks don't use growable mappings (i.e. those
2970// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2971// only applies to the main thread.
2972
2973// If the (growable) stack mapping already extends beyond the point
2974// where we're going to put our guard pages, truncate the mapping at
2975// that point by munmap()ping it.  This ensures that when we later
2976// munmap() the guard pages we don't leave a hole in the stack
2977// mapping. This only affects the main/initial thread
2978
2979bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2980  if (os::Linux::is_initial_thread()) {
2981    // As we manually grow stack up to bottom inside create_attached_thread(),
2982    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2983    // we don't need to do anything special.
2984    // Check it first, before calling heavy function.
2985    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2986    unsigned char vec[1];
2987
2988    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2989      // Fallback to slow path on all errors, including EAGAIN
2990      stack_extent = (uintptr_t) get_stack_commited_bottom(
2991                                                           os::Linux::initial_thread_stack_bottom(),
2992                                                           (size_t)addr - stack_extent);
2993    }
2994
2995    if (stack_extent < (uintptr_t)addr) {
2996      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2997    }
2998  }
2999
3000  return os::commit_memory(addr, size, !ExecMem);
3001}
3002
3003// If this is a growable mapping, remove the guard pages entirely by
3004// munmap()ping them.  If not, just call uncommit_memory(). This only
3005// affects the main/initial thread, but guard against future OS changes
3006// It's safe to always unmap guard pages for initial thread because we
3007// always place it right after end of the mapped region
3008
3009bool os::remove_stack_guard_pages(char* addr, size_t size) {
3010  uintptr_t stack_extent, stack_base;
3011
3012  if (os::Linux::is_initial_thread()) {
3013    return ::munmap(addr, size) == 0;
3014  }
3015
3016  return os::uncommit_memory(addr, size);
3017}
3018
3019// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3020// at 'requested_addr'. If there are existing memory mappings at the same
3021// location, however, they will be overwritten. If 'fixed' is false,
3022// 'requested_addr' is only treated as a hint, the return value may or
3023// may not start from the requested address. Unlike Linux mmap(), this
3024// function returns NULL to indicate failure.
3025static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3026  char * addr;
3027  int flags;
3028
3029  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3030  if (fixed) {
3031    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3032    flags |= MAP_FIXED;
3033  }
3034
3035  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3036  // touch an uncommitted page. Otherwise, the read/write might
3037  // succeed if we have enough swap space to back the physical page.
3038  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3039                       flags, -1, 0);
3040
3041  return addr == MAP_FAILED ? NULL : addr;
3042}
3043
3044static int anon_munmap(char * addr, size_t size) {
3045  return ::munmap(addr, size) == 0;
3046}
3047
3048char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3049                            size_t alignment_hint) {
3050  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3051}
3052
3053bool os::pd_release_memory(char* addr, size_t size) {
3054  return anon_munmap(addr, size);
3055}
3056
3057static bool linux_mprotect(char* addr, size_t size, int prot) {
3058  // Linux wants the mprotect address argument to be page aligned.
3059  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3060
3061  // According to SUSv3, mprotect() should only be used with mappings
3062  // established by mmap(), and mmap() always maps whole pages. Unaligned
3063  // 'addr' likely indicates problem in the VM (e.g. trying to change
3064  // protection of malloc'ed or statically allocated memory). Check the
3065  // caller if you hit this assert.
3066  assert(addr == bottom, "sanity check");
3067
3068  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3069  return ::mprotect(bottom, size, prot) == 0;
3070}
3071
3072// Set protections specified
3073bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3074                        bool is_committed) {
3075  unsigned int p = 0;
3076  switch (prot) {
3077  case MEM_PROT_NONE: p = PROT_NONE; break;
3078  case MEM_PROT_READ: p = PROT_READ; break;
3079  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3080  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3081  default:
3082    ShouldNotReachHere();
3083  }
3084  // is_committed is unused.
3085  return linux_mprotect(addr, bytes, p);
3086}
3087
3088bool os::guard_memory(char* addr, size_t size) {
3089  return linux_mprotect(addr, size, PROT_NONE);
3090}
3091
3092bool os::unguard_memory(char* addr, size_t size) {
3093  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3094}
3095
3096bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3097                                                    size_t page_size) {
3098  bool result = false;
3099  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3100                 MAP_ANONYMOUS|MAP_PRIVATE,
3101                 -1, 0);
3102  if (p != MAP_FAILED) {
3103    void *aligned_p = align_ptr_up(p, page_size);
3104
3105    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3106
3107    munmap(p, page_size * 2);
3108  }
3109
3110  if (warn && !result) {
3111    warning("TransparentHugePages is not supported by the operating system.");
3112  }
3113
3114  return result;
3115}
3116
3117bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3118  bool result = false;
3119  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3120                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3121                 -1, 0);
3122
3123  if (p != MAP_FAILED) {
3124    // We don't know if this really is a huge page or not.
3125    FILE *fp = fopen("/proc/self/maps", "r");
3126    if (fp) {
3127      while (!feof(fp)) {
3128        char chars[257];
3129        long x = 0;
3130        if (fgets(chars, sizeof(chars), fp)) {
3131          if (sscanf(chars, "%lx-%*x", &x) == 1
3132              && x == (long)p) {
3133            if (strstr (chars, "hugepage")) {
3134              result = true;
3135              break;
3136            }
3137          }
3138        }
3139      }
3140      fclose(fp);
3141    }
3142    munmap(p, page_size);
3143  }
3144
3145  if (warn && !result) {
3146    warning("HugeTLBFS is not supported by the operating system.");
3147  }
3148
3149  return result;
3150}
3151
3152// Set the coredump_filter bits to include largepages in core dump (bit 6)
3153//
3154// From the coredump_filter documentation:
3155//
3156// - (bit 0) anonymous private memory
3157// - (bit 1) anonymous shared memory
3158// - (bit 2) file-backed private memory
3159// - (bit 3) file-backed shared memory
3160// - (bit 4) ELF header pages in file-backed private memory areas (it is
3161//           effective only if the bit 2 is cleared)
3162// - (bit 5) hugetlb private memory
3163// - (bit 6) hugetlb shared memory
3164//
3165static void set_coredump_filter(void) {
3166  FILE *f;
3167  long cdm;
3168
3169  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3170    return;
3171  }
3172
3173  if (fscanf(f, "%lx", &cdm) != 1) {
3174    fclose(f);
3175    return;
3176  }
3177
3178  rewind(f);
3179
3180  if ((cdm & LARGEPAGES_BIT) == 0) {
3181    cdm |= LARGEPAGES_BIT;
3182    fprintf(f, "%#lx", cdm);
3183  }
3184
3185  fclose(f);
3186}
3187
3188// Large page support
3189
3190static size_t _large_page_size = 0;
3191
3192size_t os::Linux::find_large_page_size() {
3193  size_t large_page_size = 0;
3194
3195  // large_page_size on Linux is used to round up heap size. x86 uses either
3196  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3197  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3198  // page as large as 256M.
3199  //
3200  // Here we try to figure out page size by parsing /proc/meminfo and looking
3201  // for a line with the following format:
3202  //    Hugepagesize:     2048 kB
3203  //
3204  // If we can't determine the value (e.g. /proc is not mounted, or the text
3205  // format has been changed), we'll use the largest page size supported by
3206  // the processor.
3207
3208#ifndef ZERO
3209  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3210                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3211#endif // ZERO
3212
3213  FILE *fp = fopen("/proc/meminfo", "r");
3214  if (fp) {
3215    while (!feof(fp)) {
3216      int x = 0;
3217      char buf[16];
3218      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3219        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3220          large_page_size = x * K;
3221          break;
3222        }
3223      } else {
3224        // skip to next line
3225        for (;;) {
3226          int ch = fgetc(fp);
3227          if (ch == EOF || ch == (int)'\n') break;
3228        }
3229      }
3230    }
3231    fclose(fp);
3232  }
3233
3234  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3235    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3236            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3237            proper_unit_for_byte_size(large_page_size));
3238  }
3239
3240  return large_page_size;
3241}
3242
3243size_t os::Linux::setup_large_page_size() {
3244  _large_page_size = Linux::find_large_page_size();
3245  const size_t default_page_size = (size_t)Linux::page_size();
3246  if (_large_page_size > default_page_size) {
3247    _page_sizes[0] = _large_page_size;
3248    _page_sizes[1] = default_page_size;
3249    _page_sizes[2] = 0;
3250  }
3251
3252  return _large_page_size;
3253}
3254
3255bool os::Linux::setup_large_page_type(size_t page_size) {
3256  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3257      FLAG_IS_DEFAULT(UseSHM) &&
3258      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3259
3260    // The type of large pages has not been specified by the user.
3261
3262    // Try UseHugeTLBFS and then UseSHM.
3263    UseHugeTLBFS = UseSHM = true;
3264
3265    // Don't try UseTransparentHugePages since there are known
3266    // performance issues with it turned on. This might change in the future.
3267    UseTransparentHugePages = false;
3268  }
3269
3270  if (UseTransparentHugePages) {
3271    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3272    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3273      UseHugeTLBFS = false;
3274      UseSHM = false;
3275      return true;
3276    }
3277    UseTransparentHugePages = false;
3278  }
3279
3280  if (UseHugeTLBFS) {
3281    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3282    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3283      UseSHM = false;
3284      return true;
3285    }
3286    UseHugeTLBFS = false;
3287  }
3288
3289  return UseSHM;
3290}
3291
3292void os::large_page_init() {
3293  if (!UseLargePages &&
3294      !UseTransparentHugePages &&
3295      !UseHugeTLBFS &&
3296      !UseSHM) {
3297    // Not using large pages.
3298    return;
3299  }
3300
3301  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3302    // The user explicitly turned off large pages.
3303    // Ignore the rest of the large pages flags.
3304    UseTransparentHugePages = false;
3305    UseHugeTLBFS = false;
3306    UseSHM = false;
3307    return;
3308  }
3309
3310  size_t large_page_size = Linux::setup_large_page_size();
3311  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3312
3313  set_coredump_filter();
3314}
3315
3316#ifndef SHM_HUGETLB
3317  #define SHM_HUGETLB 04000
3318#endif
3319
3320char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3321                                            char* req_addr, bool exec) {
3322  // "exec" is passed in but not used.  Creating the shared image for
3323  // the code cache doesn't have an SHM_X executable permission to check.
3324  assert(UseLargePages && UseSHM, "only for SHM large pages");
3325  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3326
3327  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3328    return NULL; // Fallback to small pages.
3329  }
3330
3331  key_t key = IPC_PRIVATE;
3332  char *addr;
3333
3334  bool warn_on_failure = UseLargePages &&
3335                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3336                         !FLAG_IS_DEFAULT(UseSHM) ||
3337                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3338  char msg[128];
3339
3340  // Create a large shared memory region to attach to based on size.
3341  // Currently, size is the total size of the heap
3342  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3343  if (shmid == -1) {
3344    // Possible reasons for shmget failure:
3345    // 1. shmmax is too small for Java heap.
3346    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3347    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3348    // 2. not enough large page memory.
3349    //    > check available large pages: cat /proc/meminfo
3350    //    > increase amount of large pages:
3351    //          echo new_value > /proc/sys/vm/nr_hugepages
3352    //      Note 1: different Linux may use different name for this property,
3353    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3354    //      Note 2: it's possible there's enough physical memory available but
3355    //            they are so fragmented after a long run that they can't
3356    //            coalesce into large pages. Try to reserve large pages when
3357    //            the system is still "fresh".
3358    if (warn_on_failure) {
3359      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3360      warning("%s", msg);
3361    }
3362    return NULL;
3363  }
3364
3365  // attach to the region
3366  addr = (char*)shmat(shmid, req_addr, 0);
3367  int err = errno;
3368
3369  // Remove shmid. If shmat() is successful, the actual shared memory segment
3370  // will be deleted when it's detached by shmdt() or when the process
3371  // terminates. If shmat() is not successful this will remove the shared
3372  // segment immediately.
