c1_LIRGenerator_x86.cpp revision 9040:324ea1a2419a
1/*
2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/stubRoutines.hpp"
38#include "vmreg_x86.inline.hpp"
39
40#ifdef ASSERT
41#define __ gen()->lir(__FILE__, __LINE__)->
42#else
43#define __ gen()->lir()->
44#endif
45
46// Item will be loaded into a byte register; Intel only
47void LIRItem::load_byte_item() {
48  load_item();
49  LIR_Opr res = result();
50
51  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
52    // make sure that it is a byte register
53    assert(!value()->type()->is_float() && !value()->type()->is_double(),
54           "can't load floats in byte register");
55    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
56    __ move(res, reg);
57
58    _result = reg;
59  }
60}
61
62
63void LIRItem::load_nonconstant() {
64  LIR_Opr r = value()->operand();
65  if (r->is_constant()) {
66    _result = r;
67  } else {
68    load_item();
69  }
70}
71
72//--------------------------------------------------------------
73//               LIRGenerator
74//--------------------------------------------------------------
75
76
77LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
78LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
79LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
80LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
81LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
82LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
83LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
84LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
85
86
87LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
88  LIR_Opr opr;
89  switch (type->tag()) {
90    case intTag:     opr = FrameMap::rax_opr;          break;
91    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
92    case longTag:    opr = FrameMap::long0_opr;        break;
93    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
94    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
95
96    case addressTag:
97    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
98  }
99
100  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
101  return opr;
102}
103
104
105LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
106  LIR_Opr reg = new_register(T_INT);
107  set_vreg_flag(reg, LIRGenerator::byte_reg);
108  return reg;
109}
110
111
112//--------- loading items into registers --------------------------------
113
114
115// i486 instructions can inline constants
116bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
117  if (type == T_SHORT || type == T_CHAR) {
118    // there is no immediate move of word values in asembler_i486.?pp
119    return false;
120  }
121  Constant* c = v->as_Constant();
122  if (c && c->state_before() == NULL) {
123    // constants of any type can be stored directly, except for
124    // unloaded object constants.
125    return true;
126  }
127  return false;
128}
129
130
131bool LIRGenerator::can_inline_as_constant(Value v) const {
132  if (v->type()->tag() == longTag) return false;
133  return v->type()->tag() != objectTag ||
134    (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
135}
136
137
138bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
139  if (c->type() == T_LONG) return false;
140  return c->type() != T_OBJECT || c->as_jobject() == NULL;
141}
142
143
144LIR_Opr LIRGenerator::safepoint_poll_register() {
145  return LIR_OprFact::illegalOpr;
146}
147
148
149LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
150                                            int shift, int disp, BasicType type) {
151  assert(base->is_register(), "must be");
152  if (index->is_constant()) {
153    return new LIR_Address(base,
154                           (index->as_constant_ptr()->as_jint() << shift) + disp,
155                           type);
156  } else {
157    return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
158  }
159}
160
161
162LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
163                                              BasicType type, bool needs_card_mark) {
164  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
165
166  LIR_Address* addr;
167  if (index_opr->is_constant()) {
168    int elem_size = type2aelembytes(type);
169    addr = new LIR_Address(array_opr,
170                           offset_in_bytes + index_opr->as_jint() * elem_size, type);
171  } else {
172#ifdef _LP64
173    if (index_opr->type() == T_INT) {
174      LIR_Opr tmp = new_register(T_LONG);
175      __ convert(Bytecodes::_i2l, index_opr, tmp);
176      index_opr = tmp;
177    }
178#endif // _LP64
179    addr =  new LIR_Address(array_opr,
180                            index_opr,
181                            LIR_Address::scale(type),
182                            offset_in_bytes, type);
183  }
184  if (needs_card_mark) {
185    // This store will need a precise card mark, so go ahead and
186    // compute the full adddres instead of computing once for the
187    // store and again for the card mark.
188    LIR_Opr tmp = new_pointer_register();
189    __ leal(LIR_OprFact::address(addr), tmp);
190    return new LIR_Address(tmp, type);
191  } else {
192    return addr;
193  }
194}
195
196
197LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
198  LIR_Opr r;
199  if (type == T_LONG) {
200    r = LIR_OprFact::longConst(x);
201  } else if (type == T_INT) {
202    r = LIR_OprFact::intConst(x);
203  } else {
204    ShouldNotReachHere();
205  }
206  return r;
207}
208
209void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
210  LIR_Opr pointer = new_pointer_register();
211  __ move(LIR_OprFact::intptrConst(counter), pointer);
212  LIR_Address* addr = new LIR_Address(pointer, type);
213  increment_counter(addr, step);
214}
215
216
217void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
218  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
219}
220
221void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
222  __ cmp_mem_int(condition, base, disp, c, info);
223}
224
225
226void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
227  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
228}
229
230
231void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
232  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
233}
234
235
236bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
237  if (tmp->is_valid()) {
238    if (is_power_of_2(c + 1)) {
239      __ move(left, tmp);
240      __ shift_left(left, log2_intptr(c + 1), left);
241      __ sub(left, tmp, result);
242      return true;
243    } else if (is_power_of_2(c - 1)) {
244      __ move(left, tmp);
245      __ shift_left(left, log2_intptr(c - 1), left);
246      __ add(left, tmp, result);
247      return true;
248    }
249  }
250  return false;
251}
252
253
