stubGenerator_x86_64.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_stubGenerator_x86_64.cpp.incl"
27
28// Declaration and definition of StubGenerator (no .hpp file).
29// For a more detailed description of the stub routine structure
30// see the comment in stubRoutines.hpp
31
32#define __ _masm->
33#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
34
35#ifdef PRODUCT
36#define BLOCK_COMMENT(str) /* nothing */
37#else
38#define BLOCK_COMMENT(str) __ block_comment(str)
39#endif
40
41#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
42const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
43
44// Stub Code definitions
45
46static address handle_unsafe_access() {
47  JavaThread* thread = JavaThread::current();
48  address pc = thread->saved_exception_pc();
49  // pc is the instruction which we must emulate
50  // doing a no-op is fine:  return garbage from the load
51  // therefore, compute npc
52  address npc = Assembler::locate_next_instruction(pc);
53
54  // request an async exception
55  thread->set_pending_unsafe_access_error();
56
57  // return address of next instruction to execute
58  return npc;
59}
60
61class StubGenerator: public StubCodeGenerator {
62 private:
63
64#ifdef PRODUCT
65#define inc_counter_np(counter) (0)
66#else
67  void inc_counter_np_(int& counter) {
68    __ incrementl(ExternalAddress((address)&counter));
69  }
70#define inc_counter_np(counter) \
71  BLOCK_COMMENT("inc_counter " #counter); \
72  inc_counter_np_(counter);
73#endif
74
75  // Call stubs are used to call Java from C
76  //
77  // Linux Arguments:
78  //    c_rarg0:   call wrapper address                   address
79  //    c_rarg1:   result                                 address
80  //    c_rarg2:   result type                            BasicType
81  //    c_rarg3:   method                                 methodOop
82  //    c_rarg4:   (interpreter) entry point              address
83  //    c_rarg5:   parameters                             intptr_t*
84  //    16(rbp): parameter size (in words)              int
85  //    24(rbp): thread                                 Thread*
86  //
87  //     [ return_from_Java     ] <--- rsp
88  //     [ argument word n      ]
89  //      ...
90  // -12 [ argument word 1      ]
91  // -11 [ saved r15            ] <--- rsp_after_call
92  // -10 [ saved r14            ]
93  //  -9 [ saved r13            ]
94  //  -8 [ saved r12            ]
95  //  -7 [ saved rbx            ]
96  //  -6 [ call wrapper         ]
97  //  -5 [ result               ]
98  //  -4 [ result type          ]
99  //  -3 [ method               ]
100  //  -2 [ entry point          ]
101  //  -1 [ parameters           ]
102  //   0 [ saved rbp            ] <--- rbp
103  //   1 [ return address       ]
104  //   2 [ parameter size       ]
105  //   3 [ thread               ]
106  //
107  // Windows Arguments:
108  //    c_rarg0:   call wrapper address                   address
109  //    c_rarg1:   result                                 address
110  //    c_rarg2:   result type                            BasicType
111  //    c_rarg3:   method                                 methodOop
112  //    48(rbp): (interpreter) entry point              address
113  //    56(rbp): parameters                             intptr_t*
114  //    64(rbp): parameter size (in words)              int
115  //    72(rbp): thread                                 Thread*
116  //
117  //     [ return_from_Java     ] <--- rsp
118  //     [ argument word n      ]
119  //      ...
120  //  -8 [ argument word 1      ]
121  //  -7 [ saved r15            ] <--- rsp_after_call
122  //  -6 [ saved r14            ]
123  //  -5 [ saved r13            ]
124  //  -4 [ saved r12            ]
125  //  -3 [ saved rdi            ]
126  //  -2 [ saved rsi            ]
127  //  -1 [ saved rbx            ]
128  //   0 [ saved rbp            ] <--- rbp
129  //   1 [ return address       ]
130  //   2 [ call wrapper         ]
131  //   3 [ result               ]
132  //   4 [ result type          ]
133  //   5 [ method               ]
134  //   6 [ entry point          ]
135  //   7 [ parameters           ]
136  //   8 [ parameter size       ]
137  //   9 [ thread               ]
138  //
139  //    Windows reserves the callers stack space for arguments 1-4.
140  //    We spill c_rarg0-c_rarg3 to this space.
141
142  // Call stub stack layout word offsets from rbp
143  enum call_stub_layout {
144#ifdef _WIN64
145    rsp_after_call_off = -7,
146    r15_off            = rsp_after_call_off,
147    r14_off            = -6,
148    r13_off            = -5,
149    r12_off            = -4,
150    rdi_off            = -3,
151    rsi_off            = -2,
152    rbx_off            = -1,
153    rbp_off            =  0,
154    retaddr_off        =  1,
155    call_wrapper_off   =  2,
156    result_off         =  3,
157    result_type_off    =  4,
158    method_off         =  5,
159    entry_point_off    =  6,
160    parameters_off     =  7,
161    parameter_size_off =  8,
162    thread_off         =  9
163#else
164    rsp_after_call_off = -12,
165    mxcsr_off          = rsp_after_call_off,
166    r15_off            = -11,
167    r14_off            = -10,
168    r13_off            = -9,
169    r12_off            = -8,
170    rbx_off            = -7,
171    call_wrapper_off   = -6,
172    result_off         = -5,
173    result_type_off    = -4,
174    method_off         = -3,
175    entry_point_off    = -2,
176    parameters_off     = -1,
177    rbp_off            =  0,
178    retaddr_off        =  1,
179    parameter_size_off =  2,
180    thread_off         =  3
181#endif
182  };
183
184  address generate_call_stub(address& return_address) {
185    assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
186           (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
187           "adjust this code");
188    StubCodeMark mark(this, "StubRoutines", "call_stub");
189    address start = __ pc();
190
191    // same as in generate_catch_exception()!
192    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
193
194    const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
195    const Address result        (rbp, result_off         * wordSize);
196    const Address result_type   (rbp, result_type_off    * wordSize);
197    const Address method        (rbp, method_off         * wordSize);
198    const Address entry_point   (rbp, entry_point_off    * wordSize);
199    const Address parameters    (rbp, parameters_off     * wordSize);
200    const Address parameter_size(rbp, parameter_size_off * wordSize);
201
202    // same as in generate_catch_exception()!
203    const Address thread        (rbp, thread_off         * wordSize);
204
205    const Address r15_save(rbp, r15_off * wordSize);
206    const Address r14_save(rbp, r14_off * wordSize);
207    const Address r13_save(rbp, r13_off * wordSize);
208    const Address r12_save(rbp, r12_off * wordSize);
209    const Address rbx_save(rbp, rbx_off * wordSize);
210
211    // stub code
212    __ enter();
213    __ subq(rsp, -rsp_after_call_off * wordSize);
214
215    // save register parameters
216#ifndef _WIN64
217    __ movq(parameters,   c_rarg5); // parameters
218    __ movq(entry_point,  c_rarg4); // entry_point
219#endif
220
221    __ movq(method,       c_rarg3); // method
222    __ movl(result_type,  c_rarg2); // result type
223    __ movq(result,       c_rarg1); // result
224    __ movq(call_wrapper, c_rarg0); // call wrapper
225
226    // save regs belonging to calling function
227    __ movq(rbx_save, rbx);
228    __ movq(r12_save, r12);
229    __ movq(r13_save, r13);
230    __ movq(r14_save, r14);
231    __ movq(r15_save, r15);
232
233#ifdef _WIN64
234    const Address rdi_save(rbp, rdi_off * wordSize);
235    const Address rsi_save(rbp, rsi_off * wordSize);
236
237    __ movq(rsi_save, rsi);
238    __ movq(rdi_save, rdi);
239#else
240    const Address mxcsr_save(rbp, mxcsr_off * wordSize);
241    {
242      Label skip_ldmx;
243      __ stmxcsr(mxcsr_save);
244      __ movl(rax, mxcsr_save);
245      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
246      ExternalAddress mxcsr_std(StubRoutines::amd64::mxcsr_std());
247      __ cmp32(rax, mxcsr_std);
248      __ jcc(Assembler::equal, skip_ldmx);
249      __ ldmxcsr(mxcsr_std);
250      __ bind(skip_ldmx);
251    }
252#endif
253
254    // Load up thread register
255    __ movq(r15_thread, thread);
256    __ reinit_heapbase();
257
258#ifdef ASSERT
259    // make sure we have no pending exceptions
260    {
261      Label L;
262      __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
263      __ jcc(Assembler::equal, L);
264      __ stop("StubRoutines::call_stub: entered with pending exception");
265      __ bind(L);
266    }
267#endif
268
269    // pass parameters if any
270    BLOCK_COMMENT("pass parameters if any");
271    Label parameters_done;
272    __ movl(c_rarg3, parameter_size);
273    __ testl(c_rarg3, c_rarg3);
274    __ jcc(Assembler::zero, parameters_done);
275
276    Label loop;
277    __ movq(c_rarg2, parameters);     // parameter pointer
278    __ movl(c_rarg1, c_rarg3);        // parameter counter is in c_rarg1
279    __ BIND(loop);
280    if (TaggedStackInterpreter) {
281      __ movq(rax, Address(c_rarg2, 0)); // get tag
282      __ addq(c_rarg2, wordSize);     // advance to next tag
283      __ pushq(rax);                  // pass tag
284    }
285    __ movq(rax, Address(c_rarg2, 0));  // get parameter
286    __ addq(c_rarg2, wordSize);       // advance to next parameter
287    __ decrementl(c_rarg1);           // decrement counter
288    __ pushq(rax);                    // pass parameter
289    __ jcc(Assembler::notZero, loop);
290
291    // call Java function
292    __ BIND(parameters_done);
293    __ movq(rbx, method);             // get methodOop
294    __ movq(c_rarg1, entry_point);    // get entry_point
295    __ movq(r13, rsp);                // set sender sp
296    BLOCK_COMMENT("call Java function");
297    __ call(c_rarg1);
298
299    BLOCK_COMMENT("call_stub_return_address:");
300    return_address = __ pc();
301
302    // store result depending on type (everything that is not
303    // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
304    __ movq(c_rarg0, result);
305    Label is_long, is_float, is_double, exit;
306    __ movl(c_rarg1, result_type);
307    __ cmpl(c_rarg1, T_OBJECT);
308    __ jcc(Assembler::equal, is_long);
309    __ cmpl(c_rarg1, T_LONG);
310    __ jcc(Assembler::equal, is_long);
311    __ cmpl(c_rarg1, T_FLOAT);
312    __ jcc(Assembler::equal, is_float);
313    __ cmpl(c_rarg1, T_DOUBLE);
314    __ jcc(Assembler::equal, is_double);
315
316    // handle T_INT case
317    __ movl(Address(c_rarg0, 0), rax);
318
319    __ BIND(exit);
320
321    // pop parameters
322    __ leaq(rsp, rsp_after_call);
323
324#ifdef ASSERT
325    // verify that threads correspond
326    {
327      Label L, S;
328      __ cmpq(r15_thread, thread);
329      __ jcc(Assembler::notEqual, S);
330      __ get_thread(rbx);
331      __ cmpq(r15_thread, rbx);
332      __ jcc(Assembler::equal, L);
333      __ bind(S);
334      __ jcc(Assembler::equal, L);
335      __ stop("StubRoutines::call_stub: threads must correspond");
336      __ bind(L);
337    }
338#endif
339
340    // restore regs belonging to calling function
341    __ movq(r15, r15_save);
342    __ movq(r14, r14_save);
343    __ movq(r13, r13_save);
344    __ movq(r12, r12_save);
345    __ movq(rbx, rbx_save);
346
347#ifdef _WIN64
348    __ movq(rdi, rdi_save);
349    __ movq(rsi, rsi_save);
350#else
351    __ ldmxcsr(mxcsr_save);
352#endif
353
354    // restore rsp
355    __ addq(rsp, -rsp_after_call_off * wordSize);
356
357    // return
358    __ popq(rbp);
359    __ ret(0);
360
361    // handle return types different from T_INT
362    __ BIND(is_long);
363    __ movq(Address(c_rarg0, 0), rax);
364    __ jmp(exit);
365
366    __ BIND(is_float);
367    __ movflt(Address(c_rarg0, 0), xmm0);
368    __ jmp(exit);
369
370    __ BIND(is_double);
371    __ movdbl(Address(c_rarg0, 0), xmm0);
372    __ jmp(exit);
373
374    return start;
375  }
376
377  // Return point for a Java call if there's an exception thrown in
378  // Java code.  The exception is caught and transformed into a
379  // pending exception stored in JavaThread that can be tested from
380  // within the VM.
381  //
382  // Note: Usually the parameters are removed by the callee. In case
383  // of an exception crossing an activation frame boundary, that is
384  // not the case if the callee is compiled code => need to setup the
385  // rsp.
