c1_LIRGenerator_x86.cpp revision 1912:0cb042fd2d4b
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/stubRoutines.hpp"
38#include "vmreg_x86.inline.hpp"
39
40#ifdef ASSERT
41#define __ gen()->lir(__FILE__, __LINE__)->
42#else
43#define __ gen()->lir()->
44#endif
45
46// Item will be loaded into a byte register; Intel only
47void LIRItem::load_byte_item() {
48  load_item();
49  LIR_Opr res = result();
50
51  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
52    // make sure that it is a byte register
53    assert(!value()->type()->is_float() && !value()->type()->is_double(),
54           "can't load floats in byte register");
55    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
56    __ move(res, reg);
57
58    _result = reg;
59  }
60}
61
62
63void LIRItem::load_nonconstant() {
64  LIR_Opr r = value()->operand();
65  if (r->is_constant()) {
66    _result = r;
67  } else {
68    load_item();
69  }
70}
71
72//--------------------------------------------------------------
73//               LIRGenerator
74//--------------------------------------------------------------
75
76
77LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
78LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
79LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
80LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
81LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
82LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
83LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
84LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
85
86
87LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
88  LIR_Opr opr;
89  switch (type->tag()) {
90    case intTag:     opr = FrameMap::rax_opr;          break;
91    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
92    case longTag:    opr = FrameMap::long0_opr;        break;
93    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
94    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
95
96    case addressTag:
97    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
98  }
99
100  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
101  return opr;
102}
103
104
105LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
106  LIR_Opr reg = new_register(T_INT);
107  set_vreg_flag(reg, LIRGenerator::byte_reg);
108  return reg;
109}
110
111
112//--------- loading items into registers --------------------------------
113
114
115// i486 instructions can inline constants
116bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
117  if (type == T_SHORT || type == T_CHAR) {
118    // there is no immediate move of word values in asembler_i486.?pp
119    return false;
120  }
121  Constant* c = v->as_Constant();
122  if (c && c->state_before() == NULL) {
123    // constants of any type can be stored directly, except for
124    // unloaded object constants.
125    return true;
126  }
127  return false;
128}
129
130
131bool LIRGenerator::can_inline_as_constant(Value v) const {
132  if (v->type()->tag() == longTag) return false;
133  return v->type()->tag() != objectTag ||
134    (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
135}
136
137
138bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
139  if (c->type() == T_LONG) return false;
140  return c->type() != T_OBJECT || c->as_jobject() == NULL;
141}
142
143
144LIR_Opr LIRGenerator::safepoint_poll_register() {
145  return LIR_OprFact::illegalOpr;
146}
147
148
149LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
150                                            int shift, int disp, BasicType type) {
151  assert(base->is_register(), "must be");
152  if (index->is_constant()) {
153    return new LIR_Address(base,
154                           (index->as_constant_ptr()->as_jint() << shift) + disp,
155                           type);
156  } else {
157    return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
158  }
159}
160
161
162LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
163                                              BasicType type, bool needs_card_mark) {
164  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
165
166  LIR_Address* addr;
167  if (index_opr->is_constant()) {
168    int elem_size = type2aelembytes(type);
169    addr = new LIR_Address(array_opr,
170                           offset_in_bytes + index_opr->as_jint() * elem_size, type);
171  } else {
172#ifdef _LP64
173    if (index_opr->type() == T_INT) {
174      LIR_Opr tmp = new_register(T_LONG);
175      __ convert(Bytecodes::_i2l, index_opr, tmp);
176      index_opr = tmp;
177    }
178#endif // _LP64
179    addr =  new LIR_Address(array_opr,
180                            index_opr,
181                            LIR_Address::scale(type),
182                            offset_in_bytes, type);
183  }
184  if (needs_card_mark) {
185    // This store will need a precise card mark, so go ahead and
186    // compute the full adddres instead of computing once for the
187    // store and again for the card mark.