254void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
255  BasicType type = item->type();
256  __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
257}
258
259//----------------------------------------------------------------------
260//             visitor functions
261//----------------------------------------------------------------------
262
263
264void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
265  assert(x->is_pinned(),"");
266  bool needs_range_check = x->compute_needs_range_check();
267  bool use_length = x->length() != NULL;
268  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
269  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
270                                         !get_jobject_constant(x->value())->is_null_object() ||
271                                         x->should_profile());
272
273  LIRItem array(x->array(), this);
274  LIRItem index(x->index(), this);
275  LIRItem value(x->value(), this);
276  LIRItem length(this);
277
278  array.load_item();
279  index.load_nonconstant();
280
281  if (use_length && needs_range_check) {
282    length.set_instruction(x->length());
283    length.load_item();
284
285  }
286  if (needs_store_check) {
287    value.load_item();
288  } else {
289    value.load_for_store(x->elt_type());
290  }
291
292  set_no_result(x);
293
294  // the CodeEmitInfo must be duplicated for each different
295  // LIR-instruction because spilling can occur anywhere between two
296  // instructions and so the debug information must be different
297  CodeEmitInfo* range_check_info = state_for(x);
298  CodeEmitInfo* null_check_info = NULL;
299  if (x->needs_null_check()) {
300    null_check_info = new CodeEmitInfo(range_check_info);
301  }
302
303  // emit array address setup early so it schedules better
304  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
305
306  if (GenerateRangeChecks && needs_range_check) {
307    if (use_length) {
308      __ cmp(lir_cond_belowEqual, length.result(), index.result());
309      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
310    } else {
311      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
312      // range_check also does the null check
313      null_check_info = NULL;
314    }
315  }
316
317  if (GenerateArrayStoreCheck && needs_store_check) {
318    LIR_Opr tmp1 = new_register(objectType);
319    LIR_Opr tmp2 = new_register(objectType);
320    LIR_Opr tmp3 = new_register(objectType);
321
322    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
323    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
324  }
325
326  if (obj_store) {
327    // Needs GC write barriers.
328    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
329                true /* do_load */, false /* patch */, NULL);
330    __ move(value.result(), array_addr, null_check_info);
331    // Seems to be a precise
332    post_barrier(LIR_OprFact::address(array_addr), value.result());
333  } else {
334    __ move(value.result(), array_addr, null_check_info);
335  }
336}
337
338
339void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
340  assert(x->is_pinned(),"");
341  LIRItem obj(x->obj(), this);
342  obj.load_item();
343
344  set_no_result(x);
345
346  // "lock" stores the address of the monitor stack slot, so this is not an oop
347  LIR_Opr lock = new_register(T_INT);
348  // Need a scratch register for biased locking on x86
349  LIR_Opr scratch = LIR_OprFact::illegalOpr;
350  if (UseBiasedLocking) {
351    scratch = new_register(T_INT);
352  }
353
354  CodeEmitInfo* info_for_exception = NULL;
355  if (x->needs_null_check()) {
356    info_for_exception = state_for(x);
357  }
358  // this CodeEmitInfo must not have the xhandlers because here the
359  // object is already locked (xhandlers expect object to be unlocked)
360  CodeEmitInfo* info = state_for(x, x->state(), true);
361  monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
362                        x->monitor_no(), info_for_exception, info);
363}
364
365
366void LIRGenerator::do_MonitorExit(MonitorExit* x) {
367  assert(x->is_pinned(),"");
368
369  LIRItem obj(x->obj(), this);
370  obj.dont_load_item();
371
372  LIR_Opr lock = new_register(T_INT);
373  LIR_Opr obj_temp = new_register(T_INT);
374  set_no_result(x);
375  monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
376}
377
378
379// _ineg, _lneg, _fneg, _dneg
380void LIRGenerator::do_NegateOp(NegateOp* x) {
381  LIRItem value(x->x(), this);
382  value.set_destroys_register();
383  value.load_item();
384  LIR_Opr reg = rlock(x);
385  __ negate(value.result(), reg);
386
387  set_result(x, round_item(reg));
388}
389
390
391// for  _fadd, _fmul, _fsub, _fdiv, _frem
392//      _dadd, _dmul, _dsub, _ddiv, _drem
393void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
394  LIRItem left(x->x(),  this);
395  LIRItem right(x->y(), this);
396  LIRItem* left_arg  = &left;
397  LIRItem* right_arg = &right;
398  assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
399  bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
400  if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
401    left.load_item();
402  } else {
403    left.dont_load_item();
404  }
405
406  // do not load right operand if it is a constant.  only 0 and 1 are
407  // loaded because there are special instructions for loading them
408  // without memory access (not needed for SSE2 instructions)
409  bool must_load_right = false;
410  if (right.is_constant()) {
411    LIR_Const* c = right.result()->as_constant_ptr();
412    assert(c != NULL, "invalid constant");
413    assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
414
415    if (c->type() == T_FLOAT) {
416      must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
417    } else {
418      must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
419    }
420  }
421
422  if (must_load_both) {
423    // frem and drem destroy also right operand, so move it to a new register
424    right.set_destroys_register();
425    right.load_item();
426  } else if (right.is_register() || must_load_right) {
427    right.load_item();
428  } else {
429    right.dont_load_item();
430  }
431  LIR_Opr reg = rlock(x);
432  LIR_Opr tmp = LIR_OprFact::illegalOpr;
433  if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
434    tmp = new_register(T_DOUBLE);
435  }
436
437  if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
438    // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
439    LIR_Opr fpu0, fpu1;
440    if (x->op() == Bytecodes::_frem) {
441      fpu0 = LIR_OprFact::single_fpu(0);
442      fpu1 = LIR_OprFact::single_fpu(1);
443    } else {
444      fpu0 = LIR_OprFact::double_fpu(0);
445      fpu1 = LIR_OprFact::double_fpu(1);
446    }
447    __ move(right.result(), fpu1); // order of left and right operand is important!
