c1_LIRGenerator_x86.cpp revision 10964:33f10a35ce20
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_Runtime1.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArray.hpp"
34#include "ci/ciObjArrayKlass.hpp"
35#include "ci/ciTypeArrayKlass.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/stubRoutines.hpp"
38#include "vmreg_x86.inline.hpp"
39
40#ifdef ASSERT
41#define __ gen()->lir(__FILE__, __LINE__)->
42#else
43#define __ gen()->lir()->
44#endif
45
46// Item will be loaded into a byte register; Intel only
47void LIRItem::load_byte_item() {
48  load_item();
49  LIR_Opr res = result();
50
51  if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
52    // make sure that it is a byte register
53    assert(!value()->type()->is_float() && !value()->type()->is_double(),
54           "can't load floats in byte register");
55    LIR_Opr reg = _gen->rlock_byte(T_BYTE);
56    __ move(res, reg);
57
58    _result = reg;
59  }
60}
61
62
63void LIRItem::load_nonconstant() {
64  LIR_Opr r = value()->operand();
65  if (r->is_constant()) {
66    _result = r;
67  } else {
68    load_item();
69  }
70}
71
72//--------------------------------------------------------------
73//               LIRGenerator
74//--------------------------------------------------------------
75
76
77LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
78LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
79LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
80LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
81LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
82LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
83LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
84LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
85LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
86
87
88LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
89  LIR_Opr opr;
90  switch (type->tag()) {
91    case intTag:     opr = FrameMap::rax_opr;          break;
92    case objectTag:  opr = FrameMap::rax_oop_opr;      break;
93    case longTag:    opr = FrameMap::long0_opr;        break;
94    case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
95    case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
96
97    case addressTag:
98    default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
99  }
100
101  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
102  return opr;
103}
104
105
106LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
107  LIR_Opr reg = new_register(T_INT);
108  set_vreg_flag(reg, LIRGenerator::byte_reg);
109  return reg;
110}
111
112
113//--------- loading items into registers --------------------------------
114
115
116// i486 instructions can inline constants
117bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
118  if (type == T_SHORT || type == T_CHAR) {
119    // there is no immediate move of word values in asembler_i486.?pp
120    return false;
121  }
122  Constant* c = v->as_Constant();
123  if (c && c->state_before() == NULL) {
124    // constants of any type can be stored directly, except for
125    // unloaded object constants.
126    return true;
127  }
128  return false;
129}
130
131
132bool LIRGenerator::can_inline_as_constant(Value v) const {
133  if (v->type()->tag() == longTag) return false;
134  return v->type()->tag() != objectTag ||
135    (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
136}
137
138
139bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
140  if (c->type() == T_LONG) return false;
141  return c->type() != T_OBJECT || c->as_jobject() == NULL;
142}
143
144
145LIR_Opr LIRGenerator::safepoint_poll_register() {
146  return LIR_OprFact::illegalOpr;
147}
148
149
150LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
151                                            int shift, int disp, BasicType type) {
152  assert(base->is_register(), "must be");
153  if (index->is_constant()) {
154    return new LIR_Address(base,
155                           (index->as_constant_ptr()->as_jint() << shift) + disp,
156                           type);
157  } else {
158    return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
159  }
160}
161
162
163LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
164                                              BasicType type, bool needs_card_mark) {
165  int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
166
167  LIR_Address* addr;
168  if (index_opr->is_constant()) {
169    int elem_size = type2aelembytes(type);
170    addr = new LIR_Address(array_opr,
171                           offset_in_bytes + index_opr->as_jint() * elem_size, type);
172  } else {
173#ifdef _LP64
174    if (index_opr->type() == T_INT) {
175      LIR_Opr tmp = new_register(T_LONG);
176      __ convert(Bytecodes::_i2l, index_opr, tmp);
177      index_opr = tmp;
178    }
179#endif // _LP64
180    addr =  new LIR_Address(array_opr,
181                            index_opr,
182                            LIR_Address::scale(type),
183                            offset_in_bytes, type);
184  }
185  if (needs_card_mark) {
186    // This store will need a precise card mark, so go ahead and
187    // compute the full adddres instead of computing once for the
188    // store and again for the card mark.
