sharedRuntime_sparc.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_sharedRuntime_sparc.cpp.incl"
27
28#define __ masm->
29
30#ifdef COMPILER2
31UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
32#endif // COMPILER2
33
34DeoptimizationBlob* SharedRuntime::_deopt_blob;
35SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
36SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
37RuntimeStub*        SharedRuntime::_wrong_method_blob;
38RuntimeStub*        SharedRuntime::_ic_miss_blob;
39RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
40RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
41RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
42
43class RegisterSaver {
44
45  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
46  // The Oregs are problematic. In the 32bit build the compiler can
47  // have O registers live with 64 bit quantities. A window save will
48  // cut the heads off of the registers. We have to do a very extensive
49  // stack dance to save and restore these properly.
50
51  // Note that the Oregs problem only exists if we block at either a polling
52  // page exception a compiled code safepoint that was not originally a call
53  // or deoptimize following one of these kinds of safepoints.
54
55  // Lots of registers to save.  For all builds, a window save will preserve
56  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
57  // builds a window-save will preserve the %o registers.  In the LION build
58  // we need to save the 64-bit %o registers which requires we save them
59  // before the window-save (as then they become %i registers and get their
60  // heads chopped off on interrupt).  We have to save some %g registers here
61  // as well.
62  enum {
63    // This frame's save area.  Includes extra space for the native call:
64    // vararg's layout space and the like.  Briefly holds the caller's
65    // register save area.
66    call_args_area = frame::register_save_words_sp_offset +
67                     frame::memory_parameter_word_sp_offset*wordSize,
68    // Make sure save locations are always 8 byte aligned.
69    // can't use round_to because it doesn't produce compile time constant
70    start_of_extra_save_area = ((call_args_area + 7) & ~7),
71    g1_offset = start_of_extra_save_area, // g-regs needing saving
72    g3_offset = g1_offset+8,
73    g4_offset = g3_offset+8,
74    g5_offset = g4_offset+8,
75    o0_offset = g5_offset+8,
76    o1_offset = o0_offset+8,
77    o2_offset = o1_offset+8,
78    o3_offset = o2_offset+8,
79    o4_offset = o3_offset+8,
80    o5_offset = o4_offset+8,
81    start_of_flags_save_area = o5_offset+8,
82    ccr_offset = start_of_flags_save_area,
83    fsr_offset = ccr_offset + 8,
84    d00_offset = fsr_offset+8,  // Start of float save area
85    register_save_size = d00_offset+8*32
86  };
87
88
89  public:
90
91  static int Oexception_offset() { return o0_offset; };
92  static int G3_offset() { return g3_offset; };
93  static int G5_offset() { return g5_offset; };
94  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
95  static void restore_live_registers(MacroAssembler* masm);
96
97  // During deoptimization only the result register need to be restored
98  // all the other values have already been extracted.
99
100  static void restore_result_registers(MacroAssembler* masm);
101};
102
103OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
104  // Record volatile registers as callee-save values in an OopMap so their save locations will be
105  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
106  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
107  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
108  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
109  int i;
110  // Always make the frame size 16 byte aligned.
111  int frame_size = round_to(additional_frame_words + register_save_size, 16);
112  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
113  int frame_size_in_slots = frame_size / sizeof(jint);
114  // CodeBlob frame size is in words.
115  *total_frame_words = frame_size / wordSize;
116  // OopMap* map = new OopMap(*total_frame_words, 0);
117  OopMap* map = new OopMap(frame_size_in_slots, 0);
118
119#if !defined(_LP64)
120
121  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
122  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
123  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
124  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
125  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
126  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
127  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
128#endif /* _LP64 */
129
130  __ save(SP, -frame_size, SP);
131
132#ifndef _LP64
133  // Reload the 64 bit Oregs. Although they are now Iregs we load them
134  // to Oregs here to avoid interrupts cutting off their heads
135
136  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
137  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
138  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
139  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
140  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
141  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
142
143  __ stx(O0, SP, o0_offset+STACK_BIAS);
144  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
145
146  __ stx(O1, SP, o1_offset+STACK_BIAS);
147
148  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
149
150  __ stx(O2, SP, o2_offset+STACK_BIAS);
151  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
152
153  __ stx(O3, SP, o3_offset+STACK_BIAS);
154  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
155
156  __ stx(O4, SP, o4_offset+STACK_BIAS);
157  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
158
159  __ stx(O5, SP, o5_offset+STACK_BIAS);
160  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
161#endif /* _LP64 */
162
163
164#ifdef _LP64
165  int debug_offset = 0;
166#else
167  int debug_offset = 4;
168#endif
169  // Save the G's
170  __ stx(G1, SP, g1_offset+STACK_BIAS);
171  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
172
173  __ stx(G3, SP, g3_offset+STACK_BIAS);
174  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
175
176  __ stx(G4, SP, g4_offset+STACK_BIAS);
177  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
178
179  __ stx(G5, SP, g5_offset+STACK_BIAS);
180  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
181
182  // This is really a waste but we'll keep things as they were for now
183  if (true) {
184#ifndef _LP64
185    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
186    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
187    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
188    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
189    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
190    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
191    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
192    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
193    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
194    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
195#endif /* _LP64 */
196  }
197
198
199  // Save the flags
200  __ rdccr( G5 );
201  __ stx(G5, SP, ccr_offset+STACK_BIAS);
202  __ stxfsr(SP, fsr_offset+STACK_BIAS);
203
204  // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
205  int offset = d00_offset;
206  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
207    FloatRegister f = as_FloatRegister(i);
208    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
209    // Record as callee saved both halves of double registers (2 float registers).
210    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
211    map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
212    offset += sizeof(double);
213  }
214
215  // And we're done.
216
217  return map;
218}
219
220
221// Pop the current frame and restore all the registers that we
222// saved.
223void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
224
225  // Restore all the FP registers
226  for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
227    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
228  }
229
230  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
231  __ wrccr (G1) ;
232
233  // Restore the G's
234  // Note that G2 (AKA GThread) must be saved and restored separately.
235  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
236
237  __ ldx(SP, g1_offset+STACK_BIAS, G1);
238  __ ldx(SP, g3_offset+STACK_BIAS, G3);
239  __ ldx(SP, g4_offset+STACK_BIAS, G4);
240  __ ldx(SP, g5_offset+STACK_BIAS, G5);
241
242
243#if !defined(_LP64)
244  // Restore the 64-bit O's.
245  __ ldx(SP, o0_offset+STACK_BIAS, O0);
246  __ ldx(SP, o1_offset+STACK_BIAS, O1);
247  __ ldx(SP, o2_offset+STACK_BIAS, O2);
248  __ ldx(SP, o3_offset+STACK_BIAS, O3);
249  __ ldx(SP, o4_offset+STACK_BIAS, O4);
250  __ ldx(SP, o5_offset+STACK_BIAS, O5);
251
252  // And temporarily place them in TLS
253
254  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
255  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
256  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
257  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
258  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
259  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
260#endif /* _LP64 */
261
262  // Restore flags
263
264  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
265
266  __ restore();
267
268#if !defined(_LP64)
269  // Now reload the 64bit Oregs after we've restore the window.
270  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
271  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
272  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
273  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
274  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
275  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
276#endif /* _LP64 */
277
278}
279
280// Pop the current frame and restore the registers that might be holding
281// a result.
282void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
283
284#if !defined(_LP64)
285  // 32bit build returns longs in G1
286  __ ldx(SP, g1_offset+STACK_BIAS, G1);
287
288  // Retrieve the 64-bit O's.
289  __ ldx(SP, o0_offset+STACK_BIAS, O0);
290  __ ldx(SP, o1_offset+STACK_BIAS, O1);
291  // and save to TLS
292  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
293  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
294#endif /* _LP64 */
295
296  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
297
298  __ restore();
299
300#if !defined(_LP64)
301  // Now reload the 64bit Oregs after we've restore the window.
302  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
303  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
304#endif /* _LP64 */
305
306}
307
308// The java_calling_convention describes stack locations as ideal slots on
309// a frame with no abi restrictions. Since we must observe abi restrictions
310// (like the placement of the register window) the slots must be biased by
311// the following value.
312static int reg2offset(VMReg r) {
313  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
314}
315
316// ---------------------------------------------------------------------------
317// Read the array of BasicTypes from a signature, and compute where the
318// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
319// quantities.  Values less than VMRegImpl::stack0 are registers, those above
320// refer to 4-byte stack slots.  All stack slots are based off of the window
321// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
322// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
323// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
324// integer registers.  Values 64-95 are the (32-bit only) float registers.
325// Each 32-bit quantity is given its own number, so the integer registers
326// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
327// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
328
329// Register results are passed in O0-O5, for outgoing call arguments.  To
330// convert to incoming arguments, convert all O's to I's.  The regs array
331// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
332// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
333// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
334// passed (used as a placeholder for the other half of longs and doubles in
335// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
336// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
337// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
338// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
339// same VMRegPair.
340
341// Note: the INPUTS in sig_bt are in units of Java argument words, which are
342// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
343// units regardless of build.
344
345
346// ---------------------------------------------------------------------------
347// The compiled Java calling convention.  The Java convention always passes
348// 64-bit values in adjacent aligned locations (either registers or stack),
349// floats in float registers and doubles in aligned float pairs.  Values are
350// packed in the registers.  There is no backing varargs store for values in
351// registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
352// passed in I's, because longs in I's get their heads chopped off at
353// interrupt).
354int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
355                                           VMRegPair *regs,
356                                           int total_args_passed,
357                                           int is_outgoing) {
358  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
359
360  // Convention is to pack the first 6 int/oop args into the first 6 registers
361  // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
362  // into F0-F7, extras spill to the stack.  Then pad all register sets to
363  // align.  Then put longs and doubles into the same registers as they fit,
364  // else spill to the stack.
365  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
366  const int flt_reg_max = 8;
367  //
368  // Where 32-bit 1-reg longs start being passed
369  // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
370  // So make it look like we've filled all the G regs that c2 wants to use.
371  Register g_reg = TieredCompilation ? noreg : G1;
372
373  // Count int/oop and float args.  See how many stack slots we'll need and
374  // where the longs & doubles will go.
375  int int_reg_cnt   = 0;
376  int flt_reg_cnt   = 0;
377  // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
378  // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
379  int stk_reg_pairs = 0;
380  for (int i = 0; i < total_args_passed; i++) {
381    switch (sig_bt[i]) {
382    case T_LONG:                // LP64, longs compete with int args
383      assert(sig_bt[i+1] == T_VOID, "");
384#ifdef _LP64
385      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
386#endif
387      break;
388    case T_OBJECT:
389    case T_ARRAY:
390    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
391      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
392#ifndef _LP64
393      else                            stk_reg_pairs++;
394#endif
395      break;
396    case T_INT:
397    case T_SHORT:
398    case T_CHAR:
399    case T_BYTE:
400    case T_BOOLEAN:
401      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
402      else                            stk_reg_pairs++;
403      break;
404    case T_FLOAT:
405      if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
406      else                            stk_reg_pairs++;
407      break;
408    case T_DOUBLE:
409      assert(sig_bt[i+1] == T_VOID, "");
410      break;
411    case T_VOID:
412      break;
413    default:
414      ShouldNotReachHere();
415    }
416  }
417
418  // This is where the longs/doubles start on the stack.
419  stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
420
421  int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
422  int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
423
424  // int stk_reg = frame::register_save_words*(wordSize>>2);
425  // int stk_reg = SharedRuntime::out_preserve_stack_slots();
426  int stk_reg = 0;
427  int int_reg = 0;
428  int flt_reg = 0;
429
430  // Now do the signature layout
431  for (int i = 0; i < total_args_passed; i++) {
432    switch (sig_bt[i]) {
433    case T_INT:
434    case T_SHORT:
435    case T_CHAR:
436    case T_BYTE:
437    case T_BOOLEAN:
438#ifndef _LP64
439    case T_OBJECT:
440    case T_ARRAY:
441    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
442#endif // _LP64
443      if (int_reg < int_reg_max) {
444        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
445        regs[i].set1(r->as_VMReg());
446      } else {
447        regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
448      }
449      break;
450
451#ifdef _LP64
452    case T_OBJECT:
453    case T_ARRAY:
454    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
455      if (int_reg < int_reg_max) {
456        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
457        regs[i].set2(r->as_VMReg());
458      } else {
459        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
460        stk_reg_pairs += 2;
461      }
462      break;
463#endif // _LP64
464
465    case T_LONG:
466      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
467#ifdef _LP64
468        if (int_reg < int_reg_max) {
469          Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
470          regs[i].set2(r->as_VMReg());
471        } else {
472          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
473          stk_reg_pairs += 2;
474        }
475#else
476#ifdef COMPILER2
477        // For 32-bit build, can't pass longs in O-regs because they become
478        // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
479        // spare and available.  This convention isn't used by the Sparc ABI or
480        // anywhere else. If we're tiered then we don't use G-regs because c1
481        // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
482        // G0: zero
483        // G1: 1st Long arg
484        // G2: global allocated to TLS
485        // G3: used in inline cache check
486        // G4: 2nd Long arg
487        // G5: used in inline cache check
488        // G6: used by OS
489        // G7: used by OS
490
491        if (g_reg == G1) {
492          regs[i].set2(G1->as_VMReg()); // This long arg in G1
493          g_reg = G4;                  // Where the next arg goes
494        } else if (g_reg == G4) {
495          regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
496          g_reg = noreg;               // No more longs in registers
497        } else {
498          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
499          stk_reg_pairs += 2;
500        }
501#else // COMPILER2
502        if (int_reg_pairs + 1 < int_reg_max) {
503          if (is_outgoing) {
504            regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
505          } else {
506            regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
507          }
508          int_reg_pairs += 2;
509        } else {
510          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
511          stk_reg_pairs += 2;
512        }
513#endif // COMPILER2
514#endif // _LP64
515      break;
516
517    case T_FLOAT:
518      if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
519      else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
520      break;
521    case T_DOUBLE:
522      assert(sig_bt[i+1] == T_VOID, "expecting half");
523      if (flt_reg_pairs + 1 < flt_reg_max) {
524        regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
525        flt_reg_pairs += 2;
526      } else {
527        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
528        stk_reg_pairs += 2;
529      }
530      break;
531    case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
532    default:
533      ShouldNotReachHere();
534    }
535  }
536
537  // retun the amount of stack space these arguments will need.
538  return stk_reg_pairs;
539
540}
541
542// Helper class mostly to avoid passing masm everywhere, and handle
543// store displacement overflow logic.