448    __ move(left.result(), fpu0);
449    __ rem (fpu0, fpu1, fpu0);
450    __ move(fpu0, reg);
451
452  } else {
453    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
454  }
455
456  set_result(x, round_item(reg));
457}
458
459
460// for  _ladd, _lmul, _lsub, _ldiv, _lrem
461void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
462  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
463    // long division is implemented as a direct call into the runtime
464    LIRItem left(x->x(), this);
465    LIRItem right(x->y(), this);
466
467    // the check for division by zero destroys the right operand
468    right.set_destroys_register();
469
470    BasicTypeList signature(2);
471    signature.append(T_LONG);
472    signature.append(T_LONG);
473    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
474
475    // check for division by zero (destroys registers of right operand!)
476    CodeEmitInfo* info = state_for(x);
477
478    const LIR_Opr result_reg = result_register_for(x->type());
479    left.load_item_force(cc->at(1));
480    right.load_item();
481
482    __ move(right.result(), cc->at(0));
483
484    __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
485    __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
486
487    address entry;
488    switch (x->op()) {
489    case Bytecodes::_lrem:
490      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
491      break; // check if dividend is 0 is done elsewhere
492    case Bytecodes::_ldiv:
493      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
494      break; // check if dividend is 0 is done elsewhere
495    case Bytecodes::_lmul:
496      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
497      break;
498    default:
499      ShouldNotReachHere();
500    }
501
502    LIR_Opr result = rlock_result(x);
503    __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
504    __ move(result_reg, result);
505  } else if (x->op() == Bytecodes::_lmul) {
506    // missing test if instr is commutative and if we should swap
507    LIRItem left(x->x(), this);
508    LIRItem right(x->y(), this);
509
510    // right register is destroyed by the long mul, so it must be
511    // copied to a new register.
512    right.set_destroys_register();
513
514    left.load_item();
515    right.load_item();
516
517    LIR_Opr reg = FrameMap::long0_opr;
518    arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
519    LIR_Opr result = rlock_result(x);
520    __ move(reg, result);
521  } else {
522    // missing test if instr is commutative and if we should swap
523    LIRItem left(x->x(), this);
524    LIRItem right(x->y(), this);
525
526    left.load_item();
527    // don't load constants to save register
528    right.load_nonconstant();
529    rlock_result(x);
530    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
531  }
532}
533
534
535
536// for: _iadd, _imul, _isub, _idiv, _irem
537void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
538  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
539    // The requirements for division and modulo
540    // input : rax,: dividend                         min_int
541    //         reg: divisor   (may not be rax,/rdx)   -1
542    //
543    // output: rax,: quotient  (= rax, idiv reg)       min_int
544    //         rdx: remainder (= rax, irem reg)       0
545
546    // rax, and rdx will be destroyed
547
548    // Note: does this invalidate the spec ???
549    LIRItem right(x->y(), this);
550    LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
551
552    // call state_for before load_item_force because state_for may
553    // force the evaluation of other instructions that are needed for
554    // correct debug info.  Otherwise the live range of the fix
555    // register might be too long.
556    CodeEmitInfo* info = state_for(x);
557
558    left.load_item_force(divInOpr());
559
560    right.load_item();
561
562    LIR_Opr result = rlock_result(x);
563    LIR_Opr result_reg;
564    if (x->op() == Bytecodes::_idiv) {
565      result_reg = divOutOpr();
566    } else {
567      result_reg = remOutOpr();
568    }
569
570    if (!ImplicitDiv0Checks) {
571      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
572      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
573    }
574    LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
575    if (x->op() == Bytecodes::_irem) {
576      __ irem(left.result(), right.result(), result_reg, tmp, info);
577    } else if (x->op() == Bytecodes::_idiv) {
578      __ idiv(left.result(), right.result(), result_reg, tmp, info);
579    } else {
580      ShouldNotReachHere();
581    }
582
583    __ move(result_reg, result);
584  } else {
585    // missing test if instr is commutative and if we should swap
586    LIRItem left(x->x(),  this);
587    LIRItem right(x->y(), this);
588    LIRItem* left_arg = &left;
589    LIRItem* right_arg = &right;
590    if (x->is_commutative() && left.is_stack() && right.is_register()) {
591      // swap them if left is real stack (or cached) and right is real register(not cached)
592      left_arg = &right;
593      right_arg = &left;
594    }
595
596    left_arg->load_item();
597
598    // do not need to load right, as we can handle stack and constants
599    if (x->op() == Bytecodes::_imul ) {
600      // check if we can use shift instead
601      bool use_constant = false;
602      bool use_tmp = false;
603      if (right_arg->is_constant()) {
604        int iconst = right_arg->get_jint_constant();
605        if (iconst > 0) {
606          if (is_power_of_2(iconst)) {
607            use_constant = true;
608          } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
609            use_constant = true;
610            use_tmp = true;
611          }
612        }
613      }
614      if (use_constant) {
615        right_arg->dont_load_item();
616      } else {
617        right_arg->load_item();
618      }
619      LIR_Opr tmp = LIR_OprFact::illegalOpr;
620      if (use_tmp) {