3373  shmctl(shmid, IPC_RMID, NULL);
3374
3375  if ((intptr_t)addr == -1) {
3376    if (warn_on_failure) {
3377      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3378      warning("%s", msg);
3379    }
3380    return NULL;
3381  }
3382
3383  return addr;
3384}
3385
3386static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3387                                        int error) {
3388  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3389
3390  bool warn_on_failure = UseLargePages &&
3391      (!FLAG_IS_DEFAULT(UseLargePages) ||
3392       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3393       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3394
3395  if (warn_on_failure) {
3396    char msg[128];
3397    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3398                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3399    warning("%s", msg);
3400  }
3401}
3402
3403char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3404                                                        char* req_addr,
3405                                                        bool exec) {
3406  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3407  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3408  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3409
3410  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3411  char* addr = (char*)::mmap(req_addr, bytes, prot,
3412                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3413                             -1, 0);
3414
3415  if (addr == MAP_FAILED) {
3416    warn_on_large_pages_failure(req_addr, bytes, errno);
3417    return NULL;
3418  }
3419
3420  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3421
3422  return addr;
3423}
3424
3425// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3426// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3427//   (req_addr != NULL) or with a given alignment.
3428//  - bytes shall be a multiple of alignment.
3429//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3430//  - alignment sets the alignment at which memory shall be allocated.
3431//     It must be a multiple of allocation granularity.
3432// Returns address of memory or NULL. If req_addr was not NULL, will only return
3433//  req_addr or NULL.
3434static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3435
3436  size_t extra_size = bytes;
3437  if (req_addr == NULL && alignment > 0) {
3438    extra_size += alignment;
3439  }
3440
3441  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3442    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3443    -1, 0);
3444  if (start == MAP_FAILED) {
3445    start = NULL;
3446  } else {
3447    if (req_addr != NULL) {
3448      if (start != req_addr) {
3449        ::munmap(start, extra_size);
3450        start = NULL;
3451      }
3452    } else {
3453      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3454      char* const end_aligned = start_aligned + bytes;
3455      char* const end = start + extra_size;
3456      if (start_aligned > start) {
3457        ::munmap(start, start_aligned - start);
3458      }
3459      if (end_aligned < end) {
3460        ::munmap(end_aligned, end - end_aligned);
3461      }
3462      start = start_aligned;
3463    }
3464  }
3465  return start;
3466
3467}
3468
3469// Reserve memory using mmap(MAP_HUGETLB).
3470//  - bytes shall be a multiple of alignment.
3471//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3472//  - alignment sets the alignment at which memory shall be allocated.
3473//     It must be a multiple of allocation granularity.
3474// Returns address of memory or NULL. If req_addr was not NULL, will only return
3475//  req_addr or NULL.
3476char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3477                                                         size_t alignment,
3478                                                         char* req_addr,
3479                                                         bool exec) {
3480  size_t large_page_size = os::large_page_size();
3481  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3482
3483  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3484  assert(is_size_aligned(bytes, alignment), "Must be");
3485
3486  // First reserve - but not commit - the address range in small pages.
3487  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3488
3489  if (start == NULL) {
3490    return NULL;
3491  }
3492
3493  assert(is_ptr_aligned(start, alignment), "Must be");
3494
3495  char* end = start + bytes;
3496
3497  // Find the regions of the allocated chunk that can be promoted to large pages.
3498  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3499  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3500
3501  size_t lp_bytes = lp_end - lp_start;
3502
3503  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3504
3505  if (lp_bytes == 0) {
3506    // The mapped region doesn't even span the start and the end of a large page.
3507    // Fall back to allocate a non-special area.
3508    ::munmap(start, end - start);
3509    return NULL;
3510  }
3511
3512  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3513
3514  void* result;
3515
3516  // Commit small-paged leading area.
3517  if (start != lp_start) {
3518    result = ::mmap(start, lp_start - start, prot,
3519                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3520                    -1, 0);
3521    if (result == MAP_FAILED) {
3522      ::munmap(lp_start, end - lp_start);
3523      return NULL;
3524    }
3525  }
3526
3527  // Commit large-paged area.
3528  result = ::mmap(lp_start, lp_bytes, prot,
3529                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3530                  -1, 0);
3531  if (result == MAP_FAILED) {
3532    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3533    // If the mmap above fails, the large pages region will be unmapped and we
3534    // have regions before and after with small pages. Release these regions.
3535    //
3536    // |  mapped  |  unmapped  |  mapped  |
3537    // ^          ^            ^          ^
3538    // start      lp_start     lp_end     end
3539    //
3540    ::munmap(start, lp_start - start);
3541    ::munmap(lp_end, end - lp_end);
3542    return NULL;
3543  }
3544
3545  // Commit small-paged trailing area.
3546  if (lp_end != end) {
3547    result = ::mmap(lp_end, end - lp_end, prot,
3548                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3549                    -1, 0);
3550    if (result == MAP_FAILED) {
3551      ::munmap(start, lp_end - start);
3552      return NULL;
3553    }
3554  }
3555
3556  return start;
3557}
3558
3559char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3560                                                   size_t alignment,
3561                                                   char* req_addr,
3562                                                   bool exec) {
3563  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3564  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3565  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3566  assert(is_power_of_2(os::large_page_size()), "Must be");
3567  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3568
3569  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3570    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3571  } else {
3572    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3573  }
3574}
3575
3576char* os::reserve_memory_special(size_t bytes, size_t alignment,
3577                                 char* req_addr, bool exec) {
3578  assert(UseLargePages, "only for large pages");
3579
3580  char* addr;
3581  if (UseSHM) {
3582    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3583  } else {
3584    assert(UseHugeTLBFS, "must be");
3585    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3586  }
3587
3588  if (addr != NULL) {
3589    if (UseNUMAInterleaving) {
3590      numa_make_global(addr, bytes);
3591    }
3592
3593    // The memory is committed
3594    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3595  }
3596
3597  return addr;
3598}
3599
3600bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3601  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3602  return shmdt(base) == 0;
3603}
3604
3605bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3606  return pd_release_memory(base, bytes);
3607}
3608
3609bool os::release_memory_special(char* base, size_t bytes) {
3610  bool res;
3611  if (MemTracker::tracking_level() > NMT_minimal) {
3612    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3613    res = os::Linux::release_memory_special_impl(base, bytes);
3614    if (res) {
3615      tkr.record((address)base, bytes);
3616    }
3617
3618  } else {
3619    res = os::Linux::release_memory_special_impl(base, bytes);
3620  }
3621  return res;
3622}
3623
3624bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3625  assert(UseLargePages, "only for large pages");
3626  bool res;
3627
3628  if (UseSHM) {
3629    res = os::Linux::release_memory_special_shm(base, bytes);
3630  } else {
3631    assert(UseHugeTLBFS, "must be");
3632    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3633  }
3634  return res;
3635}
3636
3637size_t os::large_page_size() {
3638  return _large_page_size;
3639}
3640
3641// With SysV SHM the entire memory region must be allocated as shared
3642// memory.
3643// HugeTLBFS allows application to commit large page memory on demand.
3644// However, when committing memory with HugeTLBFS fails, the region
3645// that was supposed to be committed will lose the old reservation
3646// and allow other threads to steal that memory region. Because of this
3647// behavior we can't commit HugeTLBFS memory.
3648bool os::can_commit_large_page_memory() {
3649  return UseTransparentHugePages;
3650}
3651
3652bool os::can_execute_large_page_memory() {
3653  return UseTransparentHugePages || UseHugeTLBFS;
3654}
3655
3656// Reserve memory at an arbitrary address, only if that area is
3657// available (and not reserved for something else).
3658
3659char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3660  const int max_tries = 10;
3661  char* base[max_tries];
3662  size_t size[max_tries];
3663  const size_t gap = 0x000000;
3664
3665  // Assert only that the size is a multiple of the page size, since
3666  // that's all that mmap requires, and since that's all we really know
3667  // about at this low abstraction level.  If we need higher alignment,
3668  // we can either pass an alignment to this method or verify alignment
3669  // in one of the methods further up the call chain.  See bug 5044738.
3670  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3671
3672  // Repeatedly allocate blocks until the block is allocated at the
3673  // right spot.
3674
3675  // Linux mmap allows caller to pass an address as hint; give it a try first,
3676  // if kernel honors the hint then we can return immediately.
3677  char * addr = anon_mmap(requested_addr, bytes, false);
3678  if (addr == requested_addr) {
3679    return requested_addr;
3680  }
3681
3682  if (addr != NULL) {
3683    // mmap() is successful but it fails to reserve at the requested address
3684    anon_munmap(addr, bytes);
3685  }
3686
3687  int i;
3688  for (i = 0; i < max_tries; ++i) {
3689    base[i] = reserve_memory(bytes);
3690
3691    if (base[i] != NULL) {
3692      // Is this the block we wanted?
3693      if (base[i] == requested_addr) {
3694        size[i] = bytes;
3695        break;
3696      }
3697
3698      // Does this overlap the block we wanted? Give back the overlapped
3699      // parts and try again.
3700
3701      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3702      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3703        unmap_memory(base[i], top_overlap);
3704        base[i] += top_overlap;
3705        size[i] = bytes - top_overlap;
3706      } else {
3707        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3708        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3709          unmap_memory(requested_addr, bottom_overlap);
3710          size[i] = bytes - bottom_overlap;
3711        } else {
3712          size[i] = bytes;
3713        }
3714      }
3715    }
3716  }
3717
3718  // Give back the unused reserved pieces.
3719
3720  for (int j = 0; j < i; ++j) {
3721    if (base[j] != NULL) {
3722      unmap_memory(base[j], size[j]);
3723    }
3724  }
3725
3726  if (i < max_tries) {
3727    return requested_addr;
3728  } else {
3729    return NULL;
3730  }
3731}
3732
3733size_t os::read(int fd, void *buf, unsigned int nBytes) {
3734  return ::read(fd, buf, nBytes);
3735}
3736
3737size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3738  return ::pread(fd, buf, nBytes, offset);
3739}
3740
3741// Short sleep, direct OS call.
3742//
3743// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3744// sched_yield(2) will actually give up the CPU:
3745//
3746//   * Alone on this pariticular CPU, keeps running.
3747//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3748//     (pre 2.6.39).
3749//
3750// So calling this with 0 is an alternative.
3751//
3752void os::naked_short_sleep(jlong ms) {
3753  struct timespec req;
3754
3755  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3756  req.tv_sec = 0;
3757  if (ms > 0) {
3758    req.tv_nsec = (ms % 1000) * 1000000;
3759  } else {
3760    req.tv_nsec = 1;
3761  }
3762
3763  nanosleep(&req, NULL);
3764
3765  return;
3766}
3767
3768// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3769void os::infinite_sleep() {
3770  while (true) {    // sleep forever ...
3771    ::sleep(100);   // ... 100 seconds at a time
3772  }
3773}
3774
3775// Used to convert frequent JVM_Yield() to nops
3776bool os::dont_yield() {
3777  return DontYieldALot;
3778}
3779
3780void os::naked_yield() {
3781  sched_yield();
3782}
3783
3784////////////////////////////////////////////////////////////////////////////////
3785// thread priority support
3786
3787// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3788// only supports dynamic priority, static priority must be zero. For real-time
3789// applications, Linux supports SCHED_RR which allows static priority (1-99).
3790// However, for large multi-threaded applications, SCHED_RR is not only slower
3791// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3792// of 5 runs - Sep 2005).