188    LIR_Opr tmp = new_pointer_register();
189    __ leal(LIR_OprFact::address(addr), tmp);
190    return new LIR_Address(tmp, type);
191  } else {
192    return addr;
193  }
194}
195
196
197LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
198  LIR_Opr r;
199  if (type == T_LONG) {
200    r = LIR_OprFact::longConst(x);
201  } else if (type == T_INT) {
202    r = LIR_OprFact::intConst(x);
203  } else {
204    ShouldNotReachHere();
205  }
206  return r;
207}
208
209void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
210  LIR_Opr pointer = new_pointer_register();
211  __ move(LIR_OprFact::intptrConst(counter), pointer);
212  LIR_Address* addr = new LIR_Address(pointer, type);
213  increment_counter(addr, step);
214}
215
216
217void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
218  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
219}
220
221void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
222  __ cmp_mem_int(condition, base, disp, c, info);
223}
224
225
226void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
227  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
228}
229
230
231void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
232  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
233}
234
235
236bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
237  if (tmp->is_valid()) {
238    if (is_power_of_2(c + 1)) {
239      __ move(left, tmp);
240      __ shift_left(left, log2_intptr(c + 1), left);
241      __ sub(left, tmp, result);
242      return true;
243    } else if (is_power_of_2(c - 1)) {
244      __ move(left, tmp);
245      __ shift_left(left, log2_intptr(c - 1), left);
246      __ add(left, tmp, result);
247      return true;
248    }
249  }
250  return false;
251}
252
253
254void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
255  BasicType type = item->type();
256  __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
257}
258
259//----------------------------------------------------------------------
260//             visitor functions
261//----------------------------------------------------------------------
262
263
264void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
265  assert(x->is_pinned(),"");
266  bool needs_range_check = true;
267  bool use_length = x->length() != NULL;
268  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
269  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
270                                         !get_jobject_constant(x->value())->is_null_object());
271
272  LIRItem array(x->array(), this);
273  LIRItem index(x->index(), this);
274  LIRItem value(x->value(), this);
275  LIRItem length(this);
276
277  array.load_item();
278  index.load_nonconstant();
279
280  if (use_length) {
281    needs_range_check = x->compute_needs_range_check();
282    if (needs_range_check) {
283      length.set_instruction(x->length());
284      length.load_item();
285    }
286  }
287  if (needs_store_check) {
288    value.load_item();
289  } else {
290    value.load_for_store(x->elt_type());
291  }
292
293  set_no_result(x);
294
295  // the CodeEmitInfo must be duplicated for each different
296  // LIR-instruction because spilling can occur anywhere between two
297  // instructions and so the debug information must be different
298  CodeEmitInfo* range_check_info = state_for(x);
299  CodeEmitInfo* null_check_info = NULL;
300  if (x->needs_null_check()) {
301    null_check_info = new CodeEmitInfo(range_check_info);
302  }
303
304  // emit array address setup early so it schedules better
305  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
306
307  if (GenerateRangeChecks && needs_range_check) {
308    if (use_length) {
309      __ cmp(lir_cond_belowEqual, length.result(), index.result());
310      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
311    } else {
312      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
313      // range_check also does the null check
314      null_check_info = NULL;
315    }
316  }
317
318  if (GenerateArrayStoreCheck && needs_store_check) {
319    LIR_Opr tmp1 = new_register(objectType);
320    LIR_Opr tmp2 = new_register(objectType);
321    LIR_Opr tmp3 = new_register(objectType);
322
323    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
324    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
325  }
326
327  if (obj_store) {
328    // Needs GC write barriers.
329    pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
330    __ move(value.result(), array_addr, null_check_info);
331    // Seems to be a precise
332    post_barrier(LIR_OprFact::address(array_addr), value.result());
333  } else {
334    __ move(value.result(), array_addr, null_check_info);
335  }
336}
337
338
339void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
340  assert(x->is_pinned(),"");
341  LIRItem obj(x->obj(), this);
342  obj.load_item();
343
344  set_no_result(x);
345
346  // "lock" stores the address of the monitor stack slot, so this is not an oop
347  LIR_Opr lock = new_register(T_INT);
348  // Need a scratch register for biased locking on x86
349  LIR_Opr scratch = LIR_OprFact::illegalOpr;
350  if (UseBiasedLocking) {
351    scratch = new_register(T_INT);
352  }
353
354  CodeEmitInfo* info_for_exception = NULL;
355  if (x->needs_null_check()) {
356    info_for_exception = state_for(x);
357  }
358  // this CodeEmitInfo must not have the xhandlers because here the
359  // object is already locked (xhandlers expect object to be unlocked)
360  CodeEmitInfo* info = state_for(x, x->state(), true);
361  monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
362                        x->monitor_no(), info_for_exception, info);
363}
364
365
366void LIRGenerator::do_MonitorExit(MonitorExit* x) {
367  assert(x->is_pinned(),"");
368
369  LIRItem obj(x->obj(), this);
370  obj.dont_load_item();
371
372  LIR_Opr lock = new_register(T_INT);
373  LIR_Opr obj_temp = new_register(T_INT);
374  set_no_result(x);
375  monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
376}
377
378
379// _ineg, _lneg, _fneg, _dneg
380void LIRGenerator::do_NegateOp(NegateOp* x) {
381  LIRItem value(x->x(), this);
382  value.set_destroys_register();
383  value.load_item();
384  LIR_Opr reg = rlock(x);
385  __ negate(value.result(), reg);
386
387  set_result(x, round_item(reg));
388}
389
390
391// for  _fadd, _fmul, _fsub, _fdiv, _frem
392//      _dadd, _dmul, _dsub, _ddiv, _drem
393void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
394  LIRItem left(x->x(),  this);
395  LIRItem right(x->y(), this);
396  LIRItem* left_arg  = &left;
397  LIRItem* right_arg = &right;
398  assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
399  bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
400  if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
401    left.load_item();
402  } else {
403    left.dont_load_item();
404  }
405
406  // do not load right operand if it is a constant.  only 0 and 1 are
407  // loaded because there are special instructions for loading them
408  // without memory access (not needed for SSE2 instructions)
409  bool must_load_right = false;
410  if (right.is_constant()) {
411    LIR_Const* c = right.result()->as_constant_ptr();
412    assert(c != NULL, "invalid constant");
413    assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
414
415    if (c->type() == T_FLOAT) {
416      must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
417    } else {
418      must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
419    }
420  }
421
422  if (must_load_both) {
423    // frem and drem destroy also right operand, so move it to a new register
424    right.set_destroys_register();
425    right.load_item();
426  } else if (right.is_register() || must_load_right) {
427    right.load_item();
428  } else {
429    right.dont_load_item();
430  }
431  LIR_Opr reg = rlock(x);
432  LIR_Opr tmp = LIR_OprFact::illegalOpr;
433  if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
434    tmp = new_register(T_DOUBLE);
435  }
436
437  if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
438    // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
439    LIR_Opr fpu0, fpu1;
440    if (x->op() == Bytecodes::_frem) {
441      fpu0 = LIR_OprFact::single_fpu(0);
442      fpu1 = LIR_OprFact::single_fpu(1);
443    } else {
444      fpu0 = LIR_OprFact::double_fpu(0);
445      fpu1 = LIR_OprFact::double_fpu(1);
446    }
447    __ move(right.result(), fpu1); // order of left and right operand is important!
