sparc.ad revision 9737:e286c9ccd58d
1//
2// Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// SPARC Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31register %{
32//----------Architecture Description Register Definitions----------------------
33// General Registers
34// "reg_def"  name ( register save type, C convention save type,
35//                   ideal register type, encoding, vm name );
36// Register Save Types:
37//
38// NS  = No-Save:       The register allocator assumes that these registers
39//                      can be used without saving upon entry to the method, &
40//                      that they do not need to be saved at call sites.
41//
42// SOC = Save-On-Call:  The register allocator assumes that these registers
43//                      can be used without saving upon entry to the method,
44//                      but that they must be saved at call sites.
45//
46// SOE = Save-On-Entry: The register allocator assumes that these registers
47//                      must be saved before using them upon entry to the
48//                      method, but they do not need to be saved at call
49//                      sites.
50//
51// AS  = Always-Save:   The register allocator assumes that these registers
52//                      must be saved before using them upon entry to the
53//                      method, & that they must be saved at call sites.
54//
55// Ideal Register Type is used to determine how to save & restore a
56// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
57// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
58//
59// The encoding number is the actual bit-pattern placed into the opcodes.
60
61
62// ----------------------------
63// Integer/Long Registers
64// ----------------------------
65
66// Need to expose the hi/lo aspect of 64-bit registers
67// This register set is used for both the 64-bit build and
68// the 32-bit build with 1-register longs.
69
70// Global Registers 0-7
71reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
72reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
73reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
74reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
75reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
76reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
77reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
78reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
79reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
80reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
81reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
82reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
83reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
84reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
85reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
86reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
87
88// Output Registers 0-7
89reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
90reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
91reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
92reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
93reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
94reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
95reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
96reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
97reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
98reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
99reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
100reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
101reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
102reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
103reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
104reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
105
106// Local Registers 0-7
107reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
108reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
109reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
110reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
111reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
112reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
113reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
114reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
115reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
116reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
117reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
118reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
119reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
120reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
121reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
122reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
123
124// Input Registers 0-7
125reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
126reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
127reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
128reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
129reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
130reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
131reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
132reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
133reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
134reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
135reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
136reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
137reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
138reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
139reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
140reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
141
142// ----------------------------
143// Float/Double Registers
144// ----------------------------
145
146// Float Registers
147reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
148reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
149reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
150reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
151reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
152reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
153reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
154reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
155reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
156reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
157reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
158reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
159reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
160reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
161reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
162reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
163reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
164reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
165reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
166reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
167reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
168reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
169reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
170reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
171reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
172reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
173reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
174reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
175reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
176reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
177reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
178reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
179
180// Double Registers
181// The rules of ADL require that double registers be defined in pairs.
182// Each pair must be two 32-bit values, but not necessarily a pair of
183// single float registers.  In each pair, ADLC-assigned register numbers
184// must be adjacent, with the lower number even.  Finally, when the
185// CPU stores such a register pair to memory, the word associated with
186// the lower ADLC-assigned number must be stored to the lower address.
187
188// These definitions specify the actual bit encodings of the sparc
189// double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
190// wants 0-63, so we have to convert every time we want to use fp regs
191// with the macroassembler, using reg_to_DoubleFloatRegister_object().
192// 255 is a flag meaning "don't go here".
193// I believe we can't handle callee-save doubles D32 and up until
194// the place in the sparc stack crawler that asserts on the 255 is
195// fixed up.
196reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
197reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
198reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
199reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
200reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
201reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
202reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
203reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
204reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
205reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
206reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
207reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
208reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
209reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
210reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
211reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
212reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
213reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
214reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
215reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
216reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
217reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
218reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
219reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
220reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
221reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
222reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
223reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
224reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
225reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
226reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
227reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
228
229
230// ----------------------------
231// Special Registers
232// Condition Codes Flag Registers
233// I tried to break out ICC and XCC but it's not very pretty.
234// Every Sparc instruction which defs/kills one also kills the other.
235// Hence every compare instruction which defs one kind of flags ends
236// up needing a kill of the other.
237reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
238
239reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
240reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
241reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
242reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
243
244// ----------------------------
245// Specify the enum values for the registers.  These enums are only used by the
246// OptoReg "class". We can convert these enum values at will to VMReg when needed
247// for visibility to the rest of the vm. The order of this enum influences the
248// register allocator so having the freedom to set this order and not be stuck
249// with the order that is natural for the rest of the vm is worth it.
250alloc_class chunk0(
251  R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
252  R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
253  R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
254  R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
255
256// Note that a register is not allocatable unless it is also mentioned
257// in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
258
259alloc_class chunk1(
260  // The first registers listed here are those most likely to be used
261  // as temporaries.  We move F0..F7 away from the front of the list,
262  // to reduce the likelihood of interferences with parameters and
263  // return values.  Likewise, we avoid using F0/F1 for parameters,
264  // since they are used for return values.
265  // This FPU fine-tuning is worth about 1% on the SPEC geomean.
266  R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
267  R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
268  R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
269  R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
270  R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
271  R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
272  R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
273  R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
274
275alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
276
277//----------Architecture Description Register Classes--------------------------
278// Several register classes are automatically defined based upon information in
279// this architecture description.
280// 1) reg_class inline_cache_reg           ( as defined in frame section )
281// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
282// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
283//
284
285// G0 is not included in integer class since it has special meaning.
286reg_class g0_reg(R_G0);
287
288// ----------------------------
289// Integer Register Classes
290// ----------------------------
291// Exclusions from i_reg:
292// R_G0: hardwired zero
293// R_G2: reserved by HotSpot to the TLS register (invariant within Java)
294// R_G6: reserved by Solaris ABI to tools
295// R_G7: reserved by Solaris ABI to libthread
296// R_O7: Used as a temp in many encodings
297reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
298
299// Class for all integer registers, except the G registers.  This is used for
300// encodings which use G registers as temps.  The regular inputs to such
301// instructions use a "notemp_" prefix, as a hack to ensure that the allocator
302// will not put an input into a temp register.
303reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
304
305reg_class g1_regI(R_G1);
306reg_class g3_regI(R_G3);
307reg_class g4_regI(R_G4);
308reg_class o0_regI(R_O0);
309reg_class o7_regI(R_O7);
310
311// ----------------------------
312// Pointer Register Classes
313// ----------------------------
314#ifdef _LP64
315// 64-bit build means 64-bit pointers means hi/lo pairs
316reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
317                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
318                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
319                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
320// Lock encodings use G3 and G4 internally
321reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
322                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
323                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
324                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
325// Special class for storeP instructions, which can store SP or RPC to TLS.
326// It is also used for memory addressing, allowing direct TLS addressing.
327reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
328                  R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
329                  R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
330                  R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
331// R_L7 is the lowest-priority callee-save (i.e., NS) register
332// We use it to save R_G2 across calls out of Java.
333reg_class l7_regP(R_L7H,R_L7);
334
335// Other special pointer regs
336reg_class g1_regP(R_G1H,R_G1);
337reg_class g2_regP(R_G2H,R_G2);
338reg_class g3_regP(R_G3H,R_G3);
339reg_class g4_regP(R_G4H,R_G4);
340reg_class g5_regP(R_G5H,R_G5);
341reg_class i0_regP(R_I0H,R_I0);
342reg_class o0_regP(R_O0H,R_O0);
343reg_class o1_regP(R_O1H,R_O1);
344reg_class o2_regP(R_O2H,R_O2);
345reg_class o7_regP(R_O7H,R_O7);
346
347#else // _LP64
348// 32-bit build means 32-bit pointers means 1 register.
349reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
350                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
351                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
352                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
353// Lock encodings use G3 and G4 internally
354reg_class lock_ptr_reg(R_G1,               R_G5,
355                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
356                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
357                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
358// Special class for storeP instructions, which can store SP or RPC to TLS.
359// It is also used for memory addressing, allowing direct TLS addressing.
360reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
361                  R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
362                  R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
363                  R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
364// R_L7 is the lowest-priority callee-save (i.e., NS) register
365// We use it to save R_G2 across calls out of Java.
366reg_class l7_regP(R_L7);
367
368// Other special pointer regs
369reg_class g1_regP(R_G1);
370reg_class g2_regP(R_G2);
371reg_class g3_regP(R_G3);
372reg_class g4_regP(R_G4);
373reg_class g5_regP(R_G5);
374reg_class i0_regP(R_I0);
375reg_class o0_regP(R_O0);
376reg_class o1_regP(R_O1);
377reg_class o2_regP(R_O2);
378reg_class o7_regP(R_O7);
379#endif // _LP64
380
381
382// ----------------------------
383// Long Register Classes
384// ----------------------------
385// Longs in 1 register.  Aligned adjacent hi/lo pairs.
386// Note:  O7 is never in this class; it is sometimes used as an encoding temp.
387reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
388                   ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
389#ifdef _LP64
390// 64-bit, longs in 1 register: use all 64-bit integer registers
391// 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
392                   ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
393                   ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
394#endif // _LP64
395                  );
396
397reg_class g1_regL(R_G1H,R_G1);
398reg_class g3_regL(R_G3H,R_G3);
399reg_class o2_regL(R_O2H,R_O2);
400reg_class o7_regL(R_O7H,R_O7);
401
402// ----------------------------
403// Special Class for Condition Code Flags Register
404reg_class int_flags(CCR);
405reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
406reg_class float_flag0(FCC0);
407
408
409// ----------------------------
410// Float Point Register Classes
411// ----------------------------
412// Skip F30/F31, they are reserved for mem-mem copies
413reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
414
415// Paired floating point registers--they show up in the same order as the floats,
416// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
417reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
418                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
419                   /* Use extra V9 double registers; this AD file does not support V8 */
420                   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
421                   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
422                   );
423
424// Paired floating point registers--they show up in the same order as the floats,
425// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
426// This class is usable for mis-aligned loads as happen in I2C adapters.
427reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
428                   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
429%}
430
431//----------DEFINITION BLOCK---------------------------------------------------
432// Define name --> value mappings to inform the ADLC of an integer valued name
433// Current support includes integer values in the range [0, 0x7FFFFFFF]
434// Format:
435//        int_def  <name>         ( <int_value>, <expression>);
436// Generated Code in ad_<arch>.hpp
437//        #define  <name>   (<expression>)
438//        // value == <int_value>
439// Generated code in ad_<arch>.cpp adlc_verification()
440//        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
441//
442definitions %{
443// The default cost (of an ALU instruction).
444  int_def DEFAULT_COST      (    100,     100);
445  int_def HUGE_COST         (1000000, 1000000);
446
447// Memory refs are twice as expensive as run-of-the-mill.
448  int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
449
450// Branches are even more expensive.
451  int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
452  int_def CALL_COST         (    300, DEFAULT_COST * 3);
453%}
454
455
456//----------SOURCE BLOCK-------------------------------------------------------
457// This is a block of C++ code which provides values, functions, and
458// definitions necessary in the rest of the architecture description
459source_hpp %{
460// Header information of the source block.
461// Method declarations/definitions which are used outside
462// the ad-scope can conveniently be defined here.
463//
464// To keep related declarations/definitions/uses close together,
465// we switch between source %{ }% and source_hpp %{ }% freely as needed.
466
467// Must be visible to the DFA in dfa_sparc.cpp
468extern bool can_branch_register( Node *bol, Node *cmp );
469
470extern bool use_block_zeroing(Node* count);
471
472// Macros to extract hi & lo halves from a long pair.
473// G0 is not part of any long pair, so assert on that.
474// Prevents accidentally using G1 instead of G0.
475#define LONG_HI_REG(x) (x)
476#define LONG_LO_REG(x) (x)
477
478class CallStubImpl {
479
480  //--------------------------------------------------------------
481  //---<  Used for optimization in Compile::Shorten_branches  >---
482  //--------------------------------------------------------------
483
484 public:
485  // Size of call trampoline stub.
486  static uint size_call_trampoline() {
487    return 0; // no call trampolines on this platform
488  }
489
490  // number of relocations needed by a call trampoline stub
491  static uint reloc_call_trampoline() {
492    return 0; // no call trampolines on this platform
493  }
494};
495
496class HandlerImpl {
497
498 public:
499
500  static int emit_exception_handler(CodeBuffer &cbuf);
501  static int emit_deopt_handler(CodeBuffer& cbuf);
502
503  static uint size_exception_handler() {
504    if (TraceJumps) {
505      return (400); // just a guess
506    }
507    return ( NativeJump::instruction_size ); // sethi;jmp;nop
508  }
509
510  static uint size_deopt_handler() {
511    if (TraceJumps) {
512      return (400); // just a guess
513    }
514    return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
515  }
516};
517
518%}
519
520source %{
521#define __ _masm.
522
523// tertiary op of a LoadP or StoreP encoding
524#define REGP_OP true
525
526static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
527static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
528static Register reg_to_register_object(int register_encoding);
529
530// Used by the DFA in dfa_sparc.cpp.
531// Check for being able to use a V9 branch-on-register.  Requires a
532// compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
533// extended.  Doesn't work following an integer ADD, for example, because of
534// overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
535// 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
536// replace them with zero, which could become sign-extension in a different OS
537// release.  There's no obvious reason why an interrupt will ever fill these
538// bits with non-zero junk (the registers are reloaded with standard LD
539// instructions which either zero-fill or sign-fill).
540bool can_branch_register( Node *bol, Node *cmp ) {
541  if( !BranchOnRegister ) return false;
542#ifdef _LP64
543  if( cmp->Opcode() == Op_CmpP )
544    return true;  // No problems with pointer compares
545#endif
546  if( cmp->Opcode() == Op_CmpL )
547    return true;  // No problems with long compares
548
549  if( !SparcV9RegsHiBitsZero ) return false;
550  if( bol->as_Bool()->_test._test != BoolTest::ne &&
551      bol->as_Bool()->_test._test != BoolTest::eq )
552     return false;
553
554  // Check for comparing against a 'safe' value.  Any operation which
555  // clears out the high word is safe.  Thus, loads and certain shifts
556  // are safe, as are non-negative constants.  Any operation which
557  // preserves zero bits in the high word is safe as long as each of its
558  // inputs are safe.  Thus, phis and bitwise booleans are safe if their
559  // inputs are safe.  At present, the only important case to recognize
560  // seems to be loads.  Constants should fold away, and shifts &
561  // logicals can use the 'cc' forms.
562  Node *x = cmp->in(1);
563  if( x->is_Load() ) return true;
564  if( x->is_Phi() ) {
565    for( uint i = 1; i < x->req(); i++ )
566      if( !x->in(i)->is_Load() )
567        return false;
568    return true;
569  }
570  return false;
571}
572
573bool use_block_zeroing(Node* count) {
574  // Use BIS for zeroing if count is not constant
575  // or it is >= BlockZeroingLowLimit.
576  return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
577}
578
579// ****************************************************************************
580
581// REQUIRED FUNCTIONALITY
582
583// !!!!! Special hack to get all type of calls to specify the byte offset
584//       from the start of the call to the point where the return address
585//       will point.
586//       The "return address" is the address of the call instruction, plus 8.
587
588int MachCallStaticJavaNode::ret_addr_offset() {
589  int offset = NativeCall::instruction_size;  // call; delay slot
590  if (_method_handle_invoke)
591    offset += 4;  // restore SP
592  return offset;
593}
594
595int MachCallDynamicJavaNode::ret_addr_offset() {
596  int vtable_index = this->_vtable_index;
597  if (vtable_index < 0) {
598    // must be invalid_vtable_index, not nonvirtual_vtable_index
599    assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
600    return (NativeMovConstReg::instruction_size +
601           NativeCall::instruction_size);  // sethi; setlo; call; delay slot
602  } else {
603    assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
604    int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
605    int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
606    int klass_load_size;
607    if (UseCompressedClassPointers) {
608      assert(Universe::heap() != NULL, "java heap should be initialized");
609      klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
610    } else {
611      klass_load_size = 1*BytesPerInstWord;
612    }
613    if (Assembler::is_simm13(v_off)) {
614      return klass_load_size +
615             (2*BytesPerInstWord +           // ld_ptr, ld_ptr
616             NativeCall::instruction_size);  // call; delay slot
617    } else {
618      return klass_load_size +
619             (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
620             NativeCall::instruction_size);  // call; delay slot
621    }
622  }
623}
624
625int MachCallRuntimeNode::ret_addr_offset() {
626#ifdef _LP64
627  if (MacroAssembler::is_far_target(entry_point())) {
628    return NativeFarCall::instruction_size;
629  } else {
630    return NativeCall::instruction_size;
631  }
632#else
633  return NativeCall::instruction_size;  // call; delay slot
634#endif
635}
636
637// Indicate if the safepoint node needs the polling page as an input.
638// Since Sparc does not have absolute addressing, it does.
639bool SafePointNode::needs_polling_address_input() {
640  return true;
641}
642
643// emit an interrupt that is caught by the debugger (for debugging compiler)
644void emit_break(CodeBuffer &cbuf) {
645  MacroAssembler _masm(&cbuf);
646  __ breakpoint_trap();
647}
648
649#ifndef PRODUCT
650void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
651  st->print("TA");
652}
653#endif
654
655void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
656  emit_break(cbuf);
657}
658
659uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
660  return MachNode::size(ra_);
661}
662
663// Traceable jump
664void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
665  MacroAssembler _masm(&cbuf);
666  Register rdest = reg_to_register_object(jump_target);
667  __ JMP(rdest, 0);
668  __ delayed()->nop();
669}
670
671// Traceable jump and set exception pc
672void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
673  MacroAssembler _masm(&cbuf);
674  Register rdest = reg_to_register_object(jump_target);
675  __ JMP(rdest, 0);
676  __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
677}
678
679void emit_nop(CodeBuffer &cbuf) {
680  MacroAssembler _masm(&cbuf);
681  __ nop();
682}
683
684void emit_illtrap(CodeBuffer &cbuf) {
685  MacroAssembler _masm(&cbuf);
686  __ illtrap(0);
687}
688
689
690intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
691  assert(n->rule() != loadUB_rule, "");
692
693  intptr_t offset = 0;
694  const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
695  const Node* addr = n->get_base_and_disp(offset, adr_type);
696  assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
697  assert(addr != NULL && addr != (Node*)-1, "invalid addr");
698  assert(addr->bottom_type()->isa_oopptr() == atype, "");
699  atype = atype->add_offset(offset);
700  assert(disp32 == offset, "wrong disp32");
701  return atype->_offset;
702}
703
704
705intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
706  assert(n->rule() != loadUB_rule, "");
707
708  intptr_t offset = 0;
709  Node* addr = n->in(2);
710  assert(addr->bottom_type()->isa_oopptr() == atype, "");
711  if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
712    Node* a = addr->in(2/*AddPNode::Address*/);
713    Node* o = addr->in(3/*AddPNode::Offset*/);
714    offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
715    atype = a->bottom_type()->is_ptr()->add_offset(offset);
716    assert(atype->isa_oop_ptr(), "still an oop");
717  }
718  offset = atype->is_ptr()->_offset;
719  if (offset != Type::OffsetBot)  offset += disp32;
720  return offset;
721}
722
723static inline jdouble replicate_immI(int con, int count, int width) {
724  // Load a constant replicated "count" times with width "width"
725  assert(count*width == 8 && width <= 4, "sanity");
726  int bit_width = width * 8;
727  jlong val = con;
728  val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
729  for (int i = 0; i < count - 1; i++) {
730    val |= (val << bit_width);
731  }
732  jdouble dval = *((jdouble*) &val);  // coerce to double type
733  return dval;
734}
735
736static inline jdouble replicate_immF(float con) {
737  // Replicate float con 2 times and pack into vector.
738  int val = *((int*)&con);
739  jlong lval = val;
740  lval = (lval << 32) | (lval & 0xFFFFFFFFl);
741  jdouble dval = *((jdouble*) &lval);  // coerce to double type
742  return dval;
743}
744
745// Standard Sparc opcode form2 field breakdown
746static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
747  f0 &= (1<<19)-1;     // Mask displacement to 19 bits
748  int op = (f30 << 30) |
749           (f29 << 29) |
750           (f25 << 25) |
751           (f22 << 22) |
752           (f20 << 20) |
753           (f19 << 19) |
754           (f0  <<  0);
755  cbuf.insts()->emit_int32(op);
756}
757
758// Standard Sparc opcode form2 field breakdown
759static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
760  f0 >>= 10;           // Drop 10 bits
761  f0 &= (1<<22)-1;     // Mask displacement to 22 bits
762  int op = (f30 << 30) |
763           (f25 << 25) |
764           (f22 << 22) |
765           (f0  <<  0);
766  cbuf.insts()->emit_int32(op);
767}
768
769// Standard Sparc opcode form3 field breakdown
770static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
771  int op = (f30 << 30) |
772           (f25 << 25) |
773           (f19 << 19) |
774           (f14 << 14) |
775           (f5  <<  5) |
776           (f0  <<  0);
777  cbuf.insts()->emit_int32(op);
778}
779
780// Standard Sparc opcode form3 field breakdown
781static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
782  simm13 &= (1<<13)-1; // Mask to 13 bits
783  int op = (f30 << 30) |
784           (f25 << 25) |
785           (f19 << 19) |
786           (f14 << 14) |
787           (1   << 13) | // bit to indicate immediate-mode
788           (simm13<<0);
789  cbuf.insts()->emit_int32(op);
790}
791
792static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
793  simm10 &= (1<<10)-1; // Mask to 10 bits
794  emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
795}
796
797#ifdef ASSERT
798// Helper function for VerifyOops in emit_form3_mem_reg
799void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
800  warning("VerifyOops encountered unexpected instruction:");
801  n->dump(2);
802  warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
803}
804#endif
805
806
807void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
808                        int src1_enc, int disp32, int src2_enc, int dst_enc) {
809
810#ifdef ASSERT
811  // The following code implements the +VerifyOops feature.
812  // It verifies oop values which are loaded into or stored out of
813  // the current method activation.  +VerifyOops complements techniques
814  // like ScavengeALot, because it eagerly inspects oops in transit,
815  // as they enter or leave the stack, as opposed to ScavengeALot,
816  // which inspects oops "at rest", in the stack or heap, at safepoints.
817  // For this reason, +VerifyOops can sometimes detect bugs very close
818  // to their point of creation.  It can also serve as a cross-check
819  // on the validity of oop maps, when used toegether with ScavengeALot.
820
821  // It would be good to verify oops at other points, especially
822  // when an oop is used as a base pointer for a load or store.
823  // This is presently difficult, because it is hard to know when
824  // a base address is biased or not.  (If we had such information,
825  // it would be easy and useful to make a two-argument version of
826  // verify_oop which unbiases the base, and performs verification.)
827
828  assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
829  bool is_verified_oop_base  = false;
830  bool is_verified_oop_load  = false;
831  bool is_verified_oop_store = false;
832  int tmp_enc = -1;
833  if (VerifyOops && src1_enc != R_SP_enc) {
834    // classify the op, mainly for an assert check
835    int st_op = 0, ld_op = 0;
836    switch (primary) {
837    case Assembler::stb_op3:  st_op = Op_StoreB; break;
838    case Assembler::sth_op3:  st_op = Op_StoreC; break;
839    case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
840    case Assembler::stw_op3:  st_op = Op_StoreI; break;
841    case Assembler::std_op3:  st_op = Op_StoreL; break;
842    case Assembler::stf_op3:  st_op = Op_StoreF; break;
843    case Assembler::stdf_op3: st_op = Op_StoreD; break;
844
845    case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
846    case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
847    case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
848    case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
849    case Assembler::ldx_op3:  // may become LoadP or stay LoadI
850    case Assembler::ldsw_op3: // may become LoadP or stay LoadI
851    case Assembler::lduw_op3: ld_op = Op_LoadI; break;
852    case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
853    case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
854    case Assembler::lddf_op3: ld_op = Op_LoadD; break;
855    case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
856
857    default: ShouldNotReachHere();
858    }
859    if (tertiary == REGP_OP) {
860      if      (st_op == Op_StoreI)  st_op = Op_StoreP;
861      else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
862      else                          ShouldNotReachHere();
863      if (st_op) {
864        // a store
865        // inputs are (0:control, 1:memory, 2:address, 3:value)
866        Node* n2 = n->in(3);
867        if (n2 != NULL) {
868          const Type* t = n2->bottom_type();
869          is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
870        }
871      } else {
872        // a load
873        const Type* t = n->bottom_type();
874        is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
875      }
876    }
877
878    if (ld_op) {
879      // a Load
880      // inputs are (0:control, 1:memory, 2:address)
881      if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
882          !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
883          !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
884          !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
885          !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
886          !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
887          !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
888          !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
889          !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
890          !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
891          !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
892          !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
893          !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
894          !(n->rule() == loadUB_rule)) {
895        verify_oops_warning(n, n->ideal_Opcode(), ld_op);
896      }
897    } else if (st_op) {
898      // a Store
899      // inputs are (0:control, 1:memory, 2:address, 3:value)
900      if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
901          !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
902          !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
903          !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
904          !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
905          !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
906          !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
907        verify_oops_warning(n, n->ideal_Opcode(), st_op);
908      }
909    }
910
911    if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
912      Node* addr = n->in(2);
913      if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
914        const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
915        if (atype != NULL) {
916          intptr_t offset = get_offset_from_base(n, atype, disp32);
917          intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
918          if (offset != offset_2) {
919            get_offset_from_base(n, atype, disp32);
920            get_offset_from_base_2(n, atype, disp32);
921          }
922          assert(offset == offset_2, "different offsets");
923          if (offset == disp32) {
924            // we now know that src1 is a true oop pointer
925            is_verified_oop_base = true;
926            if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
927              if( primary == Assembler::ldd_op3 ) {
928                is_verified_oop_base = false; // Cannot 'ldd' into O7
929              } else {
930                tmp_enc = dst_enc;
931                dst_enc = R_O7_enc; // Load into O7; preserve source oop
932                assert(src1_enc != dst_enc, "");
933              }
934            }
935          }
936          if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
937                       || offset == oopDesc::mark_offset_in_bytes())) {
938                      // loading the mark should not be allowed either, but
939                      // we don't check this since it conflicts with InlineObjectHash
940                      // usage of LoadINode to get the mark. We could keep the
941                      // check if we create a new LoadMarkNode
942            // but do not verify the object before its header is initialized
943            ShouldNotReachHere();
944          }
945        }
946      }
947    }
948  }
949#endif
950
951  uint instr;
952  instr = (Assembler::ldst_op << 30)
953        | (dst_enc        << 25)
954        | (primary        << 19)
955        | (src1_enc       << 14);
956
957  uint index = src2_enc;
958  int disp = disp32;
959
960  if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
961    disp += STACK_BIAS;
962    // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
963    if (!Assembler::is_simm13(disp)) {
964      ra->C->record_method_not_compilable("unable to handle large constant offsets");
965      return;
966    }
967  }
968
969  // We should have a compiler bailout here rather than a guarantee.
970  // Better yet would be some mechanism to handle variable-size matches correctly.
971  guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
972
973  if( disp == 0 ) {
974    // use reg-reg form
975    // bit 13 is already zero
976    instr |= index;
977  } else {
978    // use reg-imm form
979    instr |= 0x00002000;          // set bit 13 to one
980    instr |= disp & 0x1FFF;
981  }
982
983  cbuf.insts()->emit_int32(instr);
984
985#ifdef ASSERT
986  {
987    MacroAssembler _masm(&cbuf);
988    if (is_verified_oop_base) {
989      __ verify_oop(reg_to_register_object(src1_enc));
990    }
991    if (is_verified_oop_store) {
992      __ verify_oop(reg_to_register_object(dst_enc));
993    }
994    if (tmp_enc != -1) {
995      __ mov(O7, reg_to_register_object(tmp_enc));
996    }
997    if (is_verified_oop_load) {
998      __ verify_oop(reg_to_register_object(dst_enc));
999    }
1000  }
1001#endif
1002}
1003
1004void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1005  // The method which records debug information at every safepoint
1006  // expects the call to be the first instruction in the snippet as
1007  // it creates a PcDesc structure which tracks the offset of a call
1008  // from the start of the codeBlob. This offset is computed as
1009  // code_end() - code_begin() of the code which has been emitted
1010  // so far.
1011  // In this particular case we have skirted around the problem by
1012  // putting the "mov" instruction in the delay slot but the problem
1013  // may bite us again at some other point and a cleaner/generic
1014  // solution using relocations would be needed.
1015  MacroAssembler _masm(&cbuf);
1016  __ set_inst_mark();
1017
1018  // We flush the current window just so that there is a valid stack copy
1019  // the fact that the current window becomes active again instantly is
1020  // not a problem there is nothing live in it.
1021
1022#ifdef ASSERT
1023  int startpos = __ offset();
1024#endif /* ASSERT */
1025
1026  __ call((address)entry_point, rtype);
1027
1028  if (preserve_g2)   __ delayed()->mov(G2, L7);
1029  else __ delayed()->nop();
1030
1031  if (preserve_g2)   __ mov(L7, G2);
1032
1033#ifdef ASSERT
1034  if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035#ifdef _LP64
1036    // Trash argument dump slots.
1037    __ set(0xb0b8ac0db0b8ac0d, G1);
1038    __ mov(G1, G5);
1039    __ stx(G1, SP, STACK_BIAS + 0x80);
1040    __ stx(G1, SP, STACK_BIAS + 0x88);
1041    __ stx(G1, SP, STACK_BIAS + 0x90);
1042    __ stx(G1, SP, STACK_BIAS + 0x98);
1043    __ stx(G1, SP, STACK_BIAS + 0xA0);
1044    __ stx(G1, SP, STACK_BIAS + 0xA8);
1045#else // _LP64
1046    // this is also a native call, so smash the first 7 stack locations,
1047    // and the various registers
1048
1049    // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050    // while [SP+0x44..0x58] are the argument dump slots.
1051    __ set((intptr_t)0xbaadf00d, G1);
1052    __ mov(G1, G5);
1053    __ sllx(G1, 32, G1);
1054    __ or3(G1, G5, G1);
1055    __ mov(G1, G5);
1056    __ stx(G1, SP, 0x40);
1057    __ stx(G1, SP, 0x48);
1058    __ stx(G1, SP, 0x50);
1059    __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060#endif // _LP64
1061  }
1062#endif /*ASSERT*/
1063}
1064
1065//=============================================================================
1066// REQUIRED FUNCTIONALITY for encoding
1067void emit_lo(CodeBuffer &cbuf, int val) {  }
1068void emit_hi(CodeBuffer &cbuf, int val) {  }
1069
1070
1071//=============================================================================
1072const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073
1074int Compile::ConstantTable::calculate_table_base_offset() const {
1075  if (UseRDPCForConstantTableBase) {
1076    // The table base offset might be less but then it fits into
1077    // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078    return Assembler::min_simm13();
1079  } else {
1080    int offset = -(size() / 2);
1081    if (!Assembler::is_simm13(offset)) {
1082      offset = Assembler::min_simm13();
1083    }
1084    return offset;
1085  }
1086}
1087
1088bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090  ShouldNotReachHere();
1091}
1092
1093void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094  Compile* C = ra_->C;
1095  Compile::ConstantTable& constant_table = C->constant_table();
1096  MacroAssembler _masm(&cbuf);
1097
1098  Register r = as_Register(ra_->get_encode(this));
1099  CodeSection* consts_section = __ code()->consts();
1100  int consts_size = consts_section->align_at_start(consts_section->size());
1101  assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1102
1103  if (UseRDPCForConstantTableBase) {
1104    // For the following RDPC logic to work correctly the consts
1105    // section must be allocated right before the insts section.  This
1106    // assert checks for that.  The layout and the SECT_* constants
1107    // are defined in src/share/vm/asm/codeBuffer.hpp.
1108    assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109    int insts_offset = __ offset();
1110
1111    // Layout:
1112    //
1113    // |----------- consts section ------------|----------- insts section -----------...
1114    // |------ constant table -----|- padding -|------------------x----
1115    //                                                            \ current PC (RDPC instruction)
1116    // |<------------- consts_size ----------->|<- insts_offset ->|
1117    //                                                            \ table base
1118    // The table base offset is later added to the load displacement
1119    // so it has to be negative.
1120    int table_base_offset = -(consts_size + insts_offset);
1121    int disp;
1122
1123    // If the displacement from the current PC to the constant table
1124    // base fits into simm13 we set the constant table base to the
1125    // current PC.
1126    if (Assembler::is_simm13(table_base_offset)) {
1127      constant_table.set_table_base_offset(table_base_offset);
1128      disp = 0;
1129    } else {
1130      // Otherwise we set the constant table base offset to the
1131      // maximum negative displacement of load instructions to keep
1132      // the disp as small as possible:
1133      //
1134      // |<------------- consts_size ----------->|<- insts_offset ->|
1135      // |<--------- min_simm13 --------->|<-------- disp --------->|
1136      //                                  \ table base
1137      table_base_offset = Assembler::min_simm13();
1138      constant_table.set_table_base_offset(table_base_offset);
1139      disp = (consts_size + insts_offset) + table_base_offset;
1140    }
1141
1142    __ rdpc(r);
1143
1144    if (disp != 0) {
1145      assert(r != O7, "need temporary");
1146      __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147    }
1148  }
1149  else {
1150    // Materialize the constant table base.
1151    address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152    RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153    AddressLiteral base(baseaddr, rspec);
1154    __ set(base, r);
1155  }
1156}
1157
1158uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159  if (UseRDPCForConstantTableBase) {
1160    // This is really the worst case but generally it's only 1 instruction.
1161    return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162  } else {
1163    return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164  }
1165}
1166
1167#ifndef PRODUCT
1168void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169  char reg[128];
1170  ra_->dump_register(this, reg);
1171  if (UseRDPCForConstantTableBase) {
1172    st->print("RDPC   %s\t! constant table base", reg);
1173  } else {
1174    st->print("SET    &constanttable,%s\t! constant table base", reg);
1175  }
1176}
1177#endif
1178
1179
1180//=============================================================================
1181
1182#ifndef PRODUCT
1183void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184  Compile* C = ra_->C;
1185
1186  for (int i = 0; i < OptoPrologueNops; i++) {
1187    st->print_cr("NOP"); st->print("\t");
1188  }
1189
1190  if( VerifyThread ) {
1191    st->print_cr("Verify_Thread"); st->print("\t");
1192  }
1193
1194  size_t framesize = C->frame_size_in_bytes();
1195  int bangsize = C->bang_size_in_bytes();
1196
1197  // Calls to C2R adapters often do not accept exceptional returns.
1198  // We require that their callers must bang for them.  But be careful, because
1199  // some VM calls (such as call site linkage) can use several kilobytes of
1200  // stack.  But the stack safety zone should account for that.
1201  // See bugs 4446381, 4468289, 4497237.
1202  if (C->need_stack_bang(bangsize)) {
1203    st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204  }
1205
1206  if (Assembler::is_simm13(-framesize)) {
1207    st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208  } else {
1209    st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210    st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211    st->print   ("SAVE   R_SP,R_G3,R_SP");
1212  }
1213
1214}
1215#endif
1216
1217void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218  Compile* C = ra_->C;
1219  MacroAssembler _masm(&cbuf);
1220
1221  for (int i = 0; i < OptoPrologueNops; i++) {
1222    __ nop();
1223  }
1224
1225  __ verify_thread();
1226
1227  size_t framesize = C->frame_size_in_bytes();
1228  assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229  assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230  int bangsize = C->bang_size_in_bytes();
1231
1232  // Calls to C2R adapters often do not accept exceptional returns.
1233  // We require that their callers must bang for them.  But be careful, because
1234  // some VM calls (such as call site linkage) can use several kilobytes of
1235  // stack.  But the stack safety zone should account for that.
1236  // See bugs 4446381, 4468289, 4497237.
1237  if (C->need_stack_bang(bangsize)) {
1238    __ generate_stack_overflow_check(bangsize);
1239  }
1240
1241  if (Assembler::is_simm13(-framesize)) {
1242    __ save(SP, -framesize, SP);
1243  } else {
1244    __ sethi(-framesize & ~0x3ff, G3);
1245    __ add(G3, -framesize & 0x3ff, G3);
1246    __ save(SP, G3, SP);
1247  }
1248  C->set_frame_complete( __ offset() );
1249
1250  if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251    // NOTE: We set the table base offset here because users might be
1252    // emitted before MachConstantBaseNode.
1253    Compile::ConstantTable& constant_table = C->constant_table();
1254    constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255  }
1256}
1257
1258uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259  return MachNode::size(ra_);
1260}
1261
1262int MachPrologNode::reloc() const {
1263  return 10; // a large enough number
1264}
1265
1266//=============================================================================
1267#ifndef PRODUCT
1268void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269  Compile* C = ra_->C;
1270
1271  if(do_polling() && ra_->C->is_method_compilation()) {
1272    st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273#ifdef _LP64
1274    st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275#else
1276    st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277#endif
1278  }
1279
1280  if(do_polling()) {
1281    if (UseCBCond && !ra_->C->is_method_compilation()) {
1282      st->print("NOP\n\t");
1283    }
1284    st->print("RET\n\t");
1285  }
1286
1287  st->print("RESTORE");
1288}
1289#endif
1290
1291void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292  MacroAssembler _masm(&cbuf);
1293  Compile* C = ra_->C;
1294
1295  __ verify_thread();
1296
1297  if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1298    __ reserved_stack_check();
1299  }
1300
1301  // If this does safepoint polling, then do it here
1302  if(do_polling() && ra_->C->is_method_compilation()) {
1303    AddressLiteral polling_page(os::get_polling_page());
1304    __ sethi(polling_page, L0);
1305    __ relocate(relocInfo::poll_return_type);
1306    __ ld_ptr(L0, 0, G0);
1307  }
1308
1309  // If this is a return, then stuff the restore in the delay slot
1310  if(do_polling()) {
1311    if (UseCBCond && !ra_->C->is_method_compilation()) {
1312      // Insert extra padding for the case when the epilogue is preceded by
1313      // a cbcond jump, which can't be followed by a CTI instruction
1314      __ nop();
1315    }
1316    __ ret();
1317    __ delayed()->restore();
1318  } else {
1319    __ restore();
1320  }
1321}
1322
1323uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1324  return MachNode::size(ra_);
1325}
1326
1327int MachEpilogNode::reloc() const {
1328  return 16; // a large enough number
1329}
1330
1331const Pipeline * MachEpilogNode::pipeline() const {
1332  return MachNode::pipeline_class();
1333}
1334
1335int MachEpilogNode::safepoint_offset() const {
1336  assert( do_polling(), "no return for this epilog node");
1337  return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1338}
1339
1340//=============================================================================
1341
1342// Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1343enum RC { rc_bad, rc_int, rc_float, rc_stack };
1344static enum RC rc_class( OptoReg::Name reg ) {
1345  if( !OptoReg::is_valid(reg)  ) return rc_bad;
1346  if (OptoReg::is_stack(reg)) return rc_stack;
1347  VMReg r = OptoReg::as_VMReg(reg);
1348  if (r->is_Register()) return rc_int;
1349  assert(r->is_FloatRegister(), "must be");
1350  return rc_float;
1351}
1352
1353static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1354  if (cbuf) {
1355    emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1356  }
1357#ifndef PRODUCT
1358  else if (!do_size) {
1359    if (size != 0) st->print("\n\t");
1360    if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1361    else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1362  }
1363#endif
1364  return size+4;
1365}
1366
1367static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1368  if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1369#ifndef PRODUCT
1370  else if( !do_size ) {
1371    if( size != 0 ) st->print("\n\t");
1372    st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1373  }
1374#endif
1375  return size+4;
1376}
1377
1378uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1379                                        PhaseRegAlloc *ra_,
1380                                        bool do_size,
1381                                        outputStream* st ) const {
1382  // Get registers to move
1383  OptoReg::Name src_second = ra_->get_reg_second(in(1));
1384  OptoReg::Name src_first = ra_->get_reg_first(in(1));
1385  OptoReg::Name dst_second = ra_->get_reg_second(this );
1386  OptoReg::Name dst_first = ra_->get_reg_first(this );
1387
1388  enum RC src_second_rc = rc_class(src_second);
1389  enum RC src_first_rc = rc_class(src_first);
1390  enum RC dst_second_rc = rc_class(dst_second);
1391  enum RC dst_first_rc = rc_class(dst_first);
1392
1393  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1394
1395  // Generate spill code!
1396  int size = 0;
1397
1398  if( src_first == dst_first && src_second == dst_second )
1399    return size;            // Self copy, no move
1400
1401  // --------------------------------------
1402  // Check for mem-mem move.  Load into unused float registers and fall into
1403  // the float-store case.
