os_linux.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// do not include  precompiled  header file
26# include "incls/_os_linux.cpp.incl"
27
28// put OS-includes here
29# include <sys/types.h>
30# include <sys/mman.h>
31# include <pthread.h>
32# include <signal.h>
33# include <errno.h>
34# include <dlfcn.h>
35# include <stdio.h>
36# include <unistd.h>
37# include <sys/resource.h>
38# include <pthread.h>
39# include <sys/stat.h>
40# include <sys/time.h>
41# include <sys/times.h>
42# include <sys/utsname.h>
43# include <sys/socket.h>
44# include <sys/wait.h>
45# include <pwd.h>
46# include <poll.h>
47# include <semaphore.h>
48# include <fcntl.h>
49# include <string.h>
50# include <syscall.h>
51# include <sys/sysinfo.h>
52# include <gnu/libc-version.h>
53# include <sys/ipc.h>
54# include <sys/shm.h>
55# include <link.h>
56
57#define MAX_PATH    (2 * K)
58
59// for timer info max values which include all bits
60#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
61#define SEC_IN_NANOSECS  1000000000LL
62
63////////////////////////////////////////////////////////////////////////////////
64// global variables
65julong os::Linux::_physical_memory = 0;
66
67address   os::Linux::_initial_thread_stack_bottom = NULL;
68uintptr_t os::Linux::_initial_thread_stack_size   = 0;
69
70int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
71int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
72Mutex* os::Linux::_createThread_lock = NULL;
73pthread_t os::Linux::_main_thread;
74int os::Linux::_page_size = -1;
75bool os::Linux::_is_floating_stack = false;
76bool os::Linux::_is_NPTL = false;
77bool os::Linux::_supports_fast_thread_cpu_time = false;
78char * os::Linux::_glibc_version = NULL;
79char * os::Linux::_libpthread_version = NULL;
80
81static jlong initial_time_count=0;
82
83static int clock_tics_per_sec = 100;
84
85// For diagnostics to print a message once. see run_periodic_checks
86static sigset_t check_signal_done;
87static bool check_signals = true;;
88
89static pid_t _initial_pid = 0;
90
91/* Signal number used to suspend/resume a thread */
92
93/* do not use any signal number less than SIGSEGV, see 4355769 */
94static int SR_signum = SIGUSR2;
95sigset_t SR_sigset;
96
97////////////////////////////////////////////////////////////////////////////////
98// utility functions
99
100static int SR_initialize();
101static int SR_finalize();
102
103julong os::available_memory() {
104  return Linux::available_memory();
105}
106
107julong os::Linux::available_memory() {
108  // values in struct sysinfo are "unsigned long"
109  struct sysinfo si;
110  sysinfo(&si);
111
112  return (julong)si.freeram * si.mem_unit;
113}
114
115julong os::physical_memory() {
116  return Linux::physical_memory();
117}
118
119////////////////////////////////////////////////////////////////////////////////
120// environment support
121
122bool os::getenv(const char* name, char* buf, int len) {
123  const char* val = ::getenv(name);
124  if (val != NULL && strlen(val) < (size_t)len) {
125    strcpy(buf, val);
126    return true;
127  }
128  if (len > 0) buf[0] = 0;  // return a null string
129  return false;
130}
131
132
133// Return true if user is running as root.
134
135bool os::have_special_privileges() {
136  static bool init = false;
137  static bool privileges = false;
138  if (!init) {
139    privileges = (getuid() != geteuid()) || (getgid() != getegid());
140    init = true;
141  }
142  return privileges;
143}
144
145
146#ifndef SYS_gettid
147// i386: 224, ia64: 1105, amd64: 186, sparc 143
148#ifdef __ia64__
149#define SYS_gettid 1105
150#elif __i386__
151#define SYS_gettid 224
152#elif __amd64__
153#define SYS_gettid 186
154#elif __sparc__
155#define SYS_gettid 143
156#else
157#error define gettid for the arch
158#endif
159#endif
160
161// Cpu architecture string
162#if   defined(IA64)
163static char cpu_arch[] = "ia64";
164#elif defined(IA32)
165static char cpu_arch[] = "i386";
166#elif defined(AMD64)
167static char cpu_arch[] = "amd64";
168#elif defined(SPARC)
169#  ifdef _LP64
170static char cpu_arch[] = "sparcv9";
171#  else
172static char cpu_arch[] = "sparc";
173#  endif
174#else
175#error Add appropriate cpu_arch setting
176#endif
177
178
179// pid_t gettid()
180//
181// Returns the kernel thread id of the currently running thread. Kernel
182// thread id is used to access /proc.
183//
184// (Note that getpid() on LinuxThreads returns kernel thread id too; but
185// on NPTL, it returns the same pid for all threads, as required by POSIX.)
186//
187pid_t os::Linux::gettid() {
188  int rslt = syscall(SYS_gettid);
189  if (rslt == -1) {
190     // old kernel, no NPTL support
191     return getpid();
192  } else {
193     return (pid_t)rslt;
194  }
195}
196
197// Most versions of linux have a bug where the number of processors are
198// determined by looking at the /proc file system.  In a chroot environment,
199// the system call returns 1.  This causes the VM to act as if it is
200// a single processor and elide locking (see is_MP() call).
201static bool unsafe_chroot_detected = false;
202static char *unstable_chroot_error = "/proc file system not found.\n"
203              "Java may be unstable running multithreaded in a chroot "
204              "environment on Linux when /proc filesystem is not mounted.";
205
206void os::Linux::initialize_system_info() {
207  _processor_count = sysconf(_SC_NPROCESSORS_CONF);
208  if (_processor_count == 1) {
209    pid_t pid = os::Linux::gettid();
210    char fname[32];
211    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
212    FILE *fp = fopen(fname, "r");
213    if (fp == NULL) {
214      unsafe_chroot_detected = true;
215    } else {
216      fclose(fp);
217    }
218  }
219  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
220  assert(_processor_count > 0, "linux error");
221}
222
223void os::init_system_properties_values() {
224//  char arch[12];
225//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
226
227  // The next steps are taken in the product version:
228  //
229  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
230  // This library should be located at:
231  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
232  //
233  // If "/jre/lib/" appears at the right place in the path, then we
234  // assume libjvm[_g].so is installed in a JDK and we use this path.
235  //
236  // Otherwise exit with message: "Could not create the Java virtual machine."
237  //
238  // The following extra steps are taken in the debugging version:
239  //
240  // If "/jre/lib/" does NOT appear at the right place in the path
241  // instead of exit check for $JAVA_HOME environment variable.
242  //
243  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
244  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
245  // it looks like libjvm[_g].so is installed there
246  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
247  //
248  // Otherwise exit.
249  //
250  // Important note: if the location of libjvm.so changes this
251  // code needs to be changed accordingly.
252
253  // The next few definitions allow the code to be verbatim:
254#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
255#define getenv(n) ::getenv(n)
256
257/*
258 * See ld(1):
259 *      The linker uses the following search paths to locate required
260 *      shared libraries:
261 *        1: ...
262 *        ...
263 *        7: The default directories, normally /lib and /usr/lib.
264 */
265#define DEFAULT_LIBPATH "/lib:/usr/lib"
266
267#define EXTENSIONS_DIR  "/lib/ext"
268#define ENDORSED_DIR    "/lib/endorsed"
269#define REG_DIR         "/usr/java/packages"
270
271  {
272    /* sysclasspath, java_home, dll_dir */
273    {
274        char *home_path;
275        char *dll_path;
276        char *pslash;
277        char buf[MAXPATHLEN];
278        os::jvm_path(buf, sizeof(buf));
279
280        // Found the full path to libjvm.so.
281        // Now cut the path to <java_home>/jre if we can.
282        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
283        pslash = strrchr(buf, '/');
284        if (pslash != NULL)
285            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
286        dll_path = malloc(strlen(buf) + 1);
287        if (dll_path == NULL)
288            return;
289        strcpy(dll_path, buf);
290        Arguments::set_dll_dir(dll_path);
291
292        if (pslash != NULL) {
293            pslash = strrchr(buf, '/');
294            if (pslash != NULL) {
295                *pslash = '\0';       /* get rid of /<arch> */
296                pslash = strrchr(buf, '/');
297                if (pslash != NULL)
298                    *pslash = '\0';   /* get rid of /lib */
299            }
300        }
301
302        home_path = malloc(strlen(buf) + 1);
303        if (home_path == NULL)
304            return;
305        strcpy(home_path, buf);
306        Arguments::set_java_home(home_path);
307
308        if (!set_boot_path('/', ':'))
309            return;
310    }
311
312    /*
313     * Where to look for native libraries
314     *
315     * Note: Due to a legacy implementation, most of the library path
316     * is set in the launcher.  This was to accomodate linking restrictions
317     * on legacy Linux implementations (which are no longer supported).
318     * Eventually, all the library path setting will be done here.
319     *
320     * However, to prevent the proliferation of improperly built native
321     * libraries, the new path component /usr/java/packages is added here.
322     * Eventually, all the library path setting will be done here.
323     */
324    {
325        char *ld_library_path;
326
327        /*
328         * Construct the invariant part of ld_library_path. Note that the
329         * space for the colon and the trailing null are provided by the
330         * nulls included by the sizeof operator (so actually we allocate
331         * a byte more than necessary).
332         */
333        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
334            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
335        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
336
337        /*
338         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
339         * should always exist (until the legacy problem cited above is
340         * addressed).
341         */
342        char *v = getenv("LD_LIBRARY_PATH");
343        if (v != NULL) {
344            char *t = ld_library_path;
345            /* That's +1 for the colon and +1 for the trailing '\0' */
346            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
347            sprintf(ld_library_path, "%s:%s", v, t);
348        }
349        Arguments::set_library_path(ld_library_path);
350    }
351
352    /*
353     * Extensions directories.
354     *
355     * Note that the space for the colon and the trailing null are provided
356     * by the nulls included by the sizeof operator (so actually one byte more
357     * than necessary is allocated).
358     */
359    {
360        char *buf = malloc(strlen(Arguments::get_java_home()) +
361            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
362        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
363            Arguments::get_java_home());
364        Arguments::set_ext_dirs(buf);
365    }
366
367    /* Endorsed standards default directory. */
368    {
369        char * buf;
370        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
371        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
372        Arguments::set_endorsed_dirs(buf);
373    }
374  }
375
376#undef malloc
377#undef getenv
378#undef EXTENSIONS_DIR
379#undef ENDORSED_DIR
380
381  // Done
382  return;
383}
384
385////////////////////////////////////////////////////////////////////////////////
386// breakpoint support
387
388void os::breakpoint() {
389  BREAKPOINT;
390}
391
392extern "C" void breakpoint() {
393  // use debugger to set breakpoint here
394}
395
396////////////////////////////////////////////////////////////////////////////////
397// signal support
398
399debug_only(static bool signal_sets_initialized = false);
400static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
401
402bool os::Linux::is_sig_ignored(int sig) {
403      struct sigaction oact;
404      sigaction(sig, (struct sigaction*)NULL, &oact);
405      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
406                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
407      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
408           return true;
409      else
410           return false;
411}
412
413void os::Linux::signal_sets_init() {
414  // Should also have an assertion stating we are still single-threaded.
415  assert(!signal_sets_initialized, "Already initialized");
416  // Fill in signals that are necessarily unblocked for all threads in
417  // the VM. Currently, we unblock the following signals:
418  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
419  //                         by -Xrs (=ReduceSignalUsage));
420  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
421  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
422  // the dispositions or masks wrt these signals.
423  // Programs embedding the VM that want to use the above signals for their
424  // own purposes must, at this time, use the "-Xrs" option to prevent
425  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
426  // (See bug 4345157, and other related bugs).
427  // In reality, though, unblocking these signals is really a nop, since
428  // these signals are not blocked by default.
429  sigemptyset(&unblocked_sigs);
430  sigemptyset(&allowdebug_blocked_sigs);
431  sigaddset(&unblocked_sigs, SIGILL);
432  sigaddset(&unblocked_sigs, SIGSEGV);
433  sigaddset(&unblocked_sigs, SIGBUS);
434  sigaddset(&unblocked_sigs, SIGFPE);
435  sigaddset(&unblocked_sigs, SR_signum);
436
437  if (!ReduceSignalUsage) {
438   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
439      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
440      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
441   }
442   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
443      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
444      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
445   }
446   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
447      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
448      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
449   }
450  }
451  // Fill in signals that are blocked by all but the VM thread.
452  sigemptyset(&vm_sigs);
453  if (!ReduceSignalUsage)
454    sigaddset(&vm_sigs, BREAK_SIGNAL);
455  debug_only(signal_sets_initialized = true);
456
457}
458
459// These are signals that are unblocked while a thread is running Java.
460// (For some reason, they get blocked by default.)
461sigset_t* os::Linux::unblocked_signals() {
462  assert(signal_sets_initialized, "Not initialized");
463  return &unblocked_sigs;
464}
465
466// These are the signals that are blocked while a (non-VM) thread is
467// running Java. Only the VM thread handles these signals.
468sigset_t* os::Linux::vm_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &vm_sigs;
471}
472
473// These are signals that are blocked during cond_wait to allow debugger in
474sigset_t* os::Linux::allowdebug_blocked_signals() {
475  assert(signal_sets_initialized, "Not initialized");
476  return &allowdebug_blocked_sigs;
477}
478
479void os::Linux::hotspot_sigmask(Thread* thread) {
480
481  //Save caller's signal mask before setting VM signal mask
482  sigset_t caller_sigmask;
483  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
484
485  OSThread* osthread = thread->osthread();
486  osthread->set_caller_sigmask(caller_sigmask);
487
488  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
489
490  if (!ReduceSignalUsage) {
491    if (thread->is_VM_thread()) {
492      // Only the VM thread handles BREAK_SIGNAL ...
493      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
494    } else {
495      // ... all other threads block BREAK_SIGNAL
496      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
497    }
498  }
499}
500
501//////////////////////////////////////////////////////////////////////////////
502// detecting pthread library
503
504void os::Linux::libpthread_init() {
505  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
506  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
507  // generic name for earlier versions.
508  // Define macros here so we can build HotSpot on old systems.
509# ifndef _CS_GNU_LIBC_VERSION
510# define _CS_GNU_LIBC_VERSION 2
511# endif
512# ifndef _CS_GNU_LIBPTHREAD_VERSION
513# define _CS_GNU_LIBPTHREAD_VERSION 3
514# endif
515
516  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
517  if (n > 0) {
518     char *str = (char *)malloc(n);
519     confstr(_CS_GNU_LIBC_VERSION, str, n);
520     os::Linux::set_glibc_version(str);
521  } else {
522     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
523     static char _gnu_libc_version[32];
524     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
525              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
526     os::Linux::set_glibc_version(_gnu_libc_version);
527  }
528
529  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
530  if (n > 0) {
531     char *str = (char *)malloc(n);
532     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
533
534     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
535     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
536     // is the case:
537     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
538         strstr(str, "NPTL")) {
539        // LinuxThreads has a hard limit on max number of threads. So
540        // sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
541        // On the other hand, NPTL does not have such a limit, sysconf()
542        // will return -1 and errno is not changed. Check if it is really
543        // NPTL:
544        if (sysconf(_SC_THREAD_THREADS_MAX) > 0) {
545           free(str);
546           str = "linuxthreads";
547        }
548     }
549     os::Linux::set_libpthread_version(str);
550  } else {
551     // glibc before 2.3.2 only has LinuxThreads.
552     os::Linux::set_libpthread_version("linuxthreads");
553  }
554
555  if (strstr(libpthread_version(), "NPTL")) {
556     os::Linux::set_is_NPTL();
557  } else {
558     os::Linux::set_is_LinuxThreads();
559  }
560
561  // LinuxThreads have two flavors: floating-stack mode, which allows variable
562  // stack size; and fixed-stack mode. NPTL is always floating-stack.
563  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
564     os::Linux::set_is_floating_stack();
565  }
566}
567
568/////////////////////////////////////////////////////////////////////////////
569// thread stack
570
571// Force Linux kernel to expand current thread stack. If "bottom" is close
572// to the stack guard, caller should block all signals.
573//
574// MAP_GROWSDOWN:
575//   A special mmap() flag that is used to implement thread stacks. It tells
576//   kernel that the memory region should extend downwards when needed. This
577//   allows early versions of LinuxThreads to only mmap the first few pages
578//   when creating a new thread. Linux kernel will automatically expand thread
579//   stack as needed (on page faults).
580//
581//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
582//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
583//   region, it's hard to tell if the fault is due to a legitimate stack
584//   access or because of reading/writing non-exist memory (e.g. buffer
585//   overrun). As a rule, if the fault happens below current stack pointer,
586//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
587//   application (see Linux kernel fault.c).
588//
589//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
590//   stack overflow detection.
591//
592//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
593//   not use this flag. However, the stack of initial thread is not created
594//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
595//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
596//   and then attach the thread to JVM.
597//
598// To get around the problem and allow stack banging on Linux, we need to
599// manually expand thread stack after receiving the SIGSEGV.
600//
601// There are two ways to expand thread stack to address "bottom", we used
602// both of them in JVM before 1.5:
603//   1. adjust stack pointer first so that it is below "bottom", and then
604//      touch "bottom"
605//   2. mmap() the page in question
606//
607// Now alternate signal stack is gone, it's harder to use 2. For instance,
608// if current sp is already near the lower end of page 101, and we need to
609// call mmap() to map page 100, it is possible that part of the mmap() frame
610// will be placed in page 100. When page 100 is mapped, it is zero-filled.