448    __ move(left.result(), fpu0);
449    __ rem (fpu0, fpu1, fpu0);
450    __ move(fpu0, reg);
451
452  } else {
453    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
454  }
455
456  set_result(x, round_item(reg));
457}
458
459
460// for  _ladd, _lmul, _lsub, _ldiv, _lrem
461void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
462  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
463    // long division is implemented as a direct call into the runtime
464    LIRItem left(x->x(), this);
465    LIRItem right(x->y(), this);
466
467    // the check for division by zero destroys the right operand
468    right.set_destroys_register();
469
470    BasicTypeList signature(2);
471    signature.append(T_LONG);
472    signature.append(T_LONG);
473    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
474
475    // check for division by zero (destroys registers of right operand!)
476    CodeEmitInfo* info = state_for(x);
477
478    const LIR_Opr result_reg = result_register_for(x->type());
479    left.load_item_force(cc->at(1));
480    right.load_item();
481
482    __ move(right.result(), cc->at(0));
483
484    __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
485    __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
486
487    address entry;
488    switch (x->op()) {
489    case Bytecodes::_lrem:
490      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
491      break; // check if dividend is 0 is done elsewhere
492    case Bytecodes::_ldiv:
493      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
494      break; // check if dividend is 0 is done elsewhere
495    case Bytecodes::_lmul:
496      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
497      break;
498    default:
499      ShouldNotReachHere();
500    }
501
502    LIR_Opr result = rlock_result(x);
503    __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
504    __ move(result_reg, result);
505  } else if (x->op() == Bytecodes::_lmul) {
506    // missing test if instr is commutative and if we should swap
507    LIRItem left(x->x(), this);
508    LIRItem right(x->y(), this);
509
510    // right register is destroyed by the long mul, so it must be
511    // copied to a new register.
512    right.set_destroys_register();
513
514    left.load_item();
515    right.load_item();
516
517    LIR_Opr reg = FrameMap::long0_opr;
518    arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
519    LIR_Opr result = rlock_result(x);
520    __ move(reg, result);
521  } else {
522    // missing test if instr is commutative and if we should swap
523    LIRItem left(x->x(), this);
524    LIRItem right(x->y(), this);
525
526    left.load_item();
527    // don't load constants to save register
528    right.load_nonconstant();
529    rlock_result(x);
530    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
531  }
532}
533
534
535
536// for: _iadd, _imul, _isub, _idiv, _irem
537void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
538  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
539    // The requirements for division and modulo
540    // input : rax,: dividend                         min_int
541    //         reg: divisor   (may not be rax,/rdx)   -1
542    //
543    // output: rax,: quotient  (= rax, idiv reg)       min_int
544    //         rdx: remainder (= rax, irem reg)       0
545
546    // rax, and rdx will be destroyed
547
548    // Note: does this invalidate the spec ???
549    LIRItem right(x->y(), this);
550    LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
551
552    // call state_for before load_item_force because state_for may
553    // force the evaluation of other instructions that are needed for
554    // correct debug info.  Otherwise the live range of the fix
555    // register might be too long.