386  //
387  // rax: exception oop
388
389  address generate_catch_exception() {
390    StubCodeMark mark(this, "StubRoutines", "catch_exception");
391    address start = __ pc();
392
393    // same as in generate_call_stub():
394    const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
395    const Address thread        (rbp, thread_off         * wordSize);
396
397#ifdef ASSERT
398    // verify that threads correspond
399    {
400      Label L, S;
401      __ cmpq(r15_thread, thread);
402      __ jcc(Assembler::notEqual, S);
403      __ get_thread(rbx);
404      __ cmpq(r15_thread, rbx);
405      __ jcc(Assembler::equal, L);
406      __ bind(S);
407      __ stop("StubRoutines::catch_exception: threads must correspond");
408      __ bind(L);
409    }
410#endif
411
412    // set pending exception
413    __ verify_oop(rax);
414
415    __ movq(Address(r15_thread, Thread::pending_exception_offset()), rax);
416    __ lea(rscratch1, ExternalAddress((address)__FILE__));
417    __ movq(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
418    __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
419
420    // complete return to VM
421    assert(StubRoutines::_call_stub_return_address != NULL,
422           "_call_stub_return_address must have been generated before");
423    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
424
425    return start;
426  }
427
428  // Continuation point for runtime calls returning with a pending
429  // exception.  The pending exception check happened in the runtime
430  // or native call stub.  The pending exception in Thread is
431  // converted into a Java-level exception.
432  //
433  // Contract with Java-level exception handlers:
434  // rax: exception
435  // rdx: throwing pc
436  //
437  // NOTE: At entry of this stub, exception-pc must be on stack !!
438
439  address generate_forward_exception() {
440    StubCodeMark mark(this, "StubRoutines", "forward exception");
441    address start = __ pc();
442
443    // Upon entry, the sp points to the return address returning into
444    // Java (interpreted or compiled) code; i.e., the return address
445    // becomes the throwing pc.
446    //
447    // Arguments pushed before the runtime call are still on the stack
448    // but the exception handler will reset the stack pointer ->
449    // ignore them.  A potential result in registers can be ignored as
450    // well.
451
452#ifdef ASSERT
453    // make sure this code is only executed if there is a pending exception
454    {
455      Label L;
456      __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
457      __ jcc(Assembler::notEqual, L);
458      __ stop("StubRoutines::forward exception: no pending exception (1)");
459      __ bind(L);
460    }
461#endif
462
463    // compute exception handler into rbx
464    __ movq(c_rarg0, Address(rsp, 0));
465    BLOCK_COMMENT("call exception_handler_for_return_address");
466    __ call_VM_leaf(CAST_FROM_FN_PTR(address,
467                         SharedRuntime::exception_handler_for_return_address),
468                    c_rarg0);
469    __ movq(rbx, rax);
470
471    // setup rax & rdx, remove return address & clear pending exception
472    __ popq(rdx);
473    __ movq(rax, Address(r15_thread, Thread::pending_exception_offset()));
474    __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int)NULL_WORD);
475
476#ifdef ASSERT
477    // make sure exception is set
478    {
479      Label L;
480      __ testq(rax, rax);
481      __ jcc(Assembler::notEqual, L);
482      __ stop("StubRoutines::forward exception: no pending exception (2)");
483      __ bind(L);
484    }
485#endif
486
487    // continue at exception handler (return address removed)
488    // rax: exception
489    // rbx: exception handler
490    // rdx: throwing pc
491    __ verify_oop(rax);
492    __ jmp(rbx);
493
494    return start;
495  }
496
497  // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
498  //
499  // Arguments :
500  //    c_rarg0: exchange_value
501  //    c_rarg0: dest
502  //
503  // Result:
504  //    *dest <- ex, return (orig *dest)
505  address generate_atomic_xchg() {
506    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
507    address start = __ pc();
508
509    __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
510    __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
511    __ ret(0);
512
513    return start;
514  }
515
516  // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
517  //
518  // Arguments :
519  //    c_rarg0: exchange_value
520  //    c_rarg1: dest
521  //
522  // Result:
523  //    *dest <- ex, return (orig *dest)
524  address generate_atomic_xchg_ptr() {
525    StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
526    address start = __ pc();
527
528    __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
529    __ xchgq(rax, Address(c_rarg1, 0)); // automatic LOCK
530    __ ret(0);
531
532    return start;
533  }
534
535  // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
536  //                                         jint compare_value)
537  //
538  // Arguments :
539  //    c_rarg0: exchange_value
540  //    c_rarg1: dest
541  //    c_rarg2: compare_value
542  //
543  // Result:
544  //    if ( compare_value == *dest ) {
545  //       *dest = exchange_value
546  //       return compare_value;
547  //    else
548  //       return *dest;
549  address generate_atomic_cmpxchg() {
550    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
551    address start = __ pc();
552
553    __ movl(rax, c_rarg2);
554   if ( os::is_MP() ) __ lock();
555    __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
556    __ ret(0);
557
558    return start;
559  }
560
561  // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
562  //                                             volatile jlong* dest,
563  //                                             jlong compare_value)
564  // Arguments :
565  //    c_rarg0: exchange_value
566  //    c_rarg1: dest
567  //    c_rarg2: compare_value
568  //
569  // Result:
570  //    if ( compare_value == *dest ) {
571  //       *dest = exchange_value
572  //       return compare_value;
573  //    else
574  //       return *dest;
575  address generate_atomic_cmpxchg_long() {
576    StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
577    address start = __ pc();
578
579    __ movq(rax, c_rarg2);
580   if ( os::is_MP() ) __ lock();
581    __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
582    __ ret(0);
583
584    return start;
585  }
586
587  // Support for jint atomic::add(jint add_value, volatile jint* dest)
588  //
589  // Arguments :
590  //    c_rarg0: add_value
591  //    c_rarg1: dest
592  //
593  // Result:
594  //    *dest += add_value
595  //    return *dest;
596  address generate_atomic_add() {
597    StubCodeMark mark(this, "StubRoutines", "atomic_add");
598    address start = __ pc();
599
600    __ movl(rax, c_rarg0);
601   if ( os::is_MP() ) __ lock();
602    __ xaddl(Address(c_rarg1, 0), c_rarg0);
603    __ addl(rax, c_rarg0);
604    __ ret(0);
605
606    return start;
607  }
608
609  // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
610  //
611  // Arguments :
612  //    c_rarg0: add_value
613  //    c_rarg1: dest
614  //
615  // Result:
616  //    *dest += add_value
617  //    return *dest;
618  address generate_atomic_add_ptr() {
619    StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
620    address start = __ pc();
621
622    __ movq(rax, c_rarg0); // Copy to eax we need a return value anyhow
623   if ( os::is_MP() ) __ lock();
624    __ xaddl(Address(c_rarg1, 0), c_rarg0);
625    __ addl(rax, c_rarg0);
626    __ ret(0);
627
628    return start;
629  }
630
631  // Support for intptr_t OrderAccess::fence()
632  //
633  // Arguments :
634  //
635  // Result:
636  address generate_orderaccess_fence() {
637    StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
638    address start = __ pc();
639    __ mfence();
640    __ ret(0);
641
642    return start;
643  }
644
645  // Support for intptr_t get_previous_fp()
646  //
647  // This routine is used to find the previous frame pointer for the
648  // caller (current_frame_guess). This is used as part of debugging
649  // ps() is seemingly lost trying to find frames.
650  // This code assumes that caller current_frame_guess) has a frame.
651  address generate_get_previous_fp() {
652    StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
653    const Address old_fp(rbp, 0);
654    const Address older_fp(rax, 0);
655    address start = __ pc();
656
657    __ enter();
658    __ movq(rax, old_fp); // callers fp
659    __ movq(rax, older_fp); // the frame for ps()
660    __ popq(rbp);
661    __ ret(0);
662
663    return start;
664  }
665
666  //----------------------------------------------------------------------------------------------------
667  // Support for void verify_mxcsr()
668  //
669  // This routine is used with -Xcheck:jni to verify that native
670  // JNI code does not return to Java code without restoring the
671  // MXCSR register to our expected state.
672
673  address generate_verify_mxcsr() {
674    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
675    address start = __ pc();
676
677    const Address mxcsr_save(rsp, 0);
678
679    if (CheckJNICalls) {
680      Label ok_ret;
681      __ pushq(rax);
682      __ subq(rsp, wordSize);      // allocate a temp location
683      __ stmxcsr(mxcsr_save);
684      __ movl(rax, mxcsr_save);
685      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
686      __ cmpl(rax, *(int *)(StubRoutines::amd64::mxcsr_std()));
687      __ jcc(Assembler::equal, ok_ret);
688
689      __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
690
691      __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
692
693      __ bind(ok_ret);
694      __ addq(rsp, wordSize);
695      __ popq(rax);
696    }
697
698    __ ret(0);
699
700    return start;
701  }
702
703  address generate_f2i_fixup() {
704    StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
705    Address inout(rsp, 5 * wordSize); // return address + 4 saves
706
707    address start = __ pc();
708
709    Label L;
710
711    __ pushq(rax);
712    __ pushq(c_rarg3);
713    __ pushq(c_rarg2);
714    __ pushq(c_rarg1);
715
716    __ movl(rax, 0x7f800000);
717    __ xorl(c_rarg3, c_rarg3);
718    __ movl(c_rarg2, inout);
719    __ movl(c_rarg1, c_rarg2);
720    __ andl(c_rarg1, 0x7fffffff);
721    __ cmpl(rax, c_rarg1); // NaN? -> 0
722    __ jcc(Assembler::negative, L);
723    __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
724    __ movl(c_rarg3, 0x80000000);
725    __ movl(rax, 0x7fffffff);
726    __ cmovl(Assembler::positive, c_rarg3, rax);
727
728    __ bind(L);
729    __ movq(inout, c_rarg3);
730
731    __ popq(c_rarg1);
732    __ popq(c_rarg2);
733    __ popq(c_rarg3);
734    __ popq(rax);
735
736    __ ret(0);
737
738    return start;
739  }
740
741  address generate_f2l_fixup() {
742    StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
743    Address inout(rsp, 5 * wordSize); // return address + 4 saves
744    address start = __ pc();
745
746    Label L;
747
748    __ pushq(rax);
749    __ pushq(c_rarg3);
750    __ pushq(c_rarg2);
751    __ pushq(c_rarg1);
752
753    __ movl(rax, 0x7f800000);
754    __ xorl(c_rarg3, c_rarg3);
755    __ movl(c_rarg2, inout);
756    __ movl(c_rarg1, c_rarg2);
757    __ andl(c_rarg1, 0x7fffffff);
758    __ cmpl(rax, c_rarg1); // NaN? -> 0
759    __ jcc(Assembler::negative, L);
760    __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
761    __ mov64(c_rarg3, 0x8000000000000000);
762    __ mov64(rax, 0x7fffffffffffffff);
763    __ cmovq(Assembler::positive, c_rarg3, rax);
764
765    __ bind(L);
766    __ movq(inout, c_rarg3);
767
768    __ popq(c_rarg1);
769    __ popq(c_rarg2);
770    __ popq(c_rarg3);
771    __ popq(rax);
772
773    __ ret(0);
774
775    return start;
776  }
777
778  address generate_d2i_fixup() {
779    StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
780    Address inout(rsp, 6 * wordSize); // return address + 5 saves
781
782    address start = __ pc();
783
784    Label L;
785
786    __ pushq(rax);
787    __ pushq(c_rarg3);
788    __ pushq(c_rarg2);
789    __ pushq(c_rarg1);
790    __ pushq(c_rarg0);
791
792    __ movl(rax, 0x7ff00000);
793    __ movq(c_rarg2, inout);
794    __ movl(c_rarg3, c_rarg2);
795    __ movq(c_rarg1, c_rarg2);
796    __ movq(c_rarg0, c_rarg2);
797    __ negl(c_rarg3);
798    __ shrq(c_rarg1, 0x20);
799    __ orl(c_rarg3, c_rarg2);
800    __ andl(c_rarg1, 0x7fffffff);
801    __ xorl(c_rarg2, c_rarg2);
802    __ shrl(c_rarg3, 0x1f);
803    __ orl(c_rarg1, c_rarg3);
804    __ cmpl(rax, c_rarg1);
805    __ jcc(Assembler::negative, L); // NaN -> 0
806    __ testq(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
807    __ movl(c_rarg2, 0x80000000);
808    __ movl(rax, 0x7fffffff);
809    __ cmovl(Assembler::positive, c_rarg2, rax);
810
811    __ bind(L);
812    __ movq(inout, c_rarg2);
813
814    __ popq(c_rarg0);
815    __ popq(c_rarg1);
816    __ popq(c_rarg2);
817    __ popq(c_rarg3);
818    __ popq(rax);
819
820    __ ret(0);
821
822    return start;
823  }
824
825  address generate_d2l_fixup() {
826    StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
827    Address inout(rsp, 6 * wordSize); // return address + 5 saves
828
829    address start = __ pc();
830
831    Label L;
832
833    __ pushq(rax);
834    __ pushq(c_rarg3);
835    __ pushq(c_rarg2);
836    __ pushq(c_rarg1);
837    __ pushq(c_rarg0);
838
839    __ movl(rax, 0x7ff00000);
840    __ movq(c_rarg2, inout);
841    __ movl(c_rarg3, c_rarg2);
842    __ movq(c_rarg1, c_rarg2);
843    __ movq(c_rarg0, c_rarg2);
844    __ negl(c_rarg3);
845    __ shrq(c_rarg1, 0x20);
846    __ orl(c_rarg3, c_rarg2);
847    __ andl(c_rarg1, 0x7fffffff);
848    __ xorl(c_rarg2, c_rarg2);
849    __ shrl(c_rarg3, 0x1f);
850    __ orl(c_rarg1, c_rarg3);
851    __ cmpl(rax, c_rarg1);
852    __ jcc(Assembler::negative, L); // NaN -> 0
853    __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
854    __ mov64(c_rarg2, 0x8000000000000000);
855    __ mov64(rax, 0x7fffffffffffffff);
856    __ cmovq(Assembler::positive, c_rarg2, rax);
857
858    __ bind(L);
859    __ movq(inout, c_rarg2);
860
861    __ popq(c_rarg0);
862    __ popq(c_rarg1);
863    __ popq(c_rarg2);
864    __ popq(c_rarg3);
865    __ popq(rax);
866
867    __ ret(0);
868
869    return start;
870  }
871
872  address generate_fp_mask(const char *stub_name, int64_t mask) {
873    StubCodeMark mark(this, "StubRoutines", stub_name);
874
875    __ align(16);
876    address start = __ pc();
877
878    __ emit_data64( mask, relocInfo::none );
879    __ emit_data64( mask, relocInfo::none );
880
881    return start;
882  }
883
884  // The following routine generates a subroutine to throw an
885  // asynchronous UnknownError when an unsafe access gets a fault that
886  // could not be reasonably prevented by the programmer.  (Example:
887  // SIGBUS/OBJERR.)
