interp_masm_sparc.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_interp_masm_sparc.cpp.incl"
27
28#ifndef CC_INTERP
29#ifndef FAST_DISPATCH
30#define FAST_DISPATCH 1
31#endif
32#undef FAST_DISPATCH
33
34// Implementation of InterpreterMacroAssembler
35
36// This file specializes the assember with interpreter-specific macros
37
38const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
39const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
40
41#else // CC_INTERP
42#ifndef STATE
43#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
44#endif // STATE
45
46#endif // CC_INTERP
47
48void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
49  // Note: this algorithm is also used by C1's OSR entry sequence.
50  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
51  assert_different_registers(args_size, locals_size);
52  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
53  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
54  // Use br/mov combination because it works on both V8 and V9 and is
55  // faster.
56  Label skip_move;
57  br(Assembler::negative, true, Assembler::pt, skip_move);
58  delayed()->mov(G0, delta);
59  bind(skip_move);
60  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
61  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
62}
63
64#ifndef CC_INTERP
65
66// Dispatch code executed in the prolog of a bytecode which does not do it's
67// own dispatch. The dispatch address is computed and placed in IdispatchAddress
68void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
69  assert_not_delayed();
70#ifdef FAST_DISPATCH
71  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
72  // they both use I2.
73  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
74  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
75  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
76                                                        // add offset to correct dispatch table
77  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
78  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
79#else
80  ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
81  // dispatch table to use
82  AddressLiteral tbl(Interpreter::dispatch_table(state));
83  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
84  set(tbl, G3_scratch);                                 // compute addr of table
85  ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
86#endif
87}
88
89
90// Dispatch code executed in the epilog of a bytecode which does not do it's
91// own dispatch. The dispatch address in IdispatchAddress is used for the
92// dispatch.
93void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
94  assert_not_delayed();
95  verify_FPU(1, state);
96  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
97  jmp( IdispatchAddress, 0 );
98  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
99  else                delayed()->nop();
100}
101
102
103void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
104  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
105  assert_not_delayed();
106  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
107  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
108}
109
110
111void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
112  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
113  assert_not_delayed();
114  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
115  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
116}
117
118
119void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
120  // load current bytecode
121  assert_not_delayed();
122  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
123  dispatch_base(state, table);
124}
125
126
127void InterpreterMacroAssembler::call_VM_leaf_base(
128  Register java_thread,
129  address  entry_point,
130  int      number_of_arguments
131) {
132  if (!java_thread->is_valid())
133    java_thread = L7_thread_cache;
134  // super call
135  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
136}
137
138
139void InterpreterMacroAssembler::call_VM_base(
140  Register        oop_result,
141  Register        java_thread,
142  Register        last_java_sp,
143  address         entry_point,
144  int             number_of_arguments,
145  bool            check_exception
146) {
147  if (!java_thread->is_valid())
148    java_thread = L7_thread_cache;
149  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
150  // takes responsibility for setting its own thread-state on call-out.
151  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
152
153  //save_bcp();                                  // save bcp
154  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
155  //restore_bcp();                               // restore bcp
156  //restore_locals();                            // restore locals pointer
157}
158
159
160void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
161  if (JvmtiExport::can_pop_frame()) {
162    Label L;
163
164    // Check the "pending popframe condition" flag in the current thread
165    ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
166
167    // Initiate popframe handling only if it is not already being processed.  If the flag
168    // has the popframe_processing bit set, it means that this code is called *during* popframe
169    // handling - we don't want to reenter.
170    btst(JavaThread::popframe_pending_bit, scratch_reg);
171    br(zero, false, pt, L);
172    delayed()->nop();
173    btst(JavaThread::popframe_processing_bit, scratch_reg);
174    br(notZero, false, pt, L);
175    delayed()->nop();
176
177    // Call Interpreter::remove_activation_preserving_args_entry() to get the
178    // address of the same-named entrypoint in the generated interpreter code.
179    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
180
181    // Jump to Interpreter::_remove_activation_preserving_args_entry
182    jmpl(O0, G0, G0);
183    delayed()->nop();
184    bind(L);
185  }
186}
187
188
189void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
190  Register thr_state = G4_scratch;
191  ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
192  const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
193  const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
194  const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
195  switch (state) {
196  case ltos: ld_long(val_addr, Otos_l);                   break;
197  case atos: ld_ptr(oop_addr, Otos_l);
198             st_ptr(G0, oop_addr);                        break;
199  case btos:                                           // fall through
200  case ctos:                                           // fall through
201  case stos:                                           // fall through
202  case itos: ld(val_addr, Otos_l1);                       break;
203  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
204  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
205  case vtos: /* nothing to do */                          break;
206  default  : ShouldNotReachHere();
207  }
208  // Clean up tos value in the jvmti thread state
209  or3(G0, ilgl, G3_scratch);
210  stw(G3_scratch, tos_addr);
211  st_long(G0, val_addr);
212  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
213}
214
215
216void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
217  if (JvmtiExport::can_force_early_return()) {
218    Label L;
219    Register thr_state = G3_scratch;
220    ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
221    tst(thr_state);
222    br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
223    delayed()->nop();
224
225    // Initiate earlyret handling only if it is not already being processed.
226    // If the flag has the earlyret_processing bit set, it means that this code
227    // is called *during* earlyret handling - we don't want to reenter.
228    ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
229    cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
230    br(Assembler::notEqual, false, pt, L);
231    delayed()->nop();
232
233    // Call Interpreter::remove_activation_early_entry() to get the address of the
234    // same-named entrypoint in the generated interpreter code
235    ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
236    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
237
238    // Jump to Interpreter::_remove_activation_early_entry
239    jmpl(O0, G0, G0);
240    delayed()->nop();
241    bind(L);
242  }
243}
244
245
246void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
247  mov(arg_1, O0);
248  mov(arg_2, O1);
249  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
250}
251#endif /* CC_INTERP */
252
253
254#ifndef CC_INTERP
255
256void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
257  assert_not_delayed();
258  dispatch_Lbyte_code(state, table);
259}
260
261
262void InterpreterMacroAssembler::dispatch_normal(TosState state) {
263  dispatch_base(state, Interpreter::normal_table(state));
264}
265
266
267void InterpreterMacroAssembler::dispatch_only(TosState state) {
268  dispatch_base(state, Interpreter::dispatch_table(state));
269}
270
271
272// common code to dispatch and dispatch_only
273// dispatch value in Lbyte_code and increment Lbcp
274
275void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
276  verify_FPU(1, state);
277  // %%%%% maybe implement +VerifyActivationFrameSize here
278  //verify_thread(); //too slow; we will just verify on method entry & exit
279  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
280#ifdef FAST_DISPATCH
281  if (table == Interpreter::dispatch_table(state)) {
282    // use IdispatchTables
283    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
284                                                        // add offset to correct dispatch table
285    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
286    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
287  } else {
288#endif
289    // dispatch table to use
290    AddressLiteral tbl(table);
291    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
292    set(tbl, G3_scratch);                               // compute addr of table
293    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
294#ifdef FAST_DISPATCH
295  }
296#endif
297  jmp( G3_scratch, 0 );
298  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
299  else                delayed()->nop();
300}
301
302
303// Helpers for expression stack
304
305// Longs and doubles are Category 2 computational types in the
306// JVM specification (section 3.11.1) and take 2 expression stack or
307// local slots.
308// Aligning them on 32 bit with tagged stacks is hard because the code generated
309// for the dup* bytecodes depends on what types are already on the stack.
310// If the types are split into the two stack/local slots, that is much easier
311// (and we can use 0 for non-reference tags).