556    CodeEmitInfo* info = state_for(x);
557
558    left.load_item_force(divInOpr());
559
560    right.load_item();
561
562    LIR_Opr result = rlock_result(x);
563    LIR_Opr result_reg;
564    if (x->op() == Bytecodes::_idiv) {
565      result_reg = divOutOpr();
566    } else {
567      result_reg = remOutOpr();
568    }
569
570    if (!ImplicitDiv0Checks) {
571      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
572      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
573    }
574    LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
575    if (x->op() == Bytecodes::_irem) {
576      __ irem(left.result(), right.result(), result_reg, tmp, info);
577    } else if (x->op() == Bytecodes::_idiv) {
578      __ idiv(left.result(), right.result(), result_reg, tmp, info);
579    } else {
580      ShouldNotReachHere();
581    }
582
583    __ move(result_reg, result);
584  } else {
585    // missing test if instr is commutative and if we should swap
586    LIRItem left(x->x(),  this);
587    LIRItem right(x->y(), this);
588    LIRItem* left_arg = &left;
589    LIRItem* right_arg = &right;
590    if (x->is_commutative() && left.is_stack() && right.is_register()) {
591      // swap them if left is real stack (or cached) and right is real register(not cached)
592      left_arg = &right;
593      right_arg = &left;
594    }
595
596    left_arg->load_item();
597
598    // do not need to load right, as we can handle stack and constants
599    if (x->op() == Bytecodes::_imul ) {
600      // check if we can use shift instead
601      bool use_constant = false;
602      bool use_tmp = false;
603      if (right_arg->is_constant()) {
604        int iconst = right_arg->get_jint_constant();
605        if (iconst > 0) {
606          if (is_power_of_2(iconst)) {
607            use_constant = true;
608          } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
609            use_constant = true;
610            use_tmp = true;
611          }
612        }
613      }
614      if (use_constant) {
615        right_arg->dont_load_item();
616      } else {
617        right_arg->load_item();
618      }
619      LIR_Opr tmp = LIR_OprFact::illegalOpr;
620      if (use_tmp) {
621        tmp = new_register(T_INT);
622      }
623      rlock_result(x);
624
625      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
626    } else {
627      right_arg->dont_load_item();
628      rlock_result(x);
629      LIR_Opr tmp = LIR_OprFact::illegalOpr;
630      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
631    }
632  }
633}
634
635
636void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
637  // when an operand with use count 1 is the left operand, then it is
638  // likely that no move for 2-operand-LIR-form is necessary
639  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
640    x->swap_operands();
641  }
642
643  ValueTag tag = x->type()->tag();
644  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
645  switch (tag) {
646    case floatTag:
647    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
648    case longTag:    do_ArithmeticOp_Long(x); return;
649    case intTag:     do_ArithmeticOp_Int(x);  return;
650  }
651  ShouldNotReachHere();
652}
653
654
655// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
656void LIRGenerator::do_ShiftOp(ShiftOp* x) {
657  // count must always be in rcx
658  LIRItem value(x->x(), this);
659  LIRItem count(x->y(), this);
660
661  ValueTag elemType = x->type()->tag();
662  bool must_load_count = !count.is_constant() || elemType == longTag;
663  if (must_load_count) {
664    // count for long must be in register
665    count.load_item_force(shiftCountOpr());
666  } else {
667    count.dont_load_item();
668  }
669  value.load_item();
670  LIR_Opr reg = rlock_result(x);
671
672  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
673}
674
675
676// _iand, _land, _ior, _lor, _ixor, _lxor
677void LIRGenerator::do_LogicOp(LogicOp* x) {
678  // when an operand with use count 1 is the left operand, then it is
679  // likely that no move for 2-operand-LIR-form is necessary
680  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
681    x->swap_operands();
682  }
683
684  LIRItem left(x->x(), this);
685  LIRItem right(x->y(), this);
686
687  left.load_item();
688  right.load_nonconstant();
689  LIR_Opr reg = rlock_result(x);
690
691  logic_op(x->op(), reg, left.result(), right.result());
692}
693
694
695
696// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
697void LIRGenerator::do_CompareOp(CompareOp* x) {
698  LIRItem left(x->x(), this);
699  LIRItem right(x->y(), this);
700  ValueTag tag = x->x()->type()->tag();
701  if (tag == longTag) {
702    left.set_destroys_register();
703  }
704  left.load_item();
705  right.load_item();
706  LIR_Opr reg = rlock_result(x);
707
708  if (x->x()->type()->is_float_kind()) {
709    Bytecodes::Code code = x->op();
710    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
711  } else if (x->x()->type()->tag() == longTag) {
712    __ lcmp2int(left.result(), right.result(), reg);
713  } else {
714    Unimplemented();
715  }
716}
717
718
719void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
720  assert(x->number_of_arguments() == 3, "wrong type");
721  LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
722  LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
723  LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
724
725  // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
726  cmp_value.load_item_force(FrameMap::long0_opr);
727
728  // new value must be in rcx,ebx (hi,lo)
729  new_value.load_item_force(FrameMap::long1_opr);
730
731  // object pointer register is overwritten with field address
732  obj.load_item();
733
734  // generate compare-and-swap; produces zero condition if swap occurs
735  int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
736  LIR_Opr addr = obj.result();
