sharedRuntime_x86_32.cpp revision 11846:ef326749824a
1/*
2 * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "logging/log.hpp"
33#include "memory/resourceArea.hpp"
34#include "oops/compiledICHolder.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/vframeArray.hpp"
37#include "vmreg_x86.inline.hpp"
38#ifdef COMPILER1
39#include "c1/c1_Runtime1.hpp"
40#endif
41#ifdef COMPILER2
42#include "opto/runtime.hpp"
43#endif
44
45#define __ masm->
46
47const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
48
49class RegisterSaver {
50  // Capture info about frame layout
51#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
52  enum layout {
53                fpu_state_off = 0,
54                fpu_state_end = fpu_state_off+FPUStateSizeInWords,
55                st0_off, st0H_off,
56                st1_off, st1H_off,
57                st2_off, st2H_off,
58                st3_off, st3H_off,
59                st4_off, st4H_off,
60                st5_off, st5H_off,
61                st6_off, st6H_off,
62                st7_off, st7H_off,
63                xmm_off,
64                DEF_XMM_OFFS(0),
65                DEF_XMM_OFFS(1),
66                DEF_XMM_OFFS(2),
67                DEF_XMM_OFFS(3),
68                DEF_XMM_OFFS(4),
69                DEF_XMM_OFFS(5),
70                DEF_XMM_OFFS(6),
71                DEF_XMM_OFFS(7),
72                flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
73                rdi_off,
74                rsi_off,
75                ignore_off,  // extra copy of rbp,
76                rsp_off,
77                rbx_off,
78                rdx_off,
79                rcx_off,
80                rax_off,
81                // The frame sender code expects that rbp will be in the "natural" place and
82                // will override any oopMap setting for it. We must therefore force the layout
83                // so that it agrees with the frame sender code.
84                rbp_off,
85                return_off,      // slot for return address
86                reg_save_size };
87  enum { FPU_regs_live = flags_off - fpu_state_end };
88
89  public:
90
91  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
92                                     int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
93  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
94
95  static int rax_offset() { return rax_off; }
96  static int rbx_offset() { return rbx_off; }
97
98  // Offsets into the register save area
99  // Used by deoptimization when it is managing result register
100  // values on its own
101
102  static int raxOffset(void) { return rax_off; }
103  static int rdxOffset(void) { return rdx_off; }
104  static int rbxOffset(void) { return rbx_off; }
105  static int xmm0Offset(void) { return xmm0_off; }
106  // This really returns a slot in the fp save area, which one is not important
107  static int fpResultOffset(void) { return st0_off; }
108
109  // During deoptimization only the result register need to be restored
110  // all the other values have already been extracted.
111
112  static void restore_result_registers(MacroAssembler* masm);
113
114};
115
116OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
117                                           int* total_frame_words, bool verify_fpu, bool save_vectors) {
118  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
119  int ymm_bytes = num_xmm_regs * 16;
120  int zmm_bytes = num_xmm_regs * 32;
121#ifdef COMPILER2
122  if (save_vectors) {
123    assert(UseAVX > 0, "up to 512bit vectors are supported with EVEX");
124    assert(MaxVectorSize <= 64, "up to 512bit vectors are supported now");
125    // Save upper half of YMM registers
126    int vect_bytes = ymm_bytes;
127    if (UseAVX > 2) {
128      // Save upper half of ZMM registers as well
129      vect_bytes += zmm_bytes;
130    }
131    additional_frame_words += vect_bytes / wordSize;
132  }
133#else
134  assert(!save_vectors, "vectors are generated only by C2");
135#endif
136  int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
137  int frame_words = frame_size_in_bytes / wordSize;
138  *total_frame_words = frame_words;
139
140  assert(FPUStateSizeInWords == 27, "update stack layout");
141
142  // save registers, fpu state, and flags
143  // We assume caller has already has return address slot on the stack
144  // We push epb twice in this sequence because we want the real rbp,
145  // to be under the return like a normal enter and we want to use pusha
146  // We push by hand instead of pusing push
147  __ enter();
148  __ pusha();
149  __ pushf();
150  __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
151  __ push_FPU_state();          // Save FPU state & init
152
153  if (verify_fpu) {
154    // Some stubs may have non standard FPU control word settings so
155    // only check and reset the value when it required to be the
156    // standard value.  The safepoint blob in particular can be used
157    // in methods which are using the 24 bit control word for
158    // optimized float math.
159
160#ifdef ASSERT
161    // Make sure the control word has the expected value
162    Label ok;
163    __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
164    __ jccb(Assembler::equal, ok);
165    __ stop("corrupted control word detected");
166    __ bind(ok);
167#endif
168
169    // Reset the control word to guard against exceptions being unmasked
170    // since fstp_d can cause FPU stack underflow exceptions.  Write it
171    // into the on stack copy and then reload that to make sure that the
172    // current and future values are correct.
173    __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
174  }
175
176  __ frstor(Address(rsp, 0));
177  if (!verify_fpu) {
178    // Set the control word so that exceptions are masked for the
179    // following code.
180    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
181  }
182
183  int off = st0_off;
184  int delta = st1_off - off;
185
186  // Save the FPU registers in de-opt-able form
187  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
188    __ fstp_d(Address(rsp, off*wordSize));
189    off += delta;
190  }
191
192  off = xmm0_off;
193  delta = xmm1_off - off;
194  if(UseSSE == 1) {
195    // Save the XMM state
196    for (int n = 0; n < num_xmm_regs; n++) {
197      __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
198      off += delta;
199    }
200  } else if(UseSSE >= 2) {
201    // Save whole 128bit (16 bytes) XMM registers
202    for (int n = 0; n < num_xmm_regs; n++) {
203      __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
204      off += delta;
205    }
206  }
207
208  if (save_vectors) {
209    __ subptr(rsp, ymm_bytes);
210    // Save upper half of YMM registers
211    for (int n = 0; n < num_xmm_regs; n++) {
212      __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
213    }
214    if (UseAVX > 2) {
215      __ subptr(rsp, zmm_bytes);
216      // Save upper half of ZMM registers
217      for (int n = 0; n < num_xmm_regs; n++) {
218        __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
219      }
220    }
221  }
222
223  // Set an oopmap for the call site.  This oopmap will map all
224  // oop-registers and debug-info registers as callee-saved.  This
225  // will allow deoptimization at this safepoint to find all possible
226  // debug-info recordings, as well as let GC find all oops.
227
228  OopMapSet *oop_maps = new OopMapSet();
229  OopMap* map =  new OopMap( frame_words, 0 );
230
231#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
232#define NEXTREG(x) (x)->as_VMReg()->next()
233
234  map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
235  map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
236  map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
237  map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
238  // rbp, location is known implicitly, no oopMap
239  map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
240  map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
241  // %%% This is really a waste but we'll keep things as they were for now for the upper component
242  off = st0_off;
243  delta = st1_off - off;
244  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
245    FloatRegister freg_name = as_FloatRegister(n);
246    map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
247    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
248    off += delta;
249  }
250  off = xmm0_off;
251  delta = xmm1_off - off;
252  for (int n = 0; n < num_xmm_regs; n++) {
253    XMMRegister xmm_name = as_XMMRegister(n);
254    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
255    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
256    off += delta;
257  }
258#undef NEXTREG
259#undef STACK_OFFSET
260
261  return map;
262}
263
264void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
265  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
266  int ymm_bytes = num_xmm_regs * 16;
267  int zmm_bytes = num_xmm_regs * 32;
268  // Recover XMM & FPU state
269  int additional_frame_bytes = 0;
270#ifdef COMPILER2
271  if (restore_vectors) {
272    assert(UseAVX > 0, "up to 512bit vectors are supported with EVEX");
273    assert(MaxVectorSize <= 64, "up to 512bit vectors are supported now");
274    // Save upper half of YMM registers
275    additional_frame_bytes = ymm_bytes;
276    if (UseAVX > 2) {
277      // Save upper half of ZMM registers as well
278      additional_frame_bytes += zmm_bytes;
279    }
280  }
281#else
282  assert(!restore_vectors, "vectors are generated only by C2");
283#endif
284
285  int off = xmm0_off;
286  int delta = xmm1_off - off;
287
288  if (UseSSE == 1) {
289    // Restore XMM registers
290    assert(additional_frame_bytes == 0, "");
291    for (int n = 0; n < num_xmm_regs; n++) {
292      __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
293      off += delta;
294    }
295  } else if (UseSSE >= 2) {
296    // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
297    // ZMM because the movdqu instruction zeros the upper part of the XMM register.
298    for (int n = 0; n < num_xmm_regs; n++) {
299      __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
300      off += delta;
301    }
302  }
303
304  if (restore_vectors) {
305    if (UseAVX > 2) {
306      // Restore upper half of ZMM registers.
307      for (int n = 0; n < num_xmm_regs; n++) {
308        __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
309      }
310      __ addptr(rsp, zmm_bytes);
311    }
312    // Restore upper half of YMM registers.
313    for (int n = 0; n < num_xmm_regs; n++) {
314      __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
315    }
316    __ addptr(rsp, ymm_bytes);
317  }
318
319  __ pop_FPU_state();
320  __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
321
322  __ popf();
323  __ popa();
324  // Get the rbp, described implicitly by the frame sender code (no oopMap)
325  __ pop(rbp);
326}
327
328void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
329
330  // Just restore result register. Only used by deoptimization. By
331  // now any callee save register that needs to be restore to a c2
332  // caller of the deoptee has been extracted into the vframeArray
333  // and will be stuffed into the c2i adapter we create for later
334  // restoration so only result registers need to be restored here.
335  //
336
337  __ frstor(Address(rsp, 0));      // Restore fpu state
338
339  // Recover XMM & FPU state
340  if( UseSSE == 1 ) {
341    __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
342  } else if( UseSSE >= 2 ) {
343    __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
344  }
345  __ movptr(rax, Address(rsp, rax_off*wordSize));
346  __ movptr(rdx, Address(rsp, rdx_off*wordSize));
347  // Pop all of the register save are off the stack except the return address
348  __ addptr(rsp, return_off * wordSize);
349}
350
351// Is vector's size (in bytes) bigger than a size saved by default?
352// 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
353// Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
354bool SharedRuntime::is_wide_vector(int size) {
355  return size > 16;
356}
357
358size_t SharedRuntime::trampoline_size() {
359  return 16;
360}
361
362void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
363  __ jump(RuntimeAddress(destination));
364}
365
366// The java_calling_convention describes stack locations as ideal slots on
367// a frame with no abi restrictions. Since we must observe abi restrictions
368// (like the placement of the register window) the slots must be biased by
369// the following value.
370static int reg2offset_in(VMReg r) {
371  // Account for saved rbp, and return address
372  // This should really be in_preserve_stack_slots
373  return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
374}
375
376static int reg2offset_out(VMReg r) {
377  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
378}
379
380// ---------------------------------------------------------------------------
381// Read the array of BasicTypes from a signature, and compute where the
382// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
383// quantities.  Values less than SharedInfo::stack0 are registers, those above
384// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
385// as framesizes are fixed.
386// VMRegImpl::stack0 refers to the first slot 0(sp).
387// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
388// up to RegisterImpl::number_of_registers) are the 32-bit
389// integer registers.
390
391// Pass first two oop/int args in registers ECX and EDX.
392// Pass first two float/double args in registers XMM0 and XMM1.
393// Doubles have precedence, so if you pass a mix of floats and doubles
394// the doubles will grab the registers before the floats will.
395
396// Note: the INPUTS in sig_bt are in units of Java argument words, which are
397// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
398// units regardless of build. Of course for i486 there is no 64 bit build
399
400
401// ---------------------------------------------------------------------------
402// The compiled Java calling convention.
403// Pass first two oop/int args in registers ECX and EDX.
404// Pass first two float/double args in registers XMM0 and XMM1.
405// Doubles have precedence, so if you pass a mix of floats and doubles
406// the doubles will grab the registers before the floats will.
407int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
408                                           VMRegPair *regs,
409                                           int total_args_passed,
410                                           int is_outgoing) {
411  uint    stack = 0;          // Starting stack position for args on stack
412
413
414  // Pass first two oop/int args in registers ECX and EDX.
415  uint reg_arg0 = 9999;
416  uint reg_arg1 = 9999;
417
418  // Pass first two float/double args in registers XMM0 and XMM1.