888  address generate_handler_for_unsafe_access() {
889    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
890    address start = __ pc();
891
892    __ pushq(0);                      // hole for return address-to-be
893    __ pushaq();                      // push registers
894    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
895
896    __ subq(rsp, frame::arg_reg_save_area_bytes);
897    BLOCK_COMMENT("call handle_unsafe_access");
898    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
899    __ addq(rsp, frame::arg_reg_save_area_bytes);
900
901    __ movq(next_pc, rax);            // stuff next address
902    __ popaq();
903    __ ret(0);                        // jump to next address
904
905    return start;
906  }
907
908  // Non-destructive plausibility checks for oops
909  //
910  // Arguments:
911  //    all args on stack!
912  //
913  // Stack after saving c_rarg3:
914  //    [tos + 0]: saved c_rarg3
915  //    [tos + 1]: saved c_rarg2
916  //    [tos + 2]: saved r12 (several TemplateTable methods use it)
917  //    [tos + 3]: saved flags
918  //    [tos + 4]: return address
919  //  * [tos + 5]: error message (char*)
920  //  * [tos + 6]: object to verify (oop)
921  //  * [tos + 7]: saved rax - saved by caller and bashed
922  //  * = popped on exit
923  address generate_verify_oop() {
924    StubCodeMark mark(this, "StubRoutines", "verify_oop");
925    address start = __ pc();
926
927    Label exit, error;
928
929    __ pushfq();
930    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
931
932    __ pushq(r12);
933
934    // save c_rarg2 and c_rarg3
935    __ pushq(c_rarg2);
936    __ pushq(c_rarg3);
937
938    enum {
939           // After previous pushes.
940           oop_to_verify = 6 * wordSize,
941           saved_rax     = 7 * wordSize,
942
943           // Before the call to MacroAssembler::debug(), see below.
944           return_addr   = 16 * wordSize,
945           error_msg     = 17 * wordSize
946    };
947
948    // get object
949    __ movq(rax, Address(rsp, oop_to_verify));
950
951    // make sure object is 'reasonable'
952    __ testq(rax, rax);
953    __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
954    // Check if the oop is in the right area of memory
955    __ movq(c_rarg2, rax);
956    __ movptr(c_rarg3, (int64_t) Universe::verify_oop_mask());
957    __ andq(c_rarg2, c_rarg3);
958    __ movptr(c_rarg3, (int64_t) Universe::verify_oop_bits());
959    __ cmpq(c_rarg2, c_rarg3);
960    __ jcc(Assembler::notZero, error);
961
962    // set r12 to heapbase for load_klass()
963    __ reinit_heapbase();
964
965    // make sure klass is 'reasonable'
966    __ load_klass(rax, rax);  // get klass
967    __ testq(rax, rax);
968    __ jcc(Assembler::zero, error); // if klass is NULL it is broken
969    // Check if the klass is in the right area of memory
970    __ movq(c_rarg2, rax);
971    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
972    __ andq(c_rarg2, c_rarg3);
973    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
974    __ cmpq(c_rarg2, c_rarg3);
975    __ jcc(Assembler::notZero, error);
976
977    // make sure klass' klass is 'reasonable'
978    __ load_klass(rax, rax);
979    __ testq(rax, rax);
980    __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
981    // Check if the klass' klass is in the right area of memory
982    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_mask());
983    __ andq(rax, c_rarg3);
984    __ movptr(c_rarg3, (int64_t) Universe::verify_klass_bits());
985    __ cmpq(rax, c_rarg3);
986    __ jcc(Assembler::notZero, error);
987
988    // return if everything seems ok
989    __ bind(exit);
990    __ movq(rax, Address(rsp, saved_rax));       // get saved rax back
991    __ popq(c_rarg3);                            // restore c_rarg3
992    __ popq(c_rarg2);                            // restore c_rarg2
993    __ popq(r12);                                // restore r12
994    __ popfq();                                  // restore flags
995    __ ret(3 * wordSize);                        // pop caller saved stuff
996
997    // handle errors
998    __ bind(error);
999    __ movq(rax, Address(rsp, saved_rax));       // get saved rax back
1000    __ popq(c_rarg3);                            // get saved c_rarg3 back
1001    __ popq(c_rarg2);                            // get saved c_rarg2 back
1002    __ popq(r12);                                // get saved r12 back
1003    __ popfq();                                  // get saved flags off stack --
1004                                                 // will be ignored
1005
1006    __ pushaq();                                 // push registers
1007                                                 // (rip is already
1008                                                 // already pushed)
1009    // debug(char* msg, int64_t pc, int64_t regs[])
1010    // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1011    // pushed all the registers, so now the stack looks like:
1012    //     [tos +  0] 16 saved registers
1013    //     [tos + 16] return address
1014    //   * [tos + 17] error message (char*)
1015    //   * [tos + 18] object to verify (oop)
1016    //   * [tos + 19] saved rax - saved by caller and bashed
1017    //   * = popped on exit
1018
1019    __ movq(c_rarg0, Address(rsp, error_msg));   // pass address of error message
1020    __ movq(c_rarg1, Address(rsp, return_addr)); // pass return address
1021    __ movq(c_rarg2, rsp);                       // pass address of regs on stack
1022    __ movq(r12, rsp);                           // remember rsp
1023    __ subq(rsp, frame::arg_reg_save_area_bytes);// windows
1024    __ andq(rsp, -16);                           // align stack as required by ABI
1025    BLOCK_COMMENT("call MacroAssembler::debug");
1026    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
1027    __ movq(rsp, r12);                           // restore rsp
1028    __ popaq();                                  // pop registers (includes r12)
1029    __ ret(3 * wordSize);                        // pop caller saved stuff
1030
1031    return start;
1032  }
1033
1034  static address disjoint_byte_copy_entry;
1035  static address disjoint_short_copy_entry;
1036  static address disjoint_int_copy_entry;
1037  static address disjoint_long_copy_entry;
1038  static address disjoint_oop_copy_entry;
1039
1040  static address byte_copy_entry;
1041  static address short_copy_entry;
1042  static address int_copy_entry;
1043  static address long_copy_entry;
1044  static address oop_copy_entry;
1045
1046  static address checkcast_copy_entry;
1047
1048  //
1049  // Verify that a register contains clean 32-bits positive value
1050  // (high 32-bits are 0) so it could be used in 64-bits shifts.
1051  //
1052  //  Input:
1053  //    Rint  -  32-bits value
1054  //    Rtmp  -  scratch
1055  //
1056  void assert_clean_int(Register Rint, Register Rtmp) {
1057#ifdef ASSERT
1058    Label L;
1059    assert_different_registers(Rtmp, Rint);
1060    __ movslq(Rtmp, Rint);
1061    __ cmpq(Rtmp, Rint);
1062    __ jcc(Assembler::equal, L);
1063    __ stop("high 32-bits of int value are not 0");
1064    __ bind(L);
1065#endif
1066  }
1067
1068  //  Generate overlap test for array copy stubs
1069  //
1070  //  Input:
1071  //     c_rarg0 - from
1072  //     c_rarg1 - to
1073  //     c_rarg2 - element count
1074  //
1075  //  Output:
1076  //     rax   - &from[element count - 1]
1077  //
1078  void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1079    assert(no_overlap_target != NULL, "must be generated");
1080    array_overlap_test(no_overlap_target, NULL, sf);
1081  }
1082  void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1083    array_overlap_test(NULL, &L_no_overlap, sf);
1084  }
1085  void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1086    const Register from     = c_rarg0;
1087    const Register to       = c_rarg1;
1088    const Register count    = c_rarg2;
1089    const Register end_from = rax;
1090
1091    __ cmpq(to, from);
1092    __ leaq(end_from, Address(from, count, sf, 0));
1093    if (NOLp == NULL) {
1094      ExternalAddress no_overlap(no_overlap_target);
1095      __ jump_cc(Assembler::belowEqual, no_overlap);
1096      __ cmpq(to, end_from);
1097      __ jump_cc(Assembler::aboveEqual, no_overlap);
1098    } else {
1099      __ jcc(Assembler::belowEqual, (*NOLp));
1100      __ cmpq(to, end_from);
1101      __ jcc(Assembler::aboveEqual, (*NOLp));
1102    }
1103  }
1104
1105  // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1106  //
1107  // Outputs:
1108  //    rdi - rcx
1109  //    rsi - rdx
1110  //    rdx - r8
1111  //    rcx - r9
1112  //
1113  // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1114  // are non-volatile.  r9 and r10 should not be used by the caller.
1115  //
1116  void setup_arg_regs(int nargs = 3) {
1117    const Register saved_rdi = r9;
1118    const Register saved_rsi = r10;
1119    assert(nargs == 3 || nargs == 4, "else fix");
1120#ifdef _WIN64
1121    assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1122           "unexpected argument registers");
1123    if (nargs >= 4)
1124      __ movq(rax, r9);  // r9 is also saved_rdi
1125    __ movq(saved_rdi, rdi);
1126    __ movq(saved_rsi, rsi);
1127    __ movq(rdi, rcx); // c_rarg0
1128    __ movq(rsi, rdx); // c_rarg1
1129    __ movq(rdx, r8);  // c_rarg2
1130    if (nargs >= 4)
1131      __ movq(rcx, rax); // c_rarg3 (via rax)
1132#else
1133    assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1134           "unexpected argument registers");
1135#endif
1136  }
1137
1138  void restore_arg_regs() {
1139    const Register saved_rdi = r9;
1140    const Register saved_rsi = r10;
1141#ifdef _WIN64
1142    __ movq(rdi, saved_rdi);
1143    __ movq(rsi, saved_rsi);
1144#endif
1145  }
1146
1147  // Generate code for an array write pre barrier
1148  //
1149  //     addr    -  starting address
1150  //     count    -  element count
1151  //
1152  //     Destroy no registers!
1153  //
1154  void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1155#if 0 // G1 - only
1156    assert_different_registers(addr, c_rarg1);
1157    assert_different_registers(count, c_rarg0);
1158    BarrierSet* bs = Universe::heap()->barrier_set();
1159    switch (bs->kind()) {
1160      case BarrierSet::G1SATBCT:
1161      case BarrierSet::G1SATBCTLogging:
1162        {
1163          __ pushaq();                      // push registers
1164          __ movq(c_rarg0, addr);
1165          __ movq(c_rarg1, count);
1166          __ call(RuntimeAddress(BarrierSet::static_write_ref_array_pre));
1167          __ popaq();
1168        }
1169        break;
1170      case BarrierSet::CardTableModRef:
1171      case BarrierSet::CardTableExtension:
1172      case BarrierSet::ModRef:
1173        break;
1174      default      :
1175        ShouldNotReachHere();
1176
1177    }
1178#endif // 0 G1 - only
1179  }
1180
1181  //
1182  // Generate code for an array write post barrier
1183  //
1184  //  Input:
1185  //     start    - register containing starting address of destination array
1186  //     end      - register containing ending address of destination array
1187  //     scratch  - scratch register
1188  //
1189  //  The input registers are overwritten.