611// That will destroy the mmap() frame and cause VM to crash.
612//
613// The following code works by adjusting sp first, then accessing the "bottom"
614// page to force a page fault. Linux kernel will then automatically expand the
615// stack mapping.
616//
617// _expand_stack_to() assumes its frame size is less than page size, which
618// should always be true if the function is not inlined.
619
620#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
621#define NOINLINE
622#else
623#define NOINLINE __attribute__ ((noinline))
624#endif
625
626static void _expand_stack_to(address bottom) NOINLINE;
627
628static void _expand_stack_to(address bottom) {
629  address sp;
630  size_t size;
631  volatile char *p;
632
633  // Adjust bottom to point to the largest address within the same page, it
634  // gives us a one-page buffer if alloca() allocates slightly more memory.
635  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
636  bottom += os::Linux::page_size() - 1;
637
638  // sp might be slightly above current stack pointer; if that's the case, we
639  // will alloca() a little more space than necessary, which is OK. Don't use
640  // os::current_stack_pointer(), as its result can be slightly below current
641  // stack pointer, causing us to not alloca enough to reach "bottom".
642  sp = (address)&sp;
643
644  if (sp > bottom) {
645    size = sp - bottom;
646    p = (volatile char *)alloca(size);
647    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
648    p[0] = '\0';
649  }
650}
651
652bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
653  assert(t!=NULL, "just checking");
654  assert(t->osthread()->expanding_stack(), "expand should be set");
655  assert(t->stack_base() != NULL, "stack_base was not initialized");
656
657  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
658    sigset_t mask_all, old_sigset;
659    sigfillset(&mask_all);
660    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
661    _expand_stack_to(addr);
662    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
663    return true;
664  }
665  return false;
666}
667
668//////////////////////////////////////////////////////////////////////////////
669// create new thread
670
671static address highest_vm_reserved_address();
672
673// check if it's safe to start a new thread
674static bool _thread_safety_check(Thread* thread) {
675  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
676    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
677    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
678    //   allocated (MAP_FIXED) from high address space. Every thread stack
679    //   occupies a fixed size slot (usually 2Mbytes, but user can change
680    //   it to other values if they rebuild LinuxThreads).
681    //
682    // Problem with MAP_FIXED is that mmap() can still succeed even part of
683    // the memory region has already been mmap'ed. That means if we have too
684    // many threads and/or very large heap, eventually thread stack will
685    // collide with heap.
686    //
687    // Here we try to prevent heap/stack collision by comparing current
688    // stack bottom with the highest address that has been mmap'ed by JVM
689    // plus a safety margin for memory maps created by native code.
690    //
691    // This feature can be disabled by setting ThreadSafetyMargin to 0
692    //
693    if (ThreadSafetyMargin > 0) {
694      address stack_bottom = os::current_stack_base() - os::current_stack_size();
695
696      // not safe if our stack extends below the safety margin
697      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
698    } else {
699      return true;
700    }
701  } else {
702    // Floating stack LinuxThreads or NPTL:
703    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
704    //   there's not enough space left, pthread_create() will fail. If we come
705    //   here, that means enough space has been reserved for stack.
706    return true;
707  }
708}
709
710// Thread start routine for all newly created threads
711static void *java_start(Thread *thread) {
712  // Try to randomize the cache line index of hot stack frames.
713  // This helps when threads of the same stack traces evict each other's
714  // cache lines. The threads can be either from the same JVM instance, or
715  // from different JVM instances. The benefit is especially true for
716  // processors with hyperthreading technology.
717  static int counter = 0;
718  int pid = os::current_process_id();
719  alloca(((pid ^ counter++) & 7) * 128);
720
721  ThreadLocalStorage::set_thread(thread);
722
723  OSThread* osthread = thread->osthread();
724  Monitor* sync = osthread->startThread_lock();
725
726  // non floating stack LinuxThreads needs extra check, see above
727  if (!_thread_safety_check(thread)) {
728    // notify parent thread
729    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
730    osthread->set_state(ZOMBIE);
731    sync->notify_all();
732    return NULL;
733  }
734
735  // thread_id is kernel thread id (similar to Solaris LWP id)
736  osthread->set_thread_id(os::Linux::gettid());
737
738  if (UseNUMA) {
739    int lgrp_id = os::numa_get_group_id();
740    if (lgrp_id != -1) {
741      thread->set_lgrp_id(lgrp_id);
742    }
743  }
744  // initialize signal mask for this thread
745  os::Linux::hotspot_sigmask(thread);
746
747  // initialize floating point control register
748  os::Linux::init_thread_fpu_state();
749
750  // handshaking with parent thread
751  {
752    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
753
754    // notify parent thread
755    osthread->set_state(INITIALIZED);
756    sync->notify_all();
757
758    // wait until os::start_thread()
759    while (osthread->get_state() == INITIALIZED) {
760      sync->wait(Mutex::_no_safepoint_check_flag);
761    }
762  }
763
764  // call one more level start routine
765  thread->run();
766
767  return 0;
768}
769
770bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
771  assert(thread->osthread() == NULL, "caller responsible");
772
773  // Allocate the OSThread object
774  OSThread* osthread = new OSThread(NULL, NULL);
775  if (osthread == NULL) {
776    return false;
777  }
778
779  // set the correct thread state
780  osthread->set_thread_type(thr_type);
781
782  // Initial state is ALLOCATED but not INITIALIZED
783  osthread->set_state(ALLOCATED);
784
785  thread->set_osthread(osthread);
786
787  // init thread attributes
788  pthread_attr_t attr;
789  pthread_attr_init(&attr);
790  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
791
792  // stack size
793  if (os::Linux::supports_variable_stack_size()) {
794    // calculate stack size if it's not specified by caller
795    if (stack_size == 0) {
796      stack_size = os::Linux::default_stack_size(thr_type);
797
798      switch (thr_type) {
799      case os::java_thread:
800        // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
801        if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
802        break;
803      case os::compiler_thread:
804        if (CompilerThreadStackSize > 0) {
805          stack_size = (size_t)(CompilerThreadStackSize * K);
806          break;
807        } // else fall through:
808          // use VMThreadStackSize if CompilerThreadStackSize is not defined
809      case os::vm_thread:
810      case os::pgc_thread:
811      case os::cgc_thread:
812      case os::watcher_thread:
813        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
814        break;
815      }
816    }
817
818    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
819    pthread_attr_setstacksize(&attr, stack_size);
820  } else {
821    // let pthread_create() pick the default value.
822  }
823
824  // glibc guard page
825  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
826
827  ThreadState state;
828
829  {
830    // Serialize thread creation if we are running with fixed stack LinuxThreads
831    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
832    if (lock) {
833      os::Linux::createThread_lock()->lock_without_safepoint_check();
834    }
835
836    pthread_t tid;
837    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
838
839    pthread_attr_destroy(&attr);
840
841    if (ret != 0) {
842      if (PrintMiscellaneous && (Verbose || WizardMode)) {
843        perror("pthread_create()");
844      }
845      // Need to clean up stuff we've allocated so far
846      thread->set_osthread(NULL);
847      delete osthread;
848      if (lock) os::Linux::createThread_lock()->unlock();
849      return false;
850    }
851
852    // Store pthread info into the OSThread
853    osthread->set_pthread_id(tid);
854
855    // Wait until child thread is either initialized or aborted
856    {
857      Monitor* sync_with_child = osthread->startThread_lock();
858      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
859      while ((state = osthread->get_state()) == ALLOCATED) {
860        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
861      }
862    }
863
864    if (lock) {
865      os::Linux::createThread_lock()->unlock();
866    }
867  }
868
869  // Aborted due to thread limit being reached
870  if (state == ZOMBIE) {
871      thread->set_osthread(NULL);
872      delete osthread;
873      return false;
874  }
875
876  // The thread is returned suspended (in state INITIALIZED),
877  // and is started higher up in the call chain
878  assert(state == INITIALIZED, "race condition");
879  return true;
880}
881
882/////////////////////////////////////////////////////////////////////////////
883// attach existing thread
884
885// bootstrap the main thread
886bool os::create_main_thread(JavaThread* thread) {
887  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
888  return create_attached_thread(thread);
889}
890
891bool os::create_attached_thread(JavaThread* thread) {
892#ifdef ASSERT
893    thread->verify_not_published();
894#endif
895
896  // Allocate the OSThread object
897  OSThread* osthread = new OSThread(NULL, NULL);
898
899  if (osthread == NULL) {
900    return false;
901  }
902
903  // Store pthread info into the OSThread
904  osthread->set_thread_id(os::Linux::gettid());
905  osthread->set_pthread_id(::pthread_self());
906
907  // initialize floating point control register
908  os::Linux::init_thread_fpu_state();
909
910  // Initial thread state is RUNNABLE
911  osthread->set_state(RUNNABLE);
912
913  thread->set_osthread(osthread);
914
915  if (UseNUMA) {
916    int lgrp_id = os::numa_get_group_id();
917    if (lgrp_id != -1) {
918      thread->set_lgrp_id(lgrp_id);
919    }
920  }
921
922  if (os::Linux::is_initial_thread()) {
923    // If current thread is initial thread, its stack is mapped on demand,
924    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
925    // the entire stack region to avoid SEGV in stack banging.
926    // It is also useful to get around the heap-stack-gap problem on SuSE
927    // kernel (see 4821821 for details). We first expand stack to the top
928    // of yellow zone, then enable stack yellow zone (order is significant,
929    // enabling yellow zone first will crash JVM on SuSE Linux), so there
930    // is no gap between the last two virtual memory regions.
931
932    JavaThread *jt = (JavaThread *)thread;
933    address addr = jt->stack_yellow_zone_base();
934    assert(addr != NULL, "initialization problem?");
935    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
936
937    osthread->set_expanding_stack();
938    os::Linux::manually_expand_stack(jt, addr);
939    osthread->clear_expanding_stack();
940  }
941
942  // initialize signal mask for this thread
943  // and save the caller's signal mask
944  os::Linux::hotspot_sigmask(thread);
945
946  return true;
947}
948
949void os::pd_start_thread(Thread* thread) {
950  OSThread * osthread = thread->osthread();
951  assert(osthread->get_state() != INITIALIZED, "just checking");
952  Monitor* sync_with_child = osthread->startThread_lock();
953  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
954  sync_with_child->notify();
955}
956
957// Free Linux resources related to the OSThread
958void os::free_thread(OSThread* osthread) {
959  assert(osthread != NULL, "osthread not set");
960
961  if (Thread::current()->osthread() == osthread) {
962    // Restore caller's signal mask
963    sigset_t sigmask = osthread->caller_sigmask();
964    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
965   }
966
967  delete osthread;
968}
969
970//////////////////////////////////////////////////////////////////////////////
971// thread local storage
972
973int os::allocate_thread_local_storage() {
974  pthread_key_t key;
975  int rslt = pthread_key_create(&key, NULL);
976  assert(rslt == 0, "cannot allocate thread local storage");
977  return (int)key;
978}
979
980// Note: This is currently not used by VM, as we don't destroy TLS key
981// on VM exit.
982void os::free_thread_local_storage(int index) {
983  int rslt = pthread_key_delete((pthread_key_t)index);
984  assert(rslt == 0, "invalid index");
985}
986
987void os::thread_local_storage_at_put(int index, void* value) {
988  int rslt = pthread_setspecific((pthread_key_t)index, value);
989  assert(rslt == 0, "pthread_setspecific failed");
990}
991
992extern "C" Thread* get_thread() {
993  return ThreadLocalStorage::thread();
994}
995
996//////////////////////////////////////////////////////////////////////////////
997// initial thread
998
999// Check if current thread is the initial thread, similar to Solaris thr_main.
1000bool os::Linux::is_initial_thread(void) {
1001  char dummy;
1002  // If called before init complete, thread stack bottom will be null.
1003  // Can be called if fatal error occurs before initialization.
1004  if (initial_thread_stack_bottom() == NULL) return false;
1005  assert(initial_thread_stack_bottom() != NULL &&
1006         initial_thread_stack_size()   != 0,
1007         "os::init did not locate initial thread's stack region");
1008  if ((address)&dummy >= initial_thread_stack_bottom() &&
1009      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1010       return true;
1011  else return false;
1012}
1013
1014// Find the virtual memory area that contains addr
1015static bool find_vma(address addr, address* vma_low, address* vma_high) {
1016  FILE *fp = fopen("/proc/self/maps", "r");
1017  if (fp) {
1018    address low, high;
1019    while (!feof(fp)) {
1020      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1021        if (low <= addr && addr < high) {
1022           if (vma_low)  *vma_low  = low;
1023           if (vma_high) *vma_high = high;
1024           fclose (fp);
1025           return true;
1026        }
1027      }
1028      for (;;) {
1029        int ch = fgetc(fp);
1030        if (ch == EOF || ch == (int)'\n') break;
1031      }
1032    }
1033    fclose(fp);
1034  }
1035  return false;
1036}
1037
1038// Locate initial thread stack. This special handling of initial thread stack
1039// is needed because pthread_getattr_np() on most (all?) Linux distros returns
1040// bogus value for initial thread.
1041void os::Linux::capture_initial_stack(size_t max_size) {
1042  // stack size is the easy part, get it from RLIMIT_STACK
1043  size_t stack_size;
1044  struct rlimit rlim;
1045  getrlimit(RLIMIT_STACK, &rlim);
1046  stack_size = rlim.rlim_cur;
1047
1048  // 6308388: a bug in ld.so will relocate its own .data section to the
1049  //   lower end of primordial stack; reduce ulimit -s value a little bit
1050  //   so we won't install guard page on ld.so's data section.
1051  stack_size -= 2 * page_size();
1052
1053  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1054  //   7.1, in both cases we will get 2G in return value.
1055  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1056  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1057  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1058  //   in case other parts in glibc still assumes 2M max stack size.
1059  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1060#ifndef IA64
1061  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1062#else
1063  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1064  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1065#endif
1066
1067  // Try to figure out where the stack base (top) is. This is harder.
1068  //
1069  // When an application is started, glibc saves the initial stack pointer in
1070  // a global variable "__libc_stack_end", which is then used by system
1071  // libraries. __libc_stack_end should be pretty close to stack top. The
1072  // variable is available since the very early days. However, because it is
1073  // a private interface, it could disappear in the future.
1074  //
1075  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1076  // to __libc_stack_end, it is very close to stack top, but isn't the real
1077  // stack top. Note that /proc may not exist if VM is running as a chroot
1078  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1079  // /proc/<pid>/stat could change in the future (though unlikely).
1080  //
1081  // We try __libc_stack_end first. If that doesn't work, look for
1082  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1083  // as a hint, which should work well in most cases.
1084
1085  uintptr_t stack_start;
1086
1087  // try __libc_stack_end first
1088  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1089  if (p && *p) {
1090    stack_start = *p;
1091  } else {
1092    // see if we can get the start_stack field from /proc/self/stat
1093    FILE *fp;
1094    int pid;
1095    char state;
1096    int ppid;
1097    int pgrp;
1098    int session;
1099    int nr;
1100    int tpgrp;
1101    unsigned long flags;
1102    unsigned long minflt;
1103    unsigned long cminflt;
1104    unsigned long majflt;
1105    unsigned long cmajflt;
1106    unsigned long utime;
1107    unsigned long stime;
1108    long cutime;
1109    long cstime;
1110    long prio;
1111    long nice;
1112    long junk;
1113    long it_real;
1114    uintptr_t start;
1115    uintptr_t vsize;
1116    uintptr_t rss;
1117    unsigned long rsslim;
1118    uintptr_t scodes;
1119    uintptr_t ecode;
1120    int i;
1121
1122    // Figure what the primordial thread stack base is. Code is inspired
1123    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1124    // followed by command name surrounded by parentheses, state, etc.
1125    char stat[2048];
1126    int statlen;
1127
1128    fp = fopen("/proc/self/stat", "r");
1129    if (fp) {
1130      statlen = fread(stat, 1, 2047, fp);
1131      stat[statlen] = '\0';
1132      fclose(fp);
1133
1134      // Skip pid and the command string. Note that we could be dealing with
1135      // weird command names, e.g. user could decide to rename java launcher
1136      // to "java 1.4.2 :)", then the stat file would look like
1137      //                1234 (java 1.4.2 :)) R ... ...
1138      // We don't really need to know the command string, just find the last
1139      // occurrence of ")" and then start parsing from there. See bug 4726580.
1140      char * s = strrchr(stat, ')');
1141
1142      i = 0;
1143      if (s) {
1144        // Skip blank chars
1145        do s++; while (isspace(*s));
1146
1147        /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1148        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1149        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu",
1150             &state,          /* 3  %c  */
1151             &ppid,           /* 4  %d  */
1152             &pgrp,           /* 5  %d  */
1153             &session,        /* 6  %d  */
1154             &nr,             /* 7  %d  */
1155             &tpgrp,          /* 8  %d  */
1156             &flags,          /* 9  %lu  */
1157             &minflt,         /* 10 %lu  */
1158             &cminflt,        /* 11 %lu  */
1159             &majflt,         /* 12 %lu  */
1160             &cmajflt,        /* 13 %lu  */
1161             &utime,          /* 14 %lu  */
1162             &stime,          /* 15 %lu  */
1163             &cutime,         /* 16 %ld  */
1164             &cstime,         /* 17 %ld  */
1165             &prio,           /* 18 %ld  */
1166             &nice,           /* 19 %ld  */
1167             &junk,           /* 20 %ld  */
1168             &it_real,        /* 21 %ld  */
1169             &start,          /* 22 %lu  */
1170             &vsize,          /* 23 %lu  */
1171             &rss,            /* 24 %ld  */
1172             &rsslim,         /* 25 %lu  */
1173             &scodes,         /* 26 %lu  */
1174             &ecode,          /* 27 %lu  */
1175             &stack_start);   /* 28 %lu  */
1176      }
1177
1178      if (i != 28 - 2) {
1179         assert(false, "Bad conversion from /proc/self/stat");
1180         // product mode - assume we are the initial thread, good luck in the
1181         // embedded case.