419  // Doubles have precedence, so if you pass a mix of floats and doubles
420  // the doubles will grab the registers before the floats will.
421  // CNC - TURNED OFF FOR non-SSE.
422  //       On Intel we have to round all doubles (and most floats) at
423  //       call sites by storing to the stack in any case.
424  // UseSSE=0 ==> Don't Use ==> 9999+0
425  // UseSSE=1 ==> Floats only ==> 9999+1
426  // UseSSE>=2 ==> Floats or doubles ==> 9999+2
427  enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
428  uint fargs = (UseSSE>=2) ? 2 : UseSSE;
429  uint freg_arg0 = 9999+fargs;
430  uint freg_arg1 = 9999+fargs;
431
432  // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
433  int i;
434  for( i = 0; i < total_args_passed; i++) {
435    if( sig_bt[i] == T_DOUBLE ) {
436      // first 2 doubles go in registers
437      if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
438      else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
439      else // Else double is passed low on the stack to be aligned.
440        stack += 2;
441    } else if( sig_bt[i] == T_LONG ) {
442      stack += 2;
443    }
444  }
445  int dstack = 0;             // Separate counter for placing doubles
446
447  // Now pick where all else goes.
448  for( i = 0; i < total_args_passed; i++) {
449    // From the type and the argument number (count) compute the location
450    switch( sig_bt[i] ) {
451    case T_SHORT:
452    case T_CHAR:
453    case T_BYTE:
454    case T_BOOLEAN:
455    case T_INT:
456    case T_ARRAY:
457    case T_OBJECT:
458    case T_ADDRESS:
459      if( reg_arg0 == 9999 )  {
460        reg_arg0 = i;
461        regs[i].set1(rcx->as_VMReg());
462      } else if( reg_arg1 == 9999 )  {
463        reg_arg1 = i;
464        regs[i].set1(rdx->as_VMReg());
465      } else {
466        regs[i].set1(VMRegImpl::stack2reg(stack++));
467      }
468      break;
469    case T_FLOAT:
470      if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
471        freg_arg0 = i;
472        regs[i].set1(xmm0->as_VMReg());
473      } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
474        freg_arg1 = i;
475        regs[i].set1(xmm1->as_VMReg());
476      } else {
477        regs[i].set1(VMRegImpl::stack2reg(stack++));
478      }
479      break;
480    case T_LONG:
481      assert(sig_bt[i+1] == T_VOID, "missing Half" );
482      regs[i].set2(VMRegImpl::stack2reg(dstack));
483      dstack += 2;
484      break;
485    case T_DOUBLE:
486      assert(sig_bt[i+1] == T_VOID, "missing Half" );
487      if( freg_arg0 == (uint)i ) {
488        regs[i].set2(xmm0->as_VMReg());
489      } else if( freg_arg1 == (uint)i ) {
490        regs[i].set2(xmm1->as_VMReg());
491      } else {
492        regs[i].set2(VMRegImpl::stack2reg(dstack));
493        dstack += 2;
494      }
495      break;
496    case T_VOID: regs[i].set_bad(); break;
497      break;
498    default:
499      ShouldNotReachHere();
500      break;
501    }
502  }
503
504  // return value can be odd number of VMRegImpl stack slots make multiple of 2
505  return round_to(stack, 2);
506}
507
508// Patch the callers callsite with entry to compiled code if it exists.
509static void patch_callers_callsite(MacroAssembler *masm) {
510  Label L;
511  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
512  __ jcc(Assembler::equal, L);
513  // Schedule the branch target address early.
514  // Call into the VM to patch the caller, then jump to compiled callee
515  // rax, isn't live so capture return address while we easily can
516  __ movptr(rax, Address(rsp, 0));
517  __ pusha();
518  __ pushf();
519
520  if (UseSSE == 1) {
521    __ subptr(rsp, 2*wordSize);
522    __ movflt(Address(rsp, 0), xmm0);
523    __ movflt(Address(rsp, wordSize), xmm1);
524  }
525  if (UseSSE >= 2) {
526    __ subptr(rsp, 4*wordSize);
527    __ movdbl(Address(rsp, 0), xmm0);
528    __ movdbl(Address(rsp, 2*wordSize), xmm1);
529  }
530#ifdef COMPILER2
531  // C2 may leave the stack dirty if not in SSE2+ mode
532  if (UseSSE >= 2) {
533    __ verify_FPU(0, "c2i transition should have clean FPU stack");
534  } else {
535    __ empty_FPU_stack();
536  }
537#endif /* COMPILER2 */
538
539  // VM needs caller's callsite
540  __ push(rax);
541  // VM needs target method
542  __ push(rbx);
543  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
544  __ addptr(rsp, 2*wordSize);
545
546  if (UseSSE == 1) {
547    __ movflt(xmm0, Address(rsp, 0));
548    __ movflt(xmm1, Address(rsp, wordSize));
549    __ addptr(rsp, 2*wordSize);
550  }
551  if (UseSSE >= 2) {
552    __ movdbl(xmm0, Address(rsp, 0));
553    __ movdbl(xmm1, Address(rsp, 2*wordSize));
554    __ addptr(rsp, 4*wordSize);
555  }
556
557  __ popf();
558  __ popa();
559  __ bind(L);
560}
561
562
563static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
564  int next_off = st_off - Interpreter::stackElementSize;
565  __ movdbl(Address(rsp, next_off), r);
566}
567
568static void gen_c2i_adapter(MacroAssembler *masm,
569                            int total_args_passed,
570                            int comp_args_on_stack,
571                            const BasicType *sig_bt,
572                            const VMRegPair *regs,
573                            Label& skip_fixup) {
574  // Before we get into the guts of the C2I adapter, see if we should be here
575  // at all.  We've come from compiled code and are attempting to jump to the
576  // interpreter, which means the caller made a static call to get here
577  // (vcalls always get a compiled target if there is one).  Check for a
578  // compiled target.  If there is one, we need to patch the caller's call.
579  patch_callers_callsite(masm);
580
581  __ bind(skip_fixup);
582
583#ifdef COMPILER2
584  // C2 may leave the stack dirty if not in SSE2+ mode
585  if (UseSSE >= 2) {
586    __ verify_FPU(0, "c2i transition should have clean FPU stack");
587  } else {
588    __ empty_FPU_stack();
589  }
590#endif /* COMPILER2 */
591
592  // Since all args are passed on the stack, total_args_passed * interpreter_
593  // stack_element_size  is the
594  // space we need.
595  int extraspace = total_args_passed * Interpreter::stackElementSize;
596
597  // Get return address
598  __ pop(rax);
599
600  // set senderSP value
601  __ movptr(rsi, rsp);
602
603  __ subptr(rsp, extraspace);
604
605  // Now write the args into the outgoing interpreter space
606  for (int i = 0; i < total_args_passed; i++) {
607    if (sig_bt[i] == T_VOID) {
608      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
609      continue;
610    }
611
612    // st_off points to lowest address on stack.
613    int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
614    int next_off = st_off - Interpreter::stackElementSize;
615
616    // Say 4 args:
617    // i   st_off
618    // 0   12 T_LONG
619    // 1    8 T_VOID
620    // 2    4 T_OBJECT
621    // 3    0 T_BOOL
622    VMReg r_1 = regs[i].first();
623    VMReg r_2 = regs[i].second();
624    if (!r_1->is_valid()) {
625      assert(!r_2->is_valid(), "");
626      continue;
627    }
628
629    if (r_1->is_stack()) {
630      // memory to memory use fpu stack top
631      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
632
633      if (!r_2->is_valid()) {
634        __ movl(rdi, Address(rsp, ld_off));
635        __ movptr(Address(rsp, st_off), rdi);
636      } else {
637
638        // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
639        // st_off == MSW, st_off-wordSize == LSW
640
641        __ movptr(rdi, Address(rsp, ld_off));
642        __ movptr(Address(rsp, next_off), rdi);
643#ifndef _LP64
644        __ movptr(rdi, Address(rsp, ld_off + wordSize));
645        __ movptr(Address(rsp, st_off), rdi);
646#else
647#ifdef ASSERT
648        // Overwrite the unused slot with known junk
649        __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
650        __ movptr(Address(rsp, st_off), rax);
651#endif /* ASSERT */
652#endif // _LP64
653      }
654    } else if (r_1->is_Register()) {
655      Register r = r_1->as_Register();
656      if (!r_2->is_valid()) {
657        __ movl(Address(rsp, st_off), r);
658      } else {
659        // long/double in gpr
660        NOT_LP64(ShouldNotReachHere());
661        // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
662        // T_DOUBLE and T_LONG use two slots in the interpreter
663        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
664          // long/double in gpr
665#ifdef ASSERT
666          // Overwrite the unused slot with known junk
667          LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
668          __ movptr(Address(rsp, st_off), rax);
669#endif /* ASSERT */
670          __ movptr(Address(rsp, next_off), r);
671        } else {
672          __ movptr(Address(rsp, st_off), r);
673        }
674      }
675    } else {
676      assert(r_1->is_XMMRegister(), "");
677      if (!r_2->is_valid()) {
678        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
679      } else {
680        assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
681        move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
682      }
683    }
684  }
685
686  // Schedule the branch target address early.
687  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
688  // And repush original return address
689  __ push(rax);
690  __ jmp(rcx);
691}
692
693
694static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
695  int next_val_off = ld_off - Interpreter::stackElementSize;
696  __ movdbl(r, Address(saved_sp, next_val_off));
697}
698
699static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
700                        address code_start, address code_end,
701                        Label& L_ok) {
702  Label L_fail;
703  __ lea(temp_reg, ExternalAddress(code_start));
704  __ cmpptr(pc_reg, temp_reg);
705  __ jcc(Assembler::belowEqual, L_fail);
706  __ lea(temp_reg, ExternalAddress(code_end));
707  __ cmpptr(pc_reg, temp_reg);
708  __ jcc(Assembler::below, L_ok);
709  __ bind(L_fail);
710}
711
712void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
713                                    int total_args_passed,
714                                    int comp_args_on_stack,
715                                    const BasicType *sig_bt,
716                                    const VMRegPair *regs) {
717  // Note: rsi contains the senderSP on entry. We must preserve it since
718  // we may do a i2c -> c2i transition if we lose a race where compiled
719  // code goes non-entrant while we get args ready.
720
721  // Adapters can be frameless because they do not require the caller
722  // to perform additional cleanup work, such as correcting the stack pointer.
723  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
724  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
725  // even if a callee has modified the stack pointer.
726  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
727  // routinely repairs its caller's stack pointer (from sender_sp, which is set
728  // up via the senderSP register).
729  // In other words, if *either* the caller or callee is interpreted, we can
730  // get the stack pointer repaired after a call.
731  // This is why c2i and i2c adapters cannot be indefinitely composed.
732  // In particular, if a c2i adapter were to somehow call an i2c adapter,
733  // both caller and callee would be compiled methods, and neither would
734  // clean up the stack pointer changes performed by the two adapters.
735  // If this happens, control eventually transfers back to the compiled
736  // caller, but with an uncorrected stack, causing delayed havoc.
737
738  // Pick up the return address
739  __ movptr(rax, Address(rsp, 0));
740
741  if (VerifyAdapterCalls &&
742      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
743    // So, let's test for cascading c2i/i2c adapters right now.
744    //  assert(Interpreter::contains($return_addr) ||
745    //         StubRoutines::contains($return_addr),
746    //         "i2c adapter must return to an interpreter frame");
747    __ block_comment("verify_i2c { ");
748    Label L_ok;
749    if (Interpreter::code() != NULL)
750      range_check(masm, rax, rdi,
751                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
752                  L_ok);
753    if (StubRoutines::code1() != NULL)
754      range_check(masm, rax, rdi,
755                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
756                  L_ok);
757    if (StubRoutines::code2() != NULL)
758      range_check(masm, rax, rdi,
759                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
760                  L_ok);
761    const char* msg = "i2c adapter must return to an interpreter frame";
762    __ block_comment(msg);
763    __ stop(msg);
764    __ bind(L_ok);
765    __ block_comment("} verify_i2ce ");
766  }
767
768  // Must preserve original SP for loading incoming arguments because
769  // we need to align the outgoing SP for compiled code.
770  __ movptr(rdi, rsp);
771
772  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
773  // in registers, we will occasionally have no stack args.
