stubGenerator_x86_32.cpp revision 9995:13b04370e8e9
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "interpreter/interpreter.hpp"
29#include "nativeInst_x86.hpp"
30#include "oops/instanceOop.hpp"
31#include "oops/method.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/methodHandles.hpp"
35#include "runtime/frame.inline.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubCodeGenerator.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "runtime/thread.inline.hpp"
41#include "utilities/top.hpp"
42#ifdef COMPILER2
43#include "opto/runtime.hpp"
44#endif
45
46// Declaration and definition of StubGenerator (no .hpp file).
47// For a more detailed description of the stub routine structure
48// see the comment in stubRoutines.hpp
49
50#define __ _masm->
51#define a__ ((Assembler*)_masm)->
52
53#ifdef PRODUCT
54#define BLOCK_COMMENT(str) /* nothing */
55#else
56#define BLOCK_COMMENT(str) __ block_comment(str)
57#endif
58
59#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
60
61const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
62const int FPU_CNTRL_WRD_MASK = 0xFFFF;
63
64// -------------------------------------------------------------------------------------------------------------------------
65// Stub Code definitions
66
67static address handle_unsafe_access() {
68  JavaThread* thread = JavaThread::current();
69  address pc  = thread->saved_exception_pc();
70  // pc is the instruction which we must emulate
71  // doing a no-op is fine:  return garbage from the load
72  // therefore, compute npc
73  address npc = Assembler::locate_next_instruction(pc);
74
75  // request an async exception
76  thread->set_pending_unsafe_access_error();
77
78  // return address of next instruction to execute
79  return npc;
80}
81
82class StubGenerator: public StubCodeGenerator {
83 private:
84
85#ifdef PRODUCT
86#define inc_counter_np(counter) ((void)0)
87#else
88  void inc_counter_np_(int& counter) {
89    __ incrementl(ExternalAddress((address)&counter));
90  }
91#define inc_counter_np(counter) \
92  BLOCK_COMMENT("inc_counter " #counter); \
93  inc_counter_np_(counter);
94#endif //PRODUCT
95
96  void inc_copy_counter_np(BasicType t) {
97#ifndef PRODUCT
98    switch (t) {
99    case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
100    case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
101    case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
102    case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
103    case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
104    }
105    ShouldNotReachHere();
106#endif //PRODUCT
107  }
108
109  //------------------------------------------------------------------------------------------------------------------------
110  // Call stubs are used to call Java from C
111  //
112  //    [ return_from_Java     ] <--- rsp
113  //    [ argument word n      ]
114  //      ...
115  // -N [ argument word 1      ]
116  // -7 [ Possible padding for stack alignment ]
117  // -6 [ Possible padding for stack alignment ]
118  // -5 [ Possible padding for stack alignment ]
119  // -4 [ mxcsr save           ] <--- rsp_after_call
120  // -3 [ saved rbx,            ]
121  // -2 [ saved rsi            ]
122  // -1 [ saved rdi            ]
123  //  0 [ saved rbp,            ] <--- rbp,
124  //  1 [ return address       ]
125  //  2 [ ptr. to call wrapper ]
126  //  3 [ result               ]
127  //  4 [ result_type          ]
128  //  5 [ method               ]
129  //  6 [ entry_point          ]
130  //  7 [ parameters           ]
131  //  8 [ parameter_size       ]
132  //  9 [ thread               ]
133
134
135  address generate_call_stub(address& return_address) {
136    StubCodeMark mark(this, "StubRoutines", "call_stub");
137    address start = __ pc();
138
139    // stub code parameters / addresses
140    assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
141    bool  sse_save = false;
142    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
143    const int     locals_count_in_bytes  (4*wordSize);
144    const Address mxcsr_save    (rbp, -4 * wordSize);
145    const Address saved_rbx     (rbp, -3 * wordSize);
146    const Address saved_rsi     (rbp, -2 * wordSize);
147    const Address saved_rdi     (rbp, -1 * wordSize);
148    const Address result        (rbp,  3 * wordSize);
149    const Address result_type   (rbp,  4 * wordSize);
150    const Address method        (rbp,  5 * wordSize);
151    const Address entry_point   (rbp,  6 * wordSize);
152    const Address parameters    (rbp,  7 * wordSize);
153    const Address parameter_size(rbp,  8 * wordSize);
154    const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
155    sse_save =  UseSSE > 0;
156
157    // stub code
158    __ enter();
159    __ movptr(rcx, parameter_size);              // parameter counter
160    __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
161    __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
162    __ subptr(rsp, rcx);
163    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
164
165    // save rdi, rsi, & rbx, according to C calling conventions
166    __ movptr(saved_rdi, rdi);
167    __ movptr(saved_rsi, rsi);
168    __ movptr(saved_rbx, rbx);
169
170    // provide initial value for required masks
171    if (UseAVX > 2) {
172      __ movl(rbx, 0xffff);
173      __ kmovwl(k1, rbx);
174    }
175
176    // save and initialize %mxcsr
177    if (sse_save) {
178      Label skip_ldmx;
179      __ stmxcsr(mxcsr_save);
180      __ movl(rax, mxcsr_save);
181      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
182      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
183      __ cmp32(rax, mxcsr_std);
184      __ jcc(Assembler::equal, skip_ldmx);
185      __ ldmxcsr(mxcsr_std);
186      __ bind(skip_ldmx);
187    }
188
189    // make sure the control word is correct.
190    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
191
192#ifdef ASSERT
193    // make sure we have no pending exceptions
194    { Label L;
195      __ movptr(rcx, thread);
196      __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
197      __ jcc(Assembler::equal, L);
198      __ stop("StubRoutines::call_stub: entered with pending exception");
199      __ bind(L);
200    }
201#endif
202
203    // pass parameters if any
204    BLOCK_COMMENT("pass parameters if any");
205    Label parameters_done;
206    __ movl(rcx, parameter_size);  // parameter counter
207    __ testl(rcx, rcx);
208    __ jcc(Assembler::zero, parameters_done);
209
210    // parameter passing loop
211
212    Label loop;
213    // Copy Java parameters in reverse order (receiver last)
214    // Note that the argument order is inverted in the process
215    // source is rdx[rcx: N-1..0]
216    // dest   is rsp[rbx: 0..N-1]
217
218    __ movptr(rdx, parameters);          // parameter pointer
219    __ xorptr(rbx, rbx);
220
221    __ BIND(loop);
222
223    // get parameter
224    __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
225    __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
226                    Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
227    __ increment(rbx);
228    __ decrement(rcx);
229    __ jcc(Assembler::notZero, loop);
230
231    // call Java function
232    __ BIND(parameters_done);
233    __ movptr(rbx, method);           // get Method*
234    __ movptr(rax, entry_point);      // get entry_point
235    __ mov(rsi, rsp);                 // set sender sp
236    BLOCK_COMMENT("call Java function");
237    __ call(rax);
238
239    BLOCK_COMMENT("call_stub_return_address:");
240    return_address = __ pc();
241
242#ifdef COMPILER2
243    {
244      Label L_skip;
245      if (UseSSE >= 2) {
246        __ verify_FPU(0, "call_stub_return");
247      } else {
248        for (int i = 1; i < 8; i++) {
249          __ ffree(i);
250        }
251
252        // UseSSE <= 1 so double result should be left on TOS
253        __ movl(rsi, result_type);
254        __ cmpl(rsi, T_DOUBLE);
255        __ jcc(Assembler::equal, L_skip);
256        if (UseSSE == 0) {
257          // UseSSE == 0 so float result should be left on TOS
258          __ cmpl(rsi, T_FLOAT);
259          __ jcc(Assembler::equal, L_skip);
260        }
261        __ ffree(0);
262      }
263      __ BIND(L_skip);
264    }
265#endif // COMPILER2
266
267    // store result depending on type
268    // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
269    __ movptr(rdi, result);
270    Label is_long, is_float, is_double, exit;
271    __ movl(rsi, result_type);
272    __ cmpl(rsi, T_LONG);
273    __ jcc(Assembler::equal, is_long);
274    __ cmpl(rsi, T_FLOAT);
275    __ jcc(Assembler::equal, is_float);
276    __ cmpl(rsi, T_DOUBLE);
277    __ jcc(Assembler::equal, is_double);
278
279    // handle T_INT case
280    __ movl(Address(rdi, 0), rax);
281    __ BIND(exit);
282
283    // check that FPU stack is empty
284    __ verify_FPU(0, "generate_call_stub");
285
286    // pop parameters
287    __ lea(rsp, rsp_after_call);
288
289    // restore %mxcsr
290    if (sse_save) {
291      __ ldmxcsr(mxcsr_save);
292    }
293
294    // restore rdi, rsi and rbx,
295    __ movptr(rbx, saved_rbx);
296    __ movptr(rsi, saved_rsi);
297    __ movptr(rdi, saved_rdi);
298    __ addptr(rsp, 4*wordSize);
299
300    // return
301    __ pop(rbp);
302    __ ret(0);
303
304    // handle return types different from T_INT
305    __ BIND(is_long);
306    __ movl(Address(rdi, 0 * wordSize), rax);
307    __ movl(Address(rdi, 1 * wordSize), rdx);
308    __ jmp(exit);
309
310    __ BIND(is_float);
311    // interpreter uses xmm0 for return values
312    if (UseSSE >= 1) {
313      __ movflt(Address(rdi, 0), xmm0);
314    } else {
315      __ fstp_s(Address(rdi, 0));
316    }
317    __ jmp(exit);
318
319    __ BIND(is_double);
320    // interpreter uses xmm0 for return values
321    if (UseSSE >= 2) {
322      __ movdbl(Address(rdi, 0), xmm0);
323    } else {
324      __ fstp_d(Address(rdi, 0));
325    }
326    __ jmp(exit);
327
328    return start;
329  }
330
331
332  //------------------------------------------------------------------------------------------------------------------------
333  // Return point for a Java call if there's an exception thrown in Java code.
334  // The exception is caught and transformed into a pending exception stored in
335  // JavaThread that can be tested from within the VM.
336  //
337  // Note: Usually the parameters are removed by the callee. In case of an exception
338  //       crossing an activation frame boundary, that is not the case if the callee
339  //       is compiled code => need to setup the rsp.
340  //
341  // rax,: exception oop
342
343  address generate_catch_exception() {
344    StubCodeMark mark(this, "StubRoutines", "catch_exception");
345    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
346    const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
347    address start = __ pc();
348
349    // get thread directly
350    __ movptr(rcx, thread);
351#ifdef ASSERT
352    // verify that threads correspond
353    { Label L;
354      __ get_thread(rbx);
355      __ cmpptr(rbx, rcx);
356      __ jcc(Assembler::equal, L);
357      __ stop("StubRoutines::catch_exception: threads must correspond");
358      __ bind(L);
359    }
360#endif
361    // set pending exception
362    __ verify_oop(rax);
363    __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
364    __ lea(Address(rcx, Thread::exception_file_offset   ()),
365           ExternalAddress((address)__FILE__));
366    __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
367    // complete return to VM
368    assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
369    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
370
371    return start;
372  }
373
374
375  //------------------------------------------------------------------------------------------------------------------------
376  // Continuation point for runtime calls returning with a pending exception.
377  // The pending exception check happened in the runtime or native call stub.
378  // The pending exception in Thread is converted into a Java-level exception.
379  //
380  // Contract with Java-level exception handlers:
381  // rax: exception
382  // rdx: throwing pc
383  //
384  // NOTE: At entry of this stub, exception-pc must be on stack !!
385
386  address generate_forward_exception() {
387    StubCodeMark mark(this, "StubRoutines", "forward exception");
388    address start = __ pc();
389    const Register thread = rcx;
390
391    // other registers used in this stub
392    const Register exception_oop = rax;
393    const Register handler_addr  = rbx;
394    const Register exception_pc  = rdx;
395
396    // Upon entry, the sp points to the return address returning into Java
397    // (interpreted or compiled) code; i.e., the return address becomes the
398    // throwing pc.
399    //
400    // Arguments pushed before the runtime call are still on the stack but
401    // the exception handler will reset the stack pointer -> ignore them.
402    // A potential result in registers can be ignored as well.
403
404#ifdef ASSERT
405    // make sure this code is only executed if there is a pending exception
406    { Label L;
407      __ get_thread(thread);
408      __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
409      __ jcc(Assembler::notEqual, L);
410      __ stop("StubRoutines::forward exception: no pending exception (1)");
411      __ bind(L);
412    }
413#endif
414
415    // compute exception handler into rbx,
416    __ get_thread(thread);
417    __ movptr(exception_pc, Address(rsp, 0));
418    BLOCK_COMMENT("call exception_handler_for_return_address");
419    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
420    __ mov(handler_addr, rax);
421
422    // setup rax & rdx, remove return address & clear pending exception
423    __ get_thread(thread);
424    __ pop(exception_pc);
425    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
426    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
427
428#ifdef ASSERT
429    // make sure exception is set
430    { Label L;
431      __ testptr(exception_oop, exception_oop);
432      __ jcc(Assembler::notEqual, L);
433      __ stop("StubRoutines::forward exception: no pending exception (2)");
434      __ bind(L);
435    }
436#endif
437
438    // Verify that there is really a valid exception in RAX.
439    __ verify_oop(exception_oop);
440
441    // continue at exception handler (return address removed)
442    // rax: exception
443    // rbx: exception handler
444    // rdx: throwing pc
445    __ jmp(handler_addr);
446
447    return start;
448  }
449
450
451  //----------------------------------------------------------------------------------------------------
452  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
453  //
454  // xchg exists as far back as 8086, lock needed for MP only
455  // Stack layout immediately after call:
456  //
457  // 0 [ret addr ] <--- rsp
458  // 1 [  ex     ]
459  // 2 [  dest   ]
460  //
461  // Result:   *dest <- ex, return (old *dest)
462  //
463  // Note: win32 does not currently use this code
464
465  address generate_atomic_xchg() {
466    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
467    address start = __ pc();
468
469    __ push(rdx);
470    Address exchange(rsp, 2 * wordSize);
471    Address dest_addr(rsp, 3 * wordSize);
472    __ movl(rax, exchange);
473    __ movptr(rdx, dest_addr);
474    __ xchgl(rax, Address(rdx, 0));
475    __ pop(rdx);
476    __ ret(0);
477
478    return start;
479  }
480
481  //----------------------------------------------------------------------------------------------------
482  // Support for void verify_mxcsr()
483  //
484  // This routine is used with -Xcheck:jni to verify that native
485  // JNI code does not return to Java code without restoring the
486  // MXCSR register to our expected state.
487
488
489  address generate_verify_mxcsr() {
490    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
491    address start = __ pc();
492
493    const Address mxcsr_save(rsp, 0);
494
495    if (CheckJNICalls && UseSSE > 0 ) {
496      Label ok_ret;
497      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
498      __ push(rax);
499      __ subptr(rsp, wordSize);      // allocate a temp location
500      __ stmxcsr(mxcsr_save);
501      __ movl(rax, mxcsr_save);
502      __ andl(rax, MXCSR_MASK);
503      __ cmp32(rax, mxcsr_std);
504      __ jcc(Assembler::equal, ok_ret);
505
506      __ warn("MXCSR changed by native JNI code.");
507
508      __ ldmxcsr(mxcsr_std);
509
510      __ bind(ok_ret);
511      __ addptr(rsp, wordSize);
512      __ pop(rax);
513    }
514
515    __ ret(0);
516
517    return start;
518  }
519
520
521  //---------------------------------------------------------------------------
522  // Support for void verify_fpu_cntrl_wrd()
523  //
524  // This routine is used with -Xcheck:jni to verify that native
525  // JNI code does not return to Java code without restoring the
526  // FP control word to our expected state.
527
528  address generate_verify_fpu_cntrl_wrd() {
529    StubCodeMark mark(this, "StubRoutines", "verify_spcw");
530    address start = __ pc();
531
532    const Address fpu_cntrl_wrd_save(rsp, 0);
533
534    if (CheckJNICalls) {
535      Label ok_ret;
536      __ push(rax);
537      __ subptr(rsp, wordSize);      // allocate a temp location
538      __ fnstcw(fpu_cntrl_wrd_save);
539      __ movl(rax, fpu_cntrl_wrd_save);
540      __ andl(rax, FPU_CNTRL_WRD_MASK);
541      ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
542      __ cmp32(rax, fpu_std);
543      __ jcc(Assembler::equal, ok_ret);
544
545      __ warn("Floating point control word changed by native JNI code.");
546
547      __ fldcw(fpu_std);
548
549      __ bind(ok_ret);
550      __ addptr(rsp, wordSize);
551      __ pop(rax);
552    }
553
554    __ ret(0);
555
556    return start;
557  }
558
559  //---------------------------------------------------------------------------
560  // Wrapper for slow-case handling of double-to-integer conversion
561  // d2i or f2i fast case failed either because it is nan or because
562  // of under/overflow.