3793//
3794// The following code actually changes the niceness of kernel-thread/LWP. It
3795// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3796// not the entire user process, and user level threads are 1:1 mapped to kernel
3797// threads. It has always been the case, but could change in the future. For
3798// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3799// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3800
3801int os::java_to_os_priority[CriticalPriority + 1] = {
3802  19,              // 0 Entry should never be used
3803
3804   4,              // 1 MinPriority
3805   3,              // 2
3806   2,              // 3
3807
3808   1,              // 4
3809   0,              // 5 NormPriority
3810  -1,              // 6
3811
3812  -2,              // 7
3813  -3,              // 8
3814  -4,              // 9 NearMaxPriority
3815
3816  -5,              // 10 MaxPriority
3817
3818  -5               // 11 CriticalPriority
3819};
3820
3821static int prio_init() {
3822  if (ThreadPriorityPolicy == 1) {
3823    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3824    // if effective uid is not root. Perhaps, a more elegant way of doing
3825    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3826    if (geteuid() != 0) {
3827      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3828        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3829      }
3830      ThreadPriorityPolicy = 0;
3831    }
3832  }
3833  if (UseCriticalJavaThreadPriority) {
3834    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3835  }
3836  return 0;
3837}
3838
3839OSReturn os::set_native_priority(Thread* thread, int newpri) {
3840  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3841
3842  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3843  return (ret == 0) ? OS_OK : OS_ERR;
3844}
3845
3846OSReturn os::get_native_priority(const Thread* const thread,
3847                                 int *priority_ptr) {
3848  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3849    *priority_ptr = java_to_os_priority[NormPriority];
3850    return OS_OK;
3851  }
3852
3853  errno = 0;
3854  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3855  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3856}
3857
3858// Hint to the underlying OS that a task switch would not be good.
3859// Void return because it's a hint and can fail.
3860void os::hint_no_preempt() {}
3861
3862////////////////////////////////////////////////////////////////////////////////
3863// suspend/resume support
3864
3865//  the low-level signal-based suspend/resume support is a remnant from the
3866//  old VM-suspension that used to be for java-suspension, safepoints etc,
3867//  within hotspot. Now there is a single use-case for this:
3868//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3869//      that runs in the watcher thread.
3870//  The remaining code is greatly simplified from the more general suspension
3871//  code that used to be used.
3872//
3873//  The protocol is quite simple:
3874//  - suspend:
3875//      - sends a signal to the target thread
3876//      - polls the suspend state of the osthread using a yield loop
3877//      - target thread signal handler (SR_handler) sets suspend state
3878//        and blocks in sigsuspend until continued
3879//  - resume:
3880//      - sets target osthread state to continue
3881//      - sends signal to end the sigsuspend loop in the SR_handler
3882//
3883//  Note that the SR_lock plays no role in this suspend/resume protocol.
3884
3885static void resume_clear_context(OSThread *osthread) {
3886  osthread->set_ucontext(NULL);
3887  osthread->set_siginfo(NULL);
3888}
3889
3890static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3891                                 ucontext_t* context) {
3892  osthread->set_ucontext(context);
3893  osthread->set_siginfo(siginfo);
3894}
3895
3896// Handler function invoked when a thread's execution is suspended or
3897// resumed. We have to be careful that only async-safe functions are
3898// called here (Note: most pthread functions are not async safe and
3899// should be avoided.)
3900//
3901// Note: sigwait() is a more natural fit than sigsuspend() from an
3902// interface point of view, but sigwait() prevents the signal hander
3903// from being run. libpthread would get very confused by not having
3904// its signal handlers run and prevents sigwait()'s use with the
3905// mutex granting granting signal.
3906//
3907// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3908//
3909static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3910  // Save and restore errno to avoid confusing native code with EINTR
3911  // after sigsuspend.
3912  int old_errno = errno;
3913
3914  Thread* thread = Thread::current();
3915  OSThread* osthread = thread->osthread();
3916  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3917
3918  os::SuspendResume::State current = osthread->sr.state();
3919  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3920    suspend_save_context(osthread, siginfo, context);
3921
3922    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3923    os::SuspendResume::State state = osthread->sr.suspended();
3924    if (state == os::SuspendResume::SR_SUSPENDED) {
3925      sigset_t suspend_set;  // signals for sigsuspend()
3926
3927      // get current set of blocked signals and unblock resume signal
3928      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3929      sigdelset(&suspend_set, SR_signum);
3930
3931      sr_semaphore.signal();
3932      // wait here until we are resumed
3933      while (1) {
3934        sigsuspend(&suspend_set);
3935
3936        os::SuspendResume::State result = osthread->sr.running();
3937        if (result == os::SuspendResume::SR_RUNNING) {
3938          sr_semaphore.signal();
3939          break;
3940        }
3941      }
3942
3943    } else if (state == os::SuspendResume::SR_RUNNING) {
3944      // request was cancelled, continue
3945    } else {
3946      ShouldNotReachHere();
3947    }
3948
3949    resume_clear_context(osthread);
3950  } else if (current == os::SuspendResume::SR_RUNNING) {
3951    // request was cancelled, continue
3952  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3953    // ignore
3954  } else {
3955    // ignore
3956  }
3957
3958  errno = old_errno;
3959}
3960
3961static int SR_initialize() {
3962  struct sigaction act;
3963  char *s;
3964
3965  // Get signal number to use for suspend/resume
3966  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3967    int sig = ::strtol(s, 0, 10);
3968    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3969        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3970      SR_signum = sig;
3971    } else {
3972      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3973              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3974    }
3975  }
3976
3977  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3978         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3979
3980  sigemptyset(&SR_sigset);
3981  sigaddset(&SR_sigset, SR_signum);
3982
3983  // Set up signal handler for suspend/resume
3984  act.sa_flags = SA_RESTART|SA_SIGINFO;
3985  act.sa_handler = (void (*)(int)) SR_handler;
3986
3987  // SR_signum is blocked by default.
3988  // 4528190 - We also need to block pthread restart signal (32 on all
3989  // supported Linux platforms). Note that LinuxThreads need to block
3990  // this signal for all threads to work properly. So we don't have
3991  // to use hard-coded signal number when setting up the mask.
3992  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3993
3994  if (sigaction(SR_signum, &act, 0) == -1) {
3995    return -1;
3996  }
3997
3998  // Save signal flag
3999  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4000  return 0;
4001}
4002
4003static int sr_notify(OSThread* osthread) {
4004  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4005  assert_status(status == 0, status, "pthread_kill");
4006  return status;
4007}
4008
4009// "Randomly" selected value for how long we want to spin
4010// before bailing out on suspending a thread, also how often
4011// we send a signal to a thread we want to resume
4012static const int RANDOMLY_LARGE_INTEGER = 1000000;
4013static const int RANDOMLY_LARGE_INTEGER2 = 100;
4014
4015// returns true on success and false on error - really an error is fatal
4016// but this seems the normal response to library errors
4017static bool do_suspend(OSThread* osthread) {
4018  assert(osthread->sr.is_running(), "thread should be running");
4019  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4020
4021  // mark as suspended and send signal
4022  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4023    // failed to switch, state wasn't running?
4024    ShouldNotReachHere();
4025    return false;
4026  }
4027
4028  if (sr_notify(osthread) != 0) {
4029    ShouldNotReachHere();
4030  }
4031
4032  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4033  while (true) {
4034    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4035      break;
4036    } else {
4037      // timeout
4038      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4039      if (cancelled == os::SuspendResume::SR_RUNNING) {
4040        return false;
4041      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4042        // make sure that we consume the signal on the semaphore as well
4043        sr_semaphore.wait();
4044        break;
4045      } else {
4046        ShouldNotReachHere();
4047        return false;
4048      }
4049    }
4050  }
4051
4052  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4053  return true;
4054}
4055
4056static void do_resume(OSThread* osthread) {
4057  assert(osthread->sr.is_suspended(), "thread should be suspended");
4058  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4059
4060  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4061    // failed to switch to WAKEUP_REQUEST
4062    ShouldNotReachHere();
4063    return;
4064  }
4065
4066  while (true) {
4067    if (sr_notify(osthread) == 0) {
4068      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4069        if (osthread->sr.is_running()) {
4070          return;
4071        }
4072      }
4073    } else {
4074      ShouldNotReachHere();
4075    }
4076  }
4077
4078  guarantee(osthread->sr.is_running(), "Must be running!");
4079}
4080
4081///////////////////////////////////////////////////////////////////////////////////
4082// signal handling (except suspend/resume)
4083
4084// This routine may be used by user applications as a "hook" to catch signals.
4085// The user-defined signal handler must pass unrecognized signals to this
4086// routine, and if it returns true (non-zero), then the signal handler must
4087// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4088// routine will never retun false (zero), but instead will execute a VM panic
4089// routine kill the process.
4090//
4091// If this routine returns false, it is OK to call it again.  This allows
4092// the user-defined signal handler to perform checks either before or after
4093// the VM performs its own checks.  Naturally, the user code would be making
4094// a serious error if it tried to handle an exception (such as a null check
4095// or breakpoint) that the VM was generating for its own correct operation.
4096//
4097// This routine may recognize any of the following kinds of signals:
4098//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4099// It should be consulted by handlers for any of those signals.
4100//
4101// The caller of this routine must pass in the three arguments supplied
4102// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4103// field of the structure passed to sigaction().  This routine assumes that
4104// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4105//
4106// Note that the VM will print warnings if it detects conflicting signal
4107// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4108//
4109extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4110                                                 siginfo_t* siginfo,
4111                                                 void* ucontext,
4112                                                 int abort_if_unrecognized);
4113
4114void signalHandler(int sig, siginfo_t* info, void* uc) {
4115  assert(info != NULL && uc != NULL, "it must be old kernel");
4116  int orig_errno = errno;  // Preserve errno value over signal handler.
4117  JVM_handle_linux_signal(sig, info, uc, true);
4118  errno = orig_errno;
4119}
4120
4121
4122// This boolean allows users to forward their own non-matching signals
4123// to JVM_handle_linux_signal, harmlessly.
4124bool os::Linux::signal_handlers_are_installed = false;
4125
4126// For signal-chaining
4127struct sigaction sigact[NSIG];
4128uint64_t sigs = 0;
4129#if (64 < NSIG-1)
4130#error "Not all signals can be encoded in sigs. Adapt its type!"
4131#endif
4132bool os::Linux::libjsig_is_loaded = false;
4133typedef struct sigaction *(*get_signal_t)(int);
4134get_signal_t os::Linux::get_signal_action = NULL;
4135
4136struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4137  struct sigaction *actp = NULL;
4138
4139  if (libjsig_is_loaded) {
4140    // Retrieve the old signal handler from libjsig
4141    actp = (*get_signal_action)(sig);
4142  }
4143  if (actp == NULL) {
4144    // Retrieve the preinstalled signal handler from jvm
4145    actp = get_preinstalled_handler(sig);
4146  }
4147
4148  return actp;
4149}
4150
4151static bool call_chained_handler(struct sigaction *actp, int sig,
4152                                 siginfo_t *siginfo, void *context) {
4153  // Call the old signal handler
4154  if (actp->sa_handler == SIG_DFL) {
4155    // It's more reasonable to let jvm treat it as an unexpected exception
4156    // instead of taking the default action.
4157    return false;
4158  } else if (actp->sa_handler != SIG_IGN) {
4159    if ((actp->sa_flags & SA_NODEFER) == 0) {
4160      // automaticlly block the signal
4161      sigaddset(&(actp->sa_mask), sig);
4162    }
4163
4164    sa_handler_t hand = NULL;
4165    sa_sigaction_t sa = NULL;
4166    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4167    // retrieve the chained handler
4168    if (siginfo_flag_set) {
4169      sa = actp->sa_sigaction;
4170    } else {
4171      hand = actp->sa_handler;
4172    }
4173
4174    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4175      actp->sa_handler = SIG_DFL;
4176    }
4177
4178    // try to honor the signal mask
4179    sigset_t oset;
4180    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4181
4182    // call into the chained handler
4183    if (siginfo_flag_set) {
4184      (*sa)(sig, siginfo, context);
4185    } else {
4186      (*hand)(sig);
4187    }
4188
4189    // restore the signal mask
4190    pthread_sigmask(SIG_SETMASK, &oset, 0);
4191  }
4192  // Tell jvm's signal handler the signal is taken care of.