189    LIR_Opr tmp = new_pointer_register();
190    __ leal(LIR_OprFact::address(addr), tmp);
191    return new LIR_Address(tmp, type);
192  } else {
193    return addr;
194  }
195}
196
197
198LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
199  LIR_Opr r = NULL;
200  if (type == T_LONG) {
201    r = LIR_OprFact::longConst(x);
202  } else if (type == T_INT) {
203    r = LIR_OprFact::intConst(x);
204  } else {
205    ShouldNotReachHere();
206  }
207  return r;
208}
209
210void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
211  LIR_Opr pointer = new_pointer_register();
212  __ move(LIR_OprFact::intptrConst(counter), pointer);
213  LIR_Address* addr = new LIR_Address(pointer, type);
214  increment_counter(addr, step);
215}
216
217
218void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
219  __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
220}
221
222void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
223  __ cmp_mem_int(condition, base, disp, c, info);
224}
225
226
227void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
228  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
229}
230
231
232void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
233  __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
234}
235
236
237bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
238  if (tmp->is_valid()) {
239    if (is_power_of_2(c + 1)) {
240      __ move(left, tmp);
241      __ shift_left(left, log2_intptr(c + 1), left);
242      __ sub(left, tmp, result);
243      return true;
244    } else if (is_power_of_2(c - 1)) {
245      __ move(left, tmp);
246      __ shift_left(left, log2_intptr(c - 1), left);
247      __ add(left, tmp, result);
248      return true;
249    }
250  }
251  return false;
252}
253
254
255void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
256  BasicType type = item->type();
257  __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
258}
259
260//----------------------------------------------------------------------
261//             visitor functions
262//----------------------------------------------------------------------
263
264
265void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
266  assert(x->is_pinned(),"");
267  bool needs_range_check = x->compute_needs_range_check();
268  bool use_length = x->length() != NULL;
269  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
270  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
271                                         !get_jobject_constant(x->value())->is_null_object() ||
272                                         x->should_profile());
273
274  LIRItem array(x->array(), this);
275  LIRItem index(x->index(), this);
276  LIRItem value(x->value(), this);
277  LIRItem length(this);
278
279  array.load_item();
280  index.load_nonconstant();
281
282  if (use_length && needs_range_check) {
283    length.set_instruction(x->length());
284    length.load_item();
285
286  }
287  if (needs_store_check) {
288    value.load_item();
289  } else {
290    value.load_for_store(x->elt_type());
291  }
292
293  set_no_result(x);
294
295  // the CodeEmitInfo must be duplicated for each different
296  // LIR-instruction because spilling can occur anywhere between two
297  // instructions and so the debug information must be different
298  CodeEmitInfo* range_check_info = state_for(x);
299  CodeEmitInfo* null_check_info = NULL;
300  if (x->needs_null_check()) {
301    null_check_info = new CodeEmitInfo(range_check_info);
302  }
303
304  // emit array address setup early so it schedules better
305  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
306
307  if (GenerateRangeChecks && needs_range_check) {
308    if (use_length) {
309      __ cmp(lir_cond_belowEqual, length.result(), index.result());
310      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
311    } else {
312      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
313      // range_check also does the null check
314      null_check_info = NULL;
315    }
316  }
317
318  if (GenerateArrayStoreCheck && needs_store_check) {
319    LIR_Opr tmp1 = new_register(objectType);
320    LIR_Opr tmp2 = new_register(objectType);
321    LIR_Opr tmp3 = new_register(objectType);
322
323    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
324    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
325  }
326
327  if (obj_store) {
328    // Needs GC write barriers.
329    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
330                true /* do_load */, false /* patch */, NULL);
331    __ move(value.result(), array_addr, null_check_info);
332    // Seems to be a precise
333    post_barrier(LIR_OprFact::address(array_addr), value.result());
334  } else {
335    __ move(value.result(), array_addr, null_check_info);
336  }
337}
338
339
340void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
341  assert(x->is_pinned(),"");
342  LIRItem obj(x->obj(), this);
343  obj.load_item();
344
345  set_no_result(x);
346
347  // "lock" stores the address of the monitor stack slot, so this is not an oop
348  LIR_Opr lock = new_register(T_INT);
349  // Need a scratch register for biased locking on x86
350  LIR_Opr scratch = LIR_OprFact::illegalOpr;
351  if (UseBiasedLocking) {
352    scratch = new_register(T_INT);
353  }
354
355  CodeEmitInfo* info_for_exception = NULL;
356  if (x->needs_null_check()) {
357    info_for_exception = state_for(x);
358  }
359  // this CodeEmitInfo must not have the xhandlers because here the
360  // object is already locked (xhandlers expect object to be unlocked)
361  CodeEmitInfo* info = state_for(x, x->state(), true);
362  monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
363                        x->monitor_no(), info_for_exception, info);
364}
365
366
367void LIRGenerator::do_MonitorExit(MonitorExit* x) {
368  assert(x->is_pinned(),"");
369
370  LIRItem obj(x->obj(), this);
371  obj.dont_load_item();
372
373  LIR_Opr lock = new_register(T_INT);
374  LIR_Opr obj_temp = new_register(T_INT);
375  set_no_result(x);
376  monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
377}
378
379
380// _ineg, _lneg, _fneg, _dneg
381void LIRGenerator::do_NegateOp(NegateOp* x) {
382  LIRItem value(x->x(), this);
383  value.set_destroys_register();
384  value.load_item();
385  LIR_Opr reg = rlock(x);
386  __ negate(value.result(), reg);
387
388  set_result(x, round_item(reg));
389}
390
391
392// for  _fadd, _fmul, _fsub, _fdiv, _frem
393//      _dadd, _dmul, _dsub, _ddiv, _drem
394void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
395  LIRItem left(x->x(),  this);
396  LIRItem right(x->y(), this);
397  LIRItem* left_arg  = &left;
398  LIRItem* right_arg = &right;
399  assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
400  bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
401  if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
402    left.load_item();
403  } else {
404    left.dont_load_item();
405  }
406
407  // do not load right operand if it is a constant.  only 0 and 1 are
408  // loaded because there are special instructions for loading them
409  // without memory access (not needed for SSE2 instructions)
410  bool must_load_right = false;
411  if (right.is_constant()) {
412    LIR_Const* c = right.result()->as_constant_ptr();
413    assert(c != NULL, "invalid constant");
414    assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
415
416    if (c->type() == T_FLOAT) {
417      must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
418    } else {
419      must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
420    }
421  }
422
423  if (must_load_both) {
424    // frem and drem destroy also right operand, so move it to a new register
425    right.set_destroys_register();
426    right.load_item();
427  } else if (right.is_register() || must_load_right) {
428    right.load_item();
429  } else {
430    right.dont_load_item();
431  }
432  LIR_Opr reg = rlock(x);
433  LIR_Opr tmp = LIR_OprFact::illegalOpr;
434  if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
435    tmp = new_register(T_DOUBLE);
436  }
437
438  if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
439    // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
440    LIR_Opr fpu0, fpu1;
441    if (x->op() == Bytecodes::_frem) {
442      fpu0 = LIR_OprFact::single_fpu(0);
443      fpu1 = LIR_OprFact::single_fpu(1);
444    } else {
445      fpu0 = LIR_OprFact::double_fpu(0);
446      fpu1 = LIR_OprFact::double_fpu(1);
447    }
448    __ move(right.result(), fpu1); // order of left and right operand is important!