1190  //  The ending address is inclusive.
1191  void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1192    assert_different_registers(start, end, scratch);
1193    BarrierSet* bs = Universe::heap()->barrier_set();
1194    switch (bs->kind()) {
1195#if 0 // G1 - only
1196      case BarrierSet::G1SATBCT:
1197      case BarrierSet::G1SATBCTLogging:
1198
1199        {
1200          __ pushaq();                      // push registers (overkill)
1201          // must compute element count unless barrier set interface is changed (other platforms supply count)
1202          assert_different_registers(start, end, scratch);
1203          __ leaq(scratch, Address(end, wordSize));
1204          __ subq(scratch, start);
1205          __ shrq(scratch, LogBytesPerWord);
1206          __ movq(c_rarg0, start);
1207          __ movq(c_rarg1, scratch);
1208          __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1209          __ popaq();
1210        }
1211        break;
1212#endif // 0 G1 - only
1213      case BarrierSet::CardTableModRef:
1214      case BarrierSet::CardTableExtension:
1215        {
1216          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1217          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1218
1219          Label L_loop;
1220
1221           __ shrq(start, CardTableModRefBS::card_shift);
1222           __ shrq(end, CardTableModRefBS::card_shift);
1223           __ subq(end, start); // number of bytes to copy
1224
1225          const Register count = end; // 'end' register contains bytes count now
1226          __ lea(scratch, ExternalAddress((address)ct->byte_map_base));
1227          __ addq(start, scratch);
1228        __ BIND(L_loop);
1229          __ movb(Address(start, count, Address::times_1), 0);
1230          __ decrementq(count);
1231          __ jcc(Assembler::greaterEqual, L_loop);
1232        }
1233      }
1234   }
1235
1236  // Copy big chunks forward
1237  //
1238  // Inputs:
1239  //   end_from     - source arrays end address
1240  //   end_to       - destination array end address
1241  //   qword_count  - 64-bits element count, negative
1242  //   to           - scratch
1243  //   L_copy_32_bytes - entry label
1244  //   L_copy_8_bytes  - exit  label
1245  //
1246  void copy_32_bytes_forward(Register end_from, Register end_to,
1247                             Register qword_count, Register to,
1248                             Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1249    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1250    Label L_loop;
1251    __ align(16);
1252  __ BIND(L_loop);
1253    __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1254    __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1255    __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1256    __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1257    __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1258    __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1259    __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1260    __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1261  __ BIND(L_copy_32_bytes);
1262    __ addq(qword_count, 4);
1263    __ jcc(Assembler::lessEqual, L_loop);
1264    __ subq(qword_count, 4);
1265    __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1266  }
1267
1268
1269  // Copy big chunks backward
1270  //
1271  // Inputs:
1272  //   from         - source arrays address
1273  //   dest         - destination array address
1274  //   qword_count  - 64-bits element count
1275  //   to           - scratch
1276  //   L_copy_32_bytes - entry label
1277  //   L_copy_8_bytes  - exit  label
1278  //
1279  void copy_32_bytes_backward(Register from, Register dest,
1280                              Register qword_count, Register to,
1281                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1282    DEBUG_ONLY(__ stop("enter at entry label, not here"));
1283    Label L_loop;
1284    __ align(16);
1285  __ BIND(L_loop);
1286    __ movq(to, Address(from, qword_count, Address::times_8, 24));
1287    __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1288    __ movq(to, Address(from, qword_count, Address::times_8, 16));
1289    __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1290    __ movq(to, Address(from, qword_count, Address::times_8,  8));
1291    __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1292    __ movq(to, Address(from, qword_count, Address::times_8,  0));
1293    __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1294  __ BIND(L_copy_32_bytes);
1295    __ subq(qword_count, 4);
1296    __ jcc(Assembler::greaterEqual, L_loop);
1297    __ addq(qword_count, 4);
1298    __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1299  }
1300
1301
1302  // Arguments:
1303  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1304  //             ignored
1305  //   name    - stub name string
1306  //
1307  // Inputs:
1308  //   c_rarg0   - source array address
1309  //   c_rarg1   - destination array address
1310  //   c_rarg2   - element count, treated as ssize_t, can be zero
1311  //
1312  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1313  // we let the hardware handle it.  The one to eight bytes within words,
1314  // dwords or qwords that span cache line boundaries will still be loaded
1315  // and stored atomically.
1316  //
1317  // Side Effects:
1318  //   disjoint_byte_copy_entry is set to the no-overlap entry point
1319  //   used by generate_conjoint_byte_copy().
1320  //
1321  address generate_disjoint_byte_copy(bool aligned, const char *name) {
1322    __ align(CodeEntryAlignment);
1323    StubCodeMark mark(this, "StubRoutines", name);
1324    address start = __ pc();
1325
1326    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1327    Label L_copy_byte, L_exit;
1328    const Register from        = rdi;  // source array address
1329    const Register to          = rsi;  // destination array address
1330    const Register count       = rdx;  // elements count
1331    const Register byte_count  = rcx;
1332    const Register qword_count = count;
1333    const Register end_from    = from; // source array end address
1334    const Register end_to      = to;   // destination array end address
1335    // End pointers are inclusive, and if count is not zero they point
1336    // to the last unit copied:  end_to[0] := end_from[0]
1337
1338    __ enter(); // required for proper stackwalking of RuntimeStub frame
1339    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1340
1341    disjoint_byte_copy_entry = __ pc();
1342    BLOCK_COMMENT("Entry:");
1343    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1344
1345    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1346                      // r9 and r10 may be used to save non-volatile registers
1347
1348    // 'from', 'to' and 'count' are now valid
1349    __ movq(byte_count, count);
1350    __ shrq(count, 3); // count => qword_count
1351
1352    // Copy from low to high addresses.  Use 'to' as scratch.
1353    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1354    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1355    __ negq(qword_count); // make the count negative
1356    __ jmp(L_copy_32_bytes);
1357
1358    // Copy trailing qwords
1359  __ BIND(L_copy_8_bytes);
1360    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1361    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1362    __ incrementq(qword_count);
1363    __ jcc(Assembler::notZero, L_copy_8_bytes);
1364
1365    // Check for and copy trailing dword
1366  __ BIND(L_copy_4_bytes);
1367    __ testq(byte_count, 4);
1368    __ jccb(Assembler::zero, L_copy_2_bytes);
1369    __ movl(rax, Address(end_from, 8));
1370    __ movl(Address(end_to, 8), rax);
1371
1372    __ addq(end_from, 4);
1373    __ addq(end_to, 4);
1374
1375    // Check for and copy trailing word
1376  __ BIND(L_copy_2_bytes);
1377    __ testq(byte_count, 2);
1378    __ jccb(Assembler::zero, L_copy_byte);
1379    __ movw(rax, Address(end_from, 8));
1380    __ movw(Address(end_to, 8), rax);
1381
1382    __ addq(end_from, 2);
1383    __ addq(end_to, 2);
1384
1385    // Check for and copy trailing byte
1386  __ BIND(L_copy_byte);
1387    __ testq(byte_count, 1);
1388    __ jccb(Assembler::zero, L_exit);
1389    __ movb(rax, Address(end_from, 8));
1390    __ movb(Address(end_to, 8), rax);
1391
1392  __ BIND(L_exit);
1393    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1394    restore_arg_regs();
1395    __ xorq(rax, rax); // return 0
1396    __ leave(); // required for proper stackwalking of RuntimeStub frame
1397    __ ret(0);
1398
1399    // Copy in 32-bytes chunks
1400    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1401    __ jmp(L_copy_4_bytes);
1402
1403    return start;
1404  }
1405
1406  // Arguments:
1407  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1408  //             ignored
1409  //   name    - stub name string
1410  //
1411  // Inputs:
1412  //   c_rarg0   - source array address
1413  //   c_rarg1   - destination array address
1414  //   c_rarg2   - element count, treated as ssize_t, can be zero
1415  //
1416  // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1417  // we let the hardware handle it.  The one to eight bytes within words,
1418  // dwords or qwords that span cache line boundaries will still be loaded
1419  // and stored atomically.
1420  //
1421  address generate_conjoint_byte_copy(bool aligned, const char *name) {
1422    __ align(CodeEntryAlignment);
1423    StubCodeMark mark(this, "StubRoutines", name);
1424    address start = __ pc();
1425
1426    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1427    const Register from        = rdi;  // source array address
1428    const Register to          = rsi;  // destination array address
1429    const Register count       = rdx;  // elements count
1430    const Register byte_count  = rcx;
1431    const Register qword_count = count;
1432
1433    __ enter(); // required for proper stackwalking of RuntimeStub frame
1434    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1435
1436    byte_copy_entry = __ pc();
1437    BLOCK_COMMENT("Entry:");
1438    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1439
1440    array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1441    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1442                      // r9 and r10 may be used to save non-volatile registers
1443
1444    // 'from', 'to' and 'count' are now valid
1445    __ movq(byte_count, count);
1446    __ shrq(count, 3);   // count => qword_count
1447
1448    // Copy from high to low addresses.
1449
1450    // Check for and copy trailing byte
1451    __ testq(byte_count, 1);
1452    __ jcc(Assembler::zero, L_copy_2_bytes);
1453    __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1454    __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1455    __ decrementq(byte_count); // Adjust for possible trailing word
1456
1457    // Check for and copy trailing word
1458  __ BIND(L_copy_2_bytes);
1459    __ testq(byte_count, 2);
1460    __ jcc(Assembler::zero, L_copy_4_bytes);
1461    __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1462    __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1463
1464    // Check for and copy trailing dword
1465  __ BIND(L_copy_4_bytes);
1466    __ testq(byte_count, 4);
1467    __ jcc(Assembler::zero, L_copy_32_bytes);
1468    __ movl(rax, Address(from, qword_count, Address::times_8));
1469    __ movl(Address(to, qword_count, Address::times_8), rax);
1470    __ jmp(L_copy_32_bytes);
1471
1472    // Copy trailing qwords
1473  __ BIND(L_copy_8_bytes);
1474    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1475    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1476    __ decrementq(qword_count);
1477    __ jcc(Assembler::notZero, L_copy_8_bytes);
1478
1479    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1480    restore_arg_regs();
1481    __ xorq(rax, rax); // return 0
1482    __ leave(); // required for proper stackwalking of RuntimeStub frame
1483    __ ret(0);
1484
1485    // Copy in 32-bytes chunks
1486    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1487
1488    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1489    restore_arg_regs();
1490    __ xorq(rax, rax); // return 0
1491    __ leave(); // required for proper stackwalking of RuntimeStub frame
1492    __ ret(0);
1493
1494    return start;
1495  }
1496
1497  // Arguments:
1498  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1499  //             ignored
1500  //   name    - stub name string
1501  //
1502  // Inputs:
1503  //   c_rarg0   - source array address
1504  //   c_rarg1   - destination array address
1505  //   c_rarg2   - element count, treated as ssize_t, can be zero
1506  //
1507  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1508  // let the hardware handle it.  The two or four words within dwords
1509  // or qwords that span cache line boundaries will still be loaded
1510  // and stored atomically.
1511  //
1512  // Side Effects:
1513  //   disjoint_short_copy_entry is set to the no-overlap entry point
1514  //   used by generate_conjoint_short_copy().
1515  //
1516  address generate_disjoint_short_copy(bool aligned, const char *name) {
1517    __ align(CodeEntryAlignment);
1518    StubCodeMark mark(this, "StubRoutines", name);
1519    address start = __ pc();
1520
1521    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1522    const Register from        = rdi;  // source array address
1523    const Register to          = rsi;  // destination array address
1524    const Register count       = rdx;  // elements count
1525    const Register word_count  = rcx;
1526    const Register qword_count = count;
1527    const Register end_from    = from; // source array end address
1528    const Register end_to      = to;   // destination array end address
1529    // End pointers are inclusive, and if count is not zero they point
1530    // to the last unit copied:  end_to[0] := end_from[0]
1531
1532    __ enter(); // required for proper stackwalking of RuntimeStub frame
1533    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1534
1535    disjoint_short_copy_entry = __ pc();
1536    BLOCK_COMMENT("Entry:");
1537    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1538
1539    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1540                      // r9 and r10 may be used to save non-volatile registers
1541
1542    // 'from', 'to' and 'count' are now valid
1543    __ movq(word_count, count);
1544    __ shrq(count, 2); // count => qword_count
1545
1546    // Copy from low to high addresses.  Use 'to' as scratch.