737  __ add(addr, LIR_OprFact::intConst(value_offset), addr);
738  LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
739  LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
740  __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
741
742  // generate conditional move of boolean result
743  LIR_Opr result = rlock_result(x);
744  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
745}
746
747
748void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
749  assert(x->number_of_arguments() == 4, "wrong type");
750  LIRItem obj   (x->argument_at(0), this);  // object
751  LIRItem offset(x->argument_at(1), this);  // offset of field
752  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
753  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
754
755  assert(obj.type()->tag() == objectTag, "invalid type");
756
757  // In 64bit the type can be long, sparc doesn't have this assert
758  // assert(offset.type()->tag() == intTag, "invalid type");
759
760  assert(cmp.type()->tag() == type->tag(), "invalid type");
761  assert(val.type()->tag() == type->tag(), "invalid type");
762
763  // get address of field
764  obj.load_item();
765  offset.load_nonconstant();
766
767  if (type == objectType) {
768    cmp.load_item_force(FrameMap::rax_oop_opr);
769    val.load_item();
770  } else if (type == intType) {
771    cmp.load_item_force(FrameMap::rax_opr);
772    val.load_item();
773  } else if (type == longType) {
774    cmp.load_item_force(FrameMap::long0_opr);
775    val.load_item_force(FrameMap::long1_opr);
776  } else {
777    ShouldNotReachHere();
778  }
779
780  LIR_Opr addr = new_pointer_register();
781  LIR_Address* a;
782  if(offset.result()->is_constant()) {
783    a = new LIR_Address(obj.result(),
784                        NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
785                        as_BasicType(type));
786  } else {
787    a = new LIR_Address(obj.result(),
788                        offset.result(),
789                        LIR_Address::times_1,
790                        0,
791                        as_BasicType(type));
792  }
793  __ leal(LIR_OprFact::address(a), addr);
794
795  if (type == objectType) {  // Write-barrier needed for Object fields.
796    // Do the pre-write barrier, if any.
797    pre_barrier(addr, false, NULL);
798  }
799
800  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
801  if (type == objectType)
802    __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
803  else if (type == intType)
804    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
805  else if (type == longType)
806    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
807  else {
808    ShouldNotReachHere();
809  }
810
811  // generate conditional move of boolean result
812  LIR_Opr result = rlock_result(x);
813  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
814  if (type == objectType) {   // Write-barrier needed for Object fields.
815    // Seems to be precise
816    post_barrier(addr, val.result());
817  }
818}
819
820
821void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
822  assert(x->number_of_arguments() == 1, "wrong type");
823  LIRItem value(x->argument_at(0), this);
824
825  bool use_fpu = false;
826  if (UseSSE >= 2) {
827    switch(x->id()) {
828      case vmIntrinsics::_dsin:
829      case vmIntrinsics::_dcos:
830      case vmIntrinsics::_dtan:
831      case vmIntrinsics::_dlog:
832      case vmIntrinsics::_dlog10:
833        use_fpu = true;
834    }
835  } else {
836    value.set_destroys_register();
837  }
838
839  value.load_item();
840
841  LIR_Opr calc_input = value.result();
842  LIR_Opr calc_result = rlock_result(x);
843
844  // sin and cos need two free fpu stack slots, so register two temporary operands
845  LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
846  LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
847
848  if (use_fpu) {
849    LIR_Opr tmp = FrameMap::fpu0_double_opr;
850    __ move(calc_input, tmp);
851
852    calc_input = tmp;
853    calc_result = tmp;
854    tmp1 = FrameMap::caller_save_fpu_reg_at(1);
855    tmp2 = FrameMap::caller_save_fpu_reg_at(2);
856  }
857
858  switch(x->id()) {
859    case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
860    case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
861    case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
862    case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
863    case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
864    case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
865    case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
866    default:                    ShouldNotReachHere();
867  }
868
869  if (use_fpu) {
870    __ move(calc_result, x->operand());
871  }
872}
873
874
875void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
876  assert(x->number_of_arguments() == 5, "wrong type");
877
878  // Make all state_for calls early since they can emit code
879  CodeEmitInfo* info = state_for(x, x->state());
880
881  LIRItem src(x->argument_at(0), this);
882  LIRItem src_pos(x->argument_at(1), this);
883  LIRItem dst(x->argument_at(2), this);
884  LIRItem dst_pos(x->argument_at(3), this);
885  LIRItem length(x->argument_at(4), this);
886
887  // operands for arraycopy must use fixed registers, otherwise
888  // LinearScan will fail allocation (because arraycopy always needs a
889  // call)
890
891#ifndef _LP64
892  src.load_item_force     (FrameMap::rcx_oop_opr);
893  src_pos.load_item_force (FrameMap::rdx_opr);
894  dst.load_item_force     (FrameMap::rax_oop_opr);
895  dst_pos.load_item_force (FrameMap::rbx_opr);
896  length.load_item_force  (FrameMap::rdi_opr);
897  LIR_Opr tmp =           (FrameMap::rsi_opr);
898#else
899
900  // The java calling convention will give us enough registers
901  // so that on the stub side the args will be perfect already.