621        tmp = new_register(T_INT);
622      }
623      rlock_result(x);
624
625      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
626    } else {
627      right_arg->dont_load_item();
628      rlock_result(x);
629      LIR_Opr tmp = LIR_OprFact::illegalOpr;
630      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
631    }
632  }
633}
634
635
636void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
637  // when an operand with use count 1 is the left operand, then it is
638  // likely that no move for 2-operand-LIR-form is necessary
639  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
640    x->swap_operands();
641  }
642
643  ValueTag tag = x->type()->tag();
644  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
645  switch (tag) {
646    case floatTag:
647    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
648    case longTag:    do_ArithmeticOp_Long(x); return;
649    case intTag:     do_ArithmeticOp_Int(x);  return;
650  }
651  ShouldNotReachHere();
652}
653
654
655// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
656void LIRGenerator::do_ShiftOp(ShiftOp* x) {
657  // count must always be in rcx
658  LIRItem value(x->x(), this);
659  LIRItem count(x->y(), this);
660
661  ValueTag elemType = x->type()->tag();
662  bool must_load_count = !count.is_constant() || elemType == longTag;
663  if (must_load_count) {
664    // count for long must be in register
665    count.load_item_force(shiftCountOpr());
666  } else {
667    count.dont_load_item();
668  }
669  value.load_item();
670  LIR_Opr reg = rlock_result(x);
671
672  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
673}
674
675
676// _iand, _land, _ior, _lor, _ixor, _lxor
677void LIRGenerator::do_LogicOp(LogicOp* x) {
678  // when an operand with use count 1 is the left operand, then it is
679  // likely that no move for 2-operand-LIR-form is necessary
680  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
681    x->swap_operands();
682  }
683
684  LIRItem left(x->x(), this);
685  LIRItem right(x->y(), this);
686
687  left.load_item();
688  right.load_nonconstant();
689  LIR_Opr reg = rlock_result(x);
690
691  logic_op(x->op(), reg, left.result(), right.result());
692}
693
694
695
696// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
697void LIRGenerator::do_CompareOp(CompareOp* x) {
698  LIRItem left(x->x(), this);
699  LIRItem right(x->y(), this);
700  ValueTag tag = x->x()->type()->tag();
701  if (tag == longTag) {
702    left.set_destroys_register();
703  }
704  left.load_item();
705  right.load_item();
706  LIR_Opr reg = rlock_result(x);
707
708  if (x->x()->type()->is_float_kind()) {
709    Bytecodes::Code code = x->op();
710    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
711  } else if (x->x()->type()->tag() == longTag) {
712    __ lcmp2int(left.result(), right.result(), reg);
713  } else {
714    Unimplemented();
715  }
716}
717
718
719void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
720  assert(x->number_of_arguments() == 4, "wrong type");
721  LIRItem obj   (x->argument_at(0), this);  // object
722  LIRItem offset(x->argument_at(1), this);  // offset of field
723  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
724  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
725
726  assert(obj.type()->tag() == objectTag, "invalid type");
727
728  // In 64bit the type can be long, sparc doesn't have this assert
729  // assert(offset.type()->tag() == intTag, "invalid type");
730
731  assert(cmp.type()->tag() == type->tag(), "invalid type");
732  assert(val.type()->tag() == type->tag(), "invalid type");
733
734  // get address of field
735  obj.load_item();
736  offset.load_nonconstant();
737
738  if (type == objectType) {
739    cmp.load_item_force(FrameMap::rax_oop_opr);
740    val.load_item();
741  } else if (type == intType) {
742    cmp.load_item_force(FrameMap::rax_opr);
743    val.load_item();
744  } else if (type == longType) {
745    cmp.load_item_force(FrameMap::long0_opr);
746    val.load_item_force(FrameMap::long1_opr);
747  } else {
748    ShouldNotReachHere();
749  }
750
751  LIR_Opr addr = new_pointer_register();
752  LIR_Address* a;
753  if(offset.result()->is_constant()) {
754#ifdef _LP64
755    jlong c = offset.result()->as_jlong();
756    if ((jlong)((jint)c) == c) {
757      a = new LIR_Address(obj.result(),
758                          (jint)c,
759                          as_BasicType(type));
760    } else {
761      LIR_Opr tmp = new_register(T_LONG);
762      __ move(offset.result(), tmp);
763      a = new LIR_Address(obj.result(),
764                          tmp,
765                          as_BasicType(type));
766    }
767#else
768    a = new LIR_Address(obj.result(),
769                        offset.result()->as_jint(),
770                        as_BasicType(type));
771#endif
772  } else {
773    a = new LIR_Address(obj.result(),
774                        offset.result(),
775                        LIR_Address::times_1,
776                        0,
777                        as_BasicType(type));
778  }
779  __ leal(LIR_OprFact::address(a), addr);
780
781  if (type == objectType) {  // Write-barrier needed for Object fields.
782    // Do the pre-write barrier, if any.
783    pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
784                true /* do_load */, false /* patch */, NULL);
785  }
786
787  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
788  if (type == objectType)
789    __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
790  else if (type == intType)
791    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
792  else if (type == longType)
793    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
794  else {
795    ShouldNotReachHere();
796  }
797
798  // generate conditional move of boolean result
799  LIR_Opr result = rlock_result(x);
800  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
801           result, as_BasicType(type));
802  if (type == objectType) {   // Write-barrier needed for Object fields.