1547    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1548    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1549    __ negq(qword_count);
1550    __ jmp(L_copy_32_bytes);
1551
1552    // Copy trailing qwords
1553  __ BIND(L_copy_8_bytes);
1554    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1555    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1556    __ incrementq(qword_count);
1557    __ jcc(Assembler::notZero, L_copy_8_bytes);
1558
1559    // Original 'dest' is trashed, so we can't use it as a
1560    // base register for a possible trailing word copy
1561
1562    // Check for and copy trailing dword
1563  __ BIND(L_copy_4_bytes);
1564    __ testq(word_count, 2);
1565    __ jccb(Assembler::zero, L_copy_2_bytes);
1566    __ movl(rax, Address(end_from, 8));
1567    __ movl(Address(end_to, 8), rax);
1568
1569    __ addq(end_from, 4);
1570    __ addq(end_to, 4);
1571
1572    // Check for and copy trailing word
1573  __ BIND(L_copy_2_bytes);
1574    __ testq(word_count, 1);
1575    __ jccb(Assembler::zero, L_exit);
1576    __ movw(rax, Address(end_from, 8));
1577    __ movw(Address(end_to, 8), rax);
1578
1579  __ BIND(L_exit);
1580    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1581    restore_arg_regs();
1582    __ xorq(rax, rax); // return 0
1583    __ leave(); // required for proper stackwalking of RuntimeStub frame
1584    __ ret(0);
1585
1586    // Copy in 32-bytes chunks
1587    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1588    __ jmp(L_copy_4_bytes);
1589
1590    return start;
1591  }
1592
1593  // Arguments:
1594  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1595  //             ignored
1596  //   name    - stub name string
1597  //
1598  // Inputs:
1599  //   c_rarg0   - source array address
1600  //   c_rarg1   - destination array address
1601  //   c_rarg2   - element count, treated as ssize_t, can be zero
1602  //
1603  // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1604  // let the hardware handle it.  The two or four words within dwords
1605  // or qwords that span cache line boundaries will still be loaded
1606  // and stored atomically.
1607  //
1608  address generate_conjoint_short_copy(bool aligned, const char *name) {
1609    __ align(CodeEntryAlignment);
1610    StubCodeMark mark(this, "StubRoutines", name);
1611    address start = __ pc();
1612
1613    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1614    const Register from        = rdi;  // source array address
1615    const Register to          = rsi;  // destination array address
1616    const Register count       = rdx;  // elements count
1617    const Register word_count  = rcx;
1618    const Register qword_count = count;
1619
1620    __ enter(); // required for proper stackwalking of RuntimeStub frame
1621    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1622
1623    short_copy_entry = __ pc();
1624    BLOCK_COMMENT("Entry:");
1625    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1626
1627    array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1628    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1629                      // r9 and r10 may be used to save non-volatile registers
1630
1631    // 'from', 'to' and 'count' are now valid
1632    __ movq(word_count, count);
1633    __ shrq(count, 2); // count => qword_count
1634
1635    // Copy from high to low addresses.  Use 'to' as scratch.
1636
1637    // Check for and copy trailing word
1638    __ testq(word_count, 1);
1639    __ jccb(Assembler::zero, L_copy_4_bytes);
1640    __ movw(rax, Address(from, word_count, Address::times_2, -2));
1641    __ movw(Address(to, word_count, Address::times_2, -2), rax);
1642
1643    // Check for and copy trailing dword
1644  __ BIND(L_copy_4_bytes);
1645    __ testq(word_count, 2);
1646    __ jcc(Assembler::zero, L_copy_32_bytes);
1647    __ movl(rax, Address(from, qword_count, Address::times_8));
1648    __ movl(Address(to, qword_count, Address::times_8), rax);
1649    __ jmp(L_copy_32_bytes);
1650
1651    // Copy trailing qwords
1652  __ BIND(L_copy_8_bytes);
1653    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1654    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1655    __ decrementq(qword_count);
1656    __ jcc(Assembler::notZero, L_copy_8_bytes);
1657
1658    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1659    restore_arg_regs();
1660    __ xorq(rax, rax); // return 0
1661    __ leave(); // required for proper stackwalking of RuntimeStub frame
1662    __ ret(0);
1663
1664    // Copy in 32-bytes chunks
1665    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1666
1667    inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1668    restore_arg_regs();
1669    __ xorq(rax, rax); // return 0
1670    __ leave(); // required for proper stackwalking of RuntimeStub frame
1671    __ ret(0);
1672
1673    return start;
1674  }
1675
1676  // Arguments:
1677  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1678  //             ignored
1679  //   is_oop  - true => oop array, so generate store check code
1680  //   name    - stub name string
1681  //
1682  // Inputs:
1683  //   c_rarg0   - source array address
1684  //   c_rarg1   - destination array address
1685  //   c_rarg2   - element count, treated as ssize_t, can be zero
1686  //
1687  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1688  // the hardware handle it.  The two dwords within qwords that span
1689  // cache line boundaries will still be loaded and stored atomicly.
1690  //
1691  // Side Effects:
1692  //   disjoint_int_copy_entry is set to the no-overlap entry point
1693  //   used by generate_conjoint_int_oop_copy().
1694  //
1695  address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1696    __ align(CodeEntryAlignment);
1697    StubCodeMark mark(this, "StubRoutines", name);
1698    address start = __ pc();
1699
1700    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1701    const Register from        = rdi;  // source array address
1702    const Register to          = rsi;  // destination array address
1703    const Register count       = rdx;  // elements count
1704    const Register dword_count = rcx;
1705    const Register qword_count = count;
1706    const Register end_from    = from; // source array end address
1707    const Register end_to      = to;   // destination array end address
1708    const Register saved_to    = r11;  // saved destination array address
1709    // End pointers are inclusive, and if count is not zero they point
1710    // to the last unit copied:  end_to[0] := end_from[0]
1711
1712    __ enter(); // required for proper stackwalking of RuntimeStub frame
1713    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1714
1715    (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1716
1717    if (is_oop) {
1718      // no registers are destroyed by this call
1719      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1720    }
1721
1722    BLOCK_COMMENT("Entry:");
1723    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1724
1725    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1726                      // r9 and r10 may be used to save non-volatile registers
1727
1728    if (is_oop) {
1729      __ movq(saved_to, to);
1730    }
1731
1732    // 'from', 'to' and 'count' are now valid
1733    __ movq(dword_count, count);
1734    __ shrq(count, 1); // count => qword_count
1735
1736    // Copy from low to high addresses.  Use 'to' as scratch.
1737    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1738    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1739    __ negq(qword_count);
1740    __ jmp(L_copy_32_bytes);
1741
1742    // Copy trailing qwords
1743  __ BIND(L_copy_8_bytes);
1744    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1745    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1746    __ incrementq(qword_count);
1747    __ jcc(Assembler::notZero, L_copy_8_bytes);
1748
1749    // Check for and copy trailing dword
1750  __ BIND(L_copy_4_bytes);
1751    __ testq(dword_count, 1); // Only byte test since the value is 0 or 1
1752    __ jccb(Assembler::zero, L_exit);
1753    __ movl(rax, Address(end_from, 8));
1754    __ movl(Address(end_to, 8), rax);
1755
1756  __ BIND(L_exit);
1757    if (is_oop) {
1758      __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1759      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1760    }
1761    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1762    restore_arg_regs();
1763    __ xorq(rax, rax); // return 0
1764    __ leave(); // required for proper stackwalking of RuntimeStub frame
1765    __ ret(0);
1766
1767    // Copy 32-bytes chunks
1768    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1769    __ jmp(L_copy_4_bytes);
1770
1771    return start;
1772  }
1773
1774  // Arguments:
1775  //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1776  //             ignored
1777  //   is_oop  - true => oop array, so generate store check code
1778  //   name    - stub name string
1779  //
1780  // Inputs:
1781  //   c_rarg0   - source array address
1782  //   c_rarg1   - destination array address
1783  //   c_rarg2   - element count, treated as ssize_t, can be zero
1784  //
1785  // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1786  // the hardware handle it.  The two dwords within qwords that span
1787  // cache line boundaries will still be loaded and stored atomicly.
1788  //
1789  address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1790    __ align(CodeEntryAlignment);
1791    StubCodeMark mark(this, "StubRoutines", name);
1792    address start = __ pc();
1793
1794    Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1795    const Register from        = rdi;  // source array address
1796    const Register to          = rsi;  // destination array address
1797    const Register count       = rdx;  // elements count
1798    const Register dword_count = rcx;
1799    const Register qword_count = count;
1800
1801    __ enter(); // required for proper stackwalking of RuntimeStub frame
1802    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1803
1804    if (is_oop) {
1805      // no registers are destroyed by this call
1806      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1807    }
1808
1809    (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1810    BLOCK_COMMENT("Entry:");
1811    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1812
1813    array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1814                       Address::times_4);
1815    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1816                      // r9 and r10 may be used to save non-volatile registers
1817
1818    assert_clean_int(count, rax); // Make sure 'count' is clean int.
1819    // 'from', 'to' and 'count' are now valid
1820    __ movq(dword_count, count);
1821    __ shrq(count, 1); // count => qword_count
1822
1823    // Copy from high to low addresses.  Use 'to' as scratch.
1824
1825    // Check for and copy trailing dword
1826    __ testq(dword_count, 1);
1827    __ jcc(Assembler::zero, L_copy_32_bytes);
1828    __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1829    __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1830    __ jmp(L_copy_32_bytes);
1831
1832    // Copy trailing qwords
1833  __ BIND(L_copy_8_bytes);
1834    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1835    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1836    __ decrementq(qword_count);
1837    __ jcc(Assembler::notZero, L_copy_8_bytes);
1838
1839    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1840    if (is_oop) {
1841      __ jmp(L_exit);
1842    }
1843    restore_arg_regs();
1844    __ xorq(rax, rax); // return 0
1845    __ leave(); // required for proper stackwalking of RuntimeStub frame
1846    __ ret(0);
1847
1848    // Copy in 32-bytes chunks
1849    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1850
1851   inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1852   __ bind(L_exit);
1853     if (is_oop) {
1854       Register end_to = rdx;
1855       __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1856       gen_write_ref_array_post_barrier(to, end_to, rax);
1857     }
1858    restore_arg_regs();
1859    __ xorq(rax, rax); // return 0
1860    __ leave(); // required for proper stackwalking of RuntimeStub frame
1861    __ ret(0);
1862
1863    return start;
1864  }
1865
1866  // Arguments:
1867  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1868  //             ignored
1869  //   is_oop  - true => oop array, so generate store check code
1870  //   name    - stub name string
1871  //
1872  // Inputs:
1873  //   c_rarg0   - source array address
1874  //   c_rarg1   - destination array address
1875  //   c_rarg2   - element count, treated as ssize_t, can be zero
1876  //
1877 // Side Effects:
1878  //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1879  //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1880  //
1881  address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1882    __ align(CodeEntryAlignment);
1883    StubCodeMark mark(this, "StubRoutines", name);
1884    address start = __ pc();
1885
1886    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1887    const Register from        = rdi;  // source array address
1888    const Register to          = rsi;  // destination array address
1889    const Register qword_count = rdx;  // elements count
1890    const Register end_from    = from; // source array end address
1891    const Register end_to      = rcx;  // destination array end address
1892    const Register saved_to    = to;
1893    // End pointers are inclusive, and if count is not zero they point
1894    // to the last unit copied:  end_to[0] := end_from[0]
1895
1896    __ enter(); // required for proper stackwalking of RuntimeStub frame
1897    // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1898    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1899
1900    if (is_oop) {
1901      disjoint_oop_copy_entry  = __ pc();
1902      // no registers are destroyed by this call
1903      gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1904    } else {
1905      disjoint_long_copy_entry = __ pc();
1906    }
1907    BLOCK_COMMENT("Entry:");
1908    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1909
1910    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1911                      // r9 and r10 may be used to save non-volatile registers
1912
1913    // 'from', 'to' and 'qword_count' are now valid
1914
1915    // Copy from low to high addresses.  Use 'to' as scratch.