1404  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1405    int offset = ra_->reg2offset(src_first);
1406    // Further check for aligned-adjacent pair, so we can use a double load
1407    if( (src_first&1)==0 && src_first+1 == src_second ) {
1408      src_second    = OptoReg::Name(R_F31_num);
1409      src_second_rc = rc_float;
1410      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1411    } else {
1412      size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1413    }
1414    src_first    = OptoReg::Name(R_F30_num);
1415    src_first_rc = rc_float;
1416  }
1417
1418  if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1419    int offset = ra_->reg2offset(src_second);
1420    size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1421    src_second    = OptoReg::Name(R_F31_num);
1422    src_second_rc = rc_float;
1423  }
1424
1425  // --------------------------------------
1426  // Check for float->int copy; requires a trip through memory
1427  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1428    int offset = frame::register_save_words*wordSize;
1429    if (cbuf) {
1430      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1431      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1432      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1433      emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1434    }
1435#ifndef PRODUCT
1436    else if (!do_size) {
1437      if (size != 0) st->print("\n\t");
1438      st->print(  "SUB    R_SP,16,R_SP\n");
1439      impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1440      impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1441      st->print("\tADD    R_SP,16,R_SP\n");
1442    }
1443#endif
1444    size += 16;
1445  }
1446
1447  // Check for float->int copy on T4
1448  if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1449    // Further check for aligned-adjacent pair, so we can use a double move
1450    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1451      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1452    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1453  }
1454  // Check for int->float copy on T4
1455  if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1456    // Further check for aligned-adjacent pair, so we can use a double move
1457    if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1458      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1459    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1460  }
1461
1462  // --------------------------------------
1463  // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1464  // In such cases, I have to do the big-endian swap.  For aligned targets, the
1465  // hardware does the flop for me.  Doubles are always aligned, so no problem
1466  // there.  Misaligned sources only come from native-long-returns (handled
1467  // special below).
1468#ifndef _LP64
1469  if( src_first_rc == rc_int &&     // source is already big-endian
1470      src_second_rc != rc_bad &&    // 64-bit move
1471      ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1472    assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1473    // Do the big-endian flop.
1474    OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1475    enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1476  }
1477#endif
1478
1479  // --------------------------------------
1480  // Check for integer reg-reg copy
1481  if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1482#ifndef _LP64
1483    if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1484      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1485      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1486      //       operand contains the least significant word of the 64-bit value and vice versa.
1487      OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1488      assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1489      // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1490      if( cbuf ) {
1491        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1492        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1493        emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1494#ifndef PRODUCT
1495      } else if( !do_size ) {
1496        if( size != 0 ) st->print("\n\t");
1497        st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1498        st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1499        st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1500#endif
1501      }
1502      return size+12;
1503    }
1504    else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1505      // returning a long value in I0/I1
1506      // a SpillCopy must be able to target a return instruction's reg_class
1507      // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1508      //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1509      //       operand contains the least significant word of the 64-bit value and vice versa.
1510      OptoReg::Name tdest = dst_first;
1511
1512      if (src_first == dst_first) {
1513        tdest = OptoReg::Name(R_O7_num);
1514        size += 4;
1515      }
1516
1517      if( cbuf ) {
1518        assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1519        // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1520        // ShrL_reg_imm6
1521        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1522        // ShrR_reg_imm6  src, 0, dst
1523        emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1524        if (tdest != dst_first) {
1525          emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1526        }
1527      }
1528#ifndef PRODUCT
1529      else if( !do_size ) {
1530        if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1531        st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1532        st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1533        if (tdest != dst_first) {
1534          st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1535        }
1536      }
1537#endif // PRODUCT
1538      return size+8;
1539    }
1540#endif // !_LP64
1541    // Else normal reg-reg copy
1542    assert( src_second != dst_first, "smashed second before evacuating it" );
1543    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1544    assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1545    // This moves an aligned adjacent pair.
1546    // See if we are done.
1547    if( src_first+1 == src_second && dst_first+1 == dst_second )
1548      return size;
1549  }
1550
1551  // Check for integer store
1552  if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1553    int offset = ra_->reg2offset(dst_first);
1554    // Further check for aligned-adjacent pair, so we can use a double store
1555    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1556      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1557    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1558  }
1559
1560  // Check for integer load
1561  if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1562    int offset = ra_->reg2offset(src_first);
1563    // Further check for aligned-adjacent pair, so we can use a double load
1564    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1565      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1566    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1567  }
1568
1569  // Check for float reg-reg copy
1570  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1571    // Further check for aligned-adjacent pair, so we can use a double move
1572    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1573      return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1574    size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1575  }
1576
1577  // Check for float store
1578  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1579    int offset = ra_->reg2offset(dst_first);
1580    // Further check for aligned-adjacent pair, so we can use a double store
1581    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1582      return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1583    size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1584  }
1585
1586  // Check for float load
1587  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1588    int offset = ra_->reg2offset(src_first);
1589    // Further check for aligned-adjacent pair, so we can use a double load
1590    if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1591      return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1592    size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1593  }
1594
1595  // --------------------------------------------------------------------
1596  // Check for hi bits still needing moving.  Only happens for misaligned
1597  // arguments to native calls.
1598  if( src_second == dst_second )
1599    return size;               // Self copy; no move
1600  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1601
1602#ifndef _LP64
1603  // In the LP64 build, all registers can be moved as aligned/adjacent
1604  // pairs, so there's never any need to move the high bits separately.
1605  // The 32-bit builds have to deal with the 32-bit ABI which can force
1606  // all sorts of silly alignment problems.
1607
1608  // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1609  // 32-bits of a 64-bit register, but are needed in low bits of another
1610  // register (else it's a hi-bits-to-hi-bits copy which should have
1611  // happened already as part of a 64-bit move)
1612  if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1613    assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1614    assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1615    // Shift src_second down to dst_second's low bits.
1616    if( cbuf ) {
1617      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1618#ifndef PRODUCT
1619    } else if( !do_size ) {
1620      if( size != 0 ) st->print("\n\t");
1621      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1622#endif
1623    }
1624    return size+4;
1625  }
1626
1627  // Check for high word integer store.  Must down-shift the hi bits
1628  // into a temp register, then fall into the case of storing int bits.
1629  if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1630    // Shift src_second down to dst_second's low bits.
1631    if( cbuf ) {
1632      emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1633#ifndef PRODUCT
1634    } else if( !do_size ) {
1635      if( size != 0 ) st->print("\n\t");
1636      st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1637#endif
1638    }
1639    size+=4;
1640    src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1641  }
1642
1643  // Check for high word integer load
1644  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1645    return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1646
1647  // Check for high word integer store
1648  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1649    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1650
1651  // Check for high word float store
1652  if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1653    return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1654
1655#endif // !_LP64
1656
1657  Unimplemented();
1658  return 0;
1659}
1660
1661#ifndef PRODUCT
1662void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1663  implementation( NULL, ra_, false, st );
1664}
1665#endif
1666
1667void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1668  implementation( &cbuf, ra_, false, NULL );
1669}
1670
1671uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1672  return implementation( NULL, ra_, true, NULL );
1673}
1674
1675//=============================================================================
1676#ifndef PRODUCT
1677void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1678  st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1679}
1680#endif
1681
1682void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1683  MacroAssembler _masm(&cbuf);
1684  for(int i = 0; i < _count; i += 1) {
1685    __ nop();
1686  }
1687}
1688
1689uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1690  return 4 * _count;
1691}
1692
1693
1694//=============================================================================
1695#ifndef PRODUCT
1696void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1697  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1698  int reg = ra_->get_reg_first(this);
1699  st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1700}
1701#endif
1702
1703void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1704  MacroAssembler _masm(&cbuf);
1705  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1706  int reg = ra_->get_encode(this);
1707
1708  if (Assembler::is_simm13(offset)) {
1709     __ add(SP, offset, reg_to_register_object(reg));
1710  } else {
1711     __ set(offset, O7);
1712     __ add(SP, O7, reg_to_register_object(reg));
1713  }
1714}
1715
1716uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1717  // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1718  assert(ra_ == ra_->C->regalloc(), "sanity");
1719  return ra_->C->scratch_emit_size(this);
1720}
1721
1722//=============================================================================
1723#ifndef PRODUCT
1724void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1725  st->print_cr("\nUEP:");
1726#ifdef    _LP64
1727  if (UseCompressedClassPointers) {
1728    assert(Universe::heap() != NULL, "java heap should be initialized");
1729    st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1730    if (Universe::narrow_klass_base() != 0) {
1731      st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1732      if (Universe::narrow_klass_shift() != 0) {
1733        st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1734      }
1735      st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1736      st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1737    } else {
1738      st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1739    }
1740  } else {
1741    st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1742  }
1743  st->print_cr("\tCMP    R_G5,R_G3" );
1744  st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1745#else  // _LP64
1746  st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1747  st->print_cr("\tCMP    R_G5,R_G3" );
1748  st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1749#endif // _LP64
1750}
1751#endif
1752
1753void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1754  MacroAssembler _masm(&cbuf);
1755  Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1756  Register temp_reg   = G3;
1757  assert( G5_ic_reg != temp_reg, "conflicting registers" );
1758
1759  // Load klass from receiver
1760  __ load_klass(O0, temp_reg);
1761  // Compare against expected klass
1762  __ cmp(temp_reg, G5_ic_reg);
1763  // Branch to miss code, checks xcc or icc depending
1764  __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1765}
1766
1767uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1768  return MachNode::size(ra_);
1769}
1770
1771
1772//=============================================================================
1773
1774
1775// Emit exception handler code.
1776int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1777  Register temp_reg = G3;
1778  AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1779  MacroAssembler _masm(&cbuf);
1780
1781  address base = __ start_a_stub(size_exception_handler());
1782  if (base == NULL) {
1783    ciEnv::current()->record_failure("CodeCache is full");
1784    return 0;  // CodeBuffer::expand failed
1785  }
1786
1787  int offset = __ offset();
1788
1789  __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1790  __ delayed()->nop();
1791
1792  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1793
1794  __ end_a_stub();
1795
1796  return offset;
1797}
1798
1799int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1800  // Can't use any of the current frame's registers as we may have deopted
1801  // at a poll and everything (including G3) can be live.
1802  Register temp_reg = L0;
1803  AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1804  MacroAssembler _masm(&cbuf);
1805
1806  address base = __ start_a_stub(size_deopt_handler());
1807  if (base == NULL) {
1808    ciEnv::current()->record_failure("CodeCache is full");
1809    return 0;  // CodeBuffer::expand failed
1810  }
1811
1812  int offset = __ offset();
1813  __ save_frame(0);
1814  __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1815  __ delayed()->restore();
1816
1817  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1818
1819  __ end_a_stub();
1820  return offset;
1821
1822}
1823
1824// Given a register encoding, produce a Integer Register object
1825static Register reg_to_register_object(int register_encoding) {
1826  assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1827  return as_Register(register_encoding);
1828}
1829
1830// Given a register encoding, produce a single-precision Float Register object
1831static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1832  assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1833  return as_SingleFloatRegister(register_encoding);
1834}
1835
1836// Given a register encoding, produce a double-precision Float Register object
1837static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1838  assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1839  assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1840  return as_DoubleFloatRegister(register_encoding);
1841}
1842
1843const bool Matcher::match_rule_supported(int opcode) {
1844  if (!has_match_rule(opcode))
1845    return false;
1846
1847  switch (opcode) {
1848  case Op_CountLeadingZerosI:
1849  case Op_CountLeadingZerosL:
1850  case Op_CountTrailingZerosI:
1851  case Op_CountTrailingZerosL:
1852  case Op_PopCountI:
1853  case Op_PopCountL:
1854    if (!UsePopCountInstruction)
1855      return false;
1856  case Op_CompareAndSwapL:
1857#ifdef _LP64
1858  case Op_CompareAndSwapP:
1859#endif
1860    if (!VM_Version::supports_cx8())
1861      return false;
1862    break;
1863  }
1864
1865  return true;  // Per default match rules are supported.
1866}
1867
1868const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
1869
1870  // TODO
1871  // identify extra cases that we might want to provide match rules for
1872  // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
1873  bool ret_value = match_rule_supported(opcode);
1874  // Add rules here.
1875
1876  return ret_value;  // Per default match rules are supported.
1877}
1878
1879const int Matcher::float_pressure(int default_pressure_threshold) {
1880  return default_pressure_threshold;
1881}
1882
1883int Matcher::regnum_to_fpu_offset(int regnum) {
1884  return regnum - 32; // The FP registers are in the second chunk
1885}
1886
1887#ifdef ASSERT
1888address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1889#endif
1890
1891// Vector width in bytes
1892const int Matcher::vector_width_in_bytes(BasicType bt) {
1893  assert(MaxVectorSize == 8, "");
1894  return 8;
1895}
1896
1897// Vector ideal reg
1898const int Matcher::vector_ideal_reg(int size) {
1899  assert(MaxVectorSize == 8, "");
1900  return Op_RegD;
1901}
1902
1903const int Matcher::vector_shift_count_ideal_reg(int size) {
1904  fatal("vector shift is not supported");
1905  return Node::NotAMachineReg;
1906}
1907
1908// Limits on vector size (number of elements) loaded into vector.
1909const int Matcher::max_vector_size(const BasicType bt) {
1910  assert(is_java_primitive(bt), "only primitive type vectors");
1911  return vector_width_in_bytes(bt)/type2aelembytes(bt);
1912}
1913
1914const int Matcher::min_vector_size(const BasicType bt) {
1915  return max_vector_size(bt); // Same as max.
1916}
1917
1918// SPARC doesn't support misaligned vectors store/load.
1919const bool Matcher::misaligned_vectors_ok() {
1920  return false;
1921}
1922
1923// Current (2013) SPARC platforms need to read original key
1924// to construct decryption expanded key
1925const bool Matcher::pass_original_key_for_aes() {
1926  return true;
1927}
1928
1929// USII supports fxtof through the whole range of number, USIII doesn't
1930const bool Matcher::convL2FSupported(void) {
1931  return VM_Version::has_fast_fxtof();
1932}
1933
1934// Is this branch offset short enough that a short branch can be used?
1935//
1936// NOTE: If the platform does not provide any short branch variants, then
1937//       this method should return false for offset 0.
1938bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1939  // The passed offset is relative to address of the branch.
1940  // Don't need to adjust the offset.
1941  return UseCBCond && Assembler::is_simm12(offset);
1942}
1943
1944const bool Matcher::isSimpleConstant64(jlong value) {
1945  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1946  // Depends on optimizations in MacroAssembler::setx.
1947  int hi = (int)(value >> 32);
1948  int lo = (int)(value & ~0);
1949  return (hi == 0) || (hi == -1) || (lo == 0);
1950}
1951
1952// No scaling for the parameter the ClearArray node.
1953const bool Matcher::init_array_count_is_in_bytes = true;
1954
1955// Threshold size for cleararray.
1956const int Matcher::init_array_short_size = 8 * BytesPerLong;
1957
1958// No additional cost for CMOVL.
1959const int Matcher::long_cmove_cost() { return 0; }
1960
1961// CMOVF/CMOVD are expensive on T4 and on SPARC64.
1962const int Matcher::float_cmove_cost() {
1963  return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1964}
1965
1966// Does the CPU require late expand (see block.cpp for description of late expand)?
1967const bool Matcher::require_postalloc_expand = false;
1968
1969// Should the Matcher clone shifts on addressing modes, expecting them to
1970// be subsumed into complex addressing expressions or compute them into
1971// registers?  True for Intel but false for most RISCs
1972const bool Matcher::clone_shift_expressions = false;
1973
1974// Do we need to mask the count passed to shift instructions or does
1975// the cpu only look at the lower 5/6 bits anyway?
1976const bool Matcher::need_masked_shift_count = false;
1977
1978bool Matcher::narrow_oop_use_complex_address() {
1979  NOT_LP64(ShouldNotCallThis());
1980  assert(UseCompressedOops, "only for compressed oops code");
1981  return false;
1982}
1983
1984bool Matcher::narrow_klass_use_complex_address() {
1985  NOT_LP64(ShouldNotCallThis());
1986  assert(UseCompressedClassPointers, "only for compressed klass code");
1987  return false;
1988}
1989
1990// Is it better to copy float constants, or load them directly from memory?
1991// Intel can load a float constant from a direct address, requiring no
1992// extra registers.  Most RISCs will have to materialize an address into a
1993// register first, so they would do better to copy the constant from stack.
1994const bool Matcher::rematerialize_float_constants = false;
1995
1996// If CPU can load and store mis-aligned doubles directly then no fixup is
1997// needed.  Else we split the double into 2 integer pieces and move it
1998// piece-by-piece.  Only happens when passing doubles into C code as the
1999// Java calling convention forces doubles to be aligned.
2000#ifdef _LP64
2001const bool Matcher::misaligned_doubles_ok = true;
2002#else
2003const bool Matcher::misaligned_doubles_ok = false;
2004#endif
2005
2006// No-op on SPARC.
2007void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2008}
2009
2010// Advertise here if the CPU requires explicit rounding operations
2011// to implement the UseStrictFP mode.
2012const bool Matcher::strict_fp_requires_explicit_rounding = false;
2013
2014// Are floats converted to double when stored to stack during deoptimization?
2015// Sparc does not handle callee-save floats.
2016bool Matcher::float_in_double() { return false; }
2017
2018// Do ints take an entire long register or just half?
2019// Note that we if-def off of _LP64.
2020// The relevant question is how the int is callee-saved.  In _LP64
2021// the whole long is written but de-opt'ing will have to extract
2022// the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2023#ifdef _LP64
2024const bool Matcher::int_in_long = true;
2025#else
2026const bool Matcher::int_in_long = false;
2027#endif
2028
2029// Return whether or not this register is ever used as an argument.  This
2030// function is used on startup to build the trampoline stubs in generateOptoStub.
2031// Registers not mentioned will be killed by the VM call in the trampoline, and
2032// arguments in those registers not be available to the callee.
2033bool Matcher::can_be_java_arg( int reg ) {
2034  // Standard sparc 6 args in registers
2035  if( reg == R_I0_num ||
2036      reg == R_I1_num ||
2037      reg == R_I2_num ||
2038      reg == R_I3_num ||
2039      reg == R_I4_num ||
2040      reg == R_I5_num ) return true;
2041#ifdef _LP64
2042  // 64-bit builds can pass 64-bit pointers and longs in
2043  // the high I registers
2044  if( reg == R_I0H_num ||
2045      reg == R_I1H_num ||
2046      reg == R_I2H_num ||
2047      reg == R_I3H_num ||
2048      reg == R_I4H_num ||
2049      reg == R_I5H_num ) return true;
2050
2051  if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2052    return true;
2053  }
2054
2055#else
2056  // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2057  // Longs cannot be passed in O regs, because O regs become I regs
2058  // after a 'save' and I regs get their high bits chopped off on
2059  // interrupt.
2060  if( reg == R_G1H_num || reg == R_G1_num ) return true;
2061  if( reg == R_G4H_num || reg == R_G4_num ) return true;
2062#endif
2063  // A few float args in registers
2064  if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2065
2066  return false;
2067}
2068
2069bool Matcher::is_spillable_arg( int reg ) {
2070  return can_be_java_arg(reg);
2071}
2072
2073bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2074  // Use hardware SDIVX instruction when it is
2075  // faster than a code which use multiply.
2076  return VM_Version::has_fast_idiv();
2077}
2078
2079// Register for DIVI projection of divmodI
2080RegMask Matcher::divI_proj_mask() {
2081  ShouldNotReachHere();
2082  return RegMask();
2083}
2084
2085// Register for MODI projection of divmodI
2086RegMask Matcher::modI_proj_mask() {
2087  ShouldNotReachHere();
2088  return RegMask();
2089}
2090
2091// Register for DIVL projection of divmodL
2092RegMask Matcher::divL_proj_mask() {
2093  ShouldNotReachHere();
2094  return RegMask();
2095}
2096
2097// Register for MODL projection of divmodL
2098RegMask Matcher::modL_proj_mask() {
2099  ShouldNotReachHere();
2100  return RegMask();
2101}
2102
2103const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2104  return L7_REGP_mask();
2105}
2106
2107%}
2108
2109
2110// The intptr_t operand types, defined by textual substitution.
2111// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2112#ifdef _LP64
2113#define immX      immL
2114#define immX13    immL13
2115#define immX13m7  immL13m7
2116#define iRegX     iRegL
2117#define g1RegX    g1RegL
2118#else
2119#define immX      immI
2120#define immX13    immI13
2121#define immX13m7  immI13m7
2122#define iRegX     iRegI
2123#define g1RegX    g1RegI
2124#endif
2125
2126//----------ENCODING BLOCK-----------------------------------------------------
2127// This block specifies the encoding classes used by the compiler to output
2128// byte streams.  Encoding classes are parameterized macros used by
2129// Machine Instruction Nodes in order to generate the bit encoding of the
2130// instruction.  Operands specify their base encoding interface with the
2131// interface keyword.  There are currently supported four interfaces,
2132// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2133// operand to generate a function which returns its register number when
2134// queried.   CONST_INTER causes an operand to generate a function which
2135// returns the value of the constant when queried.  MEMORY_INTER causes an
2136// operand to generate four functions which return the Base Register, the
2137// Index Register, the Scale Value, and the Offset Value of the operand when
2138// queried.  COND_INTER causes an operand to generate six functions which
2139// return the encoding code (ie - encoding bits for the instruction)
2140// associated with each basic boolean condition for a conditional instruction.
2141//
2142// Instructions specify two basic values for encoding.  Again, a function
2143// is available to check if the constant displacement is an oop. They use the
2144// ins_encode keyword to specify their encoding classes (which must be
2145// a sequence of enc_class names, and their parameters, specified in
2146// the encoding block), and they use the
2147// opcode keyword to specify, in order, their primary, secondary, and
2148// tertiary opcode.  Only the opcode sections which a particular instruction
2149// needs for encoding need to be specified.
2150encode %{
2151  enc_class enc_untested %{
2152#ifdef ASSERT
2153    MacroAssembler _masm(&cbuf);
2154    __ untested("encoding");
2155#endif
2156  %}
2157
2158  enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2159    emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2160                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2161  %}
2162
2163  enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2164    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2165                       $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2166  %}
2167
2168  enc_class form3_mem_prefetch_read( memory mem ) %{
2169    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2170                       $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2171  %}
2172
2173  enc_class form3_mem_prefetch_write( memory mem ) %{
2174    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2175                       $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2176  %}
2177
2178  enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2179    assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2180    assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2181    guarantee($mem$$index == R_G0_enc, "double index?");
2182    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2183    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2184    emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2185    emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2186  %}
2187
2188  enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2189    assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2190    assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2191    guarantee($mem$$index == R_G0_enc, "double index?");
2192    // Load long with 2 instructions
2193    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2194    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2195  %}
2196
2197  //%%% form3_mem_plus_4_reg is a hack--get rid of it
2198  enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2199    guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2200    emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2201  %}
2202
2203  enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2204    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2205    if( $rs2$$reg != $rd$$reg )
2206      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2207  %}
2208
2209  // Target lo half of long
2210  enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2211    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2212    if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2213      emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2214  %}
2215
2216  // Source lo half of long
2217  enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2218    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2219    if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2220      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2221  %}
2222
2223  // Target hi half of long
2224  enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2225    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2226  %}
2227
2228  // Source lo half of long, and leave it sign extended.
2229  enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2230    // Sign extend low half
2231    emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2232  %}
2233
2234  // Source hi half of long, and leave it sign extended.
2235  enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2236    // Shift high half to low half
2237    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2238  %}
2239
2240  // Source hi half of long
2241  enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2242    // Encode a reg-reg copy.  If it is useless, then empty encoding.
2243    if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2244      emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2245  %}
2246
2247  enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2248    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2249  %}
2250
2251  enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2252    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2253    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2254  %}
2255
2256  enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2257    emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2258    // clear if nothing else is happening
2259    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2260    // blt,a,pn done
2261    emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2262    // mov dst,-1 in delay slot
2263    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2264  %}
2265
2266  enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2267    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2268  %}
2269
2270  enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2271    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2272  %}
2273
2274  enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2275    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2276  %}
2277
2278  enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2279    emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2280  %}
2281
2282  enc_class move_return_pc_to_o1() %{
2283    emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2284  %}
2285
2286#ifdef _LP64
2287  /* %%% merge with enc_to_bool */
2288  enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2289    MacroAssembler _masm(&cbuf);
2290
2291    Register   src_reg = reg_to_register_object($src$$reg);
2292    Register   dst_reg = reg_to_register_object($dst$$reg);
2293    __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2294  %}
2295#endif
2296
2297  enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2298    // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2299    MacroAssembler _masm(&cbuf);
2300
2301    Register   p_reg = reg_to_register_object($p$$reg);
2302    Register   q_reg = reg_to_register_object($q$$reg);
2303    Register   y_reg = reg_to_register_object($y$$reg);
2304    Register tmp_reg = reg_to_register_object($tmp$$reg);
2305
2306    __ subcc( p_reg, q_reg,   p_reg );
2307    __ add  ( p_reg, y_reg, tmp_reg );
2308    __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2309  %}
2310
2311  enc_class form_d2i_helper(regD src, regF dst) %{
2312    // fcmp %fcc0,$src,$src
2313    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2314    // branch %fcc0 not-nan, predict taken
2315    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2316    // fdtoi $src,$dst
2317    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2318    // fitos $dst,$dst (if nan)
2319    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2320    // clear $dst (if nan)
2321    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2322    // carry on here...
2323  %}
2324
2325  enc_class form_d2l_helper(regD src, regD dst) %{
2326    // fcmp %fcc0,$src,$src  check for NAN
2327    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2328    // branch %fcc0 not-nan, predict taken
2329    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2330    // fdtox $src,$dst   convert in delay slot
2331    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2332    // fxtod $dst,$dst  (if nan)
2333    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2334    // clear $dst (if nan)
2335    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2336    // carry on here...
2337  %}
2338
2339  enc_class form_f2i_helper(regF src, regF dst) %{
2340    // fcmps %fcc0,$src,$src
2341    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2342    // branch %fcc0 not-nan, predict taken
2343    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2344    // fstoi $src,$dst
2345    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2346    // fitos $dst,$dst (if nan)
2347    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2348    // clear $dst (if nan)
2349    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2350    // carry on here...
2351  %}
2352
2353  enc_class form_f2l_helper(regF src, regD dst) %{
2354    // fcmps %fcc0,$src,$src
2355    emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2356    // branch %fcc0 not-nan, predict taken
2357    emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2358    // fstox $src,$dst
2359    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2360    // fxtod $dst,$dst (if nan)
2361    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2362    // clear $dst (if nan)
2363    emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2364    // carry on here...
2365  %}
2366
2367  enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2368  enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2369  enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2370  enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2371
2372  enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2373
2374  enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2375  enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2376
2377  enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2378    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2379  %}
2380
2381  enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2382    emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2383  %}
2384
2385  enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2386    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2387  %}
2388
2389  enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2390    emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2391  %}
2392
2393  enc_class form3_convI2F(regF rs2, regF rd) %{
2394    emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2395  %}
2396
2397  // Encloding class for traceable jumps
2398  enc_class form_jmpl(g3RegP dest) %{
2399    emit_jmpl(cbuf, $dest$$reg);
2400  %}
2401
2402  enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2403    emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2404  %}
2405
2406  enc_class form2_nop() %{
2407    emit_nop(cbuf);
2408  %}
2409
2410  enc_class form2_illtrap() %{
2411    emit_illtrap(cbuf);
2412  %}
2413
2414
2415  // Compare longs and convert into -1, 0, 1.
2416  enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2417    // CMP $src1,$src2
2418    emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2419    // blt,a,pn done
2420    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2421    // mov dst,-1 in delay slot
2422    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2423    // bgt,a,pn done
2424    emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2425    // mov dst,1 in delay slot
2426    emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2427    // CLR    $dst
2428    emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2429  %}
2430
2431  enc_class enc_PartialSubtypeCheck() %{
2432    MacroAssembler _masm(&cbuf);
2433    __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2434    __ delayed()->nop();
2435  %}
2436
2437  enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2438    MacroAssembler _masm(&cbuf);
2439    Label* L = $labl$$label;
2440    Assembler::Predict predict_taken =
2441      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2442
2443    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2444    __ delayed()->nop();
2445  %}
2446
2447  enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2448    MacroAssembler _masm(&cbuf);
2449    Label* L = $labl$$label;
2450    Assembler::Predict predict_taken =
2451      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2452
2453    __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2454    __ delayed()->nop();
2455  %}
2456
2457  enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2458    int op = (Assembler::arith_op << 30) |
2459             ($dst$$reg << 25) |
2460             (Assembler::movcc_op3 << 19) |
2461             (1 << 18) |                    // cc2 bit for 'icc'
2462             ($cmp$$cmpcode << 14) |
2463             (0 << 13) |                    // select register move
2464             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2465             ($src$$reg << 0);
2466    cbuf.insts()->emit_int32(op);
2467  %}
2468
2469  enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2470    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2471    int op = (Assembler::arith_op << 30) |
2472             ($dst$$reg << 25) |
2473             (Assembler::movcc_op3 << 19) |
2474             (1 << 18) |                    // cc2 bit for 'icc'
2475             ($cmp$$cmpcode << 14) |
2476             (1 << 13) |                    // select immediate move
2477             ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2478             (simm11 << 0);
2479    cbuf.insts()->emit_int32(op);
2480  %}
2481
2482  enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2483    int op = (Assembler::arith_op << 30) |
2484             ($dst$$reg << 25) |
2485             (Assembler::movcc_op3 << 19) |
2486             (0 << 18) |                    // cc2 bit for 'fccX'
2487             ($cmp$$cmpcode << 14) |
2488             (0 << 13) |                    // select register move
2489             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2490             ($src$$reg << 0);
2491    cbuf.insts()->emit_int32(op);
2492  %}
2493
2494  enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2495    int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2496    int op = (Assembler::arith_op << 30) |
2497             ($dst$$reg << 25) |
2498             (Assembler::movcc_op3 << 19) |
2499             (0 << 18) |                    // cc2 bit for 'fccX'
2500             ($cmp$$cmpcode << 14) |
2501             (1 << 13) |                    // select immediate move
2502             ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2503             (simm11 << 0);
2504    cbuf.insts()->emit_int32(op);
2505  %}
2506
2507  enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2508    int op = (Assembler::arith_op << 30) |
2509             ($dst$$reg << 25) |
2510             (Assembler::fpop2_op3 << 19) |
2511             (0 << 18) |
2512             ($cmp$$cmpcode << 14) |
2513             (1 << 13) |                    // select register move
2514             ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2515             ($primary << 5) |              // select single, double or quad
2516             ($src$$reg << 0);
2517    cbuf.insts()->emit_int32(op);
2518  %}
2519
2520  enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2521    int op = (Assembler::arith_op << 30) |
2522             ($dst$$reg << 25) |
2523             (Assembler::fpop2_op3 << 19) |
2524             (0 << 18) |
2525             ($cmp$$cmpcode << 14) |
2526             ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2527             ($primary << 5) |              // select single, double or quad
2528             ($src$$reg << 0);
2529    cbuf.insts()->emit_int32(op);
2530  %}
2531
2532  // Used by the MIN/MAX encodings.  Same as a CMOV, but
2533  // the condition comes from opcode-field instead of an argument.
2534  enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2535    int op = (Assembler::arith_op << 30) |
2536             ($dst$$reg << 25) |
2537             (Assembler::movcc_op3 << 19) |
2538             (1 << 18) |                    // cc2 bit for 'icc'
2539             ($primary << 14) |
2540             (0 << 13) |                    // select register move
2541             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2542             ($src$$reg << 0);
2543    cbuf.insts()->emit_int32(op);
2544  %}
2545
2546  enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2547    int op = (Assembler::arith_op << 30) |
2548             ($dst$$reg << 25) |
2549             (Assembler::movcc_op3 << 19) |
2550             (6 << 16) |                    // cc2 bit for 'xcc'
2551             ($primary << 14) |
2552             (0 << 13) |                    // select register move
2553             (0 << 11) |                    // cc1, cc0 bits for 'icc'
2554             ($src$$reg << 0);
2555    cbuf.insts()->emit_int32(op);
2556  %}
2557
2558  enc_class Set13( immI13 src, iRegI rd ) %{
2559    emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2560  %}
2561
2562  enc_class SetHi22( immI src, iRegI rd ) %{
2563    emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2564  %}
2565
2566  enc_class Set32( immI src, iRegI rd ) %{
2567    MacroAssembler _masm(&cbuf);
2568    __ set($src$$constant, reg_to_register_object($rd$$reg));
2569  %}
2570
2571  enc_class call_epilog %{
2572    if( VerifyStackAtCalls ) {
2573      MacroAssembler _masm(&cbuf);
2574      int framesize = ra_->C->frame_size_in_bytes();
2575      Register temp_reg = G3;
2576      __ add(SP, framesize, temp_reg);
2577      __ cmp(temp_reg, FP);
2578      __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2579    }
2580  %}
2581
2582  // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2583  // to G1 so the register allocator will not have to deal with the misaligned register
2584  // pair.
2585  enc_class adjust_long_from_native_call %{
2586#ifndef _LP64
2587    if (returns_long()) {
2588      //    sllx  O0,32,O0
2589      emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2590      //    srl   O1,0,O1
2591      emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2592      //    or    O0,O1,G1
2593      emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2594    }
2595#endif
2596  %}
2597
2598  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2599    // CALL directly to the runtime
2600    // The user of this is responsible for ensuring that R_L7 is empty (killed).
2601    emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2602                    /*preserve_g2=*/true);
2603  %}
2604
2605  enc_class preserve_SP %{
2606    MacroAssembler _masm(&cbuf);
2607    __ mov(SP, L7_mh_SP_save);
2608  %}
2609
2610  enc_class restore_SP %{
2611    MacroAssembler _masm(&cbuf);
2612    __ mov(L7_mh_SP_save, SP);
2613  %}
2614
2615  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2616    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2617    // who we intended to call.
2618    if (!_method) {
2619      emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2620    } else if (_optimized_virtual) {
2621      emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2622    } else {
2623      emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2624    }
2625    if (_method) {  // Emit stub for static call.
2626      address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2627      // Stub does not fit into scratch buffer if TraceJumps is enabled
2628      if (stub == NULL && !(TraceJumps && Compile::current()->in_scratch_emit_size())) {
2629        ciEnv::current()->record_failure("CodeCache is full");
2630        return;
2631      }
2632    }
2633  %}
2634
2635  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2636    MacroAssembler _masm(&cbuf);
2637    __ set_inst_mark();
2638    int vtable_index = this->_vtable_index;
2639    // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2640    if (vtable_index < 0) {
2641      // must be invalid_vtable_index, not nonvirtual_vtable_index
2642      assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2643      Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2644      assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2645      assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2646      __ ic_call((address)$meth$$method);
2647    } else {
2648      assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2649      // Just go thru the vtable
2650      // get receiver klass (receiver already checked for non-null)
2651      // If we end up going thru a c2i adapter interpreter expects method in G5
2652      int off = __ offset();
2653      __ load_klass(O0, G3_scratch);
2654      int klass_load_size;
2655      if (UseCompressedClassPointers) {
2656        assert(Universe::heap() != NULL, "java heap should be initialized");
2657        klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2658      } else {
2659        klass_load_size = 1*BytesPerInstWord;
2660      }
2661      int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2662      int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2663      if (Assembler::is_simm13(v_off)) {
2664        __ ld_ptr(G3, v_off, G5_method);
2665      } else {
2666        // Generate 2 instructions
2667        __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2668        __ or3(G5_method, v_off & 0x3ff, G5_method);
2669        // ld_ptr, set_hi, set
2670        assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2671               "Unexpected instruction size(s)");
2672        __ ld_ptr(G3, G5_method, G5_method);
2673      }
2674      // NOTE: for vtable dispatches, the vtable entry will never be null.
2675      // However it may very well end up in handle_wrong_method if the
2676      // method is abstract for the particular class.
2677      __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2678      // jump to target (either compiled code or c2iadapter)
2679      __ jmpl(G3_scratch, G0, O7);
2680      __ delayed()->nop();
2681    }
2682  %}
2683
2684  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2685    MacroAssembler _masm(&cbuf);
2686
2687    Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2688    Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2689                              // we might be calling a C2I adapter which needs it.
2690
2691    assert(temp_reg != G5_ic_reg, "conflicting registers");
2692    // Load nmethod
2693    __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2694
2695    // CALL to compiled java, indirect the contents of G3
2696    __ set_inst_mark();
2697    __ callr(temp_reg, G0);
2698    __ delayed()->nop();
2699  %}
2700
2701enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2702    MacroAssembler _masm(&cbuf);
2703    Register Rdividend = reg_to_register_object($src1$$reg);
2704    Register Rdivisor = reg_to_register_object($src2$$reg);
2705    Register Rresult = reg_to_register_object($dst$$reg);
2706
2707    __ sra(Rdivisor, 0, Rdivisor);
2708    __ sra(Rdividend, 0, Rdividend);
2709    __ sdivx(Rdividend, Rdivisor, Rresult);
2710%}
2711
2712enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2713    MacroAssembler _masm(&cbuf);
2714
2715    Register Rdividend = reg_to_register_object($src1$$reg);
2716    int divisor = $imm$$constant;
2717    Register Rresult = reg_to_register_object($dst$$reg);
2718
2719    __ sra(Rdividend, 0, Rdividend);
2720    __ sdivx(Rdividend, divisor, Rresult);
2721%}
2722
2723enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2724    MacroAssembler _masm(&cbuf);
2725    Register Rsrc1 = reg_to_register_object($src1$$reg);
2726    Register Rsrc2 = reg_to_register_object($src2$$reg);
2727    Register Rdst  = reg_to_register_object($dst$$reg);
2728
2729    __ sra( Rsrc1, 0, Rsrc1 );
2730    __ sra( Rsrc2, 0, Rsrc2 );
2731    __ mulx( Rsrc1, Rsrc2, Rdst );
2732    __ srlx( Rdst, 32, Rdst );
2733%}
2734
2735enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2736    MacroAssembler _masm(&cbuf);
2737    Register Rdividend = reg_to_register_object($src1$$reg);
2738    Register Rdivisor = reg_to_register_object($src2$$reg);
2739    Register Rresult = reg_to_register_object($dst$$reg);
2740    Register Rscratch = reg_to_register_object($scratch$$reg);
2741
2742    assert(Rdividend != Rscratch, "");
2743    assert(Rdivisor  != Rscratch, "");
2744
2745    __ sra(Rdividend, 0, Rdividend);
2746    __ sra(Rdivisor, 0, Rdivisor);
2747    __ sdivx(Rdividend, Rdivisor, Rscratch);
2748    __ mulx(Rscratch, Rdivisor, Rscratch);
2749    __ sub(Rdividend, Rscratch, Rresult);
2750%}
2751
2752enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2753    MacroAssembler _masm(&cbuf);
2754
2755    Register Rdividend = reg_to_register_object($src1$$reg);
2756    int divisor = $imm$$constant;
2757    Register Rresult = reg_to_register_object($dst$$reg);
2758    Register Rscratch = reg_to_register_object($scratch$$reg);
2759
2760    assert(Rdividend != Rscratch, "");
2761
2762    __ sra(Rdividend, 0, Rdividend);
2763    __ sdivx(Rdividend, divisor, Rscratch);
2764    __ mulx(Rscratch, divisor, Rscratch);
2765    __ sub(Rdividend, Rscratch, Rresult);
2766%}
2767
2768enc_class fabss (sflt_reg dst, sflt_reg src) %{
2769    MacroAssembler _masm(&cbuf);
2770
2771    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2772    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2773
2774    __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2775%}
2776
2777enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2778    MacroAssembler _masm(&cbuf);
2779
2780    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2781    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2782
2783    __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2784%}
2785
2786enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2787    MacroAssembler _masm(&cbuf);
2788
2789    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2790    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2791
2792    __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2793%}
2794
2795enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2796    MacroAssembler _masm(&cbuf);
2797
2798    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2799    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2800
2801    __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2802%}
2803
2804enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2805    MacroAssembler _masm(&cbuf);
2806
2807    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2808    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2809
2810    __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2811%}
2812
2813enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2814    MacroAssembler _masm(&cbuf);
2815
2816    FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2817    FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2818
2819    __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2820%}
2821
2822enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2823    MacroAssembler _masm(&cbuf);
2824
2825    FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2826    FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2827
2828    __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2829%}
2830
2831enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2832    MacroAssembler _masm(&cbuf);
2833
2834    Register Roop  = reg_to_register_object($oop$$reg);
2835    Register Rbox  = reg_to_register_object($box$$reg);
2836    Register Rscratch = reg_to_register_object($scratch$$reg);
2837    Register Rmark =    reg_to_register_object($scratch2$$reg);
2838
2839    assert(Roop  != Rscratch, "");
2840    assert(Roop  != Rmark, "");
2841    assert(Rbox  != Rscratch, "");
2842    assert(Rbox  != Rmark, "");
2843
2844    __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2845%}
2846
2847enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2848    MacroAssembler _masm(&cbuf);
2849
2850    Register Roop  = reg_to_register_object($oop$$reg);
2851    Register Rbox  = reg_to_register_object($box$$reg);
2852    Register Rscratch = reg_to_register_object($scratch$$reg);
2853    Register Rmark =    reg_to_register_object($scratch2$$reg);
2854
2855    assert(Roop  != Rscratch, "");
2856    assert(Roop  != Rmark, "");
2857    assert(Rbox  != Rscratch, "");
2858    assert(Rbox  != Rmark, "");
2859
2860    __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2861  %}
2862
2863  enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2864    MacroAssembler _masm(&cbuf);
2865    Register Rmem = reg_to_register_object($mem$$reg);
2866    Register Rold = reg_to_register_object($old$$reg);
2867    Register Rnew = reg_to_register_object($new$$reg);
2868
2869    __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2870    __ cmp( Rold, Rnew );
2871  %}
2872
2873  enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2874    Register Rmem = reg_to_register_object($mem$$reg);
2875    Register Rold = reg_to_register_object($old$$reg);
2876    Register Rnew = reg_to_register_object($new$$reg);
2877
2878    MacroAssembler _masm(&cbuf);
2879    __ mov(Rnew, O7);
2880    __ casx(Rmem, Rold, O7);
2881    __ cmp( Rold, O7 );
2882  %}
2883
2884  // raw int cas, used for compareAndSwap
2885  enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2886    Register Rmem = reg_to_register_object($mem$$reg);
2887    Register Rold = reg_to_register_object($old$$reg);
2888    Register Rnew = reg_to_register_object($new$$reg);
2889
2890    MacroAssembler _masm(&cbuf);
2891    __ mov(Rnew, O7);
2892    __ cas(Rmem, Rold, O7);
2893    __ cmp( Rold, O7 );
2894  %}
2895
2896  enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2897    Register Rres = reg_to_register_object($res$$reg);
2898
2899    MacroAssembler _masm(&cbuf);
2900    __ mov(1, Rres);
2901    __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2902  %}
2903
2904  enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2905    Register Rres = reg_to_register_object($res$$reg);
2906
2907    MacroAssembler _masm(&cbuf);
2908    __ mov(1, Rres);
2909    __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2910  %}
2911
2912  enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2913    MacroAssembler _masm(&cbuf);
2914    Register Rdst = reg_to_register_object($dst$$reg);
2915    FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2916                                     : reg_to_DoubleFloatRegister_object($src1$$reg);
2917    FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2918                                     : reg_to_DoubleFloatRegister_object($src2$$reg);
2919
2920    // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2921    __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2922  %}
2923
2924  enc_class enc_rethrow() %{
2925    cbuf.set_insts_mark();
2926    Register temp_reg = G3;
2927    AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2928    assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2929    MacroAssembler _masm(&cbuf);
2930#ifdef ASSERT
2931    __ save_frame(0);
2932    AddressLiteral last_rethrow_addrlit(&last_rethrow);
2933    __ sethi(last_rethrow_addrlit, L1);
2934    Address addr(L1, last_rethrow_addrlit.low10());
2935    __ rdpc(L2);
2936    __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2937    __ st_ptr(L2, addr);
2938    __ restore();
2939#endif
2940    __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2941    __ delayed()->nop();
2942  %}
2943
2944  enc_class emit_mem_nop() %{
2945    // Generates the instruction LDUXA [o6,g0],#0x82,g0
2946    cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2947  %}
2948
2949  enc_class emit_fadd_nop() %{
2950    // Generates the instruction FMOVS f31,f31
2951    cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2952  %}
2953
2954  enc_class emit_br_nop() %{
2955    // Generates the instruction BPN,PN .