902  // On the other slow/special case side we call C and the arg
903  // positions are not similar enough to pick one as the best.
904  // Also because the java calling convention is a "shifted" version
905  // of the C convention we can process the java args trivially into C
906  // args without worry of overwriting during the xfer
907
908  src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
909  src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
910  dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
911  dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
912  length.load_item_force  (FrameMap::as_opr(j_rarg4));
913
914  LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
915#endif // LP64
916
917  set_no_result(x);
918
919  int flags;
920  ciArrayKlass* expected_type;
921  arraycopy_helper(x, &flags, &expected_type);
922
923  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
924}
925
926
927// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
928// _i2b, _i2c, _i2s
929LIR_Opr fixed_register_for(BasicType type) {
930  switch (type) {
931    case T_FLOAT:  return FrameMap::fpu0_float_opr;
932    case T_DOUBLE: return FrameMap::fpu0_double_opr;
933    case T_INT:    return FrameMap::rax_opr;
934    case T_LONG:   return FrameMap::long0_opr;
935    default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
936  }
937}
938
939void LIRGenerator::do_Convert(Convert* x) {
940  // flags that vary for the different operations and different SSE-settings
941  bool fixed_input, fixed_result, round_result, needs_stub;
942
943  switch (x->op()) {
944    case Bytecodes::_i2l: // fall through
945    case Bytecodes::_l2i: // fall through
946    case Bytecodes::_i2b: // fall through
947    case Bytecodes::_i2c: // fall through
948    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
949
950    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
951    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
952    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
953    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
954    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
955    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
956    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
957    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
958    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
959    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
960    default: ShouldNotReachHere();
961  }
962
963  LIRItem value(x->value(), this);
964  value.load_item();
965  LIR_Opr input = value.result();
966  LIR_Opr result = rlock(x);
967
968  // arguments of lir_convert
969  LIR_Opr conv_input = input;
970  LIR_Opr conv_result = result;
971  ConversionStub* stub = NULL;
972
973  if (fixed_input) {
974    conv_input = fixed_register_for(input->type());
975    __ move(input, conv_input);
976  }
977
978  assert(fixed_result == false || round_result == false, "cannot set both");
979  if (fixed_result) {
980    conv_result = fixed_register_for(result->type());
981  } else if (round_result) {
982    result = new_register(result->type());
983    set_vreg_flag(result, must_start_in_memory);
984  }
985
986  if (needs_stub) {
987    stub = new ConversionStub(x->op(), conv_input, conv_result);
988  }
989
990  __ convert(x->op(), conv_input, conv_result, stub);
991
992  if (result != conv_result) {
993    __ move(conv_result, result);
994  }
995
996  assert(result->is_virtual(), "result must be virtual register");
997  set_result(x, result);
998}
999
1000
1001void LIRGenerator::do_NewInstance(NewInstance* x) {
1002#ifndef PRODUCT
1003  if (PrintNotLoaded && !x->klass()->is_loaded()) {
1004    tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1005  }
1006#endif
1007  CodeEmitInfo* info = state_for(x, x->state());
1008  LIR_Opr reg = result_register_for(x->type());
1009  LIR_Opr klass_reg = new_register(objectType);
1010  new_instance(reg, x->klass(),
1011                       FrameMap::rcx_oop_opr,
1012                       FrameMap::rdi_oop_opr,
1013                       FrameMap::rsi_oop_opr,
1014                       LIR_OprFact::illegalOpr,
1015                       FrameMap::rdx_oop_opr, info);
1016  LIR_Opr result = rlock_result(x);
1017  __ move(reg, result);
1018}
1019
1020
1021void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1022  CodeEmitInfo* info = state_for(x, x->state());
1023
1024  LIRItem length(x->length(), this);
1025  length.load_item_force(FrameMap::rbx_opr);
1026
1027  LIR_Opr reg = result_register_for(x->type());
1028  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1029  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1030  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1031  LIR_Opr tmp4 = reg;
1032  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1033  LIR_Opr len = length.result();
1034  BasicType elem_type = x->elt_type();
1035
1036  __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1037
1038  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1039  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1040
1041  LIR_Opr result = rlock_result(x);
1042  __ move(reg, result);
1043}
1044
1045
1046void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1047  LIRItem length(x->length(), this);
1048  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1049  // and therefore provide the state before the parameters have been consumed
1050  CodeEmitInfo* patching_info = NULL;
1051  if (!x->klass()->is_loaded() || PatchALot) {
1052    patching_info =  state_for(x, x->state_before());
1053  }
1054
1055  CodeEmitInfo* info = state_for(x, x->state());
1056
1057  const LIR_Opr reg = result_register_for(x->type());
1058  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1059  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1060  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1061  LIR_Opr tmp4 = reg;
1062  LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
1063
1064  length.load_item_force(FrameMap::rbx_opr);
1065  LIR_Opr len = length.result();
1066
1067  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1068  ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
1069  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1070    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1071  }
1072  jobject2reg_with_patching(klass_reg, obj, patching_info);
1073  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1074
1075  LIR_Opr result = rlock_result(x);
1076  __ move(reg, result);
1077}
1078
1079
1080void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1081  Values* dims = x->dims();
1082  int i = dims->length();
1083  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1084  while (i-- > 0) {
1085    LIRItem* size = new LIRItem(dims->at(i), this);
1086    items->at_put(i, size);
1087  }
1088
1089  // Evaluate state_for early since it may emit code.