4193  return true;
4194}
4195
4196bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4197  bool chained = false;
4198  // signal-chaining
4199  if (UseSignalChaining) {
4200    struct sigaction *actp = get_chained_signal_action(sig);
4201    if (actp != NULL) {
4202      chained = call_chained_handler(actp, sig, siginfo, context);
4203    }
4204  }
4205  return chained;
4206}
4207
4208struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4209  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4210    return &sigact[sig];
4211  }
4212  return NULL;
4213}
4214
4215void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4216  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4217  sigact[sig] = oldAct;
4218  sigs |= (uint64_t)1 << (sig-1);
4219}
4220
4221// for diagnostic
4222int sigflags[NSIG];
4223
4224int os::Linux::get_our_sigflags(int sig) {
4225  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4226  return sigflags[sig];
4227}
4228
4229void os::Linux::set_our_sigflags(int sig, int flags) {
4230  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4231  if (sig > 0 && sig < NSIG) {
4232    sigflags[sig] = flags;
4233  }
4234}
4235
4236void os::Linux::set_signal_handler(int sig, bool set_installed) {
4237  // Check for overwrite.
4238  struct sigaction oldAct;
4239  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4240
4241  void* oldhand = oldAct.sa_sigaction
4242                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4243                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4244  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4245      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4246      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4247    if (AllowUserSignalHandlers || !set_installed) {
4248      // Do not overwrite; user takes responsibility to forward to us.
4249      return;
4250    } else if (UseSignalChaining) {
4251      // save the old handler in jvm
4252      save_preinstalled_handler(sig, oldAct);
4253      // libjsig also interposes the sigaction() call below and saves the
4254      // old sigaction on it own.
4255    } else {
4256      fatal("Encountered unexpected pre-existing sigaction handler "
4257            "%#lx for signal %d.", (long)oldhand, sig);
4258    }
4259  }
4260
4261  struct sigaction sigAct;
4262  sigfillset(&(sigAct.sa_mask));
4263  sigAct.sa_handler = SIG_DFL;
4264  if (!set_installed) {
4265    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4266  } else {
4267    sigAct.sa_sigaction = signalHandler;
4268    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4269  }
4270  // Save flags, which are set by ours
4271  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4272  sigflags[sig] = sigAct.sa_flags;
4273
4274  int ret = sigaction(sig, &sigAct, &oldAct);
4275  assert(ret == 0, "check");
4276
4277  void* oldhand2  = oldAct.sa_sigaction
4278                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4279                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4280  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4281}
4282
4283// install signal handlers for signals that HotSpot needs to
4284// handle in order to support Java-level exception handling.
4285
4286void os::Linux::install_signal_handlers() {
4287  if (!signal_handlers_are_installed) {
4288    signal_handlers_are_installed = true;
4289
4290    // signal-chaining
4291    typedef void (*signal_setting_t)();
4292    signal_setting_t begin_signal_setting = NULL;
4293    signal_setting_t end_signal_setting = NULL;
4294    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4295                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4296    if (begin_signal_setting != NULL) {
4297      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4298                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4299      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4300                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4301      libjsig_is_loaded = true;
4302      assert(UseSignalChaining, "should enable signal-chaining");
4303    }
4304    if (libjsig_is_loaded) {
4305      // Tell libjsig jvm is setting signal handlers
4306      (*begin_signal_setting)();
4307    }
4308
4309    set_signal_handler(SIGSEGV, true);
4310    set_signal_handler(SIGPIPE, true);
4311    set_signal_handler(SIGBUS, true);
4312    set_signal_handler(SIGILL, true);
4313    set_signal_handler(SIGFPE, true);
4314#if defined(PPC64)
4315    set_signal_handler(SIGTRAP, true);
4316#endif
4317    set_signal_handler(SIGXFSZ, true);
4318
4319    if (libjsig_is_loaded) {
4320      // Tell libjsig jvm finishes setting signal handlers
4321      (*end_signal_setting)();
4322    }
4323
4324    // We don't activate signal checker if libjsig is in place, we trust ourselves
4325    // and if UserSignalHandler is installed all bets are off.
4326    // Log that signal checking is off only if -verbose:jni is specified.
4327    if (CheckJNICalls) {
4328      if (libjsig_is_loaded) {
4329        if (PrintJNIResolving) {
4330          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4331        }
4332        check_signals = false;
4333      }
4334      if (AllowUserSignalHandlers) {
4335        if (PrintJNIResolving) {
4336          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4337        }
4338        check_signals = false;
4339      }
4340    }
4341  }
4342}
4343
4344// This is the fastest way to get thread cpu time on Linux.
4345// Returns cpu time (user+sys) for any thread, not only for current.
4346// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4347// It might work on 2.6.10+ with a special kernel/glibc patch.
4348// For reference, please, see IEEE Std 1003.1-2004:
4349//   http://www.unix.org/single_unix_specification
4350
4351jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4352  struct timespec tp;
4353  int rc = os::Linux::clock_gettime(clockid, &tp);
4354  assert(rc == 0, "clock_gettime is expected to return 0 code");
4355
4356  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4357}
4358
4359/////
4360// glibc on Linux platform uses non-documented flag
4361// to indicate, that some special sort of signal
4362// trampoline is used.
4363// We will never set this flag, and we should
4364// ignore this flag in our diagnostic
4365#ifdef SIGNIFICANT_SIGNAL_MASK
4366  #undef SIGNIFICANT_SIGNAL_MASK
4367#endif
4368#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4369
4370static const char* get_signal_handler_name(address handler,
4371                                           char* buf, int buflen) {
4372  int offset = 0;
4373  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4374  if (found) {
4375    // skip directory names
4376    const char *p1, *p2;
4377    p1 = buf;
4378    size_t len = strlen(os::file_separator());
4379    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4380    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4381  } else {
4382    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4383  }
4384  return buf;
4385}
4386
4387static void print_signal_handler(outputStream* st, int sig,
4388                                 char* buf, size_t buflen) {
4389  struct sigaction sa;
4390
4391  sigaction(sig, NULL, &sa);
4392
4393  // See comment for SIGNIFICANT_SIGNAL_MASK define
4394  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4395
4396  st->print("%s: ", os::exception_name(sig, buf, buflen));
4397
4398  address handler = (sa.sa_flags & SA_SIGINFO)
4399    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4400    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4401
4402  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4403    st->print("SIG_DFL");
4404  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4405    st->print("SIG_IGN");
4406  } else {
4407    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4408  }
4409
4410  st->print(", sa_mask[0]=");
4411  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4412
4413  address rh = VMError::get_resetted_sighandler(sig);
4414  // May be, handler was resetted by VMError?
4415  if (rh != NULL) {
4416    handler = rh;
4417    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4418  }
4419
4420  st->print(", sa_flags=");
4421  os::Posix::print_sa_flags(st, sa.sa_flags);
4422
4423  // Check: is it our handler?
4424  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4425      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4426    // It is our signal handler
4427    // check for flags, reset system-used one!
4428    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4429      st->print(
4430                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4431                os::Linux::get_our_sigflags(sig));
4432    }
4433  }
4434  st->cr();
4435}
4436
4437
4438#define DO_SIGNAL_CHECK(sig)                      \
4439  do {                                            \
4440    if (!sigismember(&check_signal_done, sig)) {  \
4441      os::Linux::check_signal_handler(sig);       \
4442    }                                             \
4443  } while (0)
4444
4445// This method is a periodic task to check for misbehaving JNI applications
4446// under CheckJNI, we can add any periodic checks here
4447
4448void os::run_periodic_checks() {
4449  if (check_signals == false) return;
4450
4451  // SEGV and BUS if overridden could potentially prevent
4452  // generation of hs*.log in the event of a crash, debugging
4453  // such a case can be very challenging, so we absolutely
4454  // check the following for a good measure:
4455  DO_SIGNAL_CHECK(SIGSEGV);
4456  DO_SIGNAL_CHECK(SIGILL);
4457  DO_SIGNAL_CHECK(SIGFPE);
4458  DO_SIGNAL_CHECK(SIGBUS);
4459  DO_SIGNAL_CHECK(SIGPIPE);
4460  DO_SIGNAL_CHECK(SIGXFSZ);
4461#if defined(PPC64)
4462  DO_SIGNAL_CHECK(SIGTRAP);
4463#endif
4464
4465  // ReduceSignalUsage allows the user to override these handlers
4466  // see comments at the very top and jvm_solaris.h
4467  if (!ReduceSignalUsage) {
4468    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4469    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4470    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4471    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4472  }
4473
4474  DO_SIGNAL_CHECK(SR_signum);
4475}
4476
4477typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4478
4479static os_sigaction_t os_sigaction = NULL;
4480
4481void os::Linux::check_signal_handler(int sig) {
4482  char buf[O_BUFLEN];
4483  address jvmHandler = NULL;
4484
4485
4486  struct sigaction act;
4487  if (os_sigaction == NULL) {
4488    // only trust the default sigaction, in case it has been interposed
4489    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4490    if (os_sigaction == NULL) return;
4491  }
4492
4493  os_sigaction(sig, (struct sigaction*)NULL, &act);
4494
4495
4496  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4497
4498  address thisHandler = (act.sa_flags & SA_SIGINFO)
4499    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4500    : CAST_FROM_FN_PTR(address, act.sa_handler);
4501
4502
4503  switch (sig) {
4504  case SIGSEGV:
4505  case SIGBUS:
4506  case SIGFPE:
4507  case SIGPIPE:
4508  case SIGILL:
4509  case SIGXFSZ:
4510    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4511    break;
4512
4513  case SHUTDOWN1_SIGNAL:
4514  case SHUTDOWN2_SIGNAL:
4515  case SHUTDOWN3_SIGNAL:
4516  case BREAK_SIGNAL:
4517    jvmHandler = (address)user_handler();
4518    break;
4519
4520  default:
4521    if (sig == SR_signum) {
4522      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4523    } else {
4524      return;
4525    }
4526    break;
4527  }
4528
4529  if (thisHandler != jvmHandler) {
4530    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4531    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4532    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4533    // No need to check this sig any longer
4534    sigaddset(&check_signal_done, sig);
4535    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4536    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4537      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4538                    exception_name(sig, buf, O_BUFLEN));
4539    }
4540  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4541    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4542    tty->print("expected:");
4543    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4544    tty->cr();
4545    tty->print("  found:");
4546    os::Posix::print_sa_flags(tty, act.sa_flags);
4547    tty->cr();
4548    // No need to check this sig any longer
4549    sigaddset(&check_signal_done, sig);
4550  }
4551
4552  // Dump all the signal
4553  if (sigismember(&check_signal_done, sig)) {
4554    print_signal_handlers(tty, buf, O_BUFLEN);
4555  }
4556}
4557
4558extern void report_error(char* file_name, int line_no, char* title,
4559                         char* format, ...);
4560
4561// this is called _before_ the most of global arguments have been parsed
4562void os::init(void) {
4563  char dummy;   // used to get a guess on initial stack address
4564//  first_hrtime = gethrtime();
4565
4566  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4567
4568  init_random(1234567);
4569
4570  ThreadCritical::initialize();
4571
4572  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4573  if (Linux::page_size() == -1) {
4574    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4575          strerror(errno));
4576  }
4577  init_page_sizes((size_t) Linux::page_size());
4578
4579  Linux::initialize_system_info();
4580
4581  // main_thread points to the aboriginal thread
4582  Linux::_main_thread = pthread_self();
4583
4584  Linux::clock_init();
4585  initial_time_count = javaTimeNanos();
4586
4587  // pthread_condattr initialization for monotonic clock
4588  int status;
4589  pthread_condattr_t* _condattr = os::Linux::condAttr();
4590  if ((status = pthread_condattr_init(_condattr)) != 0) {
4591    fatal("pthread_condattr_init: %s", strerror(status));
4592  }
4593  // Only set the clock if CLOCK_MONOTONIC is available
4594  if (os::supports_monotonic_clock()) {
4595    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4596      if (status == EINVAL) {
4597        warning("Unable to use monotonic clock with relative timed-waits" \
4598                " - changes to the time-of-day clock may have adverse affects");
4599      } else {
4600        fatal("pthread_condattr_setclock: %s", strerror(status));
4601      }
4602    }
4603  }
4604  // else it defaults to CLOCK_REALTIME
4605
4606  // retrieve entry point for pthread_setname_np
4607  Linux::_pthread_setname_np =
4608    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4609
4610}
4611
4612// To install functions for atexit system call
4613extern "C" {
4614  static void perfMemory_exit_helper() {
4615    perfMemory_exit();
4616  }
4617}
4618
4619// this is called _after_ the global arguments have been parsed
4620jint os::init_2(void) {
4621  Linux::fast_thread_clock_init();
4622
4623  // Allocate a single page and mark it as readable for safepoint polling
4624  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4625  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4626
4627  os::set_polling_page(polling_page);
4628
4629#ifndef PRODUCT
4630  if (Verbose && PrintMiscellaneous) {
4631    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4632               (intptr_t)polling_page);
4633  }
4634#endif
4635
4636  if (!UseMembar) {
4637    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4638    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4639    os::set_memory_serialize_page(mem_serialize_page);
4640
4641#ifndef PRODUCT
4642    if (Verbose && PrintMiscellaneous) {
4643      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4644                 (intptr_t)mem_serialize_page);
4645    }
4646#endif
4647  }
4648
4649  // initialize suspend/resume support - must do this before signal_sets_init()
4650  if (SR_initialize() != 0) {
4651    perror("SR_initialize failed");
4652    return JNI_ERR;
4653  }
4654
4655  Linux::signal_sets_init();
4656  Linux::install_signal_handlers();
4657
4658  // Check minimum allowable stack size for thread creation and to initialize
4659  // the java system classes, including StackOverflowError - depends on page
4660  // size.  Add a page for compiler2 recursion in main thread.