2956    cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2957  %}
2958
2959  enc_class enc_membar_acquire %{
2960    MacroAssembler _masm(&cbuf);
2961    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2962  %}
2963
2964  enc_class enc_membar_release %{
2965    MacroAssembler _masm(&cbuf);
2966    __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2967  %}
2968
2969  enc_class enc_membar_volatile %{
2970    MacroAssembler _masm(&cbuf);
2971    __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2972  %}
2973
2974%}
2975
2976//----------FRAME--------------------------------------------------------------
2977// Definition of frame structure and management information.
2978//
2979//  S T A C K   L A Y O U T    Allocators stack-slot number
2980//                             |   (to get allocators register number
2981//  G  Owned by    |        |  v    add VMRegImpl::stack0)
2982//  r   CALLER     |        |
2983//  o     |        +--------+      pad to even-align allocators stack-slot
2984//  w     V        |  pad0  |        numbers; owned by CALLER
2985//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2986//  h     ^        |   in   |  5
2987//        |        |  args  |  4   Holes in incoming args owned by SELF
2988//  |     |        |        |  3
2989//  |     |        +--------+
2990//  V     |        | old out|      Empty on Intel, window on Sparc
2991//        |    old |preserve|      Must be even aligned.
2992//        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
2993//        |        |   in   |  3   area for Intel ret address
2994//     Owned by    |preserve|      Empty on Sparc.
2995//       SELF      +--------+
2996//        |        |  pad2  |  2   pad to align old SP
2997//        |        +--------+  1
2998//        |        | locks  |  0
2999//        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3000//        |        |  pad1  | 11   pad to align new SP
3001//        |        +--------+
3002//        |        |        | 10
3003//        |        | spills |  9   spills
3004//        V        |        |  8   (pad0 slot for callee)
3005//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3006//        ^        |  out   |  7
3007//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3008//     Owned by    +--------+
3009//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3010//        |    new |preserve|      Must be even-aligned.
3011//        |     SP-+--------+----> Matcher::_new_SP, even aligned
3012//        |        |        |
3013//
3014// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3015//         known from SELF's arguments and the Java calling convention.
3016//         Region 6-7 is determined per call site.
3017// Note 2: If the calling convention leaves holes in the incoming argument
3018//         area, those holes are owned by SELF.  Holes in the outgoing area
3019//         are owned by the CALLEE.  Holes should not be nessecary in the
3020//         incoming area, as the Java calling convention is completely under
3021//         the control of the AD file.  Doubles can be sorted and packed to
3022//         avoid holes.  Holes in the outgoing arguments may be necessary for
3023//         varargs C calling conventions.
3024// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3025//         even aligned with pad0 as needed.
3026//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3027//         region 6-11 is even aligned; it may be padded out more so that
3028//         the region from SP to FP meets the minimum stack alignment.
3029
3030frame %{
3031  // What direction does stack grow in (assumed to be same for native & Java)
3032  stack_direction(TOWARDS_LOW);
3033
3034  // These two registers define part of the calling convention
3035  // between compiled code and the interpreter.
3036  inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3037  interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3038
3039  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3040  cisc_spilling_operand_name(indOffset);
3041
3042  // Number of stack slots consumed by a Monitor enter
3043#ifdef _LP64
3044  sync_stack_slots(2);
3045#else
3046  sync_stack_slots(1);
3047#endif
3048
3049  // Compiled code's Frame Pointer
3050  frame_pointer(R_SP);
3051
3052  // Stack alignment requirement
3053  stack_alignment(StackAlignmentInBytes);
3054  //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3055  // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3056
3057  // Number of stack slots between incoming argument block and the start of
3058  // a new frame.  The PROLOG must add this many slots to the stack.  The
3059  // EPILOG must remove this many slots.
3060  in_preserve_stack_slots(0);
3061
3062  // Number of outgoing stack slots killed above the out_preserve_stack_slots
3063  // for calls to C.  Supports the var-args backing area for register parms.
3064  // ADLC doesn't support parsing expressions, so I folded the math by hand.
3065#ifdef _LP64
3066  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3067  varargs_C_out_slots_killed(12);
3068#else
3069  // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3070  varargs_C_out_slots_killed( 7);
3071#endif
3072
3073  // The after-PROLOG location of the return address.  Location of
3074  // return address specifies a type (REG or STACK) and a number
3075  // representing the register number (i.e. - use a register name) or
3076  // stack slot.
3077  return_addr(REG R_I7);          // Ret Addr is in register I7
3078
3079  // Body of function which returns an OptoRegs array locating
3080  // arguments either in registers or in stack slots for calling
3081  // java
3082  calling_convention %{
3083    (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3084
3085  %}
3086
3087  // Body of function which returns an OptoRegs array locating
3088  // arguments either in registers or in stack slots for calling
3089  // C.
3090  c_calling_convention %{
3091    // This is obviously always outgoing
3092    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3093  %}
3094
3095  // Location of native (C/C++) and interpreter return values.  This is specified to
3096  // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3097  // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3098  // to and from the register pairs is done by the appropriate call and epilog
3099  // opcodes.  This simplifies the register allocator.
3100  c_return_value %{
3101    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3102#ifdef     _LP64
3103    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3104    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3105    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3106    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3107#else  // !_LP64
3108    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3109    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3110    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3111    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3112#endif
3113    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3114                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3115  %}
3116
3117  // Location of compiled Java return values.  Same as C
3118  return_value %{
3119    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3120#ifdef     _LP64
3121    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3122    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3123    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3124    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3125#else  // !_LP64
3126    static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3127    static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3128    static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3129    static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3130#endif
3131    return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3132                        (is_outgoing?lo_out:lo_in)[ideal_reg] );
3133  %}
3134
3135%}
3136
3137
3138//----------ATTRIBUTES---------------------------------------------------------
3139//----------Operand Attributes-------------------------------------------------
3140op_attrib op_cost(1);          // Required cost attribute
3141
3142//----------Instruction Attributes---------------------------------------------
3143ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3144ins_attrib ins_size(32);           // Required size attribute (in bits)
3145
3146// avoid_back_to_back attribute is an expression that must return
3147// one of the following values defined in MachNode:
3148// AVOID_NONE   - instruction can be placed anywhere
3149// AVOID_BEFORE - instruction cannot be placed after an
3150//                instruction with MachNode::AVOID_AFTER
3151// AVOID_AFTER  - the next instruction cannot be the one
3152//                with MachNode::AVOID_BEFORE
3153// AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
3154//                          the same time
3155ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3156
3157ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3158                                   // non-matching short branch variant of some
3159                                                            // long branch?
3160
3161//----------OPERANDS-----------------------------------------------------------
3162// Operand definitions must precede instruction definitions for correct parsing
3163// in the ADLC because operands constitute user defined types which are used in
3164// instruction definitions.
3165
3166//----------Simple Operands----------------------------------------------------
3167// Immediate Operands
3168// Integer Immediate: 32-bit
3169operand immI() %{
3170  match(ConI);
3171
3172  op_cost(0);
3173  // formats are generated automatically for constants and base registers
3174  format %{ %}
3175  interface(CONST_INTER);
3176%}
3177
3178// Integer Immediate: 0-bit
3179operand immI0() %{
3180  predicate(n->get_int() == 0);
3181  match(ConI);
3182  op_cost(0);
3183
3184  format %{ %}
3185  interface(CONST_INTER);
3186%}
3187
3188// Integer Immediate: 5-bit
3189operand immI5() %{
3190  predicate(Assembler::is_simm5(n->get_int()));
3191  match(ConI);
3192  op_cost(0);
3193  format %{ %}
3194  interface(CONST_INTER);
3195%}
3196
3197// Integer Immediate: 8-bit
3198operand immI8() %{
3199  predicate(Assembler::is_simm8(n->get_int()));
3200  match(ConI);
3201  op_cost(0);
3202  format %{ %}
3203  interface(CONST_INTER);
3204%}
3205
3206// Integer Immediate: the value 10
3207operand immI10() %{
3208  predicate(n->get_int() == 10);
3209  match(ConI);
3210  op_cost(0);
3211
3212  format %{ %}
3213  interface(CONST_INTER);
3214%}
3215
3216// Integer Immediate: 11-bit
3217operand immI11() %{
3218  predicate(Assembler::is_simm11(n->get_int()));
3219  match(ConI);
3220  op_cost(0);
3221  format %{ %}
3222  interface(CONST_INTER);
3223%}
3224
3225// Integer Immediate: 13-bit
3226operand immI13() %{
3227  predicate(Assembler::is_simm13(n->get_int()));
3228  match(ConI);
3229  op_cost(0);
3230
3231  format %{ %}
3232  interface(CONST_INTER);
3233%}
3234
3235// Integer Immediate: 13-bit minus 7
3236operand immI13m7() %{
3237  predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3238  match(ConI);
3239  op_cost(0);
3240
3241  format %{ %}
3242  interface(CONST_INTER);
3243%}
3244
3245// Integer Immediate: 16-bit
3246operand immI16() %{
3247  predicate(Assembler::is_simm16(n->get_int()));
3248  match(ConI);
3249  op_cost(0);
3250  format %{ %}
3251  interface(CONST_INTER);
3252%}
3253
3254// Integer Immediate: the values 1-31
3255operand immI_1_31() %{
3256  predicate(n->get_int() >= 1 && n->get_int() <= 31);
3257  match(ConI);
3258  op_cost(0);
3259
3260  format %{ %}
3261  interface(CONST_INTER);
3262%}
3263
3264// Integer Immediate: the values 32-63
3265operand immI_32_63() %{
3266  predicate(n->get_int() >= 32 && n->get_int() <= 63);
3267  match(ConI);
3268  op_cost(0);
3269
3270  format %{ %}
3271  interface(CONST_INTER);
3272%}
3273
3274// Immediates for special shifts (sign extend)
3275
3276// Integer Immediate: the value 16
3277operand immI_16() %{
3278  predicate(n->get_int() == 16);
3279  match(ConI);
3280  op_cost(0);
3281
3282  format %{ %}
3283  interface(CONST_INTER);
3284%}
3285
3286// Integer Immediate: the value 24
3287operand immI_24() %{
3288  predicate(n->get_int() == 24);
3289  match(ConI);
3290  op_cost(0);
3291
3292  format %{ %}
3293  interface(CONST_INTER);
3294%}
3295// Integer Immediate: the value 255
3296operand immI_255() %{
3297  predicate( n->get_int() == 255 );
3298  match(ConI);
3299  op_cost(0);
3300
3301  format %{ %}
3302  interface(CONST_INTER);
3303%}
3304
3305// Integer Immediate: the value 65535
3306operand immI_65535() %{
3307  predicate(n->get_int() == 65535);
3308  match(ConI);
3309  op_cost(0);
3310
3311  format %{ %}
3312  interface(CONST_INTER);
3313%}
3314
3315// Integer Immediate: the values 0-31
3316operand immU5() %{
3317  predicate(n->get_int() >= 0 && n->get_int() <= 31);
3318  match(ConI);
3319  op_cost(0);
3320
3321  format %{ %}
3322  interface(CONST_INTER);
3323%}
3324
3325// Integer Immediate: 6-bit
3326operand immU6() %{
3327  predicate(n->get_int() >= 0 && n->get_int() <= 63);
3328  match(ConI);
3329  op_cost(0);
3330  format %{ %}
3331  interface(CONST_INTER);
3332%}
3333
3334// Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3335operand immU12() %{
3336  predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3337  match(ConI);
3338  op_cost(0);
3339
3340  format %{ %}
3341  interface(CONST_INTER);
3342%}
3343
3344// Integer Immediate non-negative
3345operand immU31()
3346%{
3347  predicate(n->get_int() >= 0);
3348  match(ConI);
3349
3350  op_cost(0);
3351  format %{ %}
3352  interface(CONST_INTER);
3353%}
3354
3355// Long Immediate: the value FF
3356operand immL_FF() %{
3357  predicate( n->get_long() == 0xFFL );
3358  match(ConL);
3359  op_cost(0);
3360
3361  format %{ %}
3362  interface(CONST_INTER);
3363%}
3364
3365// Long Immediate: the value FFFF
3366operand immL_FFFF() %{
3367  predicate( n->get_long() == 0xFFFFL );
3368  match(ConL);
3369  op_cost(0);
3370
3371  format %{ %}
3372  interface(CONST_INTER);
3373%}
3374
3375// Pointer Immediate: 32 or 64-bit
3376operand immP() %{
3377  match(ConP);
3378
3379  op_cost(5);
3380  // formats are generated automatically for constants and base registers
3381  format %{ %}
3382  interface(CONST_INTER);
3383%}
3384
3385#ifdef _LP64
3386// Pointer Immediate: 64-bit
3387operand immP_set() %{
3388  predicate(!VM_Version::is_niagara_plus());
3389  match(ConP);
3390
3391  op_cost(5);
3392  // formats are generated automatically for constants and base registers
3393  format %{ %}
3394  interface(CONST_INTER);
3395%}
3396
3397// Pointer Immediate: 64-bit
3398// From Niagara2 processors on a load should be better than materializing.
3399operand immP_load() %{
3400  predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3401  match(ConP);
3402
3403  op_cost(5);
3404  // formats are generated automatically for constants and base registers
3405  format %{ %}
3406  interface(CONST_INTER);
3407%}
3408
3409// Pointer Immediate: 64-bit
3410operand immP_no_oop_cheap() %{
3411  predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3412  match(ConP);
3413
3414  op_cost(5);
3415  // formats are generated automatically for constants and base registers
3416  format %{ %}
3417  interface(CONST_INTER);
3418%}
3419#endif
3420
3421operand immP13() %{
3422  predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3423  match(ConP);
3424  op_cost(0);
3425
3426  format %{ %}
3427  interface(CONST_INTER);
3428%}
3429
3430operand immP0() %{
3431  predicate(n->get_ptr() == 0);
3432  match(ConP);
3433  op_cost(0);
3434
3435  format %{ %}
3436  interface(CONST_INTER);
3437%}
3438
3439operand immP_poll() %{
3440  predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3441  match(ConP);
3442
3443  // formats are generated automatically for constants and base registers
3444  format %{ %}
3445  interface(CONST_INTER);
3446%}
3447
3448// Pointer Immediate
3449operand immN()
3450%{
3451  match(ConN);
3452
3453  op_cost(10);
3454  format %{ %}
3455  interface(CONST_INTER);
3456%}
3457
3458operand immNKlass()
3459%{
3460  match(ConNKlass);
3461
3462  op_cost(10);
3463  format %{ %}
3464  interface(CONST_INTER);
3465%}
3466
3467// NULL Pointer Immediate
3468operand immN0()
3469%{
3470  predicate(n->get_narrowcon() == 0);
3471  match(ConN);
3472
3473  op_cost(0);
3474  format %{ %}
3475  interface(CONST_INTER);
3476%}
3477
3478operand immL() %{
3479  match(ConL);
3480  op_cost(40);
3481  // formats are generated automatically for constants and base registers
3482  format %{ %}
3483  interface(CONST_INTER);
3484%}
3485
3486operand immL0() %{
3487  predicate(n->get_long() == 0L);
3488  match(ConL);
3489  op_cost(0);
3490  // formats are generated automatically for constants and base registers
3491  format %{ %}
3492  interface(CONST_INTER);
3493%}
3494
3495// Integer Immediate: 5-bit
3496operand immL5() %{
3497  predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3498  match(ConL);
3499  op_cost(0);
3500  format %{ %}
3501  interface(CONST_INTER);
3502%}
3503
3504// Long Immediate: 13-bit
3505operand immL13() %{
3506  predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3507  match(ConL);
3508  op_cost(0);
3509
3510  format %{ %}
3511  interface(CONST_INTER);
3512%}
3513
3514// Long Immediate: 13-bit minus 7
3515operand immL13m7() %{
3516  predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3517  match(ConL);
3518  op_cost(0);
3519
3520  format %{ %}
3521  interface(CONST_INTER);
3522%}
3523
3524// Long Immediate: low 32-bit mask
3525operand immL_32bits() %{
3526  predicate(n->get_long() == 0xFFFFFFFFL);
3527  match(ConL);
3528  op_cost(0);
3529
3530  format %{ %}
3531  interface(CONST_INTER);
3532%}
3533
3534// Long Immediate: cheap (materialize in <= 3 instructions)
3535operand immL_cheap() %{
3536  predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3537  match(ConL);
3538  op_cost(0);
3539
3540  format %{ %}
3541  interface(CONST_INTER);
3542%}
3543
3544// Long Immediate: expensive (materialize in > 3 instructions)
3545operand immL_expensive() %{
3546  predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3547  match(ConL);
3548  op_cost(0);
3549
3550  format %{ %}
3551  interface(CONST_INTER);
3552%}
3553
3554// Double Immediate
3555operand immD() %{
3556  match(ConD);
3557
3558  op_cost(40);
3559  format %{ %}
3560  interface(CONST_INTER);
3561%}
3562
3563// Double Immediate: +0.0d
3564operand immD0() %{
3565  predicate(jlong_cast(n->getd()) == 0);
3566  match(ConD);
3567
3568  op_cost(0);
3569  format %{ %}
3570  interface(CONST_INTER);
3571%}
3572
3573// Float Immediate
3574operand immF() %{
3575  match(ConF);
3576
3577  op_cost(20);
3578  format %{ %}
3579  interface(CONST_INTER);
3580%}
3581
3582// Float Immediate: +0.0f
3583operand immF0() %{
3584  predicate(jint_cast(n->getf()) == 0);
3585  match(ConF);
3586
3587  op_cost(0);
3588  format %{ %}
3589  interface(CONST_INTER);
3590%}
3591
3592// Integer Register Operands
3593// Integer Register
3594operand iRegI() %{
3595  constraint(ALLOC_IN_RC(int_reg));
3596  match(RegI);
3597
3598  match(notemp_iRegI);
3599  match(g1RegI);
3600  match(o0RegI);
3601  match(iRegIsafe);
3602
3603  format %{ %}
3604  interface(REG_INTER);
3605%}
3606
3607operand notemp_iRegI() %{
3608  constraint(ALLOC_IN_RC(notemp_int_reg));
3609  match(RegI);
3610
3611  match(o0RegI);
3612
3613  format %{ %}
3614  interface(REG_INTER);
3615%}
3616
3617operand o0RegI() %{
3618  constraint(ALLOC_IN_RC(o0_regI));
3619  match(iRegI);
3620
3621  format %{ %}
3622  interface(REG_INTER);
3623%}
3624
3625// Pointer Register
3626operand iRegP() %{
3627  constraint(ALLOC_IN_RC(ptr_reg));
3628  match(RegP);
3629
3630  match(lock_ptr_RegP);
3631  match(g1RegP);
3632  match(g2RegP);
3633  match(g3RegP);
3634  match(g4RegP);
3635  match(i0RegP);
3636  match(o0RegP);
3637  match(o1RegP);
3638  match(l7RegP);
3639
3640  format %{ %}
3641  interface(REG_INTER);
3642%}
3643
3644operand sp_ptr_RegP() %{
3645  constraint(ALLOC_IN_RC(sp_ptr_reg));
3646  match(RegP);
3647  match(iRegP);
3648
3649  format %{ %}
3650  interface(REG_INTER);
3651%}
3652
3653operand lock_ptr_RegP() %{
3654  constraint(ALLOC_IN_RC(lock_ptr_reg));
3655  match(RegP);
3656  match(i0RegP);
3657  match(o0RegP);
3658  match(o1RegP);
3659  match(l7RegP);
3660
3661  format %{ %}
3662  interface(REG_INTER);
3663%}
3664
3665operand g1RegP() %{
3666  constraint(ALLOC_IN_RC(g1_regP));
3667  match(iRegP);
3668
3669  format %{ %}
3670  interface(REG_INTER);
3671%}
3672
3673operand g2RegP() %{
3674  constraint(ALLOC_IN_RC(g2_regP));
3675  match(iRegP);
3676
3677  format %{ %}
3678  interface(REG_INTER);
3679%}
3680
3681operand g3RegP() %{
3682  constraint(ALLOC_IN_RC(g3_regP));
3683  match(iRegP);
3684
3685  format %{ %}
3686  interface(REG_INTER);
3687%}
3688
3689operand g1RegI() %{
3690  constraint(ALLOC_IN_RC(g1_regI));
3691  match(iRegI);
3692
3693  format %{ %}
3694  interface(REG_INTER);
3695%}
3696
3697operand g3RegI() %{
3698  constraint(ALLOC_IN_RC(g3_regI));
3699  match(iRegI);
3700
3701  format %{ %}
3702  interface(REG_INTER);
3703%}
3704
3705operand g4RegI() %{
3706  constraint(ALLOC_IN_RC(g4_regI));
3707  match(iRegI);
3708
3709  format %{ %}
3710  interface(REG_INTER);
3711%}
3712
3713operand g4RegP() %{
3714  constraint(ALLOC_IN_RC(g4_regP));
3715  match(iRegP);
3716
3717  format %{ %}
3718  interface(REG_INTER);
3719%}
3720
3721operand i0RegP() %{
3722  constraint(ALLOC_IN_RC(i0_regP));
3723  match(iRegP);
3724
3725  format %{ %}
3726  interface(REG_INTER);
3727%}
3728
3729operand o0RegP() %{
3730  constraint(ALLOC_IN_RC(o0_regP));
3731  match(iRegP);
3732
3733  format %{ %}
3734  interface(REG_INTER);
3735%}
3736
3737operand o1RegP() %{
3738  constraint(ALLOC_IN_RC(o1_regP));
3739  match(iRegP);
3740
3741  format %{ %}
3742  interface(REG_INTER);
3743%}
3744
3745operand o2RegP() %{
3746  constraint(ALLOC_IN_RC(o2_regP));
3747  match(iRegP);
3748
3749  format %{ %}
3750  interface(REG_INTER);
3751%}
3752
3753operand o7RegP() %{
3754  constraint(ALLOC_IN_RC(o7_regP));
3755  match(iRegP);
3756
3757  format %{ %}
3758  interface(REG_INTER);
3759%}
3760
3761operand l7RegP() %{
3762  constraint(ALLOC_IN_RC(l7_regP));
3763  match(iRegP);
3764
3765  format %{ %}
3766  interface(REG_INTER);
3767%}
3768
3769operand o7RegI() %{
3770  constraint(ALLOC_IN_RC(o7_regI));
3771  match(iRegI);
3772
3773  format %{ %}
3774  interface(REG_INTER);
3775%}
3776
3777operand iRegN() %{
3778  constraint(ALLOC_IN_RC(int_reg));
3779  match(RegN);
3780
3781  format %{ %}
3782  interface(REG_INTER);
3783%}
3784
3785// Long Register
3786operand iRegL() %{
3787  constraint(ALLOC_IN_RC(long_reg));
3788  match(RegL);
3789
3790  format %{ %}
3791  interface(REG_INTER);
3792%}
3793
3794operand o2RegL() %{
3795  constraint(ALLOC_IN_RC(o2_regL));
3796  match(iRegL);
3797
3798  format %{ %}
3799  interface(REG_INTER);
3800%}
3801
3802operand o7RegL() %{
3803  constraint(ALLOC_IN_RC(o7_regL));
3804  match(iRegL);
3805
3806  format %{ %}
3807  interface(REG_INTER);
3808%}
3809
3810operand g1RegL() %{
3811  constraint(ALLOC_IN_RC(g1_regL));
3812  match(iRegL);
3813
3814  format %{ %}
3815  interface(REG_INTER);
3816%}
3817
3818operand g3RegL() %{
3819  constraint(ALLOC_IN_RC(g3_regL));
3820  match(iRegL);
3821
3822  format %{ %}
3823  interface(REG_INTER);
3824%}
3825
3826// Int Register safe
3827// This is 64bit safe
3828operand iRegIsafe() %{
3829  constraint(ALLOC_IN_RC(long_reg));
3830
3831  match(iRegI);
3832
3833  format %{ %}
3834  interface(REG_INTER);
3835%}
3836
3837// Condition Code Flag Register
3838operand flagsReg() %{
3839  constraint(ALLOC_IN_RC(int_flags));
3840  match(RegFlags);
3841
3842  format %{ "ccr" %} // both ICC and XCC
3843  interface(REG_INTER);
3844%}
3845
3846// Condition Code Register, unsigned comparisons.
3847operand flagsRegU() %{
3848  constraint(ALLOC_IN_RC(int_flags));
3849  match(RegFlags);
3850
3851  format %{ "icc_U" %}
3852  interface(REG_INTER);
3853%}
3854
3855// Condition Code Register, pointer comparisons.
3856operand flagsRegP() %{
3857  constraint(ALLOC_IN_RC(int_flags));
3858  match(RegFlags);
3859
3860#ifdef _LP64
3861  format %{ "xcc_P" %}
3862#else
3863  format %{ "icc_P" %}
3864#endif
3865  interface(REG_INTER);
3866%}
3867
3868// Condition Code Register, long comparisons.
3869operand flagsRegL() %{
3870  constraint(ALLOC_IN_RC(int_flags));
3871  match(RegFlags);
3872
3873  format %{ "xcc_L" %}
3874  interface(REG_INTER);
3875%}
3876
3877// Condition Code Register, floating comparisons, unordered same as "less".
3878operand flagsRegF() %{
3879  constraint(ALLOC_IN_RC(float_flags));
3880  match(RegFlags);
3881  match(flagsRegF0);
3882
3883  format %{ %}
3884  interface(REG_INTER);
3885%}
3886
3887operand flagsRegF0() %{
3888  constraint(ALLOC_IN_RC(float_flag0));
3889  match(RegFlags);
3890
3891  format %{ %}
3892  interface(REG_INTER);
3893%}
3894
3895
3896// Condition Code Flag Register used by long compare
3897operand flagsReg_long_LTGE() %{
3898  constraint(ALLOC_IN_RC(int_flags));
3899  match(RegFlags);
3900  format %{ "icc_LTGE" %}
3901  interface(REG_INTER);
3902%}
3903operand flagsReg_long_EQNE() %{
3904  constraint(ALLOC_IN_RC(int_flags));
3905  match(RegFlags);
3906  format %{ "icc_EQNE" %}
3907  interface(REG_INTER);
3908%}
3909operand flagsReg_long_LEGT() %{
3910  constraint(ALLOC_IN_RC(int_flags));
3911  match(RegFlags);
3912  format %{ "icc_LEGT" %}
3913  interface(REG_INTER);
3914%}
3915
3916
3917operand regD() %{
3918  constraint(ALLOC_IN_RC(dflt_reg));
3919  match(RegD);
3920
3921  match(regD_low);
3922
3923  format %{ %}
3924  interface(REG_INTER);
3925%}
3926
3927operand regF() %{
3928  constraint(ALLOC_IN_RC(sflt_reg));
3929  match(RegF);
3930
3931  format %{ %}
3932  interface(REG_INTER);
3933%}
3934
3935operand regD_low() %{
3936  constraint(ALLOC_IN_RC(dflt_low_reg));
3937  match(regD);
3938
3939  format %{ %}
3940  interface(REG_INTER);
3941%}
3942
3943// Special Registers
3944
3945// Method Register
3946operand inline_cache_regP(iRegP reg) %{
3947  constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3948  match(reg);
3949  format %{ %}
3950  interface(REG_INTER);
3951%}
3952
3953operand interpreter_method_oop_regP(iRegP reg) %{
3954  constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3955  match(reg);
3956  format %{ %}
3957  interface(REG_INTER);
3958%}
3959
3960
3961//----------Complex Operands---------------------------------------------------
3962// Indirect Memory Reference
3963operand indirect(sp_ptr_RegP reg) %{
3964  constraint(ALLOC_IN_RC(sp_ptr_reg));
3965  match(reg);
3966
3967  op_cost(100);
3968  format %{ "[$reg]" %}
3969  interface(MEMORY_INTER) %{
3970    base($reg);
3971    index(0x0);
3972    scale(0x0);
3973    disp(0x0);
3974  %}
3975%}
3976
3977// Indirect with simm13 Offset
3978operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3979  constraint(ALLOC_IN_RC(sp_ptr_reg));
3980  match(AddP reg offset);
3981
3982  op_cost(100);
3983  format %{ "[$reg + $offset]" %}
3984  interface(MEMORY_INTER) %{
3985    base($reg);
3986    index(0x0);
3987    scale(0x0);
3988    disp($offset);
3989  %}
3990%}
3991
3992// Indirect with simm13 Offset minus 7
3993operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
3994  constraint(ALLOC_IN_RC(sp_ptr_reg));
3995  match(AddP reg offset);
3996
3997  op_cost(100);
3998  format %{ "[$reg + $offset]" %}
3999  interface(MEMORY_INTER) %{
4000    base($reg);
4001    index(0x0);
4002    scale(0x0);
4003    disp($offset);
4004  %}
4005%}
4006
4007// Note:  Intel has a swapped version also, like this:
4008//operand indOffsetX(iRegI reg, immP offset) %{
4009//  constraint(ALLOC_IN_RC(int_reg));
4010//  match(AddP offset reg);
4011//
4012//  op_cost(100);
4013//  format %{ "[$reg + $offset]" %}
4014//  interface(MEMORY_INTER) %{
4015//    base($reg);
4016//    index(0x0);
4017//    scale(0x0);
4018//    disp($offset);
4019//  %}
4020//%}
4021//// However, it doesn't make sense for SPARC, since
4022// we have no particularly good way to embed oops in
4023// single instructions.
4024
4025// Indirect with Register Index
4026operand indIndex(iRegP addr, iRegX index) %{
4027  constraint(ALLOC_IN_RC(ptr_reg));
4028  match(AddP addr index);
4029
4030  op_cost(100);
4031  format %{ "[$addr + $index]" %}
4032  interface(MEMORY_INTER) %{
4033    base($addr);
4034    index($index);
4035    scale(0x0);
4036    disp(0x0);
4037  %}
4038%}
4039
4040//----------Special Memory Operands--------------------------------------------
4041// Stack Slot Operand - This operand is used for loading and storing temporary
4042//                      values on the stack where a match requires a value to
4043//                      flow through memory.
4044operand stackSlotI(sRegI reg) %{
4045  constraint(ALLOC_IN_RC(stack_slots));
4046  op_cost(100);
4047  //match(RegI);
4048  format %{ "[$reg]" %}
4049  interface(MEMORY_INTER) %{
4050    base(0xE);   // R_SP
4051    index(0x0);
4052    scale(0x0);
4053    disp($reg);  // Stack Offset
4054  %}
4055%}
4056
4057operand stackSlotP(sRegP reg) %{
4058  constraint(ALLOC_IN_RC(stack_slots));
4059  op_cost(100);
4060  //match(RegP);
4061  format %{ "[$reg]" %}
4062  interface(MEMORY_INTER) %{
4063    base(0xE);   // R_SP
4064    index(0x0);
4065    scale(0x0);
4066    disp($reg);  // Stack Offset
4067  %}
4068%}
4069
4070operand stackSlotF(sRegF reg) %{
4071  constraint(ALLOC_IN_RC(stack_slots));
4072  op_cost(100);
4073  //match(RegF);
4074  format %{ "[$reg]" %}
4075  interface(MEMORY_INTER) %{
4076    base(0xE);   // R_SP
4077    index(0x0);
4078    scale(0x0);
4079    disp($reg);  // Stack Offset
4080  %}
4081%}
4082operand stackSlotD(sRegD reg) %{
4083  constraint(ALLOC_IN_RC(stack_slots));
4084  op_cost(100);
4085  //match(RegD);
4086  format %{ "[$reg]" %}
4087  interface(MEMORY_INTER) %{
4088    base(0xE);   // R_SP
4089    index(0x0);
4090    scale(0x0);
4091    disp($reg);  // Stack Offset
4092  %}
4093%}
4094operand stackSlotL(sRegL reg) %{
4095  constraint(ALLOC_IN_RC(stack_slots));
4096  op_cost(100);
4097  //match(RegL);
4098  format %{ "[$reg]" %}
4099  interface(MEMORY_INTER) %{
4100    base(0xE);   // R_SP
4101    index(0x0);
4102    scale(0x0);
4103    disp($reg);  // Stack Offset
4104  %}
4105%}
4106
4107// Operands for expressing Control Flow
4108// NOTE:  Label is a predefined operand which should not be redefined in
4109//        the AD file.  It is generically handled within the ADLC.
4110
4111//----------Conditional Branch Operands----------------------------------------
4112// Comparison Op  - This is the operation of the comparison, and is limited to
4113//                  the following set of codes:
4114//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4115//
4116// Other attributes of the comparison, such as unsignedness, are specified
4117// by the comparison instruction that sets a condition code flags register.
4118// That result is represented by a flags operand whose subtype is appropriate
4119// to the unsignedness (etc.) of the comparison.
4120//
4121// Later, the instruction which matches both the Comparison Op (a Bool) and
4122// the flags (produced by the Cmp) specifies the coding of the comparison op
4123// by matching a specific subtype of Bool operand below, such as cmpOpU.
4124
4125operand cmpOp() %{
4126  match(Bool);
4127
4128  format %{ "" %}
4129  interface(COND_INTER) %{
4130    equal(0x1);
4131    not_equal(0x9);
4132    less(0x3);
4133    greater_equal(0xB);
4134    less_equal(0x2);
4135    greater(0xA);
4136    overflow(0x7);
4137    no_overflow(0xF);
4138  %}
4139%}
4140
4141// Comparison Op, unsigned
4142operand cmpOpU() %{
4143  match(Bool);
4144  predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4145            n->as_Bool()->_test._test != BoolTest::no_overflow);
4146
4147  format %{ "u" %}
4148  interface(COND_INTER) %{
4149    equal(0x1);
4150    not_equal(0x9);
4151    less(0x5);
4152    greater_equal(0xD);
4153    less_equal(0x4);
4154    greater(0xC);
4155    overflow(0x7);
4156    no_overflow(0xF);
4157  %}
4158%}
4159
4160// Comparison Op, pointer (same as unsigned)
4161operand cmpOpP() %{
4162  match(Bool);
4163  predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4164            n->as_Bool()->_test._test != BoolTest::no_overflow);
4165
4166  format %{ "p" %}
4167  interface(COND_INTER) %{
4168    equal(0x1);
4169    not_equal(0x9);
4170    less(0x5);
4171    greater_equal(0xD);
4172    less_equal(0x4);
4173    greater(0xC);
4174    overflow(0x7);
4175    no_overflow(0xF);
4176  %}
4177%}
4178
4179// Comparison Op, branch-register encoding
4180operand cmpOp_reg() %{
4181  match(Bool);
4182  predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4183            n->as_Bool()->_test._test != BoolTest::no_overflow);
4184
4185  format %{ "" %}
4186  interface(COND_INTER) %{
4187    equal        (0x1);
4188    not_equal    (0x5);
4189    less         (0x3);
4190    greater_equal(0x7);
4191    less_equal   (0x2);
4192    greater      (0x6);
4193    overflow(0x7); // not supported
4194    no_overflow(0xF); // not supported
4195  %}
4196%}
4197
4198// Comparison Code, floating, unordered same as less
4199operand cmpOpF() %{
4200  match(Bool);
4201  predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4202            n->as_Bool()->_test._test != BoolTest::no_overflow);
4203
4204  format %{ "fl" %}
4205  interface(COND_INTER) %{
4206    equal(0x9);
4207    not_equal(0x1);
4208    less(0x3);
4209    greater_equal(0xB);
4210    less_equal(0xE);
4211    greater(0x6);
4212
4213    overflow(0x7); // not supported
4214    no_overflow(0xF); // not supported
4215  %}
4216%}
4217
4218// Used by long compare
4219operand cmpOp_commute() %{
4220  match(Bool);
4221  predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4222            n->as_Bool()->_test._test != BoolTest::no_overflow);
4223
4224  format %{ "" %}
4225  interface(COND_INTER) %{
4226    equal(0x1);
4227    not_equal(0x9);
4228    less(0xA);
4229    greater_equal(0x2);
4230    less_equal(0xB);
4231    greater(0x3);
4232    overflow(0x7);
4233    no_overflow(0xF);
4234  %}
4235%}
4236
4237//----------OPERAND CLASSES----------------------------------------------------
4238// Operand Classes are groups of operands that are used to simplify
4239// instruction definitions by not requiring the AD writer to specify separate
4240// instructions for every form of operand when the instruction accepts
4241// multiple operand types with the same basic encoding and format.  The classic
4242// case of this is memory operands.
4243opclass memory( indirect, indOffset13, indIndex );
4244opclass indIndexMemory( indIndex );
4245
4246//----------PIPELINE-----------------------------------------------------------
4247pipeline %{
4248
4249//----------ATTRIBUTES---------------------------------------------------------
4250attributes %{
4251  fixed_size_instructions;           // Fixed size instructions
4252  branch_has_delay_slot;             // Branch has delay slot following
4253  max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4254  instruction_unit_size = 4;         // An instruction is 4 bytes long
4255  instruction_fetch_unit_size = 16;  // The processor fetches one line
4256  instruction_fetch_units = 1;       // of 16 bytes
4257
4258  // List of nop instructions
4259  nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4260%}
4261
4262//----------RESOURCES----------------------------------------------------------
4263// Resources are the functional units available to the machine
4264resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4265
4266//----------PIPELINE DESCRIPTION-----------------------------------------------
4267// Pipeline Description specifies the stages in the machine's pipeline
4268
4269pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4270
4271//----------PIPELINE CLASSES---------------------------------------------------
4272// Pipeline Classes describe the stages in which input and output are
4273// referenced by the hardware pipeline.