774  int comp_words_on_stack = 0;
775  if (comp_args_on_stack) {
776    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
777    // registers are below.  By subtracting stack0, we either get a negative
778    // number (all values in registers) or the maximum stack slot accessed.
779    // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
780    // Convert 4-byte stack slots to words.
781    comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
782    // Round up to miminum stack alignment, in wordSize
783    comp_words_on_stack = round_to(comp_words_on_stack, 2);
784    __ subptr(rsp, comp_words_on_stack * wordSize);
785  }
786
787  // Align the outgoing SP
788  __ andptr(rsp, -(StackAlignmentInBytes));
789
790  // push the return address on the stack (note that pushing, rather
791  // than storing it, yields the correct frame alignment for the callee)
792  __ push(rax);
793
794  // Put saved SP in another register
795  const Register saved_sp = rax;
796  __ movptr(saved_sp, rdi);
797
798
799  // Will jump to the compiled code just as if compiled code was doing it.
800  // Pre-load the register-jump target early, to schedule it better.
801  __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
802
803  // Now generate the shuffle code.  Pick up all register args and move the
804  // rest through the floating point stack top.
805  for (int i = 0; i < total_args_passed; i++) {
806    if (sig_bt[i] == T_VOID) {
807      // Longs and doubles are passed in native word order, but misaligned
808      // in the 32-bit build.
809      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
810      continue;
811    }
812
813    // Pick up 0, 1 or 2 words from SP+offset.
814
815    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
816            "scrambled load targets?");
817    // Load in argument order going down.
818    int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
819    // Point to interpreter value (vs. tag)
820    int next_off = ld_off - Interpreter::stackElementSize;
821    //
822    //
823    //
824    VMReg r_1 = regs[i].first();
825    VMReg r_2 = regs[i].second();
826    if (!r_1->is_valid()) {
827      assert(!r_2->is_valid(), "");
828      continue;
829    }
830    if (r_1->is_stack()) {
831      // Convert stack slot to an SP offset (+ wordSize to account for return address )
832      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
833
834      // We can use rsi as a temp here because compiled code doesn't need rsi as an input
835      // and if we end up going thru a c2i because of a miss a reasonable value of rsi
836      // we be generated.
837      if (!r_2->is_valid()) {
838        // __ fld_s(Address(saved_sp, ld_off));
839        // __ fstp_s(Address(rsp, st_off));
840        __ movl(rsi, Address(saved_sp, ld_off));
841        __ movptr(Address(rsp, st_off), rsi);
842      } else {
843        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
844        // are accessed as negative so LSW is at LOW address
845
846        // ld_off is MSW so get LSW
847        // st_off is LSW (i.e. reg.first())
848        // __ fld_d(Address(saved_sp, next_off));
849        // __ fstp_d(Address(rsp, st_off));
850        //
851        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
852        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
853        // So we must adjust where to pick up the data to match the interpreter.
854        //
855        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
856        // are accessed as negative so LSW is at LOW address
857
858        // ld_off is MSW so get LSW
859        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
860                           next_off : ld_off;
861        __ movptr(rsi, Address(saved_sp, offset));
862        __ movptr(Address(rsp, st_off), rsi);
863#ifndef _LP64
864        __ movptr(rsi, Address(saved_sp, ld_off));
865        __ movptr(Address(rsp, st_off + wordSize), rsi);
866#endif // _LP64
867      }
868    } else if (r_1->is_Register()) {  // Register argument
869      Register r = r_1->as_Register();
870      assert(r != rax, "must be different");
871      if (r_2->is_valid()) {
872        //
873        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
874        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
875        // So we must adjust where to pick up the data to match the interpreter.
876
877        const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
878                           next_off : ld_off;
879
880        // this can be a misaligned move
881        __ movptr(r, Address(saved_sp, offset));
882#ifndef _LP64
883        assert(r_2->as_Register() != rax, "need another temporary register");
884        // Remember r_1 is low address (and LSB on x86)
885        // So r_2 gets loaded from high address regardless of the platform
886        __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
887#endif // _LP64
888      } else {
889        __ movl(r, Address(saved_sp, ld_off));
890      }
891    } else {
892      assert(r_1->is_XMMRegister(), "");
893      if (!r_2->is_valid()) {
894        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
895      } else {
896        move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
897      }
898    }
899  }
900
901  // 6243940 We might end up in handle_wrong_method if
902  // the callee is deoptimized as we race thru here. If that
903  // happens we don't want to take a safepoint because the
904  // caller frame will look interpreted and arguments are now
905  // "compiled" so it is much better to make this transition
906  // invisible to the stack walking code. Unfortunately if
907  // we try and find the callee by normal means a safepoint
908  // is possible. So we stash the desired callee in the thread
909  // and the vm will find there should this case occur.
910
911  __ get_thread(rax);
912  __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
913
914  // move Method* to rax, in case we end up in an c2i adapter.
915  // the c2i adapters expect Method* in rax, (c2) because c2's
916  // resolve stubs return the result (the method) in rax,.
917  // I'd love to fix this.
918  __ mov(rax, rbx);
919
920  __ jmp(rdi);
921}
922
923// ---------------------------------------------------------------
924AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
925                                                            int total_args_passed,
926                                                            int comp_args_on_stack,
927                                                            const BasicType *sig_bt,
928                                                            const VMRegPair *regs,
929                                                            AdapterFingerPrint* fingerprint) {
930  address i2c_entry = __ pc();
931
932  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
933
934  // -------------------------------------------------------------------------
935  // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
936  // to the interpreter.  The args start out packed in the compiled layout.  They
937  // need to be unpacked into the interpreter layout.  This will almost always
938  // require some stack space.  We grow the current (compiled) stack, then repack
939  // the args.  We  finally end in a jump to the generic interpreter entry point.
940  // On exit from the interpreter, the interpreter will restore our SP (lest the
941  // compiled code, which relys solely on SP and not EBP, get sick).
942
943  address c2i_unverified_entry = __ pc();
944  Label skip_fixup;
945
946  Register holder = rax;
947  Register receiver = rcx;
948  Register temp = rbx;
949
950  {
951
952    Label missed;
953    __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
954    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
955    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
956    __ jcc(Assembler::notEqual, missed);
957    // Method might have been compiled since the call site was patched to
958    // interpreted if that is the case treat it as a miss so we can get
959    // the call site corrected.
960    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
961    __ jcc(Assembler::equal, skip_fixup);
962
963    __ bind(missed);
964    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
965  }
966
967  address c2i_entry = __ pc();
968
969  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
970
971  __ flush();
972  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
973}
974
975int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
976                                         VMRegPair *regs,
977                                         VMRegPair *regs2,
978                                         int total_args_passed) {
979  assert(regs2 == NULL, "not needed on x86");
980// We return the amount of VMRegImpl stack slots we need to reserve for all
981// the arguments NOT counting out_preserve_stack_slots.
982
983  uint    stack = 0;        // All arguments on stack
984
985  for( int i = 0; i < total_args_passed; i++) {
986    // From the type and the argument number (count) compute the location
987    switch( sig_bt[i] ) {
988    case T_BOOLEAN:
989    case T_CHAR:
990    case T_FLOAT:
991    case T_BYTE:
992    case T_SHORT:
993    case T_INT:
994    case T_OBJECT:
995    case T_ARRAY:
996    case T_ADDRESS:
997    case T_METADATA:
998      regs[i].set1(VMRegImpl::stack2reg(stack++));
999      break;
1000    case T_LONG:
1001    case T_DOUBLE: // The stack numbering is reversed from Java
1002      // Since C arguments do not get reversed, the ordering for
1003      // doubles on the stack must be opposite the Java convention
1004      assert(sig_bt[i+1] == T_VOID, "missing Half" );
1005      regs[i].set2(VMRegImpl::stack2reg(stack));
1006      stack += 2;
1007      break;
1008    case T_VOID: regs[i].set_bad(); break;
1009    default:
1010      ShouldNotReachHere();
1011      break;
1012    }
1013  }
1014  return stack;
1015}
1016
1017// A simple move of integer like type
1018static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1019  if (src.first()->is_stack()) {
1020    if (dst.first()->is_stack()) {
1021      // stack to stack
1022      // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1023      // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1024      __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1025      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1026    } else {
1027      // stack to reg
1028      __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1029    }
1030  } else if (dst.first()->is_stack()) {
1031    // reg to stack
1032    // no need to sign extend on 64bit
1033    __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1034  } else {
1035    if (dst.first() != src.first()) {
1036      __ mov(dst.first()->as_Register(), src.first()->as_Register());
1037    }
1038  }
1039}
1040
1041// An oop arg. Must pass a handle not the oop itself
1042static void object_move(MacroAssembler* masm,
1043                        OopMap* map,
1044                        int oop_handle_offset,
1045                        int framesize_in_slots,
1046                        VMRegPair src,
1047                        VMRegPair dst,
1048                        bool is_receiver,
1049                        int* receiver_offset) {
1050
1051  // Because of the calling conventions we know that src can be a
1052  // register or a stack location. dst can only be a stack location.
1053
1054  assert(dst.first()->is_stack(), "must be stack");
1055  // must pass a handle. First figure out the location we use as a handle
1056
1057  if (src.first()->is_stack()) {
1058    // Oop is already on the stack as an argument
1059    Register rHandle = rax;
1060    Label nil;
1061    __ xorptr(rHandle, rHandle);
1062    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1063    __ jcc(Assembler::equal, nil);
1064    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1065    __ bind(nil);
1066    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1067
1068    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1069    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1070    if (is_receiver) {
1071      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1072    }
1073  } else {
1074    // Oop is in an a register we must store it to the space we reserve
1075    // on the stack for oop_handles
1076    const Register rOop = src.first()->as_Register();
1077    const Register rHandle = rax;
1078    int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1079    int offset = oop_slot*VMRegImpl::stack_slot_size;
1080    Label skip;
1081    __ movptr(Address(rsp, offset), rOop);
1082    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1083    __ xorptr(rHandle, rHandle);
1084    __ cmpptr(rOop, (int32_t)NULL_WORD);
1085    __ jcc(Assembler::equal, skip);
1086    __ lea(rHandle, Address(rsp, offset));
1087    __ bind(skip);
1088    // Store the handle parameter
1089    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1090    if (is_receiver) {
1091      *receiver_offset = offset;
1092    }
1093  }
1094}
1095
1096// A float arg may have to do float reg int reg conversion
1097static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1098  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1099
1100  // Because of the calling convention we know that src is either a stack location
1101  // or an xmm register. dst can only be a stack location.
1102
1103  assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1104
1105  if (src.first()->is_stack()) {
1106    __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1107    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1108  } else {
1109    // reg to stack
1110    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1111  }
1112}
1113
1114// A long move
1115static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1116
1117  // The only legal possibility for a long_move VMRegPair is:
1118  // 1: two stack slots (possibly unaligned)
1119  // as neither the java  or C calling convention will use registers
1120  // for longs.
1121
1122  if (src.first()->is_stack() && dst.first()->is_stack()) {
1123    assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1124    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1125    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1126    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1127    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1128  } else {
1129    ShouldNotReachHere();
1130  }
1131}
1132
1133// A double move
1134static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1135
1136  // The only legal possibilities for a double_move VMRegPair are:
1137  // The painful thing here is that like long_move a VMRegPair might be
1138
1139  // Because of the calling convention we know that src is either
1140  //   1: a single physical register (xmm registers only)
1141  //   2: two stack slots (possibly unaligned)
1142  // dst can only be a pair of stack slots.