4661  // Add in 2*BytesPerWord times page size to account for VM stack during
4662  // class initialization depending on 32 or 64 bit VM.
4663  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4664                                      JavaThread::stack_guard_zone_size() +
4665                                      JavaThread::stack_shadow_zone_size() +
4666                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4667
4668  size_t threadStackSizeInBytes = ThreadStackSize * K;
4669  if (threadStackSizeInBytes != 0 &&
4670      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4671    tty->print_cr("\nThe stack size specified is too small, "
4672                  "Specify at least " SIZE_FORMAT "k",
4673                  os::Linux::min_stack_allowed/ K);
4674    return JNI_ERR;
4675  }
4676
4677  // Make the stack size a multiple of the page size so that
4678  // the yellow/red zones can be guarded.
4679  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4680                                                vm_page_size()));
4681
4682  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4683
4684#if defined(IA32)
4685  workaround_expand_exec_shield_cs_limit();
4686#endif
4687
4688  Linux::libpthread_init();
4689  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4690    tty->print_cr("[HotSpot is running with %s, %s]\n",
4691                  Linux::glibc_version(), Linux::libpthread_version());
4692  }
4693
4694  if (UseNUMA) {
4695    if (!Linux::libnuma_init()) {
4696      UseNUMA = false;
4697    } else {
4698      if ((Linux::numa_max_node() < 1)) {
4699        // There's only one node(they start from 0), disable NUMA.
4700        UseNUMA = false;
4701      }
4702    }
4703    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4704    // we can make the adaptive lgrp chunk resizing work. If the user specified
4705    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4706    // disable adaptive resizing.
4707    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4708      if (FLAG_IS_DEFAULT(UseNUMA)) {
4709        UseNUMA = false;
4710      } else {
4711        if (FLAG_IS_DEFAULT(UseLargePages) &&
4712            FLAG_IS_DEFAULT(UseSHM) &&
4713            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4714          UseLargePages = false;
4715        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4716          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4717          UseAdaptiveSizePolicy = false;
4718          UseAdaptiveNUMAChunkSizing = false;
4719        }
4720      }
4721    }
4722    if (!UseNUMA && ForceNUMA) {
4723      UseNUMA = true;
4724    }
4725  }
4726
4727  if (MaxFDLimit) {
4728    // set the number of file descriptors to max. print out error
4729    // if getrlimit/setrlimit fails but continue regardless.
4730    struct rlimit nbr_files;
4731    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4732    if (status != 0) {
4733      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4734        perror("os::init_2 getrlimit failed");
4735      }
4736    } else {
4737      nbr_files.rlim_cur = nbr_files.rlim_max;
4738      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4739      if (status != 0) {
4740        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4741          perror("os::init_2 setrlimit failed");
4742        }
4743      }
4744    }
4745  }
4746
4747  // Initialize lock used to serialize thread creation (see os::create_thread)
4748  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4749
4750  // at-exit methods are called in the reverse order of their registration.
4751  // atexit functions are called on return from main or as a result of a
4752  // call to exit(3C). There can be only 32 of these functions registered
4753  // and atexit() does not set errno.
4754
4755  if (PerfAllowAtExitRegistration) {
4756    // only register atexit functions if PerfAllowAtExitRegistration is set.
4757    // atexit functions can be delayed until process exit time, which
4758    // can be problematic for embedded VM situations. Embedded VMs should
4759    // call DestroyJavaVM() to assure that VM resources are released.
4760
4761    // note: perfMemory_exit_helper atexit function may be removed in
4762    // the future if the appropriate cleanup code can be added to the
4763    // VM_Exit VMOperation's doit method.
4764    if (atexit(perfMemory_exit_helper) != 0) {
4765      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4766    }
4767  }
4768
4769  // initialize thread priority policy
4770  prio_init();
4771
4772  return JNI_OK;
4773}
4774
4775// Mark the polling page as unreadable
4776void os::make_polling_page_unreadable(void) {
4777  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4778    fatal("Could not disable polling page");
4779  }
4780}
4781
4782// Mark the polling page as readable
4783void os::make_polling_page_readable(void) {
4784  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4785    fatal("Could not enable polling page");
4786  }
4787}
4788
4789// older glibc versions don't have this macro (which expands to
4790// an optimized bit-counting function) so we have to roll our own
4791#ifndef CPU_COUNT
4792
4793static int _cpu_count(const cpu_set_t* cpus) {
4794  int count = 0;
4795  // only look up to the number of configured processors
4796  for (int i = 0; i < os::processor_count(); i++) {
4797    if (CPU_ISSET(i, cpus)) {
4798      count++;
4799    }
4800  }
4801  return count;
4802}
4803
4804#define CPU_COUNT(cpus) _cpu_count(cpus)
4805
4806#endif // CPU_COUNT
4807
4808// Get the current number of available processors for this process.
4809// This value can change at any time during a process's lifetime.
4810// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4811// If it appears there may be more than 1024 processors then we do a
4812// dynamic check - see 6515172 for details.
4813// If anything goes wrong we fallback to returning the number of online
4814// processors - which can be greater than the number available to the process.
4815int os::active_processor_count() {
4816  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4817  cpu_set_t* cpus_p = &cpus;
4818  int cpus_size = sizeof(cpu_set_t);
4819
4820  int configured_cpus = processor_count();  // upper bound on available cpus
4821  int cpu_count = 0;
4822
4823// old build platforms may not support dynamic cpu sets
4824#ifdef CPU_ALLOC
4825
4826  // To enable easy testing of the dynamic path on different platforms we
4827  // introduce a diagnostic flag: UseCpuAllocPath
4828  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4829    // kernel may use a mask bigger than cpu_set_t
4830    log_trace(os)("active_processor_count: using dynamic path %s"
4831                  "- configured processors: %d",
4832                  UseCpuAllocPath ? "(forced) " : "",
4833                  configured_cpus);
4834    cpus_p = CPU_ALLOC(configured_cpus);
4835    if (cpus_p != NULL) {
4836      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4837      // zero it just to be safe
4838      CPU_ZERO_S(cpus_size, cpus_p);
4839    }
4840    else {
4841       // failed to allocate so fallback to online cpus
4842       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4843       log_trace(os)("active_processor_count: "
4844                     "CPU_ALLOC failed (%s) - using "
4845                     "online processor count: %d",
4846                     strerror(errno), online_cpus);
4847       return online_cpus;
4848    }
4849  }
4850  else {
4851    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4852                  configured_cpus);
4853  }
4854#else // CPU_ALLOC
4855// these stubs won't be executed
4856#define CPU_COUNT_S(size, cpus) -1
4857#define CPU_FREE(cpus)
4858
4859  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4860                configured_cpus);
4861#endif // CPU_ALLOC
4862
4863  // pid 0 means the current thread - which we have to assume represents the process
4864  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4865    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4866      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4867    }
4868    else {
4869      cpu_count = CPU_COUNT(cpus_p);
4870    }
4871    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4872  }
4873  else {
4874    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4875    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4876            "which may exceed available processors", strerror(errno), cpu_count);
4877  }
4878
4879  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4880    CPU_FREE(cpus_p);
4881  }
4882
4883  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4884  return cpu_count;
4885}
4886
4887void os::set_native_thread_name(const char *name) {
4888  if (Linux::_pthread_setname_np) {
4889    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4890    snprintf(buf, sizeof(buf), "%s", name);
4891    buf[sizeof(buf) - 1] = '\0';
4892    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4893    // ERANGE should not happen; all other errors should just be ignored.
4894    assert(rc != ERANGE, "pthread_setname_np failed");
4895  }
4896}
4897
4898bool os::distribute_processes(uint length, uint* distribution) {
4899  // Not yet implemented.
4900  return false;
4901}
4902
4903bool os::bind_to_processor(uint processor_id) {
4904  // Not yet implemented.
4905  return false;
4906}
4907
4908///
4909
4910void os::SuspendedThreadTask::internal_do_task() {
4911  if (do_suspend(_thread->osthread())) {
4912    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4913    do_task(context);
4914    do_resume(_thread->osthread());
4915  }
4916}
4917
4918class PcFetcher : public os::SuspendedThreadTask {
4919 public:
4920  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4921  ExtendedPC result();
4922 protected:
4923  void do_task(const os::SuspendedThreadTaskContext& context);
4924 private:
4925  ExtendedPC _epc;
4926};
4927
4928ExtendedPC PcFetcher::result() {
4929  guarantee(is_done(), "task is not done yet.");
4930  return _epc;
4931}
4932
4933void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4934  Thread* thread = context.thread();
4935  OSThread* osthread = thread->osthread();
4936  if (osthread->ucontext() != NULL) {
4937    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
4938  } else {
4939    // NULL context is unexpected, double-check this is the VMThread
4940    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4941  }
4942}
4943
4944// Suspends the target using the signal mechanism and then grabs the PC before
4945// resuming the target. Used by the flat-profiler only
4946ExtendedPC os::get_thread_pc(Thread* thread) {
4947  // Make sure that it is called by the watcher for the VMThread
4948  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4949  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4950
4951  PcFetcher fetcher(thread);
4952  fetcher.run();
4953  return fetcher.result();
4954}
4955
4956////////////////////////////////////////////////////////////////////////////////
4957// debug support
4958
4959bool os::find(address addr, outputStream* st) {
4960  Dl_info dlinfo;
4961  memset(&dlinfo, 0, sizeof(dlinfo));
4962  if (dladdr(addr, &dlinfo) != 0) {
4963    st->print(PTR_FORMAT ": ", p2i(addr));
4964    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4965      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4966                p2i(addr) - p2i(dlinfo.dli_saddr));
4967    } else if (dlinfo.dli_fbase != NULL) {
4968      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4969    } else {
4970      st->print("<absolute address>");
4971    }
4972    if (dlinfo.dli_fname != NULL) {
4973      st->print(" in %s", dlinfo.dli_fname);
4974    }
4975    if (dlinfo.dli_fbase != NULL) {
4976      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4977    }
4978    st->cr();
4979
4980    if (Verbose) {
4981      // decode some bytes around the PC
4982      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4983      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4984      address       lowest = (address) dlinfo.dli_sname;
4985      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4986      if (begin < lowest)  begin = lowest;
4987      Dl_info dlinfo2;
4988      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4989          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4990        end = (address) dlinfo2.dli_saddr;
4991      }
4992      Disassembler::decode(begin, end, st);
4993    }
4994    return true;
4995  }
4996  return false;
4997}
4998
4999////////////////////////////////////////////////////////////////////////////////
5000// misc
5001
5002// This does not do anything on Linux. This is basically a hook for being
5003// able to use structured exception handling (thread-local exception filters)
5004// on, e.g., Win32.