449    __ move(left.result(), fpu0);
450    __ rem (fpu0, fpu1, fpu0);
451    __ move(fpu0, reg);
452
453  } else {
454    arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
455  }
456
457  set_result(x, round_item(reg));
458}
459
460
461// for  _ladd, _lmul, _lsub, _ldiv, _lrem
462void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
463  if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
464    // long division is implemented as a direct call into the runtime
465    LIRItem left(x->x(), this);
466    LIRItem right(x->y(), this);
467
468    // the check for division by zero destroys the right operand
469    right.set_destroys_register();
470
471    BasicTypeList signature(2);
472    signature.append(T_LONG);
473    signature.append(T_LONG);
474    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
475
476    // check for division by zero (destroys registers of right operand!)
477    CodeEmitInfo* info = state_for(x);
478
479    const LIR_Opr result_reg = result_register_for(x->type());
480    left.load_item_force(cc->at(1));
481    right.load_item();
482
483    __ move(right.result(), cc->at(0));
484
485    __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
486    __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
487
488    address entry = NULL;
489    switch (x->op()) {
490    case Bytecodes::_lrem:
491      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
492      break; // check if dividend is 0 is done elsewhere
493    case Bytecodes::_ldiv:
494      entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
495      break; // check if dividend is 0 is done elsewhere
496    case Bytecodes::_lmul:
497      entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
498      break;
499    default:
500      ShouldNotReachHere();
501    }
502
503    LIR_Opr result = rlock_result(x);
504    __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
505    __ move(result_reg, result);
506  } else if (x->op() == Bytecodes::_lmul) {
507    // missing test if instr is commutative and if we should swap
508    LIRItem left(x->x(), this);
509    LIRItem right(x->y(), this);
510
511    // right register is destroyed by the long mul, so it must be
512    // copied to a new register.
513    right.set_destroys_register();
514
515    left.load_item();
516    right.load_item();
517
518    LIR_Opr reg = FrameMap::long0_opr;
519    arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
520    LIR_Opr result = rlock_result(x);
521    __ move(reg, result);
522  } else {
523    // missing test if instr is commutative and if we should swap
524    LIRItem left(x->x(), this);
525    LIRItem right(x->y(), this);
526
527    left.load_item();
528    // don't load constants to save register
529    right.load_nonconstant();
530    rlock_result(x);
531    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
532  }
533}
534
535
536
537// for: _iadd, _imul, _isub, _idiv, _irem
538void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
539  if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
540    // The requirements for division and modulo
541    // input : rax,: dividend                         min_int
542    //         reg: divisor   (may not be rax,/rdx)   -1
543    //
544    // output: rax,: quotient  (= rax, idiv reg)       min_int
545    //         rdx: remainder (= rax, irem reg)       0
546
547    // rax, and rdx will be destroyed
548
549    // Note: does this invalidate the spec ???
550    LIRItem right(x->y(), this);
551    LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
552
553    // call state_for before load_item_force because state_for may
554    // force the evaluation of other instructions that are needed for
555    // correct debug info.  Otherwise the live range of the fix
556    // register might be too long.
557    CodeEmitInfo* info = state_for(x);
558
559    left.load_item_force(divInOpr());
560
561    right.load_item();
562
563    LIR_Opr result = rlock_result(x);
564    LIR_Opr result_reg;
565    if (x->op() == Bytecodes::_idiv) {
566      result_reg = divOutOpr();
567    } else {
568      result_reg = remOutOpr();
569    }
570
571    if (!ImplicitDiv0Checks) {
572      __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
573      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
574    }
575    LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
576    if (x->op() == Bytecodes::_irem) {
577      __ irem(left.result(), right.result(), result_reg, tmp, info);
578    } else if (x->op() == Bytecodes::_idiv) {
579      __ idiv(left.result(), right.result(), result_reg, tmp, info);
580    } else {
581      ShouldNotReachHere();
582    }
583
584    __ move(result_reg, result);
585  } else {
586    // missing test if instr is commutative and if we should swap
587    LIRItem left(x->x(),  this);
588    LIRItem right(x->y(), this);
589    LIRItem* left_arg = &left;
590    LIRItem* right_arg = &right;
591    if (x->is_commutative() && left.is_stack() && right.is_register()) {
592      // swap them if left is real stack (or cached) and right is real register(not cached)
593      left_arg = &right;
594      right_arg = &left;
595    }
596
597    left_arg->load_item();
598
599    // do not need to load right, as we can handle stack and constants
600    if (x->op() == Bytecodes::_imul ) {
601      // check if we can use shift instead
602      bool use_constant = false;
603      bool use_tmp = false;
604      if (right_arg->is_constant()) {
605        int iconst = right_arg->get_jint_constant();
606        if (iconst > 0) {
607          if (is_power_of_2(iconst)) {
608            use_constant = true;
609          } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
610            use_constant = true;
611            use_tmp = true;
612          }
613        }
614      }
615      if (use_constant) {
616        right_arg->dont_load_item();
617      } else {
618        right_arg->load_item();
619      }
620      LIR_Opr tmp = LIR_OprFact::illegalOpr;
621      if (use_tmp) {