1916    __ leaq(end_from, Address(from, qword_count, Address::times_8, -8));
1917    __ leaq(end_to,   Address(to,   qword_count, Address::times_8, -8));
1918    __ negq(qword_count);
1919    __ jmp(L_copy_32_bytes);
1920
1921    // Copy trailing qwords
1922  __ BIND(L_copy_8_bytes);
1923    __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1924    __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1925    __ incrementq(qword_count);
1926    __ jcc(Assembler::notZero, L_copy_8_bytes);
1927
1928    if (is_oop) {
1929      __ jmp(L_exit);
1930    } else {
1931      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1932      restore_arg_regs();
1933      __ xorq(rax, rax); // return 0
1934      __ leave(); // required for proper stackwalking of RuntimeStub frame
1935      __ ret(0);
1936    }
1937
1938    // Copy 64-byte chunks
1939    copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1940
1941    if (is_oop) {
1942    __ BIND(L_exit);
1943      gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1944      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1945    } else {
1946      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1947    }
1948    restore_arg_regs();
1949    __ xorq(rax, rax); // return 0
1950    __ leave(); // required for proper stackwalking of RuntimeStub frame
1951    __ ret(0);
1952
1953    return start;
1954  }
1955
1956  // Arguments:
1957  //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1958  //             ignored
1959  //   is_oop  - true => oop array, so generate store check code
1960  //   name    - stub name string
1961  //
1962  // Inputs:
1963  //   c_rarg0   - source array address
1964  //   c_rarg1   - destination array address
1965  //   c_rarg2   - element count, treated as ssize_t, can be zero
1966  //
1967  address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1968    __ align(CodeEntryAlignment);
1969    StubCodeMark mark(this, "StubRoutines", name);
1970    address start = __ pc();
1971
1972    Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1973    const Register from        = rdi;  // source array address
1974    const Register to          = rsi;  // destination array address
1975    const Register qword_count = rdx;  // elements count
1976    const Register saved_count = rcx;
1977
1978    __ enter(); // required for proper stackwalking of RuntimeStub frame
1979    assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1980
1981    address disjoint_copy_entry = NULL;
1982    if (is_oop) {
1983      assert(!UseCompressedOops, "shouldn't be called for compressed oops");
1984      disjoint_copy_entry = disjoint_oop_copy_entry;
1985      oop_copy_entry  = __ pc();
1986      array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
1987    } else {
1988      disjoint_copy_entry = disjoint_long_copy_entry;
1989      long_copy_entry = __ pc();
1990      array_overlap_test(disjoint_long_copy_entry, Address::times_8);
1991    }
1992    BLOCK_COMMENT("Entry:");
1993    // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1994
1995    array_overlap_test(disjoint_copy_entry, Address::times_8);
1996    setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1997                      // r9 and r10 may be used to save non-volatile registers
1998
1999    // 'from', 'to' and 'qword_count' are now valid
2000
2001    if (is_oop) {
2002      // Save to and count for store barrier
2003      __ movq(saved_count, qword_count);
2004      // No registers are destroyed by this call
2005      gen_write_ref_array_pre_barrier(to, saved_count);
2006    }
2007
2008    __ jmp(L_copy_32_bytes);
2009
2010    // Copy trailing qwords
2011  __ BIND(L_copy_8_bytes);
2012    __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2013    __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2014    __ decrementq(qword_count);
2015    __ jcc(Assembler::notZero, L_copy_8_bytes);
2016
2017    if (is_oop) {
2018      __ jmp(L_exit);
2019    } else {
2020      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2021      restore_arg_regs();
2022      __ xorq(rax, rax); // return 0
2023      __ leave(); // required for proper stackwalking of RuntimeStub frame
2024      __ ret(0);
2025    }
2026
2027    // Copy in 32-bytes chunks
2028    copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2029
2030    if (is_oop) {
2031    __ BIND(L_exit);
2032      __ leaq(rcx, Address(to, saved_count, Address::times_8, -8));
2033      gen_write_ref_array_post_barrier(to, rcx, rax);
2034      inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2035    } else {
2036      inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2037    }
2038    restore_arg_regs();
2039    __ xorq(rax, rax); // return 0
2040    __ leave(); // required for proper stackwalking of RuntimeStub frame
2041    __ ret(0);
2042
2043    return start;
2044  }
2045
2046
2047  // Helper for generating a dynamic type check.
2048  // Smashes no registers.
2049  void generate_type_check(Register sub_klass,
2050                           Register super_check_offset,
2051                           Register super_klass,
2052                           Label& L_success) {
2053    assert_different_registers(sub_klass, super_check_offset, super_klass);
2054
2055    BLOCK_COMMENT("type_check:");
2056
2057    Label L_miss;
2058
2059    // a couple of useful fields in sub_klass:
2060    int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
2061                     Klass::secondary_supers_offset_in_bytes());
2062    int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2063                     Klass::secondary_super_cache_offset_in_bytes());
2064    Address secondary_supers_addr(sub_klass, ss_offset);
2065    Address super_cache_addr(     sub_klass, sc_offset);
2066
2067    // if the pointers are equal, we are done (e.g., String[] elements)
2068    __ cmpq(super_klass, sub_klass);
2069    __ jcc(Assembler::equal, L_success);
2070
2071    // check the supertype display:
2072    Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
2073    __ cmpq(super_klass, super_check_addr); // test the super type
2074    __ jcc(Assembler::equal, L_success);
2075
2076    // if it was a primary super, we can just fail immediately
2077    __ cmpl(super_check_offset, sc_offset);
2078    __ jcc(Assembler::notEqual, L_miss);
2079
2080    // Now do a linear scan of the secondary super-klass chain.
2081    // The repne_scan instruction uses fixed registers, which we must spill.
2082    // (We need a couple more temps in any case.)
2083    // This code is rarely used, so simplicity is a virtue here.
2084    inc_counter_np(SharedRuntime::_partial_subtype_ctr);
2085    {
2086      __ pushq(rax);
2087      __ pushq(rcx);
2088      __ pushq(rdi);
2089      assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
2090
2091      __ movq(rdi, secondary_supers_addr);
2092      // Load the array length.
2093      __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
2094      // Skip to start of data.
2095      __ addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
2096      // Scan rcx words at [rdi] for occurance of rax
2097      // Set NZ/Z based on last compare
2098      __ movq(rax, super_klass);
2099      if (UseCompressedOops) {
2100        // Compare against compressed form.  Don't need to uncompress because
2101        // looks like orig rax is restored in popq below.
2102        __ encode_heap_oop(rax);
2103        __ repne_scanl();
2104      } else {
2105         __ repne_scanq();
2106      }
2107
2108      // Unspill the temp. registers:
2109      __ popq(rdi);
2110      __ popq(rcx);
2111      __ popq(rax);
2112
2113      __ jcc(Assembler::notEqual, L_miss);
2114    }
2115
2116    // Success.  Cache the super we found and proceed in triumph.
2117    __ movq(super_cache_addr, super_klass); // note: rax is dead
2118    __ jmp(L_success);
2119
2120    // Fall through on failure!
2121    __ BIND(L_miss);
2122  }
2123
2124  //
2125  //  Generate checkcasting array copy stub
2126  //
2127  //  Input:
2128  //    c_rarg0   - source array address
2129  //    c_rarg1   - destination array address
2130  //    c_rarg2   - element count, treated as ssize_t, can be zero
2131  //    c_rarg3   - size_t ckoff (super_check_offset)
2132  // not Win64
2133  //    c_rarg4   - oop ckval (super_klass)
2134  // Win64
2135  //    rsp+40    - oop ckval (super_klass)
2136  //
2137  //  Output:
2138  //    rax ==  0  -  success
2139  //    rax == -1^K - failure, where K is partial transfer count
2140  //
2141  address generate_checkcast_copy(const char *name) {
2142
2143    Label L_load_element, L_store_element, L_do_card_marks, L_done;
2144
2145    // Input registers (after setup_arg_regs)
2146    const Register from        = rdi;   // source array address
2147    const Register to          = rsi;   // destination array address
2148    const Register length      = rdx;   // elements count
2149    const Register ckoff       = rcx;   // super_check_offset
2150    const Register ckval       = r8;    // super_klass
2151
2152    // Registers used as temps (r13, r14 are save-on-entry)
2153    const Register end_from    = from;  // source array end address
2154    const Register end_to      = r13;   // destination array end address
2155    const Register count       = rdx;   // -(count_remaining)
2156    const Register r14_length  = r14;   // saved copy of length
2157    // End pointers are inclusive, and if length is not zero they point
2158    // to the last unit copied:  end_to[0] := end_from[0]
2159
2160    const Register rax_oop    = rax;    // actual oop copied
2161    const Register r11_klass  = r11;    // oop._klass
2162
2163    //---------------------------------------------------------------
2164    // Assembler stub will be used for this call to arraycopy
2165    // if the two arrays are subtypes of Object[] but the
2166    // destination array type is not equal to or a supertype
2167    // of the source type.  Each element must be separately
2168    // checked.
2169
2170    __ align(CodeEntryAlignment);
2171    StubCodeMark mark(this, "StubRoutines", name);
2172    address start = __ pc();
2173
2174    __ enter(); // required for proper stackwalking of RuntimeStub frame
2175
2176    checkcast_copy_entry  = __ pc();
2177    BLOCK_COMMENT("Entry:");
2178
2179#ifdef ASSERT
2180    // caller guarantees that the arrays really are different
2181    // otherwise, we would have to make conjoint checks
2182    { Label L;
2183      array_overlap_test(L, TIMES_OOP);
2184      __ stop("checkcast_copy within a single array");
2185      __ bind(L);
2186    }
2187#endif //ASSERT
2188
2189    // allocate spill slots for r13, r14
2190    enum {
2191      saved_r13_offset,
2192      saved_r14_offset,
2193      saved_rbp_offset,
2194      saved_rip_offset,
2195      saved_rarg0_offset
2196    };
2197    __ subq(rsp, saved_rbp_offset * wordSize);
2198    __ movq(Address(rsp, saved_r13_offset * wordSize), r13);
2199    __ movq(Address(rsp, saved_r14_offset * wordSize), r14);
2200    setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2201                       // ckoff => rcx, ckval => r8
2202                       // r9 and r10 may be used to save non-volatile registers
2203#ifdef _WIN64
2204    // last argument (#4) is on stack on Win64
2205    const int ckval_offset = saved_rarg0_offset + 4;
2206    __ movq(ckval, Address(rsp, ckval_offset * wordSize));
2207#endif
2208
2209    // check that int operands are properly extended to size_t
2210    assert_clean_int(length, rax);
2211    assert_clean_int(ckoff, rax);
2212
2213#ifdef ASSERT
2214    BLOCK_COMMENT("assert consistent ckoff/ckval");
2215    // The ckoff and ckval must be mutually consistent,
2216    // even though caller generates both.
2217    { Label L;
2218      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2219                        Klass::super_check_offset_offset_in_bytes());
2220      __ cmpl(ckoff, Address(ckval, sco_offset));
2221      __ jcc(Assembler::equal, L);
2222      __ stop("super_check_offset inconsistent");
2223      __ bind(L);
2224    }
2225#endif //ASSERT
2226
2227    // Loop-invariant addresses.  They are exclusive end pointers.
2228    Address end_from_addr(from, length, TIMES_OOP, 0);
2229    Address   end_to_addr(to,   length, TIMES_OOP, 0);
2230    // Loop-variant addresses.  They assume post-incremented count < 0.
2231    Address from_element_addr(end_from, count, TIMES_OOP, 0);
2232    Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2233
2234    gen_write_ref_array_pre_barrier(to, count);
2235
2236    // Copy from low to high addresses, indexed from the end of each array.
2237    __ leaq(end_from, end_from_addr);
2238    __ leaq(end_to,   end_to_addr);
2239    __ movq(r14_length, length);        // save a copy of the length
2240    assert(length == count, "");        // else fix next line:
2241    __ negq(count);                     // negate and test the length
2242    __ jcc(Assembler::notZero, L_load_element);
2243
2244    // Empty array:  Nothing to do.
2245    __ xorq(rax, rax);                  // return 0 on (trivial) success
2246    __ jmp(L_done);
2247
2248    // ======== begin loop ========
2249    // (Loop is rotated; its entry is L_load_element.)
2250    // Loop control:
2251    //   for (count = -count; count != 0; count++)
2252    // Base pointers src, dst are biased by 8*(count-1),to last element.
2253    __ align(16);
2254
2255    __ BIND(L_store_element);
2256    __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2257    __ incrementq(count);               // increment the count toward zero
2258    __ jcc(Assembler::zero, L_do_card_marks);
2259
2260    // ======== loop entry is here ========
2261    __ BIND(L_load_element);
2262    __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2263    __ testq(rax_oop, rax_oop);
2264    __ jcc(Assembler::zero, L_store_element);
2265
2266    __ load_klass(r11_klass, rax_oop);// query the object klass
2267    generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2268    // ======== end loop ========
2269
2270    // It was a real error; we must depend on the caller to finish the job.
2271    // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2272    // Emit GC store barriers for the oops we have copied (r14 + rdx),
2273    // and report their number to the caller.
2274    assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2275    __ leaq(end_to, to_element_addr);
2276    gen_write_ref_array_post_barrier(to, end_to, rcx);
2277    __ movq(rax, r14_length);           // original oops
2278    __ addq(rax, count);                // K = (original - remaining) oops
2279    __ notq(rax);                       // report (-1^K) to caller
2280    __ jmp(L_done);
2281
2282    // Come here on success only.