5005void
5006os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5007                         JavaCallArguments* args, Thread* thread) {
5008  f(value, method, args, thread);
5009}
5010
5011void os::print_statistics() {
5012}
5013
5014bool os::message_box(const char* title, const char* message) {
5015  int i;
5016  fdStream err(defaultStream::error_fd());
5017  for (i = 0; i < 78; i++) err.print_raw("=");
5018  err.cr();
5019  err.print_raw_cr(title);
5020  for (i = 0; i < 78; i++) err.print_raw("-");
5021  err.cr();
5022  err.print_raw_cr(message);
5023  for (i = 0; i < 78; i++) err.print_raw("=");
5024  err.cr();
5025
5026  char buf[16];
5027  // Prevent process from exiting upon "read error" without consuming all CPU
5028  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5029
5030  return buf[0] == 'y' || buf[0] == 'Y';
5031}
5032
5033int os::stat(const char *path, struct stat *sbuf) {
5034  char pathbuf[MAX_PATH];
5035  if (strlen(path) > MAX_PATH - 1) {
5036    errno = ENAMETOOLONG;
5037    return -1;
5038  }
5039  os::native_path(strcpy(pathbuf, path));
5040  return ::stat(pathbuf, sbuf);
5041}
5042
5043bool os::check_heap(bool force) {
5044  return true;
5045}
5046
5047// Is a (classpath) directory empty?
5048bool os::dir_is_empty(const char* path) {
5049  DIR *dir = NULL;
5050  struct dirent *ptr;
5051
5052  dir = opendir(path);
5053  if (dir == NULL) return true;
5054
5055  // Scan the directory
5056  bool result = true;
5057  char buf[sizeof(struct dirent) + MAX_PATH];
5058  while (result && (ptr = ::readdir(dir)) != NULL) {
5059    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5060      result = false;
5061    }
5062  }
5063  closedir(dir);
5064  return result;
5065}
5066
5067// This code originates from JDK's sysOpen and open64_w
5068// from src/solaris/hpi/src/system_md.c
5069
5070int os::open(const char *path, int oflag, int mode) {
5071  if (strlen(path) > MAX_PATH - 1) {
5072    errno = ENAMETOOLONG;
5073    return -1;
5074  }
5075
5076  // All file descriptors that are opened in the Java process and not
5077  // specifically destined for a subprocess should have the close-on-exec
5078  // flag set.  If we don't set it, then careless 3rd party native code
5079  // might fork and exec without closing all appropriate file descriptors
5080  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5081  // turn might:
5082  //
5083  // - cause end-of-file to fail to be detected on some file
5084  //   descriptors, resulting in mysterious hangs, or
5085  //
5086  // - might cause an fopen in the subprocess to fail on a system
5087  //   suffering from bug 1085341.
5088  //
5089  // (Yes, the default setting of the close-on-exec flag is a Unix
5090  // design flaw)
5091  //
5092  // See:
5093  // 1085341: 32-bit stdio routines should support file descriptors >255
5094  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5095  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5096  //
5097  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5098  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5099  // because it saves a system call and removes a small window where the flag
5100  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5101  // and we fall back to using FD_CLOEXEC (see below).
5102#ifdef O_CLOEXEC
5103  oflag |= O_CLOEXEC;
5104#endif
5105
5106  int fd = ::open64(path, oflag, mode);
5107  if (fd == -1) return -1;
5108
5109  //If the open succeeded, the file might still be a directory
5110  {
5111    struct stat64 buf64;
5112    int ret = ::fstat64(fd, &buf64);
5113    int st_mode = buf64.st_mode;
5114
5115    if (ret != -1) {
5116      if ((st_mode & S_IFMT) == S_IFDIR) {
5117        errno = EISDIR;
5118        ::close(fd);
5119        return -1;
5120      }
5121    } else {
5122      ::close(fd);
5123      return -1;
5124    }
5125  }
5126
5127#ifdef FD_CLOEXEC
5128  // Validate that the use of the O_CLOEXEC flag on open above worked.
5129  // With recent kernels, we will perform this check exactly once.
5130  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5131  if (!O_CLOEXEC_is_known_to_work) {
5132    int flags = ::fcntl(fd, F_GETFD);
5133    if (flags != -1) {
5134      if ((flags & FD_CLOEXEC) != 0)
5135        O_CLOEXEC_is_known_to_work = 1;
5136      else
5137        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5138    }
5139  }
5140#endif
5141
5142  return fd;
5143}
5144
5145
5146// create binary file, rewriting existing file if required
5147int os::create_binary_file(const char* path, bool rewrite_existing) {
5148  int oflags = O_WRONLY | O_CREAT;
5149  if (!rewrite_existing) {
5150    oflags |= O_EXCL;
5151  }
5152  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5153}
5154
5155// return current position of file pointer
5156jlong os::current_file_offset(int fd) {
5157  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5158}
5159
5160// move file pointer to the specified offset
5161jlong os::seek_to_file_offset(int fd, jlong offset) {
5162  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5163}
5164
5165// This code originates from JDK's sysAvailable
5166// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5167
5168int os::available(int fd, jlong *bytes) {
5169  jlong cur, end;
5170  int mode;
5171  struct stat64 buf64;
5172
5173  if (::fstat64(fd, &buf64) >= 0) {
5174    mode = buf64.st_mode;
5175    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5176      int n;
5177      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5178        *bytes = n;
5179        return 1;
5180      }
5181    }
5182  }
5183  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5184    return 0;
5185  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5186    return 0;
5187  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5188    return 0;
5189  }
5190  *bytes = end - cur;
5191  return 1;
5192}
5193
5194// Map a block of memory.
5195char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5196                        char *addr, size_t bytes, bool read_only,
5197                        bool allow_exec) {
5198  int prot;
5199  int flags = MAP_PRIVATE;
5200
5201  if (read_only) {
5202    prot = PROT_READ;
5203  } else {
5204    prot = PROT_READ | PROT_WRITE;
5205  }
5206
5207  if (allow_exec) {
5208    prot |= PROT_EXEC;
5209  }
5210
5211  if (addr != NULL) {
5212    flags |= MAP_FIXED;
5213  }
5214
5215  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5216                                     fd, file_offset);
5217  if (mapped_address == MAP_FAILED) {
5218    return NULL;
5219  }
5220  return mapped_address;
5221}
5222
5223
5224// Remap a block of memory.
5225char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5226                          char *addr, size_t bytes, bool read_only,
5227                          bool allow_exec) {
5228  // same as map_memory() on this OS
5229  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5230                        allow_exec);
5231}
5232
5233
5234// Unmap a block of memory.
5235bool os::pd_unmap_memory(char* addr, size_t bytes) {
5236  return munmap(addr, bytes) == 0;
5237}
5238
5239static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5240
5241static clockid_t thread_cpu_clockid(Thread* thread) {
5242  pthread_t tid = thread->osthread()->pthread_id();
5243  clockid_t clockid;
5244
5245  // Get thread clockid
5246  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5247  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5248  return clockid;
5249}
5250
5251// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5252// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5253// of a thread.
5254//
5255// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5256// the fast estimate available on the platform.
5257
5258jlong os::current_thread_cpu_time() {
5259  if (os::Linux::supports_fast_thread_cpu_time()) {
5260    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5261  } else {
5262    // return user + sys since the cost is the same
5263    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5264  }
5265}
5266
5267jlong os::thread_cpu_time(Thread* thread) {
5268  // consistent with what current_thread_cpu_time() returns
5269  if (os::Linux::supports_fast_thread_cpu_time()) {
5270    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5271  } else {
5272    return slow_thread_cpu_time(thread, true /* user + sys */);
5273  }
5274}
5275
5276jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5277  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5278    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5279  } else {
5280    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5281  }
5282}
5283
5284jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5285  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5286    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5287  } else {
5288    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5289  }
5290}
5291
5292//  -1 on error.
5293static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5294  pid_t  tid = thread->osthread()->thread_id();
5295  char *s;
5296  char stat[2048];
5297  int statlen;
5298  char proc_name[64];
5299  int count;
5300  long sys_time, user_time;
5301  char cdummy;
5302  int idummy;
5303  long ldummy;
5304  FILE *fp;
5305
5306  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5307  fp = fopen(proc_name, "r");
5308  if (fp == NULL) return -1;
5309  statlen = fread(stat, 1, 2047, fp);
5310  stat[statlen] = '\0';
5311  fclose(fp);
5312
5313  // Skip pid and the command string. Note that we could be dealing with
5314  // weird command names, e.g. user could decide to rename java launcher
5315  // to "java 1.4.2 :)", then the stat file would look like
5316  //                1234 (java 1.4.2 :)) R ... ...
5317  // We don't really need to know the command string, just find the last
5318  // occurrence of ")" and then start parsing from there. See bug 4726580.
5319  s = strrchr(stat, ')');
5320  if (s == NULL) return -1;
5321
5322  // Skip blank chars
5323  do { s++; } while (s && isspace(*s));
5324
5325  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5326                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5327                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5328                 &user_time, &sys_time);
5329  if (count != 13) return -1;
5330  if (user_sys_cpu_time) {
5331    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5332  } else {
5333    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5334  }
5335}
5336
5337void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5338  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5339  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5340  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5341  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5342}
5343
5344void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5345  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5346  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5347  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5348  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5349}
5350
5351bool os::is_thread_cpu_time_supported() {
5352  return true;
5353}
5354
5355// System loadavg support.  Returns -1 if load average cannot be obtained.
5356// Linux doesn't yet have a (official) notion of processor sets,
5357// so just return the system wide load average.
5358int os::loadavg(double loadavg[], int nelem) {
5359  return ::getloadavg(loadavg, nelem);
5360}
5361
5362void os::pause() {
5363  char filename[MAX_PATH];
5364  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5365    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5366  } else {
5367    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5368  }
5369
5370  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5371  if (fd != -1) {
5372    struct stat buf;
5373    ::close(fd);
5374    while (::stat(filename, &buf) == 0) {
5375      (void)::poll(NULL, 0, 100);
5376    }
5377  } else {
5378    jio_fprintf(stderr,
5379                "Could not open pause file '%s', continuing immediately.\n", filename);
5380  }
5381}
5382
5383
5384// Refer to the comments in os_solaris.cpp park-unpark. The next two
5385// comment paragraphs are worth repeating here:
5386//
5387// Assumption:
5388//    Only one parker can exist on an event, which is why we allocate
5389//    them per-thread. Multiple unparkers can coexist.
5390//
5391// _Event serves as a restricted-range semaphore.
5392//   -1 : thread is blocked, i.e. there is a waiter
5393//    0 : neutral: thread is running or ready,
5394//        could have been signaled after a wait started
5395//    1 : signaled - thread is running or ready
5396//
5397
5398// utility to compute the abstime argument to timedwait:
5399// millis is the relative timeout time
5400// abstime will be the absolute timeout time
5401// TODO: replace compute_abstime() with unpackTime()
5402
5403static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5404  if (millis < 0)  millis = 0;
5405
5406  jlong seconds = millis / 1000;
5407  millis %= 1000;
5408  if (seconds > 50000000) { // see man cond_timedwait(3T)
5409    seconds = 50000000;
5410  }
5411
5412  if (os::supports_monotonic_clock()) {
5413    struct timespec now;
5414    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5415    assert_status(status == 0, status, "clock_gettime");
5416    abstime->tv_sec = now.tv_sec  + seconds;
5417    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5418    if (nanos >= NANOSECS_PER_SEC) {
5419      abstime->tv_sec += 1;
5420      nanos -= NANOSECS_PER_SEC;
5421    }
5422    abstime->tv_nsec = nanos;
5423  } else {
5424    struct timeval now;
5425    int status = gettimeofday(&now, NULL);
5426    assert(status == 0, "gettimeofday");
5427    abstime->tv_sec = now.tv_sec  + seconds;
5428    long usec = now.tv_usec + millis * 1000;
5429    if (usec >= 1000000) {
5430      abstime->tv_sec += 1;
5431      usec -= 1000000;
5432    }
5433    abstime->tv_nsec = usec * 1000;
5434  }
5435  return abstime;
5436}
5437
5438void os::PlatformEvent::park() {       // AKA "down()"
5439  // Transitions for _Event:
5440  //   -1 => -1 : illegal
5441  //    1 =>  0 : pass - return immediately
5442  //    0 => -1 : block; then set _Event to 0 before returning
5443
5444  // Invariant: Only the thread associated with the Event/PlatformEvent
5445  // may call park().