803    // Seems to be precise
804    post_barrier(addr, val.result());
805  }
806}
807
808
809void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
810  assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
811
812  if (x->id() == vmIntrinsics::_dexp) {
813    do_ExpIntrinsic(x);
814    return;
815  }
816
817  LIRItem value(x->argument_at(0), this);
818
819  bool use_fpu = false;
820  if (UseSSE >= 2) {
821    switch(x->id()) {
822      case vmIntrinsics::_dsin:
823      case vmIntrinsics::_dcos:
824      case vmIntrinsics::_dtan:
825      case vmIntrinsics::_dlog:
826      case vmIntrinsics::_dlog10:
827      case vmIntrinsics::_dpow:
828        use_fpu = true;
829    }
830  } else {
831    value.set_destroys_register();
832  }
833
834  value.load_item();
835
836  LIR_Opr calc_input = value.result();
837  LIR_Opr calc_input2 = NULL;
838  if (x->id() == vmIntrinsics::_dpow) {
839    LIRItem extra_arg(x->argument_at(1), this);
840    if (UseSSE < 2) {
841      extra_arg.set_destroys_register();
842    }
843    extra_arg.load_item();
844    calc_input2 = extra_arg.result();
845  }
846  LIR_Opr calc_result = rlock_result(x);
847
848  // sin, cos, pow and exp need two free fpu stack slots, so register
849  // two temporary operands
850  LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
851  LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
852
853  if (use_fpu) {
854    LIR_Opr tmp = FrameMap::fpu0_double_opr;
855    int tmp_start = 1;
856    if (calc_input2 != NULL) {
857      __ move(calc_input2, tmp);
858      tmp_start = 2;
859      calc_input2 = tmp;
860    }
861    __ move(calc_input, tmp);
862
863    calc_input = tmp;
864    calc_result = tmp;
865
866    tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
867    tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
868  }
869
870  switch(x->id()) {
871    case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
872    case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
873    case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
874    case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
875    case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
876    case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
877    case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
878    case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
879    default:                    ShouldNotReachHere();
880  }
881
882  if (use_fpu) {
883    __ move(calc_result, x->operand());
884  }
885}
886
887void LIRGenerator::do_ExpIntrinsic(Intrinsic* x) {
888  LIRItem value(x->argument_at(0), this);
889  value.set_destroys_register();
890
891  LIR_Opr calc_result = rlock_result(x);
892  LIR_Opr result_reg = result_register_for(x->type());
893
894  BasicTypeList signature(1);
895  signature.append(T_DOUBLE);
896  CallingConvention* cc = frame_map()->c_calling_convention(&signature);
897
898  value.load_item_force(cc->at(0));
899
900#ifndef _LP64
901  LIR_Opr tmp = FrameMap::fpu0_double_opr;
902  result_reg = tmp;
903  if (VM_Version::supports_sse2()) {
904    __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
905  } else {
906    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
907  }
908#else
909  __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
910#endif
911  __ move(result_reg, calc_result);
912}
913
914void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
915  assert(x->number_of_arguments() == 5, "wrong type");
916
917  // Make all state_for calls early since they can emit code
918  CodeEmitInfo* info = state_for(x, x->state());
919
920  LIRItem src(x->argument_at(0), this);
921  LIRItem src_pos(x->argument_at(1), this);
922  LIRItem dst(x->argument_at(2), this);
923  LIRItem dst_pos(x->argument_at(3), this);
924  LIRItem length(x->argument_at(4), this);
925
926  // operands for arraycopy must use fixed registers, otherwise
927  // LinearScan will fail allocation (because arraycopy always needs a
928  // call)
929
930#ifndef _LP64
931  src.load_item_force     (FrameMap::rcx_oop_opr);
932  src_pos.load_item_force (FrameMap::rdx_opr);
933  dst.load_item_force     (FrameMap::rax_oop_opr);
934  dst_pos.load_item_force (FrameMap::rbx_opr);
935  length.load_item_force  (FrameMap::rdi_opr);
936  LIR_Opr tmp =           (FrameMap::rsi_opr);
937#else
938
939  // The java calling convention will give us enough registers
940  // so that on the stub side the args will be perfect already.
941  // On the other slow/special case side we call C and the arg
942  // positions are not similar enough to pick one as the best.
943  // Also because the java calling convention is a "shifted" version
944  // of the C convention we can process the java args trivially into C
945  // args without worry of overwriting during the xfer
946
947  src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
948  src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
949  dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
950  dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
951  length.load_item_force  (FrameMap::as_opr(j_rarg4));
952
953  LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
954#endif // LP64
955
956  set_no_result(x);
957
958  int flags;
959  ciArrayKlass* expected_type;
960  arraycopy_helper(x, &flags, &expected_type);
961
962  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
963}
964
965void LIRGenerator::do_update_CRC32(Intrinsic* x) {
966  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
967  // Make all state_for calls early since they can emit code
968  LIR_Opr result = rlock_result(x);
969  int flags = 0;
970  switch (x->id()) {
971    case vmIntrinsics::_updateCRC32: {
972      LIRItem crc(x->argument_at(0), this);
973      LIRItem val(x->argument_at(1), this);
974      // val is destroyed by update_crc32
975      val.set_destroys_register();
976      crc.load_item();
977      val.load_item();
978      __ update_crc32(crc.result(), val.result(), result);
979      break;
980    }
981    case vmIntrinsics::_updateBytesCRC32:
982    case vmIntrinsics::_updateByteBufferCRC32: {
983      bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
984
985      LIRItem crc(x->argument_at(0), this);
986      LIRItem buf(x->argument_at(1), this);
987      LIRItem off(x->argument_at(2), this);
988      LIRItem len(x->argument_at(3), this);
989      buf.load_item();
990      off.load_nonconstant();
991
992      LIR_Opr index = off.result();
993      int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
994      if(off.result()->is_constant()) {
995        index = LIR_OprFact::illegalOpr;
996       offset += off.result()->as_jint();
997      }
998      LIR_Opr base_op = buf.result();
999
1000#ifndef _LP64
1001      if (!is_updateBytes) { // long b raw address
1002         base_op = new_register(T_INT);
1003         __ convert(Bytecodes::_l2i, buf.result(), base_op);
1004      }
1005#else
1006      if (index->is_valid()) {
1007        LIR_Opr tmp = new_register(T_LONG);