622        tmp = new_register(T_INT);
623      }
624      rlock_result(x);
625
626      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
627    } else {
628      right_arg->dont_load_item();
629      rlock_result(x);
630      LIR_Opr tmp = LIR_OprFact::illegalOpr;
631      arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
632    }
633  }
634}
635
636
637void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
638  // when an operand with use count 1 is the left operand, then it is
639  // likely that no move for 2-operand-LIR-form is necessary
640  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
641    x->swap_operands();
642  }
643
644  ValueTag tag = x->type()->tag();
645  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
646  switch (tag) {
647    case floatTag:
648    case doubleTag:  do_ArithmeticOp_FPU(x);  return;
649    case longTag:    do_ArithmeticOp_Long(x); return;
650    case intTag:     do_ArithmeticOp_Int(x);  return;
651  }
652  ShouldNotReachHere();
653}
654
655
656// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
657void LIRGenerator::do_ShiftOp(ShiftOp* x) {
658  // count must always be in rcx
659  LIRItem value(x->x(), this);
660  LIRItem count(x->y(), this);
661
662  ValueTag elemType = x->type()->tag();
663  bool must_load_count = !count.is_constant() || elemType == longTag;
664  if (must_load_count) {
665    // count for long must be in register
666    count.load_item_force(shiftCountOpr());
667  } else {
668    count.dont_load_item();
669  }
670  value.load_item();
671  LIR_Opr reg = rlock_result(x);
672
673  shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
674}
675
676
677// _iand, _land, _ior, _lor, _ixor, _lxor
678void LIRGenerator::do_LogicOp(LogicOp* x) {
679  // when an operand with use count 1 is the left operand, then it is
680  // likely that no move for 2-operand-LIR-form is necessary
681  if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
682    x->swap_operands();
683  }
684
685  LIRItem left(x->x(), this);
686  LIRItem right(x->y(), this);
687
688  left.load_item();
689  right.load_nonconstant();
690  LIR_Opr reg = rlock_result(x);
691
692  logic_op(x->op(), reg, left.result(), right.result());
693}
694
695
696
697// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
698void LIRGenerator::do_CompareOp(CompareOp* x) {
699  LIRItem left(x->x(), this);
700  LIRItem right(x->y(), this);
701  ValueTag tag = x->x()->type()->tag();
702  if (tag == longTag) {
703    left.set_destroys_register();
704  }
705  left.load_item();
706  right.load_item();
707  LIR_Opr reg = rlock_result(x);
708
709  if (x->x()->type()->is_float_kind()) {
710    Bytecodes::Code code = x->op();
711    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
712  } else if (x->x()->type()->tag() == longTag) {
713    __ lcmp2int(left.result(), right.result(), reg);
714  } else {
715    Unimplemented();
716  }
717}
718
719
720void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
721  assert(x->number_of_arguments() == 4, "wrong type");
722  LIRItem obj   (x->argument_at(0), this);  // object
723  LIRItem offset(x->argument_at(1), this);  // offset of field
724  LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
725  LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
726
727  assert(obj.type()->tag() == objectTag, "invalid type");
728
729  // In 64bit the type can be long, sparc doesn't have this assert
730  // assert(offset.type()->tag() == intTag, "invalid type");
731
732  assert(cmp.type()->tag() == type->tag(), "invalid type");
733  assert(val.type()->tag() == type->tag(), "invalid type");
734
735  // get address of field
736  obj.load_item();
737  offset.load_nonconstant();
738
739  LIR_Opr addr = new_pointer_register();
740  LIR_Address* a;
741  if(offset.result()->is_constant()) {
742#ifdef _LP64
743    jlong c = offset.result()->as_jlong();
744    if ((jlong)((jint)c) == c) {
745      a = new LIR_Address(obj.result(),
746                          (jint)c,
747                          as_BasicType(type));
748    } else {
749      LIR_Opr tmp = new_register(T_LONG);
750      __ move(offset.result(), tmp);
751      a = new LIR_Address(obj.result(),
752                          tmp,
753                          as_BasicType(type));
754    }
755#else
756    a = new LIR_Address(obj.result(),
757                        offset.result()->as_jint(),
758                        as_BasicType(type));
759#endif
760  } else {
761    a = new LIR_Address(obj.result(),
762                        offset.result(),
763                        LIR_Address::times_1,
764                        0,
765                        as_BasicType(type));
766  }
767  __ leal(LIR_OprFact::address(a), addr);
768
769  if (type == objectType) {  // Write-barrier needed for Object fields.
770    // Do the pre-write barrier, if any.
771    pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
772                true /* do_load */, false /* patch */, NULL);
773  }
774
775  if (type == objectType) {
776    cmp.load_item_force(FrameMap::rax_oop_opr);
777    val.load_item();
778  } else if (type == intType) {
779    cmp.load_item_force(FrameMap::rax_opr);
780    val.load_item();
781  } else if (type == longType) {
782    cmp.load_item_force(FrameMap::long0_opr);
783    val.load_item_force(FrameMap::long1_opr);
784  } else {
785    ShouldNotReachHere();
786  }
787
788  LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
789  if (type == objectType)
790    __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
791  else if (type == intType)
792    __ cas_int(addr, cmp.result(), val.result(), ill, ill);
793  else if (type == longType)
794    __ cas_long(addr, cmp.result(), val.result(), ill, ill);
795  else {
796    ShouldNotReachHere();
797  }
798
799  // generate conditional move of boolean result
800  LIR_Opr result = rlock_result(x);
801  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
802           result, as_BasicType(type));
803  if (type == objectType) {   // Write-barrier needed for Object fields.