1182         warning("Can't detect initial thread stack location - bad conversion");
1183         stack_start = (uintptr_t) &rlim;
1184      }
1185    } else {
1186      // For some reason we can't open /proc/self/stat (for example, running on
1187      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1188      // most cases, so don't abort:
1189      warning("Can't detect initial thread stack location - no /proc/self/stat");
1190      stack_start = (uintptr_t) &rlim;
1191    }
1192  }
1193
1194  // Now we have a pointer (stack_start) very close to the stack top, the
1195  // next thing to do is to figure out the exact location of stack top. We
1196  // can find out the virtual memory area that contains stack_start by
1197  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1198  // and its upper limit is the real stack top. (again, this would fail if
1199  // running inside chroot, because /proc may not exist.)
1200
1201  uintptr_t stack_top;
1202  address low, high;
1203  if (find_vma((address)stack_start, &low, &high)) {
1204    // success, "high" is the true stack top. (ignore "low", because initial
1205    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1206    stack_top = (uintptr_t)high;
1207  } else {
1208    // failed, likely because /proc/self/maps does not exist
1209    warning("Can't detect initial thread stack location - find_vma failed");
1210    // best effort: stack_start is normally within a few pages below the real
1211    // stack top, use it as stack top, and reduce stack size so we won't put
1212    // guard page outside stack.
1213    stack_top = stack_start;
1214    stack_size -= 16 * page_size();
1215  }
1216
1217  // stack_top could be partially down the page so align it
1218  stack_top = align_size_up(stack_top, page_size());
1219
1220  if (max_size && stack_size > max_size) {
1221     _initial_thread_stack_size = max_size;
1222  } else {
1223     _initial_thread_stack_size = stack_size;
1224  }
1225
1226  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1227  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1228}
1229
1230////////////////////////////////////////////////////////////////////////////////
1231// time support
1232
1233// Time since start-up in seconds to a fine granularity.
1234// Used by VMSelfDestructTimer and the MemProfiler.
1235double os::elapsedTime() {
1236
1237  return (double)(os::elapsed_counter()) * 0.000001;
1238}
1239
1240jlong os::elapsed_counter() {
1241  timeval time;
1242  int status = gettimeofday(&time, NULL);
1243  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1244}
1245
1246jlong os::elapsed_frequency() {
1247  return (1000 * 1000);
1248}
1249
1250jlong os::timeofday() {
1251  timeval time;
1252  int status = gettimeofday(&time, NULL);
1253  assert(status != -1, "linux error");
1254  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1255}
1256
1257// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1258// _use_global_time is only set if CacheTimeMillis is true
1259jlong os::javaTimeMillis() {
1260  return (_use_global_time ? read_global_time() : timeofday());
1261}
1262
1263#ifndef CLOCK_MONOTONIC
1264#define CLOCK_MONOTONIC (1)
1265#endif
1266
1267void os::Linux::clock_init() {
1268  // we do dlopen's in this particular order due to bug in linux
1269  // dynamical loader (see 6348968) leading to crash on exit
1270  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1271  if (handle == NULL) {
1272    handle = dlopen("librt.so", RTLD_LAZY);
1273  }
1274
1275  if (handle) {
1276    int (*clock_getres_func)(clockid_t, struct timespec*) =
1277           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1278    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1279           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1280    if (clock_getres_func && clock_gettime_func) {
1281      // See if monotonic clock is supported by the kernel. Note that some
1282      // early implementations simply return kernel jiffies (updated every
1283      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1284      // for nano time (though the monotonic property is still nice to have).
1285      // It's fixed in newer kernels, however clock_getres() still returns
1286      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1287      // resolution for now. Hopefully as people move to new kernels, this
1288      // won't be a problem.
1289      struct timespec res;
1290      struct timespec tp;
1291      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1292          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1293        // yes, monotonic clock is supported
1294        _clock_gettime = clock_gettime_func;
1295      } else {
1296        // close librt if there is no monotonic clock
1297        dlclose(handle);
1298      }
1299    }
1300  }
1301}
1302
1303#ifndef SYS_clock_getres
1304
1305#if defined(IA32) || defined(AMD64)
1306#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1307#else
1308#error Value of SYS_clock_getres not known on this platform
1309#endif
1310
1311#endif
1312
1313#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1314
1315void os::Linux::fast_thread_clock_init() {
1316  if (!UseLinuxPosixThreadCPUClocks) {
1317    return;
1318  }
1319  clockid_t clockid;
1320  struct timespec tp;
1321  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1322      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1323
1324  // Switch to using fast clocks for thread cpu time if
1325  // the sys_clock_getres() returns 0 error code.
1326  // Note, that some kernels may support the current thread
1327  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1328  // returned by the pthread_getcpuclockid().
1329  // If the fast Posix clocks are supported then the sys_clock_getres()
1330  // must return at least tp.tv_sec == 0 which means a resolution
1331  // better than 1 sec. This is extra check for reliability.
1332
1333  if(pthread_getcpuclockid_func &&
1334     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1335     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1336
1337    _supports_fast_thread_cpu_time = true;
1338    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1339  }
1340}
1341
1342jlong os::javaTimeNanos() {
1343  if (Linux::supports_monotonic_clock()) {
1344    struct timespec tp;
1345    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1346    assert(status == 0, "gettime error");
1347    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1348    return result;
1349  } else {
1350    timeval time;
1351    int status = gettimeofday(&time, NULL);
1352    assert(status != -1, "linux error");
1353    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1354    return 1000 * usecs;
1355  }
1356}
1357
1358void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1359  if (Linux::supports_monotonic_clock()) {
1360    info_ptr->max_value = ALL_64_BITS;
1361
1362    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1363    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1364    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1365  } else {
1366    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1367    info_ptr->max_value = ALL_64_BITS;
1368
1369    // gettimeofday is a real time clock so it skips
1370    info_ptr->may_skip_backward = true;
1371    info_ptr->may_skip_forward = true;
1372  }
1373
1374  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1375}
1376
1377// Return the real, user, and system times in seconds from an
1378// arbitrary fixed point in the past.
1379bool os::getTimesSecs(double* process_real_time,
1380                      double* process_user_time,
1381                      double* process_system_time) {
1382  struct tms ticks;
1383  clock_t real_ticks = times(&ticks);
1384
1385  if (real_ticks == (clock_t) (-1)) {
1386    return false;
1387  } else {
1388    double ticks_per_second = (double) clock_tics_per_sec;
1389    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1390    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1391    *process_real_time = ((double) real_ticks) / ticks_per_second;
1392
1393    return true;
1394  }
1395}
1396
1397
1398char * os::local_time_string(char *buf, size_t buflen) {
1399  struct tm t;
1400  time_t long_time;
1401  time(&long_time);
1402  localtime_r(&long_time, &t);
1403  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1404               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1405               t.tm_hour, t.tm_min, t.tm_sec);
1406  return buf;
1407}
1408
1409////////////////////////////////////////////////////////////////////////////////
1410// runtime exit support
1411
1412// Note: os::shutdown() might be called very early during initialization, or
1413// called from signal handler. Before adding something to os::shutdown(), make
1414// sure it is async-safe and can handle partially initialized VM.
1415void os::shutdown() {
1416
1417  // allow PerfMemory to attempt cleanup of any persistent resources
1418  perfMemory_exit();
1419
1420  // needs to remove object in file system
1421  AttachListener::abort();
1422
1423  // flush buffered output, finish log files
1424  ostream_abort();
1425
1426  // Check for abort hook
1427  abort_hook_t abort_hook = Arguments::abort_hook();
1428  if (abort_hook != NULL) {
1429    abort_hook();
1430  }
1431
1432}
1433
1434// Note: os::abort() might be called very early during initialization, or
1435// called from signal handler. Before adding something to os::abort(), make
1436// sure it is async-safe and can handle partially initialized VM.
1437void os::abort(bool dump_core) {
1438  os::shutdown();
1439  if (dump_core) {
1440#ifndef PRODUCT
1441    fdStream out(defaultStream::output_fd());
1442    out.print_raw("Current thread is ");
1443    char buf[16];
1444    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1445    out.print_raw_cr(buf);
1446    out.print_raw_cr("Dumping core ...");
1447#endif
1448    ::abort(); // dump core
1449  }
1450
1451  ::exit(1);
1452}
1453
1454// Die immediately, no exit hook, no abort hook, no cleanup.
1455void os::die() {
1456  // _exit() on LinuxThreads only kills current thread
1457  ::abort();
1458}
1459
1460// unused on linux for now.
1461void os::set_error_file(const char *logfile) {}
1462
1463intx os::current_thread_id() { return (intx)pthread_self(); }
1464int os::current_process_id() {
1465
1466  // Under the old linux thread library, linux gives each thread
1467  // its own process id. Because of this each thread will return
1468  // a different pid if this method were to return the result
1469  // of getpid(2). Linux provides no api that returns the pid
1470  // of the launcher thread for the vm. This implementation
1471  // returns a unique pid, the pid of the launcher thread
1472  // that starts the vm 'process'.
1473
1474  // Under the NPTL, getpid() returns the same pid as the
1475  // launcher thread rather than a unique pid per thread.
1476  // Use gettid() if you want the old pre NPTL behaviour.
1477
1478  // if you are looking for the result of a call to getpid() that
1479  // returns a unique pid for the calling thread, then look at the
1480  // OSThread::thread_id() method in osThread_linux.hpp file
1481
1482  return (int)(_initial_pid ? _initial_pid : getpid());
1483}
1484
1485// DLL functions
1486
1487const char* os::dll_file_extension() { return ".so"; }
1488
1489const char* os::get_temp_directory() { return "/tmp/"; }
1490
1491const char* os::get_current_directory(char *buf, int buflen) {
1492  return getcwd(buf, buflen);
1493}
1494
1495// check if addr is inside libjvm[_g].so
1496bool os::address_is_in_vm(address addr) {
1497  static address libjvm_base_addr;
1498  Dl_info dlinfo;
1499
1500  if (libjvm_base_addr == NULL) {
1501    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1502    libjvm_base_addr = (address)dlinfo.dli_fbase;
1503    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1504  }
1505
1506  if (dladdr((void *)addr, &dlinfo)) {
1507    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1508  }
1509
1510  return false;
1511}
1512
1513bool os::dll_address_to_function_name(address addr, char *buf,
1514                                      int buflen, int *offset) {
1515  Dl_info dlinfo;
1516
1517  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1518    if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1519    if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1520    return true;
1521  } else {
1522    if (buf) buf[0] = '\0';
1523    if (offset) *offset = -1;
1524    return false;
1525  }
1526}
1527
1528struct _address_to_library_name {
1529  address addr;          // input : memory address
1530  size_t  buflen;        //         size of fname
1531  char*   fname;         // output: library name
1532  address base;          //         library base addr
1533};
1534
1535static int address_to_library_name_callback(struct dl_phdr_info *info,
1536                                            size_t size, void *data) {
1537  int i;
1538  bool found = false;
1539  address libbase = NULL;
1540  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1541
1542  // iterate through all loadable segments
1543  for (i = 0; i < info->dlpi_phnum; i++) {
1544    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1545    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1546      // base address of a library is the lowest address of its loaded
1547      // segments.
1548      if (libbase == NULL || libbase > segbase) {
1549        libbase = segbase;
1550      }
1551      // see if 'addr' is within current segment
1552      if (segbase <= d->addr &&
1553          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1554        found = true;
1555      }
1556    }
1557  }
1558
1559  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1560  // so dll_address_to_library_name() can fall through to use dladdr() which
1561  // can figure out executable name from argv[0].
1562  if (found && info->dlpi_name && info->dlpi_name[0]) {
1563    d->base = libbase;
1564    if (d->fname) {
1565      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1566    }
1567    return 1;
1568  }
1569  return 0;
1570}
1571
1572bool os::dll_address_to_library_name(address addr, char* buf,
1573                                     int buflen, int* offset) {
1574  Dl_info dlinfo;
1575  struct _address_to_library_name data;
1576
1577  // There is a bug in old glibc dladdr() implementation that it could resolve
1578  // to wrong library name if the .so file has a base address != NULL. Here
1579  // we iterate through the program headers of all loaded libraries to find
1580  // out which library 'addr' really belongs to. This workaround can be
1581  // removed once the minimum requirement for glibc is moved to 2.3.x.
1582  data.addr = addr;
1583  data.fname = buf;
1584  data.buflen = buflen;
1585  data.base = NULL;
1586  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1587
1588  if (rslt) {
1589     // buf already contains library name
1590     if (offset) *offset = addr - data.base;
1591     return true;
1592  } else if (dladdr((void*)addr, &dlinfo)){
1593     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1594     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1595     return true;
1596  } else {
1597     if (buf) buf[0] = '\0';
1598     if (offset) *offset = -1;
1599     return false;
1600  }
1601}
1602
1603  // Loads .dll/.so and
1604  // in case of error it checks if .dll/.so was built for the
1605  // same architecture as Hotspot is running on
1606
1607void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1608{
1609  void * result= ::dlopen(filename, RTLD_LAZY);
1610  if (result != NULL) {
1611    // Successful loading
1612    return result;
1613  }
1614
1615  Elf32_Ehdr elf_head;
1616
1617  // Read system error message into ebuf
1618  // It may or may not be overwritten below
1619  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1620  ebuf[ebuflen-1]='\0';
1621  int diag_msg_max_length=ebuflen-strlen(ebuf);
1622  char* diag_msg_buf=ebuf+strlen(ebuf);
1623
1624  if (diag_msg_max_length==0) {
1625    // No more space in ebuf for additional diagnostics message
1626    return NULL;
1627  }
1628
1629
1630  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1631
1632  if (file_descriptor < 0) {
1633    // Can't open library, report dlerror() message
1634    return NULL;
1635  }
1636
1637  bool failed_to_read_elf_head=
1638    (sizeof(elf_head)!=
1639        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1640
1641  ::close(file_descriptor);
1642  if (failed_to_read_elf_head) {
1643    // file i/o error - report dlerror() msg
1644    return NULL;
1645  }
1646
1647  typedef struct {
1648    Elf32_Half  code;         // Actual value as defined in elf.h
1649    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1650    char        elf_class;    // 32 or 64 bit
1651    char        endianess;    // MSB or LSB
1652    char*       name;         // String representation
1653  } arch_t;
1654
1655  #ifndef EM_486
1656  #define EM_486          6               /* Intel 80486 */
1657  #endif
1658
1659  static const arch_t arch_array[]={
1660    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1661    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1662    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1663    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1664    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1665    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1666    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1667    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1668    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1669  };
1670
1671  #if  (defined IA32)
1672    static  Elf32_Half running_arch_code=EM_386;
1673  #elif   (defined AMD64)
1674    static  Elf32_Half running_arch_code=EM_X86_64;
1675  #elif  (defined IA64)
1676    static  Elf32_Half running_arch_code=EM_IA_64;
1677  #elif  (defined __sparc) && (defined _LP64)
1678    static  Elf32_Half running_arch_code=EM_SPARCV9;
1679  #elif  (defined __sparc) && (!defined _LP64)
1680    static  Elf32_Half running_arch_code=EM_SPARC;
1681  #elif  (defined __powerpc64__)
1682    static  Elf32_Half running_arch_code=EM_PPC64;
1683  #elif  (defined __powerpc__)
1684    static  Elf32_Half running_arch_code=EM_PPC;
1685  #else
1686    #error Method os::dll_load requires that one of following is defined:\
1687         IA32, AMD64, IA64, __sparc, __powerpc__
1688  #endif
1689
1690  // Identify compatability class for VM's architecture and library's architecture
1691  // Obtain string descriptions for architectures
1692
1693  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1694  int running_arch_index=-1;
1695
1696  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1697    if (running_arch_code == arch_array[i].code) {
1698      running_arch_index    = i;
1699    }
1700    if (lib_arch.code == arch_array[i].code) {
1701      lib_arch.compat_class = arch_array[i].compat_class;
1702      lib_arch.name         = arch_array[i].name;
1703    }
1704  }
1705
1706  assert(running_arch_index != -1,
1707    "Didn't find running architecture code (running_arch_code) in arch_array");
1708  if (running_arch_index == -1) {
1709    // Even though running architecture detection failed
1710    // we may still continue with reporting dlerror() message
1711    return NULL;
1712  }
1713
1714  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1715    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1716    return NULL;
1717  }
1718
1719  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1720    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1721    return NULL;
1722  }
1723
1724  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1725    if ( lib_arch.name!=NULL ) {
1726      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1727        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1728        lib_arch.name, arch_array[running_arch_index].name);
1729    } else {
1730      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1731      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1732        lib_arch.code,
1733        arch_array[running_arch_index].name);
1734    }
1735  }
1736
1737  return NULL;
1738}
1739
1740
1741
1742
1743bool _print_ascii_file(const char* filename, outputStream* st) {
1744  int fd = open(filename, O_RDONLY);
1745  if (fd == -1) {
1746     return false;
1747  }
1748
1749  char buf[32];
1750  int bytes;
1751  while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1752    st->print_raw(buf, bytes);
1753  }
1754
1755  close(fd);
1756
1757  return true;
1758}
1759
1760void os::print_dll_info(outputStream *st) {
1761   st->print_cr("Dynamic libraries:");
1762
1763   char fname[32];
1764   pid_t pid = os::Linux::gettid();
1765
1766   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1767
1768   if (!_print_ascii_file(fname, st)) {
1769     st->print("Can not get library information for pid = %d\n", pid);
1770   }
1771}
1772
1773
1774void os::print_os_info(outputStream* st) {
1775  st->print("OS:");
1776
1777  // Try to identify popular distros.