544class AdapterGenerator {
545  MacroAssembler *masm;
546  Register Rdisp;
547  void set_Rdisp(Register r)  { Rdisp = r; }
548
549  void patch_callers_callsite();
550
551  // base+st_off points to top of argument
552  int arg_offset(const int st_off) { return st_off; }
553  int next_arg_offset(const int st_off) {
554    return st_off - Interpreter::stackElementSize;
555  }
556
557  // Argument slot values may be loaded first into a register because
558  // they might not fit into displacement.
559  RegisterOrConstant arg_slot(const int st_off);
560  RegisterOrConstant next_arg_slot(const int st_off);
561
562  // Stores long into offset pointed to by base
563  void store_c2i_long(Register r, Register base,
564                      const int st_off, bool is_stack);
565  void store_c2i_object(Register r, Register base,
566                        const int st_off);
567  void store_c2i_int(Register r, Register base,
568                     const int st_off);
569  void store_c2i_double(VMReg r_2,
570                        VMReg r_1, Register base, const int st_off);
571  void store_c2i_float(FloatRegister f, Register base,
572                       const int st_off);
573
574 public:
575  void gen_c2i_adapter(int total_args_passed,
576                              // VMReg max_arg,
577                              int comp_args_on_stack, // VMRegStackSlots
578                              const BasicType *sig_bt,
579                              const VMRegPair *regs,
580                              Label& skip_fixup);
581  void gen_i2c_adapter(int total_args_passed,
582                              // VMReg max_arg,
583                              int comp_args_on_stack, // VMRegStackSlots
584                              const BasicType *sig_bt,
585                              const VMRegPair *regs);
586
587  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
588};
589
590
591// Patch the callers callsite with entry to compiled code if it exists.
592void AdapterGenerator::patch_callers_callsite() {
593  Label L;
594  __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
595  __ br_null(G3_scratch, false, __ pt, L);
596  // Schedule the branch target address early.
597  __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
598  // Call into the VM to patch the caller, then jump to compiled callee
599  __ save_frame(4);     // Args in compiled layout; do not blow them
600
601  // Must save all the live Gregs the list is:
602  // G1: 1st Long arg (32bit build)
603  // G2: global allocated to TLS
604  // G3: used in inline cache check (scratch)
605  // G4: 2nd Long arg (32bit build);
606  // G5: used in inline cache check (methodOop)
607
608  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
609
610#ifdef _LP64
611  // mov(s,d)
612  __ mov(G1, L1);
613  __ mov(G4, L4);
614  __ mov(G5_method, L5);
615  __ mov(G5_method, O0);         // VM needs target method
616  __ mov(I7, O1);                // VM needs caller's callsite
617  // Must be a leaf call...
618  // can be very far once the blob has been relocated
619  AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
620  __ relocate(relocInfo::runtime_call_type);
621  __ jumpl_to(dest, O7, O7);
622  __ delayed()->mov(G2_thread, L7_thread_cache);
623  __ mov(L7_thread_cache, G2_thread);
624  __ mov(L1, G1);
625  __ mov(L4, G4);
626  __ mov(L5, G5_method);
627#else
628  __ stx(G1, FP, -8 + STACK_BIAS);
629  __ stx(G4, FP, -16 + STACK_BIAS);
630  __ mov(G5_method, L5);
631  __ mov(G5_method, O0);         // VM needs target method
632  __ mov(I7, O1);                // VM needs caller's callsite
633  // Must be a leaf call...
634  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
635  __ delayed()->mov(G2_thread, L7_thread_cache);
636  __ mov(L7_thread_cache, G2_thread);
637  __ ldx(FP, -8 + STACK_BIAS, G1);
638  __ ldx(FP, -16 + STACK_BIAS, G4);
639  __ mov(L5, G5_method);
640  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
641#endif /* _LP64 */
642
643  __ restore();      // Restore args
644  __ bind(L);
645}
646
647
648RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
649  RegisterOrConstant roc(arg_offset(st_off));
650  return __ ensure_simm13_or_reg(roc, Rdisp);
651}
652
653RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
654  RegisterOrConstant roc(next_arg_offset(st_off));
655  return __ ensure_simm13_or_reg(roc, Rdisp);
656}
657
658
659// Stores long into offset pointed to by base
660void AdapterGenerator::store_c2i_long(Register r, Register base,
661                                      const int st_off, bool is_stack) {
662#ifdef _LP64
663  // In V9, longs are given 2 64-bit slots in the interpreter, but the
664  // data is passed in only 1 slot.
665  __ stx(r, base, next_arg_slot(st_off));
666#else
667#ifdef COMPILER2
668  // Misaligned store of 64-bit data
669  __ stw(r, base, arg_slot(st_off));    // lo bits
670  __ srlx(r, 32, r);
671  __ stw(r, base, next_arg_slot(st_off));  // hi bits
672#else
673  if (is_stack) {
674    // Misaligned store of 64-bit data
675    __ stw(r, base, arg_slot(st_off));    // lo bits
676    __ srlx(r, 32, r);
677    __ stw(r, base, next_arg_slot(st_off));  // hi bits
678  } else {
679    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
680    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
681  }
682#endif // COMPILER2
683#endif // _LP64
684}
685
686void AdapterGenerator::store_c2i_object(Register r, Register base,
687                      const int st_off) {
688  __ st_ptr (r, base, arg_slot(st_off));
689}
690
691void AdapterGenerator::store_c2i_int(Register r, Register base,
692                   const int st_off) {
693  __ st (r, base, arg_slot(st_off));
694}
695
696// Stores into offset pointed to by base
697void AdapterGenerator::store_c2i_double(VMReg r_2,
698                      VMReg r_1, Register base, const int st_off) {
699#ifdef _LP64
700  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
701  // data is passed in only 1 slot.
702  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
703#else
704  // Need to marshal 64-bit value from misaligned Lesp loads
705  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
706  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
707#endif
708}
709
710void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
711                                       const int st_off) {
712  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
713}
714
715void AdapterGenerator::gen_c2i_adapter(
716                            int total_args_passed,
717                            // VMReg max_arg,
718                            int comp_args_on_stack, // VMRegStackSlots
719                            const BasicType *sig_bt,
720                            const VMRegPair *regs,
721                            Label& skip_fixup) {
722
723  // Before we get into the guts of the C2I adapter, see if we should be here
724  // at all.  We've come from compiled code and are attempting to jump to the
725  // interpreter, which means the caller made a static call to get here
726  // (vcalls always get a compiled target if there is one).  Check for a
727  // compiled target.  If there is one, we need to patch the caller's call.
728  // However we will run interpreted if we come thru here. The next pass
729  // thru the call site will run compiled. If we ran compiled here then
730  // we can (theorectically) do endless i2c->c2i->i2c transitions during
731  // deopt/uncommon trap cycles. If we always go interpreted here then
732  // we can have at most one and don't need to play any tricks to keep
733  // from endlessly growing the stack.
734  //
735  // Actually if we detected that we had an i2c->c2i transition here we
736  // ought to be able to reset the world back to the state of the interpreted
737  // call and not bother building another interpreter arg area. We don't
738  // do that at this point.
739
740  patch_callers_callsite();
741
742  __ bind(skip_fixup);
743
744  // Since all args are passed on the stack, total_args_passed*wordSize is the
745  // space we need.  Add in varargs area needed by the interpreter. Round up
746  // to stack alignment.
747  const int arg_size = total_args_passed * Interpreter::stackElementSize;
748  const int varargs_area =
749                 (frame::varargs_offset - frame::register_save_words)*wordSize;
750  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
751
752  int bias = STACK_BIAS;
753  const int interp_arg_offset = frame::varargs_offset*wordSize +
754                        (total_args_passed-1)*Interpreter::stackElementSize;
755
756  Register base = SP;
757
758#ifdef _LP64
759  // In the 64bit build because of wider slots and STACKBIAS we can run
760  // out of bits in the displacement to do loads and stores.  Use g3 as
761  // temporary displacement.
762  if (! __ is_simm13(extraspace)) {
763    __ set(extraspace, G3_scratch);
764    __ sub(SP, G3_scratch, SP);
765  } else {
766    __ sub(SP, extraspace, SP);
767  }
768  set_Rdisp(G3_scratch);
769#else
770  __ sub(SP, extraspace, SP);
771#endif // _LP64
772
773  // First write G1 (if used) to where ever it must go
774  for (int i=0; i<total_args_passed; i++) {
775    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
776    VMReg r_1 = regs[i].first();
777    VMReg r_2 = regs[i].second();
778    if (r_1 == G1_scratch->as_VMReg()) {
779      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
780        store_c2i_object(G1_scratch, base, st_off);
781      } else if (sig_bt[i] == T_LONG) {
782        assert(!TieredCompilation, "should not use register args for longs");
783        store_c2i_long(G1_scratch, base, st_off, false);
784      } else {
785        store_c2i_int(G1_scratch, base, st_off);
786      }
787    }
788  }
789
790  // Now write the args into the outgoing interpreter space
791  for (int i=0; i<total_args_passed; i++) {
792    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
793    VMReg r_1 = regs[i].first();
794    VMReg r_2 = regs[i].second();
795    if (!r_1->is_valid()) {
796      assert(!r_2->is_valid(), "");
797      continue;
798    }
799    // Skip G1 if found as we did it first in order to free it up
800    if (r_1 == G1_scratch->as_VMReg()) {
801      continue;
802    }
803#ifdef ASSERT
804    bool G1_forced = false;
805#endif // ASSERT
806    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
807#ifdef _LP64
808      Register ld_off = Rdisp;
809      __ set(reg2offset(r_1) + extraspace + bias, ld_off);
810#else
811      int ld_off = reg2offset(r_1) + extraspace + bias;
812#endif // _LP64
813#ifdef ASSERT
814      G1_forced = true;
815#endif // ASSERT
816      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
817      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
818      else                  __ ldx(base, ld_off, G1_scratch);
819    }
820
821    if (r_1->is_Register()) {
822      Register r = r_1->as_Register()->after_restore();
823      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
824        store_c2i_object(r, base, st_off);
825      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
826#ifndef _LP64
827        if (TieredCompilation) {
828          assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
829        }
830#endif // _LP64
831        store_c2i_long(r, base, st_off, r_2->is_stack());
832      } else {
833        store_c2i_int(r, base, st_off);
834      }
835    } else {
836      assert(r_1->is_FloatRegister(), "");
837      if (sig_bt[i] == T_FLOAT) {
838        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
839      } else {
840        assert(sig_bt[i] == T_DOUBLE, "wrong type");
841        store_c2i_double(r_2, r_1, base, st_off);
842      }
843    }
844  }
845
846#ifdef _LP64
847  // Need to reload G3_scratch, used for temporary displacements.
848  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
849
850  // Pass O5_savedSP as an argument to the interpreter.
851  // The interpreter will restore SP to this value before returning.
852  __ set(extraspace, G1);
853  __ add(SP, G1, O5_savedSP);
854#else
855  // Pass O5_savedSP as an argument to the interpreter.
856  // The interpreter will restore SP to this value before returning.
857  __ add(SP, extraspace, O5_savedSP);
858#endif // _LP64
859
860  __ mov((frame::varargs_offset)*wordSize -
861         1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
862  // Jump to the interpreter just as if interpreter was doing it.
863  __ jmpl(G3_scratch, 0, G0);
864  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
865  // (really L0) is in use by the compiled frame as a generic temp.  However,
866  // the interpreter does not know where its args are without some kind of
867  // arg pointer being passed in.  Pass it in Gargs.
868  __ delayed()->add(SP, G1, Gargs);
869}
870
871void AdapterGenerator::gen_i2c_adapter(
872                            int total_args_passed,
873                            // VMReg max_arg,
874                            int comp_args_on_stack, // VMRegStackSlots
875                            const BasicType *sig_bt,
876                            const VMRegPair *regs) {
877
878  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
879  // layout.  Lesp was saved by the calling I-frame and will be restored on
880  // return.  Meanwhile, outgoing arg space is all owned by the callee
881  // C-frame, so we can mangle it at will.  After adjusting the frame size,
882  // hoist register arguments and repack other args according to the compiled
883  // code convention.  Finally, end in a jump to the compiled code.  The entry
884  // point address is the start of the buffer.
885
886  // We will only enter here from an interpreted frame and never from after
887  // passing thru a c2i. Azul allowed this but we do not. If we lose the
888  // race and use a c2i we will remain interpreted for the race loser(s).
889  // This removes all sorts of headaches on the x86 side and also eliminates
890  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
891
892  // As you can see from the list of inputs & outputs there are not a lot
893  // of temp registers to work with: mostly G1, G3 & G4.
894
895  // Inputs:
896  // G2_thread      - TLS
897  // G5_method      - Method oop
898  // G4 (Gargs)     - Pointer to interpreter's args
899  // O0..O4         - free for scratch
900  // O5_savedSP     - Caller's saved SP, to be restored if needed
901  // O6             - Current SP!
902  // O7             - Valid return address
903  // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
904
905  // Outputs:
906  // G2_thread      - TLS
907  // G1, G4         - Outgoing long args in 32-bit build
908  // O0-O5          - Outgoing args in compiled layout
909  // O6             - Adjusted or restored SP
910  // O7             - Valid return address
911  // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
912  // F0-F7          - more outgoing args
913
914
915  // Gargs is the incoming argument base, and also an outgoing argument.
916  __ sub(Gargs, BytesPerWord, Gargs);
917
918#ifdef ASSERT
919  {
920    // on entry OsavedSP and SP should be equal
921    Label ok;
922    __ cmp(O5_savedSP, SP);
923    __ br(Assembler::equal, false, Assembler::pt, ok);
924    __ delayed()->nop();
925    __ stop("I5_savedSP not set");
926    __ should_not_reach_here();
927    __ bind(ok);
928  }
929#endif
930
931  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
932  // WITH O7 HOLDING A VALID RETURN PC
933  //
934  // |              |
935  // :  java stack  :
936  // |              |
937  // +--------------+ <--- start of outgoing args
938  // |   receiver   |   |
939  // : rest of args :   |---size is java-arg-words
940  // |              |   |
941  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
942  // |              |   |
943  // :    unused    :   |---Space for max Java stack, plus stack alignment
944  // |              |   |
945  // +--------------+ <--- SP + 16*wordsize
946  // |              |
947  // :    window    :
948  // |              |
949  // +--------------+ <--- SP
950
951  // WE REPACK THE STACK.  We use the common calling convention layout as
952  // discovered by calling SharedRuntime::calling_convention.  We assume it
953  // causes an arbitrary shuffle of memory, which may require some register
954  // temps to do the shuffle.  We hope for (and optimize for) the case where
955  // temps are not needed.  We may have to resize the stack slightly, in case
956  // we need alignment padding (32-bit interpreter can pass longs & doubles
957  // misaligned, but the compilers expect them aligned).