312
313// Known good alignment in _LP64 but unknown otherwise
314void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
315  assert_not_delayed();
316
317#ifdef _LP64
318  ldf(FloatRegisterImpl::D, r1, offset, d);
319#else
320  ldf(FloatRegisterImpl::S, r1, offset, d);
321  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
322#endif
323}
324
325// Known good alignment in _LP64 but unknown otherwise
326void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
327  assert_not_delayed();
328
329#ifdef _LP64
330  stf(FloatRegisterImpl::D, d, r1, offset);
331  // store something more useful here
332  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
333#else
334  stf(FloatRegisterImpl::S, d, r1, offset);
335  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
336#endif
337}
338
339
340// Known good alignment in _LP64 but unknown otherwise
341void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
342  assert_not_delayed();
343#ifdef _LP64
344  ldx(r1, offset, rd);
345#else
346  ld(r1, offset, rd);
347  ld(r1, offset + Interpreter::stackElementSize, rd->successor());
348#endif
349}
350
351// Known good alignment in _LP64 but unknown otherwise
352void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
353  assert_not_delayed();
354
355#ifdef _LP64
356  stx(l, r1, offset);
357  // store something more useful here
358  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
359#else
360  st(l, r1, offset);
361  st(l->successor(), r1, offset + Interpreter::stackElementSize);
362#endif
363}
364
365void InterpreterMacroAssembler::pop_i(Register r) {
366  assert_not_delayed();
367  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
368  inc(Lesp, Interpreter::stackElementSize);
369  debug_only(verify_esp(Lesp));
370}
371
372void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
373  assert_not_delayed();
374  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
375  inc(Lesp, Interpreter::stackElementSize);
376  debug_only(verify_esp(Lesp));
377}
378
379void InterpreterMacroAssembler::pop_l(Register r) {
380  assert_not_delayed();
381  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
382  inc(Lesp, 2*Interpreter::stackElementSize);
383  debug_only(verify_esp(Lesp));
384}
385
386
387void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
388  assert_not_delayed();
389  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
390  inc(Lesp, Interpreter::stackElementSize);
391  debug_only(verify_esp(Lesp));
392}
393
394
395void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
396  assert_not_delayed();
397  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
398  inc(Lesp, 2*Interpreter::stackElementSize);
399  debug_only(verify_esp(Lesp));
400}
401
402
403void InterpreterMacroAssembler::push_i(Register r) {
404  assert_not_delayed();
405  debug_only(verify_esp(Lesp));
406  st(r, Lesp, 0);
407  dec(Lesp, Interpreter::stackElementSize);
408}
409
410void InterpreterMacroAssembler::push_ptr(Register r) {
411  assert_not_delayed();
412  st_ptr(r, Lesp, 0);
413  dec(Lesp, Interpreter::stackElementSize);
414}
415
416// remember: our convention for longs in SPARC is:
417// O0 (Otos_l1) has high-order part in first word,
418// O1 (Otos_l2) has low-order part in second word
419
420void InterpreterMacroAssembler::push_l(Register r) {
421  assert_not_delayed();
422  debug_only(verify_esp(Lesp));
423  // Longs are stored in memory-correct order, even if unaligned.
424  int offset = -Interpreter::stackElementSize;
425  store_unaligned_long(r, Lesp, offset);
426  dec(Lesp, 2 * Interpreter::stackElementSize);
427}
428
429
430void InterpreterMacroAssembler::push_f(FloatRegister f) {
431  assert_not_delayed();
432  debug_only(verify_esp(Lesp));
433  stf(FloatRegisterImpl::S, f, Lesp, 0);
434  dec(Lesp, Interpreter::stackElementSize);
435}
436
437
438void InterpreterMacroAssembler::push_d(FloatRegister d)   {
439  assert_not_delayed();
440  debug_only(verify_esp(Lesp));
441  // Longs are stored in memory-correct order, even if unaligned.
442  int offset = -Interpreter::stackElementSize;
443  store_unaligned_double(d, Lesp, offset);
444  dec(Lesp, 2 * Interpreter::stackElementSize);
445}
446
447
448void InterpreterMacroAssembler::push(TosState state) {
449  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
450  switch (state) {
451    case atos: push_ptr();            break;
452    case btos: push_i();              break;
453    case ctos:
454    case stos: push_i();              break;
455    case itos: push_i();              break;
456    case ltos: push_l();              break;
457    case ftos: push_f();              break;
458    case dtos: push_d();              break;
459    case vtos: /* nothing to do */    break;
460    default  : ShouldNotReachHere();
461  }
462}
463
464
465void InterpreterMacroAssembler::pop(TosState state) {
466  switch (state) {
467    case atos: pop_ptr();            break;
468    case btos: pop_i();              break;
469    case ctos:
470    case stos: pop_i();              break;
471    case itos: pop_i();              break;
472    case ltos: pop_l();              break;
473    case ftos: pop_f();              break;
474    case dtos: pop_d();              break;
475    case vtos: /* nothing to do */   break;
476    default  : ShouldNotReachHere();
477  }
478  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
479}
480
481
482// Helpers for swap and dup
483void InterpreterMacroAssembler::load_ptr(int n, Register val) {
484  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
485}
486void InterpreterMacroAssembler::store_ptr(int n, Register val) {
487  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
488}
489
490
491void InterpreterMacroAssembler::load_receiver(Register param_count,
492                                              Register recv) {
493  sll(param_count, Interpreter::logStackElementSize, param_count);
494  ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
495}
496
497void InterpreterMacroAssembler::empty_expression_stack() {
498  // Reset Lesp.
499  sub( Lmonitors, wordSize, Lesp );
500
501  // Reset SP by subtracting more space from Lesp.
502  Label done;
503  verify_oop(Lmethod);
504  assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
505
506  // A native does not need to do this, since its callee does not change SP.
507  ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
508  btst(JVM_ACC_NATIVE, Gframe_size);
509  br(Assembler::notZero, false, Assembler::pt, done);
510  delayed()->nop();
511
512  // Compute max expression stack+register save area
513  lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
514  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
515
516  //
517  // now set up a stack frame with the size computed above
518  //
519  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
520  sll( Gframe_size, LogBytesPerWord, Gframe_size );
521  sub( Lesp, Gframe_size, Gframe_size );
522  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
523  debug_only(verify_sp(Gframe_size, G4_scratch));
524#ifdef _LP64
525  sub(Gframe_size, STACK_BIAS, Gframe_size );
526#endif
527  mov(Gframe_size, SP);
528
529  bind(done);
530}
531
532
533#ifdef ASSERT
534void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
535  Label Bad, OK;
536
537  // Saved SP must be aligned.
538#ifdef _LP64
539  btst(2*BytesPerWord-1, Rsp);
540#else
541  btst(LongAlignmentMask, Rsp);
542#endif
543  br(Assembler::notZero, false, Assembler::pn, Bad);
544  delayed()->nop();
545
546  // Saved SP, plus register window size, must not be above FP.
547  add(Rsp, frame::register_save_words * wordSize, Rtemp);
548#ifdef _LP64
549  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
550#endif
551  cmp(Rtemp, FP);
552  brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
553  delayed()->nop();
554
555  // Saved SP must not be ridiculously below current SP.
556  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
557  set(maxstack, Rtemp);
558  sub(SP, Rtemp, Rtemp);
559#ifdef _LP64
560  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
561#endif
562  cmp(Rsp, Rtemp);
563  brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
564  delayed()->nop();
565
566  br(Assembler::always, false, Assembler::pn, OK);
567  delayed()->nop();
568
569  bind(Bad);
570  stop("on return to interpreted call, restored SP is corrupted");
571
572  bind(OK);
573}
574
575
576void InterpreterMacroAssembler::verify_esp(Register Resp) {
577  // about to read or write Resp[0]
578  // make sure it is not in the monitors or the register save area
579  Label OK1, OK2;
580
581  cmp(Resp, Lmonitors);
582  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
583  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
584  stop("too many pops:  Lesp points into monitor area");
585  bind(OK1);
586#ifdef _LP64
587  sub(Resp, STACK_BIAS, Resp);
588#endif
589  cmp(Resp, SP);
590  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
591  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
592  stop("too many pushes:  Lesp points into register window");
593  bind(OK2);
594}
595#endif // ASSERT
596
597// Load compiled (i2c) or interpreter entry when calling from interpreted and
598// do the call. Centralized so that all interpreter calls will do the same actions.
599// If jvmti single stepping is on for a thread we must not call compiled code.
600void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
601
602  // Assume we want to go compiled if available
603
604  ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
605
606  if (JvmtiExport::can_post_interpreter_events()) {
607    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
608    // compiled code in threads for which the event is enabled.  Check here for
609    // interp_only_mode if these events CAN be enabled.