1143
1144  assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1145
1146  if (src.first()->is_stack()) {
1147    // source is all stack
1148    __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1149    NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1150    __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1151    NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1152  } else {
1153    // reg to stack
1154    // No worries about stack alignment
1155    __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1156  }
1157}
1158
1159
1160void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1161  // We always ignore the frame_slots arg and just use the space just below frame pointer
1162  // which by this time is free to use
1163  switch (ret_type) {
1164  case T_FLOAT:
1165    __ fstp_s(Address(rbp, -wordSize));
1166    break;
1167  case T_DOUBLE:
1168    __ fstp_d(Address(rbp, -2*wordSize));
1169    break;
1170  case T_VOID:  break;
1171  case T_LONG:
1172    __ movptr(Address(rbp, -wordSize), rax);
1173    NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1174    break;
1175  default: {
1176    __ movptr(Address(rbp, -wordSize), rax);
1177    }
1178  }
1179}
1180
1181void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1182  // We always ignore the frame_slots arg and just use the space just below frame pointer
1183  // which by this time is free to use
1184  switch (ret_type) {
1185  case T_FLOAT:
1186    __ fld_s(Address(rbp, -wordSize));
1187    break;
1188  case T_DOUBLE:
1189    __ fld_d(Address(rbp, -2*wordSize));
1190    break;
1191  case T_LONG:
1192    __ movptr(rax, Address(rbp, -wordSize));
1193    NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1194    break;
1195  case T_VOID:  break;
1196  default: {
1197    __ movptr(rax, Address(rbp, -wordSize));
1198    }
1199  }
1200}
1201
1202
1203static void save_or_restore_arguments(MacroAssembler* masm,
1204                                      const int stack_slots,
1205                                      const int total_in_args,
1206                                      const int arg_save_area,
1207                                      OopMap* map,
1208                                      VMRegPair* in_regs,
1209                                      BasicType* in_sig_bt) {
1210  // if map is non-NULL then the code should store the values,
1211  // otherwise it should load them.
1212  int handle_index = 0;
1213  // Save down double word first
1214  for ( int i = 0; i < total_in_args; i++) {
1215    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1216      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1217      int offset = slot * VMRegImpl::stack_slot_size;
1218      handle_index += 2;
1219      assert(handle_index <= stack_slots, "overflow");
1220      if (map != NULL) {
1221        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1222      } else {
1223        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1224      }
1225    }
1226    if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1227      int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1228      int offset = slot * VMRegImpl::stack_slot_size;
1229      handle_index += 2;
1230      assert(handle_index <= stack_slots, "overflow");
1231      if (map != NULL) {
1232        __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1233        if (in_regs[i].second()->is_Register()) {
1234          __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1235        }
1236      } else {
1237        __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1238        if (in_regs[i].second()->is_Register()) {
1239          __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1240        }
1241      }
1242    }
1243  }
1244  // Save or restore single word registers
1245  for ( int i = 0; i < total_in_args; i++) {
1246    if (in_regs[i].first()->is_Register()) {
1247      int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1248      int offset = slot * VMRegImpl::stack_slot_size;
1249      assert(handle_index <= stack_slots, "overflow");
1250      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1251        map->set_oop(VMRegImpl::stack2reg(slot));;
1252      }
1253
1254      // Value is in an input register pass we must flush it to the stack
1255      const Register reg = in_regs[i].first()->as_Register();
1256      switch (in_sig_bt[i]) {
1257        case T_ARRAY:
1258          if (map != NULL) {
1259            __ movptr(Address(rsp, offset), reg);
1260          } else {
1261            __ movptr(reg, Address(rsp, offset));
1262          }
1263          break;
1264        case T_BOOLEAN:
1265        case T_CHAR:
1266        case T_BYTE:
1267        case T_SHORT:
1268        case T_INT:
1269          if (map != NULL) {
1270            __ movl(Address(rsp, offset), reg);
1271          } else {
1272            __ movl(reg, Address(rsp, offset));
1273          }
1274          break;
1275        case T_OBJECT:
1276        default: ShouldNotReachHere();
1277      }
1278    } else if (in_regs[i].first()->is_XMMRegister()) {
1279      if (in_sig_bt[i] == T_FLOAT) {
1280        int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1281        int offset = slot * VMRegImpl::stack_slot_size;
1282        assert(handle_index <= stack_slots, "overflow");
1283        if (map != NULL) {
1284          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1285        } else {
1286          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1287        }
1288      }
1289    } else if (in_regs[i].first()->is_stack()) {
1290      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1291        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1292        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1293      }
1294    }
1295  }
1296}
1297
1298// Check GCLocker::needs_gc and enter the runtime if it's true.  This
1299// keeps a new JNI critical region from starting until a GC has been
1300// forced.  Save down any oops in registers and describe them in an
1301// OopMap.
1302static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1303                                               Register thread,
1304                                               int stack_slots,
1305                                               int total_c_args,
1306                                               int total_in_args,
1307                                               int arg_save_area,
1308                                               OopMapSet* oop_maps,
1309                                               VMRegPair* in_regs,
1310                                               BasicType* in_sig_bt) {
1311  __ block_comment("check GCLocker::needs_gc");
1312  Label cont;
1313  __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1314  __ jcc(Assembler::equal, cont);
1315
1316  // Save down any incoming oops and call into the runtime to halt for a GC
1317
1318  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1319
1320  save_or_restore_arguments(masm, stack_slots, total_in_args,
1321                            arg_save_area, map, in_regs, in_sig_bt);
1322
1323  address the_pc = __ pc();
1324  oop_maps->add_gc_map( __ offset(), map);
1325  __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1326
1327  __ block_comment("block_for_jni_critical");
1328  __ push(thread);
1329  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1330  __ increment(rsp, wordSize);
1331
1332  __ get_thread(thread);
1333  __ reset_last_Java_frame(thread, false);
1334
1335  save_or_restore_arguments(masm, stack_slots, total_in_args,
1336                            arg_save_area, NULL, in_regs, in_sig_bt);
1337
1338  __ bind(cont);
1339#ifdef ASSERT
1340  if (StressCriticalJNINatives) {
1341    // Stress register saving
1342    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1343    save_or_restore_arguments(masm, stack_slots, total_in_args,
1344                              arg_save_area, map, in_regs, in_sig_bt);
1345    // Destroy argument registers
1346    for (int i = 0; i < total_in_args - 1; i++) {
1347      if (in_regs[i].first()->is_Register()) {
1348        const Register reg = in_regs[i].first()->as_Register();
1349        __ xorptr(reg, reg);
1350      } else if (in_regs[i].first()->is_XMMRegister()) {
1351        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1352      } else if (in_regs[i].first()->is_FloatRegister()) {
1353        ShouldNotReachHere();
1354      } else if (in_regs[i].first()->is_stack()) {
1355        // Nothing to do
1356      } else {
1357        ShouldNotReachHere();
1358      }
1359      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1360        i++;
1361      }
1362    }
1363
1364    save_or_restore_arguments(masm, stack_slots, total_in_args,
1365                              arg_save_area, NULL, in_regs, in_sig_bt);
1366  }
1367#endif
1368}
1369
1370// Unpack an array argument into a pointer to the body and the length
1371// if the array is non-null, otherwise pass 0 for both.
1372static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1373  Register tmp_reg = rax;
1374  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1375         "possible collision");
1376  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1377         "possible collision");
1378
1379  // Pass the length, ptr pair
1380  Label is_null, done;
1381  VMRegPair tmp(tmp_reg->as_VMReg());
1382  if (reg.first()->is_stack()) {
1383    // Load the arg up from the stack
1384    simple_move32(masm, reg, tmp);
1385    reg = tmp;
1386  }
1387  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1388  __ jccb(Assembler::equal, is_null);
1389  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1390  simple_move32(masm, tmp, body_arg);
1391  // load the length relative to the body.
1392  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1393                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1394  simple_move32(masm, tmp, length_arg);
1395  __ jmpb(done);
1396  __ bind(is_null);
1397  // Pass zeros
1398  __ xorptr(tmp_reg, tmp_reg);
1399  simple_move32(masm, tmp, body_arg);
1400  simple_move32(masm, tmp, length_arg);
1401  __ bind(done);
1402}
1403
1404static void verify_oop_args(MacroAssembler* masm,
1405                            methodHandle method,
1406                            const BasicType* sig_bt,
1407                            const VMRegPair* regs) {
1408  Register temp_reg = rbx;  // not part of any compiled calling seq
1409  if (VerifyOops) {
1410    for (int i = 0; i < method->size_of_parameters(); i++) {
1411      if (sig_bt[i] == T_OBJECT ||
1412          sig_bt[i] == T_ARRAY) {
1413        VMReg r = regs[i].first();
1414        assert(r->is_valid(), "bad oop arg");
1415        if (r->is_stack()) {
1416          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1417          __ verify_oop(temp_reg);
1418        } else {
1419          __ verify_oop(r->as_Register());
1420        }
1421      }
1422    }
1423  }
1424}
1425
1426static void gen_special_dispatch(MacroAssembler* masm,
1427                                 methodHandle method,
1428                                 const BasicType* sig_bt,
1429                                 const VMRegPair* regs) {
1430  verify_oop_args(masm, method, sig_bt, regs);
1431  vmIntrinsics::ID iid = method->intrinsic_id();
1432
1433  // Now write the args into the outgoing interpreter space
1434  bool     has_receiver   = false;
1435  Register receiver_reg   = noreg;
1436  int      member_arg_pos = -1;
1437  Register member_reg     = noreg;
1438  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1439  if (ref_kind != 0) {
1440    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1441    member_reg = rbx;  // known to be free at this point
1442    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1443  } else if (iid == vmIntrinsics::_invokeBasic) {
1444    has_receiver = true;
1445  } else {
1446    fatal("unexpected intrinsic id %d", iid);
1447  }
1448
1449  if (member_reg != noreg) {
1450    // Load the member_arg into register, if necessary.
1451    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1452    VMReg r = regs[member_arg_pos].first();
1453    if (r->is_stack()) {
1454      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1455    } else {
1456      // no data motion is needed
1457      member_reg = r->as_Register();
1458    }
1459  }
1460
1461  if (has_receiver) {
1462    // Make sure the receiver is loaded into a register.
1463    assert(method->size_of_parameters() > 0, "oob");
1464    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1465    VMReg r = regs[0].first();
1466    assert(r->is_valid(), "bad receiver arg");
1467    if (r->is_stack()) {
1468      // Porting note:  This assumes that compiled calling conventions always
1469      // pass the receiver oop in a register.  If this is not true on some
1470      // platform, pick a temp and load the receiver from stack.
1471      fatal("receiver always in a register");
1472      receiver_reg = rcx;  // known to be free at this point
1473      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1474    } else {
1475      // no data motion is needed
1476      receiver_reg = r->as_Register();
1477    }
1478  }
1479
1480  // Figure out which address we are really jumping to:
1481  MethodHandles::generate_method_handle_dispatch(masm, iid,
1482                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1483}
1484
1485// ---------------------------------------------------------------------------
1486// Generate a native wrapper for a given method.  The method takes arguments
1487// in the Java compiled code convention, marshals them to the native
1488// convention (handlizes oops, etc), transitions to native, makes the call,
1489// returns to java state (possibly blocking), unhandlizes any result and
1490// returns.
1491//
1492// Critical native functions are a shorthand for the use of
1493// GetPrimtiveArrayCritical and disallow the use of any other JNI
1494// functions.  The wrapper is expected to unpack the arguments before
1495// passing them to the callee and perform checks before and after the
1496// native call to ensure that they GCLocker
1497// lock_critical/unlock_critical semantics are followed.  Some other
1498// parts of JNI setup are skipped like the tear down of the JNI handle
1499// block and the check for pending exceptions it's impossible for them
1500// to be thrown.
1501//
1502// They are roughly structured like this:
1503//    if (GCLocker::needs_gc())
1504//      SharedRuntime::block_for_jni_critical();
1505//    tranistion to thread_in_native
1506//    unpack arrray arguments and call native entry point
1507//    check for safepoint in progress
1508//    check if any thread suspend flags are set
1509//      call into JVM and possible unlock the JNI critical
1510//      if a GC was suppressed while in the critical native.