4274
4275// Integer ALU reg-reg operation
4276pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4277    single_instruction;
4278    dst   : E(write);
4279    src1  : R(read);
4280    src2  : R(read);
4281    IALU  : R;
4282%}
4283
4284// Integer ALU reg-reg long operation
4285pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4286    instruction_count(2);
4287    dst   : E(write);
4288    src1  : R(read);
4289    src2  : R(read);
4290    IALU  : R;
4291    IALU  : R;
4292%}
4293
4294// Integer ALU reg-reg long dependent operation
4295pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4296    instruction_count(1); multiple_bundles;
4297    dst   : E(write);
4298    src1  : R(read);
4299    src2  : R(read);
4300    cr    : E(write);
4301    IALU  : R(2);
4302%}
4303
4304// Integer ALU reg-imm operaion
4305pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4306    single_instruction;
4307    dst   : E(write);
4308    src1  : R(read);
4309    IALU  : R;
4310%}
4311
4312// Integer ALU reg-reg operation with condition code
4313pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4314    single_instruction;
4315    dst   : E(write);
4316    cr    : E(write);
4317    src1  : R(read);
4318    src2  : R(read);
4319    IALU  : R;
4320%}
4321
4322// Integer ALU reg-imm operation with condition code
4323pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4324    single_instruction;
4325    dst   : E(write);
4326    cr    : E(write);
4327    src1  : R(read);
4328    IALU  : R;
4329%}
4330
4331// Integer ALU zero-reg operation
4332pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4333    single_instruction;
4334    dst   : E(write);
4335    src2  : R(read);
4336    IALU  : R;
4337%}
4338
4339// Integer ALU zero-reg operation with condition code only
4340pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4341    single_instruction;
4342    cr    : E(write);
4343    src   : R(read);
4344    IALU  : R;
4345%}
4346
4347// Integer ALU reg-reg operation with condition code only
4348pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4349    single_instruction;
4350    cr    : E(write);
4351    src1  : R(read);
4352    src2  : R(read);
4353    IALU  : R;
4354%}
4355
4356// Integer ALU reg-imm operation with condition code only
4357pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4358    single_instruction;
4359    cr    : E(write);
4360    src1  : R(read);
4361    IALU  : R;
4362%}
4363
4364// Integer ALU reg-reg-zero operation with condition code only
4365pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4366    single_instruction;
4367    cr    : E(write);
4368    src1  : R(read);
4369    src2  : R(read);
4370    IALU  : R;
4371%}
4372
4373// Integer ALU reg-imm-zero operation with condition code only
4374pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4375    single_instruction;
4376    cr    : E(write);
4377    src1  : R(read);
4378    IALU  : R;
4379%}
4380
4381// Integer ALU reg-reg operation with condition code, src1 modified
4382pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4383    single_instruction;
4384    cr    : E(write);
4385    src1  : E(write);
4386    src1  : R(read);
4387    src2  : R(read);
4388    IALU  : R;
4389%}
4390
4391// Integer ALU reg-imm operation with condition code, src1 modified
4392pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4393    single_instruction;
4394    cr    : E(write);
4395    src1  : E(write);
4396    src1  : R(read);
4397    IALU  : R;
4398%}
4399
4400pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4401    multiple_bundles;
4402    dst   : E(write)+4;
4403    cr    : E(write);
4404    src1  : R(read);
4405    src2  : R(read);
4406    IALU  : R(3);
4407    BR    : R(2);
4408%}
4409
4410// Integer ALU operation
4411pipe_class ialu_none(iRegI dst) %{
4412    single_instruction;
4413    dst   : E(write);
4414    IALU  : R;
4415%}
4416
4417// Integer ALU reg operation
4418pipe_class ialu_reg(iRegI dst, iRegI src) %{
4419    single_instruction; may_have_no_code;
4420    dst   : E(write);
4421    src   : R(read);
4422    IALU  : R;
4423%}
4424
4425// Integer ALU reg conditional operation
4426// This instruction has a 1 cycle stall, and cannot execute
4427// in the same cycle as the instruction setting the condition
4428// code. We kludge this by pretending to read the condition code
4429// 1 cycle earlier, and by marking the functional units as busy
4430// for 2 cycles with the result available 1 cycle later than
4431// is really the case.
4432pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4433    single_instruction;
4434    op2_out : C(write);
4435    op1     : R(read);
4436    cr      : R(read);       // This is really E, with a 1 cycle stall
4437    BR      : R(2);
4438    MS      : R(2);
4439%}
4440
4441#ifdef _LP64
4442pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4443    instruction_count(1); multiple_bundles;
4444    dst     : C(write)+1;
4445    src     : R(read)+1;
4446    IALU    : R(1);
4447    BR      : E(2);
4448    MS      : E(2);
4449%}
4450#endif
4451
4452// Integer ALU reg operation
4453pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4454    single_instruction; may_have_no_code;
4455    dst   : E(write);
4456    src   : R(read);
4457    IALU  : R;
4458%}
4459pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4460    single_instruction; may_have_no_code;
4461    dst   : E(write);
4462    src   : R(read);
4463    IALU  : R;
4464%}
4465
4466// Two integer ALU reg operations
4467pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4468    instruction_count(2);
4469    dst   : E(write);
4470    src   : R(read);
4471    A0    : R;
4472    A1    : R;
4473%}
4474
4475// Two integer ALU reg operations
4476pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4477    instruction_count(2); may_have_no_code;
4478    dst   : E(write);
4479    src   : R(read);
4480    A0    : R;
4481    A1    : R;
4482%}
4483
4484// Integer ALU imm operation
4485pipe_class ialu_imm(iRegI dst, immI13 src) %{
4486    single_instruction;
4487    dst   : E(write);
4488    IALU  : R;
4489%}
4490
4491// Integer ALU reg-reg with carry operation
4492pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4493    single_instruction;
4494    dst   : E(write);
4495    src1  : R(read);
4496    src2  : R(read);
4497    IALU  : R;
4498%}
4499
4500// Integer ALU cc operation
4501pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4502    single_instruction;
4503    dst   : E(write);
4504    cc    : R(read);
4505    IALU  : R;
4506%}
4507
4508// Integer ALU cc / second IALU operation
4509pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4510    instruction_count(1); multiple_bundles;
4511    dst   : E(write)+1;
4512    src   : R(read);
4513    IALU  : R;
4514%}
4515
4516// Integer ALU cc / second IALU operation
4517pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4518    instruction_count(1); multiple_bundles;
4519    dst   : E(write)+1;
4520    p     : R(read);
4521    q     : R(read);
4522    IALU  : R;
4523%}
4524
4525// Integer ALU hi-lo-reg operation
4526pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4527    instruction_count(1); multiple_bundles;
4528    dst   : E(write)+1;
4529    IALU  : R(2);
4530%}
4531
4532// Float ALU hi-lo-reg operation (with temp)
4533pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4534    instruction_count(1); multiple_bundles;
4535    dst   : E(write)+1;
4536    IALU  : R(2);
4537%}
4538
4539// Long Constant
4540pipe_class loadConL( iRegL dst, immL src ) %{
4541    instruction_count(2); multiple_bundles;
4542    dst   : E(write)+1;
4543    IALU  : R(2);
4544    IALU  : R(2);
4545%}
4546
4547// Pointer Constant
4548pipe_class loadConP( iRegP dst, immP src ) %{
4549    instruction_count(0); multiple_bundles;
4550    fixed_latency(6);
4551%}
4552
4553// Polling Address
4554pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4555#ifdef _LP64
4556    instruction_count(0); multiple_bundles;
4557    fixed_latency(6);
4558#else
4559    dst   : E(write);
4560    IALU  : R;
4561#endif
4562%}
4563
4564// Long Constant small
4565pipe_class loadConLlo( iRegL dst, immL src ) %{
4566    instruction_count(2);
4567    dst   : E(write);
4568    IALU  : R;
4569    IALU  : R;
4570%}
4571
4572// [PHH] This is wrong for 64-bit.  See LdImmF/D.
4573pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4574    instruction_count(1); multiple_bundles;
4575    src   : R(read);
4576    dst   : M(write)+1;
4577    IALU  : R;
4578    MS    : E;
4579%}
4580
4581// Integer ALU nop operation
4582pipe_class ialu_nop() %{
4583    single_instruction;
4584    IALU  : R;
4585%}
4586
4587// Integer ALU nop operation
4588pipe_class ialu_nop_A0() %{
4589    single_instruction;
4590    A0    : R;
4591%}
4592
4593// Integer ALU nop operation
4594pipe_class ialu_nop_A1() %{
4595    single_instruction;
4596    A1    : R;
4597%}
4598
4599// Integer Multiply reg-reg operation
4600pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4601    single_instruction;
4602    dst   : E(write);
4603    src1  : R(read);
4604    src2  : R(read);
4605    MS    : R(5);
4606%}
4607
4608// Integer Multiply reg-imm operation
4609pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4610    single_instruction;
4611    dst   : E(write);
4612    src1  : R(read);
4613    MS    : R(5);
4614%}
4615
4616pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4617    single_instruction;
4618    dst   : E(write)+4;
4619    src1  : R(read);
4620    src2  : R(read);
4621    MS    : R(6);
4622%}
4623
4624pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4625    single_instruction;
4626    dst   : E(write)+4;
4627    src1  : R(read);
4628    MS    : R(6);
4629%}
4630
4631// Integer Divide reg-reg
4632pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4633    instruction_count(1); multiple_bundles;
4634    dst   : E(write);
4635    temp  : E(write);
4636    src1  : R(read);
4637    src2  : R(read);
4638    temp  : R(read);
4639    MS    : R(38);
4640%}
4641
4642// Integer Divide reg-imm
4643pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4644    instruction_count(1); multiple_bundles;
4645    dst   : E(write);
4646    temp  : E(write);
4647    src1  : R(read);
4648    temp  : R(read);
4649    MS    : R(38);
4650%}
4651
4652// Long Divide
4653pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4654    dst  : E(write)+71;
4655    src1 : R(read);
4656    src2 : R(read)+1;
4657    MS   : R(70);
4658%}
4659
4660pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4661    dst  : E(write)+71;
4662    src1 : R(read);
4663    MS   : R(70);
4664%}
4665
4666// Floating Point Add Float
4667pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4668    single_instruction;
4669    dst   : X(write);
4670    src1  : E(read);
4671    src2  : E(read);
4672    FA    : R;
4673%}
4674
4675// Floating Point Add Double
4676pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4677    single_instruction;
4678    dst   : X(write);
4679    src1  : E(read);
4680    src2  : E(read);
4681    FA    : R;
4682%}
4683
4684// Floating Point Conditional Move based on integer flags
4685pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4686    single_instruction;
4687    dst   : X(write);
4688    src   : E(read);
4689    cr    : R(read);
4690    FA    : R(2);
4691    BR    : R(2);
4692%}
4693
4694// Floating Point Conditional Move based on integer flags
4695pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4696    single_instruction;
4697    dst   : X(write);
4698    src   : E(read);
4699    cr    : R(read);
4700    FA    : R(2);
4701    BR    : R(2);
4702%}
4703
4704// Floating Point Multiply Float
4705pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4706    single_instruction;
4707    dst   : X(write);
4708    src1  : E(read);
4709    src2  : E(read);
4710    FM    : R;
4711%}
4712
4713// Floating Point Multiply Double
4714pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4715    single_instruction;
4716    dst   : X(write);
4717    src1  : E(read);
4718    src2  : E(read);
4719    FM    : R;
4720%}
4721
4722// Floating Point Divide Float
4723pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4724    single_instruction;
4725    dst   : X(write);
4726    src1  : E(read);
4727    src2  : E(read);
4728    FM    : R;
4729    FDIV  : C(14);
4730%}
4731
4732// Floating Point Divide Double
4733pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4734    single_instruction;
4735    dst   : X(write);
4736    src1  : E(read);
4737    src2  : E(read);
4738    FM    : R;
4739    FDIV  : C(17);
4740%}
4741
4742// Floating Point Move/Negate/Abs Float
4743pipe_class faddF_reg(regF dst, regF src) %{
4744    single_instruction;
4745    dst   : W(write);
4746    src   : E(read);
4747    FA    : R(1);
4748%}
4749
4750// Floating Point Move/Negate/Abs Double
4751pipe_class faddD_reg(regD dst, regD src) %{
4752    single_instruction;
4753    dst   : W(write);
4754    src   : E(read);
4755    FA    : R;
4756%}
4757
4758// Floating Point Convert F->D
4759pipe_class fcvtF2D(regD dst, regF src) %{
4760    single_instruction;
4761    dst   : X(write);
4762    src   : E(read);
4763    FA    : R;
4764%}
4765
4766// Floating Point Convert I->D
4767pipe_class fcvtI2D(regD dst, regF src) %{
4768    single_instruction;
4769    dst   : X(write);
4770    src   : E(read);
4771    FA    : R;
4772%}
4773
4774// Floating Point Convert LHi->D
4775pipe_class fcvtLHi2D(regD dst, regD src) %{
4776    single_instruction;
4777    dst   : X(write);
4778    src   : E(read);
4779    FA    : R;
4780%}
4781
4782// Floating Point Convert L->D
4783pipe_class fcvtL2D(regD dst, regF src) %{
4784    single_instruction;
4785    dst   : X(write);
4786    src   : E(read);
4787    FA    : R;
4788%}
4789
4790// Floating Point Convert L->F
4791pipe_class fcvtL2F(regD dst, regF src) %{
4792    single_instruction;
4793    dst   : X(write);
4794    src   : E(read);
4795    FA    : R;
4796%}
4797
4798// Floating Point Convert D->F
4799pipe_class fcvtD2F(regD dst, regF src) %{
4800    single_instruction;
4801    dst   : X(write);
4802    src   : E(read);
4803    FA    : R;
4804%}
4805
4806// Floating Point Convert I->L
4807pipe_class fcvtI2L(regD dst, regF src) %{
4808    single_instruction;
4809    dst   : X(write);
4810    src   : E(read);
4811    FA    : R;
4812%}
4813
4814// Floating Point Convert D->F
4815pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4816    instruction_count(1); multiple_bundles;
4817    dst   : X(write)+6;
4818    src   : E(read);
4819    FA    : R;
4820%}
4821
4822// Floating Point Convert D->L
4823pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4824    instruction_count(1); multiple_bundles;
4825    dst   : X(write)+6;
4826    src   : E(read);
4827    FA    : R;
4828%}
4829
4830// Floating Point Convert F->I
4831pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4832    instruction_count(1); multiple_bundles;
4833    dst   : X(write)+6;
4834    src   : E(read);
4835    FA    : R;
4836%}
4837
4838// Floating Point Convert F->L
4839pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4840    instruction_count(1); multiple_bundles;
4841    dst   : X(write)+6;
4842    src   : E(read);
4843    FA    : R;
4844%}
4845
4846// Floating Point Convert I->F
4847pipe_class fcvtI2F(regF dst, regF src) %{
4848    single_instruction;
4849    dst   : X(write);
4850    src   : E(read);
4851    FA    : R;
4852%}
4853
4854// Floating Point Compare
4855pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4856    single_instruction;
4857    cr    : X(write);
4858    src1  : E(read);
4859    src2  : E(read);
4860    FA    : R;
4861%}
4862
4863// Floating Point Compare
4864pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4865    single_instruction;
4866    cr    : X(write);
4867    src1  : E(read);
4868    src2  : E(read);
4869    FA    : R;
4870%}
4871
4872// Floating Add Nop
4873pipe_class fadd_nop() %{
4874    single_instruction;
4875    FA  : R;
4876%}
4877
4878// Integer Store to Memory
4879pipe_class istore_mem_reg(memory mem, iRegI src) %{
4880    single_instruction;
4881    mem   : R(read);
4882    src   : C(read);
4883    MS    : R;
4884%}
4885
4886// Integer Store to Memory
4887pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4888    single_instruction;
4889    mem   : R(read);
4890    src   : C(read);
4891    MS    : R;
4892%}
4893
4894// Integer Store Zero to Memory
4895pipe_class istore_mem_zero(memory mem, immI0 src) %{
4896    single_instruction;
4897    mem   : R(read);
4898    MS    : R;
4899%}
4900
4901// Special Stack Slot Store
4902pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4903    single_instruction;
4904    stkSlot : R(read);
4905    src     : C(read);
4906    MS      : R;
4907%}
4908
4909// Special Stack Slot Store
4910pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4911    instruction_count(2); multiple_bundles;
4912    stkSlot : R(read);
4913    src     : C(read);
4914    MS      : R(2);
4915%}
4916
4917// Float Store
4918pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4919    single_instruction;
4920    mem : R(read);
4921    src : C(read);
4922    MS  : R;
4923%}
4924
4925// Float Store
4926pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4927    single_instruction;
4928    mem : R(read);
4929    MS  : R;
4930%}
4931
4932// Double Store
4933pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4934    instruction_count(1);
4935    mem : R(read);
4936    src : C(read);
4937    MS  : R;
4938%}
4939
4940// Double Store
4941pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4942    single_instruction;
4943    mem : R(read);
4944    MS  : R;
4945%}
4946
4947// Special Stack Slot Float Store
4948pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4949    single_instruction;
4950    stkSlot : R(read);
4951    src     : C(read);
4952    MS      : R;
4953%}
4954
4955// Special Stack Slot Double Store
4956pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4957    single_instruction;
4958    stkSlot : R(read);
4959    src     : C(read);
4960    MS      : R;
4961%}
4962
4963// Integer Load (when sign bit propagation not needed)
4964pipe_class iload_mem(iRegI dst, memory mem) %{
4965    single_instruction;
4966    mem : R(read);
4967    dst : C(write);
4968    MS  : R;
4969%}
4970
4971// Integer Load from stack operand
4972pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4973    single_instruction;
4974    mem : R(read);
4975    dst : C(write);
4976    MS  : R;
4977%}
4978
4979// Integer Load (when sign bit propagation or masking is needed)
4980pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4981    single_instruction;
4982    mem : R(read);
4983    dst : M(write);
4984    MS  : R;
4985%}
4986
4987// Float Load
4988pipe_class floadF_mem(regF dst, memory mem) %{
4989    single_instruction;
4990    mem : R(read);
4991    dst : M(write);
4992    MS  : R;
4993%}
4994
4995// Float Load
4996pipe_class floadD_mem(regD dst, memory mem) %{
4997    instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4998    mem : R(read);
4999    dst : M(write);
5000    MS  : R;
5001%}
5002
5003// Float Load
5004pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5005    single_instruction;
5006    stkSlot : R(read);
5007    dst : M(write);
5008    MS  : R;
5009%}
5010
5011// Float Load
5012pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5013    single_instruction;
5014    stkSlot : R(read);
5015    dst : M(write);
5016    MS  : R;
5017%}
5018
5019// Memory Nop
5020pipe_class mem_nop() %{
5021    single_instruction;
5022    MS  : R;
5023%}
5024
5025pipe_class sethi(iRegP dst, immI src) %{
5026    single_instruction;
5027    dst  : E(write);
5028    IALU : R;
5029%}
5030
5031pipe_class loadPollP(iRegP poll) %{
5032    single_instruction;
5033    poll : R(read);
5034    MS   : R;
5035%}
5036
5037pipe_class br(Universe br, label labl) %{
5038    single_instruction_with_delay_slot;
5039    BR  : R;
5040%}
5041
5042pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5043    single_instruction_with_delay_slot;
5044    cr    : E(read);
5045    BR    : R;
5046%}
5047
5048pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5049    single_instruction_with_delay_slot;
5050    op1 : E(read);
5051    BR  : R;
5052    MS  : R;
5053%}
5054
5055// Compare and branch
5056pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5057    instruction_count(2); has_delay_slot;
5058    cr    : E(write);
5059    src1  : R(read);
5060    src2  : R(read);
5061    IALU  : R;
5062    BR    : R;
5063%}
5064
5065// Compare and branch
5066pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5067    instruction_count(2); has_delay_slot;
5068    cr    : E(write);
5069    src1  : R(read);
5070    IALU  : R;
5071    BR    : R;
5072%}
5073
5074// Compare and branch using cbcond
5075pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5076    single_instruction;
5077    src1  : E(read);
5078    src2  : E(read);
5079    IALU  : R;
5080    BR    : R;
5081%}
5082
5083// Compare and branch using cbcond
5084pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5085    single_instruction;
5086    src1  : E(read);
5087    IALU  : R;
5088    BR    : R;
5089%}
5090
5091pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5092    single_instruction_with_delay_slot;
5093    cr    : E(read);
5094    BR    : R;
5095%}
5096
5097pipe_class br_nop() %{
5098    single_instruction;
5099    BR  : R;
5100%}
5101
5102pipe_class simple_call(method meth) %{
5103    instruction_count(2); multiple_bundles; force_serialization;
5104    fixed_latency(100);
5105    BR  : R(1);
5106    MS  : R(1);
5107    A0  : R(1);
5108%}
5109
5110pipe_class compiled_call(method meth) %{
5111    instruction_count(1); multiple_bundles; force_serialization;
5112    fixed_latency(100);
5113    MS  : R(1);
5114%}
5115
5116pipe_class call(method meth) %{
5117    instruction_count(0); multiple_bundles; force_serialization;
5118    fixed_latency(100);
5119%}
5120
5121pipe_class tail_call(Universe ignore, label labl) %{
5122    single_instruction; has_delay_slot;
5123    fixed_latency(100);
5124    BR  : R(1);
5125    MS  : R(1);
5126%}
5127
5128pipe_class ret(Universe ignore) %{
5129    single_instruction; has_delay_slot;
5130    BR  : R(1);
5131    MS  : R(1);
5132%}
5133
5134pipe_class ret_poll(g3RegP poll) %{
5135    instruction_count(3); has_delay_slot;
5136    poll : E(read);
5137    MS   : R;
5138%}
5139
5140// The real do-nothing guy
5141pipe_class empty( ) %{
5142    instruction_count(0);
5143%}
5144
5145pipe_class long_memory_op() %{
5146    instruction_count(0); multiple_bundles; force_serialization;
5147    fixed_latency(25);
5148    MS  : R(1);
5149%}
5150
5151// Check-cast
5152pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5153    array : R(read);
5154    match  : R(read);
5155    IALU   : R(2);
5156    BR     : R(2);
5157    MS     : R;
5158%}
5159
5160// Convert FPU flags into +1,0,-1
5161pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5162    src1  : E(read);
5163    src2  : E(read);
5164    dst   : E(write);
5165    FA    : R;
5166    MS    : R(2);
5167    BR    : R(2);
5168%}
5169
5170// Compare for p < q, and conditionally add y
5171pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5172    p     : E(read);
5173    q     : E(read);
5174    y     : E(read);
5175    IALU  : R(3)
5176%}
5177
5178// Perform a compare, then move conditionally in a branch delay slot.
5179pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5180    src2   : E(read);
5181    srcdst : E(read);
5182    IALU   : R;
5183    BR     : R;
5184%}
5185
5186// Define the class for the Nop node
5187define %{
5188   MachNop = ialu_nop;
5189%}
5190
5191%}
5192
5193//----------INSTRUCTIONS-------------------------------------------------------
5194
5195//------------Special Stack Slot instructions - no match rules-----------------
5196instruct stkI_to_regF(regF dst, stackSlotI src) %{
5197  // No match rule to avoid chain rule match.
5198  effect(DEF dst, USE src);
5199  ins_cost(MEMORY_REF_COST);
5200  size(4);
5201  format %{ "LDF    $src,$dst\t! stkI to regF" %}
5202  opcode(Assembler::ldf_op3);
5203  ins_encode(simple_form3_mem_reg(src, dst));
5204  ins_pipe(floadF_stk);
5205%}
5206
5207instruct stkL_to_regD(regD dst, stackSlotL src) %{
5208  // No match rule to avoid chain rule match.
5209  effect(DEF dst, USE src);
5210  ins_cost(MEMORY_REF_COST);
5211  size(4);
5212  format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5213  opcode(Assembler::lddf_op3);
5214  ins_encode(simple_form3_mem_reg(src, dst));
5215  ins_pipe(floadD_stk);
5216%}
5217
5218instruct regF_to_stkI(stackSlotI dst, regF src) %{
5219  // No match rule to avoid chain rule match.
5220  effect(DEF dst, USE src);
5221  ins_cost(MEMORY_REF_COST);
5222  size(4);
5223  format %{ "STF    $src,$dst\t! regF to stkI" %}
5224  opcode(Assembler::stf_op3);
5225  ins_encode(simple_form3_mem_reg(dst, src));
5226  ins_pipe(fstoreF_stk_reg);
5227%}
5228
5229instruct regD_to_stkL(stackSlotL dst, regD src) %{
5230  // No match rule to avoid chain rule match.
5231  effect(DEF dst, USE src);
5232  ins_cost(MEMORY_REF_COST);
5233  size(4);
5234  format %{ "STDF   $src,$dst\t! regD to stkL" %}
5235  opcode(Assembler::stdf_op3);
5236  ins_encode(simple_form3_mem_reg(dst, src));
5237  ins_pipe(fstoreD_stk_reg);
5238%}
5239
5240instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5241  effect(DEF dst, USE src);
5242  ins_cost(MEMORY_REF_COST*2);
5243  size(8);
5244  format %{ "STW    $src,$dst.hi\t! long\n\t"
5245            "STW    R_G0,$dst.lo" %}
5246  opcode(Assembler::stw_op3);
5247  ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5248  ins_pipe(lstoreI_stk_reg);
5249%}
5250
5251instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5252  // No match rule to avoid chain rule match.
5253  effect(DEF dst, USE src);
5254  ins_cost(MEMORY_REF_COST);
5255  size(4);
5256  format %{ "STX    $src,$dst\t! regL to stkD" %}
5257  opcode(Assembler::stx_op3);
5258  ins_encode(simple_form3_mem_reg( dst, src ) );
5259  ins_pipe(istore_stk_reg);
5260%}
5261
5262//---------- Chain stack slots between similar types --------
5263
5264// Load integer from stack slot
5265instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5266  match(Set dst src);
5267  ins_cost(MEMORY_REF_COST);
5268
5269  size(4);
5270  format %{ "LDUW   $src,$dst\t!stk" %}
5271  opcode(Assembler::lduw_op3);
5272  ins_encode(simple_form3_mem_reg( src, dst ) );
5273  ins_pipe(iload_mem);
5274%}
5275
5276// Store integer to stack slot
5277instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5278  match(Set dst src);
5279  ins_cost(MEMORY_REF_COST);
5280
5281  size(4);
5282  format %{ "STW    $src,$dst\t!stk" %}
5283  opcode(Assembler::stw_op3);
5284  ins_encode(simple_form3_mem_reg( dst, src ) );
5285  ins_pipe(istore_mem_reg);
5286%}
5287
5288// Load long from stack slot
5289instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5290  match(Set dst src);
5291
5292  ins_cost(MEMORY_REF_COST);
5293  size(4);
5294  format %{ "LDX    $src,$dst\t! long" %}
5295  opcode(Assembler::ldx_op3);
5296  ins_encode(simple_form3_mem_reg( src, dst ) );
5297  ins_pipe(iload_mem);
5298%}
5299
5300// Store long to stack slot
5301instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5302  match(Set dst src);
5303
5304  ins_cost(MEMORY_REF_COST);
5305  size(4);
5306  format %{ "STX    $src,$dst\t! long" %}
5307  opcode(Assembler::stx_op3);
5308  ins_encode(simple_form3_mem_reg( dst, src ) );
5309  ins_pipe(istore_mem_reg);
5310%}
5311
5312#ifdef _LP64
5313// Load pointer from stack slot, 64-bit encoding
5314instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5315  match(Set dst src);
5316  ins_cost(MEMORY_REF_COST);
5317  size(4);
5318  format %{ "LDX    $src,$dst\t!ptr" %}
5319  opcode(Assembler::ldx_op3);
5320  ins_encode(simple_form3_mem_reg( src, dst ) );
5321  ins_pipe(iload_mem);
5322%}
5323
5324// Store pointer to stack slot
5325instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5326  match(Set dst src);
5327  ins_cost(MEMORY_REF_COST);
5328  size(4);
5329  format %{ "STX    $src,$dst\t!ptr" %}
5330  opcode(Assembler::stx_op3);
5331  ins_encode(simple_form3_mem_reg( dst, src ) );
5332  ins_pipe(istore_mem_reg);
5333%}
5334#else // _LP64
5335// Load pointer from stack slot, 32-bit encoding
5336instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5337  match(Set dst src);
5338  ins_cost(MEMORY_REF_COST);
5339  format %{ "LDUW   $src,$dst\t!ptr" %}
5340  opcode(Assembler::lduw_op3, Assembler::ldst_op);
5341  ins_encode(simple_form3_mem_reg( src, dst ) );
5342  ins_pipe(iload_mem);
5343%}
5344
5345// Store pointer to stack slot
5346instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5347  match(Set dst src);
5348  ins_cost(MEMORY_REF_COST);
5349  format %{ "STW    $src,$dst\t!ptr" %}
5350  opcode(Assembler::stw_op3, Assembler::ldst_op);
5351  ins_encode(simple_form3_mem_reg( dst, src ) );
5352  ins_pipe(istore_mem_reg);
5353%}
5354#endif // _LP64
5355
5356//------------Special Nop instructions for bundling - no match rules-----------
5357// Nop using the A0 functional unit
5358instruct Nop_A0() %{
5359  ins_cost(0);
5360
5361  format %{ "NOP    ! Alu Pipeline" %}
5362  opcode(Assembler::or_op3, Assembler::arith_op);
5363  ins_encode( form2_nop() );
5364  ins_pipe(ialu_nop_A0);
5365%}
5366
5367// Nop using the A1 functional unit
5368instruct Nop_A1( ) %{
5369  ins_cost(0);
5370
5371  format %{ "NOP    ! Alu Pipeline" %}
5372  opcode(Assembler::or_op3, Assembler::arith_op);
5373  ins_encode( form2_nop() );
5374  ins_pipe(ialu_nop_A1);
5375%}
5376
5377// Nop using the memory functional unit
5378instruct Nop_MS( ) %{
5379  ins_cost(0);
5380
5381  format %{ "NOP    ! Memory Pipeline" %}
5382  ins_encode( emit_mem_nop );
5383  ins_pipe(mem_nop);
5384%}
5385
5386// Nop using the floating add functional unit
5387instruct Nop_FA( ) %{
5388  ins_cost(0);
5389
5390  format %{ "NOP    ! Floating Add Pipeline" %}
5391  ins_encode( emit_fadd_nop );
5392  ins_pipe(fadd_nop);
5393%}
5394
5395// Nop using the branch functional unit
5396instruct Nop_BR( ) %{
5397  ins_cost(0);
5398
5399  format %{ "NOP    ! Branch Pipeline" %}
5400  ins_encode( emit_br_nop );
5401  ins_pipe(br_nop);
5402%}
5403
5404//----------Load/Store/Move Instructions---------------------------------------
5405//----------Load Instructions--------------------------------------------------
5406// Load Byte (8bit signed)
5407instruct loadB(iRegI dst, memory mem) %{
5408  match(Set dst (LoadB mem));
5409  ins_cost(MEMORY_REF_COST);
5410
5411  size(4);
5412  format %{ "LDSB   $mem,$dst\t! byte" %}
5413  ins_encode %{
5414    __ ldsb($mem$$Address, $dst$$Register);
5415  %}
5416  ins_pipe(iload_mask_mem);
5417%}
5418
5419// Load Byte (8bit signed) into a Long Register
5420instruct loadB2L(iRegL dst, memory mem) %{
5421  match(Set dst (ConvI2L (LoadB mem)));
5422  ins_cost(MEMORY_REF_COST);
5423
5424  size(4);
5425  format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5426  ins_encode %{
5427    __ ldsb($mem$$Address, $dst$$Register);
5428  %}
5429  ins_pipe(iload_mask_mem);
5430%}
5431
5432// Load Unsigned Byte (8bit UNsigned) into an int reg
5433instruct loadUB(iRegI dst, memory mem) %{
5434  match(Set dst (LoadUB mem));
5435  ins_cost(MEMORY_REF_COST);
5436
5437  size(4);
5438  format %{ "LDUB   $mem,$dst\t! ubyte" %}
5439  ins_encode %{
5440    __ ldub($mem$$Address, $dst$$Register);
5441  %}
5442  ins_pipe(iload_mem);
5443%}
5444
5445// Load Unsigned Byte (8bit UNsigned) into a Long Register
5446instruct loadUB2L(iRegL dst, memory mem) %{
5447  match(Set dst (ConvI2L (LoadUB mem)));
5448  ins_cost(MEMORY_REF_COST);
5449
5450  size(4);
5451  format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5452  ins_encode %{
5453    __ ldub($mem$$Address, $dst$$Register);
5454  %}
5455  ins_pipe(iload_mem);
5456%}
5457
5458// Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5459instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5460  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5461  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5462
5463  size(2*4);
5464  format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5465            "AND    $dst,right_n_bits($mask, 8),$dst" %}
5466  ins_encode %{
5467    __ ldub($mem$$Address, $dst$$Register);
5468    __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5469  %}
5470  ins_pipe(iload_mem);
5471%}
5472
5473// Load Short (16bit signed)
5474instruct loadS(iRegI dst, memory mem) %{
5475  match(Set dst (LoadS mem));
5476  ins_cost(MEMORY_REF_COST);
5477
5478  size(4);
5479  format %{ "LDSH   $mem,$dst\t! short" %}
5480  ins_encode %{
5481    __ ldsh($mem$$Address, $dst$$Register);
5482  %}
5483  ins_pipe(iload_mask_mem);
5484%}
5485
5486// Load Short (16 bit signed) to Byte (8 bit signed)
5487instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5488  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5489  ins_cost(MEMORY_REF_COST);
5490
5491  size(4);
5492
5493  format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5494  ins_encode %{
5495    __ ldsb($mem$$Address, $dst$$Register, 1);
5496  %}
5497  ins_pipe(iload_mask_mem);
5498%}
5499
5500// Load Short (16bit signed) into a Long Register
5501instruct loadS2L(iRegL dst, memory mem) %{
5502  match(Set dst (ConvI2L (LoadS mem)));
5503  ins_cost(MEMORY_REF_COST);
5504
5505  size(4);
5506  format %{ "LDSH   $mem,$dst\t! short -> long" %}
5507  ins_encode %{
5508    __ ldsh($mem$$Address, $dst$$Register);
5509  %}
5510  ins_pipe(iload_mask_mem);
5511%}
5512
5513// Load Unsigned Short/Char (16bit UNsigned)
5514instruct loadUS(iRegI dst, memory mem) %{
5515  match(Set dst (LoadUS mem));
5516  ins_cost(MEMORY_REF_COST);
5517
5518  size(4);
5519  format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5520  ins_encode %{
5521    __ lduh($mem$$Address, $dst$$Register);
5522  %}
5523  ins_pipe(iload_mem);
5524%}
5525
5526// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5527instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5528  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5529  ins_cost(MEMORY_REF_COST);
5530
5531  size(4);
5532  format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5533  ins_encode %{
5534    __ ldsb($mem$$Address, $dst$$Register, 1);
5535  %}
5536  ins_pipe(iload_mask_mem);
5537%}
5538
5539// Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5540instruct loadUS2L(iRegL dst, memory mem) %{
5541  match(Set dst (ConvI2L (LoadUS mem)));
5542  ins_cost(MEMORY_REF_COST);
5543
5544  size(4);
5545  format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5546  ins_encode %{
5547    __ lduh($mem$$Address, $dst$$Register);
5548  %}
5549  ins_pipe(iload_mem);
5550%}
5551
5552// Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5553instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5554  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5555  ins_cost(MEMORY_REF_COST);
5556
5557  size(4);
5558  format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5559  ins_encode %{
5560    __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5561  %}
5562  ins_pipe(iload_mem);
5563%}
5564
5565// Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5566instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5567  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5568  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5569
5570  size(2*4);
5571  format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5572            "AND    $dst,$mask,$dst" %}
5573  ins_encode %{
5574    Register Rdst = $dst$$Register;
5575    __ lduh($mem$$Address, Rdst);
5576    __ and3(Rdst, $mask$$constant, Rdst);
5577  %}
5578  ins_pipe(iload_mem);
5579%}
5580
5581// Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5582instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5583  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5584  effect(TEMP dst, TEMP tmp);
5585  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5586
5587  format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5588            "SET    right_n_bits($mask, 16),$tmp\n\t"
5589            "AND    $dst,$tmp,$dst" %}
5590  ins_encode %{
5591    Register Rdst = $dst$$Register;
5592    Register Rtmp = $tmp$$Register;
5593    __ lduh($mem$$Address, Rdst);
5594    __ set($mask$$constant & right_n_bits(16), Rtmp);
5595    __ and3(Rdst, Rtmp, Rdst);
5596  %}
5597  ins_pipe(iload_mem);
5598%}
5599
5600// Load Integer
5601instruct loadI(iRegI dst, memory mem) %{
5602  match(Set dst (LoadI mem));
5603  ins_cost(MEMORY_REF_COST);
5604
5605  size(4);
5606  format %{ "LDUW   $mem,$dst\t! int" %}
5607  ins_encode %{
5608    __ lduw($mem$$Address, $dst$$Register);
5609  %}
5610  ins_pipe(iload_mem);
5611%}
5612
5613// Load Integer to Byte (8 bit signed)
5614instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5615  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5616  ins_cost(MEMORY_REF_COST);
5617
5618  size(4);
5619
5620  format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5621  ins_encode %{
5622    __ ldsb($mem$$Address, $dst$$Register, 3);
5623  %}
5624  ins_pipe(iload_mask_mem);
5625%}
5626
5627// Load Integer to Unsigned Byte (8 bit UNsigned)
5628instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5629  match(Set dst (AndI (LoadI mem) mask));
5630  ins_cost(MEMORY_REF_COST);
5631
5632  size(4);
5633
5634  format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5635  ins_encode %{
5636    __ ldub($mem$$Address, $dst$$Register, 3);
5637  %}
5638  ins_pipe(iload_mask_mem);
5639%}
5640
5641// Load Integer to Short (16 bit signed)
5642instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5643  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5644  ins_cost(MEMORY_REF_COST);
5645
5646  size(4);
5647
5648  format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5649  ins_encode %{
5650    __ ldsh($mem$$Address, $dst$$Register, 2);
5651  %}
5652  ins_pipe(iload_mask_mem);
5653%}
5654
5655// Load Integer to Unsigned Short (16 bit UNsigned)
5656instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5657  match(Set dst (AndI (LoadI mem) mask));
5658  ins_cost(MEMORY_REF_COST);
5659
5660  size(4);
5661
5662  format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5663  ins_encode %{
5664    __ lduh($mem$$Address, $dst$$Register, 2);
5665  %}
5666  ins_pipe(iload_mask_mem);
5667%}
5668
5669// Load Integer into a Long Register
5670instruct loadI2L(iRegL dst, memory mem) %{
5671  match(Set dst (ConvI2L (LoadI mem)));
5672  ins_cost(MEMORY_REF_COST);
5673
5674  size(4);
5675  format %{ "LDSW   $mem,$dst\t! int -> long" %}
5676  ins_encode %{
5677    __ ldsw($mem$$Address, $dst$$Register);
5678  %}
5679  ins_pipe(iload_mask_mem);
5680%}
5681
5682// Load Integer with mask 0xFF into a Long Register
5683instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5684  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5685  ins_cost(MEMORY_REF_COST);
5686
5687  size(4);
5688  format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5689  ins_encode %{
5690    __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5691  %}
5692  ins_pipe(iload_mem);
5693%}
5694
5695// Load Integer with mask 0xFFFF into a Long Register
5696instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5697  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5698  ins_cost(MEMORY_REF_COST);
5699
5700  size(4);
5701  format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5702  ins_encode %{
5703    __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5704  %}
5705  ins_pipe(iload_mem);
5706%}
5707
5708// Load Integer with a 12-bit mask into a Long Register
5709instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5710  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5711  ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5712
5713  size(2*4);
5714  format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5715            "AND    $dst,$mask,$dst" %}
5716  ins_encode %{
5717    Register Rdst = $dst$$Register;
5718    __ lduw($mem$$Address, Rdst);
5719    __ and3(Rdst, $mask$$constant, Rdst);
5720  %}
5721  ins_pipe(iload_mem);
5722%}
5723
5724// Load Integer with a 31-bit mask into a Long Register
5725instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5726  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5727  effect(TEMP dst, TEMP tmp);
5728  ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5729
5730  format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5731            "SET    $mask,$tmp\n\t"
5732            "AND    $dst,$tmp,$dst" %}
5733  ins_encode %{
5734    Register Rdst = $dst$$Register;
5735    Register Rtmp = $tmp$$Register;
5736    __ lduw($mem$$Address, Rdst);
5737    __ set($mask$$constant, Rtmp);
5738    __ and3(Rdst, Rtmp, Rdst);
5739  %}
5740  ins_pipe(iload_mem);
5741%}
5742
5743// Load Unsigned Integer into a Long Register
5744instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5745  match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5746  ins_cost(MEMORY_REF_COST);
5747
5748  size(4);
5749  format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5750  ins_encode %{
5751    __ lduw($mem$$Address, $dst$$Register);
5752  %}
5753  ins_pipe(iload_mem);
5754%}
5755
5756// Load Long - aligned
5757instruct loadL(iRegL dst, memory mem ) %{
5758  match(Set dst (LoadL mem));
5759  ins_cost(MEMORY_REF_COST);
5760
5761  size(4);
5762  format %{ "LDX    $mem,$dst\t! long" %}
5763  ins_encode %{
5764    __ ldx($mem$$Address, $dst$$Register);
5765  %}
5766  ins_pipe(iload_mem);
5767%}
5768
5769// Load Long - UNaligned
5770instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5771  match(Set dst (LoadL_unaligned mem));
5772  effect(KILL tmp);
5773  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5774  size(16);
5775  format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5776          "\tLDUW   $mem  ,$dst\n"
5777          "\tSLLX   #32, $dst, $dst\n"
5778          "\tOR     $dst, R_O7, $dst" %}
5779  opcode(Assembler::lduw_op3);
5780  ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5781  ins_pipe(iload_mem);
5782%}
5783
5784// Load Range
5785instruct loadRange(iRegI dst, memory mem) %{
5786  match(Set dst (LoadRange mem));
5787  ins_cost(MEMORY_REF_COST);
5788
5789  size(4);
5790  format %{ "LDUW   $mem,$dst\t! range" %}
5791  opcode(Assembler::lduw_op3);
5792  ins_encode(simple_form3_mem_reg( mem, dst ) );
5793  ins_pipe(iload_mem);
5794%}
5795
5796// Load Integer into %f register (for fitos/fitod)
5797instruct loadI_freg(regF dst, memory mem) %{
5798  match(Set dst (LoadI mem));
5799  ins_cost(MEMORY_REF_COST);
5800  size(4);
5801
5802  format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5803  opcode(Assembler::ldf_op3);
5804  ins_encode(simple_form3_mem_reg( mem, dst ) );
5805  ins_pipe(floadF_mem);
5806%}
5807
5808// Load Pointer
5809instruct loadP(iRegP dst, memory mem) %{
5810  match(Set dst (LoadP mem));
5811  ins_cost(MEMORY_REF_COST);
5812  size(4);
5813
5814#ifndef _LP64
5815  format %{ "LDUW   $mem,$dst\t! ptr" %}
5816  ins_encode %{
5817    __ lduw($mem$$Address, $dst$$Register);
5818  %}
5819#else
5820  format %{ "LDX    $mem,$dst\t! ptr" %}
5821  ins_encode %{
5822    __ ldx($mem$$Address, $dst$$Register);
5823  %}
5824#endif
5825  ins_pipe(iload_mem);
5826%}
5827
5828// Load Compressed Pointer
5829instruct loadN(iRegN dst, memory mem) %{
5830  match(Set dst (LoadN mem));
5831  ins_cost(MEMORY_REF_COST);
5832  size(4);
5833
5834  format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5835  ins_encode %{
5836    __ lduw($mem$$Address, $dst$$Register);
5837  %}
5838  ins_pipe(iload_mem);
5839%}
5840
5841// Load Klass Pointer
5842instruct loadKlass(iRegP dst, memory mem) %{
5843  match(Set dst (LoadKlass mem));
5844  ins_cost(MEMORY_REF_COST);
5845  size(4);
5846
5847#ifndef _LP64
5848  format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5849  ins_encode %{
5850    __ lduw($mem$$Address, $dst$$Register);
5851  %}
5852#else
5853  format %{ "LDX    $mem,$dst\t! klass ptr" %}
5854  ins_encode %{
5855    __ ldx($mem$$Address, $dst$$Register);
5856  %}
5857#endif
5858  ins_pipe(iload_mem);
5859%}
5860
5861// Load narrow Klass Pointer
5862instruct loadNKlass(iRegN dst, memory mem) %{
5863  match(Set dst (LoadNKlass mem));
5864  ins_cost(MEMORY_REF_COST);
5865  size(4);
5866
5867  format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5868  ins_encode %{
5869    __ lduw($mem$$Address, $dst$$Register);
5870  %}
5871  ins_pipe(iload_mem);
5872%}
5873
5874// Load Double
5875instruct loadD(regD dst, memory mem) %{
5876  match(Set dst (LoadD mem));
5877  ins_cost(MEMORY_REF_COST);
5878
5879  size(4);
5880  format %{ "LDDF   $mem,$dst" %}
5881  opcode(Assembler::lddf_op3);
5882  ins_encode(simple_form3_mem_reg( mem, dst ) );
5883  ins_pipe(floadD_mem);
5884%}
5885
5886// Load Double - UNaligned
5887instruct loadD_unaligned(regD_low dst, memory mem ) %{
5888  match(Set dst (LoadD_unaligned mem));
5889  ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5890  size(8);
5891  format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5892          "\tLDF    $mem+4,$dst.lo\t!" %}
5893  opcode(Assembler::ldf_op3);
5894  ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5895  ins_pipe(iload_mem);
5896%}
5897
5898// Load Float
5899instruct loadF(regF dst, memory mem) %{
5900  match(Set dst (LoadF mem));
5901  ins_cost(MEMORY_REF_COST);
5902
5903  size(4);
5904  format %{ "LDF    $mem,$dst" %}
5905  opcode(Assembler::ldf_op3);
5906  ins_encode(simple_form3_mem_reg( mem, dst ) );
5907  ins_pipe(floadF_mem);
5908%}
5909
5910// Load Constant
5911instruct loadConI( iRegI dst, immI src ) %{
5912  match(Set dst src);
5913  ins_cost(DEFAULT_COST * 3/2);
5914  format %{ "SET    $src,$dst" %}
5915  ins_encode( Set32(src, dst) );
5916  ins_pipe(ialu_hi_lo_reg);
5917%}
5918
5919instruct loadConI13( iRegI dst, immI13 src ) %{
5920  match(Set dst src);
5921
5922  size(4);
5923  format %{ "MOV    $src,$dst" %}
5924  ins_encode( Set13( src, dst ) );
5925  ins_pipe(ialu_imm);
5926%}
5927
5928#ifndef _LP64
5929instruct loadConP(iRegP dst, immP con) %{
5930  match(Set dst con);
5931  ins_cost(DEFAULT_COST * 3/2);
5932  format %{ "SET    $con,$dst\t!ptr" %}
5933  ins_encode %{
5934    relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5935      intptr_t val = $con$$constant;
5936    if (constant_reloc == relocInfo::oop_type) {
5937      __ set_oop_constant((jobject) val, $dst$$Register);
5938    } else if (constant_reloc == relocInfo::metadata_type) {
5939      __ set_metadata_constant((Metadata*)val, $dst$$Register);
5940    } else {          // non-oop pointers, e.g. card mark base, heap top
5941      assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5942      __ set(val, $dst$$Register);
5943    }
5944  %}
5945  ins_pipe(loadConP);
5946%}
5947#else
5948instruct loadConP_set(iRegP dst, immP_set con) %{
5949  match(Set dst con);
5950  ins_cost(DEFAULT_COST * 3/2);
5951  format %{ "SET    $con,$dst\t! ptr" %}
5952  ins_encode %{
5953    relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5954      intptr_t val = $con$$constant;
5955    if (constant_reloc == relocInfo::oop_type) {
5956      __ set_oop_constant((jobject) val, $dst$$Register);
5957    } else if (constant_reloc == relocInfo::metadata_type) {
5958      __ set_metadata_constant((Metadata*)val, $dst$$Register);
5959    } else {          // non-oop pointers, e.g. card mark base, heap top
5960      assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5961      __ set(val, $dst$$Register);
5962    }
5963  %}
5964  ins_pipe(loadConP);
5965%}
5966
5967instruct loadConP_load(iRegP dst, immP_load con) %{
5968  match(Set dst con);
5969  ins_cost(MEMORY_REF_COST);
5970  format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5971  ins_encode %{
5972    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5973    __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5974  %}
5975  ins_pipe(loadConP);
5976%}
5977
5978instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5979  match(Set dst con);
5980  ins_cost(DEFAULT_COST * 3/2);
5981  format %{ "SET    $con,$dst\t! non-oop ptr" %}
5982  ins_encode %{
5983    if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5984      __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5985    } else {
5986      __ set($con$$constant, $dst$$Register);
5987    }
5988  %}
5989  ins_pipe(loadConP);
5990%}
5991#endif // _LP64
5992
5993instruct loadConP0(iRegP dst, immP0 src) %{
5994  match(Set dst src);
5995
5996  size(4);
5997  format %{ "CLR    $dst\t!ptr" %}
5998  ins_encode %{
5999    __ clr($dst$$Register);
6000  %}
6001  ins_pipe(ialu_imm);
6002%}
6003
6004instruct loadConP_poll(iRegP dst, immP_poll src) %{
6005  match(Set dst src);
6006  ins_cost(DEFAULT_COST);
6007  format %{ "SET    $src,$dst\t!ptr" %}
6008  ins_encode %{
6009    AddressLiteral polling_page(os::get_polling_page());
6010    __ sethi(polling_page, reg_to_register_object($dst$$reg));
6011  %}
6012  ins_pipe(loadConP_poll);
6013%}
6014
6015instruct loadConN0(iRegN dst, immN0 src) %{
6016  match(Set dst src);
6017
6018  size(4);
6019  format %{ "CLR    $dst\t! compressed NULL ptr" %}
6020  ins_encode %{
6021    __ clr($dst$$Register);
6022  %}
6023  ins_pipe(ialu_imm);
6024%}
6025
6026instruct loadConN(iRegN dst, immN src) %{
6027  match(Set dst src);
6028  ins_cost(DEFAULT_COST * 3/2);
6029  format %{ "SET    $src,$dst\t! compressed ptr" %}
6030  ins_encode %{
6031    Register dst = $dst$$Register;
6032    __ set_narrow_oop((jobject)$src$$constant, dst);
6033  %}
6034  ins_pipe(ialu_hi_lo_reg);
6035%}
6036
6037instruct loadConNKlass(iRegN dst, immNKlass src) %{
6038  match(Set dst src);
6039  ins_cost(DEFAULT_COST * 3/2);
6040  format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6041  ins_encode %{
6042    Register dst = $dst$$Register;
6043    __ set_narrow_klass((Klass*)$src$$constant, dst);
6044  %}
6045  ins_pipe(ialu_hi_lo_reg);
6046%}
6047
6048// Materialize long value (predicated by immL_cheap).