563  // Input:  FPU TOS: float value
564  // Output: rax, (rdx): integer (long) result
565
566  address generate_d2i_wrapper(BasicType t, address fcn) {
567    StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
568    address start = __ pc();
569
570  // Capture info about frame layout
571  enum layout { FPUState_off         = 0,
572                rbp_off              = FPUStateSizeInWords,
573                rdi_off,
574                rsi_off,
575                rcx_off,
576                rbx_off,
577                saved_argument_off,
578                saved_argument_off2, // 2nd half of double
579                framesize
580  };
581
582  assert(FPUStateSizeInWords == 27, "update stack layout");
583
584    // Save outgoing argument to stack across push_FPU_state()
585    __ subptr(rsp, wordSize * 2);
586    __ fstp_d(Address(rsp, 0));
587
588    // Save CPU & FPU state
589    __ push(rbx);
590    __ push(rcx);
591    __ push(rsi);
592    __ push(rdi);
593    __ push(rbp);
594    __ push_FPU_state();
595
596    // push_FPU_state() resets the FP top of stack
597    // Load original double into FP top of stack
598    __ fld_d(Address(rsp, saved_argument_off * wordSize));
599    // Store double into stack as outgoing argument
600    __ subptr(rsp, wordSize*2);
601    __ fst_d(Address(rsp, 0));
602
603    // Prepare FPU for doing math in C-land
604    __ empty_FPU_stack();
605    // Call the C code to massage the double.  Result in EAX
606    if (t == T_INT)
607      { BLOCK_COMMENT("SharedRuntime::d2i"); }
608    else if (t == T_LONG)
609      { BLOCK_COMMENT("SharedRuntime::d2l"); }
610    __ call_VM_leaf( fcn, 2 );
611
612    // Restore CPU & FPU state
613    __ pop_FPU_state();
614    __ pop(rbp);
615    __ pop(rdi);
616    __ pop(rsi);
617    __ pop(rcx);
618    __ pop(rbx);
619    __ addptr(rsp, wordSize * 2);
620
621    __ ret(0);
622
623    return start;
624  }
625
626
627  //---------------------------------------------------------------------------
628  // The following routine generates a subroutine to throw an asynchronous
629  // UnknownError when an unsafe access gets a fault that could not be
630  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
631  address generate_handler_for_unsafe_access() {
632    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
633    address start = __ pc();
634
635    __ push(0);                       // hole for return address-to-be
636    __ pusha();                       // push registers
637    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
638    BLOCK_COMMENT("call handle_unsafe_access");
639    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
640    __ movptr(next_pc, rax);          // stuff next address
641    __ popa();
642    __ ret(0);                        // jump to next address
643
644    return start;
645  }
646
647
648  //----------------------------------------------------------------------------------------------------
649  // Non-destructive plausibility checks for oops
650
651  address generate_verify_oop() {
652    StubCodeMark mark(this, "StubRoutines", "verify_oop");
653    address start = __ pc();
654
655    // Incoming arguments on stack after saving rax,:
656    //
657    // [tos    ]: saved rdx
658    // [tos + 1]: saved EFLAGS
659    // [tos + 2]: return address
660    // [tos + 3]: char* error message
661    // [tos + 4]: oop   object to verify
662    // [tos + 5]: saved rax, - saved by caller and bashed
663
664    Label exit, error;
665    __ pushf();
666    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
667    __ push(rdx);                                // save rdx
668    // make sure object is 'reasonable'
669    __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
670    __ testptr(rax, rax);
671    __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
672
673    // Check if the oop is in the right area of memory
674    const int oop_mask = Universe::verify_oop_mask();
675    const int oop_bits = Universe::verify_oop_bits();
676    __ mov(rdx, rax);
677    __ andptr(rdx, oop_mask);
678    __ cmpptr(rdx, oop_bits);
679    __ jcc(Assembler::notZero, error);
680
681    // make sure klass is 'reasonable', which is not zero.
682    __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
683    __ testptr(rax, rax);
684    __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
685
686    // return if everything seems ok
687    __ bind(exit);
688    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
689    __ pop(rdx);                                 // restore rdx
690    __ popf();                                   // restore EFLAGS
691    __ ret(3 * wordSize);                        // pop arguments
692
693    // handle errors
694    __ bind(error);
695    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
696    __ pop(rdx);                                 // get saved rdx back
697    __ popf();                                   // get saved EFLAGS off stack -- will be ignored
698    __ pusha();                                  // push registers (eip = return address & msg are already pushed)
699    BLOCK_COMMENT("call MacroAssembler::debug");
700    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
701    __ popa();
702    __ ret(3 * wordSize);                        // pop arguments
703    return start;
704  }
705
706  //
707  //  Generate pre-barrier for array stores
708  //
709  //  Input:
710  //     start   -  starting address
711  //     count   -  element count
712  void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
713    assert_different_registers(start, count);
714    BarrierSet* bs = Universe::heap()->barrier_set();
715    switch (bs->kind()) {
716      case BarrierSet::G1SATBCTLogging:
717        // With G1, don't generate the call if we statically know that the target in uninitialized
718        if (!uninitialized_target) {
719           __ pusha();                      // push registers
720           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
721                           start, count);
722           __ popa();
723         }
724        break;
725      case BarrierSet::CardTableForRS:
726      case BarrierSet::CardTableExtension:
727      case BarrierSet::ModRef:
728        break;
729      default      :
730        ShouldNotReachHere();
731
732    }
733  }
734
735
736  //
737  // Generate a post-barrier for an array store
738  //
739  //     start    -  starting address
740  //     count    -  element count
741  //
742  //  The two input registers are overwritten.
743  //
744  void  gen_write_ref_array_post_barrier(Register start, Register count) {
745    BarrierSet* bs = Universe::heap()->barrier_set();
746    assert_different_registers(start, count);
747    switch (bs->kind()) {
748      case BarrierSet::G1SATBCTLogging:
749        {
750          __ pusha();                      // push registers
751          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
752                          start, count);
753          __ popa();
754        }
755        break;
756
757      case BarrierSet::CardTableForRS:
758      case BarrierSet::CardTableExtension:
759        {
760          CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
761          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
762
763          Label L_loop;
764          const Register end = count;  // elements count; end == start+count-1
765          assert_different_registers(start, end);
766
767          __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
768          __ shrptr(start, CardTableModRefBS::card_shift);
769          __ shrptr(end,   CardTableModRefBS::card_shift);
770          __ subptr(end, start); // end --> count
771        __ BIND(L_loop);
772          intptr_t disp = (intptr_t) ct->byte_map_base;
773          Address cardtable(start, count, Address::times_1, disp);
774          __ movb(cardtable, 0);
775          __ decrement(count);
776          __ jcc(Assembler::greaterEqual, L_loop);
777        }
778        break;
779      case BarrierSet::ModRef:
780        break;
781      default      :
782        ShouldNotReachHere();
783
784    }
785  }
786
787
788  // Copy 64 bytes chunks
789  //
790  // Inputs:
791  //   from        - source array address
792  //   to_from     - destination array address - from
793  //   qword_count - 8-bytes element count, negative
794  //
795  void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
796    assert( UseSSE >= 2, "supported cpu only" );
797    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
798    if (UseAVX > 2) {
799      __ push(rbx);
800      __ movl(rbx, 0xffff);
801      __ kmovwl(k1, rbx);
802      __ pop(rbx);
803    }
804    // Copy 64-byte chunks
805    __ jmpb(L_copy_64_bytes);
806    __ align(OptoLoopAlignment);
807  __ BIND(L_copy_64_bytes_loop);
808
809    if (UseUnalignedLoadStores) {
810      if (UseAVX > 2) {
811        __ evmovdqul(xmm0, Address(from, 0), Assembler::AVX_512bit);
812        __ evmovdqul(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
813      } else if (UseAVX == 2) {
814        __ vmovdqu(xmm0, Address(from,  0));
815        __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
816        __ vmovdqu(xmm1, Address(from, 32));
817        __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
818      } else {
819        __ movdqu(xmm0, Address(from, 0));
820        __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
821        __ movdqu(xmm1, Address(from, 16));
822        __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
823        __ movdqu(xmm2, Address(from, 32));
824        __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
825        __ movdqu(xmm3, Address(from, 48));
826        __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
827      }
828    } else {
829      __ movq(xmm0, Address(from, 0));
830      __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
831      __ movq(xmm1, Address(from, 8));
832      __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
833      __ movq(xmm2, Address(from, 16));
834      __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
835      __ movq(xmm3, Address(from, 24));
836      __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
837      __ movq(xmm4, Address(from, 32));
838      __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
839      __ movq(xmm5, Address(from, 40));
840      __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
841      __ movq(xmm6, Address(from, 48));
842      __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
843      __ movq(xmm7, Address(from, 56));
844      __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
845    }
846
847    __ addl(from, 64);
848  __ BIND(L_copy_64_bytes);
849    __ subl(qword_count, 8);
850    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
851
852    if (UseUnalignedLoadStores && (UseAVX == 2)) {
853      // clean upper bits of YMM registers
854      __ vpxor(xmm0, xmm0);
855      __ vpxor(xmm1, xmm1);
856    }
857    __ addl(qword_count, 8);
858    __ jccb(Assembler::zero, L_exit);
859    //
860    // length is too short, just copy qwords
861    //
862  __ BIND(L_copy_8_bytes);
863    __ movq(xmm0, Address(from, 0));
864    __ movq(Address(from, to_from, Address::times_1), xmm0);
865    __ addl(from, 8);
866    __ decrement(qword_count);
867    __ jcc(Assembler::greater, L_copy_8_bytes);
868  __ BIND(L_exit);
869  }
870
871  // Copy 64 bytes chunks
872  //
873  // Inputs:
874  //   from        - source array address
875  //   to_from     - destination array address - from
876  //   qword_count - 8-bytes element count, negative
877  //
878  void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
879    assert( VM_Version::supports_mmx(), "supported cpu only" );
880    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
881    // Copy 64-byte chunks
882    __ jmpb(L_copy_64_bytes);
883    __ align(OptoLoopAlignment);
884  __ BIND(L_copy_64_bytes_loop);
885    __ movq(mmx0, Address(from, 0));
886    __ movq(mmx1, Address(from, 8));
887    __ movq(mmx2, Address(from, 16));
888    __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
889    __ movq(mmx3, Address(from, 24));
890    __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
891    __ movq(mmx4, Address(from, 32));
892    __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
893    __ movq(mmx5, Address(from, 40));
894    __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
895    __ movq(mmx6, Address(from, 48));
896    __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
897    __ movq(mmx7, Address(from, 56));
898    __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
899    __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
900    __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
901    __ addptr(from, 64);
902  __ BIND(L_copy_64_bytes);
903    __ subl(qword_count, 8);
904    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
905    __ addl(qword_count, 8);
906    __ jccb(Assembler::zero, L_exit);
907    //
908    // length is too short, just copy qwords
909    //
910  __ BIND(L_copy_8_bytes);
911    __ movq(mmx0, Address(from, 0));
912    __ movq(Address(from, to_from, Address::times_1), mmx0);
913    __ addptr(from, 8);
914    __ decrement(qword_count);
915    __ jcc(Assembler::greater, L_copy_8_bytes);
916  __ BIND(L_exit);
917    __ emms();
918  }
919
920  address generate_disjoint_copy(BasicType t, bool aligned,
921                                 Address::ScaleFactor sf,
922                                 address* entry, const char *name,
923                                 bool dest_uninitialized = false) {
924    __ align(CodeEntryAlignment);
925    StubCodeMark mark(this, "StubRoutines", name);
926    address start = __ pc();
927
928    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
929    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
930
931    int shift = Address::times_ptr - sf;
932
933    const Register from     = rsi;  // source array address
934    const Register to       = rdi;  // destination array address
935    const Register count    = rcx;  // elements count
936    const Register to_from  = to;   // (to - from)
937    const Register saved_to = rdx;  // saved destination array address
938
939    __ enter(); // required for proper stackwalking of RuntimeStub frame
940    __ push(rsi);
941    __ push(rdi);
942    __ movptr(from , Address(rsp, 12+ 4));
943    __ movptr(to   , Address(rsp, 12+ 8));
944    __ movl(count, Address(rsp, 12+ 12));
945
946    if (entry != NULL) {
947      *entry = __ pc(); // Entry point from conjoint arraycopy stub.
948      BLOCK_COMMENT("Entry:");
949    }
950
951    if (t == T_OBJECT) {
952      __ testl(count, count);
953      __ jcc(Assembler::zero, L_0_count);
954      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
955      __ mov(saved_to, to);          // save 'to'
956    }
957
958    __ subptr(to, from); // to --> to_from
959    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
960    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
961    if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
962      // align source address at 4 bytes address boundary
963      if (t == T_BYTE) {
964        // One byte misalignment happens only for byte arrays
965        __ testl(from, 1);
966        __ jccb(Assembler::zero, L_skip_align1);
967        __ movb(rax, Address(from, 0));
968        __ movb(Address(from, to_from, Address::times_1, 0), rax);
969        __ increment(from);
970        __ decrement(count);
971      __ BIND(L_skip_align1);
972      }
973      // Two bytes misalignment happens only for byte and short (char) arrays
974      __ testl(from, 2);
975      __ jccb(Assembler::zero, L_skip_align2);
976      __ movw(rax, Address(from, 0));
977      __ movw(Address(from, to_from, Address::times_1, 0), rax);
978      __ addptr(from, 2);
979      __ subl(count, 1<<(shift-1));
980    __ BIND(L_skip_align2);
981    }
982    if (!VM_Version::supports_mmx()) {
983      __ mov(rax, count);      // save 'count'
984      __ shrl(count, shift); // bytes count
985      __ addptr(to_from, from);// restore 'to'
986      __ rep_mov();
987      __ subptr(to_from, from);// restore 'to_from'
988      __ mov(count, rax);      // restore 'count'
989      __ jmpb(L_copy_2_bytes); // all dwords were copied
990    } else {
991      if (!UseUnalignedLoadStores) {
992        // align to 8 bytes, we know we are 4 byte aligned to start
993        __ testptr(from, 4);
994        __ jccb(Assembler::zero, L_copy_64_bytes);
995        __ movl(rax, Address(from, 0));
996        __ movl(Address(from, to_from, Address::times_1, 0), rax);
997        __ addptr(from, 4);
998        __ subl(count, 1<<shift);
999      }
1000    __ BIND(L_copy_64_bytes);
1001      __ mov(rax, count);
1002      __ shrl(rax, shift+1);  // 8 bytes chunk count
1003      //
1004      // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
1005      //
1006      if (UseXMMForArrayCopy) {
1007        xmm_copy_forward(from, to_from, rax);
1008      } else {
1009        mmx_copy_forward(from, to_from, rax);
1010      }
1011    }
1012    // copy tailing dword
1013  __ BIND(L_copy_4_bytes);
1014    __ testl(count, 1<<shift);
1015    __ jccb(Assembler::zero, L_copy_2_bytes);
1016    __ movl(rax, Address(from, 0));
1017    __ movl(Address(from, to_from, Address::times_1, 0), rax);
1018    if (t == T_BYTE || t == T_SHORT) {
1019      __ addptr(from, 4);
1020    __ BIND(L_copy_2_bytes);
1021      // copy tailing word
1022      __ testl(count, 1<<(shift-1));
1023      __ jccb(Assembler::zero, L_copy_byte);
1024      __ movw(rax, Address(from, 0));
1025      __ movw(Address(from, to_from, Address::times_1, 0), rax);
1026      if (t == T_BYTE) {
1027        __ addptr(from, 2);
1028      __ BIND(L_copy_byte);
1029        // copy tailing byte
1030        __ testl(count, 1);
1031        __ jccb(Assembler::zero, L_exit);
1032        __ movb(rax, Address(from, 0));
1033        __ movb(Address(from, to_from, Address::times_1, 0), rax);
1034      __ BIND(L_exit);
1035      } else {
1036      __ BIND(L_copy_byte);
1037      }
1038    } else {
1039    __ BIND(L_copy_2_bytes);
1040    }
1041
1042    if (t == T_OBJECT) {
1043      __ movl(count, Address(rsp, 12+12)); // reread 'count'
1044      __ mov(to, saved_to); // restore 'to'
1045      gen_write_ref_array_post_barrier(to, count);
1046    __ BIND(L_0_count);
1047    }
1048    inc_copy_counter_np(t);
1049    __ pop(rdi);
1050    __ pop(rsi);
1051    __ leave(); // required for proper stackwalking of RuntimeStub frame
1052    __ xorptr(rax, rax); // return 0
1053    __ ret(0);
1054    return start;
1055  }
1056
1057
1058  address generate_fill(BasicType t, bool aligned, const char *name) {
1059    __ align(CodeEntryAlignment);
1060    StubCodeMark mark(this, "StubRoutines", name);
1061    address start = __ pc();
1062
1063    BLOCK_COMMENT("Entry:");
1064
1065    const Register to       = rdi;  // source array address
1066    const Register value    = rdx;  // value
1067    const Register count    = rsi;  // elements count
1068
1069    __ enter(); // required for proper stackwalking of RuntimeStub frame
1070    __ push(rsi);
1071    __ push(rdi);
1072    __ movptr(to   , Address(rsp, 12+ 4));
1073    __ movl(value, Address(rsp, 12+ 8));
1074    __ movl(count, Address(rsp, 12+ 12));
1075
1076    __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1077
1078    __ pop(rdi);
1079    __ pop(rsi);
1080    __ leave(); // required for proper stackwalking of RuntimeStub frame
1081    __ ret(0);
1082    return start;
1083  }
1084
1085  address generate_conjoint_copy(BasicType t, bool aligned,
1086                                 Address::ScaleFactor sf,
1087                                 address nooverlap_target,
1088                                 address* entry, const char *name,
1089                                 bool dest_uninitialized = false) {
1090    __ align(CodeEntryAlignment);
1091    StubCodeMark mark(this, "StubRoutines", name);
1092    address start = __ pc();
1093
1094    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1095    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1096
1097    int shift = Address::times_ptr - sf;
1098
1099    const Register src   = rax;  // source array address
1100    const Register dst   = rdx;  // destination array address
1101    const Register from  = rsi;  // source array address
1102    const Register to    = rdi;  // destination array address
1103    const Register count = rcx;  // elements count
1104    const Register end   = rax;  // array end address
1105
1106    __ enter(); // required for proper stackwalking of RuntimeStub frame
1107    __ push(rsi);
1108    __ push(rdi);
1109    __ movptr(src  , Address(rsp, 12+ 4));   // from
1110    __ movptr(dst  , Address(rsp, 12+ 8));   // to
1111    __ movl2ptr(count, Address(rsp, 12+12)); // count
1112
1113    if (entry != NULL) {
1114      *entry = __ pc(); // Entry point from generic arraycopy stub.