610    verify_thread();
611    Label skip_compiled_code;
612
613    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
614    ld(interp_only, scratch);
615    tst(scratch);
616    br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
617    delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
618    bind(skip_compiled_code);
619  }
620
621  // the i2c_adapters need methodOop in G5_method (right? %%%)
622  // do the call
623#ifdef ASSERT
624  {
625    Label ok;
626    br_notnull(target, false, Assembler::pt, ok);
627    delayed()->nop();
628    stop("null entry point");
629    bind(ok);
630  }
631#endif // ASSERT
632
633  // Adjust Rret first so Llast_SP can be same as Rret
634  add(Rret, -frame::pc_return_offset, O7);
635  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
636  // Record SP so we can remove any stack space allocated by adapter transition
637  jmp(target, 0);
638  delayed()->mov(SP, Llast_SP);
639}
640
641void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
642  assert_not_delayed();
643
644  Label not_taken;
645  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
646  else             br (cc, false, Assembler::pn, not_taken);
647  delayed()->nop();
648
649  TemplateTable::branch(false,false);
650
651  bind(not_taken);
652
653  profile_not_taken_branch(G3_scratch);
654}
655
656
657void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
658                                  int         bcp_offset,
659                                  Register    Rtmp,
660                                  Register    Rdst,
661                                  signedOrNot is_signed,
662                                  setCCOrNot  should_set_CC ) {
663  assert(Rtmp != Rdst, "need separate temp register");
664  assert_not_delayed();
665  switch (is_signed) {
666   default: ShouldNotReachHere();
667
668   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
669   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
670  }
671  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
672  sll( Rdst, BitsPerByte, Rdst);
673  switch (should_set_CC ) {
674   default: ShouldNotReachHere();
675
676   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
677   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
678  }
679}
680
681
682void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
683                                  int        bcp_offset,
684                                  Register   Rtmp,
685                                  Register   Rdst,
686                                  setCCOrNot should_set_CC ) {
687  assert(Rtmp != Rdst, "need separate temp register");
688  assert_not_delayed();
689  add( Lbcp, bcp_offset, Rtmp);
690  andcc( Rtmp, 3, G0);
691  Label aligned;
692  switch (should_set_CC ) {
693   default: ShouldNotReachHere();
694
695   case      set_CC: break;
696   case dont_set_CC: break;
697  }
698
699  br(Assembler::zero, true, Assembler::pn, aligned);
700#ifdef _LP64
701  delayed()->ldsw(Rtmp, 0, Rdst);
702#else
703  delayed()->ld(Rtmp, 0, Rdst);
704#endif
705
706  ldub(Lbcp, bcp_offset + 3, Rdst);
707  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
708  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
709#ifdef _LP64
710  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
711#else
712  // Unsigned load is faster than signed on some implementations
713  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
714#endif
715  or3(Rtmp, Rdst, Rdst );
716
717  bind(aligned);
718  if (should_set_CC == set_CC) tst(Rdst);
719}
720
721
722void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
723                                                       int bcp_offset, bool giant_index) {
724  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
725  if (!giant_index) {
726    get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
727  } else {
728    assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
729    get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
730    assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
731    xor3(tmp, -1, tmp);  // convert to plain index
732  }
733}
734
735
736void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
737                                                           int bcp_offset, bool giant_index) {
738  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
739  assert_different_registers(cache, tmp);
740  assert_not_delayed();
741  get_cache_index_at_bcp(cache, tmp, bcp_offset, giant_index);
742  // convert from field index to ConstantPoolCacheEntry index and from
743  // word index to byte offset
744  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
745  add(LcpoolCache, tmp, cache);
746}
747
748
749void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
750                                                               int bcp_offset, bool giant_index) {
751  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
752  assert_different_registers(cache, tmp);
753  assert_not_delayed();
754  assert(!giant_index,"NYI");
755  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
756              // convert from field index to ConstantPoolCacheEntry index
757              // and from word index to byte offset
758  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
759              // skip past the header
760  add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
761              // construct pointer to cache entry
762  add(LcpoolCache, tmp, cache);
763}
764
765
766// Generate a subtype check: branch to ok_is_subtype if sub_klass is
767// a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
768void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
769                                                  Register Rsuper_klass,
770                                                  Register Rtmp1,
771                                                  Register Rtmp2,
772                                                  Register Rtmp3,
773                                                  Label &ok_is_subtype ) {
774  Label not_subtype;
775
776  // Profile the not-null value's klass.
777  profile_typecheck(Rsub_klass, Rtmp1);
778
779  check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
780                                Rtmp1, Rtmp2,
781                                &ok_is_subtype, &not_subtype, NULL);
782
783  check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
784                                Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
785                                &ok_is_subtype, NULL);
786
787  bind(not_subtype);
788  profile_typecheck_failed(Rtmp1);
789}
790
791// Separate these two to allow for delay slot in middle
792// These are used to do a test and full jump to exception-throwing code.
793
794// %%%%% Could possibly reoptimize this by testing to see if could use
795// a single conditional branch (i.e. if span is small enough.
796// If you go that route, than get rid of the split and give up
797// on the delay-slot hack.
798
799void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
800                                                    Label&    ok ) {
801  assert_not_delayed();
802  br(ok_condition, true, pt, ok);
803  // DELAY SLOT
804}
805
806void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
807                                                    Label&    ok ) {
808  assert_not_delayed();
809  bp( ok_condition, true, Assembler::xcc, pt, ok);
810  // DELAY SLOT
811}
812
813void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
814                                                  Label&    ok ) {
815  assert_not_delayed();
816  brx(ok_condition, true, pt, ok);
817  // DELAY SLOT
818}
819
820void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
821                                                Register Rscratch,
822                                                Label&   ok ) {
823  assert(throw_entry_point != NULL, "entry point must be generated by now");
824  AddressLiteral dest(throw_entry_point);
825  jump_to(dest, Rscratch);
826  delayed()->nop();
827  bind(ok);
828}
829
830
831// And if you cannot use the delay slot, here is a shorthand:
832
833void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
834                                                  address   throw_entry_point,
835                                                  Register  Rscratch ) {
836  Label ok;
837  if (ok_condition != never) {
838    throw_if_not_1_icc( ok_condition, ok);
839    delayed()->nop();
840  }
841  throw_if_not_2( throw_entry_point, Rscratch, ok);
842}
843void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
844                                                  address   throw_entry_point,
845                                                  Register  Rscratch ) {
846  Label ok;
847  if (ok_condition != never) {
848    throw_if_not_1_xcc( ok_condition, ok);
849    delayed()->nop();
850  }
851  throw_if_not_2( throw_entry_point, Rscratch, ok);
852}
853void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
854                                                address   throw_entry_point,
855                                                Register  Rscratch ) {
856  Label ok;
857  if (ok_condition != never) {
858    throw_if_not_1_x( ok_condition, ok);
859    delayed()->nop();
860  }
861  throw_if_not_2( throw_entry_point, Rscratch, ok);
862}
863
864// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
865// Note: res is still shy of address by array offset into object.
866
867void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
868  assert_not_delayed();
869
870  verify_oop(array);
871#ifdef _LP64
872  // sign extend since tos (index) can be a 32bit value
873  sra(index, G0, index);
874#endif // _LP64
875
876  // check array
877  Label ptr_ok;
878  tst(array);
879  throw_if_not_1_x( notZero, ptr_ok );
880  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
881  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
882
883  Label index_ok;
884  cmp(index, tmp);
885  throw_if_not_1_icc( lessUnsigned, index_ok );
886  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
887  else                  delayed()->add(array, index, res); // addr - const offset in index
888  // convention: move aberrant index into G3_scratch for exception message
889  mov(index, G3_scratch);
890  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
891
892  // add offset if didn't do it in delay slot
893  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
894}
895
896
897void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
898  assert_not_delayed();
899
900  // pop array
901  pop_ptr(array);
902
903  // check array
904  index_check_without_pop(array, index, index_shift, tmp, res);
905}
906
907
908void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
909  ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
910}
911
912
913void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
914  get_constant_pool(Rdst);
915  ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
916}
917
918
919void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
920  get_constant_pool(Rcpool);
921  ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
922}
923
924
925// unlock if synchronized method
926//
927// Unlock the receiver if this is a synchronized method.
928// Unlock any Java monitors from syncronized blocks.
929//
930// If there are locked Java monitors
931//    If throw_monitor_exception
932//       throws IllegalMonitorStateException
933//    Else if install_monitor_exception
934//       installs IllegalMonitorStateException
935//    Else
936//       no error processing
937void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
938                                                              bool throw_monitor_exception,
939                                                              bool install_monitor_exception) {
940  Label unlocked, unlock, no_unlock;
941
942  // get the value of _do_not_unlock_if_synchronized into G1_scratch
943  const Address do_not_unlock_if_synchronized(G2_thread,
944    JavaThread::do_not_unlock_if_synchronized_offset());
945  ldbool(do_not_unlock_if_synchronized, G1_scratch);
946  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
947
948  // check if synchronized method
949  const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
950  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
951  push(state); // save tos
952  ld(access_flags, G3_scratch); // Load access flags.
953  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
954  br(zero, false, pt, unlocked);
955  delayed()->nop();
956
957  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
958  // is set.
959  tstbool(G1_scratch);
960  br(Assembler::notZero, false, pn, no_unlock);
961  delayed()->nop();
962
963  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
964  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
965
966  //Intel: if (throw_monitor_exception) ... else ...
967  // Entry already unlocked, need to throw exception
968  //...
969
970  // pass top-most monitor elem
971  add( top_most_monitor(), O1 );
972
973  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
974  br_notnull(G3_scratch, false, pt, unlock);
975  delayed()->nop();
976
977  if (throw_monitor_exception) {
978    // Entry already unlocked need to throw an exception
979    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
980    should_not_reach_here();
981  } else {
982    // Monitor already unlocked during a stack unroll.