958  //
959  // |              |
960  // :  java stack  :
961  // |              |
962  // +--------------+ <--- start of outgoing args
963  // |  pad, align  |   |
964  // +--------------+   |
965  // | ints, floats |   |---Outgoing stack args, packed low.
966  // +--------------+   |   First few args in registers.
967  // :   doubles    :   |
968  // |   longs      |   |
969  // +--------------+ <--- SP' + 16*wordsize
970  // |              |
971  // :    window    :
972  // |              |
973  // +--------------+ <--- SP'
974
975  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
976  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
977  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
978
979  // Cut-out for having no stack args.  Since up to 6 args are passed
980  // in registers, we will commonly have no stack args.
981  if (comp_args_on_stack > 0) {
982
983    // Convert VMReg stack slots to words.
984    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
985    // Round up to miminum stack alignment, in wordSize
986    comp_words_on_stack = round_to(comp_words_on_stack, 2);
987    // Now compute the distance from Lesp to SP.  This calculation does not
988    // include the space for total_args_passed because Lesp has not yet popped
989    // the arguments.
990    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
991  }
992
993  // Will jump to the compiled code just as if compiled code was doing it.
994  // Pre-load the register-jump target early, to schedule it better.
995  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
996
997  // Now generate the shuffle code.  Pick up all register args and move the
998  // rest through G1_scratch.
999  for (int i=0; i<total_args_passed; i++) {
1000    if (sig_bt[i] == T_VOID) {
1001      // Longs and doubles are passed in native word order, but misaligned
1002      // in the 32-bit build.
1003      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1004      continue;
1005    }
1006
1007    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
1008    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
1009    // ldx/lddf optimizations.
1010
1011    // Load in argument order going down.
1012    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1013    set_Rdisp(G1_scratch);
1014
1015    VMReg r_1 = regs[i].first();
1016    VMReg r_2 = regs[i].second();
1017    if (!r_1->is_valid()) {
1018      assert(!r_2->is_valid(), "");
1019      continue;
1020    }
1021    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
1022      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
1023      if (r_2->is_valid()) r_2 = r_1->next();
1024    }
1025    if (r_1->is_Register()) {  // Register argument
1026      Register r = r_1->as_Register()->after_restore();
1027      if (!r_2->is_valid()) {
1028        __ ld(Gargs, arg_slot(ld_off), r);
1029      } else {
1030#ifdef _LP64
1031        // In V9, longs are given 2 64-bit slots in the interpreter, but the
1032        // data is passed in only 1 slot.
1033        RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
1034              next_arg_slot(ld_off) : arg_slot(ld_off);
1035        __ ldx(Gargs, slot, r);
1036#else
1037        // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1038        // stack shuffle.  Load the first 2 longs into G1/G4 later.
1039#endif
1040      }
1041    } else {
1042      assert(r_1->is_FloatRegister(), "");
1043      if (!r_2->is_valid()) {
1044        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1045      } else {
1046#ifdef _LP64
1047        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1048        // data is passed in only 1 slot.  This code also handles longs that
1049        // are passed on the stack, but need a stack-to-stack move through a
1050        // spare float register.
1051        RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
1052              next_arg_slot(ld_off) : arg_slot(ld_off);
1053        __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1054#else
1055        // Need to marshal 64-bit value from misaligned Lesp loads
1056        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1057        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1058#endif
1059      }
1060    }
1061    // Was the argument really intended to be on the stack, but was loaded
1062    // into F8/F9?
1063    if (regs[i].first()->is_stack()) {
1064      assert(r_1->as_FloatRegister() == F8, "fix this code");
1065      // Convert stack slot to an SP offset
1066      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1067      // Store down the shuffled stack word.  Target address _is_ aligned.
1068      RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
1069      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
1070      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
1071    }
1072  }
1073  bool made_space = false;
1074#ifndef _LP64
1075  // May need to pick up a few long args in G1/G4
1076  bool g4_crushed = false;
1077  bool g3_crushed = false;
1078  for (int i=0; i<total_args_passed; i++) {
1079    if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1080      // Load in argument order going down
1081      int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
1082      // Need to marshal 64-bit value from misaligned Lesp loads
1083      Register r = regs[i].first()->as_Register()->after_restore();
1084      if (r == G1 || r == G4) {
1085        assert(!g4_crushed, "ordering problem");
1086        if (r == G4){
1087          g4_crushed = true;
1088          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1089          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1090        } else {
1091          // better schedule this way
1092          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
1093          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
1094        }
1095        g3_crushed = true;
1096        __ sllx(r, 32, r);
1097        __ or3(G3_scratch, r, r);
1098      } else {
1099        assert(r->is_out(), "longs passed in two O registers");
1100        __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
1101        __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
1102      }
1103    }
1104  }
1105#endif
1106
1107  // Jump to the compiled code just as if compiled code was doing it.
1108  //
1109#ifndef _LP64
1110    if (g3_crushed) {
1111      // Rats load was wasted, at least it is in cache...
1112      __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
1113    }
1114#endif /* _LP64 */
1115
1116    // 6243940 We might end up in handle_wrong_method if
1117    // the callee is deoptimized as we race thru here. If that
1118    // happens we don't want to take a safepoint because the
1119    // caller frame will look interpreted and arguments are now
1120    // "compiled" so it is much better to make this transition
1121    // invisible to the stack walking code. Unfortunately if
1122    // we try and find the callee by normal means a safepoint
1123    // is possible. So we stash the desired callee in the thread
1124    // and the vm will find there should this case occur.
1125    Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1126    __ st_ptr(G5_method, callee_target_addr);
1127
1128    if (StressNonEntrant) {
1129      // Open a big window for deopt failure
1130      __ save_frame(0);
1131      __ mov(G0, L0);
1132      Label loop;
1133      __ bind(loop);
1134      __ sub(L0, 1, L0);
1135      __ br_null(L0, false, Assembler::pt, loop);
1136      __ delayed()->nop();
1137
1138      __ restore();
1139    }
1140
1141
1142    __ jmpl(G3, 0, G0);
1143    __ delayed()->nop();
1144}
1145
1146// ---------------------------------------------------------------
1147AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1148                                                            int total_args_passed,
1149                                                            // VMReg max_arg,
1150                                                            int comp_args_on_stack, // VMRegStackSlots
1151                                                            const BasicType *sig_bt,
1152                                                            const VMRegPair *regs,
1153                                                            AdapterFingerPrint* fingerprint) {
1154  address i2c_entry = __ pc();
1155
1156  AdapterGenerator agen(masm);
1157
1158  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1159
1160
1161  // -------------------------------------------------------------------------
1162  // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
1163  // args start out packed in the compiled layout.  They need to be unpacked
1164  // into the interpreter layout.  This will almost always require some stack
1165  // space.  We grow the current (compiled) stack, then repack the args.  We
1166  // finally end in a jump to the generic interpreter entry point.  On exit
1167  // from the interpreter, the interpreter will restore our SP (lest the
1168  // compiled code, which relys solely on SP and not FP, get sick).
1169
1170  address c2i_unverified_entry = __ pc();
1171  Label skip_fixup;
1172  {
1173#if !defined(_LP64) && defined(COMPILER2)
1174    Register R_temp   = L0;   // another scratch register
1175#else
1176    Register R_temp   = G1;   // another scratch register
1177#endif
1178
1179    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1180
1181    __ verify_oop(O0);
1182    __ verify_oop(G5_method);
1183    __ load_klass(O0, G3_scratch);
1184    __ verify_oop(G3_scratch);
1185
1186#if !defined(_LP64) && defined(COMPILER2)
1187    __ save(SP, -frame::register_save_words*wordSize, SP);
1188    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1189    __ verify_oop(R_temp);
1190    __ cmp(G3_scratch, R_temp);
1191    __ restore();
1192#else
1193    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1194    __ verify_oop(R_temp);
1195    __ cmp(G3_scratch, R_temp);
1196#endif
1197
1198    Label ok, ok2;
1199    __ brx(Assembler::equal, false, Assembler::pt, ok);
1200    __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1201    __ jump_to(ic_miss, G3_scratch);
1202    __ delayed()->nop();
1203
1204    __ bind(ok);
1205    // Method might have been compiled since the call site was patched to
1206    // interpreted if that is the case treat it as a miss so we can get
1207    // the call site corrected.
1208    __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1209    __ bind(ok2);
1210    __ br_null(G3_scratch, false, __ pt, skip_fixup);
1211    __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1212    __ jump_to(ic_miss, G3_scratch);
1213    __ delayed()->nop();
1214
1215  }
1216
1217  address c2i_entry = __ pc();
1218
1219  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1220
1221  __ flush();
1222  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1223
1224}
1225
1226// Helper function for native calling conventions
1227static VMReg int_stk_helper( int i ) {
1228  // Bias any stack based VMReg we get by ignoring the window area
1229  // but not the register parameter save area.
1230  //
1231  // This is strange for the following reasons. We'd normally expect
1232  // the calling convention to return an VMReg for a stack slot
1233  // completely ignoring any abi reserved area. C2 thinks of that
1234  // abi area as only out_preserve_stack_slots. This does not include
1235  // the area allocated by the C abi to store down integer arguments
1236  // because the java calling convention does not use it. So
1237  // since c2 assumes that there are only out_preserve_stack_slots
1238  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1239  // location the c calling convention must add in this bias amount
1240  // to make up for the fact that the out_preserve_stack_slots is
1241  // insufficient for C calls. What a mess. I sure hope those 6
1242  // stack words were worth it on every java call!
1243
1244  // Another way of cleaning this up would be for out_preserve_stack_slots
1245  // to take a parameter to say whether it was C or java calling conventions.
1246  // Then things might look a little better (but not much).
1247
1248  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1249  if( mem_parm_offset < 0 ) {
1250    return as_oRegister(i)->as_VMReg();
1251  } else {
1252    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1253    // Now return a biased offset that will be correct when out_preserve_slots is added back in
1254    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1255  }
1256}
1257
1258
1259int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1260                                         VMRegPair *regs,
1261                                         int total_args_passed) {
1262
1263    // Return the number of VMReg stack_slots needed for the args.
1264    // This value does not include an abi space (like register window
1265    // save area).
1266
1267    // The native convention is V8 if !LP64
1268    // The LP64 convention is the V9 convention which is slightly more sane.
1269
1270    // We return the amount of VMReg stack slots we need to reserve for all
1271    // the arguments NOT counting out_preserve_stack_slots. Since we always
1272    // have space for storing at least 6 registers to memory we start with that.
1273    // See int_stk_helper for a further discussion.
1274    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1275
1276#ifdef _LP64
1277    // V9 convention: All things "as-if" on double-wide stack slots.
1278    // Hoist any int/ptr/long's in the first 6 to int regs.
1279    // Hoist any flt/dbl's in the first 16 dbl regs.
1280    int j = 0;                  // Count of actual args, not HALVES
1281    for( int i=0; i<total_args_passed; i++, j++ ) {
1282      switch( sig_bt[i] ) {
1283      case T_BOOLEAN:
1284      case T_BYTE:
1285      case T_CHAR:
1286      case T_INT:
1287      case T_SHORT:
1288        regs[i].set1( int_stk_helper( j ) ); break;
1289      case T_LONG:
1290        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1291      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1292      case T_ARRAY:
1293      case T_OBJECT:
1294        regs[i].set2( int_stk_helper( j ) );
1295        break;
1296      case T_FLOAT:
1297        if ( j < 16 ) {
1298          // V9ism: floats go in ODD registers
1299          regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1300        } else {
1301          // V9ism: floats go in ODD stack slot
1302          regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1303        }
1304        break;
1305      case T_DOUBLE:
1306        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1307        if ( j < 16 ) {
1308          // V9ism: doubles go in EVEN/ODD regs
1309          regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1310        } else {
1311          // V9ism: doubles go in EVEN/ODD stack slots
1312          regs[i].set2(VMRegImpl::stack2reg(j<<1));
1313        }
1314        break;
1315      case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1316      default:
1317        ShouldNotReachHere();
1318      }
1319      if (regs[i].first()->is_stack()) {
1320        int off =  regs[i].first()->reg2stack();
1321        if (off > max_stack_slots) max_stack_slots = off;
1322      }
1323      if (regs[i].second()->is_stack()) {
1324        int off =  regs[i].second()->reg2stack();
1325        if (off > max_stack_slots) max_stack_slots = off;
1326      }
1327    }
1328
1329#else // _LP64
1330    // V8 convention: first 6 things in O-regs, rest on stack.
1331    // Alignment is willy-nilly.
1332    for( int i=0; i<total_args_passed; i++ ) {
1333      switch( sig_bt[i] ) {
1334      case T_ADDRESS: // raw pointers, like current thread, for VM calls
1335      case T_ARRAY:
1336      case T_BOOLEAN:
1337      case T_BYTE:
1338      case T_CHAR:
1339      case T_FLOAT:
1340      case T_INT:
1341      case T_OBJECT:
1342      case T_SHORT:
1343        regs[i].set1( int_stk_helper( i ) );
1344        break;
1345      case T_DOUBLE:
1346      case T_LONG:
1347        assert( sig_bt[i+1] == T_VOID, "expecting half" );
1348        regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1349        break;
1350      case T_VOID: regs[i].set_bad(); break;
1351      default:
1352        ShouldNotReachHere();
1353      }
1354      if (regs[i].first()->is_stack()) {
1355        int off =  regs[i].first()->reg2stack();
1356        if (off > max_stack_slots) max_stack_slots = off;
1357      }
1358      if (regs[i].second()->is_stack()) {
1359        int off =  regs[i].second()->reg2stack();
1360        if (off > max_stack_slots) max_stack_slots = off;
1361      }
1362    }
1363#endif // _LP64
1364
1365  return round_to(max_stack_slots + 1, 2);
1366
1367}
1368
1369
1370// ---------------------------------------------------------------------------
1371void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1372  switch (ret_type) {
1373  case T_FLOAT:
1374    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1375    break;
1376  case T_DOUBLE:
1377    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1378    break;
1379  }
1380}
1381
1382void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1383  switch (ret_type) {
1384  case T_FLOAT:
1385    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1386    break;
1387  case T_DOUBLE:
1388    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1389    break;
1390  }
1391}
1392
1393// Check and forward and pending exception.  Thread is stored in
1394// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1395// is no exception handler.  We merely pop this frame off and throw the
1396// exception in the caller's frame.
1397static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1398  Label L;
1399  __ br_null(Rex_oop, false, Assembler::pt, L);
1400  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1401  // Since this is a native call, we *know* the proper exception handler
1402  // without calling into the VM: it's the empty function.  Just pop this
1403  // frame and then jump to forward_exception_entry; O7 will contain the
1404  // native caller's return PC.
1405 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1406  __ jump_to(exception_entry, G3_scratch);
1407  __ delayed()->restore();      // Pop this frame off.