1115      BLOCK_COMMENT("Entry:");
1116    }
1117
1118    // nooverlap_target expects arguments in rsi and rdi.
1119    __ mov(from, src);
1120    __ mov(to  , dst);
1121
1122    // arrays overlap test: dispatch to disjoint stub if necessary.
1123    RuntimeAddress nooverlap(nooverlap_target);
1124    __ cmpptr(dst, src);
1125    __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1126    __ jump_cc(Assembler::belowEqual, nooverlap);
1127    __ cmpptr(dst, end);
1128    __ jump_cc(Assembler::aboveEqual, nooverlap);
1129
1130    if (t == T_OBJECT) {
1131      __ testl(count, count);
1132      __ jcc(Assembler::zero, L_0_count);
1133      gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1134    }
1135
1136    // copy from high to low
1137    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1138    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1139    if (t == T_BYTE || t == T_SHORT) {
1140      // Align the end of destination array at 4 bytes address boundary
1141      __ lea(end, Address(dst, count, sf, 0));
1142      if (t == T_BYTE) {
1143        // One byte misalignment happens only for byte arrays
1144        __ testl(end, 1);
1145        __ jccb(Assembler::zero, L_skip_align1);
1146        __ decrement(count);
1147        __ movb(rdx, Address(from, count, sf, 0));
1148        __ movb(Address(to, count, sf, 0), rdx);
1149      __ BIND(L_skip_align1);
1150      }
1151      // Two bytes misalignment happens only for byte and short (char) arrays
1152      __ testl(end, 2);
1153      __ jccb(Assembler::zero, L_skip_align2);
1154      __ subptr(count, 1<<(shift-1));
1155      __ movw(rdx, Address(from, count, sf, 0));
1156      __ movw(Address(to, count, sf, 0), rdx);
1157    __ BIND(L_skip_align2);
1158      __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1159      __ jcc(Assembler::below, L_copy_4_bytes);
1160    }
1161
1162    if (!VM_Version::supports_mmx()) {
1163      __ std();
1164      __ mov(rax, count); // Save 'count'
1165      __ mov(rdx, to);    // Save 'to'
1166      __ lea(rsi, Address(from, count, sf, -4));
1167      __ lea(rdi, Address(to  , count, sf, -4));
1168      __ shrptr(count, shift); // bytes count
1169      __ rep_mov();
1170      __ cld();
1171      __ mov(count, rax); // restore 'count'
1172      __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1173      __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1174      __ mov(to, rdx);   // restore 'to'
1175      __ jmpb(L_copy_2_bytes); // all dword were copied
1176   } else {
1177      // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1178      __ testptr(end, 4);
1179      __ jccb(Assembler::zero, L_copy_8_bytes);
1180      __ subl(count, 1<<shift);
1181      __ movl(rdx, Address(from, count, sf, 0));
1182      __ movl(Address(to, count, sf, 0), rdx);
1183      __ jmpb(L_copy_8_bytes);
1184
1185      __ align(OptoLoopAlignment);
1186      // Move 8 bytes
1187    __ BIND(L_copy_8_bytes_loop);
1188      if (UseXMMForArrayCopy) {
1189        __ movq(xmm0, Address(from, count, sf, 0));
1190        __ movq(Address(to, count, sf, 0), xmm0);
1191      } else {
1192        __ movq(mmx0, Address(from, count, sf, 0));
1193        __ movq(Address(to, count, sf, 0), mmx0);
1194      }
1195    __ BIND(L_copy_8_bytes);
1196      __ subl(count, 2<<shift);
1197      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1198      __ addl(count, 2<<shift);
1199      if (!UseXMMForArrayCopy) {
1200        __ emms();
1201      }
1202    }
1203  __ BIND(L_copy_4_bytes);
1204    // copy prefix qword
1205    __ testl(count, 1<<shift);
1206    __ jccb(Assembler::zero, L_copy_2_bytes);
1207    __ movl(rdx, Address(from, count, sf, -4));
1208    __ movl(Address(to, count, sf, -4), rdx);
1209
1210    if (t == T_BYTE || t == T_SHORT) {
1211        __ subl(count, (1<<shift));
1212      __ BIND(L_copy_2_bytes);
1213        // copy prefix dword
1214        __ testl(count, 1<<(shift-1));
1215        __ jccb(Assembler::zero, L_copy_byte);
1216        __ movw(rdx, Address(from, count, sf, -2));
1217        __ movw(Address(to, count, sf, -2), rdx);
1218        if (t == T_BYTE) {
1219          __ subl(count, 1<<(shift-1));
1220        __ BIND(L_copy_byte);
1221          // copy prefix byte
1222          __ testl(count, 1);
1223          __ jccb(Assembler::zero, L_exit);
1224          __ movb(rdx, Address(from, 0));
1225          __ movb(Address(to, 0), rdx);
1226        __ BIND(L_exit);
1227        } else {
1228        __ BIND(L_copy_byte);
1229        }
1230    } else {
1231    __ BIND(L_copy_2_bytes);
1232    }
1233    if (t == T_OBJECT) {
1234      __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1235      gen_write_ref_array_post_barrier(to, count);
1236    __ BIND(L_0_count);
1237    }
1238    inc_copy_counter_np(t);
1239    __ pop(rdi);
1240    __ pop(rsi);
1241    __ leave(); // required for proper stackwalking of RuntimeStub frame
1242    __ xorptr(rax, rax); // return 0
1243    __ ret(0);
1244    return start;
1245  }
1246
1247
1248  address generate_disjoint_long_copy(address* entry, const char *name) {
1249    __ align(CodeEntryAlignment);
1250    StubCodeMark mark(this, "StubRoutines", name);
1251    address start = __ pc();
1252
1253    Label L_copy_8_bytes, L_copy_8_bytes_loop;
1254    const Register from       = rax;  // source array address
1255    const Register to         = rdx;  // destination array address
1256    const Register count      = rcx;  // elements count
1257    const Register to_from    = rdx;  // (to - from)
1258
1259    __ enter(); // required for proper stackwalking of RuntimeStub frame
1260    __ movptr(from , Address(rsp, 8+0));       // from
1261    __ movptr(to   , Address(rsp, 8+4));       // to
1262    __ movl2ptr(count, Address(rsp, 8+8));     // count
1263
1264    *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1265    BLOCK_COMMENT("Entry:");
1266
1267    __ subptr(to, from); // to --> to_from
1268    if (VM_Version::supports_mmx()) {
1269      if (UseXMMForArrayCopy) {
1270        xmm_copy_forward(from, to_from, count);
1271      } else {
1272        mmx_copy_forward(from, to_from, count);
1273      }
1274    } else {
1275      __ jmpb(L_copy_8_bytes);
1276      __ align(OptoLoopAlignment);
1277    __ BIND(L_copy_8_bytes_loop);
1278      __ fild_d(Address(from, 0));
1279      __ fistp_d(Address(from, to_from, Address::times_1));
1280      __ addptr(from, 8);
1281    __ BIND(L_copy_8_bytes);
1282      __ decrement(count);
1283      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1284    }
1285    inc_copy_counter_np(T_LONG);
1286    __ leave(); // required for proper stackwalking of RuntimeStub frame
1287    __ xorptr(rax, rax); // return 0
1288    __ ret(0);
1289    return start;
1290  }
1291
1292  address generate_conjoint_long_copy(address nooverlap_target,
1293                                      address* entry, const char *name) {
1294    __ align(CodeEntryAlignment);
1295    StubCodeMark mark(this, "StubRoutines", name);
1296    address start = __ pc();
1297
1298    Label L_copy_8_bytes, L_copy_8_bytes_loop;
1299    const Register from       = rax;  // source array address
1300    const Register to         = rdx;  // destination array address
1301    const Register count      = rcx;  // elements count
1302    const Register end_from   = rax;  // source array end address
1303
1304    __ enter(); // required for proper stackwalking of RuntimeStub frame
1305    __ movptr(from , Address(rsp, 8+0));       // from
1306    __ movptr(to   , Address(rsp, 8+4));       // to
1307    __ movl2ptr(count, Address(rsp, 8+8));     // count
1308
1309    *entry = __ pc(); // Entry point from generic arraycopy stub.
1310    BLOCK_COMMENT("Entry:");
1311
1312    // arrays overlap test
1313    __ cmpptr(to, from);
1314    RuntimeAddress nooverlap(nooverlap_target);
1315    __ jump_cc(Assembler::belowEqual, nooverlap);
1316    __ lea(end_from, Address(from, count, Address::times_8, 0));
1317    __ cmpptr(to, end_from);
1318    __ movptr(from, Address(rsp, 8));  // from
1319    __ jump_cc(Assembler::aboveEqual, nooverlap);
1320
1321    __ jmpb(L_copy_8_bytes);
1322
1323    __ align(OptoLoopAlignment);
1324  __ BIND(L_copy_8_bytes_loop);
1325    if (VM_Version::supports_mmx()) {
1326      if (UseXMMForArrayCopy) {
1327        __ movq(xmm0, Address(from, count, Address::times_8));
1328        __ movq(Address(to, count, Address::times_8), xmm0);
1329      } else {
1330        __ movq(mmx0, Address(from, count, Address::times_8));
1331        __ movq(Address(to, count, Address::times_8), mmx0);
1332      }
1333    } else {
1334      __ fild_d(Address(from, count, Address::times_8));
1335      __ fistp_d(Address(to, count, Address::times_8));
1336    }
1337  __ BIND(L_copy_8_bytes);
1338    __ decrement(count);
1339    __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1340
1341    if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1342      __ emms();
1343    }
1344    inc_copy_counter_np(T_LONG);
1345    __ leave(); // required for proper stackwalking of RuntimeStub frame
1346    __ xorptr(rax, rax); // return 0
1347    __ ret(0);
1348    return start;
1349  }
1350
1351
1352  // Helper for generating a dynamic type check.
1353  // The sub_klass must be one of {rbx, rdx, rsi}.
1354  // The temp is killed.
1355  void generate_type_check(Register sub_klass,
1356                           Address& super_check_offset_addr,
1357                           Address& super_klass_addr,
1358                           Register temp,
1359                           Label* L_success, Label* L_failure) {
1360    BLOCK_COMMENT("type_check:");
1361
1362    Label L_fallthrough;
1363#define LOCAL_JCC(assembler_con, label_ptr)                             \
1364    if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1365    else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1366
1367    // The following is a strange variation of the fast path which requires
1368    // one less register, because needed values are on the argument stack.
1369    // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1370    //                                  L_success, L_failure, NULL);
1371    assert_different_registers(sub_klass, temp);
1372
1373    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1374
1375    // if the pointers are equal, we are done (e.g., String[] elements)
1376    __ cmpptr(sub_klass, super_klass_addr);
1377    LOCAL_JCC(Assembler::equal, L_success);
1378
1379    // check the supertype display:
1380    __ movl2ptr(temp, super_check_offset_addr);
1381    Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1382    __ movptr(temp, super_check_addr); // load displayed supertype
1383    __ cmpptr(temp, super_klass_addr); // test the super type
1384    LOCAL_JCC(Assembler::equal, L_success);
1385
1386    // if it was a primary super, we can just fail immediately
1387    __ cmpl(super_check_offset_addr, sc_offset);
1388    LOCAL_JCC(Assembler::notEqual, L_failure);
1389
1390    // The repne_scan instruction uses fixed registers, which will get spilled.
1391    // We happen to know this works best when super_klass is in rax.
1392    Register super_klass = temp;
1393    __ movptr(super_klass, super_klass_addr);
1394    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1395                                     L_success, L_failure);
1396
1397    __ bind(L_fallthrough);
1398
1399    if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1400    if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1401
1402#undef LOCAL_JCC
1403  }
1404
1405  //
1406  //  Generate checkcasting array copy stub
1407  //
1408  //  Input:
1409  //    4(rsp)   - source array address
1410  //    8(rsp)   - destination array address
1411  //   12(rsp)   - element count, can be zero
1412  //   16(rsp)   - size_t ckoff (super_check_offset)
1413  //   20(rsp)   - oop ckval (super_klass)
1414  //
1415  //  Output:
1416  //    rax, ==  0  -  success
1417  //    rax, == -1^K - failure, where K is partial transfer count
1418  //
1419  address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1420    __ align(CodeEntryAlignment);
1421    StubCodeMark mark(this, "StubRoutines", name);
1422    address start = __ pc();
1423
1424    Label L_load_element, L_store_element, L_do_card_marks, L_done;
1425
1426    // register use:
1427    //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1428    //  rdi, rsi      -- element access (oop, klass)
1429    //  rbx,           -- temp
1430    const Register from       = rax;    // source array address
1431    const Register to         = rdx;    // destination array address
1432    const Register length     = rcx;    // elements count
1433    const Register elem       = rdi;    // each oop copied
1434    const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1435    const Register temp       = rbx;    // lone remaining temp
1436
1437    __ enter(); // required for proper stackwalking of RuntimeStub frame
1438
1439    __ push(rsi);
1440    __ push(rdi);
1441    __ push(rbx);
1442
1443    Address   from_arg(rsp, 16+ 4);     // from
1444    Address     to_arg(rsp, 16+ 8);     // to
1445    Address length_arg(rsp, 16+12);     // elements count
1446    Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1447    Address  ckval_arg(rsp, 16+20);     // super_klass
1448
1449    // Load up:
1450    __ movptr(from,     from_arg);
1451    __ movptr(to,         to_arg);
1452    __ movl2ptr(length, length_arg);
1453
1454    if (entry != NULL) {
1455      *entry = __ pc(); // Entry point from generic arraycopy stub.
1456      BLOCK_COMMENT("Entry:");
1457    }
1458
1459    //---------------------------------------------------------------
1460    // Assembler stub will be used for this call to arraycopy
1461    // if the two arrays are subtypes of Object[] but the
1462    // destination array type is not equal to or a supertype
1463    // of the source type.  Each element must be separately
1464    // checked.
1465
1466    // Loop-invariant addresses.  They are exclusive end pointers.
1467    Address end_from_addr(from, length, Address::times_ptr, 0);
1468    Address   end_to_addr(to,   length, Address::times_ptr, 0);
1469
1470    Register end_from = from;           // re-use
1471    Register end_to   = to;             // re-use
1472    Register count    = length;         // re-use
1473
1474    // Loop-variant addresses.  They assume post-incremented count < 0.
1475    Address from_element_addr(end_from, count, Address::times_ptr, 0);
1476    Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1477    Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1478
1479    // Copy from low to high addresses, indexed from the end of each array.
1480    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1481    __ lea(end_from, end_from_addr);
1482    __ lea(end_to,   end_to_addr);
1483    assert(length == count, "");        // else fix next line:
1484    __ negptr(count);                   // negate and test the length
1485    __ jccb(Assembler::notZero, L_load_element);
1486
1487    // Empty array:  Nothing to do.
1488    __ xorptr(rax, rax);                  // return 0 on (trivial) success
1489    __ jmp(L_done);
1490
1491    // ======== begin loop ========
1492    // (Loop is rotated; its entry is L_load_element.)
1493    // Loop control:
1494    //   for (count = -count; count != 0; count++)
1495    // Base pointers src, dst are biased by 8*count,to last element.