804    // Seems to be precise
805    post_barrier(addr, val.result());
806  }
807}
808
809
810void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
811  assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
812
813  if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
814      x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
815      x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
816      x->id() == vmIntrinsics::_dlog10) {
817    do_LibmIntrinsic(x);
818    return;
819  }
820
821  LIRItem value(x->argument_at(0), this);
822
823  bool use_fpu = false;
824  if (UseSSE < 2) {
825    value.set_destroys_register();
826  }
827  value.load_item();
828
829  LIR_Opr calc_input = value.result();
830  LIR_Opr calc_result = rlock_result(x);
831
832  switch(x->id()) {
833    case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
834    case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
835    default:                    ShouldNotReachHere();
836  }
837
838  if (use_fpu) {
839    __ move(calc_result, x->operand());
840  }
841}
842
843void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
844  LIRItem value(x->argument_at(0), this);
845  value.set_destroys_register();
846
847  LIR_Opr calc_result = rlock_result(x);
848  LIR_Opr result_reg = result_register_for(x->type());
849
850  CallingConvention* cc = NULL;
851
852  if (x->id() == vmIntrinsics::_dpow) {
853    LIRItem value1(x->argument_at(1), this);
854
855    value1.set_destroys_register();
856
857    BasicTypeList signature(2);
858    signature.append(T_DOUBLE);
859    signature.append(T_DOUBLE);
860    cc = frame_map()->c_calling_convention(&signature);
861    value.load_item_force(cc->at(0));
862    value1.load_item_force(cc->at(1));
863  } else {
864    BasicTypeList signature(1);
865    signature.append(T_DOUBLE);
866    cc = frame_map()->c_calling_convention(&signature);
867    value.load_item_force(cc->at(0));
868  }
869
870#ifndef _LP64
871  LIR_Opr tmp = FrameMap::fpu0_double_opr;
872  result_reg = tmp;
873  switch(x->id()) {
874    case vmIntrinsics::_dexp:
875      if (StubRoutines::dexp() != NULL) {
876        __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
877      } else {
878        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
879      }
880      break;
881    case vmIntrinsics::_dlog:
882      if (StubRoutines::dlog() != NULL) {
883        __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
884      } else {
885        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
886      }
887      break;
888    case vmIntrinsics::_dlog10:
889      if (StubRoutines::dlog10() != NULL) {
890       __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
891      } else {
892        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
893      }
894      break;
895    case vmIntrinsics::_dpow:
896      if (StubRoutines::dpow() != NULL) {
897        __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
898      } else {
899        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
900      }
901      break;
902    case vmIntrinsics::_dsin:
903      if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) {
904        __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
905      } else {
906        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
907      }
908      break;
909    case vmIntrinsics::_dcos:
910      if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) {
911        __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
912      } else {
913        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
914      }
915      break;
916    case vmIntrinsics::_dtan:
917      if (StubRoutines::dtan() != NULL) {
918        __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
919      } else {
920        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
921      }
922      break;
923    default:  ShouldNotReachHere();
924  }
925#else
926  switch (x->id()) {
927    case vmIntrinsics::_dexp:
928      if (StubRoutines::dexp() != NULL) {
929        __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
930      } else {
931        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
932      }
933      break;
934    case vmIntrinsics::_dlog:
935      if (StubRoutines::dlog() != NULL) {
936      __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
937      } else {
938        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
939      }
940      break;
941    case vmIntrinsics::_dlog10:
942      if (StubRoutines::dlog10() != NULL) {
943      __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
944      } else {
945        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
946      }
947      break;
948    case vmIntrinsics::_dpow:
949       if (StubRoutines::dpow() != NULL) {
950      __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
951      } else {
952        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
953      }
954      break;
955    case vmIntrinsics::_dsin:
956      if (StubRoutines::dsin() != NULL) {
957        __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
958      } else {
959        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
960      }
961      break;
962    case vmIntrinsics::_dcos:
963      if (StubRoutines::dcos() != NULL) {
964        __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
965      } else {
966        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
967      }
968      break;
969    case vmIntrinsics::_dtan:
970       if (StubRoutines::dtan() != NULL) {
971      __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
972      } else {
973        __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
974      }
975      break;
976    default:  ShouldNotReachHere();
977  }
978#endif // _LP64
979  __ move(result_reg, calc_result);
980}
981
982void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
983  assert(x->number_of_arguments() == 5, "wrong type");
984
985  // Make all state_for calls early since they can emit code
986  CodeEmitInfo* info = state_for(x, x->state());
987
988  LIRItem src(x->argument_at(0), this);
989  LIRItem src_pos(x->argument_at(1), this);
990  LIRItem dst(x->argument_at(2), this);
991  LIRItem dst_pos(x->argument_at(3), this);
992  LIRItem length(x->argument_at(4), this);
993
994  // operands for arraycopy must use fixed registers, otherwise
995  // LinearScan will fail allocation (because arraycopy always needs a
996  // call)
997
998#ifndef _LP64
999  src.load_item_force     (FrameMap::rcx_oop_opr);
1000  src_pos.load_item_force (FrameMap::rdx_opr);
1001  dst.load_item_force     (FrameMap::rax_oop_opr);
1002  dst_pos.load_item_force (FrameMap::rbx_opr);
1003  length.load_item_force  (FrameMap::rdi_opr);
1004  LIR_Opr tmp =           (FrameMap::rsi_opr);
1005#else
1006
1007  // The java calling convention will give us enough registers
1008  // so that on the stub side the args will be perfect already.
1009  // On the other slow/special case side we call C and the arg
1010  // positions are not similar enough to pick one as the best.