1778  // Most Linux distributions have /etc/XXX-release file, which contains
1779  // the OS version string. Some have more than one /etc/XXX-release file
1780  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1781  // so the order is important.
1782  if (!_print_ascii_file("/etc/mandrake-release", st) &&
1783      !_print_ascii_file("/etc/sun-release", st) &&
1784      !_print_ascii_file("/etc/redhat-release", st) &&
1785      !_print_ascii_file("/etc/SuSE-release", st) &&
1786      !_print_ascii_file("/etc/turbolinux-release", st) &&
1787      !_print_ascii_file("/etc/gentoo-release", st) &&
1788      !_print_ascii_file("/etc/debian_version", st)) {
1789      st->print("Linux");
1790  }
1791  st->cr();
1792
1793  // kernel
1794  st->print("uname:");
1795  struct utsname name;
1796  uname(&name);
1797  st->print(name.sysname); st->print(" ");
1798  st->print(name.release); st->print(" ");
1799  st->print(name.version); st->print(" ");
1800  st->print(name.machine);
1801  st->cr();
1802
1803  // Print warning if unsafe chroot environment detected
1804  if (unsafe_chroot_detected) {
1805    st->print("WARNING!! ");
1806    st->print_cr(unstable_chroot_error);
1807  }
1808
1809  // libc, pthread
1810  st->print("libc:");
1811  st->print(os::Linux::glibc_version()); st->print(" ");
1812  st->print(os::Linux::libpthread_version()); st->print(" ");
1813  if (os::Linux::is_LinuxThreads()) {
1814     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1815  }
1816  st->cr();
1817
1818  // rlimit
1819  st->print("rlimit:");
1820  struct rlimit rlim;
1821
1822  st->print(" STACK ");
1823  getrlimit(RLIMIT_STACK, &rlim);
1824  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1825  else st->print("%uk", rlim.rlim_cur >> 10);
1826
1827  st->print(", CORE ");
1828  getrlimit(RLIMIT_CORE, &rlim);
1829  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1830  else st->print("%uk", rlim.rlim_cur >> 10);
1831
1832  st->print(", NPROC ");
1833  getrlimit(RLIMIT_NPROC, &rlim);
1834  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1835  else st->print("%d", rlim.rlim_cur);
1836
1837  st->print(", NOFILE ");
1838  getrlimit(RLIMIT_NOFILE, &rlim);
1839  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1840  else st->print("%d", rlim.rlim_cur);
1841
1842  st->print(", AS ");
1843  getrlimit(RLIMIT_AS, &rlim);
1844  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1845  else st->print("%uk", rlim.rlim_cur >> 10);
1846  st->cr();
1847
1848  // load average
1849  st->print("load average:");
1850  double loadavg[3];
1851  os::loadavg(loadavg, 3);
1852  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1853  st->cr();
1854}
1855
1856void os::print_memory_info(outputStream* st) {
1857
1858  st->print("Memory:");
1859  st->print(" %dk page", os::vm_page_size()>>10);
1860
1861  // values in struct sysinfo are "unsigned long"
1862  struct sysinfo si;
1863  sysinfo(&si);
1864
1865  st->print(", physical " UINT64_FORMAT "k",
1866            os::physical_memory() >> 10);
1867  st->print("(" UINT64_FORMAT "k free)",
1868            os::available_memory() >> 10);
1869  st->print(", swap " UINT64_FORMAT "k",
1870            ((jlong)si.totalswap * si.mem_unit) >> 10);
1871  st->print("(" UINT64_FORMAT "k free)",
1872            ((jlong)si.freeswap * si.mem_unit) >> 10);
1873  st->cr();
1874}
1875
1876// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1877// but they're the same for all the linux arch that we support
1878// and they're the same for solaris but there's no common place to put this.
1879const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1880                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1881                          "ILL_COPROC", "ILL_BADSTK" };
1882
1883const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1884                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1885                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1886
1887const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1888
1889const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1890
1891void os::print_siginfo(outputStream* st, void* siginfo) {
1892  st->print("siginfo:");
1893
1894  const int buflen = 100;
1895  char buf[buflen];
1896  siginfo_t *si = (siginfo_t*)siginfo;
1897  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1898  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1899    st->print("si_errno=%s", buf);
1900  } else {
1901    st->print("si_errno=%d", si->si_errno);
1902  }
1903  const int c = si->si_code;
1904  assert(c > 0, "unexpected si_code");
1905  switch (si->si_signo) {
1906  case SIGILL:
1907    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1908    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1909    break;
1910  case SIGFPE:
1911    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1912    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1913    break;
1914  case SIGSEGV:
1915    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1916    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1917    break;
1918  case SIGBUS:
1919    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1920    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1921    break;
1922  default:
1923    st->print(", si_code=%d", si->si_code);
1924    // no si_addr
1925  }
1926
1927  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1928      UseSharedSpaces) {
1929    FileMapInfo* mapinfo = FileMapInfo::current_info();
1930    if (mapinfo->is_in_shared_space(si->si_addr)) {
1931      st->print("\n\nError accessing class data sharing archive."   \
1932                " Mapped file inaccessible during execution, "      \
1933                " possible disk/network problem.");
1934    }
1935  }
1936  st->cr();
1937}
1938
1939
1940static void print_signal_handler(outputStream* st, int sig,
1941                                 char* buf, size_t buflen);
1942
1943void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1944  st->print_cr("Signal Handlers:");
1945  print_signal_handler(st, SIGSEGV, buf, buflen);
1946  print_signal_handler(st, SIGBUS , buf, buflen);
1947  print_signal_handler(st, SIGFPE , buf, buflen);
1948  print_signal_handler(st, SIGPIPE, buf, buflen);
1949  print_signal_handler(st, SIGXFSZ, buf, buflen);
1950  print_signal_handler(st, SIGILL , buf, buflen);
1951  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1952  print_signal_handler(st, SR_signum, buf, buflen);
1953  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1954  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1955  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1956  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1957}
1958
1959static char saved_jvm_path[MAXPATHLEN] = {0};
1960
1961// Find the full path to the current module, libjvm.so or libjvm_g.so
1962void os::jvm_path(char *buf, jint len) {
1963  // Error checking.
1964  if (len < MAXPATHLEN) {
1965    assert(false, "must use a large-enough buffer");
1966    buf[0] = '\0';
1967    return;
1968  }
1969  // Lazy resolve the path to current module.
1970  if (saved_jvm_path[0] != 0) {
1971    strcpy(buf, saved_jvm_path);
1972    return;
1973  }
1974
1975  char dli_fname[MAXPATHLEN];
1976  bool ret = dll_address_to_library_name(
1977                CAST_FROM_FN_PTR(address, os::jvm_path),
1978                dli_fname, sizeof(dli_fname), NULL);
1979  assert(ret != 0, "cannot locate libjvm");
1980  realpath(dli_fname, buf);
1981
1982  if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
1983    // Support for the gamma launcher.  Typical value for buf is
1984    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
1985    // the right place in the string, then assume we are installed in a JDK and
1986    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
1987    // up the path so it looks like libjvm.so is installed there (append a
1988    // fake suffix hotspot/libjvm.so).
1989    const char *p = buf + strlen(buf) - 1;
1990    for (int count = 0; p > buf && count < 5; ++count) {
1991      for (--p; p > buf && *p != '/'; --p)
1992        /* empty */ ;
1993    }
1994
1995    if (strncmp(p, "/jre/lib/", 9) != 0) {
1996      // Look for JAVA_HOME in the environment.
1997      char* java_home_var = ::getenv("JAVA_HOME");
1998      if (java_home_var != NULL && java_home_var[0] != 0) {
1999        // Check the current module name "libjvm.so" or "libjvm_g.so".
2000        p = strrchr(buf, '/');
2001        assert(strstr(p, "/libjvm") == p, "invalid library name");
2002        p = strstr(p, "_g") ? "_g" : "";
2003
2004        realpath(java_home_var, buf);
2005        sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2006        if (0 == access(buf, F_OK)) {
2007          // Use current module name "libjvm[_g].so" instead of
2008          // "libjvm"debug_only("_g")".so" since for fastdebug version
2009          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2010          // It is used when we are choosing the HPI library's name
2011          // "libhpi[_g].so" in hpi::initialize_get_interface().
2012          sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2013        } else {
2014          // Go back to path of .so
2015          realpath(dli_fname, buf);
2016        }
2017      }
2018    }
2019  }
2020
2021  strcpy(saved_jvm_path, buf);
2022}
2023
2024void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2025  // no prefix required, not even "_"
2026}
2027
2028void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2029  // no suffix required
2030}
2031
2032////////////////////////////////////////////////////////////////////////////////
2033// sun.misc.Signal support
2034
2035static volatile jint sigint_count = 0;
2036
2037static void
2038UserHandler(int sig, void *siginfo, void *context) {
2039  // 4511530 - sem_post is serialized and handled by the manager thread. When
2040  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2041  // don't want to flood the manager thread with sem_post requests.
2042  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2043      return;
2044
2045  // Ctrl-C is pressed during error reporting, likely because the error
2046  // handler fails to abort. Let VM die immediately.
2047  if (sig == SIGINT && is_error_reported()) {
2048     os::die();
2049  }
2050
2051  os::signal_notify(sig);
2052}
2053
2054void* os::user_handler() {
2055  return CAST_FROM_FN_PTR(void*, UserHandler);
2056}
2057
2058extern "C" {
2059  typedef void (*sa_handler_t)(int);
2060  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2061}
2062
2063void* os::signal(int signal_number, void* handler) {
2064  struct sigaction sigAct, oldSigAct;
2065
2066  sigfillset(&(sigAct.sa_mask));
2067  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2068  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2069
2070  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2071    // -1 means registration failed
2072    return (void *)-1;
2073  }
2074
2075  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2076}
2077
2078void os::signal_raise(int signal_number) {
2079  ::raise(signal_number);
2080}
2081
2082/*
2083 * The following code is moved from os.cpp for making this
2084 * code platform specific, which it is by its very nature.
2085 */
2086
2087// Will be modified when max signal is changed to be dynamic
2088int os::sigexitnum_pd() {
2089  return NSIG;
2090}
2091
2092// a counter for each possible signal value
2093static volatile jint pending_signals[NSIG+1] = { 0 };
2094
2095// Linux(POSIX) specific hand shaking semaphore.
2096static sem_t sig_sem;
2097
2098void os::signal_init_pd() {
2099  // Initialize signal structures
2100  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2101
2102  // Initialize signal semaphore
2103  ::sem_init(&sig_sem, 0, 0);
2104}
2105
2106void os::signal_notify(int sig) {
2107  Atomic::inc(&pending_signals[sig]);
2108  ::sem_post(&sig_sem);
2109}
2110
2111static int check_pending_signals(bool wait) {
2112  Atomic::store(0, &sigint_count);
2113  for (;;) {
2114    for (int i = 0; i < NSIG + 1; i++) {
2115      jint n = pending_signals[i];
2116      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2117        return i;
2118      }
2119    }
2120    if (!wait) {
2121      return -1;
2122    }
2123    JavaThread *thread = JavaThread::current();
2124    ThreadBlockInVM tbivm(thread);
2125
2126    bool threadIsSuspended;
2127    do {
2128      thread->set_suspend_equivalent();
2129      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2130      ::sem_wait(&sig_sem);
2131
2132      // were we externally suspended while we were waiting?
2133      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2134      if (threadIsSuspended) {
2135        //
2136        // The semaphore has been incremented, but while we were waiting
2137        // another thread suspended us. We don't want to continue running
2138        // while suspended because that would surprise the thread that
2139        // suspended us.
2140        //
2141        ::sem_post(&sig_sem);
2142
2143        thread->java_suspend_self();
2144      }
2145    } while (threadIsSuspended);
2146  }
2147}
2148
2149int os::signal_lookup() {
2150  return check_pending_signals(false);
2151}
2152
2153int os::signal_wait() {
2154  return check_pending_signals(true);
2155}
2156
2157////////////////////////////////////////////////////////////////////////////////
2158// Virtual Memory
2159
2160int os::vm_page_size() {
2161  // Seems redundant as all get out
2162  assert(os::Linux::page_size() != -1, "must call os::init");
2163  return os::Linux::page_size();
2164}
2165
2166// Solaris allocates memory by pages.
2167int os::vm_allocation_granularity() {
2168  assert(os::Linux::page_size() != -1, "must call os::init");
2169  return os::Linux::page_size();
2170}
2171
2172// Rationale behind this function:
2173//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2174//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2175//  samples for JITted code. Here we create private executable mapping over the code cache
2176//  and then we can use standard (well, almost, as mapping can change) way to provide
2177//  info for the reporting script by storing timestamp and location of symbol
2178void linux_wrap_code(char* base, size_t size) {
2179  static volatile jint cnt = 0;
2180
2181  if (!UseOprofile) {
2182    return;
2183  }
2184
2185  char buf[40];
2186  int num = Atomic::add(1, &cnt);
2187
2188  sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2189  unlink(buf);
2190
2191  int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2192
2193  if (fd != -1) {
2194    off_t rv = lseek(fd, size-2, SEEK_SET);
2195    if (rv != (off_t)-1) {
2196      if (write(fd, "", 1) == 1) {
2197        mmap(base, size,
2198             PROT_READ|PROT_WRITE|PROT_EXEC,
2199             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2200      }
2201    }
2202    close(fd);
2203    unlink(buf);
2204  }
2205}
2206
2207// NOTE: Linux kernel does not really reserve the pages for us.
2208//       All it does is to check if there are enough free pages
2209//       left at the time of mmap(). This could be a potential
2210//       problem.
2211bool os::commit_memory(char* addr, size_t size) {
2212  uintptr_t res = (uintptr_t) ::mmap(addr, size,
2213                                   PROT_READ|PROT_WRITE|PROT_EXEC,
2214                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2215  return res != (uintptr_t) MAP_FAILED;
2216}
2217
2218bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2219  return commit_memory(addr, size);
2220}
2221
2222void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2223void os::free_memory(char *addr, size_t bytes)         { }
2224void os::numa_make_global(char *addr, size_t bytes)    { }
2225void os::numa_make_local(char *addr, size_t bytes)     { }
2226bool os::numa_topology_changed()                       { return false; }
2227size_t os::numa_get_groups_num()                       { return 1; }
2228int os::numa_get_group_id()                            { return 0; }
2229size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2230  if (size > 0) {
2231    ids[0] = 0;
2232    return 1;
2233  }
2234  return 0;
2235}
2236
2237bool os::get_page_info(char *start, page_info* info) {
2238  return false;
2239}
2240
2241char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2242  return end;
2243}
2244
2245bool os::uncommit_memory(char* addr, size_t size) {
2246  return ::mmap(addr, size,
2247                PROT_READ|PROT_WRITE|PROT_EXEC,
2248                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2249    != MAP_FAILED;
2250}
2251
2252static address _highest_vm_reserved_address = NULL;
2253
2254// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2255// at 'requested_addr'. If there are existing memory mappings at the same
2256// location, however, they will be overwritten. If 'fixed' is false,
2257// 'requested_addr' is only treated as a hint, the return value may or
2258// may not start from the requested address. Unlike Linux mmap(), this
2259// function returns NULL to indicate failure.
2260static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2261  char * addr;
2262  int flags;
2263
2264  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2265  if (fixed) {
2266    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2267    flags |= MAP_FIXED;
2268  }
2269
2270  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2271                       flags, -1, 0);
2272
2273  if (addr != MAP_FAILED) {
2274    // anon_mmap() should only get called during VM initialization,
2275    // don't need lock (actually we can skip locking even it can be called
2276    // from multiple threads, because _highest_vm_reserved_address is just a
2277    // hint about the upper limit of non-stack memory regions.)
2278    if ((address)addr + bytes > _highest_vm_reserved_address) {
2279      _highest_vm_reserved_address = (address)addr + bytes;
2280    }
2281  }
2282
2283  return addr == MAP_FAILED ? NULL : addr;
2284}
2285
2286// Don't update _highest_vm_reserved_address, because there might be memory
2287// regions above addr + size. If so, releasing a memory region only creates
2288// a hole in the address space, it doesn't help prevent heap-stack collision.
2289//
2290static int anon_munmap(char * addr, size_t size) {
2291  return ::munmap(addr, size) == 0;
2292}
2293
2294char* os::reserve_memory(size_t bytes, char* requested_addr,
2295                         size_t alignment_hint) {
2296  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2297}
2298
2299bool os::release_memory(char* addr, size_t size) {
2300  return anon_munmap(addr, size);
2301}
2302
2303static address highest_vm_reserved_address() {
2304  return _highest_vm_reserved_address;
2305}
2306
2307static bool linux_mprotect(char* addr, size_t size, int prot) {
2308  // Linux wants the mprotect address argument to be page aligned.