1496    __ align(OptoLoopAlignment);
1497
1498    __ BIND(L_store_element);
1499    __ movptr(to_element_addr, elem);     // store the oop
1500    __ increment(count);                // increment the count toward zero
1501    __ jccb(Assembler::zero, L_do_card_marks);
1502
1503    // ======== loop entry is here ========
1504    __ BIND(L_load_element);
1505    __ movptr(elem, from_element_addr);   // load the oop
1506    __ testptr(elem, elem);
1507    __ jccb(Assembler::zero, L_store_element);
1508
1509    // (Could do a trick here:  Remember last successful non-null
1510    // element stored and make a quick oop equality check on it.)
1511
1512    __ movptr(elem_klass, elem_klass_addr); // query the object klass
1513    generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1514                        &L_store_element, NULL);
1515    // (On fall-through, we have failed the element type check.)
1516    // ======== end loop ========
1517
1518    // It was a real error; we must depend on the caller to finish the job.
1519    // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1520    // Emit GC store barriers for the oops we have copied (length_arg + count),
1521    // and report their number to the caller.
1522    assert_different_registers(to, count, rax);
1523    Label L_post_barrier;
1524    __ addl(count, length_arg);         // transfers = (length - remaining)
1525    __ movl2ptr(rax, count);            // save the value
1526    __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
1527    __ jccb(Assembler::notZero, L_post_barrier);
1528    __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
1529
1530    // Come here on success only.
1531    __ BIND(L_do_card_marks);
1532    __ xorptr(rax, rax);                // return 0 on success
1533    __ movl2ptr(count, length_arg);
1534
1535    __ BIND(L_post_barrier);
1536    __ movptr(to, to_arg);              // reload
1537    gen_write_ref_array_post_barrier(to, count);
1538
1539    // Common exit point (success or failure).
1540    __ BIND(L_done);
1541    __ pop(rbx);
1542    __ pop(rdi);
1543    __ pop(rsi);
1544    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1545    __ leave(); // required for proper stackwalking of RuntimeStub frame
1546    __ ret(0);
1547
1548    return start;
1549  }
1550
1551  //
1552  //  Generate 'unsafe' array copy stub
1553  //  Though just as safe as the other stubs, it takes an unscaled
1554  //  size_t argument instead of an element count.
1555  //
1556  //  Input:
1557  //    4(rsp)   - source array address
1558  //    8(rsp)   - destination array address
1559  //   12(rsp)   - byte count, can be zero
1560  //
1561  //  Output:
1562  //    rax, ==  0  -  success
1563  //    rax, == -1  -  need to call System.arraycopy
1564  //
1565  // Examines the alignment of the operands and dispatches
1566  // to a long, int, short, or byte copy loop.
1567  //
1568  address generate_unsafe_copy(const char *name,
1569                               address byte_copy_entry,
1570                               address short_copy_entry,
1571                               address int_copy_entry,
1572                               address long_copy_entry) {
1573
1574    Label L_long_aligned, L_int_aligned, L_short_aligned;
1575
1576    __ align(CodeEntryAlignment);
1577    StubCodeMark mark(this, "StubRoutines", name);
1578    address start = __ pc();
1579
1580    const Register from       = rax;  // source array address
1581    const Register to         = rdx;  // destination array address
1582    const Register count      = rcx;  // elements count
1583
1584    __ enter(); // required for proper stackwalking of RuntimeStub frame
1585    __ push(rsi);
1586    __ push(rdi);
1587    Address  from_arg(rsp, 12+ 4);      // from
1588    Address    to_arg(rsp, 12+ 8);      // to
1589    Address count_arg(rsp, 12+12);      // byte count
1590
1591    // Load up:
1592    __ movptr(from ,  from_arg);
1593    __ movptr(to   ,    to_arg);
1594    __ movl2ptr(count, count_arg);
1595
1596    // bump this on entry, not on exit:
1597    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1598
1599    const Register bits = rsi;
1600    __ mov(bits, from);
1601    __ orptr(bits, to);
1602    __ orptr(bits, count);
1603
1604    __ testl(bits, BytesPerLong-1);
1605    __ jccb(Assembler::zero, L_long_aligned);
1606
1607    __ testl(bits, BytesPerInt-1);
1608    __ jccb(Assembler::zero, L_int_aligned);
1609
1610    __ testl(bits, BytesPerShort-1);
1611    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1612
1613    __ BIND(L_short_aligned);
1614    __ shrptr(count, LogBytesPerShort); // size => short_count
1615    __ movl(count_arg, count);          // update 'count'
1616    __ jump(RuntimeAddress(short_copy_entry));
1617
1618    __ BIND(L_int_aligned);
1619    __ shrptr(count, LogBytesPerInt); // size => int_count
1620    __ movl(count_arg, count);          // update 'count'
1621    __ jump(RuntimeAddress(int_copy_entry));
1622
1623    __ BIND(L_long_aligned);
1624    __ shrptr(count, LogBytesPerLong); // size => qword_count
1625    __ movl(count_arg, count);          // update 'count'
1626    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1627    __ pop(rsi);
1628    __ jump(RuntimeAddress(long_copy_entry));
1629
1630    return start;
1631  }
1632
1633
1634  // Perform range checks on the proposed arraycopy.
1635  // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1636  void arraycopy_range_checks(Register src,
1637                              Register src_pos,
1638                              Register dst,
1639                              Register dst_pos,
1640                              Address& length,
1641                              Label& L_failed) {
1642    BLOCK_COMMENT("arraycopy_range_checks:");
1643    const Register src_end = src_pos;   // source array end position
1644    const Register dst_end = dst_pos;   // destination array end position
1645    __ addl(src_end, length); // src_pos + length
1646    __ addl(dst_end, length); // dst_pos + length
1647
1648    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1649    __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1650    __ jcc(Assembler::above, L_failed);
1651
1652    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1653    __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1654    __ jcc(Assembler::above, L_failed);
1655
1656    BLOCK_COMMENT("arraycopy_range_checks done");
1657  }
1658
1659
1660  //
1661  //  Generate generic array copy stubs
1662  //
1663  //  Input:
1664  //     4(rsp)    -  src oop
1665  //     8(rsp)    -  src_pos
1666  //    12(rsp)    -  dst oop
1667  //    16(rsp)    -  dst_pos
1668  //    20(rsp)    -  element count
1669  //
1670  //  Output:
1671  //    rax, ==  0  -  success
1672  //    rax, == -1^K - failure, where K is partial transfer count
1673  //
1674  address generate_generic_copy(const char *name,
1675                                address entry_jbyte_arraycopy,
1676                                address entry_jshort_arraycopy,
1677                                address entry_jint_arraycopy,
1678                                address entry_oop_arraycopy,
1679                                address entry_jlong_arraycopy,
1680                                address entry_checkcast_arraycopy) {
1681    Label L_failed, L_failed_0, L_objArray;
1682
1683    { int modulus = CodeEntryAlignment;
1684      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1685      int advance = target - (__ offset() % modulus);
1686      if (advance < 0)  advance += modulus;
1687      if (advance > 0)  __ nop(advance);
1688    }
1689    StubCodeMark mark(this, "StubRoutines", name);
1690
1691    // Short-hop target to L_failed.  Makes for denser prologue code.
1692    __ BIND(L_failed_0);
1693    __ jmp(L_failed);
1694    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1695
1696    __ align(CodeEntryAlignment);
1697    address start = __ pc();
1698
1699    __ enter(); // required for proper stackwalking of RuntimeStub frame
1700    __ push(rsi);
1701    __ push(rdi);
1702
1703    // bump this on entry, not on exit:
1704    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1705
1706    // Input values
1707    Address SRC     (rsp, 12+ 4);
1708    Address SRC_POS (rsp, 12+ 8);
1709    Address DST     (rsp, 12+12);
1710    Address DST_POS (rsp, 12+16);
1711    Address LENGTH  (rsp, 12+20);
1712
1713    //-----------------------------------------------------------------------
1714    // Assembler stub will be used for this call to arraycopy
1715    // if the following conditions are met:
1716    //
1717    // (1) src and dst must not be null.
1718    // (2) src_pos must not be negative.
1719    // (3) dst_pos must not be negative.
1720    // (4) length  must not be negative.
1721    // (5) src klass and dst klass should be the same and not NULL.
1722    // (6) src and dst should be arrays.
1723    // (7) src_pos + length must not exceed length of src.
1724    // (8) dst_pos + length must not exceed length of dst.
1725    //
1726
1727    const Register src     = rax;       // source array oop
1728    const Register src_pos = rsi;
1729    const Register dst     = rdx;       // destination array oop
1730    const Register dst_pos = rdi;
1731    const Register length  = rcx;       // transfer count
1732
1733    //  if (src == NULL) return -1;
1734    __ movptr(src, SRC);      // src oop
1735    __ testptr(src, src);
1736    __ jccb(Assembler::zero, L_failed_0);
1737
1738    //  if (src_pos < 0) return -1;
1739    __ movl2ptr(src_pos, SRC_POS);  // src_pos
1740    __ testl(src_pos, src_pos);
1741    __ jccb(Assembler::negative, L_failed_0);
1742
1743    //  if (dst == NULL) return -1;
1744    __ movptr(dst, DST);      // dst oop
1745    __ testptr(dst, dst);
1746    __ jccb(Assembler::zero, L_failed_0);
1747
1748    //  if (dst_pos < 0) return -1;
1749    __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1750    __ testl(dst_pos, dst_pos);
1751    __ jccb(Assembler::negative, L_failed_0);
1752
1753    //  if (length < 0) return -1;
1754    __ movl2ptr(length, LENGTH);   // length
1755    __ testl(length, length);
1756    __ jccb(Assembler::negative, L_failed_0);
1757
1758    //  if (src->klass() == NULL) return -1;
1759    Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1760    Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1761    const Register rcx_src_klass = rcx;    // array klass
1762    __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1763
1764#ifdef ASSERT
1765    //  assert(src->klass() != NULL);
1766    BLOCK_COMMENT("assert klasses not null");
1767    { Label L1, L2;
1768      __ testptr(rcx_src_klass, rcx_src_klass);
1769      __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1770      __ bind(L1);
1771      __ stop("broken null klass");
1772      __ bind(L2);
1773      __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1774      __ jccb(Assembler::equal, L1);      // this would be broken also
1775      BLOCK_COMMENT("assert done");
1776    }
1777#endif //ASSERT
1778
1779    // Load layout helper (32-bits)
1780    //
1781    //  |array_tag|     | header_size | element_type |     |log2_element_size|
1782    // 32        30    24            16              8     2                 0
1783    //
1784    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1785    //
1786
1787    int lh_offset = in_bytes(Klass::layout_helper_offset());
1788    Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1789
1790    // Handle objArrays completely differently...
1791    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1792    __ cmpl(src_klass_lh_addr, objArray_lh);
1793    __ jcc(Assembler::equal, L_objArray);
1794
1795    //  if (src->klass() != dst->klass()) return -1;
1796    __ cmpptr(rcx_src_klass, dst_klass_addr);
1797    __ jccb(Assembler::notEqual, L_failed_0);
1798
1799    const Register rcx_lh = rcx;  // layout helper
1800    assert(rcx_lh == rcx_src_klass, "known alias");
1801    __ movl(rcx_lh, src_klass_lh_addr);
1802
1803    //  if (!src->is_Array()) return -1;
1804    __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1805    __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1806
1807    // At this point, it is known to be a typeArray (array_tag 0x3).
1808#ifdef ASSERT
1809    { Label L;
1810      __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1811      __ jcc(Assembler::greaterEqual, L); // signed cmp
1812      __ stop("must be a primitive array");
1813      __ bind(L);
1814    }
1815#endif
1816
1817    assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1818    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1819
1820    // TypeArrayKlass
1821    //
1822    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1823    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1824    //
1825    const Register rsi_offset = rsi; // array offset
1826    const Register src_array  = src; // src array offset
1827    const Register dst_array  = dst; // dst array offset
1828    const Register rdi_elsize = rdi; // log2 element size
1829
1830    __ mov(rsi_offset, rcx_lh);
1831    __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1832    __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1833    __ addptr(src_array, rsi_offset);  // src array offset
1834    __ addptr(dst_array, rsi_offset);  // dst array offset
1835    __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1836
1837    // next registers should be set before the jump to corresponding stub
1838    const Register from       = src; // source array address
1839    const Register to         = dst; // destination array address
1840    const Register count      = rcx; // elements count
1841    // some of them should be duplicated on stack
1842#define FROM   Address(rsp, 12+ 4)
1843#define TO     Address(rsp, 12+ 8)   // Not used now
1844#define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1845
1846    BLOCK_COMMENT("scale indexes to element size");
1847    __ movl2ptr(rsi, SRC_POS);  // src_pos
1848    __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1849    assert(src_array == from, "");
1850    __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1851    __ movl2ptr(rdi, DST_POS);  // dst_pos
1852    __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1853    assert(dst_array == to, "");
1854    __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1855    __ movptr(FROM, from);      // src_addr
1856    __ mov(rdi_elsize, rcx_lh); // log2 elsize
1857    __ movl2ptr(count, LENGTH); // elements count
1858
1859    BLOCK_COMMENT("choose copy loop based on element size");
1860    __ cmpl(rdi_elsize, 0);
1861
1862    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1863    __ cmpl(rdi_elsize, LogBytesPerShort);
1864    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1865    __ cmpl(rdi_elsize, LogBytesPerInt);
1866    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1867#ifdef ASSERT
1868    __ cmpl(rdi_elsize, LogBytesPerLong);
1869    __ jccb(Assembler::notEqual, L_failed);
1870#endif
1871    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1872    __ pop(rsi);
1873    __ jump(RuntimeAddress(entry_jlong_arraycopy));
1874
1875  __ BIND(L_failed);
1876    __ xorptr(rax, rax);
1877    __ notptr(rax); // return -1
1878    __ pop(rdi);
1879    __ pop(rsi);
1880    __ leave(); // required for proper stackwalking of RuntimeStub frame
1881    __ ret(0);
1882
1883    // ObjArrayKlass
1884  __ BIND(L_objArray);
1885    // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1886
1887    Label L_plain_copy, L_checkcast_copy;
1888    //  test array classes for subtyping
1889    __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1890    __ jccb(Assembler::notEqual, L_checkcast_copy);
1891
1892    // Identically typed arrays can be copied without element-wise checks.
1893    assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1894    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1895
1896  __ BIND(L_plain_copy);
1897    __ movl2ptr(count, LENGTH); // elements count
1898    __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1899    __ lea(from, Address(src, src_pos, Address::times_ptr,
1900                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1901    __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1902    __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1903                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1904    __ movptr(FROM,  from);   // src_addr
1905    __ movptr(TO,    to);     // dst_addr
1906    __ movl(COUNT, count);  // count
1907    __ jump(RuntimeAddress(entry_oop_arraycopy));
1908
1909  __ BIND(L_checkcast_copy);
1910    // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1911    {
1912      // Handy offsets:
1913      int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1914      int sco_offset = in_bytes(Klass::super_check_offset_offset());
1915
1916      Register rsi_dst_klass = rsi;
1917      Register rdi_temp      = rdi;
1918      assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1919      assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1920      Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1921
1922      // Before looking at dst.length, make sure dst is also an objArray.
1923      __ movptr(rsi_dst_klass, dst_klass_addr);
1924      __ cmpl(dst_klass_lh_addr, objArray_lh);
1925      __ jccb(Assembler::notEqual, L_failed);
1926
1927      // It is safe to examine both src.length and dst.length.
1928      __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1929      arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1930      // (Now src_pos and dst_pos are killed, but not src and dst.)
1931
1932      // We'll need this temp (don't forget to pop it after the type check).
1933      __ push(rbx);
1934      Register rbx_src_klass = rbx;
1935
1936      __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1937      __ movptr(rsi_dst_klass, dst_klass_addr);
1938      Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1939      Label L_fail_array_check;
1940      generate_type_check(rbx_src_klass,
1941                          super_check_offset_addr, dst_klass_addr,
1942                          rdi_temp, NULL, &L_fail_array_check);
1943      // (On fall-through, we have passed the array type check.)
1944      __ pop(rbx);
1945      __ jmp(L_plain_copy);
1946
1947      __ BIND(L_fail_array_check);
1948      // Reshuffle arguments so we can call checkcast_arraycopy:
1949
1950      // match initial saves for checkcast_arraycopy
1951      // push(rsi);    // already done; see above
1952      // push(rdi);    // already done; see above
1953      // push(rbx);    // already done; see above
1954
1955      // Marshal outgoing arguments now, freeing registers.
1956      Address   from_arg(rsp, 16+ 4);   // from
1957      Address     to_arg(rsp, 16+ 8);   // to
1958      Address length_arg(rsp, 16+12);   // elements count
1959      Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1960      Address  ckval_arg(rsp, 16+20);   // super_klass
1961
1962      Address SRC_POS_arg(rsp, 16+ 8);
1963      Address DST_POS_arg(rsp, 16+16);
1964      Address  LENGTH_arg(rsp, 16+20);
1965      // push rbx, changed the incoming offsets (why not just use rbp,??)