6049instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6050  match(Set dst con);
6051  effect(KILL tmp);
6052  ins_cost(DEFAULT_COST * 3);
6053  format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6054  ins_encode %{
6055    __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6056  %}
6057  ins_pipe(loadConL);
6058%}
6059
6060// Load long value from constant table (predicated by immL_expensive).
6061instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6062  match(Set dst con);
6063  ins_cost(MEMORY_REF_COST);
6064  format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6065  ins_encode %{
6066      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6067    __ ldx($constanttablebase, con_offset, $dst$$Register);
6068  %}
6069  ins_pipe(loadConL);
6070%}
6071
6072instruct loadConL0( iRegL dst, immL0 src ) %{
6073  match(Set dst src);
6074  ins_cost(DEFAULT_COST);
6075  size(4);
6076  format %{ "CLR    $dst\t! long" %}
6077  ins_encode( Set13( src, dst ) );
6078  ins_pipe(ialu_imm);
6079%}
6080
6081instruct loadConL13( iRegL dst, immL13 src ) %{
6082  match(Set dst src);
6083  ins_cost(DEFAULT_COST * 2);
6084
6085  size(4);
6086  format %{ "MOV    $src,$dst\t! long" %}
6087  ins_encode( Set13( src, dst ) );
6088  ins_pipe(ialu_imm);
6089%}
6090
6091instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6092  match(Set dst con);
6093  effect(KILL tmp);
6094  format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6095  ins_encode %{
6096      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6097    __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6098  %}
6099  ins_pipe(loadConFD);
6100%}
6101
6102instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6103  match(Set dst con);
6104  effect(KILL tmp);
6105  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6106  ins_encode %{
6107    // XXX This is a quick fix for 6833573.
6108    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6109    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6110    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6111  %}
6112  ins_pipe(loadConFD);
6113%}
6114
6115// Prefetch instructions for allocation.
6116// Must be safe to execute with invalid address (cannot fault).
6117
6118instruct prefetchAlloc( memory mem ) %{
6119  predicate(AllocatePrefetchInstr == 0);
6120  match( PrefetchAllocation mem );
6121  ins_cost(MEMORY_REF_COST);
6122  size(4);
6123
6124  format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6125  opcode(Assembler::prefetch_op3);
6126  ins_encode( form3_mem_prefetch_write( mem ) );
6127  ins_pipe(iload_mem);
6128%}
6129
6130// Use BIS instruction to prefetch for allocation.
6131// Could fault, need space at the end of TLAB.
6132instruct prefetchAlloc_bis( iRegP dst ) %{
6133  predicate(AllocatePrefetchInstr == 1);
6134  match( PrefetchAllocation dst );
6135  ins_cost(MEMORY_REF_COST);
6136  size(4);
6137
6138  format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6139  ins_encode %{
6140    __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6141  %}
6142  ins_pipe(istore_mem_reg);
6143%}
6144
6145// Next code is used for finding next cache line address to prefetch.
6146#ifndef _LP64
6147instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6148  match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6149  ins_cost(DEFAULT_COST);
6150  size(4);
6151
6152  format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6153  ins_encode %{
6154    __ and3($src$$Register, $mask$$constant, $dst$$Register);
6155  %}
6156  ins_pipe(ialu_reg_imm);
6157%}
6158#else
6159instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6160  match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6161  ins_cost(DEFAULT_COST);
6162  size(4);
6163
6164  format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6165  ins_encode %{
6166    __ and3($src$$Register, $mask$$constant, $dst$$Register);
6167  %}
6168  ins_pipe(ialu_reg_imm);
6169%}
6170#endif
6171
6172//----------Store Instructions-------------------------------------------------
6173// Store Byte
6174instruct storeB(memory mem, iRegI src) %{
6175  match(Set mem (StoreB mem src));
6176  ins_cost(MEMORY_REF_COST);
6177
6178  size(4);
6179  format %{ "STB    $src,$mem\t! byte" %}
6180  opcode(Assembler::stb_op3);
6181  ins_encode(simple_form3_mem_reg( mem, src ) );
6182  ins_pipe(istore_mem_reg);
6183%}
6184
6185instruct storeB0(memory mem, immI0 src) %{
6186  match(Set mem (StoreB mem src));
6187  ins_cost(MEMORY_REF_COST);
6188
6189  size(4);
6190  format %{ "STB    $src,$mem\t! byte" %}
6191  opcode(Assembler::stb_op3);
6192  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6193  ins_pipe(istore_mem_zero);
6194%}
6195
6196instruct storeCM0(memory mem, immI0 src) %{
6197  match(Set mem (StoreCM mem src));
6198  ins_cost(MEMORY_REF_COST);
6199
6200  size(4);
6201  format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6202  opcode(Assembler::stb_op3);
6203  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6204  ins_pipe(istore_mem_zero);
6205%}
6206
6207// Store Char/Short
6208instruct storeC(memory mem, iRegI src) %{
6209  match(Set mem (StoreC mem src));
6210  ins_cost(MEMORY_REF_COST);
6211
6212  size(4);
6213  format %{ "STH    $src,$mem\t! short" %}
6214  opcode(Assembler::sth_op3);
6215  ins_encode(simple_form3_mem_reg( mem, src ) );
6216  ins_pipe(istore_mem_reg);
6217%}
6218
6219instruct storeC0(memory mem, immI0 src) %{
6220  match(Set mem (StoreC mem src));
6221  ins_cost(MEMORY_REF_COST);
6222
6223  size(4);
6224  format %{ "STH    $src,$mem\t! short" %}
6225  opcode(Assembler::sth_op3);
6226  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6227  ins_pipe(istore_mem_zero);
6228%}
6229
6230// Store Integer
6231instruct storeI(memory mem, iRegI src) %{
6232  match(Set mem (StoreI mem src));
6233  ins_cost(MEMORY_REF_COST);
6234
6235  size(4);
6236  format %{ "STW    $src,$mem" %}
6237  opcode(Assembler::stw_op3);
6238  ins_encode(simple_form3_mem_reg( mem, src ) );
6239  ins_pipe(istore_mem_reg);
6240%}
6241
6242// Store Long
6243instruct storeL(memory mem, iRegL src) %{
6244  match(Set mem (StoreL mem src));
6245  ins_cost(MEMORY_REF_COST);
6246  size(4);
6247  format %{ "STX    $src,$mem\t! long" %}
6248  opcode(Assembler::stx_op3);
6249  ins_encode(simple_form3_mem_reg( mem, src ) );
6250  ins_pipe(istore_mem_reg);
6251%}
6252
6253instruct storeI0(memory mem, immI0 src) %{
6254  match(Set mem (StoreI mem src));
6255  ins_cost(MEMORY_REF_COST);
6256
6257  size(4);
6258  format %{ "STW    $src,$mem" %}
6259  opcode(Assembler::stw_op3);
6260  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6261  ins_pipe(istore_mem_zero);
6262%}
6263
6264instruct storeL0(memory mem, immL0 src) %{
6265  match(Set mem (StoreL mem src));
6266  ins_cost(MEMORY_REF_COST);
6267
6268  size(4);
6269  format %{ "STX    $src,$mem" %}
6270  opcode(Assembler::stx_op3);
6271  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6272  ins_pipe(istore_mem_zero);
6273%}
6274
6275// Store Integer from float register (used after fstoi)
6276instruct storeI_Freg(memory mem, regF src) %{
6277  match(Set mem (StoreI mem src));
6278  ins_cost(MEMORY_REF_COST);
6279
6280  size(4);
6281  format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6282  opcode(Assembler::stf_op3);
6283  ins_encode(simple_form3_mem_reg( mem, src ) );
6284  ins_pipe(fstoreF_mem_reg);
6285%}
6286
6287// Store Pointer
6288instruct storeP(memory dst, sp_ptr_RegP src) %{
6289  match(Set dst (StoreP dst src));
6290  ins_cost(MEMORY_REF_COST);
6291  size(4);
6292
6293#ifndef _LP64
6294  format %{ "STW    $src,$dst\t! ptr" %}
6295  opcode(Assembler::stw_op3, 0, REGP_OP);
6296#else
6297  format %{ "STX    $src,$dst\t! ptr" %}
6298  opcode(Assembler::stx_op3, 0, REGP_OP);
6299#endif
6300  ins_encode( form3_mem_reg( dst, src ) );
6301  ins_pipe(istore_mem_spORreg);
6302%}
6303
6304instruct storeP0(memory dst, immP0 src) %{
6305  match(Set dst (StoreP dst src));
6306  ins_cost(MEMORY_REF_COST);
6307  size(4);
6308
6309#ifndef _LP64
6310  format %{ "STW    $src,$dst\t! ptr" %}
6311  opcode(Assembler::stw_op3, 0, REGP_OP);
6312#else
6313  format %{ "STX    $src,$dst\t! ptr" %}
6314  opcode(Assembler::stx_op3, 0, REGP_OP);
6315#endif
6316  ins_encode( form3_mem_reg( dst, R_G0 ) );
6317  ins_pipe(istore_mem_zero);
6318%}
6319
6320// Store Compressed Pointer
6321instruct storeN(memory dst, iRegN src) %{
6322   match(Set dst (StoreN dst src));
6323   ins_cost(MEMORY_REF_COST);
6324   size(4);
6325
6326   format %{ "STW    $src,$dst\t! compressed ptr" %}
6327   ins_encode %{
6328     Register base = as_Register($dst$$base);
6329     Register index = as_Register($dst$$index);
6330     Register src = $src$$Register;
6331     if (index != G0) {
6332       __ stw(src, base, index);
6333     } else {
6334       __ stw(src, base, $dst$$disp);
6335     }
6336   %}
6337   ins_pipe(istore_mem_spORreg);
6338%}
6339
6340instruct storeNKlass(memory dst, iRegN src) %{
6341   match(Set dst (StoreNKlass dst src));
6342   ins_cost(MEMORY_REF_COST);
6343   size(4);
6344
6345   format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6346   ins_encode %{
6347     Register base = as_Register($dst$$base);
6348     Register index = as_Register($dst$$index);
6349     Register src = $src$$Register;
6350     if (index != G0) {
6351       __ stw(src, base, index);
6352     } else {
6353       __ stw(src, base, $dst$$disp);
6354     }
6355   %}
6356   ins_pipe(istore_mem_spORreg);
6357%}
6358
6359instruct storeN0(memory dst, immN0 src) %{
6360   match(Set dst (StoreN dst src));
6361   ins_cost(MEMORY_REF_COST);
6362   size(4);
6363
6364   format %{ "STW    $src,$dst\t! compressed ptr" %}
6365   ins_encode %{
6366     Register base = as_Register($dst$$base);
6367     Register index = as_Register($dst$$index);
6368     if (index != G0) {
6369       __ stw(0, base, index);
6370     } else {
6371       __ stw(0, base, $dst$$disp);
6372     }
6373   %}
6374   ins_pipe(istore_mem_zero);
6375%}
6376
6377// Store Double
6378instruct storeD( memory mem, regD src) %{
6379  match(Set mem (StoreD mem src));
6380  ins_cost(MEMORY_REF_COST);
6381
6382  size(4);
6383  format %{ "STDF   $src,$mem" %}
6384  opcode(Assembler::stdf_op3);
6385  ins_encode(simple_form3_mem_reg( mem, src ) );
6386  ins_pipe(fstoreD_mem_reg);
6387%}
6388
6389instruct storeD0( memory mem, immD0 src) %{
6390  match(Set mem (StoreD mem src));
6391  ins_cost(MEMORY_REF_COST);
6392
6393  size(4);
6394  format %{ "STX    $src,$mem" %}
6395  opcode(Assembler::stx_op3);
6396  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6397  ins_pipe(fstoreD_mem_zero);
6398%}
6399
6400// Store Float
6401instruct storeF( memory mem, regF src) %{
6402  match(Set mem (StoreF mem src));
6403  ins_cost(MEMORY_REF_COST);
6404
6405  size(4);
6406  format %{ "STF    $src,$mem" %}
6407  opcode(Assembler::stf_op3);
6408  ins_encode(simple_form3_mem_reg( mem, src ) );
6409  ins_pipe(fstoreF_mem_reg);
6410%}
6411
6412instruct storeF0( memory mem, immF0 src) %{
6413  match(Set mem (StoreF mem src));
6414  ins_cost(MEMORY_REF_COST);
6415
6416  size(4);
6417  format %{ "STW    $src,$mem\t! storeF0" %}
6418  opcode(Assembler::stw_op3);
6419  ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6420  ins_pipe(fstoreF_mem_zero);
6421%}
6422
6423// Convert oop pointer into compressed form
6424instruct encodeHeapOop(iRegN dst, iRegP src) %{
6425  predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6426  match(Set dst (EncodeP src));
6427  format %{ "encode_heap_oop $src, $dst" %}
6428  ins_encode %{
6429    __ encode_heap_oop($src$$Register, $dst$$Register);
6430  %}
6431  ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6432  ins_pipe(ialu_reg);
6433%}
6434
6435instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6436  predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6437  match(Set dst (EncodeP src));
6438  format %{ "encode_heap_oop_not_null $src, $dst" %}
6439  ins_encode %{
6440    __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6441  %}
6442  ins_pipe(ialu_reg);
6443%}
6444
6445instruct decodeHeapOop(iRegP dst, iRegN src) %{
6446  predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6447            n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6448  match(Set dst (DecodeN src));
6449  format %{ "decode_heap_oop $src, $dst" %}
6450  ins_encode %{
6451    __ decode_heap_oop($src$$Register, $dst$$Register);
6452  %}
6453  ins_pipe(ialu_reg);
6454%}
6455
6456instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6457  predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6458            n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6459  match(Set dst (DecodeN src));
6460  format %{ "decode_heap_oop_not_null $src, $dst" %}
6461  ins_encode %{
6462    __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6463  %}
6464  ins_pipe(ialu_reg);
6465%}
6466
6467instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6468  match(Set dst (EncodePKlass src));
6469  format %{ "encode_klass_not_null $src, $dst" %}
6470  ins_encode %{
6471    __ encode_klass_not_null($src$$Register, $dst$$Register);
6472  %}
6473  ins_pipe(ialu_reg);
6474%}
6475
6476instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6477  match(Set dst (DecodeNKlass src));
6478  format %{ "decode_klass_not_null $src, $dst" %}
6479  ins_encode %{
6480    __ decode_klass_not_null($src$$Register, $dst$$Register);
6481  %}
6482  ins_pipe(ialu_reg);
6483%}
6484
6485//----------MemBar Instructions-----------------------------------------------
6486// Memory barrier flavors
6487
6488instruct membar_acquire() %{
6489  match(MemBarAcquire);
6490  match(LoadFence);
6491  ins_cost(4*MEMORY_REF_COST);
6492
6493  size(0);
6494  format %{ "MEMBAR-acquire" %}
6495  ins_encode( enc_membar_acquire );
6496  ins_pipe(long_memory_op);
6497%}
6498
6499instruct membar_acquire_lock() %{
6500  match(MemBarAcquireLock);
6501  ins_cost(0);
6502
6503  size(0);
6504  format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6505  ins_encode( );
6506  ins_pipe(empty);
6507%}
6508
6509instruct membar_release() %{
6510  match(MemBarRelease);
6511  match(StoreFence);
6512  ins_cost(4*MEMORY_REF_COST);
6513
6514  size(0);
6515  format %{ "MEMBAR-release" %}
6516  ins_encode( enc_membar_release );
6517  ins_pipe(long_memory_op);
6518%}
6519
6520instruct membar_release_lock() %{
6521  match(MemBarReleaseLock);
6522  ins_cost(0);
6523
6524  size(0);
6525  format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6526  ins_encode( );
6527  ins_pipe(empty);
6528%}
6529
6530instruct membar_volatile() %{
6531  match(MemBarVolatile);
6532  ins_cost(4*MEMORY_REF_COST);
6533
6534  size(4);
6535  format %{ "MEMBAR-volatile" %}
6536  ins_encode( enc_membar_volatile );
6537  ins_pipe(long_memory_op);
6538%}
6539
6540instruct unnecessary_membar_volatile() %{
6541  match(MemBarVolatile);
6542  predicate(Matcher::post_store_load_barrier(n));
6543  ins_cost(0);
6544
6545  size(0);
6546  format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6547  ins_encode( );
6548  ins_pipe(empty);
6549%}
6550
6551instruct membar_storestore() %{
6552  match(MemBarStoreStore);
6553  ins_cost(0);
6554
6555  size(0);
6556  format %{ "!MEMBAR-storestore (empty encoding)" %}
6557  ins_encode( );
6558  ins_pipe(empty);
6559%}
6560
6561//----------Register Move Instructions-----------------------------------------
6562instruct roundDouble_nop(regD dst) %{
6563  match(Set dst (RoundDouble dst));
6564  ins_cost(0);
6565  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6566  ins_encode( );
6567  ins_pipe(empty);
6568%}
6569
6570
6571instruct roundFloat_nop(regF dst) %{
6572  match(Set dst (RoundFloat dst));
6573  ins_cost(0);
6574  // SPARC results are already "rounded" (i.e., normal-format IEEE)
6575  ins_encode( );
6576  ins_pipe(empty);
6577%}
6578
6579
6580// Cast Index to Pointer for unsafe natives
6581instruct castX2P(iRegX src, iRegP dst) %{
6582  match(Set dst (CastX2P src));
6583
6584  format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6585  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6586  ins_pipe(ialu_reg);
6587%}
6588
6589// Cast Pointer to Index for unsafe natives
6590instruct castP2X(iRegP src, iRegX dst) %{
6591  match(Set dst (CastP2X src));
6592
6593  format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6594  ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6595  ins_pipe(ialu_reg);
6596%}
6597
6598instruct stfSSD(stackSlotD stkSlot, regD src) %{
6599  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6600  match(Set stkSlot src);   // chain rule
6601  ins_cost(MEMORY_REF_COST);
6602  format %{ "STDF   $src,$stkSlot\t!stk" %}
6603  opcode(Assembler::stdf_op3);
6604  ins_encode(simple_form3_mem_reg(stkSlot, src));
6605  ins_pipe(fstoreD_stk_reg);
6606%}
6607
6608instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6609  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6610  match(Set dst stkSlot);   // chain rule
6611  ins_cost(MEMORY_REF_COST);
6612  format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6613  opcode(Assembler::lddf_op3);
6614  ins_encode(simple_form3_mem_reg(stkSlot, dst));
6615  ins_pipe(floadD_stk);
6616%}
6617
6618instruct stfSSF(stackSlotF stkSlot, regF src) %{
6619  // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6620  match(Set stkSlot src);   // chain rule
6621  ins_cost(MEMORY_REF_COST);
6622  format %{ "STF   $src,$stkSlot\t!stk" %}
6623  opcode(Assembler::stf_op3);
6624  ins_encode(simple_form3_mem_reg(stkSlot, src));
6625  ins_pipe(fstoreF_stk_reg);
6626%}
6627
6628//----------Conditional Move---------------------------------------------------
6629// Conditional move
6630instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6631  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6632  ins_cost(150);
6633  format %{ "MOV$cmp $pcc,$src,$dst" %}
6634  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6635  ins_pipe(ialu_reg);
6636%}
6637
6638instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6639  match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6640  ins_cost(140);
6641  format %{ "MOV$cmp $pcc,$src,$dst" %}
6642  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6643  ins_pipe(ialu_imm);
6644%}
6645
6646instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6647  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6648  ins_cost(150);
6649  size(4);
6650  format %{ "MOV$cmp  $icc,$src,$dst" %}
6651  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6652  ins_pipe(ialu_reg);
6653%}
6654
6655instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6656  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6657  ins_cost(140);
6658  size(4);
6659  format %{ "MOV$cmp  $icc,$src,$dst" %}
6660  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6661  ins_pipe(ialu_imm);
6662%}
6663
6664instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6665  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6666  ins_cost(150);
6667  size(4);
6668  format %{ "MOV$cmp  $icc,$src,$dst" %}
6669  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6670  ins_pipe(ialu_reg);
6671%}
6672
6673instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6674  match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6675  ins_cost(140);
6676  size(4);
6677  format %{ "MOV$cmp  $icc,$src,$dst" %}
6678  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6679  ins_pipe(ialu_imm);
6680%}
6681
6682instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6683  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6684  ins_cost(150);
6685  size(4);
6686  format %{ "MOV$cmp $fcc,$src,$dst" %}
6687  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6688  ins_pipe(ialu_reg);
6689%}
6690
6691instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6692  match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6693  ins_cost(140);
6694  size(4);
6695  format %{ "MOV$cmp $fcc,$src,$dst" %}
6696  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6697  ins_pipe(ialu_imm);
6698%}
6699
6700// Conditional move for RegN. Only cmov(reg,reg).
6701instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6702  match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6703  ins_cost(150);
6704  format %{ "MOV$cmp $pcc,$src,$dst" %}
6705  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6706  ins_pipe(ialu_reg);
6707%}
6708
6709// This instruction also works with CmpN so we don't need cmovNN_reg.
6710instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6711  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6712  ins_cost(150);
6713  size(4);
6714  format %{ "MOV$cmp  $icc,$src,$dst" %}
6715  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6716  ins_pipe(ialu_reg);
6717%}
6718
6719// This instruction also works with CmpN so we don't need cmovNN_reg.
6720instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6721  match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6722  ins_cost(150);
6723  size(4);
6724  format %{ "MOV$cmp  $icc,$src,$dst" %}
6725  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6726  ins_pipe(ialu_reg);
6727%}
6728
6729instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6730  match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6731  ins_cost(150);
6732  size(4);
6733  format %{ "MOV$cmp $fcc,$src,$dst" %}
6734  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6735  ins_pipe(ialu_reg);
6736%}
6737
6738// Conditional move
6739instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6740  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6741  ins_cost(150);
6742  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6743  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6744  ins_pipe(ialu_reg);
6745%}
6746
6747instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6748  match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6749  ins_cost(140);
6750  format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6751  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6752  ins_pipe(ialu_imm);
6753%}
6754
6755// This instruction also works with CmpN so we don't need cmovPN_reg.
6756instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6757  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6758  ins_cost(150);
6759
6760  size(4);
6761  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6762  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6763  ins_pipe(ialu_reg);
6764%}
6765
6766instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6767  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6768  ins_cost(150);
6769
6770  size(4);
6771  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6772  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6773  ins_pipe(ialu_reg);
6774%}
6775
6776instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6777  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6778  ins_cost(140);
6779
6780  size(4);
6781  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6782  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6783  ins_pipe(ialu_imm);
6784%}
6785
6786instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6787  match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6788  ins_cost(140);
6789
6790  size(4);
6791  format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6792  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6793  ins_pipe(ialu_imm);
6794%}
6795
6796instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6797  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6798  ins_cost(150);
6799  size(4);
6800  format %{ "MOV$cmp $fcc,$src,$dst" %}
6801  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6802  ins_pipe(ialu_imm);
6803%}
6804
6805instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6806  match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6807  ins_cost(140);
6808  size(4);
6809  format %{ "MOV$cmp $fcc,$src,$dst" %}
6810  ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6811  ins_pipe(ialu_imm);
6812%}
6813
6814// Conditional move
6815instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6816  match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6817  ins_cost(150);
6818  opcode(0x101);
6819  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6820  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6821  ins_pipe(int_conditional_float_move);
6822%}
6823
6824instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6825  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6826  ins_cost(150);
6827
6828  size(4);
6829  format %{ "FMOVS$cmp $icc,$src,$dst" %}
6830  opcode(0x101);
6831  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6832  ins_pipe(int_conditional_float_move);
6833%}
6834
6835instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6836  match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6837  ins_cost(150);
6838
6839  size(4);
6840  format %{ "FMOVS$cmp $icc,$src,$dst" %}
6841  opcode(0x101);
6842  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6843  ins_pipe(int_conditional_float_move);
6844%}
6845
6846// Conditional move,
6847instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6848  match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6849  ins_cost(150);
6850  size(4);
6851  format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6852  opcode(0x1);
6853  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6854  ins_pipe(int_conditional_double_move);
6855%}
6856
6857// Conditional move
6858instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6859  match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6860  ins_cost(150);
6861  size(4);
6862  opcode(0x102);
6863  format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6864  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6865  ins_pipe(int_conditional_double_move);
6866%}
6867
6868instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6869  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6870  ins_cost(150);
6871
6872  size(4);
6873  format %{ "FMOVD$cmp $icc,$src,$dst" %}
6874  opcode(0x102);
6875  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6876  ins_pipe(int_conditional_double_move);
6877%}
6878
6879instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6880  match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6881  ins_cost(150);
6882
6883  size(4);
6884  format %{ "FMOVD$cmp $icc,$src,$dst" %}
6885  opcode(0x102);
6886  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6887  ins_pipe(int_conditional_double_move);
6888%}
6889
6890// Conditional move,
6891instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6892  match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6893  ins_cost(150);
6894  size(4);
6895  format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6896  opcode(0x2);
6897  ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6898  ins_pipe(int_conditional_double_move);
6899%}
6900
6901// Conditional move
6902instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6903  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6904  ins_cost(150);
6905  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6906  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6907  ins_pipe(ialu_reg);
6908%}
6909
6910instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6911  match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6912  ins_cost(140);
6913  format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6914  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6915  ins_pipe(ialu_imm);
6916%}
6917
6918instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6919  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6920  ins_cost(150);
6921
6922  size(4);
6923  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6924  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6925  ins_pipe(ialu_reg);
6926%}
6927
6928
6929instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6930  match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6931  ins_cost(150);
6932
6933  size(4);
6934  format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6935  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6936  ins_pipe(ialu_reg);
6937%}
6938
6939
6940instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6941  match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6942  ins_cost(150);
6943
6944  size(4);
6945  format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6946  ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6947  ins_pipe(ialu_reg);
6948%}
6949
6950
6951
6952//----------OS and Locking Instructions----------------------------------------
6953
6954// This name is KNOWN by the ADLC and cannot be changed.
6955// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6956// for this guy.
6957instruct tlsLoadP(g2RegP dst) %{
6958  match(Set dst (ThreadLocal));
6959
6960  size(0);
6961  ins_cost(0);
6962  format %{ "# TLS is in G2" %}
6963  ins_encode( /*empty encoding*/ );
6964  ins_pipe(ialu_none);
6965%}
6966
6967instruct checkCastPP( iRegP dst ) %{
6968  match(Set dst (CheckCastPP dst));
6969
6970  size(0);
6971  format %{ "# checkcastPP of $dst" %}
6972  ins_encode( /*empty encoding*/ );
6973  ins_pipe(empty);
6974%}
6975
6976
6977instruct castPP( iRegP dst ) %{
6978  match(Set dst (CastPP dst));
6979  format %{ "# castPP of $dst" %}
6980  ins_encode( /*empty encoding*/ );
6981  ins_pipe(empty);
6982%}
6983
6984instruct castII( iRegI dst ) %{
6985  match(Set dst (CastII dst));
6986  format %{ "# castII of $dst" %}
6987  ins_encode( /*empty encoding*/ );
6988  ins_cost(0);
6989  ins_pipe(empty);
6990%}
6991
6992//----------Arithmetic Instructions--------------------------------------------
6993// Addition Instructions
6994// Register Addition
6995instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6996  match(Set dst (AddI src1 src2));
6997
6998  size(4);
6999  format %{ "ADD    $src1,$src2,$dst" %}
7000  ins_encode %{
7001    __ add($src1$$Register, $src2$$Register, $dst$$Register);
7002  %}
7003  ins_pipe(ialu_reg_reg);
7004%}
7005
7006// Immediate Addition
7007instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7008  match(Set dst (AddI src1 src2));
7009
7010  size(4);
7011  format %{ "ADD    $src1,$src2,$dst" %}
7012  opcode(Assembler::add_op3, Assembler::arith_op);
7013  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7014  ins_pipe(ialu_reg_imm);
7015%}
7016
7017// Pointer Register Addition
7018instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7019  match(Set dst (AddP src1 src2));
7020
7021  size(4);
7022  format %{ "ADD    $src1,$src2,$dst" %}
7023  opcode(Assembler::add_op3, Assembler::arith_op);
7024  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7025  ins_pipe(ialu_reg_reg);
7026%}
7027
7028// Pointer Immediate Addition
7029instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7030  match(Set dst (AddP src1 src2));
7031
7032  size(4);
7033  format %{ "ADD    $src1,$src2,$dst" %}
7034  opcode(Assembler::add_op3, Assembler::arith_op);
7035  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7036  ins_pipe(ialu_reg_imm);
7037%}
7038
7039// Long Addition
7040instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7041  match(Set dst (AddL src1 src2));
7042
7043  size(4);
7044  format %{ "ADD    $src1,$src2,$dst\t! long" %}
7045  opcode(Assembler::add_op3, Assembler::arith_op);
7046  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7047  ins_pipe(ialu_reg_reg);
7048%}
7049
7050instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7051  match(Set dst (AddL src1 con));
7052
7053  size(4);
7054  format %{ "ADD    $src1,$con,$dst" %}
7055  opcode(Assembler::add_op3, Assembler::arith_op);
7056  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7057  ins_pipe(ialu_reg_imm);
7058%}
7059
7060//----------Conditional_store--------------------------------------------------
7061// Conditional-store of the updated heap-top.
7062// Used during allocation of the shared heap.
7063// Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7064
7065// LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7066instruct loadPLocked(iRegP dst, memory mem) %{
7067  match(Set dst (LoadPLocked mem));
7068  ins_cost(MEMORY_REF_COST);
7069
7070#ifndef _LP64
7071  size(4);
7072  format %{ "LDUW   $mem,$dst\t! ptr" %}
7073  opcode(Assembler::lduw_op3, 0, REGP_OP);
7074#else
7075  format %{ "LDX    $mem,$dst\t! ptr" %}
7076  opcode(Assembler::ldx_op3, 0, REGP_OP);
7077#endif
7078  ins_encode( form3_mem_reg( mem, dst ) );
7079  ins_pipe(iload_mem);
7080%}
7081
7082instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7083  match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7084  effect( KILL newval );
7085  format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7086            "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7087  ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7088  ins_pipe( long_memory_op );
7089%}
7090
7091// Conditional-store of an int value.