2309  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2310
2311  // According to SUSv3, mprotect() should only be used with mappings
2312  // established by mmap(), and mmap() always maps whole pages. Unaligned
2313  // 'addr' likely indicates problem in the VM (e.g. trying to change
2314  // protection of malloc'ed or statically allocated memory). Check the
2315  // caller if you hit this assert.
2316  assert(addr == bottom, "sanity check");
2317
2318  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2319  return ::mprotect(bottom, size, prot) == 0;
2320}
2321
2322bool os::protect_memory(char* addr, size_t size) {
2323  return linux_mprotect(addr, size, PROT_READ);
2324}
2325
2326bool os::guard_memory(char* addr, size_t size) {
2327  return linux_mprotect(addr, size, PROT_NONE);
2328}
2329
2330bool os::unguard_memory(char* addr, size_t size) {
2331  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2332}
2333
2334// Large page support
2335
2336static size_t _large_page_size = 0;
2337
2338bool os::large_page_init() {
2339  if (!UseLargePages) return false;
2340
2341  if (LargePageSizeInBytes) {
2342    _large_page_size = LargePageSizeInBytes;
2343  } else {
2344    // large_page_size on Linux is used to round up heap size. x86 uses either
2345    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2346    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2347    // page as large as 256M.
2348    //
2349    // Here we try to figure out page size by parsing /proc/meminfo and looking
2350    // for a line with the following format:
2351    //    Hugepagesize:     2048 kB
2352    //
2353    // If we can't determine the value (e.g. /proc is not mounted, or the text
2354    // format has been changed), we'll use the largest page size supported by
2355    // the processor.
2356
2357    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2358
2359    FILE *fp = fopen("/proc/meminfo", "r");
2360    if (fp) {
2361      while (!feof(fp)) {
2362        int x = 0;
2363        char buf[16];
2364        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2365          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2366            _large_page_size = x * K;
2367            break;
2368          }
2369        } else {
2370          // skip to next line
2371          for (;;) {
2372            int ch = fgetc(fp);
2373            if (ch == EOF || ch == (int)'\n') break;
2374          }
2375        }
2376      }
2377      fclose(fp);
2378    }
2379  }
2380
2381  const size_t default_page_size = (size_t)Linux::page_size();
2382  if (_large_page_size > default_page_size) {
2383    _page_sizes[0] = _large_page_size;
2384    _page_sizes[1] = default_page_size;
2385    _page_sizes[2] = 0;
2386  }
2387
2388  // Large page support is available on 2.6 or newer kernel, some vendors
2389  // (e.g. Redhat) have backported it to their 2.4 based distributions.
2390  // We optimistically assume the support is available. If later it turns out
2391  // not true, VM will automatically switch to use regular page size.
2392  return true;
2393}
2394
2395#ifndef SHM_HUGETLB
2396#define SHM_HUGETLB 04000
2397#endif
2398
2399char* os::reserve_memory_special(size_t bytes) {
2400  assert(UseLargePages, "only for large pages");
2401
2402  key_t key = IPC_PRIVATE;
2403  char *addr;
2404
2405  bool warn_on_failure = UseLargePages &&
2406                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2407                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2408                        );
2409  char msg[128];
2410
2411  // Create a large shared memory region to attach to based on size.
2412  // Currently, size is the total size of the heap
2413  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2414  if (shmid == -1) {
2415     // Possible reasons for shmget failure:
2416     // 1. shmmax is too small for Java heap.
2417     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2418     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2419     // 2. not enough large page memory.
2420     //    > check available large pages: cat /proc/meminfo
2421     //    > increase amount of large pages:
2422     //          echo new_value > /proc/sys/vm/nr_hugepages
2423     //      Note 1: different Linux may use different name for this property,
2424     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2425     //      Note 2: it's possible there's enough physical memory available but
2426     //            they are so fragmented after a long run that they can't
2427     //            coalesce into large pages. Try to reserve large pages when
2428     //            the system is still "fresh".
2429     if (warn_on_failure) {
2430       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2431       warning(msg);
2432     }
2433     return NULL;
2434  }
2435
2436  // attach to the region
2437  addr = (char*)shmat(shmid, NULL, 0);
2438  int err = errno;
2439
2440  // Remove shmid. If shmat() is successful, the actual shared memory segment
2441  // will be deleted when it's detached by shmdt() or when the process
2442  // terminates. If shmat() is not successful this will remove the shared
2443  // segment immediately.
2444  shmctl(shmid, IPC_RMID, NULL);
2445
2446  if ((intptr_t)addr == -1) {
2447     if (warn_on_failure) {
2448       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2449       warning(msg);
2450     }
2451     return NULL;
2452  }
2453
2454  return addr;
2455}
2456
2457bool os::release_memory_special(char* base, size_t bytes) {
2458  // detaching the SHM segment will also delete it, see reserve_memory_special()
2459  int rslt = shmdt(base);
2460  return rslt == 0;
2461}
2462
2463size_t os::large_page_size() {
2464  return _large_page_size;
2465}
2466
2467// Linux does not support anonymous mmap with large page memory. The only way
2468// to reserve large page memory without file backing is through SysV shared
2469// memory API. The entire memory region is committed and pinned upfront.
2470// Hopefully this will change in the future...
2471bool os::can_commit_large_page_memory() {
2472  return false;
2473}
2474
2475// Reserve memory at an arbitrary address, only if that area is
2476// available (and not reserved for something else).
2477
2478char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2479  const int max_tries = 10;
2480  char* base[max_tries];
2481  size_t size[max_tries];
2482  const size_t gap = 0x000000;
2483
2484  // Assert only that the size is a multiple of the page size, since
2485  // that's all that mmap requires, and since that's all we really know
2486  // about at this low abstraction level.  If we need higher alignment,
2487  // we can either pass an alignment to this method or verify alignment
2488  // in one of the methods further up the call chain.  See bug 5044738.
2489  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2490
2491  // Repeatedly allocate blocks until the block is allocated at the
2492  // right spot. Give up after max_tries. Note that reserve_memory() will
2493  // automatically update _highest_vm_reserved_address if the call is
2494  // successful. The variable tracks the highest memory address every reserved
2495  // by JVM. It is used to detect heap-stack collision if running with
2496  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2497  // space than needed, it could confuse the collision detecting code. To
2498  // solve the problem, save current _highest_vm_reserved_address and
2499  // calculate the correct value before return.
2500  address old_highest = _highest_vm_reserved_address;
2501
2502  // Linux mmap allows caller to pass an address as hint; give it a try first,
2503  // if kernel honors the hint then we can return immediately.
2504  char * addr = anon_mmap(requested_addr, bytes, false);
2505  if (addr == requested_addr) {
2506     return requested_addr;
2507  }
2508
2509  if (addr != NULL) {
2510     // mmap() is successful but it fails to reserve at the requested address
2511     anon_munmap(addr, bytes);
2512  }
2513
2514  int i;
2515  for (i = 0; i < max_tries; ++i) {
2516    base[i] = reserve_memory(bytes);
2517
2518    if (base[i] != NULL) {
2519      // Is this the block we wanted?
2520      if (base[i] == requested_addr) {
2521        size[i] = bytes;
2522        break;
2523      }
2524
2525      // Does this overlap the block we wanted? Give back the overlapped
2526      // parts and try again.
2527
2528      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2529      if (top_overlap >= 0 && top_overlap < bytes) {
2530        unmap_memory(base[i], top_overlap);
2531        base[i] += top_overlap;
2532        size[i] = bytes - top_overlap;
2533      } else {
2534        size_t bottom_overlap = base[i] + bytes - requested_addr;
2535        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2536          unmap_memory(requested_addr, bottom_overlap);
2537          size[i] = bytes - bottom_overlap;
2538        } else {
2539          size[i] = bytes;
2540        }
2541      }
2542    }
2543  }
2544
2545  // Give back the unused reserved pieces.
2546
2547  for (int j = 0; j < i; ++j) {
2548    if (base[j] != NULL) {
2549      unmap_memory(base[j], size[j]);
2550    }
2551  }
2552
2553  if (i < max_tries) {
2554    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2555    return requested_addr;
2556  } else {
2557    _highest_vm_reserved_address = old_highest;
2558    return NULL;
2559  }
2560}
2561
2562size_t os::read(int fd, void *buf, unsigned int nBytes) {
2563  return ::read(fd, buf, nBytes);
2564}
2565
2566// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2567// Solaris uses poll(), linux uses park().
2568// Poll() is likely a better choice, assuming that Thread.interrupt()
2569// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2570// SIGSEGV, see 4355769.
2571
2572const int NANOSECS_PER_MILLISECS = 1000000;
2573
2574int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2575  assert(thread == Thread::current(),  "thread consistency check");
2576
2577  ParkEvent * const slp = thread->_SleepEvent ;
2578  slp->reset() ;
2579  OrderAccess::fence() ;
2580
2581  if (interruptible) {
2582    jlong prevtime = javaTimeNanos();
2583
2584    for (;;) {
2585      if (os::is_interrupted(thread, true)) {
2586        return OS_INTRPT;
2587      }
2588
2589      jlong newtime = javaTimeNanos();
2590
2591      if (newtime - prevtime < 0) {
2592        // time moving backwards, should only happen if no monotonic clock
2593        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2594        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2595      } else {
2596        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2597      }
2598
2599      if(millis <= 0) {
2600        return OS_OK;
2601      }
2602
2603      prevtime = newtime;
2604
2605      {
2606        assert(thread->is_Java_thread(), "sanity check");
2607        JavaThread *jt = (JavaThread *) thread;
2608        ThreadBlockInVM tbivm(jt);
2609        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2610
2611        jt->set_suspend_equivalent();
2612        // cleared by handle_special_suspend_equivalent_condition() or
2613        // java_suspend_self() via check_and_wait_while_suspended()
2614
2615        slp->park(millis);
2616
2617        // were we externally suspended while we were waiting?
2618        jt->check_and_wait_while_suspended();
2619      }
2620    }
2621  } else {
2622    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2623    jlong prevtime = javaTimeNanos();
2624
2625    for (;;) {
2626      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2627      // the 1st iteration ...
2628      jlong newtime = javaTimeNanos();
2629
2630      if (newtime - prevtime < 0) {
2631        // time moving backwards, should only happen if no monotonic clock
2632        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2633        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2634      } else {
2635        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2636      }
2637
2638      if(millis <= 0) break ;
2639
2640      prevtime = newtime;
2641      slp->park(millis);
2642    }
2643    return OS_OK ;
2644  }
2645}
2646
2647int os::naked_sleep() {
2648  // %% make the sleep time an integer flag. for now use 1 millisec.
2649  return os::sleep(Thread::current(), 1, false);
2650}
2651
2652// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2653void os::infinite_sleep() {
2654  while (true) {    // sleep forever ...
2655    ::sleep(100);   // ... 100 seconds at a time
2656  }
2657}
2658
2659// Used to convert frequent JVM_Yield() to nops
2660bool os::dont_yield() {
2661  return DontYieldALot;
2662}
2663
2664void os::yield() {
2665  sched_yield();
2666}
2667
2668os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2669
2670void os::yield_all(int attempts) {
2671  // Yields to all threads, including threads with lower priorities
2672  // Threads on Linux are all with same priority. The Solaris style
2673  // os::yield_all() with nanosleep(1ms) is not necessary.
2674  sched_yield();
2675}
2676
2677// Called from the tight loops to possibly influence time-sharing heuristics
2678void os::loop_breaker(int attempts) {
2679  os::yield_all(attempts);
2680}
2681
2682////////////////////////////////////////////////////////////////////////////////
2683// thread priority support
2684
2685// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2686// only supports dynamic priority, static priority must be zero. For real-time
2687// applications, Linux supports SCHED_RR which allows static priority (1-99).
2688// However, for large multi-threaded applications, SCHED_RR is not only slower
2689// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2690// of 5 runs - Sep 2005).
2691//
2692// The following code actually changes the niceness of kernel-thread/LWP. It
2693// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2694// not the entire user process, and user level threads are 1:1 mapped to kernel
2695// threads. It has always been the case, but could change in the future. For
2696// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2697// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2698
2699int os::java_to_os_priority[MaxPriority + 1] = {
2700  19,              // 0 Entry should never be used
2701
2702   4,              // 1 MinPriority
2703   3,              // 2
2704   2,              // 3
2705
2706   1,              // 4
2707   0,              // 5 NormPriority
2708  -1,              // 6
2709
2710  -2,              // 7
2711  -3,              // 8
2712  -4,              // 9 NearMaxPriority
2713
2714  -5               // 10 MaxPriority
2715};
2716
2717static int prio_init() {
2718  if (ThreadPriorityPolicy == 1) {
2719    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2720    // if effective uid is not root. Perhaps, a more elegant way of doing
2721    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2722    if (geteuid() != 0) {
2723      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2724        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2725      }
2726      ThreadPriorityPolicy = 0;
2727    }
2728  }
2729  return 0;
2730}
2731
2732OSReturn os::set_native_priority(Thread* thread, int newpri) {
2733  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2734
2735  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2736  return (ret == 0) ? OS_OK : OS_ERR;
2737}
2738
2739OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2740  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2741    *priority_ptr = java_to_os_priority[NormPriority];
2742    return OS_OK;
2743  }
2744
2745  errno = 0;
2746  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2747  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2748}
2749
2750// Hint to the underlying OS that a task switch would not be good.
2751// Void return because it's a hint and can fail.
2752void os::hint_no_preempt() {}
2753
2754////////////////////////////////////////////////////////////////////////////////
2755// suspend/resume support
2756
2757//  the low-level signal-based suspend/resume support is a remnant from the
2758//  old VM-suspension that used to be for java-suspension, safepoints etc,
2759//  within hotspot. Now there is a single use-case for this:
2760//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2761//      that runs in the watcher thread.
2762//  The remaining code is greatly simplified from the more general suspension
2763//  code that used to be used.
2764//
2765//  The protocol is quite simple:
2766//  - suspend:
2767//      - sends a signal to the target thread
2768//      - polls the suspend state of the osthread using a yield loop
2769//      - target thread signal handler (SR_handler) sets suspend state
2770//        and blocks in sigsuspend until continued
2771//  - resume:
2772//      - sets target osthread state to continue
2773//      - sends signal to end the sigsuspend loop in the SR_handler
2774//
2775//  Note that the SR_lock plays no role in this suspend/resume protocol.
2776//
2777
2778static void resume_clear_context(OSThread *osthread) {
2779  osthread->set_ucontext(NULL);
2780  osthread->set_siginfo(NULL);
2781
2782  // notify the suspend action is completed, we have now resumed
2783  osthread->sr.clear_suspended();
2784}
2785
2786static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2787  osthread->set_ucontext(context);
2788  osthread->set_siginfo(siginfo);
2789}
2790
2791//
2792// Handler function invoked when a thread's execution is suspended or
2793// resumed. We have to be careful that only async-safe functions are
2794// called here (Note: most pthread functions are not async safe and
2795// should be avoided.)
2796//
2797// Note: sigwait() is a more natural fit than sigsuspend() from an
2798// interface point of view, but sigwait() prevents the signal hander
2799// from being run. libpthread would get very confused by not having
2800// its signal handlers run and prevents sigwait()'s use with the
2801// mutex granting granting signal.
2802//
2803// Currently only ever called on the VMThread
2804//
2805static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2806  // Save and restore errno to avoid confusing native code with EINTR
2807  // after sigsuspend.
2808  int old_errno = errno;
2809
2810  Thread* thread = Thread::current();
2811  OSThread* osthread = thread->osthread();
2812  assert(thread->is_VM_thread(), "Must be VMThread");
2813  // read current suspend action
2814  int action = osthread->sr.suspend_action();
2815  if (action == SR_SUSPEND) {
2816    suspend_save_context(osthread, siginfo, context);
2817
2818    // Notify the suspend action is about to be completed. do_suspend()
2819    // waits until SR_SUSPENDED is set and then returns. We will wait
2820    // here for a resume signal and that completes the suspend-other
2821    // action. do_suspend/do_resume is always called as a pair from
2822    // the same thread - so there are no races
2823
2824    // notify the caller
2825    osthread->sr.set_suspended();
2826
2827    sigset_t suspend_set;  // signals for sigsuspend()
2828
2829    // get current set of blocked signals and unblock resume signal
2830    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2831    sigdelset(&suspend_set, SR_signum);
2832
2833    // wait here until we are resumed
2834    do {
2835      sigsuspend(&suspend_set);
2836      // ignore all returns until we get a resume signal
2837    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2838
2839    resume_clear_context(osthread);
2840
2841  } else {
2842    assert(action == SR_CONTINUE, "unexpected sr action");
2843    // nothing special to do - just leave the handler
2844  }
2845
2846  errno = old_errno;
2847}
2848
2849
2850static int SR_initialize() {
2851  struct sigaction act;
2852  char *s;
2853  /* Get signal number to use for suspend/resume */
2854  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2855    int sig = ::strtol(s, 0, 10);
2856    if (sig > 0 || sig < _NSIG) {
2857        SR_signum = sig;
2858    }
2859  }
2860
2861  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2862        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2863
2864  sigemptyset(&SR_sigset);
2865  sigaddset(&SR_sigset, SR_signum);
2866
2867  /* Set up signal handler for suspend/resume */
2868  act.sa_flags = SA_RESTART|SA_SIGINFO;
2869  act.sa_handler = (void (*)(int)) SR_handler;
2870
2871  // SR_signum is blocked by default.