1966      // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1967
1968      __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1969      __ movl2ptr(length, LENGTH_arg);    // reload elements count
1970      __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1971      __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1972
1973      __ movptr(ckval_arg, rbx);          // destination element type
1974      __ movl(rbx, Address(rbx, sco_offset));
1975      __ movl(ckoff_arg, rbx);          // corresponding class check offset
1976
1977      __ movl(length_arg, length);      // outgoing length argument
1978
1979      __ lea(from, Address(src, src_pos, Address::times_ptr,
1980                            arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1981      __ movptr(from_arg, from);
1982
1983      __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1984                          arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1985      __ movptr(to_arg, to);
1986      __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1987    }
1988
1989    return start;
1990  }
1991
1992  void generate_arraycopy_stubs() {
1993    address entry;
1994    address entry_jbyte_arraycopy;
1995    address entry_jshort_arraycopy;
1996    address entry_jint_arraycopy;
1997    address entry_oop_arraycopy;
1998    address entry_jlong_arraycopy;
1999    address entry_checkcast_arraycopy;
2000
2001    StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
2002        generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
2003                               "arrayof_jbyte_disjoint_arraycopy");
2004    StubRoutines::_arrayof_jbyte_arraycopy =
2005        generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
2006                               NULL, "arrayof_jbyte_arraycopy");
2007    StubRoutines::_jbyte_disjoint_arraycopy =
2008        generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
2009                               "jbyte_disjoint_arraycopy");
2010    StubRoutines::_jbyte_arraycopy =
2011        generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
2012                               &entry_jbyte_arraycopy, "jbyte_arraycopy");
2013
2014    StubRoutines::_arrayof_jshort_disjoint_arraycopy =
2015        generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
2016                               "arrayof_jshort_disjoint_arraycopy");
2017    StubRoutines::_arrayof_jshort_arraycopy =
2018        generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2019                               NULL, "arrayof_jshort_arraycopy");
2020    StubRoutines::_jshort_disjoint_arraycopy =
2021        generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2022                               "jshort_disjoint_arraycopy");
2023    StubRoutines::_jshort_arraycopy =
2024        generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2025                               &entry_jshort_arraycopy, "jshort_arraycopy");
2026
2027    // Next arrays are always aligned on 4 bytes at least.
2028    StubRoutines::_jint_disjoint_arraycopy =
2029        generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2030                               "jint_disjoint_arraycopy");
2031    StubRoutines::_jint_arraycopy =
2032        generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2033                               &entry_jint_arraycopy, "jint_arraycopy");
2034
2035    StubRoutines::_oop_disjoint_arraycopy =
2036        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2037                               "oop_disjoint_arraycopy");
2038    StubRoutines::_oop_arraycopy =
2039        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2040                               &entry_oop_arraycopy, "oop_arraycopy");
2041
2042    StubRoutines::_oop_disjoint_arraycopy_uninit =
2043        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2044                               "oop_disjoint_arraycopy_uninit",
2045                               /*dest_uninitialized*/true);
2046    StubRoutines::_oop_arraycopy_uninit =
2047        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2048                               NULL, "oop_arraycopy_uninit",
2049                               /*dest_uninitialized*/true);
2050
2051    StubRoutines::_jlong_disjoint_arraycopy =
2052        generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2053    StubRoutines::_jlong_arraycopy =
2054        generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2055                                    "jlong_arraycopy");
2056
2057    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2058    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2059    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2060    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2061    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2062    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2063
2064    StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2065    StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2066    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2067    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2068
2069    StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2070    StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2071    StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2072    StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2073
2074    StubRoutines::_checkcast_arraycopy =
2075        generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2076    StubRoutines::_checkcast_arraycopy_uninit =
2077        generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2078
2079    StubRoutines::_unsafe_arraycopy =
2080        generate_unsafe_copy("unsafe_arraycopy",
2081                               entry_jbyte_arraycopy,
2082                               entry_jshort_arraycopy,
2083                               entry_jint_arraycopy,
2084                               entry_jlong_arraycopy);
2085
2086    StubRoutines::_generic_arraycopy =
2087        generate_generic_copy("generic_arraycopy",
2088                               entry_jbyte_arraycopy,
2089                               entry_jshort_arraycopy,
2090                               entry_jint_arraycopy,
2091                               entry_oop_arraycopy,
2092                               entry_jlong_arraycopy,
2093                               entry_checkcast_arraycopy);
2094  }
2095
2096  void generate_math_stubs() {
2097    {
2098      StubCodeMark mark(this, "StubRoutines", "log10");
2099      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2100
2101      __ fld_d(Address(rsp, 4));
2102      __ flog10();
2103      __ ret(0);
2104    }
2105    {
2106      StubCodeMark mark(this, "StubRoutines", "tan");
2107      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2108
2109      __ fld_d(Address(rsp, 4));
2110      __ trigfunc('t');
2111      __ ret(0);
2112    }
2113  }
2114
2115  // AES intrinsic stubs
2116  enum {AESBlockSize = 16};
2117
2118  address generate_key_shuffle_mask() {
2119    __ align(16);
2120    StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2121    address start = __ pc();
2122    __ emit_data(0x00010203, relocInfo::none, 0 );
2123    __ emit_data(0x04050607, relocInfo::none, 0 );
2124    __ emit_data(0x08090a0b, relocInfo::none, 0 );
2125    __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2126    return start;
2127  }
2128
2129  address generate_counter_shuffle_mask() {
2130    __ align(16);
2131    StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
2132    address start = __ pc();
2133    __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
2134    __ emit_data(0x08090a0b, relocInfo::none, 0);
2135    __ emit_data(0x04050607, relocInfo::none, 0);
2136    __ emit_data(0x00010203, relocInfo::none, 0);
2137    return start;
2138  }
2139
2140  // Utility routine for loading a 128-bit key word in little endian format
2141  // can optionally specify that the shuffle mask is already in an xmmregister
2142  void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2143    __ movdqu(xmmdst, Address(key, offset));
2144    if (xmm_shuf_mask != NULL) {
2145      __ pshufb(xmmdst, xmm_shuf_mask);
2146    } else {
2147      __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2148    }
2149  }
2150
2151  // aesenc using specified key+offset
2152  // can optionally specify that the shuffle mask is already in an xmmregister
2153  void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2154    load_key(xmmtmp, key, offset, xmm_shuf_mask);
2155    __ aesenc(xmmdst, xmmtmp);
2156  }
2157
2158  // aesdec using specified key+offset
2159  // can optionally specify that the shuffle mask is already in an xmmregister
2160  void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2161    load_key(xmmtmp, key, offset, xmm_shuf_mask);
2162    __ aesdec(xmmdst, xmmtmp);
2163  }
2164
2165  // Utility routine for increase 128bit counter (iv in CTR mode)
2166  //  XMM_128bit,  D3, D2, D1, D0
2167  void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
2168    __ pextrd(reg, xmmdst, 0x0);
2169    __ addl(reg, inc_delta);
2170    __ pinsrd(xmmdst, reg, 0x0);
2171    __ jcc(Assembler::carryClear, next_block); // jump if no carry
2172
2173    __ pextrd(reg, xmmdst, 0x01); // Carry-> D1
2174    __ addl(reg, 0x01);
2175    __ pinsrd(xmmdst, reg, 0x01);
2176    __ jcc(Assembler::carryClear, next_block); // jump if no carry
2177
2178    __ pextrd(reg, xmmdst, 0x02); // Carry-> D2
2179    __ addl(reg, 0x01);
2180    __ pinsrd(xmmdst, reg, 0x02);
2181    __ jcc(Assembler::carryClear, next_block); // jump if no carry
2182
2183    __ pextrd(reg, xmmdst, 0x03); // Carry -> D3
2184    __ addl(reg, 0x01);
2185    __ pinsrd(xmmdst, reg, 0x03);
2186
2187    __ BIND(next_block);          // next instruction
2188  }
2189
2190
2191  // Arguments:
2192  //
2193  // Inputs:
2194  //   c_rarg0   - source byte array address
2195  //   c_rarg1   - destination byte array address
2196  //   c_rarg2   - K (key) in little endian int array
2197  //
2198  address generate_aescrypt_encryptBlock() {
2199    assert(UseAES, "need AES instructions and misaligned SSE support");
2200    __ align(CodeEntryAlignment);
2201    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2202    Label L_doLast;
2203    address start = __ pc();
2204
2205    const Register from        = rdx;      // source array address
2206    const Register to          = rdx;      // destination array address
2207    const Register key         = rcx;      // key array address
2208    const Register keylen      = rax;
2209    const Address  from_param(rbp, 8+0);
2210    const Address  to_param  (rbp, 8+4);
2211    const Address  key_param (rbp, 8+8);
2212
2213    const XMMRegister xmm_result = xmm0;
2214    const XMMRegister xmm_key_shuf_mask = xmm1;
2215    const XMMRegister xmm_temp1  = xmm2;
2216    const XMMRegister xmm_temp2  = xmm3;
2217    const XMMRegister xmm_temp3  = xmm4;
2218    const XMMRegister xmm_temp4  = xmm5;
2219
2220    __ enter();   // required for proper stackwalking of RuntimeStub frame
2221
2222    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2223    // context for the registers used, where all instructions below are using 128-bit mode
2224    // On EVEX without VL and BW, these instructions will all be AVX.
2225    if (VM_Version::supports_avx512vlbw()) {
2226      __ movl(rdx, 0xffff);
2227      __ kmovdl(k1, rdx);
2228    }
2229
2230    __ movptr(from, from_param);
2231    __ movptr(key, key_param);
2232
2233    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2234    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2235
2236    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2237    __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2238    __ movptr(to, to_param);
2239
2240    // For encryption, the java expanded key ordering is just what we need
2241
2242    load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2243    __ pxor(xmm_result, xmm_temp1);
2244
2245    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2246    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2247    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2248    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2249
2250    __ aesenc(xmm_result, xmm_temp1);
2251    __ aesenc(xmm_result, xmm_temp2);
2252    __ aesenc(xmm_result, xmm_temp3);
2253    __ aesenc(xmm_result, xmm_temp4);
2254
2255    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2256    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2257    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2258    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2259
2260    __ aesenc(xmm_result, xmm_temp1);
2261    __ aesenc(xmm_result, xmm_temp2);
2262    __ aesenc(xmm_result, xmm_temp3);
2263    __ aesenc(xmm_result, xmm_temp4);
2264
2265    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2266    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2267
2268    __ cmpl(keylen, 44);
2269    __ jccb(Assembler::equal, L_doLast);
2270
2271    __ aesenc(xmm_result, xmm_temp1);
2272    __ aesenc(xmm_result, xmm_temp2);
2273
2274    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2275    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2276
2277    __ cmpl(keylen, 52);
2278    __ jccb(Assembler::equal, L_doLast);
2279
2280    __ aesenc(xmm_result, xmm_temp1);
2281    __ aesenc(xmm_result, xmm_temp2);
2282
2283    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2284    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2285
2286    __ BIND(L_doLast);
2287    __ aesenc(xmm_result, xmm_temp1);
2288    __ aesenclast(xmm_result, xmm_temp2);
2289    __ movdqu(Address(to, 0), xmm_result);        // store the result
2290    __ xorptr(rax, rax); // return 0
2291    __ leave(); // required for proper stackwalking of RuntimeStub frame
2292    __ ret(0);
2293
2294    return start;
2295  }
2296
2297
2298  // Arguments:
2299  //
2300  // Inputs:
2301  //   c_rarg0   - source byte array address
2302  //   c_rarg1   - destination byte array address
2303  //   c_rarg2   - K (key) in little endian int array
2304  //
2305  address generate_aescrypt_decryptBlock() {
2306    assert(UseAES, "need AES instructions and misaligned SSE support");
2307    __ align(CodeEntryAlignment);
2308    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2309    Label L_doLast;
2310    address start = __ pc();
2311
2312    const Register from        = rdx;      // source array address
2313    const Register to          = rdx;      // destination array address
2314    const Register key         = rcx;      // key array address
2315    const Register keylen      = rax;
2316    const Address  from_param(rbp, 8+0);
2317    const Address  to_param  (rbp, 8+4);
2318    const Address  key_param (rbp, 8+8);
2319
2320    const XMMRegister xmm_result = xmm0;
2321    const XMMRegister xmm_key_shuf_mask = xmm1;
2322    const XMMRegister xmm_temp1  = xmm2;
2323    const XMMRegister xmm_temp2  = xmm3;
2324    const XMMRegister xmm_temp3  = xmm4;
2325    const XMMRegister xmm_temp4  = xmm5;
2326
2327    __ enter(); // required for proper stackwalking of RuntimeStub frame
2328
2329    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2330    // context for the registers used, where all instructions below are using 128-bit mode
2331    // On EVEX without VL and BW, these instructions will all be AVX.
2332    if (VM_Version::supports_avx512vlbw()) {
2333      __ movl(rdx, 0xffff);
2334      __ kmovdl(k1, rdx);
2335    }
2336
2337    __ movptr(from, from_param);
2338    __ movptr(key, key_param);
2339
2340    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2341    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2342
2343    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2344    __ movdqu(xmm_result, Address(from, 0));
2345    __ movptr(to, to_param);
2346
2347    // for decryption java expanded key ordering is rotated one position from what we want
2348    // so we start from 0x10 here and hit 0x00 last
2349    // we don't know if the key is aligned, hence not using load-execute form
2350    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2351    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2352    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2353    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2354
2355    __ pxor  (xmm_result, xmm_temp1);
2356    __ aesdec(xmm_result, xmm_temp2);
2357    __ aesdec(xmm_result, xmm_temp3);
2358    __ aesdec(xmm_result, xmm_temp4);
2359
2360    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2361    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2362    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2363    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2364
2365    __ aesdec(xmm_result, xmm_temp1);
2366    __ aesdec(xmm_result, xmm_temp2);
2367    __ aesdec(xmm_result, xmm_temp3);
2368    __ aesdec(xmm_result, xmm_temp4);
2369
2370    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2371    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2372    load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2373
2374    __ cmpl(keylen, 44);
2375    __ jccb(Assembler::equal, L_doLast);
2376
2377    __ aesdec(xmm_result, xmm_temp1);
2378    __ aesdec(xmm_result, xmm_temp2);
2379
2380    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2381    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2382
2383    __ cmpl(keylen, 52);
2384    __ jccb(Assembler::equal, L_doLast);
2385
2386    __ aesdec(xmm_result, xmm_temp1);
2387    __ aesdec(xmm_result, xmm_temp2);
2388
2389    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2390    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2391
2392    __ BIND(L_doLast);
2393    __ aesdec(xmm_result, xmm_temp1);
2394    __ aesdec(xmm_result, xmm_temp2);
2395
2396    // for decryption the aesdeclast operation is always on key+0x00
2397    __ aesdeclast(xmm_result, xmm_temp3);
2398    __ movdqu(Address(to, 0), xmm_result);  // store the result
2399    __ xorptr(rax, rax); // return 0
2400    __ leave(); // required for proper stackwalking of RuntimeStub frame
2401    __ ret(0);
2402
2403    return start;
2404  }
2405
2406  void handleSOERegisters(bool saving) {
2407    const int saveFrameSizeInBytes = 4 * wordSize;
2408    const Address saved_rbx     (rbp, -3 * wordSize);
2409    const Address saved_rsi     (rbp, -2 * wordSize);
2410    const Address saved_rdi     (rbp, -1 * wordSize);
2411
2412    if (saving) {
2413      __ subptr(rsp, saveFrameSizeInBytes);
2414      __ movptr(saved_rsi, rsi);
2415      __ movptr(saved_rdi, rdi);
2416      __ movptr(saved_rbx, rbx);
2417    } else {
2418      // restoring
2419      __ movptr(rsi, saved_rsi);
2420      __ movptr(rdi, saved_rdi);
2421      __ movptr(rbx, saved_rbx);
2422    }
2423  }
2424
2425  // Arguments:
2426  //
2427  // Inputs:
2428  //   c_rarg0   - source byte array address
2429  //   c_rarg1   - destination byte array address
2430  //   c_rarg2   - K (key) in little endian int array
2431  //   c_rarg3   - r vector byte array address
2432  //   c_rarg4   - input length
2433  //
2434  // Output:
2435  //   rax       - input length
2436  //
2437  address generate_cipherBlockChaining_encryptAESCrypt() {
2438    assert(UseAES, "need AES instructions and misaligned SSE support");
2439    __ align(CodeEntryAlignment);
2440    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2441    address start = __ pc();
2442
2443    Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2444    const Register from        = rsi;      // source array address
2445    const Register to          = rdx;      // destination array address
2446    const Register key         = rcx;      // key array address
2447    const Register rvec        = rdi;      // r byte array initialized from initvector array address
2448                                           // and left with the results of the last encryption block
2449    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2450    const Register pos         = rax;
2451
2452    // xmm register assignments for the loops below
2453    const XMMRegister xmm_result = xmm0;
2454    const XMMRegister xmm_temp   = xmm1;
2455    // first 6 keys preloaded into xmm2-xmm7
2456    const int XMM_REG_NUM_KEY_FIRST = 2;
2457    const int XMM_REG_NUM_KEY_LAST  = 7;
2458    const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2459
2460    __ enter(); // required for proper stackwalking of RuntimeStub frame
2461    handleSOERegisters(true /*saving*/);
2462
2463    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2464    // context for the registers used, where all instructions below are using 128-bit mode
2465    // On EVEX without VL and BW, these instructions will all be AVX.