1008        __ convert(Bytecodes::_i2l, index, tmp);
1009        index = tmp;
1010      }
1011#endif
1012
1013      LIR_Address* a = new LIR_Address(base_op,
1014                                       index,
1015                                       LIR_Address::times_1,
1016                                       offset,
1017                                       T_BYTE);
1018      BasicTypeList signature(3);
1019      signature.append(T_INT);
1020      signature.append(T_ADDRESS);
1021      signature.append(T_INT);
1022      CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1023      const LIR_Opr result_reg = result_register_for(x->type());
1024
1025      LIR_Opr addr = new_pointer_register();
1026      __ leal(LIR_OprFact::address(a), addr);
1027
1028      crc.load_item_force(cc->at(0));
1029      __ move(addr, cc->at(1));
1030      len.load_item_force(cc->at(2));
1031
1032      __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1033      __ move(result_reg, result);
1034
1035      break;
1036    }
1037    default: {
1038      ShouldNotReachHere();
1039    }
1040  }
1041}
1042
1043// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1044// _i2b, _i2c, _i2s
1045LIR_Opr fixed_register_for(BasicType type) {
1046  switch (type) {
1047    case T_FLOAT:  return FrameMap::fpu0_float_opr;
1048    case T_DOUBLE: return FrameMap::fpu0_double_opr;
1049    case T_INT:    return FrameMap::rax_opr;
1050    case T_LONG:   return FrameMap::long0_opr;
1051    default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1052  }
1053}
1054
1055void LIRGenerator::do_Convert(Convert* x) {
1056  // flags that vary for the different operations and different SSE-settings
1057  bool fixed_input, fixed_result, round_result, needs_stub;
1058
1059  switch (x->op()) {
1060    case Bytecodes::_i2l: // fall through
1061    case Bytecodes::_l2i: // fall through
1062    case Bytecodes::_i2b: // fall through
1063    case Bytecodes::_i2c: // fall through
1064    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1065
1066    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1067    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1068    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1069    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1070    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1071    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1072    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1073    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1074    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1075    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1076    default: ShouldNotReachHere();
1077  }
1078
1079  LIRItem value(x->value(), this);
1080  value.load_item();
1081  LIR_Opr input = value.result();
1082  LIR_Opr result = rlock(x);
1083
1084  // arguments of lir_convert
1085  LIR_Opr conv_input = input;
1086  LIR_Opr conv_result = result;
1087  ConversionStub* stub = NULL;
1088
1089  if (fixed_input) {
1090    conv_input = fixed_register_for(input->type());
1091    __ move(input, conv_input);
1092  }
1093
1094  assert(fixed_result == false || round_result == false, "cannot set both");
1095  if (fixed_result) {
1096    conv_result = fixed_register_for(result->type());
1097  } else if (round_result) {
1098    result = new_register(result->type());
1099    set_vreg_flag(result, must_start_in_memory);
1100  }
1101
1102  if (needs_stub) {
1103    stub = new ConversionStub(x->op(), conv_input, conv_result);
1104  }
1105
1106  __ convert(x->op(), conv_input, conv_result, stub);
1107
1108  if (result != conv_result) {
1109    __ move(conv_result, result);
1110  }
1111
1112  assert(result->is_virtual(), "result must be virtual register");
1113  set_result(x, result);
1114}
1115
1116
1117void LIRGenerator::do_NewInstance(NewInstance* x) {
1118  print_if_not_loaded(x);
1119
1120  CodeEmitInfo* info = state_for(x, x->state());
1121  LIR_Opr reg = result_register_for(x->type());
1122  new_instance(reg, x->klass(), x->is_unresolved(),
1123                       FrameMap::rcx_oop_opr,
1124                       FrameMap::rdi_oop_opr,
1125                       FrameMap::rsi_oop_opr,
1126                       LIR_OprFact::illegalOpr,
1127                       FrameMap::rdx_metadata_opr, info);
1128  LIR_Opr result = rlock_result(x);
1129  __ move(reg, result);
1130}
1131
1132
1133void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1134  CodeEmitInfo* info = state_for(x, x->state());
1135
1136  LIRItem length(x->length(), this);
1137  length.load_item_force(FrameMap::rbx_opr);
1138
1139  LIR_Opr reg = result_register_for(x->type());
1140  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1141  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1142  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1143  LIR_Opr tmp4 = reg;
1144  LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1145  LIR_Opr len = length.result();
1146  BasicType elem_type = x->elt_type();
1147
1148  __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1149
1150  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1151  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1152
1153  LIR_Opr result = rlock_result(x);
1154  __ move(reg, result);
1155}
1156
1157
1158void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1159  LIRItem length(x->length(), this);
1160  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1161  // and therefore provide the state before the parameters have been consumed
1162  CodeEmitInfo* patching_info = NULL;
1163  if (!x->klass()->is_loaded() || PatchALot) {
1164    patching_info =  state_for(x, x->state_before());
1165  }
1166
1167  CodeEmitInfo* info = state_for(x, x->state());
1168
1169  const LIR_Opr reg = result_register_for(x->type());
1170  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1171  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1172  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1173  LIR_Opr tmp4 = reg;
1174  LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1175
1176  length.load_item_force(FrameMap::rbx_opr);
1177  LIR_Opr len = length.result();
1178
1179  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1180  ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1181  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1182    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1183  }
1184  klass2reg_with_patching(klass_reg, obj, patching_info);
1185  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1186
1187  LIR_Opr result = rlock_result(x);
1188  __ move(reg, result);
1189}
1190
1191
1192void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1193  Values* dims = x->dims();
1194  int i = dims->length();
1195  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1196  while (i-- > 0) {
1197    LIRItem* size = new LIRItem(dims->at(i), this);
1198    items->at_put(i, size);
1199  }
1200
1201  // Evaluate state_for early since it may emit code.