2872  // 4528190 - We also need to block pthread restart signal (32 on all
2873  // supported Linux platforms). Note that LinuxThreads need to block
2874  // this signal for all threads to work properly. So we don't have
2875  // to use hard-coded signal number when setting up the mask.
2876  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2877
2878  if (sigaction(SR_signum, &act, 0) == -1) {
2879    return -1;
2880  }
2881
2882  // Save signal flag
2883  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
2884  return 0;
2885}
2886
2887static int SR_finalize() {
2888  return 0;
2889}
2890
2891
2892// returns true on success and false on error - really an error is fatal
2893// but this seems the normal response to library errors
2894static bool do_suspend(OSThread* osthread) {
2895  // mark as suspended and send signal
2896  osthread->sr.set_suspend_action(SR_SUSPEND);
2897  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2898  assert_status(status == 0, status, "pthread_kill");
2899
2900  // check status and wait until notified of suspension
2901  if (status == 0) {
2902    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2903      os::yield_all(i);
2904    }
2905    osthread->sr.set_suspend_action(SR_NONE);
2906    return true;
2907  }
2908  else {
2909    osthread->sr.set_suspend_action(SR_NONE);
2910    return false;
2911  }
2912}
2913
2914static void do_resume(OSThread* osthread) {
2915  assert(osthread->sr.is_suspended(), "thread should be suspended");
2916  osthread->sr.set_suspend_action(SR_CONTINUE);
2917
2918  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2919  assert_status(status == 0, status, "pthread_kill");
2920  // check status and wait unit notified of resumption
2921  if (status == 0) {
2922    for (int i = 0; osthread->sr.is_suspended(); i++) {
2923      os::yield_all(i);
2924    }
2925  }
2926  osthread->sr.set_suspend_action(SR_NONE);
2927}
2928
2929////////////////////////////////////////////////////////////////////////////////
2930// interrupt support
2931
2932void os::interrupt(Thread* thread) {
2933  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2934    "possibility of dangling Thread pointer");
2935
2936  OSThread* osthread = thread->osthread();
2937
2938  if (!osthread->interrupted()) {
2939    osthread->set_interrupted(true);
2940    // More than one thread can get here with the same value of osthread,
2941    // resulting in multiple notifications.  We do, however, want the store
2942    // to interrupted() to be visible to other threads before we execute unpark().
2943    OrderAccess::fence();
2944    ParkEvent * const slp = thread->_SleepEvent ;
2945    if (slp != NULL) slp->unpark() ;
2946  }
2947
2948  // For JSR166. Unpark even if interrupt status already was set
2949  if (thread->is_Java_thread())
2950    ((JavaThread*)thread)->parker()->unpark();
2951
2952  ParkEvent * ev = thread->_ParkEvent ;
2953  if (ev != NULL) ev->unpark() ;
2954
2955}
2956
2957bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2958  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2959    "possibility of dangling Thread pointer");
2960
2961  OSThread* osthread = thread->osthread();
2962
2963  bool interrupted = osthread->interrupted();
2964
2965  if (interrupted && clear_interrupted) {
2966    osthread->set_interrupted(false);
2967    // consider thread->_SleepEvent->reset() ... optional optimization
2968  }
2969
2970  return interrupted;
2971}
2972
2973///////////////////////////////////////////////////////////////////////////////////
2974// signal handling (except suspend/resume)
2975
2976// This routine may be used by user applications as a "hook" to catch signals.
2977// The user-defined signal handler must pass unrecognized signals to this
2978// routine, and if it returns true (non-zero), then the signal handler must
2979// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2980// routine will never retun false (zero), but instead will execute a VM panic
2981// routine kill the process.
2982//
2983// If this routine returns false, it is OK to call it again.  This allows
2984// the user-defined signal handler to perform checks either before or after
2985// the VM performs its own checks.  Naturally, the user code would be making
2986// a serious error if it tried to handle an exception (such as a null check
2987// or breakpoint) that the VM was generating for its own correct operation.
2988//
2989// This routine may recognize any of the following kinds of signals:
2990//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2991// It should be consulted by handlers for any of those signals.
2992//
2993// The caller of this routine must pass in the three arguments supplied
2994// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2995// field of the structure passed to sigaction().  This routine assumes that
2996// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2997//
2998// Note that the VM will print warnings if it detects conflicting signal
2999// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3000//
3001extern "C" int
3002JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3003                        void* ucontext, int abort_if_unrecognized);
3004
3005void signalHandler(int sig, siginfo_t* info, void* uc) {
3006  assert(info != NULL && uc != NULL, "it must be old kernel");
3007  JVM_handle_linux_signal(sig, info, uc, true);
3008}
3009
3010
3011// This boolean allows users to forward their own non-matching signals
3012// to JVM_handle_linux_signal, harmlessly.
3013bool os::Linux::signal_handlers_are_installed = false;
3014
3015// For signal-chaining
3016struct sigaction os::Linux::sigact[MAXSIGNUM];
3017unsigned int os::Linux::sigs = 0;
3018bool os::Linux::libjsig_is_loaded = false;
3019typedef struct sigaction *(*get_signal_t)(int);
3020get_signal_t os::Linux::get_signal_action = NULL;
3021
3022struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3023  struct sigaction *actp = NULL;
3024
3025  if (libjsig_is_loaded) {
3026    // Retrieve the old signal handler from libjsig
3027    actp = (*get_signal_action)(sig);
3028  }
3029  if (actp == NULL) {
3030    // Retrieve the preinstalled signal handler from jvm
3031    actp = get_preinstalled_handler(sig);
3032  }
3033
3034  return actp;
3035}
3036
3037static bool call_chained_handler(struct sigaction *actp, int sig,
3038                                 siginfo_t *siginfo, void *context) {
3039  // Call the old signal handler
3040  if (actp->sa_handler == SIG_DFL) {
3041    // It's more reasonable to let jvm treat it as an unexpected exception
3042    // instead of taking the default action.
3043    return false;
3044  } else if (actp->sa_handler != SIG_IGN) {
3045    if ((actp->sa_flags & SA_NODEFER) == 0) {
3046      // automaticlly block the signal
3047      sigaddset(&(actp->sa_mask), sig);
3048    }
3049
3050    sa_handler_t hand;
3051    sa_sigaction_t sa;
3052    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3053    // retrieve the chained handler
3054    if (siginfo_flag_set) {
3055      sa = actp->sa_sigaction;
3056    } else {
3057      hand = actp->sa_handler;
3058    }
3059
3060    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3061      actp->sa_handler = SIG_DFL;
3062    }
3063
3064    // try to honor the signal mask
3065    sigset_t oset;
3066    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3067
3068    // call into the chained handler
3069    if (siginfo_flag_set) {
3070      (*sa)(sig, siginfo, context);
3071    } else {
3072      (*hand)(sig);
3073    }
3074
3075    // restore the signal mask
3076    pthread_sigmask(SIG_SETMASK, &oset, 0);
3077  }
3078  // Tell jvm's signal handler the signal is taken care of.
3079  return true;
3080}
3081
3082bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3083  bool chained = false;
3084  // signal-chaining
3085  if (UseSignalChaining) {
3086    struct sigaction *actp = get_chained_signal_action(sig);
3087    if (actp != NULL) {
3088      chained = call_chained_handler(actp, sig, siginfo, context);
3089    }
3090  }
3091  return chained;
3092}
3093
3094struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3095  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3096    return &sigact[sig];
3097  }
3098  return NULL;
3099}
3100
3101void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3102  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3103  sigact[sig] = oldAct;
3104  sigs |= (unsigned int)1 << sig;
3105}
3106
3107// for diagnostic
3108int os::Linux::sigflags[MAXSIGNUM];
3109
3110int os::Linux::get_our_sigflags(int sig) {
3111  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3112  return sigflags[sig];
3113}
3114
3115void os::Linux::set_our_sigflags(int sig, int flags) {
3116  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3117  sigflags[sig] = flags;
3118}
3119
3120void os::Linux::set_signal_handler(int sig, bool set_installed) {
3121  // Check for overwrite.
3122  struct sigaction oldAct;
3123  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3124
3125  void* oldhand = oldAct.sa_sigaction
3126                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3127                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3128  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3129      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3130      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3131    if (AllowUserSignalHandlers || !set_installed) {
3132      // Do not overwrite; user takes responsibility to forward to us.
3133      return;
3134    } else if (UseSignalChaining) {
3135      // save the old handler in jvm
3136      save_preinstalled_handler(sig, oldAct);
3137      // libjsig also interposes the sigaction() call below and saves the
3138      // old sigaction on it own.
3139    } else {
3140      fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3141    }
3142  }
3143
3144  struct sigaction sigAct;
3145  sigfillset(&(sigAct.sa_mask));
3146  sigAct.sa_handler = SIG_DFL;
3147  if (!set_installed) {
3148    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3149  } else {
3150    sigAct.sa_sigaction = signalHandler;
3151    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3152  }
3153  // Save flags, which are set by ours
3154  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3155  sigflags[sig] = sigAct.sa_flags;
3156
3157  int ret = sigaction(sig, &sigAct, &oldAct);
3158  assert(ret == 0, "check");
3159
3160  void* oldhand2  = oldAct.sa_sigaction
3161                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3162                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3163  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3164}
3165
3166// install signal handlers for signals that HotSpot needs to
3167// handle in order to support Java-level exception handling.
3168
3169void os::Linux::install_signal_handlers() {
3170  if (!signal_handlers_are_installed) {
3171    signal_handlers_are_installed = true;
3172
3173    // signal-chaining
3174    typedef void (*signal_setting_t)();
3175    signal_setting_t begin_signal_setting = NULL;
3176    signal_setting_t end_signal_setting = NULL;
3177    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3178                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3179    if (begin_signal_setting != NULL) {
3180      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3181                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3182      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3183                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3184      libjsig_is_loaded = true;
3185      assert(UseSignalChaining, "should enable signal-chaining");
3186    }
3187    if (libjsig_is_loaded) {
3188      // Tell libjsig jvm is setting signal handlers
3189      (*begin_signal_setting)();
3190    }
3191
3192    set_signal_handler(SIGSEGV, true);
3193    set_signal_handler(SIGPIPE, true);
3194    set_signal_handler(SIGBUS, true);
3195    set_signal_handler(SIGILL, true);
3196    set_signal_handler(SIGFPE, true);
3197    set_signal_handler(SIGXFSZ, true);
3198
3199    if (libjsig_is_loaded) {
3200      // Tell libjsig jvm finishes setting signal handlers
3201      (*end_signal_setting)();
3202    }
3203
3204    // We don't activate signal checker if libjsig is in place, we trust ourselves
3205    // and if UserSignalHandler is installed all bets are off
3206    if (CheckJNICalls) {
3207      if (libjsig_is_loaded) {
3208        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3209        check_signals = false;
3210      }
3211      if (AllowUserSignalHandlers) {
3212        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3213        check_signals = false;
3214      }
3215    }
3216  }
3217}
3218
3219// This is the fastest way to get thread cpu time on Linux.
3220// Returns cpu time (user+sys) for any thread, not only for current.
3221// POSIX compliant clocks are implemented in the kernels 2.6.16+.
3222// It might work on 2.6.10+ with a special kernel/glibc patch.
3223// For reference, please, see IEEE Std 1003.1-2004:
3224//   http://www.unix.org/single_unix_specification
3225
3226jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3227  struct timespec tp;
3228  int rc = os::Linux::clock_gettime(clockid, &tp);
3229  assert(rc == 0, "clock_gettime is expected to return 0 code");
3230
3231  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3232}
3233
3234/////
3235// glibc on Linux platform uses non-documented flag
3236// to indicate, that some special sort of signal
3237// trampoline is used.
3238// We will never set this flag, and we should
3239// ignore this flag in our diagnostic
3240#ifdef SIGNIFICANT_SIGNAL_MASK
3241#undef SIGNIFICANT_SIGNAL_MASK
3242#endif
3243#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3244
3245static const char* get_signal_handler_name(address handler,
3246                                           char* buf, int buflen) {
3247  int offset;
3248  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3249  if (found) {
3250    // skip directory names
3251    const char *p1, *p2;
3252    p1 = buf;
3253    size_t len = strlen(os::file_separator());
3254    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3255    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3256  } else {
3257    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3258  }
3259  return buf;
3260}
3261
3262static void print_signal_handler(outputStream* st, int sig,
3263                                 char* buf, size_t buflen) {
3264  struct sigaction sa;
3265
3266  sigaction(sig, NULL, &sa);
3267
3268  // See comment for SIGNIFICANT_SIGNAL_MASK define
3269  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3270
3271  st->print("%s: ", os::exception_name(sig, buf, buflen));
3272
3273  address handler = (sa.sa_flags & SA_SIGINFO)
3274    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3275    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3276
3277  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3278    st->print("SIG_DFL");
3279  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3280    st->print("SIG_IGN");
3281  } else {
3282    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3283  }
3284
3285  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3286
3287  address rh = VMError::get_resetted_sighandler(sig);
3288  // May be, handler was resetted by VMError?
3289  if(rh != NULL) {
3290    handler = rh;
3291    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3292  }
3293
3294  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3295
3296  // Check: is it our handler?
3297  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3298     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3299    // It is our signal handler
3300    // check for flags, reset system-used one!
3301    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3302      st->print(
3303                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3304                os::Linux::get_our_sigflags(sig));
3305    }
3306  }
3307  st->cr();
3308}
3309
3310
3311#define DO_SIGNAL_CHECK(sig) \
3312  if (!sigismember(&check_signal_done, sig)) \
3313    os::Linux::check_signal_handler(sig)
3314
3315// This method is a periodic task to check for misbehaving JNI applications
3316// under CheckJNI, we can add any periodic checks here
3317
3318void os::run_periodic_checks() {
3319
3320  if (check_signals == false) return;
3321
3322  // SEGV and BUS if overridden could potentially prevent
3323  // generation of hs*.log in the event of a crash, debugging
3324  // such a case can be very challenging, so we absolutely
3325  // check the following for a good measure:
3326  DO_SIGNAL_CHECK(SIGSEGV);
3327  DO_SIGNAL_CHECK(SIGILL);
3328  DO_SIGNAL_CHECK(SIGFPE);
3329  DO_SIGNAL_CHECK(SIGBUS);
3330  DO_SIGNAL_CHECK(SIGPIPE);
3331  DO_SIGNAL_CHECK(SIGXFSZ);
3332
3333
3334  // ReduceSignalUsage allows the user to override these handlers
3335  // see comments at the very top and jvm_solaris.h
3336  if (!ReduceSignalUsage) {
3337    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3338    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3339    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3340    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3341  }
3342
3343  DO_SIGNAL_CHECK(SR_signum);
3344  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3345}
3346
3347typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3348
3349static os_sigaction_t os_sigaction = NULL;
3350
3351void os::Linux::check_signal_handler(int sig) {
3352  char buf[O_BUFLEN];
3353  address jvmHandler = NULL;
3354
3355
3356  struct sigaction act;
3357  if (os_sigaction == NULL) {
3358    // only trust the default sigaction, in case it has been interposed
3359    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3360    if (os_sigaction == NULL) return;
3361  }
3362
3363  os_sigaction(sig, (struct sigaction*)NULL, &act);
3364
3365
3366  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3367
3368  address thisHandler = (act.sa_flags & SA_SIGINFO)
3369    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3370    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3371
3372
3373  switch(sig) {
3374  case SIGSEGV:
3375  case SIGBUS:
3376  case SIGFPE:
3377  case SIGPIPE:
3378  case SIGILL:
3379  case SIGXFSZ:
3380    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3381    break;
3382
3383  case SHUTDOWN1_SIGNAL:
3384  case SHUTDOWN2_SIGNAL:
3385  case SHUTDOWN3_SIGNAL:
3386  case BREAK_SIGNAL:
3387    jvmHandler = (address)user_handler();
3388    break;
3389
3390  case INTERRUPT_SIGNAL:
3391    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3392    break;
3393
3394  default:
3395    if (sig == SR_signum) {
3396      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3397    } else {
3398      return;
3399    }
3400    break;
3401  }
3402
3403  if (thisHandler != jvmHandler) {
3404    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3405    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3406    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3407    // No need to check this sig any longer
3408    sigaddset(&check_signal_done, sig);
3409  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3410    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3411    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3412    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3413    // No need to check this sig any longer
3414    sigaddset(&check_signal_done, sig);
3415  }
3416
3417  // Dump all the signal
3418  if (sigismember(&check_signal_done, sig)) {
3419    print_signal_handlers(tty, buf, O_BUFLEN);
3420  }
3421}
3422
3423extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3424
3425extern bool signal_name(int signo, char* buf, size_t len);
3426
3427const char* os::exception_name(int exception_code, char* buf, size_t size) {
3428  if (0 < exception_code && exception_code <= SIGRTMAX) {
3429    // signal
3430    if (!signal_name(exception_code, buf, size)) {
3431      jio_snprintf(buf, size, "SIG%d", exception_code);
3432    }
3433    return buf;
3434  } else {
3435    return NULL;
3436  }
3437}
3438
3439// this is called _before_ the most of global arguments have been parsed
3440void os::init(void) {
3441  char dummy;   /* used to get a guess on initial stack address */
3442//  first_hrtime = gethrtime();
3443
3444  // With LinuxThreads the JavaMain thread pid (primordial thread)
3445  // is different than the pid of the java launcher thread.
3446  // So, on Linux, the launcher thread pid is passed to the VM
3447  // via the sun.java.launcher.pid property.