2466    if (VM_Version::supports_avx512vlbw()) {
2467      __ movl(rdx, 0xffff);
2468      __ kmovdl(k1, rdx);
2469    }
2470
2471    // load registers from incoming parameters
2472    const Address  from_param(rbp, 8+0);
2473    const Address  to_param  (rbp, 8+4);
2474    const Address  key_param (rbp, 8+8);
2475    const Address  rvec_param (rbp, 8+12);
2476    const Address  len_param  (rbp, 8+16);
2477    __ movptr(from , from_param);
2478    __ movptr(to   , to_param);
2479    __ movptr(key  , key_param);
2480    __ movptr(rvec , rvec_param);
2481    __ movptr(len_reg , len_param);
2482
2483    const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2484    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2485    // load up xmm regs 2 thru 7 with keys 0-5
2486    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2487      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2488      offset += 0x10;
2489    }
2490
2491    __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2492
2493    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2494    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2495    __ cmpl(rax, 44);
2496    __ jcc(Assembler::notEqual, L_key_192_256);
2497
2498    // 128 bit code follows here
2499    __ movl(pos, 0);
2500    __ align(OptoLoopAlignment);
2501    __ BIND(L_loopTop_128);
2502    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2503    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2504
2505    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2506    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2507      __ aesenc(xmm_result, as_XMMRegister(rnum));
2508    }
2509    for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2510      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2511    }
2512    load_key(xmm_temp, key, 0xa0);
2513    __ aesenclast(xmm_result, xmm_temp);
2514
2515    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2516    // no need to store r to memory until we exit
2517    __ addptr(pos, AESBlockSize);
2518    __ subptr(len_reg, AESBlockSize);
2519    __ jcc(Assembler::notEqual, L_loopTop_128);
2520
2521    __ BIND(L_exit);
2522    __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2523
2524    handleSOERegisters(false /*restoring*/);
2525    __ movptr(rax, len_param); // return length
2526    __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2527    __ ret(0);
2528
2529    __ BIND(L_key_192_256);
2530    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2531    __ cmpl(rax, 52);
2532    __ jcc(Assembler::notEqual, L_key_256);
2533
2534    // 192-bit code follows here (could be changed to use more xmm registers)
2535    __ movl(pos, 0);
2536    __ align(OptoLoopAlignment);
2537    __ BIND(L_loopTop_192);
2538    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2539    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2540
2541    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2542    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2543      __ aesenc(xmm_result, as_XMMRegister(rnum));
2544    }
2545    for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2546      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2547    }
2548    load_key(xmm_temp, key, 0xc0);
2549    __ aesenclast(xmm_result, xmm_temp);
2550
2551    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2552    // no need to store r to memory until we exit
2553    __ addptr(pos, AESBlockSize);
2554    __ subptr(len_reg, AESBlockSize);
2555    __ jcc(Assembler::notEqual, L_loopTop_192);
2556    __ jmp(L_exit);
2557
2558    __ BIND(L_key_256);
2559    // 256-bit code follows here (could be changed to use more xmm registers)
2560    __ movl(pos, 0);
2561    __ align(OptoLoopAlignment);
2562    __ BIND(L_loopTop_256);
2563    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2564    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2565
2566    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2567    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2568      __ aesenc(xmm_result, as_XMMRegister(rnum));
2569    }
2570    for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2571      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2572    }
2573    load_key(xmm_temp, key, 0xe0);
2574    __ aesenclast(xmm_result, xmm_temp);
2575
2576    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2577    // no need to store r to memory until we exit
2578    __ addptr(pos, AESBlockSize);
2579    __ subptr(len_reg, AESBlockSize);
2580    __ jcc(Assembler::notEqual, L_loopTop_256);
2581    __ jmp(L_exit);
2582
2583    return start;
2584  }
2585
2586
2587  // CBC AES Decryption.
2588  // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2589  //
2590  // Arguments:
2591  //
2592  // Inputs:
2593  //   c_rarg0   - source byte array address
2594  //   c_rarg1   - destination byte array address
2595  //   c_rarg2   - K (key) in little endian int array
2596  //   c_rarg3   - r vector byte array address
2597  //   c_rarg4   - input length
2598  //
2599  // Output:
2600  //   rax       - input length
2601  //
2602
2603  address generate_cipherBlockChaining_decryptAESCrypt() {
2604    assert(UseAES, "need AES instructions and misaligned SSE support");
2605    __ align(CodeEntryAlignment);
2606    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2607    address start = __ pc();
2608
2609    Label L_exit, L_key_192_256, L_key_256;
2610    Label L_singleBlock_loopTop_128;
2611    Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2612    const Register from        = rsi;      // source array address
2613    const Register to          = rdx;      // destination array address
2614    const Register key         = rcx;      // key array address
2615    const Register rvec        = rdi;      // r byte array initialized from initvector array address
2616                                           // and left with the results of the last encryption block
2617    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2618    const Register pos         = rax;
2619
2620    // xmm register assignments for the loops below
2621    const XMMRegister xmm_result = xmm0;
2622    const XMMRegister xmm_temp   = xmm1;
2623    // first 6 keys preloaded into xmm2-xmm7
2624    const int XMM_REG_NUM_KEY_FIRST = 2;
2625    const int XMM_REG_NUM_KEY_LAST  = 7;
2626    const int FIRST_NON_REG_KEY_offset = 0x70;
2627    const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2628
2629    __ enter(); // required for proper stackwalking of RuntimeStub frame
2630    handleSOERegisters(true /*saving*/);
2631
2632    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2633    // context for the registers used, where all instructions below are using 128-bit mode
2634    // On EVEX without VL and BW, these instructions will all be AVX.
2635    if (VM_Version::supports_avx512vlbw()) {
2636      __ movl(rdx, 0xffff);
2637      __ kmovdl(k1, rdx);
2638    }
2639
2640    // load registers from incoming parameters
2641    const Address  from_param(rbp, 8+0);
2642    const Address  to_param  (rbp, 8+4);
2643    const Address  key_param (rbp, 8+8);
2644    const Address  rvec_param (rbp, 8+12);
2645    const Address  len_param  (rbp, 8+16);
2646    __ movptr(from , from_param);
2647    __ movptr(to   , to_param);
2648    __ movptr(key  , key_param);
2649    __ movptr(rvec , rvec_param);
2650    __ movptr(len_reg , len_param);
2651
2652    // the java expanded key ordering is rotated one position from what we want
2653    // so we start from 0x10 here and hit 0x00 last
2654    const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2655    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2656    // load up xmm regs 2 thru 6 with first 5 keys
2657    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2658      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2659      offset += 0x10;
2660    }
2661
2662    // inside here, use the rvec register to point to previous block cipher
2663    // with which we xor at the end of each newly decrypted block
2664    const Register  prev_block_cipher_ptr = rvec;
2665
2666    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2667    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2668    __ cmpl(rax, 44);
2669    __ jcc(Assembler::notEqual, L_key_192_256);
2670
2671
2672    // 128-bit code follows here, parallelized
2673    __ movl(pos, 0);
2674    __ align(OptoLoopAlignment);
2675    __ BIND(L_singleBlock_loopTop_128);
2676    __ cmpptr(len_reg, 0);           // any blocks left??
2677    __ jcc(Assembler::equal, L_exit);
2678    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2679    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2680    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2681      __ aesdec(xmm_result, as_XMMRegister(rnum));
2682    }
2683    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2684      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2685    }
2686    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2687    __ aesdeclast(xmm_result, xmm_temp);
2688    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2689    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2690    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2691    // no need to store r to memory until we exit
2692    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2693    __ addptr(pos, AESBlockSize);
2694    __ subptr(len_reg, AESBlockSize);
2695    __ jmp(L_singleBlock_loopTop_128);
2696
2697
2698    __ BIND(L_exit);
2699    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2700    __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2701    __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2702    handleSOERegisters(false /*restoring*/);
2703    __ movptr(rax, len_param); // return length
2704    __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2705    __ ret(0);
2706
2707
2708    __ BIND(L_key_192_256);
2709    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2710    __ cmpl(rax, 52);
2711    __ jcc(Assembler::notEqual, L_key_256);
2712
2713    // 192-bit code follows here (could be optimized to use parallelism)
2714    __ movl(pos, 0);
2715    __ align(OptoLoopAlignment);
2716    __ BIND(L_singleBlock_loopTop_192);
2717    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2718    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2719    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2720      __ aesdec(xmm_result, as_XMMRegister(rnum));
2721    }
2722    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2723      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2724    }
2725    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2726    __ aesdeclast(xmm_result, xmm_temp);
2727    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2728    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2729    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2730    // no need to store r to memory until we exit
2731    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2732    __ addptr(pos, AESBlockSize);
2733    __ subptr(len_reg, AESBlockSize);
2734    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2735    __ jmp(L_exit);
2736
2737    __ BIND(L_key_256);
2738    // 256-bit code follows here (could be optimized to use parallelism)
2739    __ movl(pos, 0);
2740    __ align(OptoLoopAlignment);
2741    __ BIND(L_singleBlock_loopTop_256);
2742    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2743    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2744    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2745      __ aesdec(xmm_result, as_XMMRegister(rnum));
2746    }
2747    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2748      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2749    }
2750    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2751    __ aesdeclast(xmm_result, xmm_temp);
2752    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2753    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2754    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2755    // no need to store r to memory until we exit
2756    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2757    __ addptr(pos, AESBlockSize);
2758    __ subptr(len_reg, AESBlockSize);
2759    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2760    __ jmp(L_exit);
2761
2762    return start;
2763  }
2764
2765
2766  // CTR AES crypt.
2767  // In 32-bit stub, parallelize 4 blocks at a time
2768  // Arguments:
2769  //
2770  // Inputs:
2771  //   c_rarg0   - source byte array address
2772  //   c_rarg1   - destination byte array address
2773  //   c_rarg2   - K (key) in little endian int array
2774  //   c_rarg3   - counter vector byte array address
2775  //   c_rarg4   - input length
2776  //
2777  // Output:
2778  //   rax       - input length
2779  //
2780  address generate_counterMode_AESCrypt_Parallel() {
2781    assert(UseAES, "need AES instructions and misaligned SSE support");
2782    __ align(CodeEntryAlignment);
2783    StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
2784    address start = __ pc();
2785    const Register from        = rsi;      // source array address
2786    const Register to          = rdx;      // destination array address
2787    const Register key         = rcx;      // key array address
2788    const Register counter     = rdi;      // counter byte array initialized from initvector array address
2789                                           // and updated with the incremented counter in the end
2790    const Register len_reg     = rbx;
2791    const Register pos         = rax;
2792
2793    __ enter(); // required for proper stackwalking of RuntimeStub frame
2794    handleSOERegisters(true /*saving*/); // save rbx, rsi, rdi
2795
2796    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
2797    // context for the registers used, where all instructions below are using 128-bit mode
2798    // On EVEX without VL and BW, these instructions will all be AVX.
2799    if (VM_Version::supports_avx512vlbw()) {
2800      __ movl(rdx, 0xffff);
2801      __ kmovdl(k1, rdx);
2802    }
2803
2804    // load registers from incoming parameters
2805    const Address  from_param(rbp, 8+0);
2806    const Address  to_param  (rbp, 8+4);
2807    const Address  key_param (rbp, 8+8);
2808    const Address  rvec_param (rbp, 8+12);
2809    const Address  len_param  (rbp, 8+16);
2810    const Address  saved_counter_param(rbp, 8 + 20);
2811    const Address  used_addr_param(rbp, 8 + 24);
2812
2813    __ movptr(from , from_param);
2814    __ movptr(to   , to_param);
2815    __ movptr(len_reg , len_param);
2816
2817    // Use the partially used encrpyted counter from last invocation
2818    Label L_exit_preLoop, L_preLoop_start;
2819
2820    // Use the registers 'counter' and 'key' here in this preloop
2821    // to hold of last 2 params 'used' and 'saved_encCounter_start'
2822    Register used = counter;
2823    Register saved_encCounter_start = key;
2824    Register used_addr = saved_encCounter_start;
2825
2826    __ movptr(used_addr, used_addr_param);
2827    __ movptr(used, Address(used_addr, 0));
2828    __ movptr(saved_encCounter_start, saved_counter_param);
2829
2830    __ BIND(L_preLoop_start);
2831    __ cmpptr(used, 16);
2832    __ jcc(Assembler::aboveEqual, L_exit_preLoop);
2833    __ cmpptr(len_reg, 0);
2834    __ jcc(Assembler::lessEqual, L_exit_preLoop);
2835    __ movb(rax, Address(saved_encCounter_start, used));
2836    __ xorb(rax, Address(from, 0));
2837    __ movb(Address(to, 0), rax);
2838    __ addptr(from, 1);
2839    __ addptr(to, 1);
2840    __ addptr(used, 1);
2841    __ subptr(len_reg, 1);
2842
2843    __ jmp(L_preLoop_start);
2844
2845    __ BIND(L_exit_preLoop);
2846    __ movptr(used_addr, used_addr_param);
2847    __ movptr(used_addr, used_addr_param);
2848    __ movl(Address(used_addr, 0), used);
2849
2850    // load the parameters 'key' and 'counter'
2851    __ movptr(key, key_param);
2852    __ movptr(counter, rvec_param);
2853
2854    // xmm register assignments for the loops below
2855    const XMMRegister xmm_curr_counter      = xmm0;
2856    const XMMRegister xmm_counter_shuf_mask = xmm1;  // need to be reloaded
2857    const XMMRegister xmm_key_shuf_mask     = xmm2;  // need to be reloaded
2858    const XMMRegister xmm_key               = xmm3;
2859    const XMMRegister xmm_result0           = xmm4;
2860    const XMMRegister xmm_result1           = xmm5;
2861    const XMMRegister xmm_result2           = xmm6;
2862    const XMMRegister xmm_result3           = xmm7;
2863    const XMMRegister xmm_from0             = xmm1;   //reuse XMM register
2864    const XMMRegister xmm_from1             = xmm2;
2865    const XMMRegister xmm_from2             = xmm3;
2866    const XMMRegister xmm_from3             = xmm4;
2867
2868    //for key_128, key_192, key_256
2869    const int rounds[3] = {10, 12, 14};
2870    Label L_singleBlockLoopTop[3];
2871    Label L_multiBlock_loopTop[3];
2872    Label L_key192_top, L_key256_top;
2873    Label L_incCounter[3][4]; // 3: different key length,  4: 4 blocks at a time
2874    Label L_incCounter_single[3]; //for single block, key128, key192, key256
2875    Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
2876    Label L_processTail_extr[3], L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
2877
2878    Label L_exit;
2879    const int PARALLEL_FACTOR = 4;  //because of the limited register number
2880
2881    // initialize counter with initial counter
2882    __ movdqu(xmm_curr_counter, Address(counter, 0x00));
2883    __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2884    __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled for increase
2885
2886    // key length could be only {11, 13, 15} * 4 = {44, 52, 60}
2887    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2888    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2889    __ cmpl(rax, 52);
2890    __ jcc(Assembler::equal, L_key192_top);
2891    __ cmpl(rax, 60);
2892    __ jcc(Assembler::equal, L_key256_top);
2893
2894    //key128 begins here
2895    __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
2896
2897#define CTR_DoFour(opc, src_reg)               \
2898    __ opc(xmm_result0, src_reg);              \
2899    __ opc(xmm_result1, src_reg);              \
2900    __ opc(xmm_result2, src_reg);              \
2901    __ opc(xmm_result3, src_reg);
2902
2903    // k == 0 :  generate code for key_128
2904    // k == 1 :  generate code for key_192
2905    // k == 2 :  generate code for key_256
2906    for (int k = 0; k < 3; ++k) {
2907      //multi blocks starts here
2908      __ align(OptoLoopAlignment);
2909      __ BIND(L_multiBlock_loopTop[k]);
2910      __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
2911      __ jcc(Assembler::less, L_singleBlockLoopTop[k]);
2912
2913      __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2914      __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2915
2916      //load, then increase counters
2917      CTR_DoFour(movdqa, xmm_curr_counter);
2918      __ push(rbx);
2919      inc_counter(rbx, xmm_result1, 0x01, L_incCounter[k][0]);
2920      inc_counter(rbx, xmm_result2, 0x02, L_incCounter[k][1]);
2921      inc_counter(rbx, xmm_result3, 0x03, L_incCounter[k][2]);
2922      inc_counter(rbx, xmm_curr_counter, 0x04, L_incCounter[k][3]);
2923      __ pop (rbx);
2924
2925      load_key(xmm_key, key, 0x00, xmm_key_shuf_mask); // load Round 0 key. interleaving for better performance
2926
2927      CTR_DoFour(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
2928      CTR_DoFour(pxor, xmm_key);   //PXOR with Round 0 key
2929
2930      for (int i = 1; i < rounds[k]; ++i) {
2931        load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2932        CTR_DoFour(aesenc, xmm_key);
2933      }
2934      load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2935      CTR_DoFour(aesenclast, xmm_key);
2936
2937      // get next PARALLEL_FACTOR blocks into xmm_from registers
2938      __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2939      __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
2940      __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
2941
2942      // PXOR with input text
2943      __ pxor(xmm_result0, xmm_from0); //result0 is xmm4
2944      __ pxor(xmm_result1, xmm_from1);
2945      __ pxor(xmm_result2, xmm_from2);
2946
2947      // store PARALLEL_FACTOR results into the next 64 bytes of output
2948      __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2949      __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
2950      __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
2951
2952      // do it here after xmm_result0 is saved, because xmm_from3 reuse the same register of xmm_result0.