1202  CodeEmitInfo* patching_info = NULL;
1203  if (!x->klass()->is_loaded() || PatchALot) {
1204    patching_info = state_for(x, x->state_before());
1205
1206    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1207    // clone all handlers (NOTE: Usually this is handled transparently
1208    // by the CodeEmitInfo cloning logic in CodeStub constructors but
1209    // is done explicitly here because a stub isn't being used).
1210    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1211  }
1212  CodeEmitInfo* info = state_for(x, x->state());
1213
1214  i = dims->length();
1215  while (i-- > 0) {
1216    LIRItem* size = items->at(i);
1217    size->load_nonconstant();
1218
1219    store_stack_parameter(size->result(), in_ByteSize(i*4));
1220  }
1221
1222  LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1223  klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1224
1225  LIR_Opr rank = FrameMap::rbx_opr;
1226  __ move(LIR_OprFact::intConst(x->rank()), rank);
1227  LIR_Opr varargs = FrameMap::rcx_opr;
1228  __ move(FrameMap::rsp_opr, varargs);
1229  LIR_OprList* args = new LIR_OprList(3);
1230  args->append(klass_reg);
1231  args->append(rank);
1232  args->append(varargs);
1233  LIR_Opr reg = result_register_for(x->type());
1234  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1235                  LIR_OprFact::illegalOpr,
1236                  reg, args, info);
1237
1238  LIR_Opr result = rlock_result(x);
1239  __ move(reg, result);
1240}
1241
1242
1243void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1244  // nothing to do for now
1245}
1246
1247
1248void LIRGenerator::do_CheckCast(CheckCast* x) {
1249  LIRItem obj(x->obj(), this);
1250
1251  CodeEmitInfo* patching_info = NULL;
1252  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1253    // must do this before locking the destination register as an oop register,
1254    // and before the obj is loaded (the latter is for deoptimization)
1255    patching_info = state_for(x, x->state_before());
1256  }
1257  obj.load_item();
1258
1259  // info for exceptions
1260  CodeEmitInfo* info_for_exception = state_for(x);
1261
1262  CodeStub* stub;
1263  if (x->is_incompatible_class_change_check()) {
1264    assert(patching_info == NULL, "can't patch this");
1265    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1266  } else {
1267    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1268  }
1269  LIR_Opr reg = rlock_result(x);
1270  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1271  if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1272    tmp3 = new_register(objectType);
1273  }
1274  __ checkcast(reg, obj.result(), x->klass(),
1275               new_register(objectType), new_register(objectType), tmp3,
1276               x->direct_compare(), info_for_exception, patching_info, stub,
1277               x->profiled_method(), x->profiled_bci());
1278}
1279
1280
1281void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1282  LIRItem obj(x->obj(), this);
1283
1284  // result and test object may not be in same register
1285  LIR_Opr reg = rlock_result(x);
1286  CodeEmitInfo* patching_info = NULL;
1287  if ((!x->klass()->is_loaded() || PatchALot)) {
1288    // must do this before locking the destination register as an oop register
1289    patching_info = state_for(x, x->state_before());
1290  }
1291  obj.load_item();
1292  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1293  if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1294    tmp3 = new_register(objectType);
1295  }
1296  __ instanceof(reg, obj.result(), x->klass(),
1297                new_register(objectType), new_register(objectType), tmp3,
1298                x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1299}
1300
1301
1302void LIRGenerator::do_If(If* x) {
1303  assert(x->number_of_sux() == 2, "inconsistency");
1304  ValueTag tag = x->x()->type()->tag();
1305  bool is_safepoint = x->is_safepoint();
1306
1307  If::Condition cond = x->cond();
1308
1309  LIRItem xitem(x->x(), this);
1310  LIRItem yitem(x->y(), this);
1311  LIRItem* xin = &xitem;
1312  LIRItem* yin = &yitem;
1313
1314  if (tag == longTag) {
1315    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1316    // mirror for other conditions
1317    if (cond == If::gtr || cond == If::leq) {
1318      cond = Instruction::mirror(cond);
1319      xin = &yitem;
1320      yin = &xitem;
1321    }
1322    xin->set_destroys_register();
1323  }
1324  xin->load_item();
1325  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1326    // inline long zero
1327    yin->dont_load_item();
1328  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1329    // longs cannot handle constants at right side
1330    yin->load_item();
1331  } else {
1332    yin->dont_load_item();
1333  }
1334
1335  // add safepoint before generating condition code so it can be recomputed
1336  if (x->is_safepoint()) {
1337    // increment backedge counter if needed
1338    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1339    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1340  }
1341  set_no_result(x);
1342
1343  LIR_Opr left = xin->result();
1344  LIR_Opr right = yin->result();
1345  __ cmp(lir_cond(cond), left, right);
1346  // Generate branch profiling. Profiling code doesn't kill flags.