1511//    transition back to thread_in_Java
1512//    return to caller
1513//
1514nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1515                                                const methodHandle& method,
1516                                                int compile_id,
1517                                                BasicType* in_sig_bt,
1518                                                VMRegPair* in_regs,
1519                                                BasicType ret_type) {
1520  if (method->is_method_handle_intrinsic()) {
1521    vmIntrinsics::ID iid = method->intrinsic_id();
1522    intptr_t start = (intptr_t)__ pc();
1523    int vep_offset = ((intptr_t)__ pc()) - start;
1524    gen_special_dispatch(masm,
1525                         method,
1526                         in_sig_bt,
1527                         in_regs);
1528    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1529    __ flush();
1530    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1531    return nmethod::new_native_nmethod(method,
1532                                       compile_id,
1533                                       masm->code(),
1534                                       vep_offset,
1535                                       frame_complete,
1536                                       stack_slots / VMRegImpl::slots_per_word,
1537                                       in_ByteSize(-1),
1538                                       in_ByteSize(-1),
1539                                       (OopMapSet*)NULL);
1540  }
1541  bool is_critical_native = true;
1542  address native_func = method->critical_native_function();
1543  if (native_func == NULL) {
1544    native_func = method->native_function();
1545    is_critical_native = false;
1546  }
1547  assert(native_func != NULL, "must have function");
1548
1549  // An OopMap for lock (and class if static)
1550  OopMapSet *oop_maps = new OopMapSet();
1551
1552  // We have received a description of where all the java arg are located
1553  // on entry to the wrapper. We need to convert these args to where
1554  // the jni function will expect them. To figure out where they go
1555  // we convert the java signature to a C signature by inserting
1556  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1557
1558  const int total_in_args = method->size_of_parameters();
1559  int total_c_args = total_in_args;
1560  if (!is_critical_native) {
1561    total_c_args += 1;
1562    if (method->is_static()) {
1563      total_c_args++;
1564    }
1565  } else {
1566    for (int i = 0; i < total_in_args; i++) {
1567      if (in_sig_bt[i] == T_ARRAY) {
1568        total_c_args++;
1569      }
1570    }
1571  }
1572
1573  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1574  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1575  BasicType* in_elem_bt = NULL;
1576
1577  int argc = 0;
1578  if (!is_critical_native) {
1579    out_sig_bt[argc++] = T_ADDRESS;
1580    if (method->is_static()) {
1581      out_sig_bt[argc++] = T_OBJECT;
1582    }
1583
1584    for (int i = 0; i < total_in_args ; i++ ) {
1585      out_sig_bt[argc++] = in_sig_bt[i];
1586    }
1587  } else {
1588    Thread* THREAD = Thread::current();
1589    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1590    SignatureStream ss(method->signature());
1591    for (int i = 0; i < total_in_args ; i++ ) {
1592      if (in_sig_bt[i] == T_ARRAY) {
1593        // Arrays are passed as int, elem* pair
1594        out_sig_bt[argc++] = T_INT;
1595        out_sig_bt[argc++] = T_ADDRESS;
1596        Symbol* atype = ss.as_symbol(CHECK_NULL);
1597        const char* at = atype->as_C_string();
1598        if (strlen(at) == 2) {
1599          assert(at[0] == '[', "must be");
1600          switch (at[1]) {
1601            case 'B': in_elem_bt[i]  = T_BYTE; break;
1602            case 'C': in_elem_bt[i]  = T_CHAR; break;
1603            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1604            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1605            case 'I': in_elem_bt[i]  = T_INT; break;
1606            case 'J': in_elem_bt[i]  = T_LONG; break;
1607            case 'S': in_elem_bt[i]  = T_SHORT; break;
1608            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1609            default: ShouldNotReachHere();
1610          }
1611        }
1612      } else {
1613        out_sig_bt[argc++] = in_sig_bt[i];
1614        in_elem_bt[i] = T_VOID;
1615      }
1616      if (in_sig_bt[i] != T_VOID) {
1617        assert(in_sig_bt[i] == ss.type(), "must match");
1618        ss.next();
1619      }
1620    }
1621  }
1622
1623  // Now figure out where the args must be stored and how much stack space
1624  // they require.
1625  int out_arg_slots;
1626  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1627
1628  // Compute framesize for the wrapper.  We need to handlize all oops in
1629  // registers a max of 2 on x86.
1630
1631  // Calculate the total number of stack slots we will need.
1632
1633  // First count the abi requirement plus all of the outgoing args
1634  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1635
1636  // Now the space for the inbound oop handle area
1637  int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1638  if (is_critical_native) {
1639    // Critical natives may have to call out so they need a save area
1640    // for register arguments.
1641    int double_slots = 0;
1642    int single_slots = 0;
1643    for ( int i = 0; i < total_in_args; i++) {
1644      if (in_regs[i].first()->is_Register()) {
1645        const Register reg = in_regs[i].first()->as_Register();
1646        switch (in_sig_bt[i]) {
1647          case T_ARRAY:  // critical array (uses 2 slots on LP64)
1648          case T_BOOLEAN:
1649          case T_BYTE:
1650          case T_SHORT:
1651          case T_CHAR:
1652          case T_INT:  single_slots++; break;
1653          case T_LONG: double_slots++; break;
1654          default:  ShouldNotReachHere();
1655        }
1656      } else if (in_regs[i].first()->is_XMMRegister()) {
1657        switch (in_sig_bt[i]) {
1658          case T_FLOAT:  single_slots++; break;
1659          case T_DOUBLE: double_slots++; break;
1660          default:  ShouldNotReachHere();
1661        }
1662      } else if (in_regs[i].first()->is_FloatRegister()) {
1663        ShouldNotReachHere();
1664      }
1665    }
1666    total_save_slots = double_slots * 2 + single_slots;
1667    // align the save area
1668    if (double_slots != 0) {
1669      stack_slots = round_to(stack_slots, 2);
1670    }
1671  }
1672
1673  int oop_handle_offset = stack_slots;
1674  stack_slots += total_save_slots;
1675
1676  // Now any space we need for handlizing a klass if static method
1677
1678  int klass_slot_offset = 0;
1679  int klass_offset = -1;
1680  int lock_slot_offset = 0;
1681  bool is_static = false;
1682
1683  if (method->is_static()) {
1684    klass_slot_offset = stack_slots;
1685    stack_slots += VMRegImpl::slots_per_word;
1686    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1687    is_static = true;
1688  }
1689
1690  // Plus a lock if needed
1691
1692  if (method->is_synchronized()) {
1693    lock_slot_offset = stack_slots;
1694    stack_slots += VMRegImpl::slots_per_word;
1695  }
1696
1697  // Now a place (+2) to save return values or temp during shuffling
1698  // + 2 for return address (which we own) and saved rbp,
1699  stack_slots += 4;
1700
1701  // Ok The space we have allocated will look like:
1702  //
1703  //
1704  // FP-> |                     |
1705  //      |---------------------|
1706  //      | 2 slots for moves   |
1707  //      |---------------------|
1708  //      | lock box (if sync)  |
1709  //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1710  //      | klass (if static)   |
1711  //      |---------------------| <- klass_slot_offset
1712  //      | oopHandle area      |
1713  //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1714  //      | outbound memory     |
1715  //      | based arguments     |
1716  //      |                     |
1717  //      |---------------------|
1718  //      |                     |
1719  // SP-> | out_preserved_slots |
1720  //
1721  //
1722  // ****************************************************************************
1723  // WARNING - on Windows Java Natives use pascal calling convention and pop the
1724  // arguments off of the stack after the jni call. Before the call we can use
1725  // instructions that are SP relative. After the jni call we switch to FP
1726  // relative instructions instead of re-adjusting the stack on windows.
1727  // ****************************************************************************
1728
1729
1730  // Now compute actual number of stack words we need rounding to make
1731  // stack properly aligned.
1732  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1733
1734  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1735
1736  intptr_t start = (intptr_t)__ pc();
1737
1738  // First thing make an ic check to see if we should even be here
1739
1740  // We are free to use all registers as temps without saving them and
1741  // restoring them except rbp. rbp is the only callee save register
1742  // as far as the interpreter and the compiler(s) are concerned.
1743
1744
1745  const Register ic_reg = rax;
1746  const Register receiver = rcx;
1747  Label hit;
1748  Label exception_pending;
1749
1750  __ verify_oop(receiver);
1751  __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1752  __ jcc(Assembler::equal, hit);
1753
1754  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1755
1756  // verified entry must be aligned for code patching.
1757  // and the first 5 bytes must be in the same cache line
1758  // if we align at 8 then we will be sure 5 bytes are in the same line
1759  __ align(8);
1760
1761  __ bind(hit);
1762
1763  int vep_offset = ((intptr_t)__ pc()) - start;
1764
1765#ifdef COMPILER1
1766  // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1767  if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1768    inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1769   }
1770#endif // COMPILER1
1771
1772  // The instruction at the verified entry point must be 5 bytes or longer
1773  // because it can be patched on the fly by make_non_entrant. The stack bang
1774  // instruction fits that requirement.
1775
1776  // Generate stack overflow check
1777
1778  if (UseStackBanging) {
1779    __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1780  } else {
1781    // need a 5 byte instruction to allow MT safe patching to non-entrant
1782    __ fat_nop();
1783  }
1784
1785  // Generate a new frame for the wrapper.
1786  __ enter();
1787  // -2 because return address is already present and so is saved rbp
1788  __ subptr(rsp, stack_size - 2*wordSize);
1789
1790  // Frame is now completed as far as size and linkage.
1791  int frame_complete = ((intptr_t)__ pc()) - start;
1792
1793  if (UseRTMLocking) {
1794    // Abort RTM transaction before calling JNI
1795    // because critical section will be large and will be
1796    // aborted anyway. Also nmethod could be deoptimized.
1797    __ xabort(0);
1798  }
1799
1800  // Calculate the difference between rsp and rbp,. We need to know it
1801  // after the native call because on windows Java Natives will pop
1802  // the arguments and it is painful to do rsp relative addressing
1803  // in a platform independent way. So after the call we switch to
1804  // rbp, relative addressing.
1805
1806  int fp_adjustment = stack_size - 2*wordSize;
1807
1808#ifdef COMPILER2
1809  // C2 may leave the stack dirty if not in SSE2+ mode
1810  if (UseSSE >= 2) {
1811    __ verify_FPU(0, "c2i transition should have clean FPU stack");
1812  } else {
1813    __ empty_FPU_stack();
1814  }
1815#endif /* COMPILER2 */
1816
1817  // Compute the rbp, offset for any slots used after the jni call
1818
1819  int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1820
1821  // We use rdi as a thread pointer because it is callee save and
1822  // if we load it once it is usable thru the entire wrapper
1823  const Register thread = rdi;
1824
1825  // We use rsi as the oop handle for the receiver/klass
1826  // It is callee save so it survives the call to native
1827
1828  const Register oop_handle_reg = rsi;
1829
1830  __ get_thread(thread);
1831
1832  if (is_critical_native) {
1833    check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1834                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1835  }
1836
1837  //
1838  // We immediately shuffle the arguments so that any vm call we have to
1839  // make from here on out (sync slow path, jvmti, etc.) we will have
1840  // captured the oops from our caller and have a valid oopMap for
1841  // them.
1842
1843  // -----------------
1844  // The Grand Shuffle
1845  //
1846  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1847  // and, if static, the class mirror instead of a receiver.  This pretty much
1848  // guarantees that register layout will not match (and x86 doesn't use reg
1849  // parms though amd does).  Since the native abi doesn't use register args
1850  // and the java conventions does we don't have to worry about collisions.
1851  // All of our moved are reg->stack or stack->stack.
1852  // We ignore the extra arguments during the shuffle and handle them at the
1853  // last moment. The shuffle is described by the two calling convention
1854  // vectors we have in our possession. We simply walk the java vector to
1855  // get the source locations and the c vector to get the destinations.
1856
1857  int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1858
1859  // Record rsp-based slot for receiver on stack for non-static methods
1860  int receiver_offset = -1;
1861
1862  // This is a trick. We double the stack slots so we can claim
1863  // the oops in the caller's frame. Since we are sure to have
1864  // more args than the caller doubling is enough to make
1865  // sure we can capture all the incoming oop args from the
1866  // caller.
1867  //
1868  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1869
1870  // Mark location of rbp,
1871  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1872
1873  // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1874  // Are free to temporaries if we have to do  stack to steck moves.
1875  // All inbound args are referenced based on rbp, and all outbound args via rsp.
1876
1877  for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1878    switch (in_sig_bt[i]) {
1879      case T_ARRAY:
1880        if (is_critical_native) {
1881          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1882          c_arg++;
1883          break;
1884        }
1885      case T_OBJECT:
1886        assert(!is_critical_native, "no oop arguments");
1887        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1888                    ((i == 0) && (!is_static)),
1889                    &receiver_offset);
1890        break;
1891      case T_VOID:
1892        break;
1893
1894      case T_FLOAT:
1895        float_move(masm, in_regs[i], out_regs[c_arg]);
1896          break;
1897
1898      case T_DOUBLE:
1899        assert( i + 1 < total_in_args &&
1900                in_sig_bt[i + 1] == T_VOID &&
1901                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1902        double_move(masm, in_regs[i], out_regs[c_arg]);
1903        break;
1904
1905      case T_LONG :
1906        long_move(masm, in_regs[i], out_regs[c_arg]);
1907        break;
1908
1909      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1910
1911      default:
1912        simple_move32(masm, in_regs[i], out_regs[c_arg]);
1913    }
1914  }
1915
1916  // Pre-load a static method's oop into rsi.  Used both by locking code and
1917  // the normal JNI call code.