2283    __ BIND(L_do_card_marks);
2284    __ addq(end_to, -wordSize);         // make an inclusive end pointer
2285    gen_write_ref_array_post_barrier(to, end_to, rcx);
2286    __ xorq(rax, rax);                  // return 0 on success
2287
2288    // Common exit point (success or failure).
2289    __ BIND(L_done);
2290    __ movq(r13, Address(rsp, saved_r13_offset * wordSize));
2291    __ movq(r14, Address(rsp, saved_r14_offset * wordSize));
2292    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2293    restore_arg_regs();
2294    __ leave(); // required for proper stackwalking of RuntimeStub frame
2295    __ ret(0);
2296
2297    return start;
2298  }
2299
2300  //
2301  //  Generate 'unsafe' array copy stub
2302  //  Though just as safe as the other stubs, it takes an unscaled
2303  //  size_t argument instead of an element count.
2304  //
2305  //  Input:
2306  //    c_rarg0   - source array address
2307  //    c_rarg1   - destination array address
2308  //    c_rarg2   - byte count, treated as ssize_t, can be zero
2309  //
2310  // Examines the alignment of the operands and dispatches
2311  // to a long, int, short, or byte copy loop.
2312  //
2313  address generate_unsafe_copy(const char *name) {
2314
2315    Label L_long_aligned, L_int_aligned, L_short_aligned;
2316
2317    // Input registers (before setup_arg_regs)
2318    const Register from        = c_rarg0;  // source array address
2319    const Register to          = c_rarg1;  // destination array address
2320    const Register size        = c_rarg2;  // byte count (size_t)
2321
2322    // Register used as a temp
2323    const Register bits        = rax;      // test copy of low bits
2324
2325    __ align(CodeEntryAlignment);
2326    StubCodeMark mark(this, "StubRoutines", name);
2327    address start = __ pc();
2328
2329    __ enter(); // required for proper stackwalking of RuntimeStub frame
2330
2331    // bump this on entry, not on exit:
2332    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2333
2334    __ movq(bits, from);
2335    __ orq(bits, to);
2336    __ orq(bits, size);
2337
2338    __ testb(bits, BytesPerLong-1);
2339    __ jccb(Assembler::zero, L_long_aligned);
2340
2341    __ testb(bits, BytesPerInt-1);
2342    __ jccb(Assembler::zero, L_int_aligned);
2343
2344    __ testb(bits, BytesPerShort-1);
2345    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2346
2347    __ BIND(L_short_aligned);
2348    __ shrq(size, LogBytesPerShort); // size => short_count
2349    __ jump(RuntimeAddress(short_copy_entry));
2350
2351    __ BIND(L_int_aligned);
2352    __ shrq(size, LogBytesPerInt); // size => int_count
2353    __ jump(RuntimeAddress(int_copy_entry));
2354
2355    __ BIND(L_long_aligned);
2356    __ shrq(size, LogBytesPerLong); // size => qword_count
2357    __ jump(RuntimeAddress(long_copy_entry));
2358
2359    return start;
2360  }
2361
2362  // Perform range checks on the proposed arraycopy.
2363  // Kills temp, but nothing else.
2364  // Also, clean the sign bits of src_pos and dst_pos.
2365  void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2366                              Register src_pos, // source position (c_rarg1)
2367                              Register dst,     // destination array oo (c_rarg2)
2368                              Register dst_pos, // destination position (c_rarg3)
2369                              Register length,
2370                              Register temp,
2371                              Label& L_failed) {
2372    BLOCK_COMMENT("arraycopy_range_checks:");
2373
2374    //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2375    __ movl(temp, length);
2376    __ addl(temp, src_pos);             // src_pos + length
2377    __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2378    __ jcc(Assembler::above, L_failed);
2379
2380    //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2381    __ movl(temp, length);
2382    __ addl(temp, dst_pos);             // dst_pos + length
2383    __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2384    __ jcc(Assembler::above, L_failed);
2385
2386    // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2387    // Move with sign extension can be used since they are positive.
2388    __ movslq(src_pos, src_pos);
2389    __ movslq(dst_pos, dst_pos);
2390
2391    BLOCK_COMMENT("arraycopy_range_checks done");
2392  }
2393
2394  //
2395  //  Generate generic array copy stubs
2396  //
2397  //  Input:
2398  //    c_rarg0    -  src oop
2399  //    c_rarg1    -  src_pos (32-bits)
2400  //    c_rarg2    -  dst oop
2401  //    c_rarg3    -  dst_pos (32-bits)
2402  // not Win64
2403  //    c_rarg4    -  element count (32-bits)
2404  // Win64
2405  //    rsp+40     -  element count (32-bits)
2406  //
2407  //  Output:
2408  //    rax ==  0  -  success
2409  //    rax == -1^K - failure, where K is partial transfer count
2410  //
2411  address generate_generic_copy(const char *name) {
2412
2413    Label L_failed, L_failed_0, L_objArray;
2414    Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2415
2416    // Input registers
2417    const Register src        = c_rarg0;  // source array oop
2418    const Register src_pos    = c_rarg1;  // source position
2419    const Register dst        = c_rarg2;  // destination array oop
2420    const Register dst_pos    = c_rarg3;  // destination position
2421    // elements count is on stack on Win64
2422#ifdef _WIN64
2423#define C_RARG4 Address(rsp, 6 * wordSize)
2424#else
2425#define C_RARG4 c_rarg4
2426#endif
2427
2428    { int modulus = CodeEntryAlignment;
2429      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2430      int advance = target - (__ offset() % modulus);
2431      if (advance < 0)  advance += modulus;
2432      if (advance > 0)  __ nop(advance);
2433    }
2434    StubCodeMark mark(this, "StubRoutines", name);
2435
2436    // Short-hop target to L_failed.  Makes for denser prologue code.
2437    __ BIND(L_failed_0);
2438    __ jmp(L_failed);
2439    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2440
2441    __ align(CodeEntryAlignment);
2442    address start = __ pc();
2443
2444    __ enter(); // required for proper stackwalking of RuntimeStub frame
2445
2446    // bump this on entry, not on exit:
2447    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2448
2449    //-----------------------------------------------------------------------
2450    // Assembler stub will be used for this call to arraycopy
2451    // if the following conditions are met:
2452    //
2453    // (1) src and dst must not be null.
2454    // (2) src_pos must not be negative.
2455    // (3) dst_pos must not be negative.
2456    // (4) length  must not be negative.
2457    // (5) src klass and dst klass should be the same and not NULL.
2458    // (6) src and dst should be arrays.
2459    // (7) src_pos + length must not exceed length of src.
2460    // (8) dst_pos + length must not exceed length of dst.
2461    //
2462
2463    //  if (src == NULL) return -1;
2464    __ testq(src, src);         // src oop
2465    size_t j1off = __ offset();
2466    __ jccb(Assembler::zero, L_failed_0);
2467
2468    //  if (src_pos < 0) return -1;
2469    __ testl(src_pos, src_pos); // src_pos (32-bits)
2470    __ jccb(Assembler::negative, L_failed_0);
2471
2472    //  if (dst == NULL) return -1;
2473    __ testq(dst, dst);         // dst oop
2474    __ jccb(Assembler::zero, L_failed_0);
2475
2476    //  if (dst_pos < 0) return -1;
2477    __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2478    size_t j4off = __ offset();
2479    __ jccb(Assembler::negative, L_failed_0);
2480
2481    // The first four tests are very dense code,
2482    // but not quite dense enough to put four
2483    // jumps in a 16-byte instruction fetch buffer.
2484    // That's good, because some branch predicters
2485    // do not like jumps so close together.
2486    // Make sure of this.
2487    guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2488
2489    // registers used as temp
2490    const Register r11_length    = r11; // elements count to copy
2491    const Register r10_src_klass = r10; // array klass
2492    const Register r9_dst_klass  = r9;  // dest array klass
2493
2494    //  if (length < 0) return -1;
2495    __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2496    __ testl(r11_length, r11_length);
2497    __ jccb(Assembler::negative, L_failed_0);
2498
2499    __ load_klass(r10_src_klass, src);
2500#ifdef ASSERT
2501    //  assert(src->klass() != NULL);
2502    BLOCK_COMMENT("assert klasses not null");
2503    { Label L1, L2;
2504      __ testq(r10_src_klass, r10_src_klass);
2505      __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2506      __ bind(L1);
2507      __ stop("broken null klass");
2508      __ bind(L2);
2509      __ load_klass(r9_dst_klass, dst);
2510      __ cmpq(r9_dst_klass, 0);
2511      __ jcc(Assembler::equal, L1);     // this would be broken also
2512      BLOCK_COMMENT("assert done");
2513    }
2514#endif
2515
2516    // Load layout helper (32-bits)
2517    //
2518    //  |array_tag|     | header_size | element_type |     |log2_element_size|
2519    // 32        30    24            16              8     2                 0
2520    //
2521    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2522    //
2523
2524    int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2525                    Klass::layout_helper_offset_in_bytes();
2526
2527    const Register rax_lh = rax;  // layout helper
2528
2529    __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2530
2531    // Handle objArrays completely differently...
2532    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2533    __ cmpl(rax_lh, objArray_lh);
2534    __ jcc(Assembler::equal, L_objArray);
2535
2536    //  if (src->klass() != dst->klass()) return -1;
2537    __ load_klass(r9_dst_klass, dst);
2538    __ cmpq(r10_src_klass, r9_dst_klass);
2539    __ jcc(Assembler::notEqual, L_failed);
2540
2541    //  if (!src->is_Array()) return -1;
2542    __ cmpl(rax_lh, Klass::_lh_neutral_value);
2543    __ jcc(Assembler::greaterEqual, L_failed);
2544
2545    // At this point, it is known to be a typeArray (array_tag 0x3).
2546#ifdef ASSERT
2547    { Label L;
2548      __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2549      __ jcc(Assembler::greaterEqual, L);
2550      __ stop("must be a primitive array");
2551      __ bind(L);
2552    }
2553#endif
2554
2555    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2556                           r10, L_failed);
2557
2558    // typeArrayKlass
2559    //
2560    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2561    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2562    //
2563
2564    const Register r10_offset = r10;    // array offset
2565    const Register rax_elsize = rax_lh; // element size
2566
2567    __ movl(r10_offset, rax_lh);
2568    __ shrl(r10_offset, Klass::_lh_header_size_shift);
2569    __ andq(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2570    __ addq(src, r10_offset);           // src array offset
2571    __ addq(dst, r10_offset);           // dst array offset
2572    BLOCK_COMMENT("choose copy loop based on element size");
2573    __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2574
2575    // next registers should be set before the jump to corresponding stub
2576    const Register from     = c_rarg0;  // source array address
2577    const Register to       = c_rarg1;  // destination array address
2578    const Register count    = c_rarg2;  // elements count
2579
2580    // 'from', 'to', 'count' registers should be set in such order
2581    // since they are the same as 'src', 'src_pos', 'dst'.
2582
2583  __ BIND(L_copy_bytes);
2584    __ cmpl(rax_elsize, 0);
2585    __ jccb(Assembler::notEqual, L_copy_shorts);
2586    __ leaq(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2587    __ leaq(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2588    __ movslq(count, r11_length); // length
2589    __ jump(RuntimeAddress(byte_copy_entry));
2590
2591  __ BIND(L_copy_shorts);
2592    __ cmpl(rax_elsize, LogBytesPerShort);
2593    __ jccb(Assembler::notEqual, L_copy_ints);
2594    __ leaq(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2595    __ leaq(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2596    __ movslq(count, r11_length); // length
2597    __ jump(RuntimeAddress(short_copy_entry));
2598
2599  __ BIND(L_copy_ints);
2600    __ cmpl(rax_elsize, LogBytesPerInt);
2601    __ jccb(Assembler::notEqual, L_copy_longs);
2602    __ leaq(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2603    __ leaq(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2604    __ movslq(count, r11_length); // length
2605    __ jump(RuntimeAddress(int_copy_entry));
2606
2607  __ BIND(L_copy_longs);
2608#ifdef ASSERT
2609    { Label L;
2610      __ cmpl(rax_elsize, LogBytesPerLong);
2611      __ jcc(Assembler::equal, L);
2612      __ stop("must be long copy, but elsize is wrong");
2613      __ bind(L);
2614    }
2615#endif
2616    __ leaq(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2617    __ leaq(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2618    __ movslq(count, r11_length); // length
2619    __ jump(RuntimeAddress(long_copy_entry));
2620
2621    // objArrayKlass
2622  __ BIND(L_objArray);
2623    // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2624
2625    Label L_plain_copy, L_checkcast_copy;
2626    //  test array classes for subtyping
2627    __ load_klass(r9_dst_klass, dst);
2628    __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2629    __ jcc(Assembler::notEqual, L_checkcast_copy);
2630
2631    // Identically typed arrays can be copied without element-wise checks.