1347  profile_branch(x, cond);
1348  move_to_phi(x->state());
1349  if (x->x()->type()->is_float_kind()) {
1350    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1351  } else {
1352    __ branch(lir_cond(cond), right->type(), x->tsux());
1353  }
1354  assert(x->default_sux() == x->fsux(), "wrong destination above");
1355  __ jump(x->default_sux());
1356}
1357
1358
1359LIR_Opr LIRGenerator::getThreadPointer() {
1360#ifdef _LP64
1361  return FrameMap::as_pointer_opr(r15_thread);
1362#else
1363  LIR_Opr result = new_register(T_INT);
1364  __ get_thread(result);
1365  return result;
1366#endif //
1367}
1368
1369void LIRGenerator::trace_block_entry(BlockBegin* block) {
1370  store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1371  LIR_OprList* args = new LIR_OprList();
1372  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1373  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1374}
1375
1376
1377void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1378                                        CodeEmitInfo* info) {
1379  if (address->type() == T_LONG) {
1380    address = new LIR_Address(address->base(),
1381                              address->index(), address->scale(),
1382                              address->disp(), T_DOUBLE);
1383    // Transfer the value atomically by using FP moves.  This means
1384    // the value has to be moved between CPU and FPU registers.  It
1385    // always has to be moved through spill slot since there's no
1386    // quick way to pack the value into an SSE register.
1387    LIR_Opr temp_double = new_register(T_DOUBLE);
1388    LIR_Opr spill = new_register(T_LONG);
1389    set_vreg_flag(spill, must_start_in_memory);
1390    __ move(value, spill);
1391    __ volatile_move(spill, temp_double, T_LONG);
1392    __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1393  } else {
1394    __ store(value, address, info);
1395  }
1396}
1397
1398
1399
1400void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1401                                       CodeEmitInfo* info) {
1402  if (address->type() == T_LONG) {
1403    address = new LIR_Address(address->base(),
1404                              address->index(), address->scale(),
1405                              address->disp(), T_DOUBLE);
1406    // Transfer the value atomically by using FP moves.  This means
1407    // the value has to be moved between CPU and FPU registers.  In
1408    // SSE0 and SSE1 mode it has to be moved through spill slot but in
1409    // SSE2+ mode it can be moved directly.
1410    LIR_Opr temp_double = new_register(T_DOUBLE);
1411    __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1412    __ volatile_move(temp_double, result, T_LONG);
1413    if (UseSSE < 2) {
1414      // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1415      set_vreg_flag(result, must_start_in_memory);
1416    }
1417  } else {
1418    __ load(address, result, info);
1419  }
1420}
1421
1422void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1423                                     BasicType type, bool is_volatile) {
1424  if (is_volatile && type == T_LONG) {
1425    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1426    LIR_Opr tmp = new_register(T_DOUBLE);
1427    __ load(addr, tmp);
1428    LIR_Opr spill = new_register(T_LONG);
1429    set_vreg_flag(spill, must_start_in_memory);
1430    __ move(tmp, spill);
1431    __ move(spill, dst);
1432  } else {
1433    LIR_Address* addr = new LIR_Address(src, offset, type);
1434    __ load(addr, dst);
1435  }
1436}
1437
1438
1439void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1440                                     BasicType type, bool is_volatile) {
1441  if (is_volatile && type == T_LONG) {
1442    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1443    LIR_Opr tmp = new_register(T_DOUBLE);
1444    LIR_Opr spill = new_register(T_DOUBLE);
1445    set_vreg_flag(spill, must_start_in_memory);
1446    __ move(data, spill);
1447    __ move(spill, tmp);
1448    __ move(tmp, addr);
1449  } else {
1450    LIR_Address* addr = new LIR_Address(src, offset, type);
1451    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1452    if (is_obj) {
1453      // Do the pre-write barrier, if any.
1454      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1455                  true /* do_load */, false /* patch */, NULL);
1456      __ move(data, addr);
1457      assert(src->is_register(), "must be register");
1458      // Seems to be a precise address
1459      post_barrier(LIR_OprFact::address(addr), data);
1460    } else {
1461      __ move(data, addr);
1462    }
1463  }
1464}
1465
1466void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1467  BasicType type = x->basic_type();
1468  LIRItem src(x->object(), this);
1469  LIRItem off(x->offset(), this);
1470  LIRItem value(x->value(), this);
1471
1472  src.load_item();
1473  value.load_item();
1474  off.load_nonconstant();
1475
1476  LIR_Opr dst = rlock_result(x, type);
1477  LIR_Opr data = value.result();
1478  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1479  LIR_Opr offset = off.result();
1480
1481  assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1482  LIR_Address* addr;
1483  if (offset->is_constant()) {
1484#ifdef _LP64
1485    jlong c = offset->as_jlong();
1486    if ((jlong)((jint)c) == c) {
1487      addr = new LIR_Address(src.result(), (jint)c, type);
1488    } else {
1489      LIR_Opr tmp = new_register(T_LONG);
1490      __ move(offset, tmp);
1491      addr = new LIR_Address(src.result(), tmp, type);
1492    }
1493#else
1494    addr = new LIR_Address(src.result(), offset->as_jint(), type);
1495#endif
1496  } else {
1497    addr = new LIR_Address(src.result(), offset, type);
1498  }
1499
1500  // Because we want a 2-arg form of xchg and xadd
1501  __ move(data, dst);
1502
1503  if (x->is_add()) {
1504    __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1505  } else {
1506    if (is_obj) {
1507      // Do the pre-write barrier, if any.
1508      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1509                  true /* do_load */, false /* patch */, NULL);
1510    }
1511    __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1512    if (is_obj) {
1513      // Seems to be a precise address
1514      post_barrier(LIR_OprFact::address(addr), data);
1515    }
1516  }
1517}
1518