983    // If requested, install an illegal_monitor_state_exception.
984    // Continue with stack unrolling.
985    if (install_monitor_exception) {
986      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
987    }
988    ba(false, unlocked);
989    delayed()->nop();
990  }
991
992  bind(unlock);
993
994  unlock_object(O1);
995
996  bind(unlocked);
997
998  // I0, I1: Might contain return value
999
1000  // Check that all monitors are unlocked
1001  { Label loop, exception, entry, restart;
1002
1003    Register Rmptr   = O0;
1004    Register Rtemp   = O1;
1005    Register Rlimit  = Lmonitors;
1006    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1007    assert( (delta & LongAlignmentMask) == 0,
1008            "sizeof BasicObjectLock must be even number of doublewords");
1009
1010    #ifdef ASSERT
1011    add(top_most_monitor(), Rmptr, delta);
1012    { Label L;
1013      // ensure that Rmptr starts out above (or at) Rlimit
1014      cmp(Rmptr, Rlimit);
1015      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1016      delayed()->nop();
1017      stop("monitor stack has negative size");
1018      bind(L);
1019    }
1020    #endif
1021    bind(restart);
1022    ba(false, entry);
1023    delayed()->
1024    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1025
1026    // Entry is still locked, need to throw exception
1027    bind(exception);
1028    if (throw_monitor_exception) {
1029      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1030      should_not_reach_here();
1031    } else {
1032      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1033      // Unlock does not block, so don't have to worry about the frame
1034      unlock_object(Rmptr);
1035      if (install_monitor_exception) {
1036        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1037      }
1038      ba(false, restart);
1039      delayed()->nop();
1040    }
1041
1042    bind(loop);
1043    cmp(Rtemp, G0);                             // check if current entry is used
1044    brx(Assembler::notEqual, false, pn, exception);
1045    delayed()->
1046    dec(Rmptr, delta);                          // otherwise advance to next entry
1047    #ifdef ASSERT
1048    { Label L;
1049      // ensure that Rmptr has not somehow stepped below Rlimit
1050      cmp(Rmptr, Rlimit);
1051      brx(Assembler::greaterEqualUnsigned, false, pn, L);
1052      delayed()->nop();
1053      stop("ran off the end of the monitor stack");
1054      bind(L);
1055    }
1056    #endif
1057    bind(entry);
1058    cmp(Rmptr, Rlimit);                         // check if bottom reached
1059    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1060    delayed()->
1061    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1062  }
1063
1064  bind(no_unlock);
1065  pop(state);
1066  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1067}
1068
1069
1070// remove activation
1071//
1072// Unlock the receiver if this is a synchronized method.
1073// Unlock any Java monitors from syncronized blocks.
1074// Remove the activation from the stack.
1075//
1076// If there are locked Java monitors
1077//    If throw_monitor_exception
1078//       throws IllegalMonitorStateException
1079//    Else if install_monitor_exception
1080//       installs IllegalMonitorStateException
1081//    Else
1082//       no error processing
1083void InterpreterMacroAssembler::remove_activation(TosState state,
1084                                                  bool throw_monitor_exception,
1085                                                  bool install_monitor_exception) {
1086
1087  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1088
1089  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1090  notify_method_exit(false, state, NotifyJVMTI);
1091
1092  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1093  verify_oop(Lmethod);
1094  verify_thread();
1095
1096  // return tos
1097  assert(Otos_l1 == Otos_i, "adjust code below");
1098  switch (state) {
1099#ifdef _LP64
1100  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1101#else
1102  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
1103#endif
1104  case btos:                                      // fall through
1105  case ctos:
1106  case stos:                                      // fall through
1107  case atos:                                      // fall through
1108  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1109  case ftos:                                      // fall through
1110  case dtos:                                      // fall through
1111  case vtos: /* nothing to do */                     break;
1112  default  : ShouldNotReachHere();
1113  }
1114
1115#if defined(COMPILER2) && !defined(_LP64)
1116  if (state == ltos) {
1117    // C2 expects long results in G1 we can't tell if we're returning to interpreted
1118    // or compiled so just be safe use G1 and O0/O1
1119
1120    // Shift bits into high (msb) of G1
1121    sllx(Otos_l1->after_save(), 32, G1);
1122    // Zero extend low bits
1123    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1124    or3 (Otos_l2->after_save(), G1, G1);
1125  }
1126#endif /* COMPILER2 */
1127
1128}
1129#endif /* CC_INTERP */
1130
1131
1132// Lock object
1133//
1134// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1135//            it must be initialized with the object to lock
1136void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1137  if (UseHeavyMonitors) {
1138    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1139  }
1140  else {
1141    Register obj_reg = Object;
1142    Register mark_reg = G4_scratch;
1143    Register temp_reg = G1_scratch;
1144    Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1145    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1146    Label    done;
1147
1148    Label slow_case;
1149
1150    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1151
1152    // load markOop from object into mark_reg
1153    ld_ptr(mark_addr, mark_reg);
1154
1155    if (UseBiasedLocking) {
1156      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1157    }
1158
1159    // get the address of basicLock on stack that will be stored in the object
1160    // we need a temporary register here as we do not want to clobber lock_reg
1161    // (cas clobbers the destination register)
1162    mov(lock_reg, temp_reg);
1163    // set mark reg to be (markOop of object | UNLOCK_VALUE)
1164    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1165    // initialize the box  (Must happen before we update the object mark!)
1166    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1167    // compare and exchange object_addr, markOop | 1, stack address of basicLock
1168    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1169    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
1170      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1171
1172    // if the compare and exchange succeeded we are done (we saw an unlocked object)
1173    cmp(mark_reg, temp_reg);
1174    brx(Assembler::equal, true, Assembler::pt, done);
1175    delayed()->nop();
1176
1177    // We did not see an unlocked object so try the fast recursive case
1178
1179    // Check if owner is self by comparing the value in the markOop of object
1180    // with the stack pointer
1181    sub(temp_reg, SP, temp_reg);
1182#ifdef _LP64
1183    sub(temp_reg, STACK_BIAS, temp_reg);
1184#endif
1185    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1186
1187    // Composite "andcc" test:
1188    // (a) %sp -vs- markword proximity check, and,
1189    // (b) verify mark word LSBs == 0 (Stack-locked).
1190    //
1191    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1192    // Note that the page size used for %sp proximity testing is arbitrary and is
1193    // unrelated to the actual MMU page size.  We use a 'logical' page size of
1194    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1195    // field of the andcc instruction.
1196    andcc (temp_reg, 0xFFFFF003, G0) ;
1197
1198    // if condition is true we are done and hence we can store 0 in the displaced
1199    // header indicating it is a recursive lock and be done
1200    brx(Assembler::zero, true, Assembler::pt, done);
1201    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1202
1203    // none of the above fast optimizations worked so we have to get into the
1204    // slow case of monitor enter
1205    bind(slow_case);
1206    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1207
1208    bind(done);
1209  }
1210}
1211
1212// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1213//
1214// Argument - lock_reg points to the BasicObjectLock for lock
1215// Throw IllegalMonitorException if object is not locked by current thread
1216void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1217  if (UseHeavyMonitors) {
1218    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1219  } else {
1220    Register obj_reg = G3_scratch;
1221    Register mark_reg = G4_scratch;
1222    Register displaced_header_reg = G1_scratch;
1223    Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1224    Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1225    Label    done;
1226
1227    if (UseBiasedLocking) {
1228      // load the object out of the BasicObjectLock
1229      ld_ptr(lockobj_addr, obj_reg);
1230      biased_locking_exit(mark_addr, mark_reg, done, true);
1231      st_ptr(G0, lockobj_addr);  // free entry
1232    }
1233
1234    // Test first if we are in the fast recursive case
1235    Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1236    ld_ptr(lock_addr, displaced_header_reg);
1237    br_null(displaced_header_reg, true, Assembler::pn, done);
1238    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1239
1240    // See if it is still a light weight lock, if so we just unlock
1241    // the object and we are done
1242
1243    if (!UseBiasedLocking) {
1244      // load the object out of the BasicObjectLock
1245      ld_ptr(lockobj_addr, obj_reg);
1246    }
1247
1248    // we have the displaced header in displaced_header_reg
1249    // we expect to see the stack address of the basicLock in case the
1250    // lock is still a light weight lock (lock_reg)
1251    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1252    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
1253      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
1254    cmp(lock_reg, displaced_header_reg);
1255    brx(Assembler::equal, true, Assembler::pn, done);
1256    delayed()->st_ptr(G0, lockobj_addr);  // free entry
1257
1258    // The lock has been converted into a heavy lock and hence
1259    // we need to get into the slow case
1260
1261    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1262
1263    bind(done);
1264  }
1265}
1266
1267#ifndef CC_INTERP
1268
1269// Get the method data pointer from the methodOop and set the
1270// specified register to its value.