7092instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7093  match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7094  effect( KILL newval );
7095  format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7096            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7097  ins_encode( enc_cas(mem_ptr,oldval,newval) );
7098  ins_pipe( long_memory_op );
7099%}
7100
7101// Conditional-store of a long value.
7102instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7103  match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7104  effect( KILL newval );
7105  format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7106            "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7107  ins_encode( enc_cas(mem_ptr,oldval,newval) );
7108  ins_pipe( long_memory_op );
7109%}
7110
7111// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7112
7113instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7114  predicate(VM_Version::supports_cx8());
7115  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7116  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7117  format %{
7118            "MOV    $newval,O7\n\t"
7119            "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7120            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7121            "MOV    1,$res\n\t"
7122            "MOVne  xcc,R_G0,$res"
7123  %}
7124  ins_encode( enc_casx(mem_ptr, oldval, newval),
7125              enc_lflags_ne_to_boolean(res) );
7126  ins_pipe( long_memory_op );
7127%}
7128
7129
7130instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7131  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7132  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7133  format %{
7134            "MOV    $newval,O7\n\t"
7135            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7136            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7137            "MOV    1,$res\n\t"
7138            "MOVne  icc,R_G0,$res"
7139  %}
7140  ins_encode( enc_casi(mem_ptr, oldval, newval),
7141              enc_iflags_ne_to_boolean(res) );
7142  ins_pipe( long_memory_op );
7143%}
7144
7145instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7146#ifdef _LP64
7147  predicate(VM_Version::supports_cx8());
7148#endif
7149  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7150  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7151  format %{
7152            "MOV    $newval,O7\n\t"
7153            "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7154            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7155            "MOV    1,$res\n\t"
7156            "MOVne  xcc,R_G0,$res"
7157  %}
7158#ifdef _LP64
7159  ins_encode( enc_casx(mem_ptr, oldval, newval),
7160              enc_lflags_ne_to_boolean(res) );
7161#else
7162  ins_encode( enc_casi(mem_ptr, oldval, newval),
7163              enc_iflags_ne_to_boolean(res) );
7164#endif
7165  ins_pipe( long_memory_op );
7166%}
7167
7168instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7169  match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7170  effect( USE mem_ptr, KILL ccr, KILL tmp1);
7171  format %{
7172            "MOV    $newval,O7\n\t"
7173            "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7174            "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7175            "MOV    1,$res\n\t"
7176            "MOVne  icc,R_G0,$res"
7177  %}
7178  ins_encode( enc_casi(mem_ptr, oldval, newval),
7179              enc_iflags_ne_to_boolean(res) );
7180  ins_pipe( long_memory_op );
7181%}
7182
7183instruct xchgI( memory mem, iRegI newval) %{
7184  match(Set newval (GetAndSetI mem newval));
7185  format %{ "SWAP  [$mem],$newval" %}
7186  size(4);
7187  ins_encode %{
7188    __ swap($mem$$Address, $newval$$Register);
7189  %}
7190  ins_pipe( long_memory_op );
7191%}
7192
7193#ifndef _LP64
7194instruct xchgP( memory mem, iRegP newval) %{
7195  match(Set newval (GetAndSetP mem newval));
7196  format %{ "SWAP  [$mem],$newval" %}
7197  size(4);
7198  ins_encode %{
7199    __ swap($mem$$Address, $newval$$Register);
7200  %}
7201  ins_pipe( long_memory_op );
7202%}
7203#endif
7204
7205instruct xchgN( memory mem, iRegN newval) %{
7206  match(Set newval (GetAndSetN mem newval));
7207  format %{ "SWAP  [$mem],$newval" %}
7208  size(4);
7209  ins_encode %{
7210    __ swap($mem$$Address, $newval$$Register);
7211  %}
7212  ins_pipe( long_memory_op );
7213%}
7214
7215//---------------------
7216// Subtraction Instructions
7217// Register Subtraction
7218instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7219  match(Set dst (SubI src1 src2));
7220
7221  size(4);
7222  format %{ "SUB    $src1,$src2,$dst" %}
7223  opcode(Assembler::sub_op3, Assembler::arith_op);
7224  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7225  ins_pipe(ialu_reg_reg);
7226%}
7227
7228// Immediate Subtraction
7229instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7230  match(Set dst (SubI src1 src2));
7231
7232  size(4);
7233  format %{ "SUB    $src1,$src2,$dst" %}
7234  opcode(Assembler::sub_op3, Assembler::arith_op);
7235  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7236  ins_pipe(ialu_reg_imm);
7237%}
7238
7239instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7240  match(Set dst (SubI zero src2));
7241
7242  size(4);
7243  format %{ "NEG    $src2,$dst" %}
7244  opcode(Assembler::sub_op3, Assembler::arith_op);
7245  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7246  ins_pipe(ialu_zero_reg);
7247%}
7248
7249// Long subtraction
7250instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7251  match(Set dst (SubL src1 src2));
7252
7253  size(4);
7254  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7255  opcode(Assembler::sub_op3, Assembler::arith_op);
7256  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7257  ins_pipe(ialu_reg_reg);
7258%}
7259
7260// Immediate Subtraction
7261instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7262  match(Set dst (SubL src1 con));
7263
7264  size(4);
7265  format %{ "SUB    $src1,$con,$dst\t! long" %}
7266  opcode(Assembler::sub_op3, Assembler::arith_op);
7267  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7268  ins_pipe(ialu_reg_imm);
7269%}
7270
7271// Long negation
7272instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7273  match(Set dst (SubL zero src2));
7274
7275  size(4);
7276  format %{ "NEG    $src2,$dst\t! long" %}
7277  opcode(Assembler::sub_op3, Assembler::arith_op);
7278  ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7279  ins_pipe(ialu_zero_reg);
7280%}
7281
7282// Multiplication Instructions
7283// Integer Multiplication
7284// Register Multiplication
7285instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7286  match(Set dst (MulI src1 src2));
7287
7288  size(4);
7289  format %{ "MULX   $src1,$src2,$dst" %}
7290  opcode(Assembler::mulx_op3, Assembler::arith_op);
7291  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7292  ins_pipe(imul_reg_reg);
7293%}
7294
7295// Immediate Multiplication
7296instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7297  match(Set dst (MulI src1 src2));
7298
7299  size(4);
7300  format %{ "MULX   $src1,$src2,$dst" %}
7301  opcode(Assembler::mulx_op3, Assembler::arith_op);
7302  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7303  ins_pipe(imul_reg_imm);
7304%}
7305
7306instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7307  match(Set dst (MulL src1 src2));
7308  ins_cost(DEFAULT_COST * 5);
7309  size(4);
7310  format %{ "MULX   $src1,$src2,$dst\t! long" %}
7311  opcode(Assembler::mulx_op3, Assembler::arith_op);
7312  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7313  ins_pipe(mulL_reg_reg);
7314%}
7315
7316// Immediate Multiplication
7317instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7318  match(Set dst (MulL src1 src2));
7319  ins_cost(DEFAULT_COST * 5);
7320  size(4);
7321  format %{ "MULX   $src1,$src2,$dst" %}
7322  opcode(Assembler::mulx_op3, Assembler::arith_op);
7323  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7324  ins_pipe(mulL_reg_imm);
7325%}
7326
7327// Integer Division
7328// Register Division
7329instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7330  match(Set dst (DivI src1 src2));
7331  ins_cost((2+71)*DEFAULT_COST);
7332
7333  format %{ "SRA     $src2,0,$src2\n\t"
7334            "SRA     $src1,0,$src1\n\t"
7335            "SDIVX   $src1,$src2,$dst" %}
7336  ins_encode( idiv_reg( src1, src2, dst ) );
7337  ins_pipe(sdiv_reg_reg);
7338%}
7339
7340// Immediate Division
7341instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7342  match(Set dst (DivI src1 src2));
7343  ins_cost((2+71)*DEFAULT_COST);
7344
7345  format %{ "SRA     $src1,0,$src1\n\t"
7346            "SDIVX   $src1,$src2,$dst" %}
7347  ins_encode( idiv_imm( src1, src2, dst ) );
7348  ins_pipe(sdiv_reg_imm);
7349%}
7350
7351//----------Div-By-10-Expansion------------------------------------------------
7352// Extract hi bits of a 32x32->64 bit multiply.
7353// Expand rule only, not matched
7354instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7355  effect( DEF dst, USE src1, USE src2 );
7356  format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7357            "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7358  ins_encode( enc_mul_hi(dst,src1,src2));
7359  ins_pipe(sdiv_reg_reg);
7360%}
7361
7362// Magic constant, reciprocal of 10
7363instruct loadConI_x66666667(iRegIsafe dst) %{
7364  effect( DEF dst );
7365
7366  size(8);
7367  format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7368  ins_encode( Set32(0x66666667, dst) );
7369  ins_pipe(ialu_hi_lo_reg);
7370%}
7371
7372// Register Shift Right Arithmetic Long by 32-63
7373instruct sra_31( iRegI dst, iRegI src ) %{
7374  effect( DEF dst, USE src );
7375  format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7376  ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7377  ins_pipe(ialu_reg_reg);
7378%}
7379
7380// Arithmetic Shift Right by 8-bit immediate
7381instruct sra_reg_2( iRegI dst, iRegI src ) %{
7382  effect( DEF dst, USE src );
7383  format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7384  opcode(Assembler::sra_op3, Assembler::arith_op);
7385  ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7386  ins_pipe(ialu_reg_imm);
7387%}
7388
7389// Integer DIV with 10
7390instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7391  match(Set dst (DivI src div));
7392  ins_cost((6+6)*DEFAULT_COST);
7393  expand %{
7394    iRegIsafe tmp1;               // Killed temps;
7395    iRegIsafe tmp2;               // Killed temps;
7396    iRegI tmp3;                   // Killed temps;
7397    iRegI tmp4;                   // Killed temps;
7398    loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7399    mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7400    sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7401    sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7402    subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7403  %}
7404%}
7405
7406// Register Long Division
7407instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7408  match(Set dst (DivL src1 src2));
7409  ins_cost(DEFAULT_COST*71);
7410  size(4);
7411  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7412  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7413  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7414  ins_pipe(divL_reg_reg);
7415%}
7416
7417// Register Long Division
7418instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7419  match(Set dst (DivL src1 src2));
7420  ins_cost(DEFAULT_COST*71);
7421  size(4);
7422  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7423  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7424  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7425  ins_pipe(divL_reg_imm);
7426%}
7427
7428// Integer Remainder
7429// Register Remainder
7430instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7431  match(Set dst (ModI src1 src2));
7432  effect( KILL ccr, KILL temp);
7433
7434  format %{ "SREM   $src1,$src2,$dst" %}
7435  ins_encode( irem_reg(src1, src2, dst, temp) );
7436  ins_pipe(sdiv_reg_reg);
7437%}
7438
7439// Immediate Remainder
7440instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7441  match(Set dst (ModI src1 src2));
7442  effect( KILL ccr, KILL temp);
7443
7444  format %{ "SREM   $src1,$src2,$dst" %}
7445  ins_encode( irem_imm(src1, src2, dst, temp) );
7446  ins_pipe(sdiv_reg_imm);
7447%}
7448
7449// Register Long Remainder
7450instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7451  effect(DEF dst, USE src1, USE src2);
7452  size(4);
7453  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7454  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7455  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7456  ins_pipe(divL_reg_reg);
7457%}
7458
7459// Register Long Division
7460instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7461  effect(DEF dst, USE src1, USE src2);
7462  size(4);
7463  format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7464  opcode(Assembler::sdivx_op3, Assembler::arith_op);
7465  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7466  ins_pipe(divL_reg_imm);
7467%}
7468
7469instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7470  effect(DEF dst, USE src1, USE src2);
7471  size(4);
7472  format %{ "MULX   $src1,$src2,$dst\t! long" %}
7473  opcode(Assembler::mulx_op3, Assembler::arith_op);
7474  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7475  ins_pipe(mulL_reg_reg);
7476%}
7477
7478// Immediate Multiplication
7479instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7480  effect(DEF dst, USE src1, USE src2);
7481  size(4);
7482  format %{ "MULX   $src1,$src2,$dst" %}
7483  opcode(Assembler::mulx_op3, Assembler::arith_op);
7484  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7485  ins_pipe(mulL_reg_imm);
7486%}
7487
7488instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7489  effect(DEF dst, USE src1, USE src2);
7490  size(4);
7491  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7492  opcode(Assembler::sub_op3, Assembler::arith_op);
7493  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7494  ins_pipe(ialu_reg_reg);
7495%}
7496
7497instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7498  effect(DEF dst, USE src1, USE src2);
7499  size(4);
7500  format %{ "SUB    $src1,$src2,$dst\t! long" %}
7501  opcode(Assembler::sub_op3, Assembler::arith_op);
7502  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7503  ins_pipe(ialu_reg_reg);
7504%}
7505
7506// Register Long Remainder
7507instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7508  match(Set dst (ModL src1 src2));
7509  ins_cost(DEFAULT_COST*(71 + 6 + 1));
7510  expand %{
7511    iRegL tmp1;
7512    iRegL tmp2;
7513    divL_reg_reg_1(tmp1, src1, src2);
7514    mulL_reg_reg_1(tmp2, tmp1, src2);
7515    subL_reg_reg_1(dst,  src1, tmp2);
7516  %}
7517%}
7518
7519// Register Long Remainder
7520instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7521  match(Set dst (ModL src1 src2));
7522  ins_cost(DEFAULT_COST*(71 + 6 + 1));
7523  expand %{
7524    iRegL tmp1;
7525    iRegL tmp2;
7526    divL_reg_imm13_1(tmp1, src1, src2);
7527    mulL_reg_imm13_1(tmp2, tmp1, src2);
7528    subL_reg_reg_2  (dst,  src1, tmp2);
7529  %}
7530%}
7531
7532// Integer Shift Instructions
7533// Register Shift Left
7534instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7535  match(Set dst (LShiftI src1 src2));
7536
7537  size(4);
7538  format %{ "SLL    $src1,$src2,$dst" %}
7539  opcode(Assembler::sll_op3, Assembler::arith_op);
7540  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7541  ins_pipe(ialu_reg_reg);
7542%}
7543
7544// Register Shift Left Immediate
7545instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7546  match(Set dst (LShiftI src1 src2));
7547
7548  size(4);
7549  format %{ "SLL    $src1,$src2,$dst" %}
7550  opcode(Assembler::sll_op3, Assembler::arith_op);
7551  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7552  ins_pipe(ialu_reg_imm);
7553%}
7554
7555// Register Shift Left
7556instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7557  match(Set dst (LShiftL src1 src2));
7558
7559  size(4);
7560  format %{ "SLLX   $src1,$src2,$dst" %}
7561  opcode(Assembler::sllx_op3, Assembler::arith_op);
7562  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7563  ins_pipe(ialu_reg_reg);
7564%}
7565
7566// Register Shift Left Immediate
7567instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7568  match(Set dst (LShiftL src1 src2));
7569
7570  size(4);
7571  format %{ "SLLX   $src1,$src2,$dst" %}
7572  opcode(Assembler::sllx_op3, Assembler::arith_op);
7573  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7574  ins_pipe(ialu_reg_imm);
7575%}
7576
7577// Register Arithmetic Shift Right
7578instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7579  match(Set dst (RShiftI src1 src2));
7580  size(4);
7581  format %{ "SRA    $src1,$src2,$dst" %}
7582  opcode(Assembler::sra_op3, Assembler::arith_op);
7583  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7584  ins_pipe(ialu_reg_reg);
7585%}
7586
7587// Register Arithmetic Shift Right Immediate
7588instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7589  match(Set dst (RShiftI src1 src2));
7590
7591  size(4);
7592  format %{ "SRA    $src1,$src2,$dst" %}
7593  opcode(Assembler::sra_op3, Assembler::arith_op);
7594  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7595  ins_pipe(ialu_reg_imm);
7596%}
7597
7598// Register Shift Right Arithmatic Long
7599instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7600  match(Set dst (RShiftL src1 src2));
7601
7602  size(4);
7603  format %{ "SRAX   $src1,$src2,$dst" %}
7604  opcode(Assembler::srax_op3, Assembler::arith_op);
7605  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7606  ins_pipe(ialu_reg_reg);
7607%}
7608
7609// Register Shift Left Immediate
7610instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7611  match(Set dst (RShiftL src1 src2));
7612
7613  size(4);
7614  format %{ "SRAX   $src1,$src2,$dst" %}
7615  opcode(Assembler::srax_op3, Assembler::arith_op);
7616  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7617  ins_pipe(ialu_reg_imm);
7618%}
7619
7620// Register Shift Right
7621instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7622  match(Set dst (URShiftI src1 src2));
7623
7624  size(4);
7625  format %{ "SRL    $src1,$src2,$dst" %}
7626  opcode(Assembler::srl_op3, Assembler::arith_op);
7627  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7628  ins_pipe(ialu_reg_reg);
7629%}
7630
7631// Register Shift Right Immediate
7632instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7633  match(Set dst (URShiftI src1 src2));
7634
7635  size(4);
7636  format %{ "SRL    $src1,$src2,$dst" %}
7637  opcode(Assembler::srl_op3, Assembler::arith_op);
7638  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7639  ins_pipe(ialu_reg_imm);
7640%}
7641
7642// Register Shift Right
7643instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7644  match(Set dst (URShiftL src1 src2));
7645
7646  size(4);
7647  format %{ "SRLX   $src1,$src2,$dst" %}
7648  opcode(Assembler::srlx_op3, Assembler::arith_op);
7649  ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7650  ins_pipe(ialu_reg_reg);
7651%}
7652
7653// Register Shift Right Immediate
7654instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7655  match(Set dst (URShiftL src1 src2));
7656
7657  size(4);
7658  format %{ "SRLX   $src1,$src2,$dst" %}
7659  opcode(Assembler::srlx_op3, Assembler::arith_op);
7660  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7661  ins_pipe(ialu_reg_imm);
7662%}
7663
7664// Register Shift Right Immediate with a CastP2X
7665#ifdef _LP64
7666instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7667  match(Set dst (URShiftL (CastP2X src1) src2));
7668  size(4);
7669  format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7670  opcode(Assembler::srlx_op3, Assembler::arith_op);
7671  ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7672  ins_pipe(ialu_reg_imm);
7673%}
7674#else
7675instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7676  match(Set dst (URShiftI (CastP2X src1) src2));
7677  size(4);
7678  format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7679  opcode(Assembler::srl_op3, Assembler::arith_op);
7680  ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7681  ins_pipe(ialu_reg_imm);
7682%}
7683#endif
7684
7685
7686//----------Floating Point Arithmetic Instructions-----------------------------
7687
7688//  Add float single precision
7689instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7690  match(Set dst (AddF src1 src2));
7691
7692  size(4);
7693  format %{ "FADDS  $src1,$src2,$dst" %}
7694  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7695  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7696  ins_pipe(faddF_reg_reg);
7697%}
7698
7699//  Add float double precision
7700instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7701  match(Set dst (AddD src1 src2));
7702
7703  size(4);
7704  format %{ "FADDD  $src1,$src2,$dst" %}
7705  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7706  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7707  ins_pipe(faddD_reg_reg);
7708%}
7709
7710//  Sub float single precision
7711instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7712  match(Set dst (SubF src1 src2));
7713
7714  size(4);
7715  format %{ "FSUBS  $src1,$src2,$dst" %}
7716  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7717  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7718  ins_pipe(faddF_reg_reg);
7719%}
7720
7721//  Sub float double precision
7722instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7723  match(Set dst (SubD src1 src2));
7724
7725  size(4);
7726  format %{ "FSUBD  $src1,$src2,$dst" %}
7727  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7728  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7729  ins_pipe(faddD_reg_reg);
7730%}
7731
7732//  Mul float single precision
7733instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7734  match(Set dst (MulF src1 src2));
7735
7736  size(4);
7737  format %{ "FMULS  $src1,$src2,$dst" %}
7738  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7739  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7740  ins_pipe(fmulF_reg_reg);
7741%}
7742
7743//  Mul float double precision
7744instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7745  match(Set dst (MulD src1 src2));
7746
7747  size(4);
7748  format %{ "FMULD  $src1,$src2,$dst" %}
7749  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7750  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7751  ins_pipe(fmulD_reg_reg);
7752%}
7753
7754//  Div float single precision
7755instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7756  match(Set dst (DivF src1 src2));
7757
7758  size(4);
7759  format %{ "FDIVS  $src1,$src2,$dst" %}
7760  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7761  ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7762  ins_pipe(fdivF_reg_reg);
7763%}
7764
7765//  Div float double precision
7766instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7767  match(Set dst (DivD src1 src2));
7768
7769  size(4);
7770  format %{ "FDIVD  $src1,$src2,$dst" %}
7771  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7772  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7773  ins_pipe(fdivD_reg_reg);
7774%}
7775
7776//  Absolute float double precision
7777instruct absD_reg(regD dst, regD src) %{
7778  match(Set dst (AbsD src));
7779
7780  format %{ "FABSd  $src,$dst" %}
7781  ins_encode(fabsd(dst, src));
7782  ins_pipe(faddD_reg);
7783%}
7784
7785//  Absolute float single precision
7786instruct absF_reg(regF dst, regF src) %{
7787  match(Set dst (AbsF src));
7788
7789  format %{ "FABSs  $src,$dst" %}
7790  ins_encode(fabss(dst, src));
7791  ins_pipe(faddF_reg);
7792%}
7793
7794instruct negF_reg(regF dst, regF src) %{
7795  match(Set dst (NegF src));
7796
7797  size(4);
7798  format %{ "FNEGs  $src,$dst" %}
7799  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7800  ins_encode(form3_opf_rs2F_rdF(src, dst));
7801  ins_pipe(faddF_reg);
7802%}
7803
7804instruct negD_reg(regD dst, regD src) %{
7805  match(Set dst (NegD src));
7806
7807  format %{ "FNEGd  $src,$dst" %}
7808  ins_encode(fnegd(dst, src));
7809  ins_pipe(faddD_reg);
7810%}
7811
7812//  Sqrt float double precision
7813instruct sqrtF_reg_reg(regF dst, regF src) %{
7814  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7815
7816  size(4);
7817  format %{ "FSQRTS $src,$dst" %}
7818  ins_encode(fsqrts(dst, src));
7819  ins_pipe(fdivF_reg_reg);
7820%}
7821
7822//  Sqrt float double precision
7823instruct sqrtD_reg_reg(regD dst, regD src) %{
7824  match(Set dst (SqrtD src));
7825
7826  size(4);
7827  format %{ "FSQRTD $src,$dst" %}
7828  ins_encode(fsqrtd(dst, src));
7829  ins_pipe(fdivD_reg_reg);
7830%}
7831
7832//----------Logical Instructions-----------------------------------------------
7833// And Instructions
7834// Register And
7835instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7836  match(Set dst (AndI src1 src2));
7837
7838  size(4);
7839  format %{ "AND    $src1,$src2,$dst" %}
7840  opcode(Assembler::and_op3, Assembler::arith_op);
7841  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7842  ins_pipe(ialu_reg_reg);
7843%}
7844
7845// Immediate And
7846instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7847  match(Set dst (AndI src1 src2));
7848
7849  size(4);
7850  format %{ "AND    $src1,$src2,$dst" %}
7851  opcode(Assembler::and_op3, Assembler::arith_op);
7852  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7853  ins_pipe(ialu_reg_imm);
7854%}
7855
7856// Register And Long
7857instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7858  match(Set dst (AndL src1 src2));
7859
7860  ins_cost(DEFAULT_COST);
7861  size(4);
7862  format %{ "AND    $src1,$src2,$dst\t! long" %}
7863  opcode(Assembler::and_op3, Assembler::arith_op);
7864  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7865  ins_pipe(ialu_reg_reg);
7866%}
7867
7868instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7869  match(Set dst (AndL src1 con));
7870
7871  ins_cost(DEFAULT_COST);
7872  size(4);
7873  format %{ "AND    $src1,$con,$dst\t! long" %}
7874  opcode(Assembler::and_op3, Assembler::arith_op);
7875  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7876  ins_pipe(ialu_reg_imm);
7877%}
7878
7879// Or Instructions
7880// Register Or
7881instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7882  match(Set dst (OrI src1 src2));
7883
7884  size(4);
7885  format %{ "OR     $src1,$src2,$dst" %}
7886  opcode(Assembler::or_op3, Assembler::arith_op);
7887  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7888  ins_pipe(ialu_reg_reg);
7889%}
7890
7891// Immediate Or
7892instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7893  match(Set dst (OrI src1 src2));
7894
7895  size(4);
7896  format %{ "OR     $src1,$src2,$dst" %}
7897  opcode(Assembler::or_op3, Assembler::arith_op);
7898  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7899  ins_pipe(ialu_reg_imm);
7900%}
7901
7902// Register Or Long
7903instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7904  match(Set dst (OrL src1 src2));
7905
7906  ins_cost(DEFAULT_COST);
7907  size(4);
7908  format %{ "OR     $src1,$src2,$dst\t! long" %}
7909  opcode(Assembler::or_op3, Assembler::arith_op);
7910  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7911  ins_pipe(ialu_reg_reg);
7912%}
7913
7914instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7915  match(Set dst (OrL src1 con));
7916  ins_cost(DEFAULT_COST*2);
7917
7918  ins_cost(DEFAULT_COST);
7919  size(4);
7920  format %{ "OR     $src1,$con,$dst\t! long" %}
7921  opcode(Assembler::or_op3, Assembler::arith_op);
7922  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7923  ins_pipe(ialu_reg_imm);
7924%}
7925
7926#ifndef _LP64
7927
7928// Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7929instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7930  match(Set dst (OrI src1 (CastP2X src2)));
7931
7932  size(4);
7933  format %{ "OR     $src1,$src2,$dst" %}
7934  opcode(Assembler::or_op3, Assembler::arith_op);
7935  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7936  ins_pipe(ialu_reg_reg);
7937%}
7938
7939#else
7940
7941instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7942  match(Set dst (OrL src1 (CastP2X src2)));
7943
7944  ins_cost(DEFAULT_COST);
7945  size(4);
7946  format %{ "OR     $src1,$src2,$dst\t! long" %}
7947  opcode(Assembler::or_op3, Assembler::arith_op);
7948  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7949  ins_pipe(ialu_reg_reg);
7950%}
7951
7952#endif
7953
7954// Xor Instructions
7955// Register Xor
7956instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7957  match(Set dst (XorI src1 src2));
7958
7959  size(4);
7960  format %{ "XOR    $src1,$src2,$dst" %}
7961  opcode(Assembler::xor_op3, Assembler::arith_op);
7962  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7963  ins_pipe(ialu_reg_reg);
7964%}
7965
7966// Immediate Xor
7967instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7968  match(Set dst (XorI src1 src2));
7969
7970  size(4);
7971  format %{ "XOR    $src1,$src2,$dst" %}
7972  opcode(Assembler::xor_op3, Assembler::arith_op);
7973  ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7974  ins_pipe(ialu_reg_imm);
7975%}
7976
7977// Register Xor Long
7978instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7979  match(Set dst (XorL src1 src2));
7980
7981  ins_cost(DEFAULT_COST);
7982  size(4);
7983  format %{ "XOR    $src1,$src2,$dst\t! long" %}
7984  opcode(Assembler::xor_op3, Assembler::arith_op);
7985  ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7986  ins_pipe(ialu_reg_reg);
7987%}
7988
7989instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7990  match(Set dst (XorL src1 con));
7991
7992  ins_cost(DEFAULT_COST);
7993  size(4);
7994  format %{ "XOR    $src1,$con,$dst\t! long" %}
7995  opcode(Assembler::xor_op3, Assembler::arith_op);
7996  ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7997  ins_pipe(ialu_reg_imm);
7998%}
7999
8000//----------Convert to Boolean-------------------------------------------------
8001// Nice hack for 32-bit tests but doesn't work for
8002// 64-bit pointers.
8003instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8004  match(Set dst (Conv2B src));
8005  effect( KILL ccr );
8006  ins_cost(DEFAULT_COST*2);
8007  format %{ "CMP    R_G0,$src\n\t"
8008            "ADDX   R_G0,0,$dst" %}
8009  ins_encode( enc_to_bool( src, dst ) );
8010  ins_pipe(ialu_reg_ialu);
8011%}
8012
8013#ifndef _LP64
8014instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8015  match(Set dst (Conv2B src));
8016  effect( KILL ccr );
8017  ins_cost(DEFAULT_COST*2);
8018  format %{ "CMP    R_G0,$src\n\t"
8019            "ADDX   R_G0,0,$dst" %}
8020  ins_encode( enc_to_bool( src, dst ) );
8021  ins_pipe(ialu_reg_ialu);
8022%}
8023#else
8024instruct convP2B( iRegI dst, iRegP src ) %{
8025  match(Set dst (Conv2B src));
8026  ins_cost(DEFAULT_COST*2);
8027  format %{ "MOV    $src,$dst\n\t"
8028            "MOVRNZ $src,1,$dst" %}
8029  ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8030  ins_pipe(ialu_clr_and_mover);
8031%}
8032#endif
8033
8034instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8035  match(Set dst (CmpLTMask src zero));
8036  effect(KILL ccr);
8037  size(4);
8038  format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8039  ins_encode %{
8040    __ sra($src$$Register, 31, $dst$$Register);
8041  %}
8042  ins_pipe(ialu_reg_imm);
8043%}
8044
8045instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8046  match(Set dst (CmpLTMask p q));
8047  effect( KILL ccr );
8048  ins_cost(DEFAULT_COST*4);
8049  format %{ "CMP    $p,$q\n\t"
8050            "MOV    #0,$dst\n\t"
8051            "BLT,a  .+8\n\t"
8052            "MOV    #-1,$dst" %}
8053  ins_encode( enc_ltmask(p,q,dst) );
8054  ins_pipe(ialu_reg_reg_ialu);
8055%}
8056
8057instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8058  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8059  effect(KILL ccr, TEMP tmp);
8060  ins_cost(DEFAULT_COST*3);
8061
8062  format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8063            "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8064            "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8065  ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8066  ins_pipe(cadd_cmpltmask);
8067%}
8068
8069instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8070  match(Set p (AndI (CmpLTMask p q) y));
8071  effect(KILL ccr);
8072  ins_cost(DEFAULT_COST*3);
8073
8074  format %{ "CMP  $p,$q\n\t"
8075            "MOV  $y,$p\n\t"
8076            "MOVge G0,$p" %}
8077  ins_encode %{
8078    __ cmp($p$$Register, $q$$Register);
8079    __ mov($y$$Register, $p$$Register);
8080    __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8081  %}
8082  ins_pipe(ialu_reg_reg_ialu);
8083%}
8084
8085//-----------------------------------------------------------------
8086// Direct raw moves between float and general registers using VIS3.
8087
8088//  ins_pipe(faddF_reg);
8089instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8090  predicate(UseVIS >= 3);
8091  match(Set dst (MoveF2I src));
8092
8093  format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8094  ins_encode %{
8095    __ movstouw($src$$FloatRegister, $dst$$Register);
8096  %}
8097  ins_pipe(ialu_reg_reg);
8098%}
8099
8100instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8101  predicate(UseVIS >= 3);
8102  match(Set dst (MoveI2F src));
8103
8104  format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8105  ins_encode %{
8106    __ movwtos($src$$Register, $dst$$FloatRegister);
8107  %}
8108  ins_pipe(ialu_reg_reg);
8109%}
8110
8111instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8112  predicate(UseVIS >= 3);
8113  match(Set dst (MoveD2L src));
8114
8115  format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8116  ins_encode %{
8117    __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8118  %}
8119  ins_pipe(ialu_reg_reg);
8120%}
8121
8122instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8123  predicate(UseVIS >= 3);
8124  match(Set dst (MoveL2D src));
8125
8126  format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8127  ins_encode %{
8128    __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8129  %}
8130  ins_pipe(ialu_reg_reg);
8131%}
8132
8133
8134// Raw moves between float and general registers using stack.
8135
8136instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8137  match(Set dst (MoveF2I src));
8138  effect(DEF dst, USE src);
8139  ins_cost(MEMORY_REF_COST);
8140
8141  size(4);
8142  format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8143  opcode(Assembler::lduw_op3);
8144  ins_encode(simple_form3_mem_reg( src, dst ) );
8145  ins_pipe(iload_mem);
8146%}
8147
8148instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8149  match(Set dst (MoveI2F src));
8150  effect(DEF dst, USE src);
8151  ins_cost(MEMORY_REF_COST);
8152
8153  size(4);
8154  format %{ "LDF    $src,$dst\t! MoveI2F" %}
8155  opcode(Assembler::ldf_op3);
8156  ins_encode(simple_form3_mem_reg(src, dst));
8157  ins_pipe(floadF_stk);
8158%}
8159
8160instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8161  match(Set dst (MoveD2L src));
8162  effect(DEF dst, USE src);
8163  ins_cost(MEMORY_REF_COST);
8164
8165  size(4);
8166  format %{ "LDX    $src,$dst\t! MoveD2L" %}
8167  opcode(Assembler::ldx_op3);
8168  ins_encode(simple_form3_mem_reg( src, dst ) );
8169  ins_pipe(iload_mem);
8170%}
8171
8172instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8173  match(Set dst (MoveL2D src));
8174  effect(DEF dst, USE src);
8175  ins_cost(MEMORY_REF_COST);
8176
8177  size(4);
8178  format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8179  opcode(Assembler::lddf_op3);
8180  ins_encode(simple_form3_mem_reg(src, dst));
8181  ins_pipe(floadD_stk);
8182%}
8183
8184instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8185  match(Set dst (MoveF2I src));
8186  effect(DEF dst, USE src);
8187  ins_cost(MEMORY_REF_COST);
8188
8189  size(4);
8190  format %{ "STF   $src,$dst\t! MoveF2I" %}
8191  opcode(Assembler::stf_op3);
8192  ins_encode(simple_form3_mem_reg(dst, src));
8193  ins_pipe(fstoreF_stk_reg);
8194%}
8195
8196instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8197  match(Set dst (MoveI2F src));
8198  effect(DEF dst, USE src);
8199  ins_cost(MEMORY_REF_COST);
8200
8201  size(4);
8202  format %{ "STW    $src,$dst\t! MoveI2F" %}
8203  opcode(Assembler::stw_op3);
8204  ins_encode(simple_form3_mem_reg( dst, src ) );
8205  ins_pipe(istore_mem_reg);
8206%}
8207
8208instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8209  match(Set dst (MoveD2L src));
8210  effect(DEF dst, USE src);
8211  ins_cost(MEMORY_REF_COST);
8212
8213  size(4);
8214  format %{ "STDF   $src,$dst\t! MoveD2L" %}
8215  opcode(Assembler::stdf_op3);
8216  ins_encode(simple_form3_mem_reg(dst, src));
8217  ins_pipe(fstoreD_stk_reg);
8218%}
8219
8220instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8221  match(Set dst (MoveL2D src));
8222  effect(DEF dst, USE src);
8223  ins_cost(MEMORY_REF_COST);
8224
8225  size(4);
8226  format %{ "STX    $src,$dst\t! MoveL2D" %}
8227  opcode(Assembler::stx_op3);
8228  ins_encode(simple_form3_mem_reg( dst, src ) );
8229  ins_pipe(istore_mem_reg);
8230%}
8231
8232
8233//----------Arithmetic Conversion Instructions---------------------------------
8234// The conversions operations are all Alpha sorted.  Please keep it that way!
8235
8236instruct convD2F_reg(regF dst, regD src) %{
8237  match(Set dst (ConvD2F src));
8238  size(4);
8239  format %{ "FDTOS  $src,$dst" %}
8240  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8241  ins_encode(form3_opf_rs2D_rdF(src, dst));
8242  ins_pipe(fcvtD2F);
8243%}
8244
8245
8246// Convert a double to an int in a float register.
8247// If the double is a NAN, stuff a zero in instead.
8248instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8249  effect(DEF dst, USE src, KILL fcc0);
8250  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8251            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8252            "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8253            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8254            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8255      "skip:" %}
8256  ins_encode(form_d2i_helper(src,dst));
8257  ins_pipe(fcvtD2I);
8258%}
8259
8260instruct convD2I_stk(stackSlotI dst, regD src) %{
8261  match(Set dst (ConvD2I src));
8262  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8263  expand %{
8264    regF tmp;
8265    convD2I_helper(tmp, src);
8266    regF_to_stkI(dst, tmp);
8267  %}
8268%}
8269
8270instruct convD2I_reg(iRegI dst, regD src) %{
8271  predicate(UseVIS >= 3);
8272  match(Set dst (ConvD2I src));
8273  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8274  expand %{
8275    regF tmp;
8276    convD2I_helper(tmp, src);
8277    MoveF2I_reg_reg(dst, tmp);
8278  %}
8279%}
8280
8281
8282// Convert a double to a long in a double register.
8283// If the double is a NAN, stuff a zero in instead.
8284instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8285  effect(DEF dst, USE src, KILL fcc0);
8286  format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8287            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8288            "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8289            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8290            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8291      "skip:" %}
8292  ins_encode(form_d2l_helper(src,dst));
8293  ins_pipe(fcvtD2L);
8294%}
8295
8296instruct convD2L_stk(stackSlotL dst, regD src) %{
8297  match(Set dst (ConvD2L src));
8298  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8299  expand %{
8300    regD tmp;
8301    convD2L_helper(tmp, src);
8302    regD_to_stkL(dst, tmp);
8303  %}
8304%}
8305
8306instruct convD2L_reg(iRegL dst, regD src) %{
8307  predicate(UseVIS >= 3);
8308  match(Set dst (ConvD2L src));
8309  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8310  expand %{
8311    regD tmp;
8312    convD2L_helper(tmp, src);
8313    MoveD2L_reg_reg(dst, tmp);
8314  %}
8315%}
8316
8317
8318instruct convF2D_reg(regD dst, regF src) %{
8319  match(Set dst (ConvF2D src));
8320  format %{ "FSTOD  $src,$dst" %}
8321  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8322  ins_encode(form3_opf_rs2F_rdD(src, dst));
8323  ins_pipe(fcvtF2D);
8324%}
8325
8326
8327// Convert a float to an int in a float register.
8328// If the float is a NAN, stuff a zero in instead.
8329instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8330  effect(DEF dst, USE src, KILL fcc0);
8331  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8332            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8333            "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8334            "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8335            "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8336      "skip:" %}
8337  ins_encode(form_f2i_helper(src,dst));
8338  ins_pipe(fcvtF2I);
8339%}
8340
8341instruct convF2I_stk(stackSlotI dst, regF src) %{
8342  match(Set dst (ConvF2I src));
8343  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8344  expand %{
8345    regF tmp;
8346    convF2I_helper(tmp, src);
8347    regF_to_stkI(dst, tmp);
8348  %}
8349%}
8350
8351instruct convF2I_reg(iRegI dst, regF src) %{
8352  predicate(UseVIS >= 3);
8353  match(Set dst (ConvF2I src));
8354  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8355  expand %{
8356    regF tmp;
8357    convF2I_helper(tmp, src);
8358    MoveF2I_reg_reg(dst, tmp);
8359  %}
8360%}
8361
8362
8363// Convert a float to a long in a float register.
8364// If the float is a NAN, stuff a zero in instead.