3448  // Use this property instead of getpid() if it was correctly passed.
3449  // See bug 6351349.
3450  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3451
3452  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3453
3454  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3455
3456  init_random(1234567);
3457
3458  ThreadCritical::initialize();
3459
3460  Linux::set_page_size(sysconf(_SC_PAGESIZE));
3461  if (Linux::page_size() == -1) {
3462    fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3463  }
3464  init_page_sizes((size_t) Linux::page_size());
3465
3466  Linux::initialize_system_info();
3467
3468  // main_thread points to the aboriginal thread
3469  Linux::_main_thread = pthread_self();
3470
3471  Linux::clock_init();
3472  initial_time_count = os::elapsed_counter();
3473}
3474
3475// To install functions for atexit system call
3476extern "C" {
3477  static void perfMemory_exit_helper() {
3478    perfMemory_exit();
3479  }
3480}
3481
3482// this is called _after_ the global arguments have been parsed
3483jint os::init_2(void)
3484{
3485  Linux::fast_thread_clock_init();
3486
3487  // Allocate a single page and mark it as readable for safepoint polling
3488  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3489  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3490
3491  os::set_polling_page( polling_page );
3492
3493#ifndef PRODUCT
3494  if(Verbose && PrintMiscellaneous)
3495    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3496#endif
3497
3498  if (!UseMembar) {
3499    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3500    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3501    os::set_memory_serialize_page( mem_serialize_page );
3502
3503#ifndef PRODUCT
3504    if(Verbose && PrintMiscellaneous)
3505      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3506#endif
3507  }
3508
3509  FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3510
3511  // initialize suspend/resume support - must do this before signal_sets_init()
3512  if (SR_initialize() != 0) {
3513    perror("SR_initialize failed");
3514    return JNI_ERR;
3515  }
3516
3517  Linux::signal_sets_init();
3518  Linux::install_signal_handlers();
3519
3520  size_t threadStackSizeInBytes = ThreadStackSize * K;
3521  if (threadStackSizeInBytes != 0 &&
3522      threadStackSizeInBytes < Linux::min_stack_allowed) {
3523        tty->print_cr("\nThe stack size specified is too small, "
3524                      "Specify at least %dk",
3525                      Linux::min_stack_allowed / K);
3526        return JNI_ERR;
3527  }
3528
3529  // Make the stack size a multiple of the page size so that
3530  // the yellow/red zones can be guarded.
3531  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3532        vm_page_size()));
3533
3534  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3535
3536  Linux::libpthread_init();
3537  if (PrintMiscellaneous && (Verbose || WizardMode)) {
3538     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3539          Linux::glibc_version(), Linux::libpthread_version(),
3540          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3541  }
3542
3543  if (MaxFDLimit) {
3544    // set the number of file descriptors to max. print out error
3545    // if getrlimit/setrlimit fails but continue regardless.
3546    struct rlimit nbr_files;
3547    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3548    if (status != 0) {
3549      if (PrintMiscellaneous && (Verbose || WizardMode))
3550        perror("os::init_2 getrlimit failed");
3551    } else {
3552      nbr_files.rlim_cur = nbr_files.rlim_max;
3553      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3554      if (status != 0) {
3555        if (PrintMiscellaneous && (Verbose || WizardMode))
3556          perror("os::init_2 setrlimit failed");
3557      }
3558    }
3559  }
3560
3561  // Initialize lock used to serialize thread creation (see os::create_thread)
3562  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3563
3564  // Initialize HPI.
3565  jint hpi_result = hpi::initialize();
3566  if (hpi_result != JNI_OK) {
3567    tty->print_cr("There was an error trying to initialize the HPI library.");
3568    return hpi_result;
3569  }
3570
3571  // at-exit methods are called in the reverse order of their registration.
3572  // atexit functions are called on return from main or as a result of a
3573  // call to exit(3C). There can be only 32 of these functions registered
3574  // and atexit() does not set errno.
3575
3576  if (PerfAllowAtExitRegistration) {
3577    // only register atexit functions if PerfAllowAtExitRegistration is set.
3578    // atexit functions can be delayed until process exit time, which
3579    // can be problematic for embedded VM situations. Embedded VMs should
3580    // call DestroyJavaVM() to assure that VM resources are released.
3581
3582    // note: perfMemory_exit_helper atexit function may be removed in
3583    // the future if the appropriate cleanup code can be added to the
3584    // VM_Exit VMOperation's doit method.
3585    if (atexit(perfMemory_exit_helper) != 0) {
3586      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3587    }
3588  }
3589
3590  // initialize thread priority policy
3591  prio_init();
3592
3593  return JNI_OK;
3594}
3595
3596// Mark the polling page as unreadable
3597void os::make_polling_page_unreadable(void) {
3598  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3599    fatal("Could not disable polling page");
3600};
3601
3602// Mark the polling page as readable
3603void os::make_polling_page_readable(void) {
3604  if( !protect_memory((char *)_polling_page, Linux::page_size()) )
3605    fatal("Could not enable polling page");
3606};
3607
3608int os::active_processor_count() {
3609  // Linux doesn't yet have a (official) notion of processor sets,
3610  // so just return the number of online processors.
3611  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3612  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3613  return online_cpus;
3614}
3615
3616bool os::distribute_processes(uint length, uint* distribution) {
3617  // Not yet implemented.
3618  return false;
3619}
3620
3621bool os::bind_to_processor(uint processor_id) {
3622  // Not yet implemented.
3623  return false;
3624}
3625
3626///
3627
3628// Suspends the target using the signal mechanism and then grabs the PC before
3629// resuming the target. Used by the flat-profiler only
3630ExtendedPC os::get_thread_pc(Thread* thread) {
3631  // Make sure that it is called by the watcher for the VMThread
3632  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3633  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3634
3635  ExtendedPC epc;
3636
3637  OSThread* osthread = thread->osthread();
3638  if (do_suspend(osthread)) {
3639    if (osthread->ucontext() != NULL) {
3640      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3641    } else {
3642      // NULL context is unexpected, double-check this is the VMThread
3643      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3644    }
3645    do_resume(osthread);
3646  }
3647  // failure means pthread_kill failed for some reason - arguably this is
3648  // a fatal problem, but such problems are ignored elsewhere
3649
3650  return epc;
3651}
3652
3653int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3654{
3655   if (is_NPTL()) {
3656      return pthread_cond_timedwait(_cond, _mutex, _abstime);
3657   } else {
3658#ifndef IA64
3659      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3660      // word back to default 64bit precision if condvar is signaled. Java
3661      // wants 53bit precision.  Save and restore current value.
3662      int fpu = get_fpu_control_word();
3663#endif // IA64
3664      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3665#ifndef IA64
3666      set_fpu_control_word(fpu);
3667#endif // IA64
3668      return status;
3669   }
3670}
3671
3672////////////////////////////////////////////////////////////////////////////////
3673// debug support
3674
3675#ifndef PRODUCT
3676static address same_page(address x, address y) {
3677  int page_bits = -os::vm_page_size();
3678  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3679    return x;
3680  else if (x > y)
3681    return (address)(intptr_t(y) | ~page_bits) + 1;
3682  else
3683    return (address)(intptr_t(y) & page_bits);
3684}
3685
3686bool os::find(address addr) {
3687  Dl_info dlinfo;
3688  memset(&dlinfo, 0, sizeof(dlinfo));
3689  if (dladdr(addr, &dlinfo)) {
3690    tty->print(PTR_FORMAT ": ", addr);
3691    if (dlinfo.dli_sname != NULL) {
3692      tty->print("%s+%#x", dlinfo.dli_sname,
3693                 addr - (intptr_t)dlinfo.dli_saddr);
3694    } else if (dlinfo.dli_fname) {
3695      tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3696    } else {
3697      tty->print("<absolute address>");
3698    }
3699    if (dlinfo.dli_fname) {
3700      tty->print(" in %s", dlinfo.dli_fname);
3701    }
3702    if (dlinfo.dli_fbase) {
3703      tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3704    }
3705    tty->cr();
3706
3707    if (Verbose) {
3708      // decode some bytes around the PC
3709      address begin = same_page(addr-40, addr);
3710      address end   = same_page(addr+40, addr);
3711      address       lowest = (address) dlinfo.dli_sname;
3712      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3713      if (begin < lowest)  begin = lowest;
3714      Dl_info dlinfo2;
3715      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3716          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3717        end = (address) dlinfo2.dli_saddr;
3718      Disassembler::decode(begin, end);
3719    }
3720    return true;
3721  }
3722  return false;
3723}
3724
3725#endif
3726
3727////////////////////////////////////////////////////////////////////////////////
3728// misc
3729
3730// This does not do anything on Linux. This is basically a hook for being
3731// able to use structured exception handling (thread-local exception filters)
3732// on, e.g., Win32.
3733void
3734os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3735                         JavaCallArguments* args, Thread* thread) {
3736  f(value, method, args, thread);
3737}
3738
3739void os::print_statistics() {
3740}
3741
3742int os::message_box(const char* title, const char* message) {
3743  int i;
3744  fdStream err(defaultStream::error_fd());
3745  for (i = 0; i < 78; i++) err.print_raw("=");
3746  err.cr();
3747  err.print_raw_cr(title);
3748  for (i = 0; i < 78; i++) err.print_raw("-");
3749  err.cr();
3750  err.print_raw_cr(message);
3751  for (i = 0; i < 78; i++) err.print_raw("=");
3752  err.cr();
3753
3754  char buf[16];
3755  // Prevent process from exiting upon "read error" without consuming all CPU
3756  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3757
3758  return buf[0] == 'y' || buf[0] == 'Y';
3759}
3760
3761int os::stat(const char *path, struct stat *sbuf) {
3762  char pathbuf[MAX_PATH];
3763  if (strlen(path) > MAX_PATH - 1) {
3764    errno = ENAMETOOLONG;
3765    return -1;
3766  }
3767  hpi::native_path(strcpy(pathbuf, path));
3768  return ::stat(pathbuf, sbuf);
3769}
3770
3771bool os::check_heap(bool force) {
3772  return true;
3773}
3774
3775int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3776  return ::vsnprintf(buf, count, format, args);
3777}
3778
3779// Is a (classpath) directory empty?
3780bool os::dir_is_empty(const char* path) {
3781  DIR *dir = NULL;
3782  struct dirent *ptr;
3783
3784  dir = opendir(path);
3785  if (dir == NULL) return true;
3786
3787  /* Scan the directory */
3788  bool result = true;
3789  char buf[sizeof(struct dirent) + MAX_PATH];
3790  while (result && (ptr = ::readdir(dir)) != NULL) {
3791    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3792      result = false;
3793    }
3794  }
3795  closedir(dir);
3796  return result;
3797}
3798
3799// create binary file, rewriting existing file if required
3800int os::create_binary_file(const char* path, bool rewrite_existing) {
3801  int oflags = O_WRONLY | O_CREAT;
3802  if (!rewrite_existing) {
3803    oflags |= O_EXCL;
3804  }
3805  return ::open64(path, oflags, S_IREAD | S_IWRITE);
3806}
3807
3808// return current position of file pointer
3809jlong os::current_file_offset(int fd) {
3810  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3811}
3812
3813// move file pointer to the specified offset
3814jlong os::seek_to_file_offset(int fd, jlong offset) {
3815  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3816}
3817
3818// Map a block of memory.
3819char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3820                     char *addr, size_t bytes, bool read_only,
3821                     bool allow_exec) {
3822  int prot;
3823  int flags;
3824
3825  if (read_only) {
3826    prot = PROT_READ;
3827    flags = MAP_SHARED;
3828  } else {
3829    prot = PROT_READ | PROT_WRITE;
3830    flags = MAP_PRIVATE;
3831  }
3832
3833  if (allow_exec) {
3834    prot |= PROT_EXEC;
3835  }
3836
3837  if (addr != NULL) {
3838    flags |= MAP_FIXED;
3839  }
3840
3841  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3842                                     fd, file_offset);
3843  if (mapped_address == MAP_FAILED) {
3844    return NULL;
3845  }
3846  return mapped_address;
3847}
3848
3849
3850// Remap a block of memory.
3851char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3852                       char *addr, size_t bytes, bool read_only,
3853                       bool allow_exec) {
3854  // same as map_memory() on this OS
3855  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3856                        allow_exec);
3857}
3858
3859
3860// Unmap a block of memory.
3861bool os::unmap_memory(char* addr, size_t bytes) {
3862  return munmap(addr, bytes) == 0;
3863}
3864
3865static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
3866
3867static clockid_t thread_cpu_clockid(Thread* thread) {
3868  pthread_t tid = thread->osthread()->pthread_id();
3869  clockid_t clockid;
3870
3871  // Get thread clockid
3872  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
3873  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
3874  return clockid;
3875}
3876
3877// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3878// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3879// of a thread.
3880//
3881// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3882// the fast estimate available on the platform.
3883
3884jlong os::current_thread_cpu_time() {
3885  if (os::Linux::supports_fast_thread_cpu_time()) {
3886    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
3887  } else {
3888    // return user + sys since the cost is the same
3889    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
3890  }
3891}
3892
3893jlong os::thread_cpu_time(Thread* thread) {
3894  // consistent with what current_thread_cpu_time() returns
3895  if (os::Linux::supports_fast_thread_cpu_time()) {
3896    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
3897  } else {
3898    return slow_thread_cpu_time(thread, true /* user + sys */);
3899  }
3900}
3901
3902jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3903  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
3904    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
3905  } else {
3906    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
3907  }
3908}
3909
3910jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3911  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
3912    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
3913  } else {
3914    return slow_thread_cpu_time(thread, user_sys_cpu_time);
3915  }
3916}
3917
3918//
3919//  -1 on error.
3920//
3921
3922static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3923  static bool proc_pid_cpu_avail = true;
3924  static bool proc_task_unchecked = true;
3925  static const char *proc_stat_path = "/proc/%d/stat";
3926  pid_t  tid = thread->osthread()->thread_id();
3927  int i;
3928  char *s;
3929  char stat[2048];
3930  int statlen;
3931  char proc_name[64];
3932  int count;
3933  long sys_time, user_time;
3934  char string[64];
3935  int idummy;
3936  long ldummy;
3937  FILE *fp;
3938
3939  // We first try accessing /proc/<pid>/cpu since this is faster to
3940  // process.  If this file is not present (linux kernels 2.5 and above)
3941  // then we open /proc/<pid>/stat.
3942  if ( proc_pid_cpu_avail ) {
3943    sprintf(proc_name, "/proc/%d/cpu", tid);
3944    fp =  fopen(proc_name, "r");
3945    if ( fp != NULL ) {
3946      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
3947      fclose(fp);
3948      if ( count != 3 ) return -1;
3949
3950      if (user_sys_cpu_time) {
3951        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
3952      } else {
3953        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
3954      }
3955    }
3956    else proc_pid_cpu_avail = false;
3957  }
3958
3959  // The /proc/<tid>/stat aggregates per-process usage on
3960  // new Linux kernels 2.6+ where NPTL is supported.
3961  // The /proc/self/task/<tid>/stat still has the per-thread usage.
3962  // See bug 6328462.
3963  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
3964  // and possibly in some other cases, so we check its availability.
3965  if (proc_task_unchecked && os::Linux::is_NPTL()) {
3966    // This is executed only once
3967    proc_task_unchecked = false;
3968    fp = fopen("/proc/self/task", "r");
3969    if (fp != NULL) {
3970      proc_stat_path = "/proc/self/task/%d/stat";
3971      fclose(fp);
3972    }
3973  }
3974
3975  sprintf(proc_name, proc_stat_path, tid);
3976  fp = fopen(proc_name, "r");
3977  if ( fp == NULL ) return -1;
3978  statlen = fread(stat, 1, 2047, fp);
3979  stat[statlen] = '\0';
3980  fclose(fp);
3981
3982  // Skip pid and the command string. Note that we could be dealing with
3983  // weird command names, e.g. user could decide to rename java launcher
3984  // to "java 1.4.2 :)", then the stat file would look like
3985  //                1234 (java 1.4.2 :)) R ... ...
3986  // We don't really need to know the command string, just find the last
3987  // occurrence of ")" and then start parsing from there. See bug 4726580.
3988  s = strrchr(stat, ')');
3989  i = 0;
3990  if (s == NULL ) return -1;
3991
3992  // Skip blank chars
3993  do s++; while (isspace(*s));
3994
3995  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
3996                 &idummy, &idummy, &idummy, &idummy, &idummy, &idummy,
3997                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
3998                 &user_time, &sys_time);
3999  if ( count != 13 ) return -1;
4000  if (user_sys_cpu_time) {
4001    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4002  } else {
4003    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4004  }
4005}
4006
4007void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4008  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4009  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4010  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4011  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4012}
4013
4014void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4015  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4016  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4017  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4018  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4019}
4020
4021bool os::is_thread_cpu_time_supported() {
4022  return true;
4023}
4024
4025// System loadavg support.  Returns -1 if load average cannot be obtained.
4026// Linux doesn't yet have a (official) notion of processor sets,
4027// so just return the system wide load average.