1271
1272void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
1273  assert(ProfileInterpreter, "must be profiling interpreter");
1274  Label get_continue;
1275
1276  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
1277  test_method_data_pointer(get_continue);
1278  add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
1279  if (Roff != noreg)
1280    // Roff contains a method data index ("mdi").  It defaults to zero.
1281    add(ImethodDataPtr, Roff, ImethodDataPtr);
1282  bind(get_continue);
1283}
1284
1285// Set the method data pointer for the current bcp.
1286
1287void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1288  assert(ProfileInterpreter, "must be profiling interpreter");
1289  Label zero_continue;
1290
1291  // Test MDO to avoid the call if it is NULL.
1292  ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
1293  test_method_data_pointer(zero_continue);
1294  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1295  set_method_data_pointer_offset(O0);
1296  bind(zero_continue);
1297}
1298
1299// Test ImethodDataPtr.  If it is null, continue at the specified label
1300
1301void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1302  assert(ProfileInterpreter, "must be profiling interpreter");
1303#ifdef _LP64
1304  bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
1305#else
1306  tst(ImethodDataPtr);
1307  br(Assembler::zero, false, Assembler::pn, zero_continue);
1308#endif
1309  delayed()->nop();
1310}
1311
1312void InterpreterMacroAssembler::verify_method_data_pointer() {
1313  assert(ProfileInterpreter, "must be profiling interpreter");
1314#ifdef ASSERT
1315  Label verify_continue;
1316  test_method_data_pointer(verify_continue);
1317
1318  // If the mdp is valid, it will point to a DataLayout header which is
1319  // consistent with the bcp.  The converse is highly probable also.
1320  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1321  ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
1322  add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
1323  add(G3_scratch, O5, G3_scratch);
1324  cmp(Lbcp, G3_scratch);
1325  brx(Assembler::equal, false, Assembler::pt, verify_continue);
1326
1327  Register temp_reg = O5;
1328  delayed()->mov(ImethodDataPtr, temp_reg);
1329  // %%% should use call_VM_leaf here?
1330  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1331  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1332  Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1333  stf(FloatRegisterImpl::D, Ftos_d, d_save);
1334  mov(temp_reg->after_save(), O2);
1335  save_thread(L7_thread_cache);
1336  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1337  delayed()->nop();
1338  restore_thread(L7_thread_cache);
1339  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1340  restore();
1341  bind(verify_continue);
1342#endif // ASSERT
1343}
1344
1345void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1346                                                                Register cur_bcp,
1347                                                                Register Rtmp,
1348                                                                Label &profile_continue) {
1349  assert(ProfileInterpreter, "must be profiling interpreter");
1350  // Control will flow to "profile_continue" if the counter is less than the
1351  // limit or if we call profile_method()
1352
1353  Label done;
1354
1355  // if no method data exists, and the counter is high enough, make one
1356#ifdef _LP64
1357  bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
1358#else
1359  tst(ImethodDataPtr);
1360  br(Assembler::notZero, false, Assembler::pn, done);
1361#endif
1362
1363  // Test to see if we should create a method data oop
1364  AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1365#ifdef _LP64
1366  delayed()->nop();
1367  sethi(profile_limit, Rtmp);
1368#else
1369  delayed()->sethi(profile_limit, Rtmp);
1370#endif
1371  ld(Rtmp, profile_limit.low10(), Rtmp);
1372  cmp(invocation_count, Rtmp);
1373  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1374  delayed()->nop();
1375
1376  // Build it now.
1377  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
1378  set_method_data_pointer_offset(O0);
1379  ba(false, profile_continue);
1380  delayed()->nop();
1381  bind(done);
1382}
1383
1384// Store a value at some constant offset from the method data pointer.
1385
1386void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1387  assert(ProfileInterpreter, "must be profiling interpreter");
1388  st_ptr(value, ImethodDataPtr, constant);
1389}
1390
1391void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1392                                                      Register bumped_count,
1393                                                      bool decrement) {
1394  assert(ProfileInterpreter, "must be profiling interpreter");
1395
1396  // Load the counter.
1397  ld_ptr(counter, bumped_count);
1398
1399  if (decrement) {
1400    // Decrement the register.  Set condition codes.
1401    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1402
1403    // If the decrement causes the counter to overflow, stay negative
1404    Label L;
1405    brx(Assembler::negative, true, Assembler::pn, L);
1406
1407    // Store the decremented counter, if it is still negative.
1408    delayed()->st_ptr(bumped_count, counter);
1409    bind(L);
1410  } else {
1411    // Increment the register.  Set carry flag.
1412    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1413
1414    // If the increment causes the counter to overflow, pull back by 1.
1415    assert(DataLayout::counter_increment == 1, "subc works");
1416    subc(bumped_count, G0, bumped_count);
1417
1418    // Store the incremented counter.
1419    st_ptr(bumped_count, counter);
1420  }
1421}
1422
1423// Increment the value at some constant offset from the method data pointer.
1424
1425void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1426                                                      Register bumped_count,
1427                                                      bool decrement) {
1428  // Locate the counter at a fixed offset from the mdp:
1429  Address counter(ImethodDataPtr, constant);
1430  increment_mdp_data_at(counter, bumped_count, decrement);
1431}
1432
1433// Increment the value at some non-fixed (reg + constant) offset from
1434// the method data pointer.
1435
1436void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1437                                                      int constant,
1438                                                      Register bumped_count,
1439                                                      Register scratch2,
1440                                                      bool decrement) {
1441  // Add the constant to reg to get the offset.
1442  add(ImethodDataPtr, reg, scratch2);
1443  Address counter(scratch2, constant);
1444  increment_mdp_data_at(counter, bumped_count, decrement);
1445}
1446
1447// Set a flag value at the current method data pointer position.
1448// Updates a single byte of the header, to avoid races with other header bits.
1449
1450void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1451                                                Register scratch) {
1452  assert(ProfileInterpreter, "must be profiling interpreter");
1453  // Load the data header
1454  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1455
1456  // Set the flag
1457  or3(scratch, flag_constant, scratch);
1458
1459  // Store the modified header.
1460  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1461}
1462
1463// Test the location at some offset from the method data pointer.
1464// If it is not equal to value, branch to the not_equal_continue Label.
1465// Set condition codes to match the nullness of the loaded value.
1466
1467void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1468                                                 Register value,
1469                                                 Label& not_equal_continue,
1470                                                 Register scratch) {
1471  assert(ProfileInterpreter, "must be profiling interpreter");
1472  ld_ptr(ImethodDataPtr, offset, scratch);
1473  cmp(value, scratch);
1474  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1475  delayed()->tst(scratch);
1476}
1477
1478// Update the method data pointer by the displacement located at some fixed
1479// offset from the method data pointer.
1480
1481void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1482                                                     Register scratch) {
1483  assert(ProfileInterpreter, "must be profiling interpreter");
1484  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1485  add(ImethodDataPtr, scratch, ImethodDataPtr);
1486}
1487
1488// Update the method data pointer by the displacement located at the
1489// offset (reg + offset_of_disp).
1490
1491void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1492                                                     int offset_of_disp,
1493                                                     Register scratch) {
1494  assert(ProfileInterpreter, "must be profiling interpreter");
1495  add(reg, offset_of_disp, scratch);
1496  ld_ptr(ImethodDataPtr, scratch, scratch);
1497  add(ImethodDataPtr, scratch, ImethodDataPtr);
1498}
1499
1500// Update the method data pointer by a simple constant displacement.
1501
1502void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1503  assert(ProfileInterpreter, "must be profiling interpreter");
1504  add(ImethodDataPtr, constant, ImethodDataPtr);
1505}
1506
1507// Update the method data pointer for a _ret bytecode whose target
1508// was not among our cached targets.
1509
1510void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1511                                                   Register return_bci) {
1512  assert(ProfileInterpreter, "must be profiling interpreter");
1513  push(state);
1514  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1515  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1516  ld_ptr(l_tmp, return_bci);
1517  pop(state);
1518}
1519
1520// Count a taken branch in the bytecodes.
1521
1522void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1523  if (ProfileInterpreter) {
1524    Label profile_continue;
1525
1526    // If no method data exists, go to profile_continue.
1527    test_method_data_pointer(profile_continue);
1528
1529    // We are taking a branch.  Increment the taken count.
1530    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1531
1532    // The method data pointer needs to be updated to reflect the new target.