1090  CodeEmitInfo* patching_info = NULL;
1091  if (!x->klass()->is_loaded() || PatchALot) {
1092    patching_info = state_for(x, x->state_before());
1093
1094    // cannot re-use same xhandlers for multiple CodeEmitInfos, so
1095    // clone all handlers.  This is handled transparently in other
1096    // places by the CodeEmitInfo cloning logic but is handled
1097    // specially here because a stub isn't being used.
1098    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1099  }
1100  CodeEmitInfo* info = state_for(x, x->state());
1101
1102  i = dims->length();
1103  while (i-- > 0) {
1104    LIRItem* size = items->at(i);
1105    size->load_nonconstant();
1106
1107    store_stack_parameter(size->result(), in_ByteSize(i*4));
1108  }
1109
1110  LIR_Opr reg = result_register_for(x->type());
1111  jobject2reg_with_patching(reg, x->klass(), patching_info);
1112
1113  LIR_Opr rank = FrameMap::rbx_opr;
1114  __ move(LIR_OprFact::intConst(x->rank()), rank);
1115  LIR_Opr varargs = FrameMap::rcx_opr;
1116  __ move(FrameMap::rsp_opr, varargs);
1117  LIR_OprList* args = new LIR_OprList(3);
1118  args->append(reg);
1119  args->append(rank);
1120  args->append(varargs);
1121  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1122                  LIR_OprFact::illegalOpr,
1123                  reg, args, info);
1124
1125  LIR_Opr result = rlock_result(x);
1126  __ move(reg, result);
1127}
1128
1129
1130void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1131  // nothing to do for now
1132}
1133
1134
1135void LIRGenerator::do_CheckCast(CheckCast* x) {
1136  LIRItem obj(x->obj(), this);
1137
1138  CodeEmitInfo* patching_info = NULL;
1139  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1140    // must do this before locking the destination register as an oop register,
1141    // and before the obj is loaded (the latter is for deoptimization)
1142    patching_info = state_for(x, x->state_before());
1143  }
1144  obj.load_item();
1145
1146  // info for exceptions
1147  CodeEmitInfo* info_for_exception = state_for(x);
1148
1149  CodeStub* stub;
1150  if (x->is_incompatible_class_change_check()) {
1151    assert(patching_info == NULL, "can't patch this");
1152    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1153  } else {
1154    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1155  }
1156  LIR_Opr reg = rlock_result(x);
1157  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1158  if (!x->klass()->is_loaded() || UseCompressedOops) {
1159    tmp3 = new_register(objectType);
1160  }
1161  __ checkcast(reg, obj.result(), x->klass(),
1162               new_register(objectType), new_register(objectType), tmp3,
1163               x->direct_compare(), info_for_exception, patching_info, stub,
1164               x->profiled_method(), x->profiled_bci());
1165}
1166
1167
1168void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1169  LIRItem obj(x->obj(), this);
1170
1171  // result and test object may not be in same register
1172  LIR_Opr reg = rlock_result(x);
1173  CodeEmitInfo* patching_info = NULL;
1174  if ((!x->klass()->is_loaded() || PatchALot)) {
1175    // must do this before locking the destination register as an oop register
1176    patching_info = state_for(x, x->state_before());
1177  }
1178  obj.load_item();
1179  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1180  if (!x->klass()->is_loaded() || UseCompressedOops) {
1181    tmp3 = new_register(objectType);
1182  }
1183  __ instanceof(reg, obj.result(), x->klass(),
1184                new_register(objectType), new_register(objectType), tmp3,
1185                x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1186}
1187
1188
1189void LIRGenerator::do_If(If* x) {
1190  assert(x->number_of_sux() == 2, "inconsistency");
1191  ValueTag tag = x->x()->type()->tag();
1192  bool is_safepoint = x->is_safepoint();
1193
1194  If::Condition cond = x->cond();
1195
1196  LIRItem xitem(x->x(), this);
1197  LIRItem yitem(x->y(), this);
1198  LIRItem* xin = &xitem;
1199  LIRItem* yin = &yitem;
1200
1201  if (tag == longTag) {
1202    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1203    // mirror for other conditions
1204    if (cond == If::gtr || cond == If::leq) {
1205      cond = Instruction::mirror(cond);
1206      xin = &yitem;
1207      yin = &xitem;
1208    }
1209    xin->set_destroys_register();
1210  }
1211  xin->load_item();
1212  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1213    // inline long zero
1214    yin->dont_load_item();
1215  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1216    // longs cannot handle constants at right side
1217    yin->load_item();
1218  } else {
1219    yin->dont_load_item();
1220  }
1221
1222  // add safepoint before generating condition code so it can be recomputed
1223  if (x->is_safepoint()) {
1224    // increment backedge counter if needed
1225    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1226    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1227  }
1228  set_no_result(x);
1229
1230  LIR_Opr left = xin->result();
1231  LIR_Opr right = yin->result();
1232  __ cmp(lir_cond(cond), left, right);
1233  // Generate branch profiling. Profiling code doesn't kill flags.