2953      __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
2954      __ pxor(xmm_result3, xmm_from3);
2955      __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
2956
2957      __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
2958      __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
2959      __ jmp(L_multiBlock_loopTop[k]);
2960
2961      // singleBlock starts here
2962      __ align(OptoLoopAlignment);
2963      __ BIND(L_singleBlockLoopTop[k]);
2964      __ cmpptr(len_reg, 0);
2965      __ jcc(Assembler::equal, L_exit);
2966      __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2967      __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
2968      __ movdqa(xmm_result0, xmm_curr_counter);
2969      load_key(xmm_key, key, 0x00, xmm_key_shuf_mask);
2970      __ push(rbx);//rbx is used for increasing counter
2971      inc_counter(rbx, xmm_curr_counter, 0x01, L_incCounter_single[k]);
2972      __ pop (rbx);
2973      __ pshufb(xmm_result0, xmm_counter_shuf_mask);
2974      __ pxor(xmm_result0, xmm_key);
2975      for (int i = 1; i < rounds[k]; i++) {
2976        load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
2977        __ aesenc(xmm_result0, xmm_key);
2978      }
2979      load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
2980      __ aesenclast(xmm_result0, xmm_key);
2981      __ cmpptr(len_reg, AESBlockSize);
2982      __ jcc(Assembler::less, L_processTail_insr[k]);
2983        __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
2984        __ pxor(xmm_result0, xmm_from0);
2985        __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
2986        __ addptr(pos, AESBlockSize);
2987        __ subptr(len_reg, AESBlockSize);
2988        __ jmp(L_singleBlockLoopTop[k]);
2989
2990      __ BIND(L_processTail_insr[k]);                                               // Process the tail part of the input array
2991        __ addptr(pos, len_reg);                                                    // 1. Insert bytes from src array into xmm_from0 register
2992        __ testptr(len_reg, 8);
2993        __ jcc(Assembler::zero, L_processTail_4_insr[k]);
2994          __ subptr(pos,8);
2995          __ pinsrd(xmm_from0, Address(from, pos), 0);
2996          __ pinsrd(xmm_from0, Address(from, pos, Address::times_1, 4), 1);
2997        __ BIND(L_processTail_4_insr[k]);
2998        __ testptr(len_reg, 4);
2999        __ jcc(Assembler::zero, L_processTail_2_insr[k]);
3000          __ subptr(pos,4);
3001          __ pslldq(xmm_from0, 4);
3002          __ pinsrd(xmm_from0, Address(from, pos), 0);
3003        __ BIND(L_processTail_2_insr[k]);
3004        __ testptr(len_reg, 2);
3005        __ jcc(Assembler::zero, L_processTail_1_insr[k]);
3006          __ subptr(pos, 2);
3007          __ pslldq(xmm_from0, 2);
3008          __ pinsrw(xmm_from0, Address(from, pos), 0);
3009        __ BIND(L_processTail_1_insr[k]);
3010        __ testptr(len_reg, 1);
3011        __ jcc(Assembler::zero, L_processTail_exit_insr[k]);
3012          __ subptr(pos, 1);
3013          __ pslldq(xmm_from0, 1);
3014          __ pinsrb(xmm_from0, Address(from, pos), 0);
3015        __ BIND(L_processTail_exit_insr[k]);
3016
3017        __ movptr(saved_encCounter_start, saved_counter_param);
3018        __ movdqu(Address(saved_encCounter_start, 0), xmm_result0);               // 2. Perform pxor of the encrypted counter and plaintext Bytes.
3019        __ pxor(xmm_result0, xmm_from0);                                          //    Also the encrypted counter is saved for next invocation.
3020
3021        __ testptr(len_reg, 8);
3022        __ jcc(Assembler::zero, L_processTail_4_extr[k]);                        // 3. Extract bytes from xmm_result0 into the dest. array
3023          __ pextrd(Address(to, pos), xmm_result0, 0);
3024          __ pextrd(Address(to, pos, Address::times_1, 4), xmm_result0, 1);
3025          __ psrldq(xmm_result0, 8);
3026          __ addptr(pos, 8);
3027        __ BIND(L_processTail_4_extr[k]);
3028        __ testptr(len_reg, 4);
3029        __ jcc(Assembler::zero, L_processTail_2_extr[k]);
3030          __ pextrd(Address(to, pos), xmm_result0, 0);
3031          __ psrldq(xmm_result0, 4);
3032          __ addptr(pos, 4);
3033        __ BIND(L_processTail_2_extr[k]);
3034        __ testptr(len_reg, 2);
3035        __ jcc(Assembler::zero, L_processTail_1_extr[k]);
3036          __ pextrb(Address(to, pos), xmm_result0, 0);
3037          __ pextrb(Address(to, pos, Address::times_1, 1), xmm_result0, 1);
3038          __ psrldq(xmm_result0, 2);
3039          __ addptr(pos, 2);
3040        __ BIND(L_processTail_1_extr[k]);
3041        __ testptr(len_reg, 1);
3042        __ jcc(Assembler::zero, L_processTail_exit_extr[k]);
3043          __ pextrb(Address(to, pos), xmm_result0, 0);
3044
3045        __ BIND(L_processTail_exit_extr[k]);
3046        __ movptr(used_addr, used_addr_param);
3047        __ movl(Address(used_addr, 0), len_reg);
3048        __ jmp(L_exit);
3049    }
3050
3051    __ BIND(L_exit);
3052    __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
3053    __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
3054    __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
3055    handleSOERegisters(false /*restoring*/);
3056    __ movptr(rax, len_param); // return length
3057    __ leave();                // required for proper stackwalking of RuntimeStub frame
3058    __ ret(0);
3059
3060    __ BIND (L_key192_top);
3061    __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
3062    __ jmp(L_multiBlock_loopTop[1]); //key192
3063
3064    __ BIND (L_key256_top);
3065    __ movptr(pos, 0); // init pos before L_multiBlock_loopTop
3066    __ jmp(L_multiBlock_loopTop[2]); //key192
3067
3068    return start;
3069  }
3070
3071
3072  // byte swap x86 long
3073  address generate_ghash_long_swap_mask() {
3074    __ align(CodeEntryAlignment);
3075    StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
3076    address start = __ pc();
3077    __ emit_data(0x0b0a0908, relocInfo::none, 0);
3078    __ emit_data(0x0f0e0d0c, relocInfo::none, 0);
3079    __ emit_data(0x03020100, relocInfo::none, 0);
3080    __ emit_data(0x07060504, relocInfo::none, 0);
3081
3082  return start;
3083  }
3084
3085  // byte swap x86 byte array
3086  address generate_ghash_byte_swap_mask() {
3087    __ align(CodeEntryAlignment);
3088    StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
3089    address start = __ pc();
3090    __ emit_data(0x0c0d0e0f, relocInfo::none, 0);
3091    __ emit_data(0x08090a0b, relocInfo::none, 0);
3092    __ emit_data(0x04050607, relocInfo::none, 0);
3093    __ emit_data(0x00010203, relocInfo::none, 0);
3094  return start;
3095  }
3096
3097  /* Single and multi-block ghash operations */
3098  address generate_ghash_processBlocks() {
3099    assert(UseGHASHIntrinsics, "need GHASH intrinsics and CLMUL support");
3100    __ align(CodeEntryAlignment);
3101    Label L_ghash_loop, L_exit;
3102    StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
3103    address start = __ pc();
3104
3105    const Register state        = rdi;
3106    const Register subkeyH      = rsi;
3107    const Register data         = rdx;
3108    const Register blocks       = rcx;
3109
3110    const Address  state_param(rbp, 8+0);
3111    const Address  subkeyH_param(rbp, 8+4);
3112    const Address  data_param(rbp, 8+8);
3113    const Address  blocks_param(rbp, 8+12);
3114
3115    const XMMRegister xmm_temp0 = xmm0;
3116    const XMMRegister xmm_temp1 = xmm1;
3117    const XMMRegister xmm_temp2 = xmm2;
3118    const XMMRegister xmm_temp3 = xmm3;
3119    const XMMRegister xmm_temp4 = xmm4;
3120    const XMMRegister xmm_temp5 = xmm5;
3121    const XMMRegister xmm_temp6 = xmm6;
3122    const XMMRegister xmm_temp7 = xmm7;
3123
3124    __ enter();
3125    handleSOERegisters(true);  // Save registers
3126
3127    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
3128    // context for the registers used, where all instructions below are using 128-bit mode
3129    // On EVEX without VL and BW, these instructions will all be AVX.
3130    if (VM_Version::supports_avx512vlbw()) {
3131      __ movl(rdx, 0xffff);
3132      __ kmovdl(k1, rdx);
3133    }
3134
3135    __ movptr(state, state_param);
3136    __ movptr(subkeyH, subkeyH_param);
3137    __ movptr(data, data_param);
3138    __ movptr(blocks, blocks_param);
3139
3140    __ movdqu(xmm_temp0, Address(state, 0));
3141    __ pshufb(xmm_temp0, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3142
3143    __ movdqu(xmm_temp1, Address(subkeyH, 0));
3144    __ pshufb(xmm_temp1, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3145
3146    __ BIND(L_ghash_loop);
3147    __ movdqu(xmm_temp2, Address(data, 0));
3148    __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
3149
3150    __ pxor(xmm_temp0, xmm_temp2);
3151
3152    //
3153    // Multiply with the hash key
3154    //
3155    __ movdqu(xmm_temp3, xmm_temp0);
3156    __ pclmulqdq(xmm_temp3, xmm_temp1, 0);      // xmm3 holds a0*b0
3157    __ movdqu(xmm_temp4, xmm_temp0);
3158    __ pclmulqdq(xmm_temp4, xmm_temp1, 16);     // xmm4 holds a0*b1
3159
3160    __ movdqu(xmm_temp5, xmm_temp0);
3161    __ pclmulqdq(xmm_temp5, xmm_temp1, 1);      // xmm5 holds a1*b0
3162    __ movdqu(xmm_temp6, xmm_temp0);
3163    __ pclmulqdq(xmm_temp6, xmm_temp1, 17);     // xmm6 holds a1*b1
3164
3165    __ pxor(xmm_temp4, xmm_temp5);      // xmm4 holds a0*b1 + a1*b0
3166
3167    __ movdqu(xmm_temp5, xmm_temp4);    // move the contents of xmm4 to xmm5
3168    __ psrldq(xmm_temp4, 8);    // shift by xmm4 64 bits to the right
3169    __ pslldq(xmm_temp5, 8);    // shift by xmm5 64 bits to the left
3170    __ pxor(xmm_temp3, xmm_temp5);
3171    __ pxor(xmm_temp6, xmm_temp4);      // Register pair <xmm6:xmm3> holds the result
3172                                        // of the carry-less multiplication of
3173                                        // xmm0 by xmm1.
3174
3175    // We shift the result of the multiplication by one bit position
3176    // to the left to cope for the fact that the bits are reversed.
3177    __ movdqu(xmm_temp7, xmm_temp3);
3178    __ movdqu(xmm_temp4, xmm_temp6);
3179    __ pslld (xmm_temp3, 1);
3180    __ pslld(xmm_temp6, 1);
3181    __ psrld(xmm_temp7, 31);
3182    __ psrld(xmm_temp4, 31);
3183    __ movdqu(xmm_temp5, xmm_temp7);
3184    __ pslldq(xmm_temp4, 4);
3185    __ pslldq(xmm_temp7, 4);
3186    __ psrldq(xmm_temp5, 12);
3187    __ por(xmm_temp3, xmm_temp7);
3188    __ por(xmm_temp6, xmm_temp4);
3189    __ por(xmm_temp6, xmm_temp5);
3190
3191    //
3192    // First phase of the reduction
3193    //
3194    // Move xmm3 into xmm4, xmm5, xmm7 in order to perform the shifts
3195    // independently.
3196    __ movdqu(xmm_temp7, xmm_temp3);
3197    __ movdqu(xmm_temp4, xmm_temp3);
3198    __ movdqu(xmm_temp5, xmm_temp3);
3199    __ pslld(xmm_temp7, 31);    // packed right shift shifting << 31
3200    __ pslld(xmm_temp4, 30);    // packed right shift shifting << 30
3201    __ pslld(xmm_temp5, 25);    // packed right shift shifting << 25
3202    __ pxor(xmm_temp7, xmm_temp4);      // xor the shifted versions
3203    __ pxor(xmm_temp7, xmm_temp5);
3204    __ movdqu(xmm_temp4, xmm_temp7);
3205    __ pslldq(xmm_temp7, 12);
3206    __ psrldq(xmm_temp4, 4);
3207    __ pxor(xmm_temp3, xmm_temp7);      // first phase of the reduction complete
3208
3209    //
3210    // Second phase of the reduction
3211    //
3212    // Make 3 copies of xmm3 in xmm2, xmm5, xmm7 for doing these
3213    // shift operations.