1533    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1534    bind (profile_continue);
1535  }
1536}
1537
1538
1539// Count a not-taken branch in the bytecodes.
1540
1541void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1542  if (ProfileInterpreter) {
1543    Label profile_continue;
1544
1545    // If no method data exists, go to profile_continue.
1546    test_method_data_pointer(profile_continue);
1547
1548    // We are taking a branch.  Increment the not taken count.
1549    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1550
1551    // The method data pointer needs to be updated to correspond to the
1552    // next bytecode.
1553    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1554    bind (profile_continue);
1555  }
1556}
1557
1558
1559// Count a non-virtual call in the bytecodes.
1560
1561void InterpreterMacroAssembler::profile_call(Register scratch) {
1562  if (ProfileInterpreter) {
1563    Label profile_continue;
1564
1565    // If no method data exists, go to profile_continue.
1566    test_method_data_pointer(profile_continue);
1567
1568    // We are making a call.  Increment the count.
1569    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1570
1571    // The method data pointer needs to be updated to reflect the new target.
1572    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1573    bind (profile_continue);
1574  }
1575}
1576
1577
1578// Count a final call in the bytecodes.
1579
1580void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1581  if (ProfileInterpreter) {
1582    Label profile_continue;
1583
1584    // If no method data exists, go to profile_continue.
1585    test_method_data_pointer(profile_continue);
1586
1587    // We are making a call.  Increment the count.
1588    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1589
1590    // The method data pointer needs to be updated to reflect the new target.
1591    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1592    bind (profile_continue);
1593  }
1594}
1595
1596
1597// Count a virtual call in the bytecodes.
1598
1599void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1600                                                     Register scratch,
1601                                                     bool receiver_can_be_null) {
1602  if (ProfileInterpreter) {
1603    Label profile_continue;
1604
1605    // If no method data exists, go to profile_continue.
1606    test_method_data_pointer(profile_continue);
1607
1608
1609    Label skip_receiver_profile;
1610    if (receiver_can_be_null) {
1611      Label not_null;
1612      tst(receiver);
1613      brx(Assembler::notZero, false, Assembler::pt, not_null);
1614      delayed()->nop();
1615      // We are making a call.  Increment the count for null receiver.
1616      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1617      ba(false, skip_receiver_profile);
1618      delayed()->nop();
1619      bind(not_null);
1620    }
1621
1622    // Record the receiver type.
1623    record_klass_in_profile(receiver, scratch, true);
1624    bind(skip_receiver_profile);
1625
1626    // The method data pointer needs to be updated to reflect the new target.
1627    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1628    bind (profile_continue);
1629  }
1630}
1631
1632void InterpreterMacroAssembler::record_klass_in_profile_helper(
1633                                        Register receiver, Register scratch,
1634                                        int start_row, Label& done, bool is_virtual_call) {
1635  if (TypeProfileWidth == 0) {
1636    if (is_virtual_call) {
1637      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1638    }
1639    return;
1640  }
1641
1642  int last_row = VirtualCallData::row_limit() - 1;
1643  assert(start_row <= last_row, "must be work left to do");
1644  // Test this row for both the receiver and for null.
1645  // Take any of three different outcomes:
1646  //   1. found receiver => increment count and goto done
1647  //   2. found null => keep looking for case 1, maybe allocate this cell
1648  //   3. found something else => keep looking for cases 1 and 2
1649  // Case 3 is handled by a recursive call.
1650  for (int row = start_row; row <= last_row; row++) {
1651    Label next_test;
1652    bool test_for_null_also = (row == start_row);
1653
1654    // See if the receiver is receiver[n].
1655    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1656    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1657    // delayed()->tst(scratch);
1658
1659    // The receiver is receiver[n].  Increment count[n].
1660    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1661    increment_mdp_data_at(count_offset, scratch);
1662    ba(false, done);
1663    delayed()->nop();
1664    bind(next_test);
1665
1666    if (test_for_null_also) {
1667      Label found_null;
1668      // Failed the equality check on receiver[n]...  Test for null.
1669      if (start_row == last_row) {
1670        // The only thing left to do is handle the null case.
1671        if (is_virtual_call) {
1672          brx(Assembler::zero, false, Assembler::pn, found_null);
1673          delayed()->nop();
1674          // Receiver did not match any saved receiver and there is no empty row for it.
1675          // Increment total counter to indicate polymorphic case.
1676          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1677          ba(false, done);
1678          delayed()->nop();
1679          bind(found_null);
1680        } else {
1681          brx(Assembler::notZero, false, Assembler::pt, done);
1682          delayed()->nop();
1683        }
1684        break;
1685      }
1686      // Since null is rare, make it be the branch-taken case.
1687      brx(Assembler::zero, false, Assembler::pn, found_null);
1688      delayed()->nop();
1689
1690      // Put all the "Case 3" tests here.
1691      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1692
1693      // Found a null.  Keep searching for a matching receiver,
1694      // but remember that this is an empty (unused) slot.
1695      bind(found_null);
1696    }
1697  }
1698
1699  // In the fall-through case, we found no matching receiver, but we
1700  // observed the receiver[start_row] is NULL.
1701
1702  // Fill in the receiver field and increment the count.
1703  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1704  set_mdp_data_at(recvr_offset, receiver);
1705  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1706  mov(DataLayout::counter_increment, scratch);
1707  set_mdp_data_at(count_offset, scratch);
1708  if (start_row > 0) {
1709    ba(false, done);
1710    delayed()->nop();
1711  }
1712}
1713
1714void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1715                                                        Register scratch, bool is_virtual_call) {
1716  assert(ProfileInterpreter, "must be profiling");
1717  Label done;
1718
1719  record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1720
1721  bind (done);
1722}
1723
1724
1725// Count a ret in the bytecodes.
1726
1727void InterpreterMacroAssembler::profile_ret(TosState state,
1728                                            Register return_bci,
1729                                            Register scratch) {
1730  if (ProfileInterpreter) {
1731    Label profile_continue;
1732    uint row;
1733
1734    // If no method data exists, go to profile_continue.
1735    test_method_data_pointer(profile_continue);
1736
1737    // Update the total ret count.
1738    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1739
1740    for (row = 0; row < RetData::row_limit(); row++) {
1741      Label next_test;
1742
1743      // See if return_bci is equal to bci[n]:
1744      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1745                       return_bci, next_test, scratch);
1746
1747      // return_bci is equal to bci[n].  Increment the count.
1748      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1749
1750      // The method data pointer needs to be updated to reflect the new target.
1751      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1752      ba(false, profile_continue);
1753      delayed()->nop();
1754      bind(next_test);
1755    }
1756
1757    update_mdp_for_ret(state, return_bci);
1758
1759    bind (profile_continue);
1760  }
1761}
1762
1763// Profile an unexpected null in the bytecodes.
1764void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1765  if (ProfileInterpreter) {
1766    Label profile_continue;
1767
1768    // If no method data exists, go to profile_continue.
1769    test_method_data_pointer(profile_continue);
1770
1771    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1772
1773    // The method data pointer needs to be updated.
1774    int mdp_delta = in_bytes(BitData::bit_data_size());
1775    if (TypeProfileCasts) {
1776      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1777    }
1778    update_mdp_by_constant(mdp_delta);
1779
1780    bind (profile_continue);
1781  }
1782}
1783
1784void InterpreterMacroAssembler::profile_typecheck(Register klass,
1785                                                  Register scratch) {
1786  if (ProfileInterpreter) {
1787    Label profile_continue;
1788
1789    // If no method data exists, go to profile_continue.
1790    test_method_data_pointer(profile_continue);
1791
1792    int mdp_delta = in_bytes(BitData::bit_data_size());
1793    if (TypeProfileCasts) {
1794      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1795
1796      // Record the object type.
1797      record_klass_in_profile(klass, scratch, false);
1798    }
1799
1800    // The method data pointer needs to be updated.
1801    update_mdp_by_constant(mdp_delta);
1802
1803    bind (profile_continue);
1804  }
1805}
1806
1807void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1808  if (ProfileInterpreter && TypeProfileCasts) {
1809    Label profile_continue;
1810
1811    // If no method data exists, go to profile_continue.
1812    test_method_data_pointer(profile_continue);
1813
1814    int count_offset = in_bytes(CounterData::count_offset());
1815    // Back up the address, since we have already bumped the mdp.
1816    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1817
1818    // *Decrement* the counter.  We expect to see zero or small negatives.
1819    increment_mdp_data_at(count_offset, scratch, true);
1820
1821    bind (profile_continue);
1822  }
1823}
1824
1825// Count the default case of a switch construct.