1234  profile_branch(x, cond);
1235  move_to_phi(x->state());
1236  if (x->x()->type()->is_float_kind()) {
1237    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1238  } else {
1239    __ branch(lir_cond(cond), right->type(), x->tsux());
1240  }
1241  assert(x->default_sux() == x->fsux(), "wrong destination above");
1242  __ jump(x->default_sux());
1243}
1244
1245
1246LIR_Opr LIRGenerator::getThreadPointer() {
1247#ifdef _LP64
1248  return FrameMap::as_pointer_opr(r15_thread);
1249#else
1250  LIR_Opr result = new_register(T_INT);
1251  __ get_thread(result);
1252  return result;
1253#endif //
1254}
1255
1256void LIRGenerator::trace_block_entry(BlockBegin* block) {
1257  store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1258  LIR_OprList* args = new LIR_OprList();
1259  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1260  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1261}
1262
1263
1264void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1265                                        CodeEmitInfo* info) {
1266  if (address->type() == T_LONG) {
1267    address = new LIR_Address(address->base(),
1268                              address->index(), address->scale(),
1269                              address->disp(), T_DOUBLE);
1270    // Transfer the value atomically by using FP moves.  This means
1271    // the value has to be moved between CPU and FPU registers.  It
1272    // always has to be moved through spill slot since there's no
1273    // quick way to pack the value into an SSE register.
1274    LIR_Opr temp_double = new_register(T_DOUBLE);
1275    LIR_Opr spill = new_register(T_LONG);
1276    set_vreg_flag(spill, must_start_in_memory);
1277    __ move(value, spill);
1278    __ volatile_move(spill, temp_double, T_LONG);
1279    __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1280  } else {
1281    __ store(value, address, info);
1282  }
1283}
1284
1285
1286
1287void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1288                                       CodeEmitInfo* info) {
1289  if (address->type() == T_LONG) {
1290    address = new LIR_Address(address->base(),
1291                              address->index(), address->scale(),
1292                              address->disp(), T_DOUBLE);
1293    // Transfer the value atomically by using FP moves.  This means
1294    // the value has to be moved between CPU and FPU registers.  In
1295    // SSE0 and SSE1 mode it has to be moved through spill slot but in
1296    // SSE2+ mode it can be moved directly.
1297    LIR_Opr temp_double = new_register(T_DOUBLE);
1298    __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1299    __ volatile_move(temp_double, result, T_LONG);
1300    if (UseSSE < 2) {
1301      // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1302      set_vreg_flag(result, must_start_in_memory);
1303    }
1304  } else {
1305    __ load(address, result, info);
1306  }
1307}
1308
1309void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1310                                     BasicType type, bool is_volatile) {
1311  if (is_volatile && type == T_LONG) {
1312    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1313    LIR_Opr tmp = new_register(T_DOUBLE);
1314    __ load(addr, tmp);
1315    LIR_Opr spill = new_register(T_LONG);
1316    set_vreg_flag(spill, must_start_in_memory);
1317    __ move(tmp, spill);
1318    __ move(spill, dst);
1319  } else {
1320    LIR_Address* addr = new LIR_Address(src, offset, type);
1321    __ load(addr, dst);
1322  }
1323}
1324
1325
1326void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1327                                     BasicType type, bool is_volatile) {
1328  if (is_volatile && type == T_LONG) {
1329    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1330    LIR_Opr tmp = new_register(T_DOUBLE);
1331    LIR_Opr spill = new_register(T_DOUBLE);
1332    set_vreg_flag(spill, must_start_in_memory);
1333    __ move(data, spill);
1334    __ move(spill, tmp);
1335    __ move(tmp, addr);
1336  } else {
1337    LIR_Address* addr = new LIR_Address(src, offset, type);
1338    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1339    if (is_obj) {
1340      // Do the pre-write barrier, if any.
1341      pre_barrier(LIR_OprFact::address(addr), false, NULL);
1342      __ move(data, addr);
1343      assert(src->is_register(), "must be register");
1344      // Seems to be a precise address
1345      post_barrier(LIR_OprFact::address(addr), data);
1346    } else {
1347      __ move(data, addr);
1348    }
1349  }
1350}
1351