1011  // Also because the java calling convention is a "shifted" version
1012  // of the C convention we can process the java args trivially into C
1013  // args without worry of overwriting during the xfer
1014
1015  src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
1016  src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
1017  dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
1018  dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
1019  length.load_item_force  (FrameMap::as_opr(j_rarg4));
1020
1021  LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
1022#endif // LP64
1023
1024  set_no_result(x);
1025
1026  int flags;
1027  ciArrayKlass* expected_type;
1028  arraycopy_helper(x, &flags, &expected_type);
1029
1030  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
1031}
1032
1033void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1034  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
1035  // Make all state_for calls early since they can emit code
1036  LIR_Opr result = rlock_result(x);
1037  int flags = 0;
1038  switch (x->id()) {
1039    case vmIntrinsics::_updateCRC32: {
1040      LIRItem crc(x->argument_at(0), this);
1041      LIRItem val(x->argument_at(1), this);
1042      // val is destroyed by update_crc32
1043      val.set_destroys_register();
1044      crc.load_item();
1045      val.load_item();
1046      __ update_crc32(crc.result(), val.result(), result);
1047      break;
1048    }
1049    case vmIntrinsics::_updateBytesCRC32:
1050    case vmIntrinsics::_updateByteBufferCRC32: {
1051      bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1052
1053      LIRItem crc(x->argument_at(0), this);
1054      LIRItem buf(x->argument_at(1), this);
1055      LIRItem off(x->argument_at(2), this);
1056      LIRItem len(x->argument_at(3), this);
1057      buf.load_item();
1058      off.load_nonconstant();
1059
1060      LIR_Opr index = off.result();
1061      int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1062      if(off.result()->is_constant()) {
1063        index = LIR_OprFact::illegalOpr;
1064       offset += off.result()->as_jint();
1065      }
1066      LIR_Opr base_op = buf.result();
1067
1068#ifndef _LP64
1069      if (!is_updateBytes) { // long b raw address
1070         base_op = new_register(T_INT);
1071         __ convert(Bytecodes::_l2i, buf.result(), base_op);
1072      }
1073#else
1074      if (index->is_valid()) {
1075        LIR_Opr tmp = new_register(T_LONG);
1076        __ convert(Bytecodes::_i2l, index, tmp);
1077        index = tmp;
1078      }
1079#endif
1080
1081      LIR_Address* a = new LIR_Address(base_op,
1082                                       index,
1083                                       LIR_Address::times_1,
1084                                       offset,
1085                                       T_BYTE);
1086      BasicTypeList signature(3);
1087      signature.append(T_INT);
1088      signature.append(T_ADDRESS);
1089      signature.append(T_INT);
1090      CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1091      const LIR_Opr result_reg = result_register_for(x->type());
1092
1093      LIR_Opr addr = new_pointer_register();
1094      __ leal(LIR_OprFact::address(a), addr);
1095
1096      crc.load_item_force(cc->at(0));
1097      __ move(addr, cc->at(1));
1098      len.load_item_force(cc->at(2));
1099
1100      __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1101      __ move(result_reg, result);
1102
1103      break;
1104    }
1105    default: {
1106      ShouldNotReachHere();
1107    }
1108  }
1109}
1110
1111// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1112// _i2b, _i2c, _i2s
1113LIR_Opr fixed_register_for(BasicType type) {
1114  switch (type) {
1115    case T_FLOAT:  return FrameMap::fpu0_float_opr;
1116    case T_DOUBLE: return FrameMap::fpu0_double_opr;
1117    case T_INT:    return FrameMap::rax_opr;
1118    case T_LONG:   return FrameMap::long0_opr;
1119    default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1120  }
1121}
1122
1123void LIRGenerator::do_Convert(Convert* x) {
1124  // flags that vary for the different operations and different SSE-settings
1125  bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1126
1127  switch (x->op()) {
1128    case Bytecodes::_i2l: // fall through
1129    case Bytecodes::_l2i: // fall through
1130    case Bytecodes::_i2b: // fall through
1131    case Bytecodes::_i2c: // fall through
1132    case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1133
1134    case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1135    case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1136    case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1137    case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1138    case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1139    case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1140    case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1141    case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1142    case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1143    case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1144    default: ShouldNotReachHere();
1145  }
1146
1147  LIRItem value(x->value(), this);
1148  value.load_item();
1149  LIR_Opr input = value.result();
1150  LIR_Opr result = rlock(x);
1151
1152  // arguments of lir_convert
1153  LIR_Opr conv_input = input;
1154  LIR_Opr conv_result = result;
1155  ConversionStub* stub = NULL;
1156
1157  if (fixed_input) {
1158    conv_input = fixed_register_for(input->type());
1159    __ move(input, conv_input);
1160  }
1161
1162  assert(fixed_result == false || round_result == false, "cannot set both");
1163  if (fixed_result) {
1164    conv_result = fixed_register_for(result->type());
1165  } else if (round_result) {
1166    result = new_register(result->type());
1167    set_vreg_flag(result, must_start_in_memory);
1168  }
1169
1170  if (needs_stub) {
1171    stub = new ConversionStub(x->op(), conv_input, conv_result);
1172  }
1173
1174  __ convert(x->op(), conv_input, conv_result, stub);
1175
1176  if (result != conv_result) {
1177    __ move(conv_result, result);
1178  }
1179
1180  assert(result->is_virtual(), "result must be virtual register");
1181  set_result(x, result);
1182}
1183
1184
1185void LIRGenerator::do_NewInstance(NewInstance* x) {
1186  print_if_not_loaded(x);
1187
1188  CodeEmitInfo* info = state_for(x, x->state());
1189  LIR_Opr reg = result_register_for(x->type());
1190  new_instance(reg, x->klass(), x->is_unresolved(),
1191                       FrameMap::rcx_oop_opr,
1192                       FrameMap::rdi_oop_opr,
1193                       FrameMap::rsi_oop_opr,
1194                       LIR_OprFact::illegalOpr,
1195                       FrameMap::rdx_metadata_opr, info);
1196  LIR_Opr result = rlock_result(x);
1197  __ move(reg, result);
1198}
1199
1200
1201void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1202  CodeEmitInfo* info = state_for(x, x->state());
1203
1204  LIRItem length(x->length(), this);
1205  length.load_item_force(FrameMap::rbx_opr);
1206
1207  LIR_Opr reg = result_register_for(x->type());
1208  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1209  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1210  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1211  LIR_Opr tmp4 = reg;
1212  LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1213  LIR_Opr len = length.result();
1214  BasicType elem_type = x->elt_type();
1215
1216  __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1217
1218  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1219  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1220
1221  LIR_Opr result = rlock_result(x);
1222  __ move(reg, result);
1223}
1224
1225
1226void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1227  LIRItem length(x->length(), this);
1228  // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1229  // and therefore provide the state before the parameters have been consumed
1230  CodeEmitInfo* patching_info = NULL;
1231  if (!x->klass()->is_loaded() || PatchALot) {
1232    patching_info =  state_for(x, x->state_before());
1233  }
1234
1235  CodeEmitInfo* info = state_for(x, x->state());
1236
1237  const LIR_Opr reg = result_register_for(x->type());
1238  LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1239  LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1240  LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1241  LIR_Opr tmp4 = reg;
1242  LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1243
1244  length.load_item_force(FrameMap::rbx_opr);
1245  LIR_Opr len = length.result();
1246
1247  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1248  ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1249  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1250    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1251  }
1252  klass2reg_with_patching(klass_reg, obj, patching_info);
1253  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1254
1255  LIR_Opr result = rlock_result(x);
1256  __ move(reg, result);
1257}
1258
1259
1260void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1261  Values* dims = x->dims();
1262  int i = dims->length();
1263  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1264  while (i-- > 0) {
1265    LIRItem* size = new LIRItem(dims->at(i), this);
1266    items->at_put(i, size);
1267  }
1268
1269  // Evaluate state_for early since it may emit code.