1918  if (method->is_static() && !is_critical_native) {
1919
1920    //  load opp into a register
1921    __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1922
1923    // Now handlize the static class mirror it's known not-null.
1924    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1925    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1926
1927    // Now get the handle
1928    __ lea(oop_handle_reg, Address(rsp, klass_offset));
1929    // store the klass handle as second argument
1930    __ movptr(Address(rsp, wordSize), oop_handle_reg);
1931  }
1932
1933  // Change state to native (we save the return address in the thread, since it might not
1934  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1935  // points into the right code segment. It does not have to be the correct return pc.
1936  // We use the same pc/oopMap repeatedly when we call out
1937
1938  intptr_t the_pc = (intptr_t) __ pc();
1939  oop_maps->add_gc_map(the_pc - start, map);
1940
1941  __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1942
1943
1944  // We have all of the arguments setup at this point. We must not touch any register
1945  // argument registers at this point (what if we save/restore them there are no oop?
1946
1947  {
1948    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1949    __ mov_metadata(rax, method());
1950    __ call_VM_leaf(
1951         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1952         thread, rax);
1953  }
1954
1955  // RedefineClasses() tracing support for obsolete method entry
1956  if (log_is_enabled(Trace, redefine, class, obsolete)) {
1957    __ mov_metadata(rax, method());
1958    __ call_VM_leaf(
1959         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1960         thread, rax);
1961  }
1962
1963  // These are register definitions we need for locking/unlocking
1964  const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1965  const Register obj_reg  = rcx;  // Will contain the oop
1966  const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1967
1968  Label slow_path_lock;
1969  Label lock_done;
1970
1971  // Lock a synchronized method
1972  if (method->is_synchronized()) {
1973    assert(!is_critical_native, "unhandled");
1974
1975
1976    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1977
1978    // Get the handle (the 2nd argument)
1979    __ movptr(oop_handle_reg, Address(rsp, wordSize));
1980
1981    // Get address of the box
1982
1983    __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1984
1985    // Load the oop from the handle
1986    __ movptr(obj_reg, Address(oop_handle_reg, 0));
1987
1988    if (UseBiasedLocking) {
1989      // Note that oop_handle_reg is trashed during this call
1990      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1991    }
1992
1993    // Load immediate 1 into swap_reg %rax,
1994    __ movptr(swap_reg, 1);
1995
1996    // Load (object->mark() | 1) into swap_reg %rax,
1997    __ orptr(swap_reg, Address(obj_reg, 0));
1998
1999    // Save (object->mark() | 1) into BasicLock's displaced header
2000    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2001
2002    if (os::is_MP()) {
2003      __ lock();
2004    }
2005
2006    // src -> dest iff dest == rax, else rax, <- dest
2007    // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2008    __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2009    __ jcc(Assembler::equal, lock_done);
2010
2011    // Test if the oopMark is an obvious stack pointer, i.e.,
2012    //  1) (mark & 3) == 0, and
2013    //  2) rsp <= mark < mark + os::pagesize()
2014    // These 3 tests can be done by evaluating the following
2015    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2016    // assuming both stack pointer and pagesize have their
2017    // least significant 2 bits clear.
2018    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2019
2020    __ subptr(swap_reg, rsp);
2021    __ andptr(swap_reg, 3 - os::vm_page_size());
2022
2023    // Save the test result, for recursive case, the result is zero
2024    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2025    __ jcc(Assembler::notEqual, slow_path_lock);
2026    // Slow path will re-enter here
2027    __ bind(lock_done);
2028
2029    if (UseBiasedLocking) {
2030      // Re-fetch oop_handle_reg as we trashed it above
2031      __ movptr(oop_handle_reg, Address(rsp, wordSize));
2032    }
2033  }
2034
2035
2036  // Finally just about ready to make the JNI call
2037
2038
2039  // get JNIEnv* which is first argument to native
2040  if (!is_critical_native) {
2041    __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2042    __ movptr(Address(rsp, 0), rdx);
2043  }
2044
2045  // Now set thread in native
2046  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2047
2048  __ call(RuntimeAddress(native_func));
2049
2050  // Verify or restore cpu control state after JNI call
2051  __ restore_cpu_control_state_after_jni();
2052
2053  // WARNING - on Windows Java Natives use pascal calling convention and pop the
2054  // arguments off of the stack. We could just re-adjust the stack pointer here
2055  // and continue to do SP relative addressing but we instead switch to FP
2056  // relative addressing.
2057
2058  // Unpack native results.
2059  switch (ret_type) {
2060  case T_BOOLEAN: __ c2bool(rax);            break;
2061  case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2062  case T_BYTE   : __ sign_extend_byte (rax); break;
2063  case T_SHORT  : __ sign_extend_short(rax); break;
2064  case T_INT    : /* nothing to do */        break;
2065  case T_DOUBLE :
2066  case T_FLOAT  :
2067    // Result is in st0 we'll save as needed
2068    break;
2069  case T_ARRAY:                 // Really a handle
2070  case T_OBJECT:                // Really a handle
2071      break; // can't de-handlize until after safepoint check
2072  case T_VOID: break;
2073  case T_LONG: break;
2074  default       : ShouldNotReachHere();
2075  }
2076
2077  // Switch thread to "native transition" state before reading the synchronization state.
2078  // This additional state is necessary because reading and testing the synchronization
2079  // state is not atomic w.r.t. GC, as this scenario demonstrates:
2080  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2081  //     VM thread changes sync state to synchronizing and suspends threads for GC.
2082  //     Thread A is resumed to finish this native method, but doesn't block here since it
2083  //     didn't see any synchronization is progress, and escapes.
2084  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2085
2086  if(os::is_MP()) {
2087    if (UseMembar) {
2088      // Force this write out before the read below
2089      __ membar(Assembler::Membar_mask_bits(
2090           Assembler::LoadLoad | Assembler::LoadStore |
2091           Assembler::StoreLoad | Assembler::StoreStore));
2092    } else {
2093      // Write serialization page so VM thread can do a pseudo remote membar.
2094      // We use the current thread pointer to calculate a thread specific
2095      // offset to write to within the page. This minimizes bus traffic
2096      // due to cache line collision.
2097      __ serialize_memory(thread, rcx);
2098    }
2099  }
2100
2101  if (AlwaysRestoreFPU) {
2102    // Make sure the control word is correct.
2103    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2104  }
2105
2106  Label after_transition;
2107
2108  // check for safepoint operation in progress and/or pending suspend requests
2109  { Label Continue;
2110
2111    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2112             SafepointSynchronize::_not_synchronized);
2113
2114    Label L;
2115    __ jcc(Assembler::notEqual, L);
2116    __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2117    __ jcc(Assembler::equal, Continue);
2118    __ bind(L);
2119
2120    // Don't use call_VM as it will see a possible pending exception and forward it
2121    // and never return here preventing us from clearing _last_native_pc down below.
2122    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2123    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2124    // by hand.
2125    //
2126    save_native_result(masm, ret_type, stack_slots);
2127    __ push(thread);
2128    if (!is_critical_native) {
2129      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2130                                              JavaThread::check_special_condition_for_native_trans)));
2131    } else {
2132      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2133                                              JavaThread::check_special_condition_for_native_trans_and_transition)));
2134    }
2135    __ increment(rsp, wordSize);
2136    // Restore any method result value
2137    restore_native_result(masm, ret_type, stack_slots);
2138
2139    if (is_critical_native) {
2140      // The call above performed the transition to thread_in_Java so
2141      // skip the transition logic below.
2142      __ jmpb(after_transition);
2143    }
2144
2145    __ bind(Continue);
2146  }
2147
2148  // change thread state
2149  __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2150  __ bind(after_transition);
2151
2152  Label reguard;
2153  Label reguard_done;
2154  __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2155  __ jcc(Assembler::equal, reguard);
2156
2157  // slow path reguard  re-enters here
2158  __ bind(reguard_done);
2159
2160  // Handle possible exception (will unlock if necessary)
2161
2162  // native result if any is live
2163
2164  // Unlock
2165  Label slow_path_unlock;
2166  Label unlock_done;
2167  if (method->is_synchronized()) {
2168
2169    Label done;
2170
2171    // Get locked oop from the handle we passed to jni
2172    __ movptr(obj_reg, Address(oop_handle_reg, 0));
2173
2174    if (UseBiasedLocking) {
2175      __ biased_locking_exit(obj_reg, rbx, done);
2176    }
2177
2178    // Simple recursive lock?
2179
2180    __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2181    __ jcc(Assembler::equal, done);
2182
2183    // Must save rax, if if it is live now because cmpxchg must use it
2184    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2185      save_native_result(masm, ret_type, stack_slots);
2186    }
2187
2188    //  get old displaced header
2189    __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2190
2191    // get address of the stack lock
2192    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2193
2194    // Atomic swap old header if oop still contains the stack lock
2195    if (os::is_MP()) {
2196    __ lock();
2197    }
2198
2199    // src -> dest iff dest == rax, else rax, <- dest
2200    // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2201    __ cmpxchgptr(rbx, Address(obj_reg, 0));
2202    __ jcc(Assembler::notEqual, slow_path_unlock);
2203
2204    // slow path re-enters here
2205    __ bind(unlock_done);
2206    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2207      restore_native_result(masm, ret_type, stack_slots);
2208    }
2209
2210    __ bind(done);
2211
2212  }
2213
2214  {
2215    SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2216    // Tell dtrace about this method exit
2217    save_native_result(masm, ret_type, stack_slots);
2218    __ mov_metadata(rax, method());
2219    __ call_VM_leaf(
2220         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2221         thread, rax);
2222    restore_native_result(masm, ret_type, stack_slots);
2223  }
2224
2225  // We can finally stop using that last_Java_frame we setup ages ago
2226
2227  __ reset_last_Java_frame(thread, false);
2228
2229  // Unpack oop result
2230  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2231      Label L;
2232      __ cmpptr(rax, (int32_t)NULL_WORD);
2233      __ jcc(Assembler::equal, L);
2234      __ movptr(rax, Address(rax, 0));
2235      __ bind(L);
2236      __ verify_oop(rax);
2237  }
2238
2239  if (!is_critical_native) {
2240    // reset handle block
2241    __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2242    __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2243
2244    // Any exception pending?