4028int os::loadavg(double loadavg[], int nelem) {
4029  return ::getloadavg(loadavg, nelem);
4030}
4031
4032void os::pause() {
4033  char filename[MAX_PATH];
4034  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4035    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4036  } else {
4037    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4038  }
4039
4040  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4041  if (fd != -1) {
4042    struct stat buf;
4043    close(fd);
4044    while (::stat(filename, &buf) == 0) {
4045      (void)::poll(NULL, 0, 100);
4046    }
4047  } else {
4048    jio_fprintf(stderr,
4049      "Could not open pause file '%s', continuing immediately.\n", filename);
4050  }
4051}
4052
4053extern "C" {
4054
4055/**
4056 * NOTE: the following code is to keep the green threads code
4057 * in the libjava.so happy. Once the green threads is removed,
4058 * these code will no longer be needed.
4059 */
4060int
4061jdk_waitpid(pid_t pid, int* status, int options) {
4062    return waitpid(pid, status, options);
4063}
4064
4065int
4066fork1() {
4067    return fork();
4068}
4069
4070int
4071jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4072    return sem_init(sem, pshared, value);
4073}
4074
4075int
4076jdk_sem_post(sem_t *sem) {
4077    return sem_post(sem);
4078}
4079
4080int
4081jdk_sem_wait(sem_t *sem) {
4082    return sem_wait(sem);
4083}
4084
4085int
4086jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4087    return pthread_sigmask(how , newmask, oldmask);
4088}
4089
4090}
4091
4092// Refer to the comments in os_solaris.cpp park-unpark.
4093//
4094// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4095// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4096// For specifics regarding the bug see GLIBC BUGID 261237 :
4097//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4098// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4099// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4100// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4101// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4102// and monitorenter when we're using 1-0 locking.  All those operations may result in
4103// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4104// of libpthread avoids the problem, but isn't practical.
4105//
4106// Possible remedies:
4107//
4108// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4109//      This is palliative and probabilistic, however.  If the thread is preempted
4110//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4111//      than the minimum period may have passed, and the abstime may be stale (in the
4112//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4113//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4114//
4115// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4116//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4117//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4118//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4119//      thread.
4120//
4121// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4122//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4123//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4124//      This also works well.  In fact it avoids kernel-level scalability impediments
4125//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4126//      timers in a graceful fashion.
4127//
4128// 4.   When the abstime value is in the past it appears that control returns
4129//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4130//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4131//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4132//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4133//      It may be possible to avoid reinitialization by checking the return
4134//      value from pthread_cond_timedwait().  In addition to reinitializing the
4135//      condvar we must establish the invariant that cond_signal() is only called
4136//      within critical sections protected by the adjunct mutex.  This prevents
4137//      cond_signal() from "seeing" a condvar that's in the midst of being
4138//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4139//      desirable signal-after-unlock optimization that avoids futile context switching.
4140//
4141//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4142//      structure when a condvar is used or initialized.  cond_destroy()  would
4143//      release the helper structure.  Our reinitialize-after-timedwait fix
4144//      put excessive stress on malloc/free and locks protecting the c-heap.
4145//
4146// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4147// It may be possible to refine (4) by checking the kernel and NTPL verisons
4148// and only enabling the work-around for vulnerable environments.
4149
4150// utility to compute the abstime argument to timedwait:
4151// millis is the relative timeout time
4152// abstime will be the absolute timeout time
4153// TODO: replace compute_abstime() with unpackTime()
4154
4155static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4156  if (millis < 0)  millis = 0;
4157  struct timeval now;
4158  int status = gettimeofday(&now, NULL);
4159  assert(status == 0, "gettimeofday");
4160  jlong seconds = millis / 1000;
4161  millis %= 1000;
4162  if (seconds > 50000000) { // see man cond_timedwait(3T)
4163    seconds = 50000000;
4164  }
4165  abstime->tv_sec = now.tv_sec  + seconds;
4166  long       usec = now.tv_usec + millis * 1000;
4167  if (usec >= 1000000) {
4168    abstime->tv_sec += 1;
4169    usec -= 1000000;
4170  }
4171  abstime->tv_nsec = usec * 1000;
4172  return abstime;
4173}
4174
4175
4176// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4177// Conceptually TryPark() should be equivalent to park(0).
4178
4179int os::PlatformEvent::TryPark() {
4180  for (;;) {
4181    const int v = _Event ;
4182    guarantee ((v == 0) || (v == 1), "invariant") ;
4183    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4184  }
4185}
4186
4187void os::PlatformEvent::park() {       // AKA "down()"
4188  // Invariant: Only the thread associated with the Event/PlatformEvent
4189  // may call park().
4190  // TODO: assert that _Assoc != NULL or _Assoc == Self
4191  int v ;
4192  for (;;) {
4193      v = _Event ;
4194      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4195  }
4196  guarantee (v >= 0, "invariant") ;
4197  if (v == 0) {
4198     // Do this the hard way by blocking ...
4199     int status = pthread_mutex_lock(_mutex);
4200     assert_status(status == 0, status, "mutex_lock");
4201     guarantee (_nParked == 0, "invariant") ;
4202     ++ _nParked ;
4203     while (_Event < 0) {
4204        status = pthread_cond_wait(_cond, _mutex);
4205        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4206        // Treat this the same as if the wait was interrupted
4207        if (status == ETIME) { status = EINTR; }
4208        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4209     }
4210     -- _nParked ;
4211
4212    // In theory we could move the ST of 0 into _Event past the unlock(),
4213    // but then we'd need a MEMBAR after the ST.
4214    _Event = 0 ;
4215     status = pthread_mutex_unlock(_mutex);
4216     assert_status(status == 0, status, "mutex_unlock");
4217  }
4218  guarantee (_Event >= 0, "invariant") ;
4219}
4220
4221int os::PlatformEvent::park(jlong millis) {
4222  guarantee (_nParked == 0, "invariant") ;
4223
4224  int v ;
4225  for (;;) {
4226      v = _Event ;
4227      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4228  }
4229  guarantee (v >= 0, "invariant") ;
4230  if (v != 0) return OS_OK ;
4231
4232  // We do this the hard way, by blocking the thread.
4233  // Consider enforcing a minimum timeout value.
4234  struct timespec abst;
4235  compute_abstime(&abst, millis);
4236
4237  int ret = OS_TIMEOUT;
4238  int status = pthread_mutex_lock(_mutex);
4239  assert_status(status == 0, status, "mutex_lock");
4240  guarantee (_nParked == 0, "invariant") ;
4241  ++_nParked ;
4242
4243  // Object.wait(timo) will return because of
4244  // (a) notification
4245  // (b) timeout
4246  // (c) thread.interrupt
4247  //
4248  // Thread.interrupt and object.notify{All} both call Event::set.
4249  // That is, we treat thread.interrupt as a special case of notification.
4250  // The underlying Solaris implementation, cond_timedwait, admits
4251  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4252  // JVM from making those visible to Java code.  As such, we must
4253  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4254  //
4255  // TODO: properly differentiate simultaneous notify+interrupt.
4256  // In that case, we should propagate the notify to another waiter.
4257
4258  while (_Event < 0) {
4259    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4260    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4261      pthread_cond_destroy (_cond);
4262      pthread_cond_init (_cond, NULL) ;
4263    }
4264    assert_status(status == 0 || status == EINTR ||
4265                  status == ETIME || status == ETIMEDOUT,
4266                  status, "cond_timedwait");
4267    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4268    if (status == ETIME || status == ETIMEDOUT) break ;
4269    // We consume and ignore EINTR and spurious wakeups.
4270  }
4271  --_nParked ;
4272  if (_Event >= 0) {
4273     ret = OS_OK;
4274  }
4275  _Event = 0 ;
4276  status = pthread_mutex_unlock(_mutex);
4277  assert_status(status == 0, status, "mutex_unlock");
4278  assert (_nParked == 0, "invariant") ;
4279  return ret;
4280}
4281
4282void os::PlatformEvent::unpark() {
4283  int v, AnyWaiters ;
4284  for (;;) {
4285      v = _Event ;
4286      if (v > 0) {
4287         // The LD of _Event could have reordered or be satisfied
4288         // by a read-aside from this processor's write buffer.
4289         // To avoid problems execute a barrier and then
4290         // ratify the value.
4291         OrderAccess::fence() ;
4292         if (_Event == v) return ;
4293         continue ;
4294      }
4295      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4296  }
4297  if (v < 0) {
4298     // Wait for the thread associated with the event to vacate
4299     int status = pthread_mutex_lock(_mutex);
4300     assert_status(status == 0, status, "mutex_lock");
4301     AnyWaiters = _nParked ;
4302     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4303     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4304        AnyWaiters = 0 ;
4305        pthread_cond_signal (_cond);
4306     }
4307     status = pthread_mutex_unlock(_mutex);
4308     assert_status(status == 0, status, "mutex_unlock");
4309     if (AnyWaiters != 0) {
4310        status = pthread_cond_signal(_cond);
4311        assert_status(status == 0, status, "cond_signal");
4312     }
4313  }
4314
4315  // Note that we signal() _after dropping the lock for "immortal" Events.
4316  // This is safe and avoids a common class of  futile wakeups.  In rare
4317  // circumstances this can cause a thread to return prematurely from
4318  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4319  // simply re-test the condition and re-park itself.
4320}
4321
4322
4323// JSR166
4324// -------------------------------------------------------
4325
4326/*
4327 * The solaris and linux implementations of park/unpark are fairly
4328 * conservative for now, but can be improved. They currently use a
4329 * mutex/condvar pair, plus a a count.
4330 * Park decrements count if > 0, else does a condvar wait.  Unpark
4331 * sets count to 1 and signals condvar.  Only one thread ever waits
4332 * on the condvar. Contention seen when trying to park implies that someone
4333 * is unparking you, so don't wait. And spurious returns are fine, so there
4334 * is no need to track notifications.
4335 */
4336
4337
4338#define NANOSECS_PER_SEC 1000000000
4339#define NANOSECS_PER_MILLISEC 1000000
4340#define MAX_SECS 100000000
4341/*
4342 * This code is common to linux and solaris and will be moved to a
4343 * common place in dolphin.
4344 *
4345 * The passed in time value is either a relative time in nanoseconds
4346 * or an absolute time in milliseconds. Either way it has to be unpacked
4347 * into suitable seconds and nanoseconds components and stored in the
4348 * given timespec structure.
4349 * Given time is a 64-bit value and the time_t used in the timespec is only
4350 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4351 * overflow if times way in the future are given. Further on Solaris versions
4352 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4353 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4354 * As it will be 28 years before "now + 100000000" will overflow we can
4355 * ignore overflow and just impose a hard-limit on seconds using the value
4356 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4357 * years from "now".
4358 */
4359
4360static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4361  assert (time > 0, "convertTime");
4362
4363  struct timeval now;
4364  int status = gettimeofday(&now, NULL);
4365  assert(status == 0, "gettimeofday");
4366
4367  time_t max_secs = now.tv_sec + MAX_SECS;
4368
4369  if (isAbsolute) {
4370    jlong secs = time / 1000;
4371    if (secs > max_secs) {
4372      absTime->tv_sec = max_secs;
4373    }
4374    else {
4375      absTime->tv_sec = secs;
4376    }
4377    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4378  }
4379  else {
4380    jlong secs = time / NANOSECS_PER_SEC;
4381    if (secs >= MAX_SECS) {
4382      absTime->tv_sec = max_secs;
4383      absTime->tv_nsec = 0;
4384    }
4385    else {
4386      absTime->tv_sec = now.tv_sec + secs;
4387      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4388      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4389        absTime->tv_nsec -= NANOSECS_PER_SEC;
4390        ++absTime->tv_sec; // note: this must be <= max_secs
4391      }
4392    }
4393  }
4394  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4395  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4396  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4397  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4398}
4399
4400void Parker::park(bool isAbsolute, jlong time) {
4401  // Optional fast-path check:
4402  // Return immediately if a permit is available.
4403  if (_counter > 0) {
4404      _counter = 0 ;
4405      return ;
4406  }
4407
4408  Thread* thread = Thread::current();
4409  assert(thread->is_Java_thread(), "Must be JavaThread");
4410  JavaThread *jt = (JavaThread *)thread;
4411
4412  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4413  // Check interrupt before trying to wait
4414  if (Thread::is_interrupted(thread, false)) {
4415    return;
4416  }
4417
4418  // Next, demultiplex/decode time arguments
4419  timespec absTime;
4420  if (time < 0) { // don't wait at all
4421    return;
4422  }
4423  if (time > 0) {
4424    unpackTime(&absTime, isAbsolute, time);
4425  }
4426
4427
4428  // Enter safepoint region
4429  // Beware of deadlocks such as 6317397.
4430  // The per-thread Parker:: mutex is a classic leaf-lock.
4431  // In particular a thread must never block on the Threads_lock while
4432  // holding the Parker:: mutex.  If safepoints are pending both the
4433  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4434  ThreadBlockInVM tbivm(jt);
4435
4436  // Don't wait if cannot get lock since interference arises from
4437  // unblocking.  Also. check interrupt before trying wait
4438  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4439    return;
4440  }
4441
4442  int status ;
4443  if (_counter > 0)  { // no wait needed
4444    _counter = 0;
4445    status = pthread_mutex_unlock(_mutex);
4446    assert (status == 0, "invariant") ;
4447    return;
4448  }
4449
4450#ifdef ASSERT
4451  // Don't catch signals while blocked; let the running threads have the signals.
4452  // (This allows a debugger to break into the running thread.)
4453  sigset_t oldsigs;
4454  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4455  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4456#endif
4457
4458  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4459  jt->set_suspend_equivalent();
4460  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4461
4462  if (time == 0) {
4463    status = pthread_cond_wait (_cond, _mutex) ;
4464  } else {
4465    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4466    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4467      pthread_cond_destroy (_cond) ;
4468      pthread_cond_init    (_cond, NULL);
4469    }
4470  }
4471  assert_status(status == 0 || status == EINTR ||
4472                status == ETIME || status == ETIMEDOUT,
4473                status, "cond_timedwait");
4474
4475#ifdef ASSERT
4476  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4477#endif
4478
4479  _counter = 0 ;
4480  status = pthread_mutex_unlock(_mutex) ;
4481  assert_status(status == 0, status, "invariant") ;
4482  // If externally suspended while waiting, re-suspend
4483  if (jt->handle_special_suspend_equivalent_condition()) {
4484    jt->java_suspend_self();
4485  }
4486
4487}
4488
4489void Parker::unpark() {
4490  int s, status ;
4491  status = pthread_mutex_lock(_mutex);
4492  assert (status == 0, "invariant") ;
4493  s = _counter;
4494  _counter = 1;
4495  if (s < 1) {
4496     if (WorkAroundNPTLTimedWaitHang) {
4497        status = pthread_cond_signal (_cond) ;
4498        assert (status == 0, "invariant") ;
4499        status = pthread_mutex_unlock(_mutex);
4500        assert (status == 0, "invariant") ;
4501     } else {
4502        status = pthread_mutex_unlock(_mutex);
4503        assert (status == 0, "invariant") ;
4504        status = pthread_cond_signal (_cond) ;
4505        assert (status == 0, "invariant") ;
4506     }
4507  } else {
4508    pthread_mutex_unlock(_mutex);
4509    assert (status == 0, "invariant") ;
4510  }
4511}
4512
4513
4514extern char** environ;
4515
4516#ifndef __NR_fork
4517#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4518#endif
4519
4520#ifndef __NR_execve
4521#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4522#endif
4523
4524// Run the specified command in a separate process. Return its exit value,
4525// or -1 on failure (e.g. can't fork a new process).
4526// Unlike system(), this function can be called from signal handler. It
4527// doesn't block SIGINT et al.
4528int os::fork_and_exec(char* cmd) {
4529  char * argv[4];
4530  argv[0] = "sh";
4531  argv[1] = "-c";
4532  argv[2] = cmd;
4533  argv[3] = NULL;
4534
4535  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4536  // pthread_atfork handlers and reset pthread library. All we need is a
4537  // separate process to execve. Make a direct syscall to fork process.
4538  // On IA64 there's no fork syscall, we have to use fork() and hope for
4539  // the best...
4540  pid_t pid = NOT_IA64(syscall(__NR_fork);)
4541              IA64_ONLY(fork();)
4542
4543  if (pid < 0) {
4544    // fork failed
4545    return -1;
4546
4547  } else if (pid == 0) {
4548    // child process
4549
4550    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4551    // first to kill every thread on the thread list. Because this list is
4552    // not reset by fork() (see notes above), execve() will instead kill
4553    // every thread in the parent process. We know this is the only thread
4554    // in the new process, so make a system call directly.
4555    // IA64 should use normal execve() from glibc to match the glibc fork()
4556    // above.
4557    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4558    IA64_ONLY(execve("/bin/sh", argv, environ);)
4559
4560    // execve failed
4561    _exit(-1);
4562
4563  } else  {
4564    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4565    // care about the actual exit code, for now.
4566
4567    int status;
4568
4569    // Wait for the child process to exit.  This returns immediately if
4570    // the child has already exited. */
4571    while (waitpid(pid, &status, 0) < 0) {
4572        switch (errno) {
4573        case ECHILD: return 0;
4574        case EINTR: break;
4575        default: return -1;
4576        }
4577    }
4578
4579    if (WIFEXITED(status)) {
4580       // The child exited normally; get its exit code.
4581       return WEXITSTATUS(status);
4582    } else if (WIFSIGNALED(status)) {
4583       // The child exited because of a signal
4584       // The best value to return is 0x80 + signal number,
4585       // because that is what all Unix shells do, and because
4586       // it allows callers to distinguish between process exit and
4587       // process death by signal.
4588       return 0x80 + WTERMSIG(status);
4589    } else {
4590       // Unknown exit code; pass it through
4591       return status;
4592    }
4593  }
4594}
4595