1270  CodeEmitInfo* patching_info = NULL;
1271  if (!x->klass()->is_loaded() || PatchALot) {
1272    patching_info = state_for(x, x->state_before());
1273
1274    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1275    // clone all handlers (NOTE: Usually this is handled transparently
1276    // by the CodeEmitInfo cloning logic in CodeStub constructors but
1277    // is done explicitly here because a stub isn't being used).
1278    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1279  }
1280  CodeEmitInfo* info = state_for(x, x->state());
1281
1282  i = dims->length();
1283  while (i-- > 0) {
1284    LIRItem* size = items->at(i);
1285    size->load_nonconstant();
1286
1287    store_stack_parameter(size->result(), in_ByteSize(i*4));
1288  }
1289
1290  LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1291  klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1292
1293  LIR_Opr rank = FrameMap::rbx_opr;
1294  __ move(LIR_OprFact::intConst(x->rank()), rank);
1295  LIR_Opr varargs = FrameMap::rcx_opr;
1296  __ move(FrameMap::rsp_opr, varargs);
1297  LIR_OprList* args = new LIR_OprList(3);
1298  args->append(klass_reg);
1299  args->append(rank);
1300  args->append(varargs);
1301  LIR_Opr reg = result_register_for(x->type());
1302  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1303                  LIR_OprFact::illegalOpr,
1304                  reg, args, info);
1305
1306  LIR_Opr result = rlock_result(x);
1307  __ move(reg, result);
1308}
1309
1310
1311void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1312  // nothing to do for now
1313}
1314
1315
1316void LIRGenerator::do_CheckCast(CheckCast* x) {
1317  LIRItem obj(x->obj(), this);
1318
1319  CodeEmitInfo* patching_info = NULL;
1320  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1321    // must do this before locking the destination register as an oop register,
1322    // and before the obj is loaded (the latter is for deoptimization)
1323    patching_info = state_for(x, x->state_before());
1324  }
1325  obj.load_item();
1326
1327  // info for exceptions
1328  CodeEmitInfo* info_for_exception = state_for(x);
1329
1330  CodeStub* stub;
1331  if (x->is_incompatible_class_change_check()) {
1332    assert(patching_info == NULL, "can't patch this");
1333    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1334  } else {
1335    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1336  }
1337  LIR_Opr reg = rlock_result(x);
1338  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1339  if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1340    tmp3 = new_register(objectType);
1341  }
1342  __ checkcast(reg, obj.result(), x->klass(),
1343               new_register(objectType), new_register(objectType), tmp3,
1344               x->direct_compare(), info_for_exception, patching_info, stub,
1345               x->profiled_method(), x->profiled_bci());
1346}
1347
1348
1349void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1350  LIRItem obj(x->obj(), this);
1351
1352  // result and test object may not be in same register
1353  LIR_Opr reg = rlock_result(x);
1354  CodeEmitInfo* patching_info = NULL;
1355  if ((!x->klass()->is_loaded() || PatchALot)) {
1356    // must do this before locking the destination register as an oop register
1357    patching_info = state_for(x, x->state_before());
1358  }
1359  obj.load_item();
1360  LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1361  if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1362    tmp3 = new_register(objectType);
1363  }
1364  __ instanceof(reg, obj.result(), x->klass(),
1365                new_register(objectType), new_register(objectType), tmp3,
1366                x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1367}
1368
1369
1370void LIRGenerator::do_If(If* x) {
1371  assert(x->number_of_sux() == 2, "inconsistency");
1372  ValueTag tag = x->x()->type()->tag();
1373  bool is_safepoint = x->is_safepoint();
1374
1375  If::Condition cond = x->cond();
1376
1377  LIRItem xitem(x->x(), this);
1378  LIRItem yitem(x->y(), this);
1379  LIRItem* xin = &xitem;
1380  LIRItem* yin = &yitem;
1381
1382  if (tag == longTag) {
1383    // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1384    // mirror for other conditions
1385    if (cond == If::gtr || cond == If::leq) {
1386      cond = Instruction::mirror(cond);
1387      xin = &yitem;
1388      yin = &xitem;
1389    }
1390    xin->set_destroys_register();
1391  }
1392  xin->load_item();
1393  if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1394    // inline long zero
1395    yin->dont_load_item();
1396  } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1397    // longs cannot handle constants at right side
1398    yin->load_item();
1399  } else {
1400    yin->dont_load_item();
1401  }
1402
1403  // add safepoint before generating condition code so it can be recomputed
1404  if (x->is_safepoint()) {
1405    // increment backedge counter if needed
1406    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1407    __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1408  }
1409  set_no_result(x);
1410
1411  LIR_Opr left = xin->result();
1412  LIR_Opr right = yin->result();
1413  __ cmp(lir_cond(cond), left, right);
1414  // Generate branch profiling. Profiling code doesn't kill flags.