1408  __ bind(L);
1409}
1410
1411// A simple move of integer like type
1412static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1413  if (src.first()->is_stack()) {
1414    if (dst.first()->is_stack()) {
1415      // stack to stack
1416      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1417      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1418    } else {
1419      // stack to reg
1420      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1421    }
1422  } else if (dst.first()->is_stack()) {
1423    // reg to stack
1424    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1425  } else {
1426    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1427  }
1428}
1429
1430// On 64 bit we will store integer like items to the stack as
1431// 64 bits items (sparc abi) even though java would only store
1432// 32bits for a parameter. On 32bit it will simply be 32 bits
1433// So this routine will do 32->32 on 32bit and 32->64 on 64bit
1434static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1435  if (src.first()->is_stack()) {
1436    if (dst.first()->is_stack()) {
1437      // stack to stack
1438      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1439      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1440    } else {
1441      // stack to reg
1442      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1443    }
1444  } else if (dst.first()->is_stack()) {
1445    // reg to stack
1446    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1447  } else {
1448    __ mov(src.first()->as_Register(), dst.first()->as_Register());
1449  }
1450}
1451
1452
1453// An oop arg. Must pass a handle not the oop itself
1454static void object_move(MacroAssembler* masm,
1455                        OopMap* map,
1456                        int oop_handle_offset,
1457                        int framesize_in_slots,
1458                        VMRegPair src,
1459                        VMRegPair dst,
1460                        bool is_receiver,
1461                        int* receiver_offset) {
1462
1463  // must pass a handle. First figure out the location we use as a handle
1464
1465  if (src.first()->is_stack()) {
1466    // Oop is already on the stack
1467    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1468    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1469    __ ld_ptr(rHandle, 0, L4);
1470#ifdef _LP64
1471    __ movr( Assembler::rc_z, L4, G0, rHandle );
1472#else
1473    __ tst( L4 );
1474    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1475#endif
1476    if (dst.first()->is_stack()) {
1477      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1478    }
1479    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1480    if (is_receiver) {
1481      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1482    }
1483    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1484  } else {
1485    // Oop is in an input register pass we must flush it to the stack
1486    const Register rOop = src.first()->as_Register();
1487    const Register rHandle = L5;
1488    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1489    int offset = oop_slot*VMRegImpl::stack_slot_size;
1490    Label skip;
1491    __ st_ptr(rOop, SP, offset + STACK_BIAS);
1492    if (is_receiver) {
1493      *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1494    }
1495    map->set_oop(VMRegImpl::stack2reg(oop_slot));
1496    __ add(SP, offset + STACK_BIAS, rHandle);
1497#ifdef _LP64
1498    __ movr( Assembler::rc_z, rOop, G0, rHandle );
1499#else
1500    __ tst( rOop );
1501    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1502#endif
1503
1504    if (dst.first()->is_stack()) {
1505      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1506    } else {
1507      __ mov(rHandle, dst.first()->as_Register());
1508    }
1509  }
1510}
1511
1512// A float arg may have to do float reg int reg conversion
1513static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1514  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1515
1516  if (src.first()->is_stack()) {
1517    if (dst.first()->is_stack()) {
1518      // stack to stack the easiest of the bunch
1519      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1520      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1521    } else {
1522      // stack to reg
1523      if (dst.first()->is_Register()) {
1524        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1525      } else {
1526        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1527      }
1528    }
1529  } else if (dst.first()->is_stack()) {
1530    // reg to stack
1531    if (src.first()->is_Register()) {
1532      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1533    } else {
1534      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1535    }
1536  } else {
1537    // reg to reg
1538    if (src.first()->is_Register()) {
1539      if (dst.first()->is_Register()) {
1540        // gpr -> gpr
1541        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1542      } else {
1543        // gpr -> fpr
1544        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1545        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1546      }
1547    } else if (dst.first()->is_Register()) {
1548      // fpr -> gpr
1549      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1550      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1551    } else {
1552      // fpr -> fpr
1553      // In theory these overlap but the ordering is such that this is likely a nop
1554      if ( src.first() != dst.first()) {
1555        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1556      }
1557    }
1558  }
1559}
1560
1561static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1562  VMRegPair src_lo(src.first());
1563  VMRegPair src_hi(src.second());
1564  VMRegPair dst_lo(dst.first());
1565  VMRegPair dst_hi(dst.second());
1566  simple_move32(masm, src_lo, dst_lo);
1567  simple_move32(masm, src_hi, dst_hi);
1568}
1569
1570// A long move
1571static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1572
1573  // Do the simple ones here else do two int moves
1574  if (src.is_single_phys_reg() ) {
1575    if (dst.is_single_phys_reg()) {
1576      __ mov(src.first()->as_Register(), dst.first()->as_Register());
1577    } else {
1578      // split src into two separate registers
1579      // Remember hi means hi address or lsw on sparc
1580      // Move msw to lsw
1581      if (dst.second()->is_reg()) {
1582        // MSW -> MSW
1583        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1584        // Now LSW -> LSW
1585        // this will only move lo -> lo and ignore hi
1586        VMRegPair split(dst.second());
1587        simple_move32(masm, src, split);
1588      } else {
1589        VMRegPair split(src.first(), L4->as_VMReg());
1590        // MSW -> MSW (lo ie. first word)
1591        __ srax(src.first()->as_Register(), 32, L4);
1592        split_long_move(masm, split, dst);
1593      }
1594    }
1595  } else if (dst.is_single_phys_reg()) {
1596    if (src.is_adjacent_aligned_on_stack(2)) {
1597      __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1598    } else {
1599      // dst is a single reg.
1600      // Remember lo is low address not msb for stack slots
1601      // and lo is the "real" register for registers
1602      // src is
1603
1604      VMRegPair split;
1605
1606      if (src.first()->is_reg()) {
1607        // src.lo (msw) is a reg, src.hi is stk/reg
1608        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1609        split.set_pair(dst.first(), src.first());
1610      } else {
1611        // msw is stack move to L5
1612        // lsw is stack move to dst.lo (real reg)
1613        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1614        split.set_pair(dst.first(), L5->as_VMReg());
1615      }
1616
1617      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1618      // msw   -> src.lo/L5,  lsw -> dst.lo
1619      split_long_move(masm, src, split);
1620
1621      // So dst now has the low order correct position the
1622      // msw half
1623      __ sllx(split.first()->as_Register(), 32, L5);
1624
1625      const Register d = dst.first()->as_Register();
1626      __ or3(L5, d, d);
1627    }
1628  } else {
1629    // For LP64 we can probably do better.
1630    split_long_move(masm, src, dst);
1631  }
1632}
1633
1634// A double move
1635static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1636
1637  // The painful thing here is that like long_move a VMRegPair might be
1638  // 1: a single physical register
1639  // 2: two physical registers (v8)
1640  // 3: a physical reg [lo] and a stack slot [hi] (v8)
1641  // 4: two stack slots
1642
1643  // Since src is always a java calling convention we know that the src pair
1644  // is always either all registers or all stack (and aligned?)
1645
1646  // in a register [lo] and a stack slot [hi]
1647  if (src.first()->is_stack()) {
1648    if (dst.first()->is_stack()) {
1649      // stack to stack the easiest of the bunch
1650      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1651      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1652      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1653      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1654      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1655    } else {
1656      // stack to reg
1657      if (dst.second()->is_stack()) {
1658        // stack -> reg, stack -> stack
1659        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1660        if (dst.first()->is_Register()) {
1661          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1662        } else {
1663          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1664        }
1665        // This was missing. (very rare case)
1666        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1667      } else {
1668        // stack -> reg
1669        // Eventually optimize for alignment QQQ
1670        if (dst.first()->is_Register()) {
1671          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1672          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1673        } else {
1674          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1675          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1676        }
1677      }
1678    }
1679  } else if (dst.first()->is_stack()) {
1680    // reg to stack
1681    if (src.first()->is_Register()) {
1682      // Eventually optimize for alignment QQQ
1683      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1684      if (src.second()->is_stack()) {
1685        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1686        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1687      } else {
1688        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1689      }
1690    } else {
1691      // fpr to stack
1692      if (src.second()->is_stack()) {
1693        ShouldNotReachHere();
1694      } else {
1695        // Is the stack aligned?
1696        if (reg2offset(dst.first()) & 0x7) {
1697          // No do as pairs
1698          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1699          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1700        } else {
1701          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1702        }
1703      }
1704    }
1705  } else {
1706    // reg to reg
1707    if (src.first()->is_Register()) {
1708      if (dst.first()->is_Register()) {
1709        // gpr -> gpr
1710        __ mov(src.first()->as_Register(), dst.first()->as_Register());
1711        __ mov(src.second()->as_Register(), dst.second()->as_Register());
1712      } else {
1713        // gpr -> fpr
1714        // ought to be able to do a single store
1715        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1716        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1717        // ought to be able to do a single load
1718        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1719        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1720      }
1721    } else if (dst.first()->is_Register()) {
1722      // fpr -> gpr
1723      // ought to be able to do a single store
1724      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1725      // ought to be able to do a single load
1726      // REMEMBER first() is low address not LSB
1727      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1728      if (dst.second()->is_Register()) {
1729        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1730      } else {
1731        __ ld(FP, -4 + STACK_BIAS, L4);
1732        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1733      }
1734    } else {
1735      // fpr -> fpr
1736      // In theory these overlap but the ordering is such that this is likely a nop
1737      if ( src.first() != dst.first()) {
1738        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1739      }
1740    }
1741  }
1742}
1743
1744// Creates an inner frame if one hasn't already been created, and
1745// saves a copy of the thread in L7_thread_cache
1746static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1747  if (!*already_created) {
1748    __ save_frame(0);
1749    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1750    // Don't use save_thread because it smashes G2 and we merely want to save a
1751    // copy
1752    __ mov(G2_thread, L7_thread_cache);
1753    *already_created = true;
1754  }
1755}
1756
1757// ---------------------------------------------------------------------------
1758// Generate a native wrapper for a given method.  The method takes arguments
1759// in the Java compiled code convention, marshals them to the native
1760// convention (handlizes oops, etc), transitions to native, makes the call,
1761// returns to java state (possibly blocking), unhandlizes any result and
1762// returns.
1763nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1764                                                methodHandle method,
1765                                                int total_in_args,
1766                                                int comp_args_on_stack, // in VMRegStackSlots
1767                                                BasicType *in_sig_bt,
1768                                                VMRegPair *in_regs,
1769                                                BasicType ret_type) {
1770
1771  // Native nmethod wrappers never take possesion of the oop arguments.
1772  // So the caller will gc the arguments. The only thing we need an
1773  // oopMap for is if the call is static
1774  //
1775  // An OopMap for lock (and class if static), and one for the VM call itself
1776  OopMapSet *oop_maps = new OopMapSet();
1777  intptr_t start = (intptr_t)__ pc();
1778
1779  // First thing make an ic check to see if we should even be here
1780  {
1781    Label L;
1782    const Register temp_reg = G3_scratch;
1783    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1784    __ verify_oop(O0);
1785    __ load_klass(O0, temp_reg);
1786    __ cmp(temp_reg, G5_inline_cache_reg);
1787    __ brx(Assembler::equal, true, Assembler::pt, L);
1788    __ delayed()->nop();
1789
1790    __ jump_to(ic_miss, temp_reg);
1791    __ delayed()->nop();
1792    __ align(CodeEntryAlignment);
1793    __ bind(L);
1794  }
1795
1796  int vep_offset = ((intptr_t)__ pc()) - start;
1797
1798#ifdef COMPILER1
1799  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1800    // Object.hashCode can pull the hashCode from the header word
1801    // instead of doing a full VM transition once it's been computed.
1802    // Since hashCode is usually polymorphic at call sites we can't do
1803    // this optimization at the call site without a lot of work.
1804    Label slowCase;
1805    Register receiver             = O0;
1806    Register result               = O0;
1807    Register header               = G3_scratch;
1808    Register hash                 = G3_scratch; // overwrite header value with hash value
1809    Register mask                 = G1;         // to get hash field from header
1810
1811    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1812    // We depend on hash_mask being at most 32 bits and avoid the use of
1813    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1814    // vm: see markOop.hpp.
1815    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1816    __ sethi(markOopDesc::hash_mask, mask);
1817    __ btst(markOopDesc::unlocked_value, header);
1818    __ br(Assembler::zero, false, Assembler::pn, slowCase);
1819    if (UseBiasedLocking) {
1820      // Check if biased and fall through to runtime if so
1821      __ delayed()->nop();
1822      __ btst(markOopDesc::biased_lock_bit_in_place, header);
1823      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1824    }
1825    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1826
1827    // Check for a valid (non-zero) hash code and get its value.
1828#ifdef _LP64
1829    __ srlx(header, markOopDesc::hash_shift, hash);
1830#else
1831    __ srl(header, markOopDesc::hash_shift, hash);
1832#endif
1833    __ andcc(hash, mask, hash);
1834    __ br(Assembler::equal, false, Assembler::pn, slowCase);
1835    __ delayed()->nop();
1836
1837    // leaf return.
1838    __ retl();
1839    __ delayed()->mov(hash, result);
1840    __ bind(slowCase);
1841  }
1842#endif // COMPILER1
1843
1844
1845  // We have received a description of where all the java arg are located
1846  // on entry to the wrapper. We need to convert these args to where
1847  // the jni function will expect them. To figure out where they go
1848  // we convert the java signature to a C signature by inserting
1849  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1850
1851  int total_c_args = total_in_args + 1;
1852  if (method->is_static()) {
1853    total_c_args++;
1854  }
1855
1856  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1857  VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1858
1859  int argc = 0;
1860  out_sig_bt[argc++] = T_ADDRESS;
1861  if (method->is_static()) {
1862    out_sig_bt[argc++] = T_OBJECT;
1863  }
1864
1865  for (int i = 0; i < total_in_args ; i++ ) {
1866    out_sig_bt[argc++] = in_sig_bt[i];
1867  }
1868
1869  // Now figure out where the args must be stored and how much stack space
1870  // they require (neglecting out_preserve_stack_slots but space for storing
1871  // the 1st six register arguments). It's weird see int_stk_helper.
1872  //
1873  int out_arg_slots;
1874  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1875
1876  // Compute framesize for the wrapper.  We need to handlize all oops in
1877  // registers. We must create space for them here that is disjoint from
1878  // the windowed save area because we have no control over when we might
1879  // flush the window again and overwrite values that gc has since modified.
1880  // (The live window race)
1881  //
1882  // We always just allocate 6 word for storing down these object. This allow
1883  // us to simply record the base and use the Ireg number to decide which
1884  // slot to use. (Note that the reg number is the inbound number not the
1885  // outbound number).