2632    arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2633                           r10, L_failed);
2634
2635    __ leaq(from, Address(src, src_pos, TIMES_OOP,
2636                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2637    __ leaq(to,   Address(dst, dst_pos, TIMES_OOP,
2638                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2639    __ movslq(count, r11_length); // length
2640  __ BIND(L_plain_copy);
2641    __ jump(RuntimeAddress(oop_copy_entry));
2642
2643  __ BIND(L_checkcast_copy);
2644    // live at this point:  r10_src_klass, !r11_length
2645    {
2646      // assert(r11_length == C_RARG4); // will reload from here
2647      Register r11_dst_klass = r11;
2648      __ load_klass(r11_dst_klass, dst);
2649
2650      // Before looking at dst.length, make sure dst is also an objArray.
2651      __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2652      __ jcc(Assembler::notEqual, L_failed);
2653
2654      // It is safe to examine both src.length and dst.length.
2655#ifndef _WIN64
2656      arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2657                             rax, L_failed);
2658#else
2659      __ movl(r11_length, C_RARG4);     // reload
2660      arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2661                             rax, L_failed);
2662      __ load_klass(r11_dst_klass, dst); // reload
2663#endif
2664
2665      // Marshal the base address arguments now, freeing registers.
2666      __ leaq(from, Address(src, src_pos, TIMES_OOP,
2667                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2668      __ leaq(to,   Address(dst, dst_pos, TIMES_OOP,
2669                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2670      __ movl(count, C_RARG4);          // length (reloaded)
2671      Register sco_temp = c_rarg3;      // this register is free now
2672      assert_different_registers(from, to, count, sco_temp,
2673                                 r11_dst_klass, r10_src_klass);
2674      assert_clean_int(count, sco_temp);
2675
2676      // Generate the type check.
2677      int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2678                        Klass::super_check_offset_offset_in_bytes());
2679      __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2680      assert_clean_int(sco_temp, rax);
2681      generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2682
2683      // Fetch destination element klass from the objArrayKlass header.
2684      int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2685                       objArrayKlass::element_klass_offset_in_bytes());
2686      __ movq(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2687      __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2688      assert_clean_int(sco_temp, rax);
2689
2690      // the checkcast_copy loop needs two extra arguments:
2691      assert(c_rarg3 == sco_temp, "#3 already in place");
2692      __ movq(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2693      __ jump(RuntimeAddress(checkcast_copy_entry));
2694    }
2695
2696  __ BIND(L_failed);
2697    __ xorq(rax, rax);
2698    __ notq(rax); // return -1
2699    __ leave();   // required for proper stackwalking of RuntimeStub frame
2700    __ ret(0);
2701
2702    return start;
2703  }
2704
2705#undef length_arg
2706
2707  void generate_arraycopy_stubs() {
2708    // Call the conjoint generation methods immediately after
2709    // the disjoint ones so that short branches from the former
2710    // to the latter can be generated.
2711    StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2712    StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2713
2714    StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2715    StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2716
2717    StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2718    StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2719
2720    StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2721    StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2722
2723
2724    if (UseCompressedOops) {
2725      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2726      StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2727    } else {
2728      StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2729      StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2730    }
2731
2732    StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2733    StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2734    StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2735
2736    // We don't generate specialized code for HeapWord-aligned source
2737    // arrays, so just use the code we've already generated
2738    StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2739    StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2740
2741    StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2742    StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2743
2744    StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2745    StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2746
2747    StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2748    StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2749
2750    StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2751    StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2752  }
2753
2754#undef __
2755#define __ masm->
2756
2757  // Continuation point for throwing of implicit exceptions that are
2758  // not handled in the current activation. Fabricates an exception
2759  // oop and initiates normal exception dispatching in this
2760  // frame. Since we need to preserve callee-saved values (currently
2761  // only for C2, but done for C1 as well) we need a callee-saved oop
2762  // map and therefore have to make these stubs into RuntimeStubs
2763  // rather than BufferBlobs.  If the compiler needs all registers to
2764  // be preserved between the fault point and the exception handler
2765  // then it must assume responsibility for that in
2766  // AbstractCompiler::continuation_for_implicit_null_exception or
2767  // continuation_for_implicit_division_by_zero_exception. All other
2768  // implicit exceptions (e.g., NullPointerException or
2769  // AbstractMethodError on entry) are either at call sites or
2770  // otherwise assume that stack unwinding will be initiated, so
2771  // caller saved registers were assumed volatile in the compiler.
2772  address generate_throw_exception(const char* name,
2773                                   address runtime_entry,
2774                                   bool restore_saved_exception_pc) {
2775    // Information about frame layout at time of blocking runtime call.
2776    // Note that we only have to preserve callee-saved registers since
2777    // the compilers are responsible for supplying a continuation point
2778    // if they expect all registers to be preserved.
2779    enum layout {
2780      rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2781      rbp_off2,
2782      return_off,
2783      return_off2,
2784      framesize // inclusive of return address
2785    };
2786
2787    int insts_size = 512;
2788    int locs_size  = 64;
2789
2790    CodeBuffer code(name, insts_size, locs_size);
2791    OopMapSet* oop_maps  = new OopMapSet();
2792    MacroAssembler* masm = new MacroAssembler(&code);
2793
2794    address start = __ pc();
2795
2796    // This is an inlined and slightly modified version of call_VM
2797    // which has the ability to fetch the return PC out of
2798    // thread-local storage and also sets up last_Java_sp slightly
2799    // differently than the real call_VM
2800    if (restore_saved_exception_pc) {
2801      __ movq(rax,
2802              Address(r15_thread,
2803                      in_bytes(JavaThread::saved_exception_pc_offset())));
2804      __ pushq(rax);
2805    }
2806
2807    __ enter(); // required for proper stackwalking of RuntimeStub frame
2808
2809    assert(is_even(framesize/2), "sp not 16-byte aligned");
2810
2811    // return address and rbp are already in place
2812    __ subq(rsp, (framesize-4) << LogBytesPerInt); // prolog
2813
2814    int frame_complete = __ pc() - start;
2815
2816    // Set up last_Java_sp and last_Java_fp
2817    __ set_last_Java_frame(rsp, rbp, NULL);
2818
2819    // Call runtime
2820    __ movq(c_rarg0, r15_thread);
2821    BLOCK_COMMENT("call runtime_entry");
2822    __ call(RuntimeAddress(runtime_entry));
2823
2824    // Generate oop map
2825    OopMap* map = new OopMap(framesize, 0);
2826
2827    oop_maps->add_gc_map(__ pc() - start, map);
2828
2829    __ reset_last_Java_frame(true, false);
2830
2831    __ leave(); // required for proper stackwalking of RuntimeStub frame
2832
2833    // check for pending exceptions
2834#ifdef ASSERT
2835    Label L;
2836    __ cmpq(Address(r15_thread, Thread::pending_exception_offset()),
2837            (int) NULL);
2838    __ jcc(Assembler::notEqual, L);
2839    __ should_not_reach_here();
2840    __ bind(L);
2841#endif // ASSERT
2842    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2843
2844
2845    // codeBlob framesize is in words (not VMRegImpl::slot_size)
2846    RuntimeStub* stub =
2847      RuntimeStub::new_runtime_stub(name,
2848                                    &code,
2849                                    frame_complete,
2850                                    (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2851                                    oop_maps, false);
2852    return stub->entry_point();
2853  }
2854
2855  // Initialization
2856  void generate_initial() {
2857    // Generates all stubs and initializes the entry points
2858
2859    // This platform-specific stub is needed by generate_call_stub()
2860    StubRoutines::amd64::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2861
2862    // entry points that exist in all platforms Note: This is code
2863    // that could be shared among different platforms - however the
2864    // benefit seems to be smaller than the disadvantage of having a
2865    // much more complicated generator structure. See also comment in
2866    // stubRoutines.hpp.
2867
2868    StubRoutines::_forward_exception_entry = generate_forward_exception();
2869
2870    StubRoutines::_call_stub_entry =
2871      generate_call_stub(StubRoutines::_call_stub_return_address);
2872
2873    // is referenced by megamorphic call
2874    StubRoutines::_catch_exception_entry = generate_catch_exception();
2875
2876    // atomic calls
2877    StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2878    StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2879    StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2880    StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2881    StubRoutines::_atomic_add_entry          = generate_atomic_add();
2882    StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2883    StubRoutines::_fence_entry               = generate_orderaccess_fence();
2884
2885    StubRoutines::_handler_for_unsafe_access_entry =
2886      generate_handler_for_unsafe_access();
2887
2888    // platform dependent
2889    StubRoutines::amd64::_get_previous_fp_entry = generate_get_previous_fp();
2890
2891    StubRoutines::amd64::_verify_mxcsr_entry    = generate_verify_mxcsr();
2892  }
2893
2894  void generate_all() {
2895    // Generates all stubs and initializes the entry points
2896
2897    // These entry points require SharedInfo::stack0 to be set up in
2898    // non-core builds and need to be relocatable, so they each
2899    // fabricate a RuntimeStub internally.
2900    StubRoutines::_throw_AbstractMethodError_entry =
2901      generate_throw_exception("AbstractMethodError throw_exception",
2902                               CAST_FROM_FN_PTR(address,
2903                                                SharedRuntime::
2904                                                throw_AbstractMethodError),
2905                               false);
2906
2907    StubRoutines::_throw_IncompatibleClassChangeError_entry =
2908      generate_throw_exception("IncompatibleClassChangeError throw_exception",
2909                               CAST_FROM_FN_PTR(address,
2910                                                SharedRuntime::
2911                                                throw_IncompatibleClassChangeError),
2912                               false);
2913
2914    StubRoutines::_throw_ArithmeticException_entry =
2915      generate_throw_exception("ArithmeticException throw_exception",
2916                               CAST_FROM_FN_PTR(address,
2917                                                SharedRuntime::
2918                                                throw_ArithmeticException),
2919                               true);
2920
2921    StubRoutines::_throw_NullPointerException_entry =
2922      generate_throw_exception("NullPointerException throw_exception",
2923                               CAST_FROM_FN_PTR(address,
2924                                                SharedRuntime::
2925                                                throw_NullPointerException),
2926                               true);
2927
2928    StubRoutines::_throw_NullPointerException_at_call_entry =
2929      generate_throw_exception("NullPointerException at call throw_exception",
2930                               CAST_FROM_FN_PTR(address,
2931                                                SharedRuntime::
2932                                                throw_NullPointerException_at_call),
2933                               false);
2934
2935    StubRoutines::_throw_StackOverflowError_entry =
2936      generate_throw_exception("StackOverflowError throw_exception",
2937                               CAST_FROM_FN_PTR(address,
2938                                                SharedRuntime::
2939                                                throw_StackOverflowError),
2940                               false);
2941
2942    // entry points that are platform specific
2943    StubRoutines::amd64::_f2i_fixup = generate_f2i_fixup();
2944    StubRoutines::amd64::_f2l_fixup = generate_f2l_fixup();
2945    StubRoutines::amd64::_d2i_fixup = generate_d2i_fixup();
2946    StubRoutines::amd64::_d2l_fixup = generate_d2l_fixup();
2947
2948    StubRoutines::amd64::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
2949    StubRoutines::amd64::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
2950    StubRoutines::amd64::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
2951    StubRoutines::amd64::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
2952
2953    // support for verify_oop (must happen after universe_init)
2954    StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
2955
2956    // arraycopy stubs used by compilers
2957    generate_arraycopy_stubs();
2958  }
2959
2960 public:
2961  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2962    if (all) {
2963      generate_all();
2964    } else {
2965      generate_initial();
2966    }
2967  }
2968}; // end class declaration
2969
2970address StubGenerator::disjoint_byte_copy_entry  = NULL;
2971address StubGenerator::disjoint_short_copy_entry = NULL;
2972address StubGenerator::disjoint_int_copy_entry   = NULL;
2973address StubGenerator::disjoint_long_copy_entry  = NULL;
2974address StubGenerator::disjoint_oop_copy_entry   = NULL;
2975
2976address StubGenerator::byte_copy_entry  = NULL;
2977address StubGenerator::short_copy_entry = NULL;
2978address StubGenerator::int_copy_entry   = NULL;
2979address StubGenerator::long_copy_entry  = NULL;
2980address StubGenerator::oop_copy_entry   = NULL;
2981
2982address StubGenerator::checkcast_copy_entry = NULL;
2983
2984void StubGenerator_generate(CodeBuffer* code, bool all) {
2985  StubGenerator g(code, all);
2986}
2987