2245    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2246    __ jcc(Assembler::notEqual, exception_pending);
2247  }
2248
2249  // no exception, we're almost done
2250
2251  // check that only result value is on FPU stack
2252  __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2253
2254  // Fixup floating pointer results so that result looks like a return from a compiled method
2255  if (ret_type == T_FLOAT) {
2256    if (UseSSE >= 1) {
2257      // Pop st0 and store as float and reload into xmm register
2258      __ fstp_s(Address(rbp, -4));
2259      __ movflt(xmm0, Address(rbp, -4));
2260    }
2261  } else if (ret_type == T_DOUBLE) {
2262    if (UseSSE >= 2) {
2263      // Pop st0 and store as double and reload into xmm register
2264      __ fstp_d(Address(rbp, -8));
2265      __ movdbl(xmm0, Address(rbp, -8));
2266    }
2267  }
2268
2269  // Return
2270
2271  __ leave();
2272  __ ret(0);
2273
2274  // Unexpected paths are out of line and go here
2275
2276  // Slow path locking & unlocking
2277  if (method->is_synchronized()) {
2278
2279    // BEGIN Slow path lock
2280
2281    __ bind(slow_path_lock);
2282
2283    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2284    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2285    __ push(thread);
2286    __ push(lock_reg);
2287    __ push(obj_reg);
2288    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2289    __ addptr(rsp, 3*wordSize);
2290
2291#ifdef ASSERT
2292    { Label L;
2293    __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2294    __ jcc(Assembler::equal, L);
2295    __ stop("no pending exception allowed on exit from monitorenter");
2296    __ bind(L);
2297    }
2298#endif
2299    __ jmp(lock_done);
2300
2301    // END Slow path lock
2302
2303    // BEGIN Slow path unlock
2304    __ bind(slow_path_unlock);
2305
2306    // Slow path unlock
2307
2308    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2309      save_native_result(masm, ret_type, stack_slots);
2310    }
2311    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2312
2313    __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2314    __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2315
2316
2317    // should be a peal
2318    // +wordSize because of the push above
2319    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2320    __ push(thread);
2321    __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2322    __ push(rax);
2323
2324    __ push(obj_reg);
2325    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2326    __ addptr(rsp, 3*wordSize);
2327#ifdef ASSERT
2328    {
2329      Label L;
2330      __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2331      __ jcc(Assembler::equal, L);
2332      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2333      __ bind(L);
2334    }
2335#endif /* ASSERT */
2336
2337    __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2338
2339    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2340      restore_native_result(masm, ret_type, stack_slots);
2341    }
2342    __ jmp(unlock_done);
2343    // END Slow path unlock
2344
2345  }
2346
2347  // SLOW PATH Reguard the stack if needed
2348
2349  __ bind(reguard);
2350  save_native_result(masm, ret_type, stack_slots);
2351  {
2352    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2353  }
2354  restore_native_result(masm, ret_type, stack_slots);
2355  __ jmp(reguard_done);
2356
2357
2358  // BEGIN EXCEPTION PROCESSING
2359
2360  if (!is_critical_native) {
2361    // Forward  the exception
2362    __ bind(exception_pending);
2363
2364    // remove possible return value from FPU register stack
2365    __ empty_FPU_stack();
2366
2367    // pop our frame
2368    __ leave();
2369    // and forward the exception
2370    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2371  }
2372
2373  __ flush();
2374
2375  nmethod *nm = nmethod::new_native_nmethod(method,
2376                                            compile_id,
2377                                            masm->code(),
2378                                            vep_offset,
2379                                            frame_complete,
2380                                            stack_slots / VMRegImpl::slots_per_word,
2381                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2382                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2383                                            oop_maps);
2384
2385  if (is_critical_native) {
2386    nm->set_lazy_critical_native(true);
2387  }
2388
2389  return nm;
2390
2391}
2392
2393// this function returns the adjust size (in number of words) to a c2i adapter
2394// activation for use during deoptimization
2395int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2396  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2397}
2398
2399
2400uint SharedRuntime::out_preserve_stack_slots() {
2401  return 0;
2402}
2403
2404//------------------------------generate_deopt_blob----------------------------
2405void SharedRuntime::generate_deopt_blob() {
2406  // allocate space for the code
2407  ResourceMark rm;
2408  // setup code generation tools
2409  // note: the buffer code size must account for StackShadowPages=50
2410  CodeBuffer   buffer("deopt_blob", 1536, 1024);
2411  MacroAssembler* masm = new MacroAssembler(&buffer);
2412  int frame_size_in_words;
2413  OopMap* map = NULL;
2414  // Account for the extra args we place on the stack
2415  // by the time we call fetch_unroll_info
2416  const int additional_words = 2; // deopt kind, thread
2417
2418  OopMapSet *oop_maps = new OopMapSet();
2419
2420  // -------------
2421  // This code enters when returning to a de-optimized nmethod.  A return
2422  // address has been pushed on the the stack, and return values are in
2423  // registers.
2424  // If we are doing a normal deopt then we were called from the patched
2425  // nmethod from the point we returned to the nmethod. So the return
2426  // address on the stack is wrong by NativeCall::instruction_size
2427  // We will adjust the value to it looks like we have the original return
2428  // address on the stack (like when we eagerly deoptimized).
2429  // In the case of an exception pending with deoptimized then we enter
2430  // with a return address on the stack that points after the call we patched
2431  // into the exception handler. We have the following register state:
2432  //    rax,: exception
2433  //    rbx,: exception handler
2434  //    rdx: throwing pc
2435  // So in this case we simply jam rdx into the useless return address and
2436  // the stack looks just like we want.
2437  //
2438  // At this point we need to de-opt.  We save the argument return
2439  // registers.  We call the first C routine, fetch_unroll_info().  This
2440  // routine captures the return values and returns a structure which
2441  // describes the current frame size and the sizes of all replacement frames.
2442  // The current frame is compiled code and may contain many inlined
2443  // functions, each with their own JVM state.  We pop the current frame, then
2444  // push all the new frames.  Then we call the C routine unpack_frames() to
2445  // populate these frames.  Finally unpack_frames() returns us the new target
2446  // address.  Notice that callee-save registers are BLOWN here; they have
2447  // already been captured in the vframeArray at the time the return PC was
2448  // patched.
2449  address start = __ pc();
2450  Label cont;
2451
2452  // Prolog for non exception case!
2453
2454  // Save everything in sight.
2455
2456  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2457  // Normal deoptimization
2458  __ push(Deoptimization::Unpack_deopt);
2459  __ jmp(cont);
2460
2461  int reexecute_offset = __ pc() - start;
2462
2463  // Reexecute case
2464  // return address is the pc describes what bci to do re-execute at
2465
2466  // No need to update map as each call to save_live_registers will produce identical oopmap
2467  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2468
2469  __ push(Deoptimization::Unpack_reexecute);
2470  __ jmp(cont);
2471
2472  int exception_offset = __ pc() - start;
2473
2474  // Prolog for exception case
2475
2476  // all registers are dead at this entry point, except for rax, and
2477  // rdx which contain the exception oop and exception pc
2478  // respectively.  Set them in TLS and fall thru to the
2479  // unpack_with_exception_in_tls entry point.
2480
2481  __ get_thread(rdi);
2482  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2483  __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2484
2485  int exception_in_tls_offset = __ pc() - start;
2486
2487  // new implementation because exception oop is now passed in JavaThread
2488
2489  // Prolog for exception case
2490  // All registers must be preserved because they might be used by LinearScan
2491  // Exceptiop oop and throwing PC are passed in JavaThread
2492  // tos: stack at point of call to method that threw the exception (i.e. only
2493  // args are on the stack, no return address)
2494
2495  // make room on stack for the return address
2496  // It will be patched later with the throwing pc. The correct value is not
2497  // available now because loading it from memory would destroy registers.
2498  __ push(0);
2499
2500  // Save everything in sight.
2501
2502  // No need to update map as each call to save_live_registers will produce identical oopmap
2503  (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2504
2505  // Now it is safe to overwrite any register
2506
2507  // store the correct deoptimization type
2508  __ push(Deoptimization::Unpack_exception);
2509
2510  // load throwing pc from JavaThread and patch it as the return address
2511  // of the current frame. Then clear the field in JavaThread
2512  __ get_thread(rdi);
2513  __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2514  __ movptr(Address(rbp, wordSize), rdx);
2515  __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2516
2517#ifdef ASSERT
2518  // verify that there is really an exception oop in JavaThread
2519  __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2520  __ verify_oop(rax);
2521
2522  // verify that there is no pending exception
2523  Label no_pending_exception;
2524  __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2525  __ testptr(rax, rax);
2526  __ jcc(Assembler::zero, no_pending_exception);
2527  __ stop("must not have pending exception here");
2528  __ bind(no_pending_exception);
2529#endif
2530
2531  __ bind(cont);
2532
2533  // Compiled code leaves the floating point stack dirty, empty it.
2534  __ empty_FPU_stack();
2535
2536
2537  // Call C code.  Need thread and this frame, but NOT official VM entry
2538  // crud.  We cannot block on this call, no GC can happen.
2539  __ get_thread(rcx);
2540  __ push(rcx);
2541  // fetch_unroll_info needs to call last_java_frame()
2542  __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2543
2544  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2545
2546  // Need to have an oopmap that tells fetch_unroll_info where to
2547  // find any register it might need.
2548
2549  oop_maps->add_gc_map( __ pc()-start, map);
2550
2551  // Discard args to fetch_unroll_info
2552  __ pop(rcx);
2553  __ pop(rcx);
2554
2555  __ get_thread(rcx);
2556  __ reset_last_Java_frame(rcx, false);
2557
2558  // Load UnrollBlock into EDI
2559  __ mov(rdi, rax);
2560
2561  // Move the unpack kind to a safe place in the UnrollBlock because
2562  // we are very short of registers
2563
2564  Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2565  // retrieve the deopt kind from the UnrollBlock.
2566  __ movl(rax, unpack_kind);
2567
2568   Label noException;
2569  __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2570  __ jcc(Assembler::notEqual, noException);
2571  __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2572  __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2573  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2574  __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2575
2576  __ verify_oop(rax);
2577
2578  // Overwrite the result registers with the exception results.
2579  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2580  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2581
2582  __ bind(noException);
2583
2584  // Stack is back to only having register save data on the stack.
2585  // Now restore the result registers. Everything else is either dead or captured
2586  // in the vframeArray.
2587
2588  RegisterSaver::restore_result_registers(masm);
2589
2590  // Non standard control word may be leaked out through a safepoint blob, and we can
2591  // deopt at a poll point with the non standard control word. However, we should make
2592  // sure the control word is correct after restore_result_registers.
2593  __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2594
2595  // All of the register save area has been popped of the stack. Only the
2596  // return address remains.
2597
2598  // Pop all the frames we must move/replace.
2599  //
2600  // Frame picture (youngest to oldest)
2601  // 1: self-frame (no frame link)
2602  // 2: deopting frame  (no frame link)
2603  // 3: caller of deopting frame (could be compiled/interpreted).
2604  //
2605  // Note: by leaving the return address of self-frame on the stack
2606  // and using the size of frame 2 to adjust the stack
2607  // when we are done the return to frame 3 will still be on the stack.
2608
2609  // Pop deoptimized frame
2610  __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2611
2612  // sp should be pointing at the return address to the caller (3)
2613
2614  // Pick up the initial fp we should save
2615  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2616  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2617
2618#ifdef ASSERT
2619  // Compilers generate code that bang the stack by as much as the
2620  // interpreter would need. So this stack banging should never
2621  // trigger a fault. Verify that it does not on non product builds.
2622  if (UseStackBanging) {
2623    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2624    __ bang_stack_size(rbx, rcx);
2625  }
2626#endif
2627
2628  // Load array of frame pcs into ECX
2629  __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2630
2631  __ pop(rsi); // trash the old pc
2632
2633  // Load array of frame sizes into ESI
2634  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2635
2636  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2637
2638  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2639  __ movl(counter, rbx);
2640
2641  // Now adjust the caller's stack to make up for the extra locals
2642  // but record the original sp so that we can save it in the skeletal interpreter
2643  // frame and the stack walking of interpreter_sender will get the unextended sp
2644  // value and not the "real" sp value.
2645
2646  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2647  __ movptr(sp_temp, rsp);
2648  __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2649  __ subptr(rsp, rbx);
2650
2651  // Push interpreter frames in a loop
2652  Label loop;
2653  __ bind(loop);
2654  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2655  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2656  __ pushptr(Address(rcx, 0));          // save return address
2657  __ enter();                           // save old & set new rbp,
2658  __ subptr(rsp, rbx);                  // Prolog!
2659  __ movptr(rbx, sp_temp);              // sender's sp
2660  // This value is corrected by layout_activation_impl
2661  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2662  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2663  __ movptr(sp_temp, rsp);              // pass to next frame
2664  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2665  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2666  __ decrementl(counter);             // decrement counter
2667  __ jcc(Assembler::notZero, loop);
2668  __ pushptr(Address(rcx, 0));          // save final return address
2669
2670  // Re-push self-frame
2671  __ enter();                           // save old & set new rbp,
2672
2673  //  Return address and rbp, are in place
2674  // We'll push additional args later. Just allocate a full sized
2675  // register save area
2676  __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2677
2678  // Restore frame locals after moving the frame
2679  __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2680  __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2681  __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2682  if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2683  if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2684
2685  // Set up the args to unpack_frame
2686
2687  __ pushl(unpack_kind);                     // get the unpack_kind value
2688  __ get_thread(rcx);
2689  __ push(rcx);
2690
2691  // set last_Java_sp, last_Java_fp
2692  __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2693
2694  // Call C code.  Need thread but NOT official VM entry
2695  // crud.  We cannot block on this call, no GC can happen.  Call should
2696  // restore return values to their stack-slots with the new SP.
2697  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2698  // Set an oopmap for the call site
2699  oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2700
2701  // rax, contains the return result type
2702  __ push(rax);
2703
2704  __ get_thread(rcx);
2705  __ reset_last_Java_frame(rcx, false);
2706
2707  // Collect return values
2708  __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2709  __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2710
2711  // Clear floating point stack before returning to interpreter
2712  __ empty_FPU_stack();
2713
2714  // Check if we should push the float or double return value.