5446  // TODO: assert that _Assoc != NULL or _Assoc == Self
5447  assert(_nParked == 0, "invariant");
5448
5449  int v;
5450  for (;;) {
5451    v = _Event;
5452    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5453  }
5454  guarantee(v >= 0, "invariant");
5455  if (v == 0) {
5456    // Do this the hard way by blocking ...
5457    int status = pthread_mutex_lock(_mutex);
5458    assert_status(status == 0, status, "mutex_lock");
5459    guarantee(_nParked == 0, "invariant");
5460    ++_nParked;
5461    while (_Event < 0) {
5462      status = pthread_cond_wait(_cond, _mutex);
5463      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5464      // Treat this the same as if the wait was interrupted
5465      if (status == ETIME) { status = EINTR; }
5466      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5467    }
5468    --_nParked;
5469
5470    _Event = 0;
5471    status = pthread_mutex_unlock(_mutex);
5472    assert_status(status == 0, status, "mutex_unlock");
5473    // Paranoia to ensure our locked and lock-free paths interact
5474    // correctly with each other.
5475    OrderAccess::fence();
5476  }
5477  guarantee(_Event >= 0, "invariant");
5478}
5479
5480int os::PlatformEvent::park(jlong millis) {
5481  // Transitions for _Event:
5482  //   -1 => -1 : illegal
5483  //    1 =>  0 : pass - return immediately
5484  //    0 => -1 : block; then set _Event to 0 before returning
5485
5486  guarantee(_nParked == 0, "invariant");
5487
5488  int v;
5489  for (;;) {
5490    v = _Event;
5491    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5492  }
5493  guarantee(v >= 0, "invariant");
5494  if (v != 0) return OS_OK;
5495
5496  // We do this the hard way, by blocking the thread.
5497  // Consider enforcing a minimum timeout value.
5498  struct timespec abst;
5499  compute_abstime(&abst, millis);
5500
5501  int ret = OS_TIMEOUT;
5502  int status = pthread_mutex_lock(_mutex);
5503  assert_status(status == 0, status, "mutex_lock");
5504  guarantee(_nParked == 0, "invariant");
5505  ++_nParked;
5506
5507  // Object.wait(timo) will return because of
5508  // (a) notification
5509  // (b) timeout
5510  // (c) thread.interrupt
5511  //
5512  // Thread.interrupt and object.notify{All} both call Event::set.
5513  // That is, we treat thread.interrupt as a special case of notification.
5514  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5515  // We assume all ETIME returns are valid.
5516  //
5517  // TODO: properly differentiate simultaneous notify+interrupt.
5518  // In that case, we should propagate the notify to another waiter.
5519
5520  while (_Event < 0) {
5521    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5522    assert_status(status == 0 || status == EINTR ||
5523                  status == ETIME || status == ETIMEDOUT,
5524                  status, "cond_timedwait");
5525    if (!FilterSpuriousWakeups) break;                 // previous semantics
5526    if (status == ETIME || status == ETIMEDOUT) break;
5527    // We consume and ignore EINTR and spurious wakeups.
5528  }
5529  --_nParked;
5530  if (_Event >= 0) {
5531    ret = OS_OK;
5532  }
5533  _Event = 0;
5534  status = pthread_mutex_unlock(_mutex);
5535  assert_status(status == 0, status, "mutex_unlock");
5536  assert(_nParked == 0, "invariant");
5537  // Paranoia to ensure our locked and lock-free paths interact
5538  // correctly with each other.
5539  OrderAccess::fence();
5540  return ret;
5541}
5542
5543void os::PlatformEvent::unpark() {
5544  // Transitions for _Event:
5545  //    0 => 1 : just return
5546  //    1 => 1 : just return
5547  //   -1 => either 0 or 1; must signal target thread
5548  //         That is, we can safely transition _Event from -1 to either
5549  //         0 or 1.
5550  // See also: "Semaphores in Plan 9" by Mullender & Cox
5551  //
5552  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5553  // that it will take two back-to-back park() calls for the owning
5554  // thread to block. This has the benefit of forcing a spurious return
5555  // from the first park() call after an unpark() call which will help
5556  // shake out uses of park() and unpark() without condition variables.
5557
5558  if (Atomic::xchg(1, &_Event) >= 0) return;
5559
5560  // Wait for the thread associated with the event to vacate
5561  int status = pthread_mutex_lock(_mutex);
5562  assert_status(status == 0, status, "mutex_lock");
5563  int AnyWaiters = _nParked;
5564  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5565  status = pthread_mutex_unlock(_mutex);
5566  assert_status(status == 0, status, "mutex_unlock");
5567  if (AnyWaiters != 0) {
5568    // Note that we signal() *after* dropping the lock for "immortal" Events.
5569    // This is safe and avoids a common class of  futile wakeups.  In rare
5570    // circumstances this can cause a thread to return prematurely from
5571    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5572    // will simply re-test the condition and re-park itself.
5573    // This provides particular benefit if the underlying platform does not
5574    // provide wait morphing.
5575    status = pthread_cond_signal(_cond);
5576    assert_status(status == 0, status, "cond_signal");
5577  }
5578}
5579
5580
5581// JSR166
5582// -------------------------------------------------------
5583
5584// The solaris and linux implementations of park/unpark are fairly
5585// conservative for now, but can be improved. They currently use a
5586// mutex/condvar pair, plus a a count.
5587// Park decrements count if > 0, else does a condvar wait.  Unpark
5588// sets count to 1 and signals condvar.  Only one thread ever waits
5589// on the condvar. Contention seen when trying to park implies that someone
5590// is unparking you, so don't wait. And spurious returns are fine, so there
5591// is no need to track notifications.
5592
5593// This code is common to linux and solaris and will be moved to a
5594// common place in dolphin.
5595//
5596// The passed in time value is either a relative time in nanoseconds
5597// or an absolute time in milliseconds. Either way it has to be unpacked
5598// into suitable seconds and nanoseconds components and stored in the
5599// given timespec structure.
5600// Given time is a 64-bit value and the time_t used in the timespec is only
5601// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5602// overflow if times way in the future are given. Further on Solaris versions
5603// prior to 10 there is a restriction (see cond_timedwait) that the specified
5604// number of seconds, in abstime, is less than current_time  + 100,000,000.
5605// As it will be 28 years before "now + 100000000" will overflow we can
5606// ignore overflow and just impose a hard-limit on seconds using the value
5607// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5608// years from "now".
5609
5610static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5611  assert(time > 0, "convertTime");
5612  time_t max_secs = 0;
5613
5614  if (!os::supports_monotonic_clock() || isAbsolute) {
5615    struct timeval now;
5616    int status = gettimeofday(&now, NULL);
5617    assert(status == 0, "gettimeofday");
5618
5619    max_secs = now.tv_sec + MAX_SECS;
5620
5621    if (isAbsolute) {
5622      jlong secs = time / 1000;
5623      if (secs > max_secs) {
5624        absTime->tv_sec = max_secs;
5625      } else {
5626        absTime->tv_sec = secs;
5627      }
5628      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5629    } else {
5630      jlong secs = time / NANOSECS_PER_SEC;
5631      if (secs >= MAX_SECS) {
5632        absTime->tv_sec = max_secs;
5633        absTime->tv_nsec = 0;
5634      } else {
5635        absTime->tv_sec = now.tv_sec + secs;
5636        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5637        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5638          absTime->tv_nsec -= NANOSECS_PER_SEC;
5639          ++absTime->tv_sec; // note: this must be <= max_secs
5640        }
5641      }
5642    }
5643  } else {
5644    // must be relative using monotonic clock
5645    struct timespec now;
5646    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5647    assert_status(status == 0, status, "clock_gettime");
5648    max_secs = now.tv_sec + MAX_SECS;
5649    jlong secs = time / NANOSECS_PER_SEC;
5650    if (secs >= MAX_SECS) {
5651      absTime->tv_sec = max_secs;
5652      absTime->tv_nsec = 0;
5653    } else {
5654      absTime->tv_sec = now.tv_sec + secs;
5655      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5656      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5657        absTime->tv_nsec -= NANOSECS_PER_SEC;
5658        ++absTime->tv_sec; // note: this must be <= max_secs
5659      }
5660    }
5661  }
5662  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5663  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5664  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5665  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5666}
5667
5668void Parker::park(bool isAbsolute, jlong time) {
5669  // Ideally we'd do something useful while spinning, such
5670  // as calling unpackTime().
5671
5672  // Optional fast-path check:
5673  // Return immediately if a permit is available.
5674  // We depend on Atomic::xchg() having full barrier semantics
5675  // since we are doing a lock-free update to _counter.
5676  if (Atomic::xchg(0, &_counter) > 0) return;
5677
5678  Thread* thread = Thread::current();
5679  assert(thread->is_Java_thread(), "Must be JavaThread");
5680  JavaThread *jt = (JavaThread *)thread;
5681
5682  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5683  // Check interrupt before trying to wait
5684  if (Thread::is_interrupted(thread, false)) {
5685    return;
5686  }
5687
5688  // Next, demultiplex/decode time arguments
5689  timespec absTime;
5690  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5691    return;
5692  }
5693  if (time > 0) {
5694    unpackTime(&absTime, isAbsolute, time);
5695  }
5696
5697
5698  // Enter safepoint region
5699  // Beware of deadlocks such as 6317397.
5700  // The per-thread Parker:: mutex is a classic leaf-lock.
5701  // In particular a thread must never block on the Threads_lock while
5702  // holding the Parker:: mutex.  If safepoints are pending both the
5703  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5704  ThreadBlockInVM tbivm(jt);
5705
5706  // Don't wait if cannot get lock since interference arises from
5707  // unblocking.  Also. check interrupt before trying wait
5708  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5709    return;
5710  }
5711
5712  int status;
5713  if (_counter > 0)  { // no wait needed
5714    _counter = 0;
5715    status = pthread_mutex_unlock(_mutex);
5716    assert_status(status == 0, status, "invariant");
5717    // Paranoia to ensure our locked and lock-free paths interact
5718    // correctly with each other and Java-level accesses.
5719    OrderAccess::fence();
5720    return;
5721  }
5722
5723#ifdef ASSERT
5724  // Don't catch signals while blocked; let the running threads have the signals.
5725  // (This allows a debugger to break into the running thread.)
5726  sigset_t oldsigs;
5727  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5728  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5729#endif
5730
5731  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5732  jt->set_suspend_equivalent();
5733  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5734
5735  assert(_cur_index == -1, "invariant");
5736  if (time == 0) {
5737    _cur_index = REL_INDEX; // arbitrary choice when not timed
5738    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5739  } else {
5740    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5741    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5742  }
5743  _cur_index = -1;
5744  assert_status(status == 0 || status == EINTR ||
5745                status == ETIME || status == ETIMEDOUT,
5746                status, "cond_timedwait");
5747
5748#ifdef ASSERT
5749  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5750#endif
5751
5752  _counter = 0;
5753  status = pthread_mutex_unlock(_mutex);
5754  assert_status(status == 0, status, "invariant");
5755  // Paranoia to ensure our locked and lock-free paths interact
5756  // correctly with each other and Java-level accesses.