1415  profile_branch(x, cond);
1416  move_to_phi(x->state());
1417  if (x->x()->type()->is_float_kind()) {
1418    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1419  } else {
1420    __ branch(lir_cond(cond), right->type(), x->tsux());
1421  }
1422  assert(x->default_sux() == x->fsux(), "wrong destination above");
1423  __ jump(x->default_sux());
1424}
1425
1426
1427LIR_Opr LIRGenerator::getThreadPointer() {
1428#ifdef _LP64
1429  return FrameMap::as_pointer_opr(r15_thread);
1430#else
1431  LIR_Opr result = new_register(T_INT);
1432  __ get_thread(result);
1433  return result;
1434#endif //
1435}
1436
1437void LIRGenerator::trace_block_entry(BlockBegin* block) {
1438  store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1439  LIR_OprList* args = new LIR_OprList();
1440  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1441  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1442}
1443
1444
1445void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1446                                        CodeEmitInfo* info) {
1447  if (address->type() == T_LONG) {
1448    address = new LIR_Address(address->base(),
1449                              address->index(), address->scale(),
1450                              address->disp(), T_DOUBLE);
1451    // Transfer the value atomically by using FP moves.  This means
1452    // the value has to be moved between CPU and FPU registers.  It
1453    // always has to be moved through spill slot since there's no
1454    // quick way to pack the value into an SSE register.
1455    LIR_Opr temp_double = new_register(T_DOUBLE);
1456    LIR_Opr spill = new_register(T_LONG);
1457    set_vreg_flag(spill, must_start_in_memory);
1458    __ move(value, spill);
1459    __ volatile_move(spill, temp_double, T_LONG);
1460    __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1461  } else {
1462    __ store(value, address, info);
1463  }
1464}
1465
1466
1467
1468void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1469                                       CodeEmitInfo* info) {
1470  if (address->type() == T_LONG) {
1471    address = new LIR_Address(address->base(),
1472                              address->index(), address->scale(),
1473                              address->disp(), T_DOUBLE);
1474    // Transfer the value atomically by using FP moves.  This means
1475    // the value has to be moved between CPU and FPU registers.  In
1476    // SSE0 and SSE1 mode it has to be moved through spill slot but in
1477    // SSE2+ mode it can be moved directly.
1478    LIR_Opr temp_double = new_register(T_DOUBLE);
1479    __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1480    __ volatile_move(temp_double, result, T_LONG);
1481    if (UseSSE < 2) {
1482      // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1483      set_vreg_flag(result, must_start_in_memory);
1484    }
1485  } else {
1486    __ load(address, result, info);
1487  }
1488}
1489
1490void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1491                                     BasicType type, bool is_volatile) {
1492  if (is_volatile && type == T_LONG) {
1493    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1494    LIR_Opr tmp = new_register(T_DOUBLE);
1495    __ load(addr, tmp);
1496    LIR_Opr spill = new_register(T_LONG);
1497    set_vreg_flag(spill, must_start_in_memory);
1498    __ move(tmp, spill);
1499    __ move(spill, dst);
1500  } else {
1501    LIR_Address* addr = new LIR_Address(src, offset, type);
1502    __ load(addr, dst);
1503  }
1504}
1505
1506
1507void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1508                                     BasicType type, bool is_volatile) {
1509  if (is_volatile && type == T_LONG) {
1510    LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1511    LIR_Opr tmp = new_register(T_DOUBLE);
1512    LIR_Opr spill = new_register(T_DOUBLE);
1513    set_vreg_flag(spill, must_start_in_memory);
1514    __ move(data, spill);
1515    __ move(spill, tmp);
1516    __ move(tmp, addr);
1517  } else {
1518    LIR_Address* addr = new LIR_Address(src, offset, type);
1519    bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1520    if (is_obj) {
1521      // Do the pre-write barrier, if any.
1522      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1523                  true /* do_load */, false /* patch */, NULL);
1524      __ move(data, addr);
1525      assert(src->is_register(), "must be register");
1526      // Seems to be a precise address
1527      post_barrier(LIR_OprFact::address(addr), data);
1528    } else {
1529      __ move(data, addr);
1530    }
1531  }
1532}
1533
1534void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1535  BasicType type = x->basic_type();
1536  LIRItem src(x->object(), this);
1537  LIRItem off(x->offset(), this);
1538  LIRItem value(x->value(), this);
1539
1540  src.load_item();
1541  value.load_item();
1542  off.load_nonconstant();
1543
1544  LIR_Opr dst = rlock_result(x, type);
1545  LIR_Opr data = value.result();
1546  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1547  LIR_Opr offset = off.result();
1548
1549  assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1550  LIR_Address* addr;
1551  if (offset->is_constant()) {
1552#ifdef _LP64
1553    jlong c = offset->as_jlong();
1554    if ((jlong)((jint)c) == c) {
1555      addr = new LIR_Address(src.result(), (jint)c, type);
1556    } else {
1557      LIR_Opr tmp = new_register(T_LONG);
1558      __ move(offset, tmp);
1559      addr = new LIR_Address(src.result(), tmp, type);
1560    }
1561#else
1562    addr = new LIR_Address(src.result(), offset->as_jint(), type);
1563#endif
1564  } else {
1565    addr = new LIR_Address(src.result(), offset, type);
1566  }
1567
1568  // Because we want a 2-arg form of xchg and xadd
1569  __ move(data, dst);
1570
1571  if (x->is_add()) {
1572    __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1573  } else {
1574    if (is_obj) {
1575      // Do the pre-write barrier, if any.
1576      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1577                  true /* do_load */, false /* patch */, NULL);
1578    }
1579    __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1580    if (is_obj) {
1581      // Seems to be a precise address
1582      post_barrier(LIR_OprFact::address(addr), data);
1583    }
1584  }
1585}
1586