2715  Label results_done, yes_double_value;
2716  __ cmpl(Address(rsp, 0), T_DOUBLE);
2717  __ jcc (Assembler::zero, yes_double_value);
2718  __ cmpl(Address(rsp, 0), T_FLOAT);
2719  __ jcc (Assembler::notZero, results_done);
2720
2721  // return float value as expected by interpreter
2722  if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2723  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2724  __ jmp(results_done);
2725
2726  // return double value as expected by interpreter
2727  __ bind(yes_double_value);
2728  if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2729  else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2730
2731  __ bind(results_done);
2732
2733  // Pop self-frame.
2734  __ leave();                              // Epilog!
2735
2736  // Jump to interpreter
2737  __ ret(0);
2738
2739  // -------------
2740  // make sure all code is generated
2741  masm->flush();
2742
2743  _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2744  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2745}
2746
2747
2748#ifdef COMPILER2
2749//------------------------------generate_uncommon_trap_blob--------------------
2750void SharedRuntime::generate_uncommon_trap_blob() {
2751  // allocate space for the code
2752  ResourceMark rm;
2753  // setup code generation tools
2754  CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2755  MacroAssembler* masm = new MacroAssembler(&buffer);
2756
2757  enum frame_layout {
2758    arg0_off,      // thread                     sp + 0 // Arg location for
2759    arg1_off,      // unloaded_class_index       sp + 1 // calling C
2760    arg2_off,      // exec_mode                  sp + 2
2761    // The frame sender code expects that rbp will be in the "natural" place and
2762    // will override any oopMap setting for it. We must therefore force the layout
2763    // so that it agrees with the frame sender code.
2764    rbp_off,       // callee saved register      sp + 3
2765    return_off,    // slot for return address    sp + 4
2766    framesize
2767  };
2768
2769  address start = __ pc();
2770
2771  if (UseRTMLocking) {
2772    // Abort RTM transaction before possible nmethod deoptimization.
2773    __ xabort(0);
2774  }
2775
2776  // Push self-frame.
2777  __ subptr(rsp, return_off*wordSize);     // Epilog!
2778
2779  // rbp, is an implicitly saved callee saved register (i.e. the calling
2780  // convention will save restore it in prolog/epilog) Other than that
2781  // there are no callee save registers no that adapter frames are gone.
2782  __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2783
2784  // Clear the floating point exception stack
2785  __ empty_FPU_stack();
2786
2787  // set last_Java_sp
2788  __ get_thread(rdx);
2789  __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2790
2791  // Call C code.  Need thread but NOT official VM entry
2792  // crud.  We cannot block on this call, no GC can happen.  Call should
2793  // capture callee-saved registers as well as return values.
2794  __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2795  // argument already in ECX
2796  __ movl(Address(rsp, arg1_off*wordSize),rcx);
2797  __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2798  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2799
2800  // Set an oopmap for the call site
2801  OopMapSet *oop_maps = new OopMapSet();
2802  OopMap* map =  new OopMap( framesize, 0 );
2803  // No oopMap for rbp, it is known implicitly
2804
2805  oop_maps->add_gc_map( __ pc()-start, map);
2806
2807  __ get_thread(rcx);
2808
2809  __ reset_last_Java_frame(rcx, false);
2810
2811  // Load UnrollBlock into EDI
2812  __ movptr(rdi, rax);
2813
2814#ifdef ASSERT
2815  { Label L;
2816    __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2817            (int32_t)Deoptimization::Unpack_uncommon_trap);
2818    __ jcc(Assembler::equal, L);
2819    __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2820    __ bind(L);
2821  }
2822#endif
2823
2824  // Pop all the frames we must move/replace.
2825  //
2826  // Frame picture (youngest to oldest)
2827  // 1: self-frame (no frame link)
2828  // 2: deopting frame  (no frame link)
2829  // 3: caller of deopting frame (could be compiled/interpreted).
2830
2831  // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2832  __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2833
2834  // Pop deoptimized frame
2835  __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2836  __ addptr(rsp, rcx);
2837
2838  // sp should be pointing at the return address to the caller (3)
2839
2840  // Pick up the initial fp we should save
2841  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2842  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2843
2844#ifdef ASSERT
2845  // Compilers generate code that bang the stack by as much as the
2846  // interpreter would need. So this stack banging should never
2847  // trigger a fault. Verify that it does not on non product builds.
2848  if (UseStackBanging) {
2849    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2850    __ bang_stack_size(rbx, rcx);
2851  }
2852#endif
2853
2854  // Load array of frame pcs into ECX
2855  __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2856
2857  __ pop(rsi); // trash the pc
2858
2859  // Load array of frame sizes into ESI
2860  __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2861
2862  Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2863
2864  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2865  __ movl(counter, rbx);
2866
2867  // Now adjust the caller's stack to make up for the extra locals
2868  // but record the original sp so that we can save it in the skeletal interpreter
2869  // frame and the stack walking of interpreter_sender will get the unextended sp
2870  // value and not the "real" sp value.
2871
2872  Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2873  __ movptr(sp_temp, rsp);
2874  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2875  __ subptr(rsp, rbx);
2876
2877  // Push interpreter frames in a loop
2878  Label loop;
2879  __ bind(loop);
2880  __ movptr(rbx, Address(rsi, 0));      // Load frame size
2881  __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2882  __ pushptr(Address(rcx, 0));          // save return address
2883  __ enter();                           // save old & set new rbp,
2884  __ subptr(rsp, rbx);                  // Prolog!
2885  __ movptr(rbx, sp_temp);              // sender's sp
2886  // This value is corrected by layout_activation_impl
2887  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2888  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2889  __ movptr(sp_temp, rsp);              // pass to next frame
2890  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2891  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2892  __ decrementl(counter);             // decrement counter
2893  __ jcc(Assembler::notZero, loop);
2894  __ pushptr(Address(rcx, 0));            // save final return address
2895
2896  // Re-push self-frame
2897  __ enter();                           // save old & set new rbp,
2898  __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2899
2900
2901  // set last_Java_sp, last_Java_fp
2902  __ get_thread(rdi);
2903  __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2904
2905  // Call C code.  Need thread but NOT official VM entry
2906  // crud.  We cannot block on this call, no GC can happen.  Call should
2907  // restore return values to their stack-slots with the new SP.
2908  __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2909  __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2910  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2911  // Set an oopmap for the call site
2912  oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2913
2914  __ get_thread(rdi);
2915  __ reset_last_Java_frame(rdi, true);
2916
2917  // Pop self-frame.
2918  __ leave();     // Epilog!
2919
2920  // Jump to interpreter
2921  __ ret(0);
2922
2923  // -------------
2924  // make sure all code is generated
2925  masm->flush();
2926
2927   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2928}
2929#endif // COMPILER2
2930
2931//------------------------------generate_handler_blob------
2932//
2933// Generate a special Compile2Runtime blob that saves all registers,
2934// setup oopmap, and calls safepoint code to stop the compiled code for
2935// a safepoint.
2936//
2937SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2938
2939  // Account for thread arg in our frame
2940  const int additional_words = 1;
2941  int frame_size_in_words;
2942
2943  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2944
2945  ResourceMark rm;
2946  OopMapSet *oop_maps = new OopMapSet();
2947  OopMap* map;
2948
2949  // allocate space for the code
2950  // setup code generation tools
2951  CodeBuffer   buffer("handler_blob", 1024, 512);
2952  MacroAssembler* masm = new MacroAssembler(&buffer);
2953
2954  const Register java_thread = rdi; // callee-saved for VC++
2955  address start   = __ pc();
2956  address call_pc = NULL;
2957  bool cause_return = (poll_type == POLL_AT_RETURN);
2958  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2959
2960  if (UseRTMLocking) {
2961    // Abort RTM transaction before calling runtime
2962    // because critical section will be large and will be
2963    // aborted anyway. Also nmethod could be deoptimized.
2964    __ xabort(0);
2965  }
2966
2967  // If cause_return is true we are at a poll_return and there is
2968  // the return address on the stack to the caller on the nmethod
2969  // that is safepoint. We can leave this return on the stack and
2970  // effectively complete the return and safepoint in the caller.
2971  // Otherwise we push space for a return address that the safepoint
2972  // handler will install later to make the stack walking sensible.
2973  if (!cause_return)
2974    __ push(rbx);  // Make room for return address (or push it again)
2975
2976  map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2977
2978  // The following is basically a call_VM. However, we need the precise
2979  // address of the call in order to generate an oopmap. Hence, we do all the
2980  // work ourselves.
2981
2982  // Push thread argument and setup last_Java_sp
2983  __ get_thread(java_thread);
2984  __ push(java_thread);
2985  __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2986
2987  // if this was not a poll_return then we need to correct the return address now.
2988  if (!cause_return) {
2989    __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2990    __ movptr(Address(rbp, wordSize), rax);
2991  }
2992
2993  // do the call
2994  __ call(RuntimeAddress(call_ptr));
2995
2996  // Set an oopmap for the call site.  This oopmap will map all
2997  // oop-registers and debug-info registers as callee-saved.  This
2998  // will allow deoptimization at this safepoint to find all possible
2999  // debug-info recordings, as well as let GC find all oops.
3000
3001  oop_maps->add_gc_map( __ pc() - start, map);
3002
3003  // Discard arg
3004  __ pop(rcx);
3005
3006  Label noException;
3007
3008  // Clear last_Java_sp again
3009  __ get_thread(java_thread);
3010  __ reset_last_Java_frame(java_thread, false);
3011
3012  __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3013  __ jcc(Assembler::equal, noException);
3014
3015  // Exception pending
3016  RegisterSaver::restore_live_registers(masm, save_vectors);
3017
3018  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3019
3020  __ bind(noException);
3021
3022  // Normal exit, register restoring and exit
3023  RegisterSaver::restore_live_registers(masm, save_vectors);
3024
3025  __ ret(0);
3026
3027  // make sure all code is generated
3028  masm->flush();
3029
3030  // Fill-out other meta info
3031  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3032}
3033
3034//
3035// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3036//
3037// Generate a stub that calls into vm to find out the proper destination
3038// of a java call. All the argument registers are live at this point
3039// but since this is generic code we don't know what they are and the caller
3040// must do any gc of the args.
3041//
3042RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3043  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3044
3045  // allocate space for the code
3046  ResourceMark rm;
3047
3048  CodeBuffer buffer(name, 1000, 512);
3049  MacroAssembler* masm                = new MacroAssembler(&buffer);
3050
3051  int frame_size_words;
3052  enum frame_layout {
3053                thread_off,
3054                extra_words };
3055
3056  OopMapSet *oop_maps = new OopMapSet();
3057  OopMap* map = NULL;
3058
3059  int start = __ offset();
3060
3061  map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3062
3063  int frame_complete = __ offset();
3064
3065  const Register thread = rdi;
3066  __ get_thread(rdi);
3067
3068  __ push(thread);
3069  __ set_last_Java_frame(thread, noreg, rbp, NULL);
3070
3071  __ call(RuntimeAddress(destination));
3072
3073
3074  // Set an oopmap for the call site.
3075  // We need this not only for callee-saved registers, but also for volatile
3076  // registers that the compiler might be keeping live across a safepoint.
3077
3078  oop_maps->add_gc_map( __ offset() - start, map);
3079
3080  // rax, contains the address we are going to jump to assuming no exception got installed
3081
3082  __ addptr(rsp, wordSize);
3083
3084  // clear last_Java_sp
3085  __ reset_last_Java_frame(thread, true);
3086  // check for pending exceptions
3087  Label pending;
3088  __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3089  __ jcc(Assembler::notEqual, pending);
3090
3091  // get the returned Method*
3092  __ get_vm_result_2(rbx, thread);
3093  __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3094
3095  __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3096
3097  RegisterSaver::restore_live_registers(masm);
3098
3099  // We are back the the original state on entry and ready to go.
3100
3101  __ jmp(rax);
3102
3103  // Pending exception after the safepoint
3104
3105  __ bind(pending);
3106
3107  RegisterSaver::restore_live_registers(masm);
3108
3109  // exception pending => remove activation and forward to exception handler
3110
3111  __ get_thread(thread);
3112  __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3113  __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3114  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3115
3116  // -------------
3117  // make sure all code is generated
3118  masm->flush();
3119
3120  // return the  blob
3121  // frame_size_words or bytes??
3122  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3123}
3124