8365instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8366  effect(DEF dst, USE src, KILL fcc0);
8367  format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8368            "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8369            "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8370            "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8371            "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8372      "skip:" %}
8373  ins_encode(form_f2l_helper(src,dst));
8374  ins_pipe(fcvtF2L);
8375%}
8376
8377instruct convF2L_stk(stackSlotL dst, regF src) %{
8378  match(Set dst (ConvF2L src));
8379  ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8380  expand %{
8381    regD tmp;
8382    convF2L_helper(tmp, src);
8383    regD_to_stkL(dst, tmp);
8384  %}
8385%}
8386
8387instruct convF2L_reg(iRegL dst, regF src) %{
8388  predicate(UseVIS >= 3);
8389  match(Set dst (ConvF2L src));
8390  ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8391  expand %{
8392    regD tmp;
8393    convF2L_helper(tmp, src);
8394    MoveD2L_reg_reg(dst, tmp);
8395  %}
8396%}
8397
8398
8399instruct convI2D_helper(regD dst, regF tmp) %{
8400  effect(USE tmp, DEF dst);
8401  format %{ "FITOD  $tmp,$dst" %}
8402  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8403  ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8404  ins_pipe(fcvtI2D);
8405%}
8406
8407instruct convI2D_stk(stackSlotI src, regD dst) %{
8408  match(Set dst (ConvI2D src));
8409  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8410  expand %{
8411    regF tmp;
8412    stkI_to_regF(tmp, src);
8413    convI2D_helper(dst, tmp);
8414  %}
8415%}
8416
8417instruct convI2D_reg(regD_low dst, iRegI src) %{
8418  predicate(UseVIS >= 3);
8419  match(Set dst (ConvI2D src));
8420  expand %{
8421    regF tmp;
8422    MoveI2F_reg_reg(tmp, src);
8423    convI2D_helper(dst, tmp);
8424  %}
8425%}
8426
8427instruct convI2D_mem(regD_low dst, memory mem) %{
8428  match(Set dst (ConvI2D (LoadI mem)));
8429  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8430  size(8);
8431  format %{ "LDF    $mem,$dst\n\t"
8432            "FITOD  $dst,$dst" %}
8433  opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8434  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8435  ins_pipe(floadF_mem);
8436%}
8437
8438
8439instruct convI2F_helper(regF dst, regF tmp) %{
8440  effect(DEF dst, USE tmp);
8441  format %{ "FITOS  $tmp,$dst" %}
8442  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8443  ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8444  ins_pipe(fcvtI2F);
8445%}
8446
8447instruct convI2F_stk(regF dst, stackSlotI src) %{
8448  match(Set dst (ConvI2F src));
8449  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8450  expand %{
8451    regF tmp;
8452    stkI_to_regF(tmp,src);
8453    convI2F_helper(dst, tmp);
8454  %}
8455%}
8456
8457instruct convI2F_reg(regF dst, iRegI src) %{
8458  predicate(UseVIS >= 3);
8459  match(Set dst (ConvI2F src));
8460  ins_cost(DEFAULT_COST);
8461  expand %{
8462    regF tmp;
8463    MoveI2F_reg_reg(tmp, src);
8464    convI2F_helper(dst, tmp);
8465  %}
8466%}
8467
8468instruct convI2F_mem( regF dst, memory mem ) %{
8469  match(Set dst (ConvI2F (LoadI mem)));
8470  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8471  size(8);
8472  format %{ "LDF    $mem,$dst\n\t"
8473            "FITOS  $dst,$dst" %}
8474  opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8475  ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8476  ins_pipe(floadF_mem);
8477%}
8478
8479
8480instruct convI2L_reg(iRegL dst, iRegI src) %{
8481  match(Set dst (ConvI2L src));
8482  size(4);
8483  format %{ "SRA    $src,0,$dst\t! int->long" %}
8484  opcode(Assembler::sra_op3, Assembler::arith_op);
8485  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8486  ins_pipe(ialu_reg_reg);
8487%}
8488
8489// Zero-extend convert int to long
8490instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8491  match(Set dst (AndL (ConvI2L src) mask) );
8492  size(4);
8493  format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8494  opcode(Assembler::srl_op3, Assembler::arith_op);
8495  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8496  ins_pipe(ialu_reg_reg);
8497%}
8498
8499// Zero-extend long
8500instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8501  match(Set dst (AndL src mask) );
8502  size(4);
8503  format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8504  opcode(Assembler::srl_op3, Assembler::arith_op);
8505  ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8506  ins_pipe(ialu_reg_reg);
8507%}
8508
8509
8510//-----------
8511// Long to Double conversion using V8 opcodes.
8512// Still useful because cheetah traps and becomes
8513// amazingly slow for some common numbers.
8514
8515// Magic constant, 0x43300000
8516instruct loadConI_x43300000(iRegI dst) %{
8517  effect(DEF dst);
8518  size(4);
8519  format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8520  ins_encode(SetHi22(0x43300000, dst));
8521  ins_pipe(ialu_none);
8522%}
8523
8524// Magic constant, 0x41f00000
8525instruct loadConI_x41f00000(iRegI dst) %{
8526  effect(DEF dst);
8527  size(4);
8528  format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8529  ins_encode(SetHi22(0x41f00000, dst));
8530  ins_pipe(ialu_none);
8531%}
8532
8533// Construct a double from two float halves
8534instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8535  effect(DEF dst, USE src1, USE src2);
8536  size(8);
8537  format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8538            "FMOVS  $src2.lo,$dst.lo" %}
8539  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8540  ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8541  ins_pipe(faddD_reg_reg);
8542%}
8543
8544// Convert integer in high half of a double register (in the lower half of
8545// the double register file) to double
8546instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8547  effect(DEF dst, USE src);
8548  size(4);
8549  format %{ "FITOD  $src,$dst" %}
8550  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8551  ins_encode(form3_opf_rs2D_rdD(src, dst));
8552  ins_pipe(fcvtLHi2D);
8553%}
8554
8555// Add float double precision
8556instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8557  effect(DEF dst, USE src1, USE src2);
8558  size(4);
8559  format %{ "FADDD  $src1,$src2,$dst" %}
8560  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8561  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8562  ins_pipe(faddD_reg_reg);
8563%}
8564
8565// Sub float double precision
8566instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8567  effect(DEF dst, USE src1, USE src2);
8568  size(4);
8569  format %{ "FSUBD  $src1,$src2,$dst" %}
8570  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8571  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8572  ins_pipe(faddD_reg_reg);
8573%}
8574
8575// Mul float double precision
8576instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8577  effect(DEF dst, USE src1, USE src2);
8578  size(4);
8579  format %{ "FMULD  $src1,$src2,$dst" %}
8580  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8581  ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8582  ins_pipe(fmulD_reg_reg);
8583%}
8584
8585instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8586  match(Set dst (ConvL2D src));
8587  ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8588
8589  expand %{
8590    regD_low   tmpsrc;
8591    iRegI      ix43300000;
8592    iRegI      ix41f00000;
8593    stackSlotL lx43300000;
8594    stackSlotL lx41f00000;
8595    regD_low   dx43300000;
8596    regD       dx41f00000;
8597    regD       tmp1;
8598    regD_low   tmp2;
8599    regD       tmp3;
8600    regD       tmp4;
8601
8602    stkL_to_regD(tmpsrc, src);
8603
8604    loadConI_x43300000(ix43300000);
8605    loadConI_x41f00000(ix41f00000);
8606    regI_to_stkLHi(lx43300000, ix43300000);
8607    regI_to_stkLHi(lx41f00000, ix41f00000);
8608    stkL_to_regD(dx43300000, lx43300000);
8609    stkL_to_regD(dx41f00000, lx41f00000);
8610
8611    convI2D_regDHi_regD(tmp1, tmpsrc);
8612    regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8613    subD_regD_regD(tmp3, tmp2, dx43300000);
8614    mulD_regD_regD(tmp4, tmp1, dx41f00000);
8615    addD_regD_regD(dst, tmp3, tmp4);
8616  %}
8617%}
8618
8619// Long to Double conversion using fast fxtof
8620instruct convL2D_helper(regD dst, regD tmp) %{
8621  effect(DEF dst, USE tmp);
8622  size(4);
8623  format %{ "FXTOD  $tmp,$dst" %}
8624  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8625  ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8626  ins_pipe(fcvtL2D);
8627%}
8628
8629instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8630  predicate(VM_Version::has_fast_fxtof());
8631  match(Set dst (ConvL2D src));
8632  ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8633  expand %{
8634    regD tmp;
8635    stkL_to_regD(tmp, src);
8636    convL2D_helper(dst, tmp);
8637  %}
8638%}
8639
8640instruct convL2D_reg(regD dst, iRegL src) %{
8641  predicate(UseVIS >= 3);
8642  match(Set dst (ConvL2D src));
8643  expand %{
8644    regD tmp;
8645    MoveL2D_reg_reg(tmp, src);
8646    convL2D_helper(dst, tmp);
8647  %}
8648%}
8649
8650// Long to Float conversion using fast fxtof
8651instruct convL2F_helper(regF dst, regD tmp) %{
8652  effect(DEF dst, USE tmp);
8653  size(4);
8654  format %{ "FXTOS  $tmp,$dst" %}
8655  opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8656  ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8657  ins_pipe(fcvtL2F);
8658%}
8659
8660instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8661  match(Set dst (ConvL2F src));
8662  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8663  expand %{
8664    regD tmp;
8665    stkL_to_regD(tmp, src);
8666    convL2F_helper(dst, tmp);
8667  %}
8668%}
8669
8670instruct convL2F_reg(regF dst, iRegL src) %{
8671  predicate(UseVIS >= 3);
8672  match(Set dst (ConvL2F src));
8673  ins_cost(DEFAULT_COST);
8674  expand %{
8675    regD tmp;
8676    MoveL2D_reg_reg(tmp, src);
8677    convL2F_helper(dst, tmp);
8678  %}
8679%}
8680
8681//-----------
8682
8683instruct convL2I_reg(iRegI dst, iRegL src) %{
8684  match(Set dst (ConvL2I src));
8685#ifndef _LP64
8686  format %{ "MOV    $src.lo,$dst\t! long->int" %}
8687  ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8688  ins_pipe(ialu_move_reg_I_to_L);
8689#else
8690  size(4);
8691  format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8692  ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8693  ins_pipe(ialu_reg);
8694#endif
8695%}
8696
8697// Register Shift Right Immediate
8698instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8699  match(Set dst (ConvL2I (RShiftL src cnt)));
8700
8701  size(4);
8702  format %{ "SRAX   $src,$cnt,$dst" %}
8703  opcode(Assembler::srax_op3, Assembler::arith_op);
8704  ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8705  ins_pipe(ialu_reg_imm);
8706%}
8707
8708//----------Control Flow Instructions------------------------------------------
8709// Compare Instructions
8710// Compare Integers
8711instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8712  match(Set icc (CmpI op1 op2));
8713  effect( DEF icc, USE op1, USE op2 );
8714
8715  size(4);
8716  format %{ "CMP    $op1,$op2" %}
8717  opcode(Assembler::subcc_op3, Assembler::arith_op);
8718  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8719  ins_pipe(ialu_cconly_reg_reg);
8720%}
8721
8722instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8723  match(Set icc (CmpU op1 op2));
8724
8725  size(4);
8726  format %{ "CMP    $op1,$op2\t! unsigned" %}
8727  opcode(Assembler::subcc_op3, Assembler::arith_op);
8728  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8729  ins_pipe(ialu_cconly_reg_reg);
8730%}
8731
8732instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8733  match(Set icc (CmpI op1 op2));
8734  effect( DEF icc, USE op1 );
8735
8736  size(4);
8737  format %{ "CMP    $op1,$op2" %}
8738  opcode(Assembler::subcc_op3, Assembler::arith_op);
8739  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8740  ins_pipe(ialu_cconly_reg_imm);
8741%}
8742
8743instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8744  match(Set icc (CmpI (AndI op1 op2) zero));
8745
8746  size(4);
8747  format %{ "BTST   $op2,$op1" %}
8748  opcode(Assembler::andcc_op3, Assembler::arith_op);
8749  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8750  ins_pipe(ialu_cconly_reg_reg_zero);
8751%}
8752
8753instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8754  match(Set icc (CmpI (AndI op1 op2) zero));
8755
8756  size(4);
8757  format %{ "BTST   $op2,$op1" %}
8758  opcode(Assembler::andcc_op3, Assembler::arith_op);
8759  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8760  ins_pipe(ialu_cconly_reg_imm_zero);
8761%}
8762
8763instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8764  match(Set xcc (CmpL op1 op2));
8765  effect( DEF xcc, USE op1, USE op2 );
8766
8767  size(4);
8768  format %{ "CMP    $op1,$op2\t\t! long" %}
8769  opcode(Assembler::subcc_op3, Assembler::arith_op);
8770  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8771  ins_pipe(ialu_cconly_reg_reg);
8772%}
8773
8774instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8775  match(Set xcc (CmpL op1 con));
8776  effect( DEF xcc, USE op1, USE con );
8777
8778  size(4);
8779  format %{ "CMP    $op1,$con\t\t! long" %}
8780  opcode(Assembler::subcc_op3, Assembler::arith_op);
8781  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8782  ins_pipe(ialu_cconly_reg_reg);
8783%}
8784
8785instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8786  match(Set xcc (CmpL (AndL op1 op2) zero));
8787  effect( DEF xcc, USE op1, USE op2 );
8788
8789  size(4);
8790  format %{ "BTST   $op1,$op2\t\t! long" %}
8791  opcode(Assembler::andcc_op3, Assembler::arith_op);
8792  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8793  ins_pipe(ialu_cconly_reg_reg);
8794%}
8795
8796// useful for checking the alignment of a pointer:
8797instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8798  match(Set xcc (CmpL (AndL op1 con) zero));
8799  effect( DEF xcc, USE op1, USE con );
8800
8801  size(4);
8802  format %{ "BTST   $op1,$con\t\t! long" %}
8803  opcode(Assembler::andcc_op3, Assembler::arith_op);
8804  ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8805  ins_pipe(ialu_cconly_reg_reg);
8806%}
8807
8808instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8809  match(Set icc (CmpU op1 op2));
8810
8811  size(4);
8812  format %{ "CMP    $op1,$op2\t! unsigned" %}
8813  opcode(Assembler::subcc_op3, Assembler::arith_op);
8814  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8815  ins_pipe(ialu_cconly_reg_imm);
8816%}
8817
8818// Compare Pointers
8819instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8820  match(Set pcc (CmpP op1 op2));
8821
8822  size(4);
8823  format %{ "CMP    $op1,$op2\t! ptr" %}
8824  opcode(Assembler::subcc_op3, Assembler::arith_op);
8825  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8826  ins_pipe(ialu_cconly_reg_reg);
8827%}
8828
8829instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8830  match(Set pcc (CmpP op1 op2));
8831
8832  size(4);
8833  format %{ "CMP    $op1,$op2\t! ptr" %}
8834  opcode(Assembler::subcc_op3, Assembler::arith_op);
8835  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8836  ins_pipe(ialu_cconly_reg_imm);
8837%}
8838
8839// Compare Narrow oops
8840instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8841  match(Set icc (CmpN op1 op2));
8842
8843  size(4);
8844  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8845  opcode(Assembler::subcc_op3, Assembler::arith_op);
8846  ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8847  ins_pipe(ialu_cconly_reg_reg);
8848%}
8849
8850instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8851  match(Set icc (CmpN op1 op2));
8852
8853  size(4);
8854  format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8855  opcode(Assembler::subcc_op3, Assembler::arith_op);
8856  ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8857  ins_pipe(ialu_cconly_reg_imm);
8858%}
8859
8860//----------Max and Min--------------------------------------------------------
8861// Min Instructions
8862// Conditional move for min
8863instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8864  effect( USE_DEF op2, USE op1, USE icc );
8865
8866  size(4);
8867  format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8868  opcode(Assembler::less);
8869  ins_encode( enc_cmov_reg_minmax(op2,op1) );
8870  ins_pipe(ialu_reg_flags);
8871%}
8872
8873// Min Register with Register.
8874instruct minI_eReg(iRegI op1, iRegI op2) %{
8875  match(Set op2 (MinI op1 op2));
8876  ins_cost(DEFAULT_COST*2);
8877  expand %{
8878    flagsReg icc;
8879    compI_iReg(icc,op1,op2);
8880    cmovI_reg_lt(op2,op1,icc);
8881  %}
8882%}
8883
8884// Max Instructions
8885// Conditional move for max
8886instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8887  effect( USE_DEF op2, USE op1, USE icc );
8888  format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8889  opcode(Assembler::greater);
8890  ins_encode( enc_cmov_reg_minmax(op2,op1) );
8891  ins_pipe(ialu_reg_flags);
8892%}
8893
8894// Max Register with Register
8895instruct maxI_eReg(iRegI op1, iRegI op2) %{
8896  match(Set op2 (MaxI op1 op2));
8897  ins_cost(DEFAULT_COST*2);
8898  expand %{
8899    flagsReg icc;
8900    compI_iReg(icc,op1,op2);
8901    cmovI_reg_gt(op2,op1,icc);
8902  %}
8903%}
8904
8905
8906//----------Float Compares----------------------------------------------------
8907// Compare floating, generate condition code
8908instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8909  match(Set fcc (CmpF src1 src2));
8910
8911  size(4);
8912  format %{ "FCMPs  $fcc,$src1,$src2" %}
8913  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8914  ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8915  ins_pipe(faddF_fcc_reg_reg_zero);
8916%}
8917
8918instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8919  match(Set fcc (CmpD src1 src2));
8920
8921  size(4);
8922  format %{ "FCMPd  $fcc,$src1,$src2" %}
8923  opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8924  ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8925  ins_pipe(faddD_fcc_reg_reg_zero);
8926%}
8927
8928
8929// Compare floating, generate -1,0,1
8930instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8931  match(Set dst (CmpF3 src1 src2));
8932  effect(KILL fcc0);
8933  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8934  format %{ "fcmpl  $dst,$src1,$src2" %}
8935  // Primary = float
8936  opcode( true );
8937  ins_encode( floating_cmp( dst, src1, src2 ) );
8938  ins_pipe( floating_cmp );
8939%}
8940
8941instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8942  match(Set dst (CmpD3 src1 src2));
8943  effect(KILL fcc0);
8944  ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8945  format %{ "dcmpl  $dst,$src1,$src2" %}
8946  // Primary = double (not float)
8947  opcode( false );
8948  ins_encode( floating_cmp( dst, src1, src2 ) );
8949  ins_pipe( floating_cmp );
8950%}
8951
8952//----------Branches---------------------------------------------------------
8953// Jump
8954// (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8955instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8956  match(Jump switch_val);
8957  effect(TEMP table);
8958
8959  ins_cost(350);
8960
8961  format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8962             "LD     [O7 + $switch_val], O7\n\t"
8963             "JUMP   O7" %}
8964  ins_encode %{
8965    // Calculate table address into a register.
8966    Register table_reg;
8967    Register label_reg = O7;
8968    // If we are calculating the size of this instruction don't trust
8969    // zero offsets because they might change when
8970    // MachConstantBaseNode decides to optimize the constant table
8971    // base.
8972    if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
8973      table_reg = $constanttablebase;
8974    } else {
8975      table_reg = O7;
8976      RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8977      __ add($constanttablebase, con_offset, table_reg);
8978    }
8979
8980    // Jump to base address + switch value
8981    __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8982    __ jmp(label_reg, G0);
8983    __ delayed()->nop();
8984  %}
8985  ins_pipe(ialu_reg_reg);
8986%}
8987
8988// Direct Branch.  Use V8 version with longer range.
8989instruct branch(label labl) %{
8990  match(Goto);
8991  effect(USE labl);
8992
8993  size(8);
8994  ins_cost(BRANCH_COST);
8995  format %{ "BA     $labl" %}
8996  ins_encode %{
8997    Label* L = $labl$$label;
8998    __ ba(*L);
8999    __ delayed()->nop();
9000  %}
9001  ins_avoid_back_to_back(AVOID_BEFORE);
9002  ins_pipe(br);
9003%}
9004
9005// Direct Branch, short with no delay slot
9006instruct branch_short(label labl) %{
9007  match(Goto);
9008  predicate(UseCBCond);
9009  effect(USE labl);
9010
9011  size(4);
9012  ins_cost(BRANCH_COST);
9013  format %{ "BA     $labl\t! short branch" %}
9014  ins_encode %{
9015    Label* L = $labl$$label;
9016    assert(__ use_cbcond(*L), "back to back cbcond");
9017    __ ba_short(*L);
9018  %}
9019  ins_short_branch(1);
9020  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9021  ins_pipe(cbcond_reg_imm);
9022%}
9023
9024// Conditional Direct Branch
9025instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9026  match(If cmp icc);
9027  effect(USE labl);
9028
9029  size(8);
9030  ins_cost(BRANCH_COST);
9031  format %{ "BP$cmp   $icc,$labl" %}
9032  // Prim = bits 24-22, Secnd = bits 31-30
9033  ins_encode( enc_bp( labl, cmp, icc ) );
9034  ins_avoid_back_to_back(AVOID_BEFORE);
9035  ins_pipe(br_cc);
9036%}
9037
9038instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9039  match(If cmp icc);
9040  effect(USE labl);
9041
9042  ins_cost(BRANCH_COST);
9043  format %{ "BP$cmp  $icc,$labl" %}
9044  // Prim = bits 24-22, Secnd = bits 31-30
9045  ins_encode( enc_bp( labl, cmp, icc ) );
9046  ins_avoid_back_to_back(AVOID_BEFORE);
9047  ins_pipe(br_cc);
9048%}
9049
9050instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9051  match(If cmp pcc);
9052  effect(USE labl);
9053
9054  size(8);
9055  ins_cost(BRANCH_COST);
9056  format %{ "BP$cmp  $pcc,$labl" %}
9057  ins_encode %{
9058    Label* L = $labl$$label;
9059    Assembler::Predict predict_taken =
9060      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9061
9062    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9063    __ delayed()->nop();
9064  %}
9065  ins_avoid_back_to_back(AVOID_BEFORE);
9066  ins_pipe(br_cc);
9067%}
9068
9069instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9070  match(If cmp fcc);
9071  effect(USE labl);
9072
9073  size(8);
9074  ins_cost(BRANCH_COST);
9075  format %{ "FBP$cmp $fcc,$labl" %}
9076  ins_encode %{
9077    Label* L = $labl$$label;
9078    Assembler::Predict predict_taken =
9079      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9080
9081    __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9082    __ delayed()->nop();
9083  %}
9084  ins_avoid_back_to_back(AVOID_BEFORE);
9085  ins_pipe(br_fcc);
9086%}
9087
9088instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9089  match(CountedLoopEnd cmp icc);
9090  effect(USE labl);
9091
9092  size(8);
9093  ins_cost(BRANCH_COST);
9094  format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9095  // Prim = bits 24-22, Secnd = bits 31-30
9096  ins_encode( enc_bp( labl, cmp, icc ) );
9097  ins_avoid_back_to_back(AVOID_BEFORE);
9098  ins_pipe(br_cc);
9099%}
9100
9101instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9102  match(CountedLoopEnd cmp icc);
9103  effect(USE labl);
9104
9105  size(8);
9106  ins_cost(BRANCH_COST);
9107  format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9108  // Prim = bits 24-22, Secnd = bits 31-30
9109  ins_encode( enc_bp( labl, cmp, icc ) );
9110  ins_avoid_back_to_back(AVOID_BEFORE);
9111  ins_pipe(br_cc);
9112%}
9113
9114// Compare and branch instructions
9115instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9116  match(If cmp (CmpI op1 op2));
9117  effect(USE labl, KILL icc);
9118
9119  size(12);
9120  ins_cost(BRANCH_COST);
9121  format %{ "CMP    $op1,$op2\t! int\n\t"
9122            "BP$cmp   $labl" %}
9123  ins_encode %{
9124    Label* L = $labl$$label;
9125    Assembler::Predict predict_taken =
9126      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9127    __ cmp($op1$$Register, $op2$$Register);
9128    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9129    __ delayed()->nop();
9130  %}
9131  ins_pipe(cmp_br_reg_reg);
9132%}
9133
9134instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9135  match(If cmp (CmpI op1 op2));
9136  effect(USE labl, KILL icc);
9137
9138  size(12);
9139  ins_cost(BRANCH_COST);
9140  format %{ "CMP    $op1,$op2\t! int\n\t"
9141            "BP$cmp   $labl" %}
9142  ins_encode %{
9143    Label* L = $labl$$label;
9144    Assembler::Predict predict_taken =
9145      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9146    __ cmp($op1$$Register, $op2$$constant);
9147    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9148    __ delayed()->nop();
9149  %}
9150  ins_pipe(cmp_br_reg_imm);
9151%}
9152
9153instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9154  match(If cmp (CmpU op1 op2));
9155  effect(USE labl, KILL icc);
9156
9157  size(12);
9158  ins_cost(BRANCH_COST);
9159  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9160            "BP$cmp  $labl" %}
9161  ins_encode %{
9162    Label* L = $labl$$label;
9163    Assembler::Predict predict_taken =
9164      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9165    __ cmp($op1$$Register, $op2$$Register);
9166    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9167    __ delayed()->nop();
9168  %}
9169  ins_pipe(cmp_br_reg_reg);
9170%}
9171
9172instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9173  match(If cmp (CmpU op1 op2));
9174  effect(USE labl, KILL icc);
9175
9176  size(12);
9177  ins_cost(BRANCH_COST);
9178  format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9179            "BP$cmp  $labl" %}
9180  ins_encode %{
9181    Label* L = $labl$$label;
9182    Assembler::Predict predict_taken =
9183      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9184    __ cmp($op1$$Register, $op2$$constant);
9185    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9186    __ delayed()->nop();
9187  %}
9188  ins_pipe(cmp_br_reg_imm);
9189%}
9190
9191instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9192  match(If cmp (CmpL op1 op2));
9193  effect(USE labl, KILL xcc);
9194
9195  size(12);
9196  ins_cost(BRANCH_COST);
9197  format %{ "CMP    $op1,$op2\t! long\n\t"
9198            "BP$cmp   $labl" %}
9199  ins_encode %{
9200    Label* L = $labl$$label;
9201    Assembler::Predict predict_taken =
9202      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9203    __ cmp($op1$$Register, $op2$$Register);
9204    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9205    __ delayed()->nop();
9206  %}
9207  ins_pipe(cmp_br_reg_reg);
9208%}
9209
9210instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9211  match(If cmp (CmpL op1 op2));
9212  effect(USE labl, KILL xcc);
9213
9214  size(12);
9215  ins_cost(BRANCH_COST);
9216  format %{ "CMP    $op1,$op2\t! long\n\t"
9217            "BP$cmp   $labl" %}
9218  ins_encode %{
9219    Label* L = $labl$$label;
9220    Assembler::Predict predict_taken =
9221      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9222    __ cmp($op1$$Register, $op2$$constant);
9223    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9224    __ delayed()->nop();
9225  %}
9226  ins_pipe(cmp_br_reg_imm);
9227%}
9228
9229// Compare Pointers and branch
9230instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9231  match(If cmp (CmpP op1 op2));
9232  effect(USE labl, KILL pcc);
9233
9234  size(12);
9235  ins_cost(BRANCH_COST);
9236  format %{ "CMP    $op1,$op2\t! ptr\n\t"
9237            "B$cmp   $labl" %}
9238  ins_encode %{
9239    Label* L = $labl$$label;
9240    Assembler::Predict predict_taken =
9241      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9242    __ cmp($op1$$Register, $op2$$Register);
9243    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9244    __ delayed()->nop();
9245  %}
9246  ins_pipe(cmp_br_reg_reg);
9247%}
9248
9249instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9250  match(If cmp (CmpP op1 null));
9251  effect(USE labl, KILL pcc);
9252
9253  size(12);
9254  ins_cost(BRANCH_COST);
9255  format %{ "CMP    $op1,0\t! ptr\n\t"
9256            "B$cmp   $labl" %}
9257  ins_encode %{
9258    Label* L = $labl$$label;
9259    Assembler::Predict predict_taken =
9260      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9261    __ cmp($op1$$Register, G0);
9262    // bpr() is not used here since it has shorter distance.
9263    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9264    __ delayed()->nop();
9265  %}
9266  ins_pipe(cmp_br_reg_reg);
9267%}
9268
9269instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9270  match(If cmp (CmpN op1 op2));
9271  effect(USE labl, KILL icc);
9272
9273  size(12);
9274  ins_cost(BRANCH_COST);
9275  format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9276            "BP$cmp   $labl" %}
9277  ins_encode %{
9278    Label* L = $labl$$label;
9279    Assembler::Predict predict_taken =
9280      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9281    __ cmp($op1$$Register, $op2$$Register);
9282    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9283    __ delayed()->nop();
9284  %}
9285  ins_pipe(cmp_br_reg_reg);
9286%}
9287
9288instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9289  match(If cmp (CmpN op1 null));
9290  effect(USE labl, KILL icc);
9291
9292  size(12);
9293  ins_cost(BRANCH_COST);
9294  format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9295            "BP$cmp   $labl" %}
9296  ins_encode %{
9297    Label* L = $labl$$label;
9298    Assembler::Predict predict_taken =
9299      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9300    __ cmp($op1$$Register, G0);
9301    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9302    __ delayed()->nop();
9303  %}
9304  ins_pipe(cmp_br_reg_reg);
9305%}
9306
9307// Loop back branch
9308instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9309  match(CountedLoopEnd cmp (CmpI op1 op2));
9310  effect(USE labl, KILL icc);
9311
9312  size(12);
9313  ins_cost(BRANCH_COST);
9314  format %{ "CMP    $op1,$op2\t! int\n\t"
9315            "BP$cmp   $labl\t! Loop end" %}
9316  ins_encode %{
9317    Label* L = $labl$$label;
9318    Assembler::Predict predict_taken =
9319      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9320    __ cmp($op1$$Register, $op2$$Register);
9321    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9322    __ delayed()->nop();
9323  %}
9324  ins_pipe(cmp_br_reg_reg);
9325%}
9326
9327instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9328  match(CountedLoopEnd cmp (CmpI op1 op2));
9329  effect(USE labl, KILL icc);
9330
9331  size(12);
9332  ins_cost(BRANCH_COST);
9333  format %{ "CMP    $op1,$op2\t! int\n\t"
9334            "BP$cmp   $labl\t! Loop end" %}
9335  ins_encode %{
9336    Label* L = $labl$$label;
9337    Assembler::Predict predict_taken =
9338      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9339    __ cmp($op1$$Register, $op2$$constant);
9340    __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9341    __ delayed()->nop();
9342  %}
9343  ins_pipe(cmp_br_reg_imm);
9344%}
9345
9346// Short compare and branch instructions
9347instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9348  match(If cmp (CmpI op1 op2));
9349  predicate(UseCBCond);
9350  effect(USE labl, KILL icc);
9351
9352  size(4);
9353  ins_cost(BRANCH_COST);
9354  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9355  ins_encode %{
9356    Label* L = $labl$$label;
9357    assert(__ use_cbcond(*L), "back to back cbcond");
9358    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9359  %}
9360  ins_short_branch(1);
9361  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9362  ins_pipe(cbcond_reg_reg);
9363%}
9364
9365instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9366  match(If cmp (CmpI op1 op2));
9367  predicate(UseCBCond);
9368  effect(USE labl, KILL icc);
9369
9370  size(4);
9371  ins_cost(BRANCH_COST);
9372  format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9373  ins_encode %{
9374    Label* L = $labl$$label;
9375    assert(__ use_cbcond(*L), "back to back cbcond");
9376    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9377  %}
9378  ins_short_branch(1);
9379  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9380  ins_pipe(cbcond_reg_imm);
9381%}
9382
9383instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9384  match(If cmp (CmpU op1 op2));
9385  predicate(UseCBCond);
9386  effect(USE labl, KILL icc);
9387
9388  size(4);
9389  ins_cost(BRANCH_COST);
9390  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9391  ins_encode %{
9392    Label* L = $labl$$label;
9393    assert(__ use_cbcond(*L), "back to back cbcond");
9394    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9395  %}
9396  ins_short_branch(1);
9397  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9398  ins_pipe(cbcond_reg_reg);
9399%}
9400
9401instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9402  match(If cmp (CmpU op1 op2));
9403  predicate(UseCBCond);
9404  effect(USE labl, KILL icc);
9405
9406  size(4);
9407  ins_cost(BRANCH_COST);
9408  format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9409  ins_encode %{
9410    Label* L = $labl$$label;
9411    assert(__ use_cbcond(*L), "back to back cbcond");
9412    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9413  %}
9414  ins_short_branch(1);
9415  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9416  ins_pipe(cbcond_reg_imm);
9417%}
9418
9419instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9420  match(If cmp (CmpL op1 op2));
9421  predicate(UseCBCond);
9422  effect(USE labl, KILL xcc);
9423
9424  size(4);
9425  ins_cost(BRANCH_COST);
9426  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9427  ins_encode %{
9428    Label* L = $labl$$label;
9429    assert(__ use_cbcond(*L), "back to back cbcond");
9430    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9431  %}
9432  ins_short_branch(1);
9433  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9434  ins_pipe(cbcond_reg_reg);
9435%}
9436
9437instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9438  match(If cmp (CmpL op1 op2));
9439  predicate(UseCBCond);
9440  effect(USE labl, KILL xcc);
9441
9442  size(4);
9443  ins_cost(BRANCH_COST);
9444  format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9445  ins_encode %{
9446    Label* L = $labl$$label;
9447    assert(__ use_cbcond(*L), "back to back cbcond");
9448    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9449  %}
9450  ins_short_branch(1);
9451  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9452  ins_pipe(cbcond_reg_imm);
9453%}
9454
9455// Compare Pointers and branch
9456instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9457  match(If cmp (CmpP op1 op2));
9458  predicate(UseCBCond);
9459  effect(USE labl, KILL pcc);
9460
9461  size(4);
9462  ins_cost(BRANCH_COST);
9463#ifdef _LP64
9464  format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9465#else
9466  format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9467#endif
9468  ins_encode %{
9469    Label* L = $labl$$label;
9470    assert(__ use_cbcond(*L), "back to back cbcond");
9471    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9472  %}
9473  ins_short_branch(1);
9474  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9475  ins_pipe(cbcond_reg_reg);
9476%}
9477
9478instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9479  match(If cmp (CmpP op1 null));
9480  predicate(UseCBCond);
9481  effect(USE labl, KILL pcc);
9482
9483  size(4);
9484  ins_cost(BRANCH_COST);
9485#ifdef _LP64
9486  format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9487#else
9488  format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9489#endif
9490  ins_encode %{
9491    Label* L = $labl$$label;
9492    assert(__ use_cbcond(*L), "back to back cbcond");
9493    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9494  %}
9495  ins_short_branch(1);
9496  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9497  ins_pipe(cbcond_reg_reg);
9498%}
9499
9500instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9501  match(If cmp (CmpN op1 op2));
9502  predicate(UseCBCond);
9503  effect(USE labl, KILL icc);
9504
9505  size(4);
9506  ins_cost(BRANCH_COST);
9507  format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9508  ins_encode %{
9509    Label* L = $labl$$label;
9510    assert(__ use_cbcond(*L), "back to back cbcond");
9511    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9512  %}
9513  ins_short_branch(1);
9514  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9515  ins_pipe(cbcond_reg_reg);
9516%}
9517
9518instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9519  match(If cmp (CmpN op1 null));
9520  predicate(UseCBCond);
9521  effect(USE labl, KILL icc);
9522
9523  size(4);
9524  ins_cost(BRANCH_COST);
9525  format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9526  ins_encode %{
9527    Label* L = $labl$$label;
9528    assert(__ use_cbcond(*L), "back to back cbcond");
9529    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9530  %}
9531  ins_short_branch(1);
9532  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9533  ins_pipe(cbcond_reg_reg);
9534%}
9535
9536// Loop back branch
9537instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9538  match(CountedLoopEnd cmp (CmpI op1 op2));
9539  predicate(UseCBCond);
9540  effect(USE labl, KILL icc);
9541
9542  size(4);
9543  ins_cost(BRANCH_COST);
9544  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9545  ins_encode %{
9546    Label* L = $labl$$label;
9547    assert(__ use_cbcond(*L), "back to back cbcond");
9548    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9549  %}
9550  ins_short_branch(1);
9551  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9552  ins_pipe(cbcond_reg_reg);
9553%}
9554
9555instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9556  match(CountedLoopEnd cmp (CmpI op1 op2));
9557  predicate(UseCBCond);
9558  effect(USE labl, KILL icc);
9559
9560  size(4);
9561  ins_cost(BRANCH_COST);
9562  format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9563  ins_encode %{
9564    Label* L = $labl$$label;
9565    assert(__ use_cbcond(*L), "back to back cbcond");
9566    __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9567  %}
9568  ins_short_branch(1);
9569  ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9570  ins_pipe(cbcond_reg_imm);
9571%}
9572
9573// Branch-on-register tests all 64 bits.  We assume that values
9574// in 64-bit registers always remains zero or sign extended
9575// unless our code munges the high bits.  Interrupts can chop
9576// the high order bits to zero or sign at any time.
9577instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9578  match(If cmp (CmpI op1 zero));
9579  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9580  effect(USE labl);
9581
9582  size(8);
9583  ins_cost(BRANCH_COST);
9584  format %{ "BR$cmp   $op1,$labl" %}
9585  ins_encode( enc_bpr( labl, cmp, op1 ) );
9586  ins_avoid_back_to_back(AVOID_BEFORE);
9587  ins_pipe(br_reg);
9588%}
9589
9590instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9591  match(If cmp (CmpP op1 null));
9592  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9593  effect(USE labl);
9594
9595  size(8);
9596  ins_cost(BRANCH_COST);
9597  format %{ "BR$cmp   $op1,$labl" %}
9598  ins_encode( enc_bpr( labl, cmp, op1 ) );
9599  ins_avoid_back_to_back(AVOID_BEFORE);
9600  ins_pipe(br_reg);
9601%}
9602
9603instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9604  match(If cmp (CmpL op1 zero));
9605  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9606  effect(USE labl);
9607
9608  size(8);
9609  ins_cost(BRANCH_COST);
9610  format %{ "BR$cmp   $op1,$labl" %}
9611  ins_encode( enc_bpr( labl, cmp, op1 ) );
9612  ins_avoid_back_to_back(AVOID_BEFORE);
9613  ins_pipe(br_reg);
9614%}
9615
9616
9617// ============================================================================
9618// Long Compare
9619//
9620// Currently we hold longs in 2 registers.  Comparing such values efficiently
9621// is tricky.  The flavor of compare used depends on whether we are testing
9622// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9623// The GE test is the negated LT test.  The LE test can be had by commuting
9624// the operands (yielding a GE test) and then negating; negate again for the
9625// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9626// NE test is negated from that.
9627
9628// Due to a shortcoming in the ADLC, it mixes up expressions like:
9629// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9630// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9631// are collapsed internally in the ADLC's dfa-gen code.  The match for
9632// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9633// foo match ends up with the wrong leaf.  One fix is to not match both
9634// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9635// both forms beat the trinary form of long-compare and both are very useful
9636// on Intel which has so few registers.
9637
9638instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9639  match(If cmp xcc);
9640  effect(USE labl);
9641
9642  size(8);
9643  ins_cost(BRANCH_COST);
9644  format %{ "BP$cmp   $xcc,$labl" %}
9645  ins_encode %{
9646    Label* L = $labl$$label;
9647    Assembler::Predict predict_taken =
9648      cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9649
9650    __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9651    __ delayed()->nop();
9652  %}
9653  ins_avoid_back_to_back(AVOID_BEFORE);
9654  ins_pipe(br_cc);
9655%}
9656
9657// Manifest a CmpL3 result in an integer register.  Very painful.
9658// This is the test to avoid.