1886  // We must shuffle args to match the native convention, and include var-args space.
1887
1888  // Calculate the total number of stack slots we will need.
1889
1890  // First count the abi requirement plus all of the outgoing args
1891  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1892
1893  // Now the space for the inbound oop handle area
1894
1895  int oop_handle_offset = stack_slots;
1896  stack_slots += 6*VMRegImpl::slots_per_word;
1897
1898  // Now any space we need for handlizing a klass if static method
1899
1900  int oop_temp_slot_offset = 0;
1901  int klass_slot_offset = 0;
1902  int klass_offset = -1;
1903  int lock_slot_offset = 0;
1904  bool is_static = false;
1905
1906  if (method->is_static()) {
1907    klass_slot_offset = stack_slots;
1908    stack_slots += VMRegImpl::slots_per_word;
1909    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1910    is_static = true;
1911  }
1912
1913  // Plus a lock if needed
1914
1915  if (method->is_synchronized()) {
1916    lock_slot_offset = stack_slots;
1917    stack_slots += VMRegImpl::slots_per_word;
1918  }
1919
1920  // Now a place to save return value or as a temporary for any gpr -> fpr moves
1921  stack_slots += 2;
1922
1923  // Ok The space we have allocated will look like:
1924  //
1925  //
1926  // FP-> |                     |
1927  //      |---------------------|
1928  //      | 2 slots for moves   |
1929  //      |---------------------|
1930  //      | lock box (if sync)  |
1931  //      |---------------------| <- lock_slot_offset
1932  //      | klass (if static)   |
1933  //      |---------------------| <- klass_slot_offset
1934  //      | oopHandle area      |
1935  //      |---------------------| <- oop_handle_offset
1936  //      | outbound memory     |
1937  //      | based arguments     |
1938  //      |                     |
1939  //      |---------------------|
1940  //      | vararg area         |
1941  //      |---------------------|
1942  //      |                     |
1943  // SP-> | out_preserved_slots |
1944  //
1945  //
1946
1947
1948  // Now compute actual number of stack words we need rounding to make
1949  // stack properly aligned.
1950  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1951
1952  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1953
1954  // Generate stack overflow check before creating frame
1955  __ generate_stack_overflow_check(stack_size);
1956
1957  // Generate a new frame for the wrapper.
1958  __ save(SP, -stack_size, SP);
1959
1960  int frame_complete = ((intptr_t)__ pc()) - start;
1961
1962  __ verify_thread();
1963
1964
1965  //
1966  // We immediately shuffle the arguments so that any vm call we have to
1967  // make from here on out (sync slow path, jvmti, etc.) we will have
1968  // captured the oops from our caller and have a valid oopMap for
1969  // them.
1970
1971  // -----------------
1972  // The Grand Shuffle
1973  //
1974  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1975  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
1976  // the class mirror instead of a receiver.  This pretty much guarantees that
1977  // register layout will not match.  We ignore these extra arguments during
1978  // the shuffle. The shuffle is described by the two calling convention
1979  // vectors we have in our possession. We simply walk the java vector to
1980  // get the source locations and the c vector to get the destinations.
1981  // Because we have a new window and the argument registers are completely
1982  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
1983  // here.
1984
1985  // This is a trick. We double the stack slots so we can claim
1986  // the oops in the caller's frame. Since we are sure to have
1987  // more args than the caller doubling is enough to make
1988  // sure we can capture all the incoming oop args from the
1989  // caller.
1990  //
1991  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1992  int c_arg = total_c_args - 1;
1993  // Record sp-based slot for receiver on stack for non-static methods
1994  int receiver_offset = -1;
1995
1996  // We move the arguments backward because the floating point registers
1997  // destination will always be to a register with a greater or equal register
1998  // number or the stack.
1999
2000#ifdef ASSERT
2001  bool reg_destroyed[RegisterImpl::number_of_registers];
2002  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2003  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2004    reg_destroyed[r] = false;
2005  }
2006  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2007    freg_destroyed[f] = false;
2008  }
2009
2010#endif /* ASSERT */
2011
2012  for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2013
2014#ifdef ASSERT
2015    if (in_regs[i].first()->is_Register()) {
2016      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2017    } else if (in_regs[i].first()->is_FloatRegister()) {
2018      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2019    }
2020    if (out_regs[c_arg].first()->is_Register()) {
2021      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2022    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2023      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2024    }
2025#endif /* ASSERT */
2026
2027    switch (in_sig_bt[i]) {
2028      case T_ARRAY:
2029      case T_OBJECT:
2030        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2031                    ((i == 0) && (!is_static)),
2032                    &receiver_offset);
2033        break;
2034      case T_VOID:
2035        break;
2036
2037      case T_FLOAT:
2038        float_move(masm, in_regs[i], out_regs[c_arg]);
2039          break;
2040
2041      case T_DOUBLE:
2042        assert( i + 1 < total_in_args &&
2043                in_sig_bt[i + 1] == T_VOID &&
2044                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2045        double_move(masm, in_regs[i], out_regs[c_arg]);
2046        break;
2047
2048      case T_LONG :
2049        long_move(masm, in_regs[i], out_regs[c_arg]);
2050        break;
2051
2052      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2053
2054      default:
2055        move32_64(masm, in_regs[i], out_regs[c_arg]);
2056    }
2057  }
2058
2059  // Pre-load a static method's oop into O1.  Used both by locking code and
2060  // the normal JNI call code.
2061  if (method->is_static()) {
2062    __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2063
2064    // Now handlize the static class mirror in O1.  It's known not-null.
2065    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2066    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2067    __ add(SP, klass_offset + STACK_BIAS, O1);
2068  }
2069
2070
2071  const Register L6_handle = L6;
2072
2073  if (method->is_synchronized()) {
2074    __ mov(O1, L6_handle);
2075  }
2076
2077  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2078  // except O6/O7. So if we must call out we must push a new frame. We immediately
2079  // push a new frame and flush the windows.
2080
2081#ifdef _LP64
2082  intptr_t thepc = (intptr_t) __ pc();
2083  {
2084    address here = __ pc();
2085    // Call the next instruction
2086    __ call(here + 8, relocInfo::none);
2087    __ delayed()->nop();
2088  }
2089#else
2090  intptr_t thepc = __ load_pc_address(O7, 0);
2091#endif /* _LP64 */
2092
2093  // We use the same pc/oopMap repeatedly when we call out
2094  oop_maps->add_gc_map(thepc - start, map);
2095
2096  // O7 now has the pc loaded that we will use when we finally call to native.
2097
2098  // Save thread in L7; it crosses a bunch of VM calls below
2099  // Don't use save_thread because it smashes G2 and we merely
2100  // want to save a copy
2101  __ mov(G2_thread, L7_thread_cache);
2102
2103
2104  // If we create an inner frame once is plenty
2105  // when we create it we must also save G2_thread
2106  bool inner_frame_created = false;
2107
2108  // dtrace method entry support
2109  {
2110    SkipIfEqual skip_if(
2111      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2112    // create inner frame
2113    __ save_frame(0);
2114    __ mov(G2_thread, L7_thread_cache);
2115    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2116    __ call_VM_leaf(L7_thread_cache,
2117         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2118         G2_thread, O1);
2119    __ restore();
2120  }
2121
2122  // RedefineClasses() tracing support for obsolete method entry
2123  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2124    // create inner frame
2125    __ save_frame(0);
2126    __ mov(G2_thread, L7_thread_cache);
2127    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2128    __ call_VM_leaf(L7_thread_cache,
2129         CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2130         G2_thread, O1);
2131    __ restore();
2132  }
2133
2134  // We are in the jni frame unless saved_frame is true in which case
2135  // we are in one frame deeper (the "inner" frame). If we are in the
2136  // "inner" frames the args are in the Iregs and if the jni frame then
2137  // they are in the Oregs.
2138  // If we ever need to go to the VM (for locking, jvmti) then
2139  // we will always be in the "inner" frame.
2140
2141  // Lock a synchronized method
2142  int lock_offset = -1;         // Set if locked
2143  if (method->is_synchronized()) {
2144    Register Roop = O1;
2145    const Register L3_box = L3;
2146
2147    create_inner_frame(masm, &inner_frame_created);
2148
2149    __ ld_ptr(I1, 0, O1);
2150    Label done;
2151
2152    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2153    __ add(FP, lock_offset+STACK_BIAS, L3_box);
2154#ifdef ASSERT
2155    if (UseBiasedLocking) {
2156      // making the box point to itself will make it clear it went unused
2157      // but also be obviously invalid
2158      __ st_ptr(L3_box, L3_box, 0);
2159    }
2160#endif // ASSERT
2161    //
2162    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2163    //
2164    __ compiler_lock_object(Roop, L1,    L3_box, L2);
2165    __ br(Assembler::equal, false, Assembler::pt, done);
2166    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2167
2168
2169    // None of the above fast optimizations worked so we have to get into the
2170    // slow case of monitor enter.  Inline a special case of call_VM that
2171    // disallows any pending_exception.
2172    __ mov(Roop, O0);            // Need oop in O0
2173    __ mov(L3_box, O1);
2174
2175    // Record last_Java_sp, in case the VM code releases the JVM lock.
2176
2177    __ set_last_Java_frame(FP, I7);
2178
2179    // do the call
2180    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2181    __ delayed()->mov(L7_thread_cache, O2);
2182
2183    __ restore_thread(L7_thread_cache); // restore G2_thread
2184    __ reset_last_Java_frame();
2185
2186#ifdef ASSERT
2187    { Label L;
2188    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2189    __ br_null(O0, false, Assembler::pt, L);
2190    __ delayed()->nop();
2191    __ stop("no pending exception allowed on exit from IR::monitorenter");
2192    __ bind(L);
2193    }
2194#endif
2195    __ bind(done);
2196  }
2197
2198
2199  // Finally just about ready to make the JNI call
2200
2201  __ flush_windows();
2202  if (inner_frame_created) {
2203    __ restore();
2204  } else {
2205    // Store only what we need from this frame
2206    // QQQ I think that non-v9 (like we care) we don't need these saves
2207    // either as the flush traps and the current window goes too.
2208    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2209    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2210  }
2211
2212  // get JNIEnv* which is first argument to native
2213
2214  __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2215
2216  // Use that pc we placed in O7 a while back as the current frame anchor
2217
2218  __ set_last_Java_frame(SP, O7);
2219
2220  // Transition from _thread_in_Java to _thread_in_native.
2221  __ set(_thread_in_native, G3_scratch);
2222  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2223
2224  // We flushed the windows ages ago now mark them as flushed
2225
2226  // mark windows as flushed
2227  __ set(JavaFrameAnchor::flushed, G3_scratch);
2228
2229  Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2230
2231#ifdef _LP64
2232  AddressLiteral dest(method->native_function());
2233  __ relocate(relocInfo::runtime_call_type);
2234  __ jumpl_to(dest, O7, O7);
2235#else
2236  __ call(method->native_function(), relocInfo::runtime_call_type);
2237#endif
2238  __ delayed()->st(G3_scratch, flags);
2239
2240  __ restore_thread(L7_thread_cache); // restore G2_thread
2241
2242  // Unpack native results.  For int-types, we do any needed sign-extension
2243  // and move things into I0.  The return value there will survive any VM
2244  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2245  // specially in the slow-path code.
2246  switch (ret_type) {
2247  case T_VOID:    break;        // Nothing to do!
2248  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2249  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2250  // In 64 bits build result is in O0, in O0, O1 in 32bit build
2251  case T_LONG:
2252#ifndef _LP64
2253                  __ mov(O1, I1);
2254#endif
2255                  // Fall thru
2256  case T_OBJECT:                // Really a handle
2257  case T_ARRAY:
2258  case T_INT:
2259                  __ mov(O0, I0);
2260                  break;
2261  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2262  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2263  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2264  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2265    break;                      // Cannot de-handlize until after reclaiming jvm_lock
2266  default:
2267    ShouldNotReachHere();
2268  }
2269
2270  // must we block?
2271
2272  // Block, if necessary, before resuming in _thread_in_Java state.
2273  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2274  { Label no_block;
2275    AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2276
2277    // Switch thread to "native transition" state before reading the synchronization state.
2278    // This additional state is necessary because reading and testing the synchronization
2279    // state is not atomic w.r.t. GC, as this scenario demonstrates:
2280    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2281    //     VM thread changes sync state to synchronizing and suspends threads for GC.
2282    //     Thread A is resumed to finish this native method, but doesn't block here since it
2283    //     didn't see any synchronization is progress, and escapes.
2284    __ set(_thread_in_native_trans, G3_scratch);
2285    __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2286    if(os::is_MP()) {
2287      if (UseMembar) {
2288        // Force this write out before the read below
2289        __ membar(Assembler::StoreLoad);
2290      } else {
2291        // Write serialization page so VM thread can do a pseudo remote membar.
2292        // We use the current thread pointer to calculate a thread specific
2293        // offset to write to within the page. This minimizes bus traffic
2294        // due to cache line collision.
2295        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2296      }
2297    }
2298    __ load_contents(sync_state, G3_scratch);
2299    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2300
2301    Label L;
2302    Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2303    __ br(Assembler::notEqual, false, Assembler::pn, L);
2304    __ delayed()->ld(suspend_state, G3_scratch);
2305    __ cmp(G3_scratch, 0);
2306    __ br(Assembler::equal, false, Assembler::pt, no_block);
2307    __ delayed()->nop();
2308    __ bind(L);
2309
2310    // Block.  Save any potential method result value before the operation and
2311    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2312    // lets us share the oopMap we used when we went native rather the create
2313    // a distinct one for this pc
2314    //
2315    save_native_result(masm, ret_type, stack_slots);
2316    __ call_VM_leaf(L7_thread_cache,
2317                    CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2318                    G2_thread);
2319
2320    // Restore any method result value
2321    restore_native_result(masm, ret_type, stack_slots);
2322    __ bind(no_block);
2323  }
2324
2325  // thread state is thread_in_native_trans. Any safepoint blocking has already
2326  // happened so we can now change state to _thread_in_Java.
2327
2328
2329  __ set(_thread_in_Java, G3_scratch);
2330  __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2331
2332
2333  Label no_reguard;
2334  __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2335  __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2336  __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2337  __ delayed()->nop();
2338
2339    save_native_result(masm, ret_type, stack_slots);
2340  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2341  __ delayed()->nop();
2342
2343  __ restore_thread(L7_thread_cache); // restore G2_thread
2344    restore_native_result(masm, ret_type, stack_slots);
2345
2346  __ bind(no_reguard);
2347
2348  // Handle possible exception (will unlock if necessary)
2349
2350  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2351
2352  // Unlock
2353  if (method->is_synchronized()) {
2354    Label done;
2355    Register I2_ex_oop = I2;
2356    const Register L3_box = L3;
2357    // Get locked oop from the handle we passed to jni
2358    __ ld_ptr(L6_handle, 0, L4);
2359    __ add(SP, lock_offset+STACK_BIAS, L3_box);
2360    // Must save pending exception around the slow-path VM call.  Since it's a
2361    // leaf call, the pending exception (if any) can be kept in a register.