3214    __ movdqu(xmm_temp2, xmm_temp3);
3215    __ movdqu(xmm_temp7, xmm_temp3);
3216    __ movdqu(xmm_temp5, xmm_temp3);
3217    __ psrld(xmm_temp2, 1);     // packed left shifting >> 1
3218    __ psrld(xmm_temp7, 2);     // packed left shifting >> 2
3219    __ psrld(xmm_temp5, 7);     // packed left shifting >> 7
3220    __ pxor(xmm_temp2, xmm_temp7);      // xor the shifted versions
3221    __ pxor(xmm_temp2, xmm_temp5);
3222    __ pxor(xmm_temp2, xmm_temp4);
3223    __ pxor(xmm_temp3, xmm_temp2);
3224    __ pxor(xmm_temp6, xmm_temp3);      // the result is in xmm6
3225
3226    __ decrement(blocks);
3227    __ jcc(Assembler::zero, L_exit);
3228    __ movdqu(xmm_temp0, xmm_temp6);
3229    __ addptr(data, 16);
3230    __ jmp(L_ghash_loop);
3231
3232    __ BIND(L_exit);
3233       // Byte swap 16-byte result
3234    __ pshufb(xmm_temp6, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
3235    __ movdqu(Address(state, 0), xmm_temp6);   // store the result
3236
3237    handleSOERegisters(false);  // restore registers
3238    __ leave();
3239    __ ret(0);
3240    return start;
3241  }
3242
3243  /**
3244   *  Arguments:
3245   *
3246   * Inputs:
3247   *   rsp(4)   - int crc
3248   *   rsp(8)   - byte* buf
3249   *   rsp(12)  - int length
3250   *
3251   * Ouput:
3252   *       rax   - int crc result
3253   */
3254  address generate_updateBytesCRC32() {
3255    assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
3256
3257    __ align(CodeEntryAlignment);
3258    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
3259
3260    address start = __ pc();
3261
3262    const Register crc   = rdx;  // crc
3263    const Register buf   = rsi;  // source java byte array address
3264    const Register len   = rcx;  // length
3265    const Register table = rdi;  // crc_table address (reuse register)
3266    const Register tmp   = rbx;
3267    assert_different_registers(crc, buf, len, table, tmp, rax);
3268
3269    BLOCK_COMMENT("Entry:");
3270    __ enter(); // required for proper stackwalking of RuntimeStub frame
3271    __ push(rsi);
3272    __ push(rdi);
3273    __ push(rbx);
3274
3275    Address crc_arg(rbp, 8 + 0);
3276    Address buf_arg(rbp, 8 + 4);
3277    Address len_arg(rbp, 8 + 8);
3278
3279    // Load up:
3280    __ movl(crc,   crc_arg);
3281    __ movptr(buf, buf_arg);
3282    __ movl(len,   len_arg);
3283
3284    __ kernel_crc32(crc, buf, len, table, tmp);
3285
3286    __ movl(rax, crc);
3287    __ pop(rbx);
3288    __ pop(rdi);
3289    __ pop(rsi);
3290    __ leave(); // required for proper stackwalking of RuntimeStub frame
3291    __ ret(0);
3292
3293    return start;
3294  }
3295
3296  /**
3297  *  Arguments:
3298  *
3299  * Inputs:
3300  *   rsp(4)   - int crc
3301  *   rsp(8)   - byte* buf
3302  *   rsp(12)  - int length
3303  *   rsp(16)  - table_start - optional (present only when doing a library_calll,
3304  *              not used by x86 algorithm)
3305  *
3306  * Ouput:
3307  *       rax  - int crc result
3308  */
3309  address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
3310    assert(UseCRC32CIntrinsics, "need SSE4_2");
3311    __ align(CodeEntryAlignment);
3312    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
3313    address start = __ pc();
3314    const Register crc = rax;  // crc
3315    const Register buf = rcx;  // source java byte array address
3316    const Register len = rdx;  // length
3317    const Register d = rbx;
3318    const Register g = rsi;
3319    const Register h = rdi;
3320    const Register empty = 0; // will never be used, in order not
3321                              // to change a signature for crc32c_IPL_Alg2_Alt2
3322                              // between 64/32 I'm just keeping it here
3323    assert_different_registers(crc, buf, len, d, g, h);
3324
3325    BLOCK_COMMENT("Entry:");
3326    __ enter(); // required for proper stackwalking of RuntimeStub frame
3327    Address crc_arg(rsp, 4 + 4 + 0); // ESP+4 +
3328                                     // we need to add additional 4 because __ enter
3329                                     // have just pushed ebp on a stack
3330    Address buf_arg(rsp, 4 + 4 + 4);
3331    Address len_arg(rsp, 4 + 4 + 8);
3332      // Load up:
3333      __ movl(crc, crc_arg);
3334      __ movl(buf, buf_arg);
3335      __ movl(len, len_arg);
3336      __ push(d);
3337      __ push(g);
3338      __ push(h);
3339      __ crc32c_ipl_alg2_alt2(crc, buf, len,
3340                              d, g, h,
3341                              empty, empty, empty,
3342                              xmm0, xmm1, xmm2,
3343                              is_pclmulqdq_supported);
3344      __ pop(h);
3345      __ pop(g);
3346      __ pop(d);
3347    __ leave(); // required for proper stackwalking of RuntimeStub frame
3348    __ ret(0);
3349
3350    return start;
3351  }
3352
3353 address generate_libmExp() {
3354    address start = __ pc();
3355
3356    const XMMRegister x0  = xmm0;
3357    const XMMRegister x1  = xmm1;
3358    const XMMRegister x2  = xmm2;
3359    const XMMRegister x3  = xmm3;
3360
3361    const XMMRegister x4  = xmm4;
3362    const XMMRegister x5  = xmm5;
3363    const XMMRegister x6  = xmm6;
3364    const XMMRegister x7  = xmm7;
3365
3366    const Register tmp   = rbx;
3367
3368    BLOCK_COMMENT("Entry:");
3369    __ enter(); // required for proper stackwalking of RuntimeStub frame
3370    __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3371    __ leave(); // required for proper stackwalking of RuntimeStub frame
3372    __ ret(0);
3373
3374    return start;
3375
3376  }
3377
3378 address generate_libmLog() {
3379   address start = __ pc();
3380
3381   const XMMRegister x0 = xmm0;
3382   const XMMRegister x1 = xmm1;
3383   const XMMRegister x2 = xmm2;
3384   const XMMRegister x3 = xmm3;
3385
3386   const XMMRegister x4 = xmm4;
3387   const XMMRegister x5 = xmm5;
3388   const XMMRegister x6 = xmm6;
3389   const XMMRegister x7 = xmm7;
3390
3391   const Register tmp = rbx;
3392
3393   BLOCK_COMMENT("Entry:");
3394   __ enter(); // required for proper stackwalking of RuntimeStub frame
3395   __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3396   __ leave(); // required for proper stackwalking of RuntimeStub frame
3397   __ ret(0);
3398
3399   return start;
3400
3401 }
3402
3403 address generate_libmPow() {
3404   address start = __ pc();
3405
3406   const XMMRegister x0 = xmm0;
3407   const XMMRegister x1 = xmm1;
3408   const XMMRegister x2 = xmm2;
3409   const XMMRegister x3 = xmm3;
3410
3411   const XMMRegister x4 = xmm4;
3412   const XMMRegister x5 = xmm5;
3413   const XMMRegister x6 = xmm6;
3414   const XMMRegister x7 = xmm7;
3415
3416   const Register tmp = rbx;
3417
3418   BLOCK_COMMENT("Entry:");
3419   __ enter(); // required for proper stackwalking of RuntimeStub frame
3420   __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3421   __ leave(); // required for proper stackwalking of RuntimeStub frame
3422   __ ret(0);
3423
3424   return start;
3425
3426 }
3427
3428 address generate_libm_reduce_pi04l() {
3429   address start = __ pc();
3430
3431   BLOCK_COMMENT("Entry:");
3432   __ libm_reduce_pi04l(rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
3433
3434   return start;
3435
3436 }
3437
3438 address generate_libm_sin_cos_huge() {
3439   address start = __ pc();
3440
3441   const XMMRegister x0 = xmm0;
3442   const XMMRegister x1 = xmm1;
3443
3444   BLOCK_COMMENT("Entry:");
3445   __ libm_sincos_huge(x0, x1, rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
3446
3447   return start;
3448
3449 }
3450
3451 address generate_libmSin() {
3452   address start = __ pc();
3453
3454   const XMMRegister x0 = xmm0;
3455   const XMMRegister x1 = xmm1;
3456   const XMMRegister x2 = xmm2;
3457   const XMMRegister x3 = xmm3;
3458
3459   const XMMRegister x4 = xmm4;
3460   const XMMRegister x5 = xmm5;
3461   const XMMRegister x6 = xmm6;
3462   const XMMRegister x7 = xmm7;
3463
3464   BLOCK_COMMENT("Entry:");
3465   __ enter(); // required for proper stackwalking of RuntimeStub frame
3466   __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rdx);
3467   __ leave(); // required for proper stackwalking of RuntimeStub frame
3468   __ ret(0);
3469
3470   return start;
3471
3472 }
3473
3474 address generate_libmCos() {
3475   address start = __ pc();
3476
3477   const XMMRegister x0 = xmm0;
3478   const XMMRegister x1 = xmm1;
3479   const XMMRegister x2 = xmm2;
3480   const XMMRegister x3 = xmm3;
3481
3482   const XMMRegister x4 = xmm4;
3483   const XMMRegister x5 = xmm5;
3484   const XMMRegister x6 = xmm6;
3485   const XMMRegister x7 = xmm7;
3486
3487   const Register tmp = rbx;
3488
3489   BLOCK_COMMENT("Entry:");
3490   __ enter(); // required for proper stackwalking of RuntimeStub frame
3491   __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
3492   __ leave(); // required for proper stackwalking of RuntimeStub frame
3493   __ ret(0);
3494
3495   return start;
3496
3497 }
3498
3499  // Safefetch stubs.
3500  void generate_safefetch(const char* name, int size, address* entry,
3501                          address* fault_pc, address* continuation_pc) {
3502    // safefetch signatures:
3503    //   int      SafeFetch32(int*      adr, int      errValue);
3504    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3505
3506    StubCodeMark mark(this, "StubRoutines", name);
3507
3508    // Entry point, pc or function descriptor.
3509    *entry = __ pc();
3510
3511    __ movl(rax, Address(rsp, 0x8));
3512    __ movl(rcx, Address(rsp, 0x4));
3513    // Load *adr into eax, may fault.
3514    *fault_pc = __ pc();
3515    switch (size) {
3516      case 4:
3517        // int32_t
3518        __ movl(rax, Address(rcx, 0));
3519        break;
3520      case 8:
3521        // int64_t
3522        Unimplemented();
3523        break;
3524      default:
3525        ShouldNotReachHere();
3526    }
3527
3528    // Return errValue or *adr.
3529    *continuation_pc = __ pc();
3530    __ ret(0);
3531  }
3532
3533 public:
3534  // Information about frame layout at time of blocking runtime call.
3535  // Note that we only have to preserve callee-saved registers since
3536  // the compilers are responsible for supplying a continuation point
3537  // if they expect all registers to be preserved.
3538  enum layout {
3539    thread_off,    // last_java_sp
3540    arg1_off,
3541    arg2_off,
3542    rbp_off,       // callee saved register
3543    ret_pc,
3544    framesize
3545  };
3546
3547 private:
3548
3549#undef  __
3550#define __ masm->
3551
3552  //------------------------------------------------------------------------------------------------------------------------
3553  // Continuation point for throwing of implicit exceptions that are not handled in
3554  // the current activation. Fabricates an exception oop and initiates normal
3555  // exception dispatching in this frame.
3556  //
3557  // Previously the compiler (c2) allowed for callee save registers on Java calls.
3558  // This is no longer true after adapter frames were removed but could possibly
3559  // be brought back in the future if the interpreter code was reworked and it
3560  // was deemed worthwhile. The comment below was left to describe what must
3561  // happen here if callee saves were resurrected. As it stands now this stub
3562  // could actually be a vanilla BufferBlob and have now oopMap at all.
3563  // Since it doesn't make much difference we've chosen to leave it the
3564  // way it was in the callee save days and keep the comment.
3565
3566  // If we need to preserve callee-saved values we need a callee-saved oop map and
3567  // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
3568  // If the compiler needs all registers to be preserved between the fault
3569  // point and the exception handler then it must assume responsibility for that in
3570  // AbstractCompiler::continuation_for_implicit_null_exception or
3571  // continuation_for_implicit_division_by_zero_exception. All other implicit
3572  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
3573  // either at call sites or otherwise assume that stack unwinding will be initiated,
3574  // so caller saved registers were assumed volatile in the compiler.
3575  address generate_throw_exception(const char* name, address runtime_entry,
3576                                   Register arg1 = noreg, Register arg2 = noreg) {
3577
3578    int insts_size = 256;
3579    int locs_size  = 32;
3580
3581    CodeBuffer code(name, insts_size, locs_size);
3582    OopMapSet* oop_maps  = new OopMapSet();
3583    MacroAssembler* masm = new MacroAssembler(&code);
3584
3585    address start = __ pc();
3586
3587    // This is an inlined and slightly modified version of call_VM
3588    // which has the ability to fetch the return PC out of
3589    // thread-local storage and also sets up last_Java_sp slightly
3590    // differently than the real call_VM
3591    Register java_thread = rbx;
3592    __ get_thread(java_thread);
3593
3594    __ enter(); // required for proper stackwalking of RuntimeStub frame
3595
3596    // pc and rbp, already pushed
3597    __ subptr(rsp, (framesize-2) * wordSize); // prolog
3598
3599    // Frame is now completed as far as size and linkage.
3600
3601    int frame_complete = __ pc() - start;
3602
3603    // push java thread (becomes first argument of C function)
3604    __ movptr(Address(rsp, thread_off * wordSize), java_thread);
3605    if (arg1 != noreg) {
3606      __ movptr(Address(rsp, arg1_off * wordSize), arg1);
3607    }
3608    if (arg2 != noreg) {
3609      assert(arg1 != noreg, "missing reg arg");
3610      __ movptr(Address(rsp, arg2_off * wordSize), arg2);
3611    }
3612
3613    // Set up last_Java_sp and last_Java_fp
3614    __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
3615
3616    // Call runtime
3617    BLOCK_COMMENT("call runtime_entry");
3618    __ call(RuntimeAddress(runtime_entry));
3619    // Generate oop map
3620    OopMap* map =  new OopMap(framesize, 0);
3621    oop_maps->add_gc_map(__ pc() - start, map);
3622
3623    // restore the thread (cannot use the pushed argument since arguments
3624    // may be overwritten by C code generated by an optimizing compiler);
3625    // however can use the register value directly if it is callee saved.
3626    __ get_thread(java_thread);
3627
3628    __ reset_last_Java_frame(java_thread, true, false);
3629
3630    __ leave(); // required for proper stackwalking of RuntimeStub frame
3631
3632    // check for pending exceptions
3633#ifdef ASSERT
3634    Label L;
3635    __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3636    __ jcc(Assembler::notEqual, L);
3637    __ should_not_reach_here();
3638    __ bind(L);
3639#endif /* ASSERT */
3640    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3641
3642
3643    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
3644    return stub->entry_point();
3645  }
3646
3647
3648  void create_control_words() {
3649    // Round to nearest, 53-bit mode, exceptions masked
3650    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
3651    // Round to zero, 53-bit mode, exception mased
3652    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
3653    // Round to nearest, 24-bit mode, exceptions masked
3654    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
3655    // Round to nearest, 64-bit mode, exceptions masked
3656    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
3657    // Round to nearest, 64-bit mode, exceptions masked
3658    StubRoutines::_mxcsr_std           = 0x1F80;
3659    // Note: the following two constants are 80-bit values
3660    //       layout is critical for correct loading by FPU.
3661    // Bias for strict fp multiply/divide
3662    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
3663    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
3664    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
3665    // Un-Bias for strict fp multiply/divide
3666    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
3667    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
3668    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
3669  }
3670
3671  //---------------------------------------------------------------------------
3672  // Initialization
3673
3674  void generate_initial() {
3675    // Generates all stubs and initializes the entry points
3676
3677    //------------------------------------------------------------------------------------------------------------------------
3678    // entry points that exist in all platforms
3679    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3680    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3681    StubRoutines::_forward_exception_entry      = generate_forward_exception();
3682
3683    StubRoutines::_call_stub_entry              =
3684      generate_call_stub(StubRoutines::_call_stub_return_address);
3685    // is referenced by megamorphic call
3686    StubRoutines::_catch_exception_entry        = generate_catch_exception();
3687
3688    // These are currently used by Solaris/Intel
3689    StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
3690
3691    StubRoutines::_handler_for_unsafe_access_entry =
3692      generate_handler_for_unsafe_access();
3693
3694    // platform dependent
3695    create_control_words();
3696
3697    StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
3698    StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
3699    StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
3700                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
3701    StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
3702                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
3703
3704    // Build this early so it's available for the interpreter
3705    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",
3706                                                                                      CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
3707    StubRoutines::_throw_delayed_StackOverflowError_entry  = generate_throw_exception("delayed StackOverflowError throw_exception",
3708                                                                                      CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
3709
3710    if (UseCRC32Intrinsics) {
3711      // set table address before stub generation which use it
3712      StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
3713      StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
3714    }
3715
3716    if (UseCRC32CIntrinsics) {
3717      bool supports_clmul = VM_Version::supports_clmul();
3718      StubRoutines::x86::generate_CRC32C_table(supports_clmul);
3719      StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
3720      StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
3721    }
3722    if (VM_Version::supports_sse2()) {
3723      StubRoutines::_dexp = generate_libmExp();
3724      StubRoutines::_dlog = generate_libmLog();
3725      StubRoutines::_dpow = generate_libmPow();
3726      if (UseLibmSinIntrinsic || UseLibmCosIntrinsic) {
3727        StubRoutines::_dlibm_reduce_pi04l = generate_libm_reduce_pi04l();
3728        StubRoutines::_dlibm_sin_cos_huge = generate_libm_sin_cos_huge();
3729      }
3730      if (UseLibmSinIntrinsic) {
3731        StubRoutines::_dsin = generate_libmSin();
3732      }
3733      if (UseLibmCosIntrinsic) {
3734        StubRoutines::_dcos = generate_libmCos();
3735      }
3736    }
3737  }
3738
3739
3740  void generate_all() {
3741    // Generates all stubs and initializes the entry points
3742
3743    // These entry points require SharedInfo::stack0 to be set up in non-core builds
3744    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
3745    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
3746    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
3747    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
3748
3749    //------------------------------------------------------------------------------------------------------------------------
3750    // entry points that are platform specific
3751
3752    // support for verify_oop (must happen after universe_init)
3753    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
3754
3755    // arraycopy stubs used by compilers
3756    generate_arraycopy_stubs();
3757
3758    generate_math_stubs();
3759
3760    // don't bother generating these AES intrinsic stubs unless global flag is set
3761    if (UseAESIntrinsics) {
3762      StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
3763
3764      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3765      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3766      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3767      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
3768    }
3769
3770    if (UseAESCTRIntrinsics) {
3771      StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
3772      StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
3773    }
3774
3775    // Generate GHASH intrinsics code
3776    if (UseGHASHIntrinsics) {
3777      StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
3778      StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
3779      StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
3780    }
3781
3782    // Safefetch stubs.
3783    generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3784                                                   &StubRoutines::_safefetch32_fault_pc,
3785                                                   &StubRoutines::_safefetch32_continuation_pc);
3786    StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
3787    StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
3788    StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3789  }
3790
3791
3792 public:
3793  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3794    if (all) {
3795      generate_all();
3796    } else {
3797      generate_initial();
3798    }
3799  }
3800}; // end class declaration
3801
3802
3803void StubGenerator_generate(CodeBuffer* code, bool all) {
3804  StubGenerator g(code, all);
3805}
3806