1826
1827void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1828  if (ProfileInterpreter) {
1829    Label profile_continue;
1830
1831    // If no method data exists, go to profile_continue.
1832    test_method_data_pointer(profile_continue);
1833
1834    // Update the default case count
1835    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1836                          scratch);
1837
1838    // The method data pointer needs to be updated.
1839    update_mdp_by_offset(
1840                    in_bytes(MultiBranchData::default_displacement_offset()),
1841                    scratch);
1842
1843    bind (profile_continue);
1844  }
1845}
1846
1847// Count the index'th case of a switch construct.
1848
1849void InterpreterMacroAssembler::profile_switch_case(Register index,
1850                                                    Register scratch,
1851                                                    Register scratch2,
1852                                                    Register scratch3) {
1853  if (ProfileInterpreter) {
1854    Label profile_continue;
1855
1856    // If no method data exists, go to profile_continue.
1857    test_method_data_pointer(profile_continue);
1858
1859    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1860    set(in_bytes(MultiBranchData::per_case_size()), scratch);
1861    smul(index, scratch, scratch);
1862    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1863
1864    // Update the case count
1865    increment_mdp_data_at(scratch,
1866                          in_bytes(MultiBranchData::relative_count_offset()),
1867                          scratch2,
1868                          scratch3);
1869
1870    // The method data pointer needs to be updated.
1871    update_mdp_by_offset(scratch,
1872                     in_bytes(MultiBranchData::relative_displacement_offset()),
1873                     scratch2);
1874
1875    bind (profile_continue);
1876  }
1877}
1878
1879// add a InterpMonitorElem to stack (see frame_sparc.hpp)
1880
1881void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
1882                                                      Register Rtemp,
1883                                                      Register Rtemp2 ) {
1884
1885  Register Rlimit = Lmonitors;
1886  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1887  assert( (delta & LongAlignmentMask) == 0,
1888          "sizeof BasicObjectLock must be even number of doublewords");
1889
1890  sub( SP,        delta, SP);
1891  sub( Lesp,      delta, Lesp);
1892  sub( Lmonitors, delta, Lmonitors);
1893
1894  if (!stack_is_empty) {
1895
1896    // must copy stack contents down
1897
1898    Label start_copying, next;
1899
1900    // untested("monitor stack expansion");
1901    compute_stack_base(Rtemp);
1902    ba( false, start_copying );
1903    delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
1904
1905    // note: must copy from low memory upwards
1906    // On entry to loop,
1907    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
1908    // Loop mutates Rtemp
1909
1910    bind( next);
1911
1912    st_ptr(Rtemp2, Rtemp, 0);
1913    inc(Rtemp, wordSize);
1914    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
1915
1916    bind( start_copying );
1917
1918    brx( notEqual, true, pn, next );
1919    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
1920
1921    // done copying stack
1922  }
1923}
1924
1925// Locals
1926void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
1927  assert_not_delayed();
1928  sll(index, Interpreter::logStackElementSize, index);
1929  sub(Llocals, index, index);
1930  ld_ptr(index, 0, dst);
1931  // Note:  index must hold the effective address--the iinc template uses it
1932}
1933
1934// Just like access_local_ptr but the tag is a returnAddress
1935void InterpreterMacroAssembler::access_local_returnAddress(Register index,
1936                                                           Register dst ) {
1937  assert_not_delayed();
1938  sll(index, Interpreter::logStackElementSize, index);
1939  sub(Llocals, index, index);
1940  ld_ptr(index, 0, dst);
1941}
1942
1943void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
1944  assert_not_delayed();
1945  sll(index, Interpreter::logStackElementSize, index);
1946  sub(Llocals, index, index);
1947  ld(index, 0, dst);
1948  // Note:  index must hold the effective address--the iinc template uses it
1949}
1950
1951
1952void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
1953  assert_not_delayed();
1954  sll(index, Interpreter::logStackElementSize, index);
1955  sub(Llocals, index, index);
1956  // First half stored at index n+1 (which grows down from Llocals[n])
1957  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
1958}
1959
1960
1961void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
1962  assert_not_delayed();
1963  sll(index, Interpreter::logStackElementSize, index);
1964  sub(Llocals, index, index);
1965  ldf(FloatRegisterImpl::S, index, 0, dst);
1966}
1967
1968
1969void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
1970  assert_not_delayed();
1971  sll(index, Interpreter::logStackElementSize, index);
1972  sub(Llocals, index, index);
1973  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
1974}
1975
1976
1977#ifdef ASSERT
1978void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
1979  Label L;
1980
1981  assert(Rindex != Rscratch, "Registers cannot be same");
1982  assert(Rindex != Rscratch1, "Registers cannot be same");
1983  assert(Rlimit != Rscratch, "Registers cannot be same");
1984  assert(Rlimit != Rscratch1, "Registers cannot be same");
1985  assert(Rscratch1 != Rscratch, "Registers cannot be same");
1986
1987  // untested("reg area corruption");
1988  add(Rindex, offset, Rscratch);
1989  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
1990  cmp(Rscratch, Rscratch1);
1991  brx(Assembler::greaterEqualUnsigned, false, pn, L);
1992  delayed()->nop();
1993  stop("regsave area is being clobbered");
1994  bind(L);
1995}
1996#endif // ASSERT
1997
1998
1999void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2000  assert_not_delayed();
2001  sll(index, Interpreter::logStackElementSize, index);
2002  sub(Llocals, index, index);
2003  debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2004  st(src, index, 0);
2005}
2006
2007void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2008  assert_not_delayed();
2009  sll(index, Interpreter::logStackElementSize, index);
2010  sub(Llocals, index, index);
2011#ifdef ASSERT
2012  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2013#endif
2014  st_ptr(src, index, 0);
2015}
2016
2017
2018
2019void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2020  st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2021}
2022
2023void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2024  assert_not_delayed();
2025  sll(index, Interpreter::logStackElementSize, index);
2026  sub(Llocals, index, index);
2027#ifdef ASSERT
2028  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2029#endif
2030  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2031}
2032
2033
2034void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2035  assert_not_delayed();
2036  sll(index, Interpreter::logStackElementSize, index);
2037  sub(Llocals, index, index);
2038#ifdef ASSERT
2039  check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2040#endif
2041  stf(FloatRegisterImpl::S, src, index, 0);
2042}
2043
2044
2045void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2046  assert_not_delayed();
2047  sll(index, Interpreter::logStackElementSize, index);
2048  sub(Llocals, index, index);
2049#ifdef ASSERT
2050  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2051#endif
2052  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2053}
2054
2055
2056int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2057  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2058  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2059  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2060}
2061
2062
2063Address InterpreterMacroAssembler::top_most_monitor() {
2064  return Address(FP, top_most_monitor_byte_offset());
2065}
2066
2067
2068void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2069  add( Lesp,      wordSize,                                    Rdest );
2070}
2071
2072#endif /* CC_INTERP */
2073
2074void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
2075  assert(UseCompiler, "incrementing must be useful");
2076#ifdef CC_INTERP
2077  Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2078                                 InvocationCounter::counter_offset());
2079  Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2080                                 InvocationCounter::counter_offset());
2081#else
2082  Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2083                               InvocationCounter::counter_offset());
2084  Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2085                               InvocationCounter::counter_offset());
2086#endif /* CC_INTERP */
2087  int delta = InvocationCounter::count_increment;
2088
2089  // Load each counter in a register
2090  ld( inv_counter, Rtmp );
2091  ld( be_counter, Rtmp2 );
2092
2093  assert( is_simm13( delta ), " delta too large.");
2094
2095  // Add the delta to the invocation counter and store the result
2096  add( Rtmp, delta, Rtmp );
2097
2098  // Mask the backedge counter
2099  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2100
2101  // Store value
2102  st( Rtmp, inv_counter);
2103
2104  // Add invocation counter + backedge counter
2105  add( Rtmp, Rtmp2, Rtmp);
2106
2107  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2108}
2109
2110void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
2111  assert(UseCompiler, "incrementing must be useful");
2112#ifdef CC_INTERP
2113  Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
2114                                 InvocationCounter::counter_offset());
2115  Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
2116                                 InvocationCounter::counter_offset());
2117#else
2118  Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
2119                               InvocationCounter::counter_offset());
2120  Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
2121                               InvocationCounter::counter_offset());
2122#endif /* CC_INTERP */
2123  int delta = InvocationCounter::count_increment;
2124  // Load each counter in a register
2125  ld( be_counter, Rtmp );
2126  ld( inv_counter, Rtmp2 );
2127
2128  // Add the delta to the backedge counter
2129  add( Rtmp, delta, Rtmp );
2130
2131  // Mask the invocation counter, add to backedge counter
2132  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2133
2134  // and store the result to memory
2135  st( Rtmp, be_counter );
2136
2137  // Add backedge + invocation counter
2138  add( Rtmp, Rtmp2, Rtmp );
2139
2140  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2141}
2142
2143#ifndef CC_INTERP
2144void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2145                                                             Register branch_bcp,
2146                                                             Register Rtmp ) {
2147  Label did_not_overflow;
2148  Label overflow_with_error;
2149  assert_different_registers(backedge_count, Rtmp, branch_bcp);
2150  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2151
2152  AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2153  load_contents(limit, Rtmp);
2154  cmp(backedge_count, Rtmp);
2155  br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
2156  delayed()->nop();
2157
2158  // When ProfileInterpreter is on, the backedge_count comes from the
2159  // methodDataOop, which value does not get reset on the call to
2160  // frequency_counter_overflow().  To avoid excessive calls to the overflow
2161  // routine while the method is being compiled, add a second test to make sure
2162  // the overflow function is called only once every overflow_frequency.