2362    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2363    // Now unlock
2364    //                       (Roop, Rmark, Rbox,   Rscratch)
2365    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2366    __ br(Assembler::equal, false, Assembler::pt, done);
2367    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2368
2369    // save and restore any potential method result value around the unlocking
2370    // operation.  Will save in I0 (or stack for FP returns).
2371    save_native_result(masm, ret_type, stack_slots);
2372
2373    // Must clear pending-exception before re-entering the VM.  Since this is
2374    // a leaf call, pending-exception-oop can be safely kept in a register.
2375    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2376
2377    // slow case of monitor enter.  Inline a special case of call_VM that
2378    // disallows any pending_exception.
2379    __ mov(L3_box, O1);
2380
2381    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2382    __ delayed()->mov(L4, O0);              // Need oop in O0
2383
2384    __ restore_thread(L7_thread_cache); // restore G2_thread
2385
2386#ifdef ASSERT
2387    { Label L;
2388    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2389    __ br_null(O0, false, Assembler::pt, L);
2390    __ delayed()->nop();
2391    __ stop("no pending exception allowed on exit from IR::monitorexit");
2392    __ bind(L);
2393    }
2394#endif
2395    restore_native_result(masm, ret_type, stack_slots);
2396    // check_forward_pending_exception jump to forward_exception if any pending
2397    // exception is set.  The forward_exception routine expects to see the
2398    // exception in pending_exception and not in a register.  Kind of clumsy,
2399    // since all folks who branch to forward_exception must have tested
2400    // pending_exception first and hence have it in a register already.
2401    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2402    __ bind(done);
2403  }
2404
2405  // Tell dtrace about this method exit
2406  {
2407    SkipIfEqual skip_if(
2408      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2409    save_native_result(masm, ret_type, stack_slots);
2410    __ set_oop_constant(JNIHandles::make_local(method()), O1);
2411    __ call_VM_leaf(L7_thread_cache,
2412       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2413       G2_thread, O1);
2414    restore_native_result(masm, ret_type, stack_slots);
2415  }
2416
2417  // Clear "last Java frame" SP and PC.
2418  __ verify_thread(); // G2_thread must be correct
2419  __ reset_last_Java_frame();
2420
2421  // Unpack oop result
2422  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2423      Label L;
2424      __ addcc(G0, I0, G0);
2425      __ brx(Assembler::notZero, true, Assembler::pt, L);
2426      __ delayed()->ld_ptr(I0, 0, I0);
2427      __ mov(G0, I0);
2428      __ bind(L);
2429      __ verify_oop(I0);
2430  }
2431
2432  // reset handle block
2433  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2434  __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2435
2436  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2437  check_forward_pending_exception(masm, G3_scratch);
2438
2439
2440  // Return
2441
2442#ifndef _LP64
2443  if (ret_type == T_LONG) {
2444
2445    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2446    __ sllx(I0, 32, G1);          // Shift bits into high G1
2447    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2448    __ or3 (I1, G1, G1);          // OR 64 bits into G1
2449  }
2450#endif
2451
2452  __ ret();
2453  __ delayed()->restore();
2454
2455  __ flush();
2456
2457  nmethod *nm = nmethod::new_native_nmethod(method,
2458                                            masm->code(),
2459                                            vep_offset,
2460                                            frame_complete,
2461                                            stack_slots / VMRegImpl::slots_per_word,
2462                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2463                                            in_ByteSize(lock_offset),
2464                                            oop_maps);
2465  return nm;
2466
2467}
2468
2469#ifdef HAVE_DTRACE_H
2470// ---------------------------------------------------------------------------
2471// Generate a dtrace nmethod for a given signature.  The method takes arguments
2472// in the Java compiled code convention, marshals them to the native
2473// abi and then leaves nops at the position you would expect to call a native
2474// function. When the probe is enabled the nops are replaced with a trap
2475// instruction that dtrace inserts and the trace will cause a notification
2476// to dtrace.
2477//
2478// The probes are only able to take primitive types and java/lang/String as
2479// arguments.  No other java types are allowed. Strings are converted to utf8
2480// strings so that from dtrace point of view java strings are converted to C
2481// strings. There is an arbitrary fixed limit on the total space that a method
2482// can use for converting the strings. (256 chars per string in the signature).
2483// So any java string larger then this is truncated.
2484
2485static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2486static bool offsets_initialized = false;
2487
2488static VMRegPair reg64_to_VMRegPair(Register r) {
2489  VMRegPair ret;
2490  if (wordSize == 8) {
2491    ret.set2(r->as_VMReg());
2492  } else {
2493    ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
2494  }
2495  return ret;
2496}
2497
2498
2499nmethod *SharedRuntime::generate_dtrace_nmethod(
2500    MacroAssembler *masm, methodHandle method) {
2501
2502
2503  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2504  // be single threaded in this method.
2505  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2506
2507  // Fill in the signature array, for the calling-convention call.
2508  int total_args_passed = method->size_of_parameters();
2509
2510  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2511  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2512
2513  // The signature we are going to use for the trap that dtrace will see
2514  // java/lang/String is converted. We drop "this" and any other object
2515  // is converted to NULL.  (A one-slot java/lang/Long object reference
2516  // is converted to a two-slot long, which is why we double the allocation).
2517  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2518  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2519
2520  int i=0;
2521  int total_strings = 0;
2522  int first_arg_to_pass = 0;
2523  int total_c_args = 0;
2524
2525  // Skip the receiver as dtrace doesn't want to see it
2526  if( !method->is_static() ) {
2527    in_sig_bt[i++] = T_OBJECT;
2528    first_arg_to_pass = 1;
2529  }
2530
2531  SignatureStream ss(method->signature());
2532  for ( ; !ss.at_return_type(); ss.next()) {
2533    BasicType bt = ss.type();
2534    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2535    out_sig_bt[total_c_args++] = bt;
2536    if( bt == T_OBJECT) {
2537      symbolOop s = ss.as_symbol_or_null();
2538      if (s == vmSymbols::java_lang_String()) {
2539        total_strings++;
2540        out_sig_bt[total_c_args-1] = T_ADDRESS;
2541      } else if (s == vmSymbols::java_lang_Boolean() ||
2542                 s == vmSymbols::java_lang_Byte()) {
2543        out_sig_bt[total_c_args-1] = T_BYTE;
2544      } else if (s == vmSymbols::java_lang_Character() ||
2545                 s == vmSymbols::java_lang_Short()) {
2546        out_sig_bt[total_c_args-1] = T_SHORT;
2547      } else if (s == vmSymbols::java_lang_Integer() ||
2548                 s == vmSymbols::java_lang_Float()) {
2549        out_sig_bt[total_c_args-1] = T_INT;
2550      } else if (s == vmSymbols::java_lang_Long() ||
2551                 s == vmSymbols::java_lang_Double()) {
2552        out_sig_bt[total_c_args-1] = T_LONG;
2553        out_sig_bt[total_c_args++] = T_VOID;
2554      }
2555    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2556      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2557      // We convert double to long
2558      out_sig_bt[total_c_args-1] = T_LONG;
2559      out_sig_bt[total_c_args++] = T_VOID;
2560    } else if ( bt == T_FLOAT) {
2561      // We convert float to int
2562      out_sig_bt[total_c_args-1] = T_INT;
2563    }
2564  }
2565
2566  assert(i==total_args_passed, "validly parsed signature");
2567
2568  // Now get the compiled-Java layout as input arguments
2569  int comp_args_on_stack;
2570  comp_args_on_stack = SharedRuntime::java_calling_convention(
2571      in_sig_bt, in_regs, total_args_passed, false);
2572
2573  // We have received a description of where all the java arg are located
2574  // on entry to the wrapper. We need to convert these args to where
2575  // the a  native (non-jni) function would expect them. To figure out
2576  // where they go we convert the java signature to a C signature and remove
2577  // T_VOID for any long/double we might have received.
2578
2579
2580  // Now figure out where the args must be stored and how much stack space
2581  // they require (neglecting out_preserve_stack_slots but space for storing
2582  // the 1st six register arguments). It's weird see int_stk_helper.
2583  //
2584  int out_arg_slots;
2585  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2586
2587  // Calculate the total number of stack slots we will need.
2588
2589  // First count the abi requirement plus all of the outgoing args
2590  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2591
2592  // Plus a temp for possible converion of float/double/long register args
2593
2594  int conversion_temp = stack_slots;
2595  stack_slots += 2;
2596
2597
2598  // Now space for the string(s) we must convert
2599
2600  int string_locs = stack_slots;
2601  stack_slots += total_strings *
2602                   (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2603
2604  // Ok The space we have allocated will look like:
2605  //
2606  //
2607  // FP-> |                     |
2608  //      |---------------------|
2609  //      | string[n]           |
2610  //      |---------------------| <- string_locs[n]
2611  //      | string[n-1]         |
2612  //      |---------------------| <- string_locs[n-1]
2613  //      | ...                 |
2614  //      | ...                 |
2615  //      |---------------------| <- string_locs[1]
2616  //      | string[0]           |
2617  //      |---------------------| <- string_locs[0]
2618  //      | temp                |
2619  //      |---------------------| <- conversion_temp
2620  //      | outbound memory     |
2621  //      | based arguments     |
2622  //      |                     |
2623  //      |---------------------|
2624  //      |                     |
2625  // SP-> | out_preserved_slots |
2626  //
2627  //
2628
2629  // Now compute actual number of stack words we need rounding to make
2630  // stack properly aligned.
2631  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2632
2633  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2634
2635  intptr_t start = (intptr_t)__ pc();
2636
2637  // First thing make an ic check to see if we should even be here
2638
2639  {
2640    Label L;
2641    const Register temp_reg = G3_scratch;
2642    AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2643    __ verify_oop(O0);
2644    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2645    __ cmp(temp_reg, G5_inline_cache_reg);
2646    __ brx(Assembler::equal, true, Assembler::pt, L);
2647    __ delayed()->nop();
2648
2649    __ jump_to(ic_miss, temp_reg);
2650    __ delayed()->nop();
2651    __ align(CodeEntryAlignment);
2652    __ bind(L);
2653  }
2654
2655  int vep_offset = ((intptr_t)__ pc()) - start;
2656
2657
2658  // The instruction at the verified entry point must be 5 bytes or longer
2659  // because it can be patched on the fly by make_non_entrant. The stack bang
2660  // instruction fits that requirement.
2661
2662  // Generate stack overflow check before creating frame
2663  __ generate_stack_overflow_check(stack_size);
2664
2665  assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2666         "valid size for make_non_entrant");
2667
2668  // Generate a new frame for the wrapper.
2669  __ save(SP, -stack_size, SP);
2670
2671  // Frame is now completed as far a size and linkage.
2672
2673  int frame_complete = ((intptr_t)__ pc()) - start;
2674
2675#ifdef ASSERT
2676  bool reg_destroyed[RegisterImpl::number_of_registers];
2677  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2678  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2679    reg_destroyed[r] = false;
2680  }
2681  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2682    freg_destroyed[f] = false;
2683  }
2684
2685#endif /* ASSERT */
2686
2687  VMRegPair zero;
2688  const Register g0 = G0; // without this we get a compiler warning (why??)
2689  zero.set2(g0->as_VMReg());
2690
2691  int c_arg, j_arg;
2692
2693  Register conversion_off = noreg;
2694
2695  for (j_arg = first_arg_to_pass, c_arg = 0 ;
2696       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2697
2698    VMRegPair src = in_regs[j_arg];
2699    VMRegPair dst = out_regs[c_arg];
2700
2701#ifdef ASSERT
2702    if (src.first()->is_Register()) {
2703      assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2704    } else if (src.first()->is_FloatRegister()) {
2705      assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2706                                               FloatRegisterImpl::S)], "ack!");
2707    }
2708    if (dst.first()->is_Register()) {
2709      reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2710    } else if (dst.first()->is_FloatRegister()) {
2711      freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2712                                                 FloatRegisterImpl::S)] = true;
2713    }
2714#endif /* ASSERT */
2715
2716    switch (in_sig_bt[j_arg]) {
2717      case T_ARRAY:
2718      case T_OBJECT:
2719        {
2720          if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2721              out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2722            // need to unbox a one-slot value
2723            Register in_reg = L0;
2724            Register tmp = L2;
2725            if ( src.first()->is_reg() ) {
2726              in_reg = src.first()->as_Register();
2727            } else {
2728              assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2729                     "must be");
2730              __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2731            }
2732            // If the final destination is an acceptable register
2733            if ( dst.first()->is_reg() ) {
2734              if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2735                tmp = dst.first()->as_Register();
2736              }
2737            }
2738
2739            Label skipUnbox;
2740            if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2741              __ mov(G0, tmp->successor());
2742            }
2743            __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2744            __ delayed()->mov(G0, tmp);
2745
2746            BasicType bt = out_sig_bt[c_arg];
2747            int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2748            switch (bt) {
2749                case T_BYTE:
2750                  __ ldub(in_reg, box_offset, tmp); break;
2751                case T_SHORT:
2752                  __ lduh(in_reg, box_offset, tmp); break;
2753                case T_INT:
2754                  __ ld(in_reg, box_offset, tmp); break;
2755                case T_LONG:
2756                  __ ld_long(in_reg, box_offset, tmp); break;
2757                default: ShouldNotReachHere();
2758            }
2759
2760            __ bind(skipUnbox);
2761            // If tmp wasn't final destination copy to final destination
2762            if (tmp == L2) {
2763              VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
2764              if (out_sig_bt[c_arg] == T_LONG) {
2765                long_move(masm, tmp_as_VM, dst);
2766              } else {
2767                move32_64(masm, tmp_as_VM, out_regs[c_arg]);
2768              }
2769            }
2770            if (out_sig_bt[c_arg] == T_LONG) {
2771              assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2772              ++c_arg; // move over the T_VOID to keep the loop indices in sync
2773            }
2774          } else if (out_sig_bt[c_arg] == T_ADDRESS) {
2775            Register s =
2776                src.first()->is_reg() ? src.first()->as_Register() : L2;
2777            Register d =
2778                dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2779
2780            // We store the oop now so that the conversion pass can reach
2781            // while in the inner frame. This will be the only store if
2782            // the oop is NULL.