9659instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9660  match(Set dst (CmpL3 src1 src2) );
9661  effect( KILL ccr );
9662  ins_cost(6*DEFAULT_COST);
9663  size(24);
9664  format %{ "CMP    $src1,$src2\t\t! long\n"
9665          "\tBLT,a,pn done\n"
9666          "\tMOV    -1,$dst\t! delay slot\n"
9667          "\tBGT,a,pn done\n"
9668          "\tMOV    1,$dst\t! delay slot\n"
9669          "\tCLR    $dst\n"
9670    "done:"     %}
9671  ins_encode( cmpl_flag(src1,src2,dst) );
9672  ins_pipe(cmpL_reg);
9673%}
9674
9675// Conditional move
9676instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9677  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9678  ins_cost(150);
9679  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9680  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9681  ins_pipe(ialu_reg);
9682%}
9683
9684instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9685  match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9686  ins_cost(140);
9687  format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9688  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9689  ins_pipe(ialu_imm);
9690%}
9691
9692instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9693  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9694  ins_cost(150);
9695  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9696  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9697  ins_pipe(ialu_reg);
9698%}
9699
9700instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9701  match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9702  ins_cost(140);
9703  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9704  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9705  ins_pipe(ialu_imm);
9706%}
9707
9708instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9709  match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9710  ins_cost(150);
9711  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9712  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9713  ins_pipe(ialu_reg);
9714%}
9715
9716instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9717  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9718  ins_cost(150);
9719  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9720  ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9721  ins_pipe(ialu_reg);
9722%}
9723
9724instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9725  match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9726  ins_cost(140);
9727  format %{ "MOV$cmp  $xcc,$src,$dst" %}
9728  ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9729  ins_pipe(ialu_imm);
9730%}
9731
9732instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9733  match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9734  ins_cost(150);
9735  opcode(0x101);
9736  format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9737  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9738  ins_pipe(int_conditional_float_move);
9739%}
9740
9741instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9742  match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9743  ins_cost(150);
9744  opcode(0x102);
9745  format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9746  ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9747  ins_pipe(int_conditional_float_move);
9748%}
9749
9750// ============================================================================
9751// Safepoint Instruction
9752instruct safePoint_poll(iRegP poll) %{
9753  match(SafePoint poll);
9754  effect(USE poll);
9755
9756  size(4);
9757#ifdef _LP64
9758  format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9759#else
9760  format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9761#endif
9762  ins_encode %{
9763    __ relocate(relocInfo::poll_type);
9764    __ ld_ptr($poll$$Register, 0, G0);
9765  %}
9766  ins_pipe(loadPollP);
9767%}
9768
9769// ============================================================================
9770// Call Instructions
9771// Call Java Static Instruction
9772instruct CallStaticJavaDirect( method meth ) %{
9773  match(CallStaticJava);
9774  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9775  effect(USE meth);
9776
9777  size(8);
9778  ins_cost(CALL_COST);
9779  format %{ "CALL,static  ; NOP ==> " %}
9780  ins_encode( Java_Static_Call( meth ), call_epilog );
9781  ins_avoid_back_to_back(AVOID_BEFORE);
9782  ins_pipe(simple_call);
9783%}
9784
9785// Call Java Static Instruction (method handle version)
9786instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9787  match(CallStaticJava);
9788  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9789  effect(USE meth, KILL l7_mh_SP_save);
9790
9791  size(16);
9792  ins_cost(CALL_COST);
9793  format %{ "CALL,static/MethodHandle" %}
9794  ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9795  ins_pipe(simple_call);
9796%}
9797
9798// Call Java Dynamic Instruction
9799instruct CallDynamicJavaDirect( method meth ) %{
9800  match(CallDynamicJava);
9801  effect(USE meth);
9802
9803  ins_cost(CALL_COST);
9804  format %{ "SET    (empty),R_G5\n\t"
9805            "CALL,dynamic  ; NOP ==> " %}
9806  ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9807  ins_pipe(call);
9808%}
9809
9810// Call Runtime Instruction
9811instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9812  match(CallRuntime);
9813  effect(USE meth, KILL l7);
9814  ins_cost(CALL_COST);
9815  format %{ "CALL,runtime" %}
9816  ins_encode( Java_To_Runtime( meth ),
9817              call_epilog, adjust_long_from_native_call );
9818  ins_avoid_back_to_back(AVOID_BEFORE);
9819  ins_pipe(simple_call);
9820%}
9821
9822// Call runtime without safepoint - same as CallRuntime
9823instruct CallLeafDirect(method meth, l7RegP l7) %{
9824  match(CallLeaf);
9825  effect(USE meth, KILL l7);
9826  ins_cost(CALL_COST);
9827  format %{ "CALL,runtime leaf" %}
9828  ins_encode( Java_To_Runtime( meth ),
9829              call_epilog,
9830              adjust_long_from_native_call );
9831  ins_avoid_back_to_back(AVOID_BEFORE);
9832  ins_pipe(simple_call);
9833%}
9834
9835// Call runtime without safepoint - same as CallLeaf
9836instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9837  match(CallLeafNoFP);
9838  effect(USE meth, KILL l7);
9839  ins_cost(CALL_COST);
9840  format %{ "CALL,runtime leaf nofp" %}
9841  ins_encode( Java_To_Runtime( meth ),
9842              call_epilog,
9843              adjust_long_from_native_call );
9844  ins_avoid_back_to_back(AVOID_BEFORE);
9845  ins_pipe(simple_call);
9846%}
9847
9848// Tail Call; Jump from runtime stub to Java code.
9849// Also known as an 'interprocedural jump'.
9850// Target of jump will eventually return to caller.
9851// TailJump below removes the return address.
9852instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9853  match(TailCall jump_target method_oop );
9854
9855  ins_cost(CALL_COST);
9856  format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9857  ins_encode(form_jmpl(jump_target));
9858  ins_avoid_back_to_back(AVOID_BEFORE);
9859  ins_pipe(tail_call);
9860%}
9861
9862
9863// Return Instruction
9864instruct Ret() %{
9865  match(Return);
9866
9867  // The epilogue node did the ret already.
9868  size(0);
9869  format %{ "! return" %}
9870  ins_encode();
9871  ins_pipe(empty);
9872%}
9873
9874
9875// Tail Jump; remove the return address; jump to target.
9876// TailCall above leaves the return address around.
9877// TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9878// ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9879// "restore" before this instruction (in Epilogue), we need to materialize it
9880// in %i0.
9881instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9882  match( TailJump jump_target ex_oop );
9883  ins_cost(CALL_COST);
9884  format %{ "! discard R_O7\n\t"
9885            "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9886  ins_encode(form_jmpl_set_exception_pc(jump_target));
9887  // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9888  // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9889  // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9890  ins_avoid_back_to_back(AVOID_BEFORE);
9891  ins_pipe(tail_call);
9892%}
9893
9894// Create exception oop: created by stack-crawling runtime code.
9895// Created exception is now available to this handler, and is setup
9896// just prior to jumping to this handler.  No code emitted.
9897instruct CreateException( o0RegP ex_oop )
9898%{
9899  match(Set ex_oop (CreateEx));
9900  ins_cost(0);
9901
9902  size(0);
9903  // use the following format syntax
9904  format %{ "! exception oop is in R_O0; no code emitted" %}
9905  ins_encode();
9906  ins_pipe(empty);
9907%}
9908
9909
9910// Rethrow exception:
9911// The exception oop will come in the first argument position.
9912// Then JUMP (not call) to the rethrow stub code.
9913instruct RethrowException()
9914%{
9915  match(Rethrow);
9916  ins_cost(CALL_COST);
9917
9918  // use the following format syntax
9919  format %{ "Jmp    rethrow_stub" %}
9920  ins_encode(enc_rethrow);
9921  ins_avoid_back_to_back(AVOID_BEFORE);
9922  ins_pipe(tail_call);
9923%}
9924
9925
9926// Die now
9927instruct ShouldNotReachHere( )
9928%{
9929  match(Halt);
9930  ins_cost(CALL_COST);
9931
9932  size(4);
9933  // Use the following format syntax
9934  format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9935  ins_encode( form2_illtrap() );
9936  ins_pipe(tail_call);
9937%}
9938
9939// ============================================================================
9940// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9941// array for an instance of the superklass.  Set a hidden internal cache on a
9942// hit (cache is checked with exposed code in gen_subtype_check()).  Return
9943// not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9944instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9945  match(Set index (PartialSubtypeCheck sub super));
9946  effect( KILL pcc, KILL o7 );
9947  ins_cost(DEFAULT_COST*10);
9948  format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9949  ins_encode( enc_PartialSubtypeCheck() );
9950  ins_avoid_back_to_back(AVOID_BEFORE);
9951  ins_pipe(partial_subtype_check_pipe);
9952%}
9953
9954instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9955  match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9956  effect( KILL idx, KILL o7 );
9957  ins_cost(DEFAULT_COST*10);
9958  format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9959  ins_encode( enc_PartialSubtypeCheck() );
9960  ins_avoid_back_to_back(AVOID_BEFORE);
9961  ins_pipe(partial_subtype_check_pipe);
9962%}
9963
9964
9965// ============================================================================
9966// inlined locking and unlocking
9967
9968instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9969  match(Set pcc (FastLock object box));
9970
9971  effect(TEMP scratch2, USE_KILL box, KILL scratch);
9972  ins_cost(100);
9973
9974  format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9975  ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9976  ins_pipe(long_memory_op);
9977%}
9978
9979
9980instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9981  match(Set pcc (FastUnlock object box));
9982  effect(TEMP scratch2, USE_KILL box, KILL scratch);
9983  ins_cost(100);
9984
9985  format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9986  ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9987  ins_pipe(long_memory_op);
9988%}
9989
9990// The encodings are generic.
9991instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9992  predicate(!use_block_zeroing(n->in(2)) );
9993  match(Set dummy (ClearArray cnt base));
9994  effect(TEMP temp, KILL ccr);
9995  ins_cost(300);
9996  format %{ "MOV    $cnt,$temp\n"
9997    "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9998    "        BRge   loop\t\t! Clearing loop\n"
9999    "        STX    G0,[$base+$temp]\t! delay slot" %}
10000
10001  ins_encode %{
10002    // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10003    Register nof_bytes_arg    = $cnt$$Register;
10004    Register nof_bytes_tmp    = $temp$$Register;
10005    Register base_pointer_arg = $base$$Register;
10006
10007    Label loop;
10008    __ mov(nof_bytes_arg, nof_bytes_tmp);
10009
10010    // Loop and clear, walking backwards through the array.
10011    // nof_bytes_tmp (if >0) is always the number of bytes to zero
10012    __ bind(loop);
10013    __ deccc(nof_bytes_tmp, 8);
10014    __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10015    __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10016    // %%%% this mini-loop must not cross a cache boundary!
10017  %}
10018  ins_pipe(long_memory_op);
10019%}
10020
10021instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10022  predicate(use_block_zeroing(n->in(2)));
10023  match(Set dummy (ClearArray cnt base));
10024  effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10025  ins_cost(300);
10026  format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10027
10028  ins_encode %{
10029
10030    assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10031    Register to    = $base$$Register;
10032    Register count = $cnt$$Register;
10033
10034    Label Ldone;
10035    __ nop(); // Separate short branches
10036    // Use BIS for zeroing (temp is not used).
10037    __ bis_zeroing(to, count, G0, Ldone);
10038    __ bind(Ldone);
10039
10040  %}
10041  ins_pipe(long_memory_op);
10042%}
10043
10044instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10045  predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10046  match(Set dummy (ClearArray cnt base));
10047  effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10048  ins_cost(300);
10049  format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10050
10051  ins_encode %{
10052
10053    assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10054    Register to    = $base$$Register;
10055    Register count = $cnt$$Register;
10056    Register temp  = $tmp$$Register;
10057
10058    Label Ldone;
10059    __ nop(); // Separate short branches
10060    // Use BIS for zeroing
10061    __ bis_zeroing(to, count, temp, Ldone);
10062    __ bind(Ldone);
10063
10064  %}
10065  ins_pipe(long_memory_op);
10066%}
10067
10068instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10069                         o7RegI tmp, flagsReg ccr) %{
10070  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10071  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10072  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10073  ins_cost(300);
10074  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10075  ins_encode %{
10076    __ string_compare($str1$$Register, $str2$$Register,
10077                      $cnt1$$Register, $cnt2$$Register, 
10078                      $tmp$$Register, $tmp$$Register,
10079                      $result$$Register, StrIntrinsicNode::LL);
10080  %}                    
10081  ins_pipe(long_memory_op);
10082%}
10083
10084instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10085                         o7RegI tmp, flagsReg ccr) %{
10086  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10087  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10088  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10089  ins_cost(300);
10090  format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10091  ins_encode %{
10092    __ string_compare($str1$$Register, $str2$$Register,
10093                      $cnt1$$Register, $cnt2$$Register,
10094                      $tmp$$Register, $tmp$$Register,
10095                      $result$$Register, StrIntrinsicNode::UU);
10096  %}                    
10097  ins_pipe(long_memory_op);
10098%}
10099
10100instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10101                          o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10102  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10103  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10104  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10105  ins_cost(300);
10106  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10107  ins_encode %{
10108    __ string_compare($str1$$Register, $str2$$Register,
10109                      $cnt1$$Register, $cnt2$$Register,
10110                      $tmp1$$Register, $tmp2$$Register,
10111                      $result$$Register, StrIntrinsicNode::LU);
10112  %}                    
10113  ins_pipe(long_memory_op);
10114%}
10115
10116instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10117                          o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10118  predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10119  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10120  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10121  ins_cost(300);
10122  format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10123  ins_encode %{
10124    __ string_compare($str2$$Register, $str1$$Register,
10125                      $cnt2$$Register, $cnt1$$Register, 
10126                      $tmp1$$Register, $tmp2$$Register,
10127                      $result$$Register, StrIntrinsicNode::UL);
10128  %}                    
10129  ins_pipe(long_memory_op);
10130%}
10131
10132instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10133                        o7RegI tmp, flagsReg ccr) %{
10134  predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10135  match(Set result (StrEquals (Binary str1 str2) cnt));
10136  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10137  ins_cost(300);
10138  format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10139  ins_encode %{
10140    __ array_equals(false, $str1$$Register, $str2$$Register,
10141                    $cnt$$Register, $tmp$$Register,
10142                    $result$$Register, true /* byte */);
10143  %}
10144  ins_pipe(long_memory_op);
10145%}
10146
10147instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10148                        o7RegI tmp, flagsReg ccr) %{
10149  predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
10150  match(Set result (StrEquals (Binary str1 str2) cnt));
10151  effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10152  ins_cost(300);
10153  format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10154  ins_encode %{
10155    __ array_equals(false, $str1$$Register, $str2$$Register,
10156                    $cnt$$Register, $tmp$$Register,
10157                    $result$$Register, false /* byte */);
10158  %}
10159  ins_pipe(long_memory_op);
10160%}
10161
10162instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10163                       o7RegI tmp2, flagsReg ccr) %{
10164  predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10165  match(Set result (AryEq ary1 ary2));
10166  effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10167  ins_cost(300);
10168  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10169  ins_encode %{
10170    __ array_equals(true, $ary1$$Register, $ary2$$Register,
10171                    $tmp1$$Register, $tmp2$$Register,
10172                    $result$$Register, true /* byte */);
10173  %}
10174  ins_pipe(long_memory_op);
10175%}
10176
10177instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10178                       o7RegI tmp2, flagsReg ccr) %{
10179  predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10180  match(Set result (AryEq ary1 ary2));
10181  effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10182  ins_cost(300);
10183  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10184  ins_encode %{
10185    __ array_equals(true, $ary1$$Register, $ary2$$Register,
10186                    $tmp1$$Register, $tmp2$$Register,
10187                    $result$$Register, false /* byte */);
10188  %}
10189  ins_pipe(long_memory_op);
10190%}
10191
10192// char[] to byte[] compression
10193instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
10194  predicate(UseVIS < 3);
10195  match(Set result (StrCompressedCopy src (Binary dst len)));
10196  effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10197  ins_cost(300);
10198  format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
10199  ins_encode %{
10200    Label Ldone;
10201    __ signx($len$$Register);
10202    __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
10203    __ delayed()->mov($len$$Register, $result$$Register); // copy count
10204    __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
10205    __ bind(Ldone);
10206  %}
10207  ins_pipe(long_memory_op);
10208%}
10209
10210// fast char[] to byte[] compression using VIS instructions
10211instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
10212                              iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
10213                              regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
10214  predicate(UseVIS >= 3);
10215  match(Set result (StrCompressedCopy src (Binary dst len)));
10216  effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10217  ins_cost(300);
10218  format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
10219  ins_encode %{
10220    Label Ldone;
10221    __ signx($len$$Register);
10222    __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
10223                          $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
10224                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
10225    __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10226    __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
10227    __ bind(Ldone);
10228  %}
10229  ins_pipe(long_memory_op);
10230%}
10231
10232// byte[] to char[] inflation
10233instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10234                        iRegL tmp, flagsReg ccr) %{
10235  match(Set dummy (StrInflatedCopy src (Binary dst len)));
10236  effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10237  ins_cost(300);
10238  format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
10239  ins_encode %{
10240    Label Ldone;
10241    __ signx($len$$Register);
10242    __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10243    __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10244    __ bind(Ldone);
10245  %}
10246  ins_pipe(long_memory_op);
10247%}
10248
10249// fast byte[] to char[] inflation using VIS instructions
10250instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10251                             iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
10252  predicate(UseVIS >= 3);
10253  match(Set dummy (StrInflatedCopy src (Binary dst len)));
10254  effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10255  ins_cost(300);
10256  format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
10257  ins_encode %{
10258    Label Ldone;
10259    __ signx($len$$Register);
10260    __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
10261                         $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
10262    __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10263    __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10264    __ bind(Ldone);
10265  %}
10266  ins_pipe(long_memory_op);
10267%}
10268
10269
10270//---------- Zeros Count Instructions ------------------------------------------
10271
10272instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10273  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10274  match(Set dst (CountLeadingZerosI src));
10275  effect(TEMP dst, TEMP tmp, KILL cr);
10276
10277  // x |= (x >> 1);
10278  // x |= (x >> 2);
10279  // x |= (x >> 4);
10280  // x |= (x >> 8);
10281  // x |= (x >> 16);
10282  // return (WORDBITS - popc(x));
10283  format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10284            "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10285            "OR      $dst,$tmp,$dst\n\t"
10286            "SRL     $dst,2,$tmp\n\t"
10287            "OR      $dst,$tmp,$dst\n\t"
10288            "SRL     $dst,4,$tmp\n\t"
10289            "OR      $dst,$tmp,$dst\n\t"
10290            "SRL     $dst,8,$tmp\n\t"
10291            "OR      $dst,$tmp,$dst\n\t"
10292            "SRL     $dst,16,$tmp\n\t"
10293            "OR      $dst,$tmp,$dst\n\t"
10294            "POPC    $dst,$dst\n\t"
10295            "MOV     32,$tmp\n\t"
10296            "SUB     $tmp,$dst,$dst" %}
10297  ins_encode %{
10298    Register Rdst = $dst$$Register;
10299    Register Rsrc = $src$$Register;
10300    Register Rtmp = $tmp$$Register;
10301    __ srl(Rsrc, 1,    Rtmp);
10302    __ srl(Rsrc, 0,    Rdst);
10303    __ or3(Rdst, Rtmp, Rdst);
10304    __ srl(Rdst, 2,    Rtmp);
10305    __ or3(Rdst, Rtmp, Rdst);
10306    __ srl(Rdst, 4,    Rtmp);
10307    __ or3(Rdst, Rtmp, Rdst);
10308    __ srl(Rdst, 8,    Rtmp);
10309    __ or3(Rdst, Rtmp, Rdst);
10310    __ srl(Rdst, 16,   Rtmp);
10311    __ or3(Rdst, Rtmp, Rdst);
10312    __ popc(Rdst, Rdst);
10313    __ mov(BitsPerInt, Rtmp);
10314    __ sub(Rtmp, Rdst, Rdst);
10315  %}
10316  ins_pipe(ialu_reg);
10317%}
10318
10319instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10320  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10321  match(Set dst (CountLeadingZerosL src));
10322  effect(TEMP dst, TEMP tmp, KILL cr);
10323
10324  // x |= (x >> 1);
10325  // x |= (x >> 2);
10326  // x |= (x >> 4);
10327  // x |= (x >> 8);
10328  // x |= (x >> 16);
10329  // x |= (x >> 32);
10330  // return (WORDBITS - popc(x));
10331  format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10332            "OR      $src,$tmp,$dst\n\t"
10333            "SRLX    $dst,2,$tmp\n\t"
10334            "OR      $dst,$tmp,$dst\n\t"
10335            "SRLX    $dst,4,$tmp\n\t"
10336            "OR      $dst,$tmp,$dst\n\t"
10337            "SRLX    $dst,8,$tmp\n\t"
10338            "OR      $dst,$tmp,$dst\n\t"
10339            "SRLX    $dst,16,$tmp\n\t"
10340            "OR      $dst,$tmp,$dst\n\t"
10341            "SRLX    $dst,32,$tmp\n\t"
10342            "OR      $dst,$tmp,$dst\n\t"
10343            "POPC    $dst,$dst\n\t"
10344            "MOV     64,$tmp\n\t"
10345            "SUB     $tmp,$dst,$dst" %}
10346  ins_encode %{
10347    Register Rdst = $dst$$Register;
10348    Register Rsrc = $src$$Register;
10349    Register Rtmp = $tmp$$Register;
10350    __ srlx(Rsrc, 1,    Rtmp);
10351    __ or3( Rsrc, Rtmp, Rdst);
10352    __ srlx(Rdst, 2,    Rtmp);
10353    __ or3( Rdst, Rtmp, Rdst);
10354    __ srlx(Rdst, 4,    Rtmp);
10355    __ or3( Rdst, Rtmp, Rdst);
10356    __ srlx(Rdst, 8,    Rtmp);
10357    __ or3( Rdst, Rtmp, Rdst);
10358    __ srlx(Rdst, 16,   Rtmp);
10359    __ or3( Rdst, Rtmp, Rdst);
10360    __ srlx(Rdst, 32,   Rtmp);
10361    __ or3( Rdst, Rtmp, Rdst);
10362    __ popc(Rdst, Rdst);
10363    __ mov(BitsPerLong, Rtmp);
10364    __ sub(Rtmp, Rdst, Rdst);
10365  %}
10366  ins_pipe(ialu_reg);
10367%}
10368
10369instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10370  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10371  match(Set dst (CountTrailingZerosI src));
10372  effect(TEMP dst, KILL cr);
10373
10374  // return popc(~x & (x - 1));
10375  format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10376            "ANDN    $dst,$src,$dst\n\t"
10377            "SRL     $dst,R_G0,$dst\n\t"
10378            "POPC    $dst,$dst" %}
10379  ins_encode %{
10380    Register Rdst = $dst$$Register;
10381    Register Rsrc = $src$$Register;
10382    __ sub(Rsrc, 1, Rdst);
10383    __ andn(Rdst, Rsrc, Rdst);
10384    __ srl(Rdst, G0, Rdst);
10385    __ popc(Rdst, Rdst);
10386  %}
10387  ins_pipe(ialu_reg);
10388%}
10389
10390instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10391  predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10392  match(Set dst (CountTrailingZerosL src));
10393  effect(TEMP dst, KILL cr);
10394
10395  // return popc(~x & (x - 1));
10396  format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10397            "ANDN    $dst,$src,$dst\n\t"
10398            "POPC    $dst,$dst" %}
10399  ins_encode %{
10400    Register Rdst = $dst$$Register;
10401    Register Rsrc = $src$$Register;
10402    __ sub(Rsrc, 1, Rdst);
10403    __ andn(Rdst, Rsrc, Rdst);
10404    __ popc(Rdst, Rdst);
10405  %}
10406  ins_pipe(ialu_reg);
10407%}
10408
10409
10410//---------- Population Count Instructions -------------------------------------
10411
10412instruct popCountI(iRegIsafe dst, iRegI src) %{
10413  predicate(UsePopCountInstruction);
10414  match(Set dst (PopCountI src));
10415
10416  format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10417            "POPC   $dst, $dst" %}
10418  ins_encode %{
10419    __ srl($src$$Register, G0, $dst$$Register);
10420    __ popc($dst$$Register, $dst$$Register);
10421  %}
10422  ins_pipe(ialu_reg);
10423%}
10424
10425// Note: Long.bitCount(long) returns an int.
10426instruct popCountL(iRegIsafe dst, iRegL src) %{
10427  predicate(UsePopCountInstruction);
10428  match(Set dst (PopCountL src));
10429
10430  format %{ "POPC   $src, $dst" %}
10431  ins_encode %{
10432    __ popc($src$$Register, $dst$$Register);
10433  %}
10434  ins_pipe(ialu_reg);
10435%}
10436
10437
10438// ============================================================================
10439//------------Bytes reverse--------------------------------------------------
10440
10441instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10442  match(Set dst (ReverseBytesI src));
10443
10444  // Op cost is artificially doubled to make sure that load or store
10445  // instructions are preferred over this one which requires a spill
10446  // onto a stack slot.
10447  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10448  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10449
10450  ins_encode %{
10451    __ set($src$$disp + STACK_BIAS, O7);
10452    __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10453  %}
10454  ins_pipe( iload_mem );
10455%}
10456
10457instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10458  match(Set dst (ReverseBytesL src));
10459
10460  // Op cost is artificially doubled to make sure that load or store
10461  // instructions are preferred over this one which requires a spill
10462  // onto a stack slot.
10463  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10464  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10465
10466  ins_encode %{
10467    __ set($src$$disp + STACK_BIAS, O7);
10468    __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10469  %}
10470  ins_pipe( iload_mem );
10471%}
10472
10473instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10474  match(Set dst (ReverseBytesUS src));
10475
10476  // Op cost is artificially doubled to make sure that load or store
10477  // instructions are preferred over this one which requires a spill
10478  // onto a stack slot.
10479  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10480  format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10481
10482  ins_encode %{
10483    // the value was spilled as an int so bias the load
10484    __ set($src$$disp + STACK_BIAS + 2, O7);
10485    __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10486  %}
10487  ins_pipe( iload_mem );
10488%}
10489
10490instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10491  match(Set dst (ReverseBytesS src));
10492
10493  // Op cost is artificially doubled to make sure that load or store
10494  // instructions are preferred over this one which requires a spill
10495  // onto a stack slot.
10496  ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10497  format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10498
10499  ins_encode %{
10500    // the value was spilled as an int so bias the load
10501    __ set($src$$disp + STACK_BIAS + 2, O7);
10502    __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10503  %}
10504  ins_pipe( iload_mem );
10505%}
10506
10507// Load Integer reversed byte order
10508instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10509  match(Set dst (ReverseBytesI (LoadI src)));
10510
10511  ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10512  size(4);
10513  format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10514
10515  ins_encode %{
10516    __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10517  %}
10518  ins_pipe(iload_mem);
10519%}
10520
10521// Load Long - aligned and reversed
10522instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10523  match(Set dst (ReverseBytesL (LoadL src)));
10524
10525  ins_cost(MEMORY_REF_COST);
10526  size(4);
10527  format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10528
10529  ins_encode %{
10530    __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10531  %}
10532  ins_pipe(iload_mem);
10533%}
10534
10535// Load unsigned short / char reversed byte order
10536instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10537  match(Set dst (ReverseBytesUS (LoadUS src)));
10538
10539  ins_cost(MEMORY_REF_COST);
10540  size(4);
10541  format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10542
10543  ins_encode %{
10544    __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10545  %}
10546  ins_pipe(iload_mem);
10547%}
10548
10549// Load short reversed byte order
10550instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10551  match(Set dst (ReverseBytesS (LoadS src)));
10552
10553  ins_cost(MEMORY_REF_COST);
10554  size(4);
10555  format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10556
10557  ins_encode %{
10558    __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10559  %}
10560  ins_pipe(iload_mem);
10561%}
10562
10563// Store Integer reversed byte order
10564instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10565  match(Set dst (StoreI dst (ReverseBytesI src)));
10566
10567  ins_cost(MEMORY_REF_COST);
10568  size(4);
10569  format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10570
10571  ins_encode %{
10572    __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10573  %}
10574  ins_pipe(istore_mem_reg);
10575%}
10576
10577// Store Long reversed byte order
10578instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10579  match(Set dst (StoreL dst (ReverseBytesL src)));
10580
10581  ins_cost(MEMORY_REF_COST);
10582  size(4);
10583  format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10584
10585  ins_encode %{
10586    __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10587  %}
10588  ins_pipe(istore_mem_reg);
10589%}
10590
10591// Store unsighed short/char reversed byte order
10592instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10593  match(Set dst (StoreC dst (ReverseBytesUS src)));
10594
10595  ins_cost(MEMORY_REF_COST);
10596  size(4);
10597  format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10598
10599  ins_encode %{
10600    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10601  %}
10602  ins_pipe(istore_mem_reg);
10603%}
10604
10605// Store short reversed byte order
10606instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10607  match(Set dst (StoreC dst (ReverseBytesS src)));
10608
10609  ins_cost(MEMORY_REF_COST);
10610  size(4);
10611  format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10612
10613  ins_encode %{
10614    __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10615  %}
10616  ins_pipe(istore_mem_reg);
10617%}
10618
10619// ====================VECTOR INSTRUCTIONS=====================================
10620
10621// Load Aligned Packed values into a Double Register
10622instruct loadV8(regD dst, memory mem) %{
10623  predicate(n->as_LoadVector()->memory_size() == 8);
10624  match(Set dst (LoadVector mem));
10625  ins_cost(MEMORY_REF_COST);
10626  size(4);
10627  format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10628  ins_encode %{
10629    __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10630  %}
10631  ins_pipe(floadD_mem);
10632%}
10633
10634// Store Vector in Double register to memory
10635instruct storeV8(memory mem, regD src) %{
10636  predicate(n->as_StoreVector()->memory_size() == 8);
10637  match(Set mem (StoreVector mem src));
10638  ins_cost(MEMORY_REF_COST);
10639  size(4);
10640  format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10641  ins_encode %{
10642    __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10643  %}
10644  ins_pipe(fstoreD_mem_reg);
10645%}
10646
10647// Store Zero into vector in memory
10648instruct storeV8B_zero(memory mem, immI0 zero) %{
10649  predicate(n->as_StoreVector()->memory_size() == 8);
10650  match(Set mem (StoreVector mem (ReplicateB zero)));
10651  ins_cost(MEMORY_REF_COST);
10652  size(4);
10653  format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10654  ins_encode %{
10655    __ stx(G0, $mem$$Address);
10656  %}
10657  ins_pipe(fstoreD_mem_zero);
10658%}
10659
10660instruct storeV4S_zero(memory mem, immI0 zero) %{
10661  predicate(n->as_StoreVector()->memory_size() == 8);
10662  match(Set mem (StoreVector mem (ReplicateS zero)));
10663  ins_cost(MEMORY_REF_COST);
10664  size(4);
10665  format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10666  ins_encode %{
10667    __ stx(G0, $mem$$Address);
10668  %}
10669  ins_pipe(fstoreD_mem_zero);
10670%}
10671
10672instruct storeV2I_zero(memory mem, immI0 zero) %{
10673  predicate(n->as_StoreVector()->memory_size() == 8);
10674  match(Set mem (StoreVector mem (ReplicateI zero)));
10675  ins_cost(MEMORY_REF_COST);
10676  size(4);
10677  format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10678  ins_encode %{
10679    __ stx(G0, $mem$$Address);
10680  %}
10681  ins_pipe(fstoreD_mem_zero);
10682%}
10683
10684instruct storeV2F_zero(memory mem, immF0 zero) %{
10685  predicate(n->as_StoreVector()->memory_size() == 8);
10686  match(Set mem (StoreVector mem (ReplicateF zero)));
10687  ins_cost(MEMORY_REF_COST);
10688  size(4);
10689  format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10690  ins_encode %{
10691    __ stx(G0, $mem$$Address);
10692  %}
10693  ins_pipe(fstoreD_mem_zero);
10694%}
10695
10696// Replicate scalar to packed byte values into Double register
10697instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10698  predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10699  match(Set dst (ReplicateB src));
10700  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10701  format %{ "SLLX  $src,56,$tmp\n\t"
10702            "SRLX  $tmp, 8,$tmp2\n\t"
10703            "OR    $tmp,$tmp2,$tmp\n\t"
10704            "SRLX  $tmp,16,$tmp2\n\t"
10705            "OR    $tmp,$tmp2,$tmp\n\t"
10706            "SRLX  $tmp,32,$tmp2\n\t"
10707            "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10708            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10709  ins_encode %{
10710    Register Rsrc = $src$$Register;
10711    Register Rtmp = $tmp$$Register;
10712    Register Rtmp2 = $tmp2$$Register;
10713    __ sllx(Rsrc,    56, Rtmp);
10714    __ srlx(Rtmp,     8, Rtmp2);
10715    __ or3 (Rtmp, Rtmp2, Rtmp);
10716    __ srlx(Rtmp,    16, Rtmp2);
10717    __ or3 (Rtmp, Rtmp2, Rtmp);
10718    __ srlx(Rtmp,    32, Rtmp2);
10719    __ or3 (Rtmp, Rtmp2, Rtmp);
10720    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10721  %}
10722  ins_pipe(ialu_reg);
10723%}
10724
10725// Replicate scalar to packed byte values into Double stack
10726instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10727  predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10728  match(Set dst (ReplicateB src));
10729  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10730  format %{ "SLLX  $src,56,$tmp\n\t"
10731            "SRLX  $tmp, 8,$tmp2\n\t"
10732            "OR    $tmp,$tmp2,$tmp\n\t"
10733            "SRLX  $tmp,16,$tmp2\n\t"
10734            "OR    $tmp,$tmp2,$tmp\n\t"
10735            "SRLX  $tmp,32,$tmp2\n\t"
10736            "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10737            "STX   $tmp,$dst\t! regL to stkD" %}
10738  ins_encode %{
10739    Register Rsrc = $src$$Register;
10740    Register Rtmp = $tmp$$Register;
10741    Register Rtmp2 = $tmp2$$Register;
10742    __ sllx(Rsrc,    56, Rtmp);
10743    __ srlx(Rtmp,     8, Rtmp2);
10744    __ or3 (Rtmp, Rtmp2, Rtmp);
10745    __ srlx(Rtmp,    16, Rtmp2);
10746    __ or3 (Rtmp, Rtmp2, Rtmp);
10747    __ srlx(Rtmp,    32, Rtmp2);
10748    __ or3 (Rtmp, Rtmp2, Rtmp);
10749    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10750    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10751  %}
10752  ins_pipe(ialu_reg);
10753%}
10754
10755// Replicate scalar constant to packed byte values in Double register
10756instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10757  predicate(n->as_Vector()->length() == 8);
10758  match(Set dst (ReplicateB con));
10759  effect(KILL tmp);
10760  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10761  ins_encode %{
10762    // XXX This is a quick fix for 6833573.
10763    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10764    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10765    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10766  %}
10767  ins_pipe(loadConFD);
10768%}
10769
10770// Replicate scalar to packed char/short values into Double register
10771instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10772  predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10773  match(Set dst (ReplicateS src));
10774  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10775  format %{ "SLLX  $src,48,$tmp\n\t"
10776            "SRLX  $tmp,16,$tmp2\n\t"
10777            "OR    $tmp,$tmp2,$tmp\n\t"
10778            "SRLX  $tmp,32,$tmp2\n\t"
10779            "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10780            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10781  ins_encode %{
10782    Register Rsrc = $src$$Register;
10783    Register Rtmp = $tmp$$Register;
10784    Register Rtmp2 = $tmp2$$Register;
10785    __ sllx(Rsrc,    48, Rtmp);
10786    __ srlx(Rtmp,    16, Rtmp2);
10787    __ or3 (Rtmp, Rtmp2, Rtmp);
10788    __ srlx(Rtmp,    32, Rtmp2);
10789    __ or3 (Rtmp, Rtmp2, Rtmp);
10790    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10791  %}
10792  ins_pipe(ialu_reg);
10793%}
10794
10795// Replicate scalar to packed char/short values into Double stack
10796instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10797  predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10798  match(Set dst (ReplicateS src));
10799  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10800  format %{ "SLLX  $src,48,$tmp\n\t"
10801            "SRLX  $tmp,16,$tmp2\n\t"
10802            "OR    $tmp,$tmp2,$tmp\n\t"
10803            "SRLX  $tmp,32,$tmp2\n\t"
10804            "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10805            "STX   $tmp,$dst\t! regL to stkD" %}
10806  ins_encode %{
10807    Register Rsrc = $src$$Register;
10808    Register Rtmp = $tmp$$Register;
10809    Register Rtmp2 = $tmp2$$Register;
10810    __ sllx(Rsrc,    48, Rtmp);
10811    __ srlx(Rtmp,    16, Rtmp2);
10812    __ or3 (Rtmp, Rtmp2, Rtmp);
10813    __ srlx(Rtmp,    32, Rtmp2);
10814    __ or3 (Rtmp, Rtmp2, Rtmp);
10815    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10816    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10817  %}
10818  ins_pipe(ialu_reg);
10819%}
10820
10821// Replicate scalar constant to packed char/short values in Double register
10822instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10823  predicate(n->as_Vector()->length() == 4);
10824  match(Set dst (ReplicateS con));
10825  effect(KILL tmp);
10826  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10827  ins_encode %{
10828    // XXX This is a quick fix for 6833573.
10829    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10830    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10831    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10832  %}
10833  ins_pipe(loadConFD);
10834%}
10835
10836// Replicate scalar to packed int values into Double register
10837instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10838  predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10839  match(Set dst (ReplicateI src));
10840  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10841  format %{ "SLLX  $src,32,$tmp\n\t"
10842            "SRLX  $tmp,32,$tmp2\n\t"
10843            "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10844            "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10845  ins_encode %{
10846    Register Rsrc = $src$$Register;
10847    Register Rtmp = $tmp$$Register;
10848    Register Rtmp2 = $tmp2$$Register;
10849    __ sllx(Rsrc,    32, Rtmp);
10850    __ srlx(Rtmp,    32, Rtmp2);
10851    __ or3 (Rtmp, Rtmp2, Rtmp);
10852    __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10853  %}
10854  ins_pipe(ialu_reg);
10855%}
10856
10857// Replicate scalar to packed int values into Double stack
10858instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10859  predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10860  match(Set dst (ReplicateI src));
10861  effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10862  format %{ "SLLX  $src,32,$tmp\n\t"
10863            "SRLX  $tmp,32,$tmp2\n\t"
10864            "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10865            "STX   $tmp,$dst\t! regL to stkD" %}
10866  ins_encode %{
10867    Register Rsrc = $src$$Register;
10868    Register Rtmp = $tmp$$Register;
10869    Register Rtmp2 = $tmp2$$Register;
10870    __ sllx(Rsrc,    32, Rtmp);
10871    __ srlx(Rtmp,    32, Rtmp2);
10872    __ or3 (Rtmp, Rtmp2, Rtmp);
10873    __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10874    __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10875  %}
10876  ins_pipe(ialu_reg);
10877%}
10878
10879// Replicate scalar zero constant to packed int values in Double register
10880instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10881  predicate(n->as_Vector()->length() == 2);
10882  match(Set dst (ReplicateI con));
10883  effect(KILL tmp);
10884  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10885  ins_encode %{
10886    // XXX This is a quick fix for 6833573.
10887    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10888    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10889    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10890  %}
10891  ins_pipe(loadConFD);
10892%}
10893
10894// Replicate scalar to packed float values into Double stack
10895instruct Repl2F_stk(stackSlotD dst, regF src) %{
10896  predicate(n->as_Vector()->length() == 2);
10897  match(Set dst (ReplicateF src));
10898  ins_cost(MEMORY_REF_COST*2);
10899  format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10900            "STF    $src,$dst.lo" %}
10901  opcode(Assembler::stf_op3);
10902  ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10903  ins_pipe(fstoreF_stk_reg);
10904%}
10905
10906// Replicate scalar zero constant to packed float values in Double register
10907instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10908  predicate(n->as_Vector()->length() == 2);
10909  match(Set dst (ReplicateF con));
10910  effect(KILL tmp);
10911  format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10912  ins_encode %{
10913    // XXX This is a quick fix for 6833573.
10914    //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10915    RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10916    __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10917  %}
10918  ins_pipe(loadConFD);
10919%}
10920
10921//----------PEEPHOLE RULES-----------------------------------------------------
10922// These must follow all instruction definitions as they use the names
10923// defined in the instructions definitions.
10924//
10925// peepmatch ( root_instr_name [preceding_instruction]* );
10926//
10927// peepconstraint %{
10928// (instruction_number.operand_name relational_op instruction_number.operand_name
10929//  [, ...] );
10930// // instruction numbers are zero-based using left to right order in peepmatch
10931//
10932// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10933// // provide an instruction_number.operand_name for each operand that appears
10934// // in the replacement instruction's match rule
10935//
10936// ---------VM FLAGS---------------------------------------------------------
10937//
10938// All peephole optimizations can be turned off using -XX:-OptoPeephole
10939//
10940// Each peephole rule is given an identifying number starting with zero and
10941// increasing by one in the order seen by the parser.  An individual peephole
10942// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10943// on the command-line.
10944//
10945// ---------CURRENT LIMITATIONS----------------------------------------------
10946//
10947// Only match adjacent instructions in same basic block
10948// Only equality constraints
10949// Only constraints between operands, not (0.dest_reg == EAX_enc)
10950// Only one replacement instruction
10951//
10952// ---------EXAMPLE----------------------------------------------------------
10953//
10954// // pertinent parts of existing instructions in architecture description
10955// instruct movI(eRegI dst, eRegI src) %{
10956//   match(Set dst (CopyI src));
10957// %}
10958//
10959// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10960//   match(Set dst (AddI dst src));
10961//   effect(KILL cr);
10962// %}
10963//
10964// // Change (inc mov) to lea
10965// peephole %{
10966//   // increment preceeded by register-register move
10967//   peepmatch ( incI_eReg movI );
10968//   // require that the destination register of the increment
10969//   // match the destination register of the move
10970//   peepconstraint ( 0.dst == 1.dst );
10971//   // construct a replacement instruction that sets
10972//   // the destination to ( move's source register + one )
10973//   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10974// %}
10975//
10976
10977// // Change load of spilled value to only a spill
10978// instruct storeI(memory mem, eRegI src) %{
10979//   match(Set mem (StoreI mem src));
10980// %}
10981//
10982// instruct loadI(eRegI dst, memory mem) %{
10983//   match(Set dst (LoadI mem));
10984// %}
10985//
10986// peephole %{
10987//   peepmatch ( loadI storeI );
10988//   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10989//   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10990// %}
10991
10992//----------SMARTSPILL RULES---------------------------------------------------
10993// These must follow all instruction definitions as they use the names
10994// defined in the instructions definitions.
10995//
10996// SPARC will probably not have any of these rules due to RISC instruction set.
10997
10998//----------PIPELINE-----------------------------------------------------------
10999// Rules which define the behavior of the target architectures pipeline.
11000