5757  OrderAccess::fence();
5758
5759  // If externally suspended while waiting, re-suspend
5760  if (jt->handle_special_suspend_equivalent_condition()) {
5761    jt->java_suspend_self();
5762  }
5763}
5764
5765void Parker::unpark() {
5766  int status = pthread_mutex_lock(_mutex);
5767  assert_status(status == 0, status, "invariant");
5768  const int s = _counter;
5769  _counter = 1;
5770  // must capture correct index before unlocking
5771  int index = _cur_index;
5772  status = pthread_mutex_unlock(_mutex);
5773  assert_status(status == 0, status, "invariant");
5774  if (s < 1 && index != -1) {
5775    // thread is definitely parked
5776    status = pthread_cond_signal(&_cond[index]);
5777    assert_status(status == 0, status, "invariant");
5778  }
5779}
5780
5781
5782extern char** environ;
5783
5784// Run the specified command in a separate process. Return its exit value,
5785// or -1 on failure (e.g. can't fork a new process).
5786// Unlike system(), this function can be called from signal handler. It
5787// doesn't block SIGINT et al.
5788int os::fork_and_exec(char* cmd) {
5789  const char * argv[4] = {"sh", "-c", cmd, NULL};
5790
5791  pid_t pid = fork();
5792
5793  if (pid < 0) {
5794    // fork failed
5795    return -1;
5796
5797  } else if (pid == 0) {
5798    // child process
5799
5800    execve("/bin/sh", (char* const*)argv, environ);
5801
5802    // execve failed
5803    _exit(-1);
5804
5805  } else  {
5806    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5807    // care about the actual exit code, for now.
5808
5809    int status;
5810
5811    // Wait for the child process to exit.  This returns immediately if
5812    // the child has already exited. */
5813    while (waitpid(pid, &status, 0) < 0) {
5814      switch (errno) {
5815      case ECHILD: return 0;
5816      case EINTR: break;
5817      default: return -1;
5818      }
5819    }
5820
5821    if (WIFEXITED(status)) {
5822      // The child exited normally; get its exit code.
5823      return WEXITSTATUS(status);
5824    } else if (WIFSIGNALED(status)) {
5825      // The child exited because of a signal
5826      // The best value to return is 0x80 + signal number,
5827      // because that is what all Unix shells do, and because
5828      // it allows callers to distinguish between process exit and
5829      // process death by signal.
5830      return 0x80 + WTERMSIG(status);
5831    } else {
5832      // Unknown exit code; pass it through
5833      return status;
5834    }
5835  }
5836}
5837
5838// is_headless_jre()
5839//
5840// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5841// in order to report if we are running in a headless jre
5842//
5843// Since JDK8 xawt/libmawt.so was moved into the same directory
5844// as libawt.so, and renamed libawt_xawt.so
5845//
5846bool os::is_headless_jre() {
5847  struct stat statbuf;
5848  char buf[MAXPATHLEN];
5849  char libmawtpath[MAXPATHLEN];
5850  const char *xawtstr  = "/xawt/libmawt.so";
5851  const char *new_xawtstr = "/libawt_xawt.so";
5852  char *p;
5853
5854  // Get path to libjvm.so
5855  os::jvm_path(buf, sizeof(buf));
5856
5857  // Get rid of libjvm.so
5858  p = strrchr(buf, '/');
5859  if (p == NULL) {
5860    return false;
5861  } else {
5862    *p = '\0';
5863  }
5864
5865  // Get rid of client or server
5866  p = strrchr(buf, '/');
5867  if (p == NULL) {
5868    return false;
5869  } else {
5870    *p = '\0';
5871  }
5872
5873  // check xawt/libmawt.so
5874  strcpy(libmawtpath, buf);
5875  strcat(libmawtpath, xawtstr);
5876  if (::stat(libmawtpath, &statbuf) == 0) return false;
5877
5878  // check libawt_xawt.so
5879  strcpy(libmawtpath, buf);
5880  strcat(libmawtpath, new_xawtstr);
5881  if (::stat(libmawtpath, &statbuf) == 0) return false;
5882
5883  return true;
5884}
5885
5886// Get the default path to the core file
5887// Returns the length of the string
5888int os::get_core_path(char* buffer, size_t bufferSize) {
5889  /*
5890   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5891   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5892   */
5893  const int core_pattern_len = 129;
5894  char core_pattern[core_pattern_len] = {0};
5895
5896  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5897  if (core_pattern_file == -1) {
5898    return -1;
5899  }
5900
5901  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5902  ::close(core_pattern_file);
5903  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5904    return -1;
5905  }
5906  if (core_pattern[ret-1] == '\n') {
5907    core_pattern[ret-1] = '\0';
5908  } else {
5909    core_pattern[ret] = '\0';
5910  }
5911
5912  char *pid_pos = strstr(core_pattern, "%p");
5913  int written;
5914
5915  if (core_pattern[0] == '/') {
5916    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5917  } else {
5918    char cwd[PATH_MAX];
5919
5920    const char* p = get_current_directory(cwd, PATH_MAX);
5921    if (p == NULL) {
5922      return -1;
5923    }
5924
5925    if (core_pattern[0] == '|') {
5926      written = jio_snprintf(buffer, bufferSize,
5927                        "\"%s\" (or dumping to %s/core.%d)",
5928                                     &core_pattern[1], p, current_process_id());
5929    } else {
5930      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5931    }
5932  }
5933
5934  if (written < 0) {
5935    return -1;
5936  }
5937
5938  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5939    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5940
5941    if (core_uses_pid_file != -1) {
5942      char core_uses_pid = 0;
5943      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5944      ::close(core_uses_pid_file);
5945
5946      if (core_uses_pid == '1') {
5947        jio_snprintf(buffer + written, bufferSize - written,
5948                                          ".%d", current_process_id());
5949      }
5950    }
5951  }
5952
5953  return strlen(buffer);
5954}
5955
5956bool os::start_debugging(char *buf, int buflen) {
5957  int len = (int)strlen(buf);
5958  char *p = &buf[len];
5959
5960  jio_snprintf(p, buflen-len,
5961             "\n\n"
5962             "Do you want to debug the problem?\n\n"
5963             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5964             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5965             "Otherwise, press RETURN to abort...",
5966             os::current_process_id(), os::current_process_id(),
5967             os::current_thread_id(), os::current_thread_id());
5968
5969  bool yes = os::message_box("Unexpected Error", buf);
5970
5971  if (yes) {
5972    // yes, user asked VM to launch debugger
5973    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
5974                     os::current_process_id(), os::current_process_id());
5975
5976    os::fork_and_exec(buf);
5977    yes = false;
5978  }
5979  return yes;
5980}
5981
5982
5983
5984/////////////// Unit tests ///////////////
5985
5986#ifndef PRODUCT
5987
5988#define test_log(...)              \
5989  do {                             \
5990    if (VerboseInternalVMTests) {  \
5991      tty->print_cr(__VA_ARGS__);  \
5992      tty->flush();                \
5993    }                              \
5994  } while (false)
5995
5996class TestReserveMemorySpecial : AllStatic {
5997 public:
5998  static void small_page_write(void* addr, size_t size) {
5999    size_t page_size = os::vm_page_size();
6000
6001    char* end = (char*)addr + size;
6002    for (char* p = (char*)addr; p < end; p += page_size) {
6003      *p = 1;
6004    }
6005  }
6006
6007  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6008    if (!UseHugeTLBFS) {
6009      return;
6010    }
6011
6012    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6013
6014    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6015
6016    if (addr != NULL) {
6017      small_page_write(addr, size);
6018
6019      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6020    }
6021  }
6022
6023  static void test_reserve_memory_special_huge_tlbfs_only() {
6024    if (!UseHugeTLBFS) {
6025      return;
6026    }
6027
6028    size_t lp = os::large_page_size();
6029
6030    for (size_t size = lp; size <= lp * 10; size += lp) {
6031      test_reserve_memory_special_huge_tlbfs_only(size);
6032    }
6033  }
6034
6035  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6036    size_t lp = os::large_page_size();
6037    size_t ag = os::vm_allocation_granularity();
6038
6039    // sizes to test
6040    const size_t sizes[] = {
6041      lp, lp + ag, lp + lp / 2, lp * 2,
6042      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6043      lp * 10, lp * 10 + lp / 2
6044    };
6045    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6046
6047    // For each size/alignment combination, we test three scenarios:
6048    // 1) with req_addr == NULL
6049    // 2) with a non-null req_addr at which we expect to successfully allocate
6050    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6051    //    expect the allocation to either fail or to ignore req_addr
6052
6053    // Pre-allocate two areas; they shall be as large as the largest allocation
6054    //  and aligned to the largest alignment we will be testing.
6055    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6056    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6057      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6058      -1, 0);
6059    assert(mapping1 != MAP_FAILED, "should work");
6060
6061    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6062      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6063      -1, 0);
6064    assert(mapping2 != MAP_FAILED, "should work");
6065
6066    // Unmap the first mapping, but leave the second mapping intact: the first
6067    // mapping will serve as a value for a "good" req_addr (case 2). The second
6068    // mapping, still intact, as "bad" req_addr (case 3).
6069    ::munmap(mapping1, mapping_size);
6070
6071    // Case 1
6072    test_log("%s, req_addr NULL:", __FUNCTION__);
6073    test_log("size            align           result");
6074
6075    for (int i = 0; i < num_sizes; i++) {
6076      const size_t size = sizes[i];
6077      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6078        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6079        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6080                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6081        if (p != NULL) {
6082          assert(is_ptr_aligned(p, alignment), "must be");
6083          small_page_write(p, size);
6084          os::Linux::release_memory_special_huge_tlbfs(p, size);
6085        }
6086      }
6087    }
6088
6089    // Case 2
6090    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6091    test_log("size            align           req_addr         result");
6092
6093    for (int i = 0; i < num_sizes; i++) {
6094      const size_t size = sizes[i];
6095      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6096        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6097        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6098        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6099                 size, alignment, p2i(req_addr), p2i(p),
6100                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6101        if (p != NULL) {
6102          assert(p == req_addr, "must be");
6103          small_page_write(p, size);
6104          os::Linux::release_memory_special_huge_tlbfs(p, size);
6105        }
6106      }
6107    }
6108
6109    // Case 3
6110    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6111    test_log("size            align           req_addr         result");
6112
6113    for (int i = 0; i < num_sizes; i++) {
6114      const size_t size = sizes[i];
6115      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6116        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6117        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6118        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6119                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6120        // as the area around req_addr contains already existing mappings, the API should always
6121        // return NULL (as per contract, it cannot return another address)
6122        assert(p == NULL, "must be");
6123      }
6124    }
6125
6126    ::munmap(mapping2, mapping_size);
6127
6128  }
6129
6130  static void test_reserve_memory_special_huge_tlbfs() {
6131    if (!UseHugeTLBFS) {
6132      return;
6133    }
6134
6135    test_reserve_memory_special_huge_tlbfs_only();
6136    test_reserve_memory_special_huge_tlbfs_mixed();
6137  }
6138
6139  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6140    if (!UseSHM) {
6141      return;
6142    }
6143
6144    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6145
6146    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6147
6148    if (addr != NULL) {
6149      assert(is_ptr_aligned(addr, alignment), "Check");
6150      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6151
6152      small_page_write(addr, size);
6153
6154      os::Linux::release_memory_special_shm(addr, size);
6155    }
6156  }
6157
6158  static void test_reserve_memory_special_shm() {
6159    size_t lp = os::large_page_size();
6160    size_t ag = os::vm_allocation_granularity();
6161
6162    for (size_t size = ag; size < lp * 3; size += ag) {
6163      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6164        test_reserve_memory_special_shm(size, alignment);
6165      }
6166    }
6167  }
6168
6169  static void test() {
6170    test_reserve_memory_special_huge_tlbfs();
6171    test_reserve_memory_special_shm();
6172  }
6173};
6174
6175void TestReserveMemorySpecial_test() {
6176  TestReserveMemorySpecial::test();
6177}
6178
6179#endif
6180