2783            if (s != L2) {
2784              // src is register
2785              if (d != L2) {
2786                // dst is register
2787                __ mov(s, d);
2788              } else {
2789                assert(Assembler::is_simm13(reg2offset(dst.first()) +
2790                          STACK_BIAS), "must be");
2791                __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
2792              }
2793            } else {
2794                // src not a register
2795                assert(Assembler::is_simm13(reg2offset(src.first()) +
2796                           STACK_BIAS), "must be");
2797                __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
2798                if (d == L2) {
2799                  assert(Assembler::is_simm13(reg2offset(dst.first()) +
2800                             STACK_BIAS), "must be");
2801                  __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
2802                }
2803            }
2804          } else if (out_sig_bt[c_arg] != T_VOID) {
2805            // Convert the arg to NULL
2806            if (dst.first()->is_reg()) {
2807              __ mov(G0, dst.first()->as_Register());
2808            } else {
2809              assert(Assembler::is_simm13(reg2offset(dst.first()) +
2810                         STACK_BIAS), "must be");
2811              __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
2812            }
2813          }
2814        }
2815        break;
2816      case T_VOID:
2817        break;
2818
2819      case T_FLOAT:
2820        if (src.first()->is_stack()) {
2821          // Stack to stack/reg is simple
2822          move32_64(masm, src, dst);
2823        } else {
2824          if (dst.first()->is_reg()) {
2825            // freg -> reg
2826            int off =
2827              STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2828            Register d = dst.first()->as_Register();
2829            if (Assembler::is_simm13(off)) {
2830              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2831                     SP, off);
2832              __ ld(SP, off, d);
2833            } else {
2834              if (conversion_off == noreg) {
2835                __ set(off, L6);
2836                conversion_off = L6;
2837              }
2838              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2839                     SP, conversion_off);
2840              __ ld(SP, conversion_off , d);
2841            }
2842          } else {
2843            // freg -> mem
2844            int off = STACK_BIAS + reg2offset(dst.first());
2845            if (Assembler::is_simm13(off)) {
2846              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2847                     SP, off);
2848            } else {
2849              if (conversion_off == noreg) {
2850                __ set(off, L6);
2851                conversion_off = L6;
2852              }
2853              __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
2854                     SP, conversion_off);
2855            }
2856          }
2857        }
2858        break;
2859
2860      case T_DOUBLE:
2861        assert( j_arg + 1 < total_args_passed &&
2862                in_sig_bt[j_arg + 1] == T_VOID &&
2863                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2864        if (src.first()->is_stack()) {
2865          // Stack to stack/reg is simple
2866          long_move(masm, src, dst);
2867        } else {
2868          Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
2869
2870          // Destination could be an odd reg on 32bit in which case
2871          // we can't load direct to the destination.
2872
2873          if (!d->is_even() && wordSize == 4) {
2874            d = L2;
2875          }
2876          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2877          if (Assembler::is_simm13(off)) {
2878            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2879                   SP, off);
2880            __ ld_long(SP, off, d);
2881          } else {
2882            if (conversion_off == noreg) {
2883              __ set(off, L6);
2884              conversion_off = L6;
2885            }
2886            __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
2887                   SP, conversion_off);
2888            __ ld_long(SP, conversion_off, d);
2889          }
2890          if (d == L2) {
2891            long_move(masm, reg64_to_VMRegPair(L2), dst);
2892          }
2893        }
2894        break;
2895
2896      case T_LONG :
2897        // 32bit can't do a split move of something like g1 -> O0, O1
2898        // so use a memory temp
2899        if (src.is_single_phys_reg() && wordSize == 4) {
2900          Register tmp = L2;
2901          if (dst.first()->is_reg() &&
2902              (wordSize == 8 || dst.first()->as_Register()->is_even())) {
2903            tmp = dst.first()->as_Register();
2904          }
2905
2906          int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
2907          if (Assembler::is_simm13(off)) {
2908            __ stx(src.first()->as_Register(), SP, off);
2909            __ ld_long(SP, off, tmp);
2910          } else {
2911            if (conversion_off == noreg) {
2912              __ set(off, L6);
2913              conversion_off = L6;
2914            }
2915            __ stx(src.first()->as_Register(), SP, conversion_off);
2916            __ ld_long(SP, conversion_off, tmp);
2917          }
2918
2919          if (tmp == L2) {
2920            long_move(masm, reg64_to_VMRegPair(L2), dst);
2921          }
2922        } else {
2923          long_move(masm, src, dst);
2924        }
2925        break;
2926
2927      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2928
2929      default:
2930        move32_64(masm, src, dst);
2931    }
2932  }
2933
2934
2935  // If we have any strings we must store any register based arg to the stack
2936  // This includes any still live xmm registers too.
2937
2938  if (total_strings > 0 ) {
2939
2940    // protect all the arg registers
2941    __ save_frame(0);
2942    __ mov(G2_thread, L7_thread_cache);
2943    const Register L2_string_off = L2;
2944
2945    // Get first string offset
2946    __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
2947
2948    for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
2949      if (out_sig_bt[c_arg] == T_ADDRESS) {
2950
2951        VMRegPair dst = out_regs[c_arg];
2952        const Register d = dst.first()->is_reg() ?
2953            dst.first()->as_Register()->after_save() : noreg;
2954
2955        // It's a string the oop and it was already copied to the out arg
2956        // position
2957        if (d != noreg) {
2958          __ mov(d, O0);
2959        } else {
2960          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2961                 "must be");
2962          __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
2963        }
2964        Label skip;
2965
2966        __ br_null(O0, false, Assembler::pn, skip);
2967        __ delayed()->add(FP, L2_string_off, O1);
2968
2969        if (d != noreg) {
2970          __ mov(O1, d);
2971        } else {
2972          assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
2973                 "must be");
2974          __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
2975        }
2976
2977        __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
2978                relocInfo::runtime_call_type);
2979        __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
2980
2981        __ bind(skip);
2982
2983      }
2984
2985    }
2986    __ mov(L7_thread_cache, G2_thread);
2987    __ restore();
2988
2989  }
2990
2991
2992  // Ok now we are done. Need to place the nop that dtrace wants in order to
2993  // patch in the trap
2994
2995  int patch_offset = ((intptr_t)__ pc()) - start;
2996
2997  __ nop();
2998
2999
3000  // Return
3001
3002  __ ret();
3003  __ delayed()->restore();
3004
3005  __ flush();
3006
3007  nmethod *nm = nmethod::new_dtrace_nmethod(
3008      method, masm->code(), vep_offset, patch_offset, frame_complete,
3009      stack_slots / VMRegImpl::slots_per_word);
3010  return nm;
3011
3012}
3013
3014#endif // HAVE_DTRACE_H
3015
3016// this function returns the adjust size (in number of words) to a c2i adapter
3017// activation for use during deoptimization
3018int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3019  assert(callee_locals >= callee_parameters,
3020          "test and remove; got more parms than locals");
3021  if (callee_locals < callee_parameters)
3022    return 0;                   // No adjustment for negative locals
3023  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3024  return round_to(diff, WordsPerLong);
3025}
3026
3027// "Top of Stack" slots that may be unused by the calling convention but must
3028// otherwise be preserved.
3029// On Intel these are not necessary and the value can be zero.
3030// On Sparc this describes the words reserved for storing a register window
3031// when an interrupt occurs.
3032uint SharedRuntime::out_preserve_stack_slots() {
3033  return frame::register_save_words * VMRegImpl::slots_per_word;
3034}
3035
3036static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3037//
3038// Common out the new frame generation for deopt and uncommon trap
3039//
3040  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3041  Register        Oreturn0           = O0;
3042  Register        Oreturn1           = O1;
3043  Register        O2UnrollBlock      = O2;
3044  Register        O3array            = O3;         // Array of frame sizes (input)
3045  Register        O4array_size       = O4;         // number of frames (input)
3046  Register        O7frame_size       = O7;         // number of frames (input)
3047
3048  __ ld_ptr(O3array, 0, O7frame_size);
3049  __ sub(G0, O7frame_size, O7frame_size);
3050  __ save(SP, O7frame_size, SP);
3051  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3052
3053  #ifdef ASSERT
3054  // make sure that the frames are aligned properly
3055#ifndef _LP64
3056  __ btst(wordSize*2-1, SP);
3057  __ breakpoint_trap(Assembler::notZero);
3058#endif
3059  #endif
3060
3061  // Deopt needs to pass some extra live values from frame to frame
3062
3063  if (deopt) {
3064    __ mov(Oreturn0->after_save(), Oreturn0);
3065    __ mov(Oreturn1->after_save(), Oreturn1);
3066  }
3067
3068  __ mov(O4array_size->after_save(), O4array_size);
3069  __ sub(O4array_size, 1, O4array_size);
3070  __ mov(O3array->after_save(), O3array);
3071  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3072  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3073
3074  #ifdef ASSERT
3075  // trash registers to show a clear pattern in backtraces
3076  __ set(0xDEAD0000, I0);
3077  __ add(I0,  2, I1);
3078  __ add(I0,  4, I2);
3079  __ add(I0,  6, I3);
3080  __ add(I0,  8, I4);
3081  // Don't touch I5 could have valuable savedSP
3082  __ set(0xDEADBEEF, L0);
3083  __ mov(L0, L1);
3084  __ mov(L0, L2);
3085  __ mov(L0, L3);
3086  __ mov(L0, L4);
3087  __ mov(L0, L5);
3088
3089  // trash the return value as there is nothing to return yet
3090  __ set(0xDEAD0001, O7);
3091  #endif
3092
3093  __ mov(SP, O5_savedSP);
3094}
3095
3096
3097static void make_new_frames(MacroAssembler* masm, bool deopt) {
3098  //
3099  // loop through the UnrollBlock info and create new frames
3100  //
3101  Register        G3pcs              = G3_scratch;
3102  Register        Oreturn0           = O0;
3103  Register        Oreturn1           = O1;
3104  Register        O2UnrollBlock      = O2;
3105  Register        O3array            = O3;
3106  Register        O4array_size       = O4;
3107  Label           loop;
3108
3109  // Before we make new frames, check to see if stack is available.
3110  // Do this after the caller's return address is on top of stack
3111  if (UseStackBanging) {
3112    // Get total frame size for interpreted frames
3113    __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3114    __ bang_stack_size(O4, O3, G3_scratch);
3115  }
3116
3117  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3118  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3119  __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3120
3121  // Adjust old interpreter frame to make space for new frame's extra java locals
3122  //
3123  // We capture the original sp for the transition frame only because it is needed in
3124  // order to properly calculate interpreter_sp_adjustment. Even though in real life
3125  // every interpreter frame captures a savedSP it is only needed at the transition
3126  // (fortunately). If we had to have it correct everywhere then we would need to
3127  // be told the sp_adjustment for each frame we create. If the frame size array
3128  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3129  // for each frame we create and keep up the illusion every where.
3130  //
3131
3132  __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3133  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3134  __ sub(SP, O7, SP);
3135
3136#ifdef ASSERT
3137  // make sure that there is at least one entry in the array
3138  __ tst(O4array_size);
3139  __ breakpoint_trap(Assembler::zero);
3140#endif
3141
3142  // Now push the new interpreter frames
3143  __ bind(loop);
3144
3145  // allocate a new frame, filling the registers
3146
3147  gen_new_frame(masm, deopt);        // allocate an interpreter frame
3148
3149  __ tst(O4array_size);
3150  __ br(Assembler::notZero, false, Assembler::pn, loop);
3151  __ delayed()->add(O3array, wordSize, O3array);
3152  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3153
3154}
3155
3156//------------------------------generate_deopt_blob----------------------------
3157// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3158// instead.
3159void SharedRuntime::generate_deopt_blob() {
3160  // allocate space for the code
3161  ResourceMark rm;
3162  // setup code generation tools
3163  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3164#ifdef _LP64
3165  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3166#else
3167  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3168  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3169  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3170#endif /* _LP64 */
3171  MacroAssembler* masm               = new MacroAssembler(&buffer);
3172  FloatRegister   Freturn0           = F0;
3173  Register        Greturn1           = G1;
3174  Register        Oreturn0           = O0;
3175  Register        Oreturn1           = O1;
3176  Register        O2UnrollBlock      = O2;
3177  Register        L0deopt_mode       = L0;
3178  Register        G4deopt_mode       = G4_scratch;
3179  int             frame_size_words;
3180  Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3181#if !defined(_LP64) && defined(COMPILER2)
3182  Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3183#endif
3184  Label           cont;
3185
3186  OopMapSet *oop_maps = new OopMapSet();
3187
3188  //
3189  // This is the entry point for code which is returning to a de-optimized
3190  // frame.
3191  // The steps taken by this frame are as follows:
3192  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3193  //     and all potentially live registers (at a pollpoint many registers can be live).
3194  //
3195  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3196  //     returns information about the number and size of interpreter frames
3197  //     which are equivalent to the frame which is being deoptimized)
3198  //   - deallocate the unpack frame, restoring only results values. Other
3199  //     volatile registers will now be captured in the vframeArray as needed.
3200  //   - deallocate the deoptimization frame
3201  //   - in a loop using the information returned in the previous step
3202  //     push new interpreter frames (take care to propagate the return
3203  //     values through each new frame pushed)
3204  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3205  //   - call the C routine: Deoptimization::unpack_frames (this function
3206  //     lays out values on the interpreter frame which was just created)
3207  //   - deallocate the dummy unpack_frame
3208  //   - ensure that all the return values are correctly set and then do
3209  //     a return to the interpreter entry point
3210  //
3211  // Refer to the following methods for more information:
3212  //   - Deoptimization::fetch_unroll_info
3213  //   - Deoptimization::unpack_frames
3214
3215  OopMap* map = NULL;
3216
3217  int start = __ offset();
3218
3219  // restore G2, the trampoline destroyed it
3220  __ get_thread();
3221
3222  // On entry we have been called by the deoptimized nmethod with a call that
3223  // replaced the original call (or safepoint polling location) so the deoptimizing
3224  // pc is now in O7. Return values are still in the expected places
3225
3226  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3227  __ ba(false, cont);
3228  __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3229
3230  int exception_offset = __ offset() - start;
3231
3232  // restore G2, the trampoline destroyed it
3233  __ get_thread();
3234
3235  // On entry we have been jumped to by the exception handler (or exception_blob
3236  // for server).  O0 contains the exception oop and O7 contains the original
3237  // exception pc.  So if we push a frame here it will look to the
3238  // stack walking code (fetch_unroll_info) just like a normal call so
3239  // state will be extracted normally.
3240
3241  // save exception oop in JavaThread and fall through into the
3242  // exception_in_tls case since they are handled in same way except
3243  // for where the pending exception is kept.