2163  if (ProfileInterpreter) {
2164    const int overflow_frequency = 1024;
2165    andcc(backedge_count, overflow_frequency-1, Rtmp);
2166    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2167    delayed()->nop();
2168  }
2169
2170  // overflow in loop, pass branch bytecode
2171  set(6,Rtmp);
2172  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2173
2174  // Was an OSR adapter generated?
2175  // O0 = osr nmethod
2176  tst(O0);
2177  brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
2178  delayed()->nop();
2179
2180  // Has the nmethod been invalidated already?
2181  ld(O0, nmethod::entry_bci_offset(), O2);
2182  cmp(O2, InvalidOSREntryBci);
2183  br(Assembler::equal, false, Assembler::pn, overflow_with_error);
2184  delayed()->nop();
2185
2186  // migrate the interpreter frame off of the stack
2187
2188  mov(G2_thread, L7);
2189  // save nmethod
2190  mov(O0, L6);
2191  set_last_Java_frame(SP, noreg);
2192  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2193  reset_last_Java_frame();
2194  mov(L7, G2_thread);
2195
2196  // move OSR nmethod to I1
2197  mov(L6, I1);
2198
2199  // OSR buffer to I0
2200  mov(O0, I0);
2201
2202  // remove the interpreter frame
2203  restore(I5_savedSP, 0, SP);
2204
2205  // Jump to the osr code.
2206  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2207  jmp(O2, G0);
2208  delayed()->nop();
2209
2210  bind(overflow_with_error);
2211
2212  bind(did_not_overflow);
2213}
2214
2215
2216
2217void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2218  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2219}
2220
2221
2222// local helper function for the verify_oop_or_return_address macro
2223static bool verify_return_address(methodOopDesc* m, int bci) {
2224#ifndef PRODUCT
2225  address pc = (address)(m->constMethod())
2226             + in_bytes(constMethodOopDesc::codes_offset()) + bci;
2227  // assume it is a valid return address if it is inside m and is preceded by a jsr
2228  if (!m->contains(pc))                                          return false;
2229  address jsr_pc;
2230  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2231  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2232  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2233  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2234#endif // PRODUCT
2235  return false;
2236}
2237
2238
2239void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2240  if (!VerifyOops)  return;
2241  // the VM documentation for the astore[_wide] bytecode allows
2242  // the TOS to be not only an oop but also a return address
2243  Label test;
2244  Label skip;
2245  // See if it is an address (in the current method):
2246
2247  mov(reg, Rtmp);
2248  const int log2_bytecode_size_limit = 16;
2249  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2250  br_notnull( Rtmp, false, pt, test );
2251  delayed()->nop();
2252
2253  // %%% should use call_VM_leaf here?
2254  save_frame_and_mov(0, Lmethod, O0, reg, O1);
2255  save_thread(L7_thread_cache);
2256  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2257  delayed()->nop();
2258  restore_thread(L7_thread_cache);
2259  br_notnull( O0, false, pt, skip );
2260  delayed()->restore();
2261
2262  // Perform a more elaborate out-of-line call
2263  // Not an address; verify it:
2264  bind(test);
2265  verify_oop(reg);
2266  bind(skip);
2267}
2268
2269
2270void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2271  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2272}
2273#endif /* CC_INTERP */
2274
2275// Inline assembly for:
2276//
2277// if (thread is in interp_only_mode) {
2278//   InterpreterRuntime::post_method_entry();
2279// }
2280// if (DTraceMethodProbes) {
2281//   SharedRuntime::dtrace_method_entry(method, receiver);
2282// }
2283// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2284//   SharedRuntime::rc_trace_method_entry(method, receiver);
2285// }
2286
2287void InterpreterMacroAssembler::notify_method_entry() {
2288
2289  // C++ interpreter only uses this for native methods.
2290
2291  // Whenever JVMTI puts a thread in interp_only_mode, method
2292  // entry/exit events are sent for that thread to track stack
2293  // depth.  If it is possible to enter interp_only_mode we add
2294  // the code to check if the event should be sent.
2295  if (JvmtiExport::can_post_interpreter_events()) {
2296    Label L;
2297    Register temp_reg = O5;
2298    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2299    ld(interp_only, temp_reg);
2300    tst(temp_reg);
2301    br(zero, false, pt, L);
2302    delayed()->nop();
2303    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2304    bind(L);
2305  }
2306
2307  {
2308    Register temp_reg = O5;
2309    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2310    call_VM_leaf(noreg,
2311      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2312      G2_thread, Lmethod);
2313  }
2314
2315  // RedefineClasses() tracing support for obsolete method entry
2316  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2317    call_VM_leaf(noreg,
2318      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2319      G2_thread, Lmethod);
2320  }
2321}
2322
2323
2324// Inline assembly for:
2325//
2326// if (thread is in interp_only_mode) {
2327//   // save result
2328//   InterpreterRuntime::post_method_exit();
2329//   // restore result
2330// }
2331// if (DTraceMethodProbes) {
2332//   SharedRuntime::dtrace_method_exit(thread, method);
2333// }
2334//
2335// Native methods have their result stored in d_tmp and l_tmp
2336// Java methods have their result stored in the expression stack
2337
2338void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2339                                                   TosState state,
2340                                                   NotifyMethodExitMode mode) {
2341  // C++ interpreter only uses this for native methods.
2342
2343  // Whenever JVMTI puts a thread in interp_only_mode, method
2344  // entry/exit events are sent for that thread to track stack
2345  // depth.  If it is possible to enter interp_only_mode we add
2346  // the code to check if the event should be sent.
2347  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2348    Label L;
2349    Register temp_reg = O5;
2350    const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2351    ld(interp_only, temp_reg);
2352    tst(temp_reg);
2353    br(zero, false, pt, L);
2354    delayed()->nop();
2355
2356    // Note: frame::interpreter_frame_result has a dependency on how the
2357    // method result is saved across the call to post_method_exit. For
2358    // native methods it assumes the result registers are saved to
2359    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2360    // implementation will need to be updated too.
2361
2362    save_return_value(state, is_native_method);
2363    call_VM(noreg,
2364            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2365    restore_return_value(state, is_native_method);
2366    bind(L);
2367  }
2368
2369  {
2370    Register temp_reg = O5;
2371    // Dtrace notification
2372    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2373    save_return_value(state, is_native_method);
2374    call_VM_leaf(
2375      noreg,
2376      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2377      G2_thread, Lmethod);
2378    restore_return_value(state, is_native_method);
2379  }
2380}
2381
2382void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2383#ifdef CC_INTERP
2384  // result potentially in O0/O1: save it across calls
2385  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2386#ifdef _LP64
2387  stx(O0, STATE(_native_lresult));
2388#else
2389  std(O0, STATE(_native_lresult));
2390#endif
2391#else // CC_INTERP
2392  if (is_native_call) {
2393    stf(FloatRegisterImpl::D, F0, d_tmp);
2394#ifdef _LP64
2395    stx(O0, l_tmp);
2396#else
2397    std(O0, l_tmp);
2398#endif
2399  } else {
2400    push(state);
2401  }
2402#endif // CC_INTERP
2403}
2404
2405void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2406#ifdef CC_INTERP
2407  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2408#ifdef _LP64
2409  ldx(STATE(_native_lresult), O0);
2410#else
2411  ldd(STATE(_native_lresult), O0);
2412#endif
2413#else // CC_INTERP
2414  if (is_native_call) {
2415    ldf(FloatRegisterImpl::D, d_tmp, F0);
2416#ifdef _LP64
2417    ldx(l_tmp, O0);
2418#else
2419    ldd(l_tmp, O0);
2420#endif
2421  } else {
2422    pop(state);
2423  }
2424#endif // CC_INTERP
2425}
2426