3244  __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3245
3246  //
3247  // Vanilla deoptimization with an exception pending in exception_oop
3248  //
3249  int exception_in_tls_offset = __ offset() - start;
3250
3251  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3252  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3253
3254  // Restore G2_thread
3255  __ get_thread();
3256
3257#ifdef ASSERT
3258  {
3259    // verify that there is really an exception oop in exception_oop
3260    Label has_exception;
3261    __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3262    __ br_notnull(Oexception, false, Assembler::pt, has_exception);
3263    __ delayed()-> nop();
3264    __ stop("no exception in thread");
3265    __ bind(has_exception);
3266
3267    // verify that there is no pending exception
3268    Label no_pending_exception;
3269    Address exception_addr(G2_thread, Thread::pending_exception_offset());
3270    __ ld_ptr(exception_addr, Oexception);
3271    __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
3272    __ delayed()->nop();
3273    __ stop("must not have pending exception here");
3274    __ bind(no_pending_exception);
3275  }
3276#endif
3277
3278  __ ba(false, cont);
3279  __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3280
3281  //
3282  // Reexecute entry, similar to c2 uncommon trap
3283  //
3284  int reexecute_offset = __ offset() - start;
3285
3286  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3287  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3288
3289  __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3290
3291  __ bind(cont);
3292
3293  __ set_last_Java_frame(SP, noreg);
3294
3295  // do the call by hand so we can get the oopmap
3296
3297  __ mov(G2_thread, L7_thread_cache);
3298  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3299  __ delayed()->mov(G2_thread, O0);
3300
3301  // Set an oopmap for the call site this describes all our saved volatile registers
3302
3303  oop_maps->add_gc_map( __ offset()-start, map);
3304
3305  __ mov(L7_thread_cache, G2_thread);
3306
3307  __ reset_last_Java_frame();
3308
3309  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3310  // so this move will survive
3311
3312  __ mov(L0deopt_mode, G4deopt_mode);
3313
3314  __ mov(O0, O2UnrollBlock->after_save());
3315
3316  RegisterSaver::restore_result_registers(masm);
3317
3318  Label noException;
3319  __ cmp(G4deopt_mode, Deoptimization::Unpack_exception);   // Was exception pending?
3320  __ br(Assembler::notEqual, false, Assembler::pt, noException);
3321  __ delayed()->nop();
3322
3323  // Move the pending exception from exception_oop to Oexception so
3324  // the pending exception will be picked up the interpreter.
3325  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3326  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3327  __ bind(noException);
3328
3329  // deallocate the deoptimization frame taking care to preserve the return values
3330  __ mov(Oreturn0,     Oreturn0->after_save());
3331  __ mov(Oreturn1,     Oreturn1->after_save());
3332  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3333  __ restore();
3334
3335  // Allocate new interpreter frame(s) and possible c2i adapter frame
3336
3337  make_new_frames(masm, true);
3338
3339  // push a dummy "unpack_frame" taking care of float return values and
3340  // call Deoptimization::unpack_frames to have the unpacker layout
3341  // information in the interpreter frames just created and then return
3342  // to the interpreter entry point
3343  __ save(SP, -frame_size_words*wordSize, SP);
3344  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3345#if !defined(_LP64)
3346#if defined(COMPILER2)
3347  if (!TieredCompilation) {
3348    // 32-bit 1-register longs return longs in G1
3349    __ stx(Greturn1, saved_Greturn1_addr);
3350  }
3351#endif
3352  __ set_last_Java_frame(SP, noreg);
3353  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3354#else
3355  // LP64 uses g4 in set_last_Java_frame
3356  __ mov(G4deopt_mode, O1);
3357  __ set_last_Java_frame(SP, G0);
3358  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3359#endif
3360  __ reset_last_Java_frame();
3361  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3362
3363  // In tiered we never use C2 to compile methods returning longs so
3364  // the result is where we expect it already.
3365
3366#if !defined(_LP64) && defined(COMPILER2)
3367  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3368  // I0/I1 if the return value is long.  In the tiered world there is
3369  // a mismatch between how C1 and C2 return longs compiles and so
3370  // currently compilation of methods which return longs is disabled
3371  // for C2 and so is this code.  Eventually C1 and C2 will do the
3372  // same thing for longs in the tiered world.
3373  if (!TieredCompilation) {
3374    Label not_long;
3375    __ cmp(O0,T_LONG);
3376    __ br(Assembler::notEqual, false, Assembler::pt, not_long);
3377    __ delayed()->nop();
3378    __ ldd(saved_Greturn1_addr,I0);
3379    __ bind(not_long);
3380  }
3381#endif
3382  __ ret();
3383  __ delayed()->restore();
3384
3385  masm->flush();
3386  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3387  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3388}
3389
3390#ifdef COMPILER2
3391
3392//------------------------------generate_uncommon_trap_blob--------------------
3393// Ought to generate an ideal graph & compile, but here's some SPARC ASM
3394// instead.
3395void SharedRuntime::generate_uncommon_trap_blob() {
3396  // allocate space for the code
3397  ResourceMark rm;
3398  // setup code generation tools
3399  int pad = VerifyThread ? 512 : 0;
3400#ifdef _LP64
3401  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3402#else
3403  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3404  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3405  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3406#endif
3407  MacroAssembler* masm               = new MacroAssembler(&buffer);
3408  Register        O2UnrollBlock      = O2;
3409  Register        O2klass_index      = O2;
3410
3411  //
3412  // This is the entry point for all traps the compiler takes when it thinks
3413  // it cannot handle further execution of compilation code. The frame is
3414  // deoptimized in these cases and converted into interpreter frames for
3415  // execution
3416  // The steps taken by this frame are as follows:
3417  //   - push a fake "unpack_frame"
3418  //   - call the C routine Deoptimization::uncommon_trap (this function
3419  //     packs the current compiled frame into vframe arrays and returns
3420  //     information about the number and size of interpreter frames which
3421  //     are equivalent to the frame which is being deoptimized)
3422  //   - deallocate the "unpack_frame"
3423  //   - deallocate the deoptimization frame
3424  //   - in a loop using the information returned in the previous step
3425  //     push interpreter frames;
3426  //   - create a dummy "unpack_frame"
3427  //   - call the C routine: Deoptimization::unpack_frames (this function
3428  //     lays out values on the interpreter frame which was just created)
3429  //   - deallocate the dummy unpack_frame
3430  //   - return to the interpreter entry point
3431  //
3432  //  Refer to the following methods for more information:
3433  //   - Deoptimization::uncommon_trap
3434  //   - Deoptimization::unpack_frame
3435
3436  // the unloaded class index is in O0 (first parameter to this blob)
3437
3438  // push a dummy "unpack_frame"
3439  // and call Deoptimization::uncommon_trap to pack the compiled frame into
3440  // vframe array and return the UnrollBlock information
3441  __ save_frame(0);
3442  __ set_last_Java_frame(SP, noreg);
3443  __ mov(I0, O2klass_index);
3444  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3445  __ reset_last_Java_frame();
3446  __ mov(O0, O2UnrollBlock->after_save());
3447  __ restore();
3448
3449  // deallocate the deoptimized frame taking care to preserve the return values
3450  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3451  __ restore();
3452
3453  // Allocate new interpreter frame(s) and possible c2i adapter frame
3454
3455  make_new_frames(masm, false);
3456
3457  // push a dummy "unpack_frame" taking care of float return values and
3458  // call Deoptimization::unpack_frames to have the unpacker layout
3459  // information in the interpreter frames just created and then return
3460  // to the interpreter entry point
3461  __ save_frame(0);
3462  __ set_last_Java_frame(SP, noreg);
3463  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3464  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3465  __ reset_last_Java_frame();
3466  __ ret();
3467  __ delayed()->restore();
3468
3469  masm->flush();
3470  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3471}
3472
3473#endif // COMPILER2
3474
3475//------------------------------generate_handler_blob-------------------
3476//
3477// Generate a special Compile2Runtime blob that saves all registers, and sets
3478// up an OopMap.
3479//
3480// This blob is jumped to (via a breakpoint and the signal handler) from a
3481// safepoint in compiled code.  On entry to this blob, O7 contains the
3482// address in the original nmethod at which we should resume normal execution.
3483// Thus, this blob looks like a subroutine which must preserve lots of
3484// registers and return normally.  Note that O7 is never register-allocated,
3485// so it is guaranteed to be free here.
3486//
3487
3488// The hardest part of what this blob must do is to save the 64-bit %o
3489// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3490// an interrupt will chop off their heads.  Making space in the caller's frame
3491// first will let us save the 64-bit %o's before save'ing, but we cannot hand
3492// the adjusted FP off to the GC stack-crawler: this will modify the caller's
3493// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3494// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3495// Tricky, tricky, tricky...
3496
3497static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3498  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3499
3500  // allocate space for the code
3501  ResourceMark rm;
3502  // setup code generation tools
3503  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3504  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3505  // even larger with TraceJumps
3506  int pad = TraceJumps ? 512 : 0;
3507  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3508  MacroAssembler* masm                = new MacroAssembler(&buffer);
3509  int             frame_size_words;
3510  OopMapSet *oop_maps = new OopMapSet();
3511  OopMap* map = NULL;
3512
3513  int start = __ offset();
3514
3515  // If this causes a return before the processing, then do a "restore"
3516  if (cause_return) {
3517    __ restore();
3518  } else {
3519    // Make it look like we were called via the poll
3520    // so that frame constructor always sees a valid return address
3521    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3522    __ sub(O7, frame::pc_return_offset, O7);
3523  }
3524
3525  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3526
3527  // setup last_Java_sp (blows G4)
3528  __ set_last_Java_frame(SP, noreg);
3529
3530  // call into the runtime to handle illegal instructions exception
3531  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3532  __ mov(G2_thread, O0);
3533  __ save_thread(L7_thread_cache);
3534  __ call(call_ptr);
3535  __ delayed()->nop();
3536
3537  // Set an oopmap for the call site.
3538  // We need this not only for callee-saved registers, but also for volatile
3539  // registers that the compiler might be keeping live across a safepoint.
3540
3541  oop_maps->add_gc_map( __ offset() - start, map);
3542
3543  __ restore_thread(L7_thread_cache);
3544  // clear last_Java_sp
3545  __ reset_last_Java_frame();
3546
3547  // Check for exceptions
3548  Label pending;
3549
3550  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3551  __ tst(O1);
3552  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3553  __ delayed()->nop();
3554
3555  RegisterSaver::restore_live_registers(masm);
3556
3557  // We are back the the original state on entry and ready to go.
3558
3559  __ retl();
3560  __ delayed()->nop();
3561
3562  // Pending exception after the safepoint
3563
3564  __ bind(pending);
3565
3566  RegisterSaver::restore_live_registers(masm);
3567
3568  // We are back the the original state on entry.
3569
3570  // Tail-call forward_exception_entry, with the issuing PC in O7,
3571  // so it looks like the original nmethod called forward_exception_entry.
3572  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3573  __ JMP(O0, 0);
3574  __ delayed()->nop();
3575
3576  // -------------
3577  // make sure all code is generated
3578  masm->flush();
3579
3580  // return exception blob
3581  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3582}
3583
3584//
3585// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3586//
3587// Generate a stub that calls into vm to find out the proper destination
3588// of a java call. All the argument registers are live at this point
3589// but since this is generic code we don't know what they are and the caller
3590// must do any gc of the args.
3591//
3592static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3593  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3594
3595  // allocate space for the code
3596  ResourceMark rm;
3597  // setup code generation tools
3598  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3599  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3600  // even larger with TraceJumps
3601  int pad = TraceJumps ? 512 : 0;
3602  CodeBuffer buffer(name, 1600 + pad, 512);
3603  MacroAssembler* masm                = new MacroAssembler(&buffer);
3604  int             frame_size_words;
3605  OopMapSet *oop_maps = new OopMapSet();
3606  OopMap* map = NULL;
3607
3608  int start = __ offset();
3609
3610  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3611
3612  int frame_complete = __ offset();
3613
3614  // setup last_Java_sp (blows G4)
3615  __ set_last_Java_frame(SP, noreg);
3616
3617  // call into the runtime to handle illegal instructions exception
3618  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3619  __ mov(G2_thread, O0);
3620  __ save_thread(L7_thread_cache);
3621  __ call(destination, relocInfo::runtime_call_type);
3622  __ delayed()->nop();
3623
3624  // O0 contains the address we are going to jump to assuming no exception got installed
3625
3626  // Set an oopmap for the call site.
3627  // We need this not only for callee-saved registers, but also for volatile
3628  // registers that the compiler might be keeping live across a safepoint.
3629
3630  oop_maps->add_gc_map( __ offset() - start, map);
3631
3632  __ restore_thread(L7_thread_cache);
3633  // clear last_Java_sp
3634  __ reset_last_Java_frame();
3635
3636  // Check for exceptions
3637  Label pending;
3638
3639  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3640  __ tst(O1);
3641  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3642  __ delayed()->nop();
3643
3644  // get the returned methodOop
3645
3646  __ get_vm_result(G5_method);
3647  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3648
3649  // O0 is where we want to jump, overwrite G3 which is saved and scratch
3650
3651  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3652
3653  RegisterSaver::restore_live_registers(masm);
3654
3655  // We are back the the original state on entry and ready to go.
3656
3657  __ JMP(G3, 0);
3658  __ delayed()->nop();
3659
3660  // Pending exception after the safepoint
3661
3662  __ bind(pending);
3663
3664  RegisterSaver::restore_live_registers(masm);
3665
3666  // We are back the the original state on entry.
3667
3668  // Tail-call forward_exception_entry, with the issuing PC in O7,
3669  // so it looks like the original nmethod called forward_exception_entry.
3670  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3671  __ JMP(O0, 0);
3672  __ delayed()->nop();
3673
3674  // -------------
3675  // make sure all code is generated
3676  masm->flush();
3677
3678  // return the  blob
3679  // frame_size_words or bytes??
3680  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3681}
3682
3683void SharedRuntime::generate_stubs() {
3684
3685  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3686                                             "wrong_method_stub");
3687
3688  _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3689                                        "ic_miss_stub");
3690
3691  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3692                                        "resolve_opt_virtual_call");
3693
3694  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3695                                        "resolve_virtual_call");
3696
3697  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3698                                        "resolve_static_call");
3699
3700  _polling_page_safepoint_handler_blob =
3701    generate_handler_blob(CAST_FROM_FN_PTR(address,
3702                   SafepointSynchronize::handle_polling_page_exception), false);
3703
3704  _polling_page_return_handler_blob =
3705    generate_handler_blob(CAST_FROM_FN_PTR(address,
3706                   SafepointSynchronize::handle_polling_page_exception), true);
3707
3708  generate_deopt_blob();
3709
3710#ifdef COMPILER2
3711  generate_uncommon_trap_blob();
3712#endif // COMPILER2
3713}
3714