assembler_sparc.inline.hpp revision 710:e5b0439ef4ae
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
26  jint& stub_inst = *(jint*) branch;
27  stub_inst = patched_branch(target - branch, stub_inst, 0);
28}
29
30#ifndef PRODUCT
31inline void MacroAssembler::pd_print_patched_instruction(address branch) {
32  jint stub_inst = *(jint*) branch;
33  print_instruction(stub_inst);
34  ::tty->print("%s", " (unresolved)");
35}
36#endif // PRODUCT
37
38inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
39
40
41// inlines for SPARC assembler -- dmu 5/97
42
43inline void Assembler::check_delay() {
44# ifdef CHECK_DELAY
45  guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
46  delay_state = no_delay;
47# endif
48}
49
50inline void Assembler::emit_long(int x) {
51  check_delay();
52  AbstractAssembler::emit_long(x);
53}
54
55inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
56  relocate(rtype);
57  emit_long(x);
58}
59
60inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
61  relocate(rspec);
62  emit_long(x);
63}
64
65
66inline void Assembler::add(    Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
67inline void Assembler::add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
68inline void Assembler::add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
69inline void Assembler::add(    const Address& a, Register d, int offset) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
70
71inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
72inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
73
74inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
75inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
76
77inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
78inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
79
80inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
81inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
82
83inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
84inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
85
86inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
87inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
88
89inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
90inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
91
92inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
93inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
94
95inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
96inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
97
98inline void Assembler::jmpl( Address& a, Register d, int offset) { jmpl( a.base(), a.disp() + offset, d, a.rspec(offset)); }
99
100
101inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
102inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
103
104inline void Assembler::ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
105
106inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
107inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
108inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
109inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
110
111inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
112inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
113inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
114inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
115inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
116inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
117
118inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
119inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
120
121inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
122inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
123inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
124inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
125inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
126inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
127inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
128inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
129inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
130inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
131
132inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
133inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
134inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
135inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
136
137#ifdef _LP64
138// Make all 32 bit loads signed so 64 bit registers maintain proper sign
139inline void Assembler::ld(  Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
140inline void Assembler::ld(  Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
141#else
142inline void Assembler::ld(  Register s1, Register s2, Register d) { lduw( s1, s2, d); }
143inline void Assembler::ld(  Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
144#endif
145
146inline void Assembler::ldub(  Register s1, RegisterOrConstant s2, Register d) {
147  if (s2.is_register())  ldsb(s1, s2.as_register(), d);
148  else                   ldsb(s1, s2.as_constant(), d);
149}
150inline void Assembler::ldsb(  Register s1, RegisterOrConstant s2, Register d) {
151  if (s2.is_register())  ldsb(s1, s2.as_register(), d);
152  else                   ldsb(s1, s2.as_constant(), d);
153}
154inline void Assembler::lduh(  Register s1, RegisterOrConstant s2, Register d) {
155  if (s2.is_register())  ldsh(s1, s2.as_register(), d);
156  else                   ldsh(s1, s2.as_constant(), d);
157}
158inline void Assembler::ldsh(  Register s1, RegisterOrConstant s2, Register d) {
159  if (s2.is_register())  ldsh(s1, s2.as_register(), d);
160  else                   ldsh(s1, s2.as_constant(), d);
161}
162inline void Assembler::lduw(  Register s1, RegisterOrConstant s2, Register d) {
163  if (s2.is_register())  ldsw(s1, s2.as_register(), d);
164  else                   ldsw(s1, s2.as_constant(), d);
165}
166inline void Assembler::ldsw(  Register s1, RegisterOrConstant s2, Register d) {
167  if (s2.is_register())  ldsw(s1, s2.as_register(), d);
168  else                   ldsw(s1, s2.as_constant(), d);
169}
170inline void Assembler::ldx(   Register s1, RegisterOrConstant s2, Register d) {
171  if (s2.is_register())  ldx(s1, s2.as_register(), d);
172  else                   ldx(s1, s2.as_constant(), d);
173}
174inline void Assembler::ld(    Register s1, RegisterOrConstant s2, Register d) {
175  if (s2.is_register())  ld(s1, s2.as_register(), d);
176  else                   ld(s1, s2.as_constant(), d);
177}
178inline void Assembler::ldd(   Register s1, RegisterOrConstant s2, Register d) {
179  if (s2.is_register())  ldd(s1, s2.as_register(), d);
180  else                   ldd(s1, s2.as_constant(), d);
181}
182
183// form effective addresses this way:
184inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
185  if (s2.is_register())  add(s1, s2.as_register(), d);
186  else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
187  if (offset != 0)       add(d,  offset,                    d);
188}
189
190inline void Assembler::ld(   const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ld(   a.base(), a.disp() + offset, d ); }
191inline void Assembler::ldsb( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsb( a.base(), a.disp() + offset, d ); }
192inline void Assembler::ldsh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsh( a.base(), a.disp() + offset, d ); }
193inline void Assembler::ldsw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsw( a.base(), a.disp() + offset, d ); }
194inline void Assembler::ldub( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldub( a.base(), a.disp() + offset, d ); }
195inline void Assembler::lduh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduh( a.base(), a.disp() + offset, d ); }
196inline void Assembler::lduw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduw( a.base(), a.disp() + offset, d ); }
197inline void Assembler::ldd(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldd(  a.base(), a.disp() + offset, d ); }
198inline void Assembler::ldx(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldx(  a.base(), a.disp() + offset, d ); }
199
200
201inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
202inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
203
204
205inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
206inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
207
208inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
209
210
211inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
212inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
213
214inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
215
216  // pp 222
217
218inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
219inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
220
221inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
222
223inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
224inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
225inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
226inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
227
228  // p 226
229
230inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
231inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
232inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
233inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
234inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
235inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
236
237
238inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
239inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
240inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
241inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
242
243inline void Assembler::st(  Register d, Register s1, Register s2) { stw(d, s1, s2); }
244inline void Assembler::st(  Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
245
246inline void Assembler::stb(  Register d, Register s1, RegisterOrConstant s2) {
247  if (s2.is_register())  stb(d, s1, s2.as_register());
248  else                   stb(d, s1, s2.as_constant());
249}
250inline void Assembler::sth(  Register d, Register s1, RegisterOrConstant s2) {
251  if (s2.is_register())  sth(d, s1, s2.as_register());
252  else                   sth(d, s1, s2.as_constant());
253}
254inline void Assembler::stx(  Register d, Register s1, RegisterOrConstant s2) {
255  if (s2.is_register())  stx(d, s1, s2.as_register());
256  else                   stx(d, s1, s2.as_constant());
257}
258inline void Assembler::std( Register d, Register s1, RegisterOrConstant s2) {
259  if (s2.is_register())  std(d, s1, s2.as_register());
260  else                   std(d, s1, s2.as_constant());
261}
262inline void Assembler::st(  Register d, Register s1, RegisterOrConstant s2) {
263  if (s2.is_register())  st(d, s1, s2.as_register());
264  else                   st(d, s1, s2.as_constant());
265}
266
267inline void Assembler::stb( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stb( d, a.base(), a.disp() + offset); }
268inline void Assembler::sth( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); sth( d, a.base(), a.disp() + offset); }
269inline void Assembler::stw( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stw( d, a.base(), a.disp() + offset); }
270inline void Assembler::st(  Register d, const Address& a, int offset) { relocate(a.rspec(offset)); st(  d, a.base(), a.disp() + offset); }
271inline void Assembler::std( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); std( d, a.base(), a.disp() + offset); }
272inline void Assembler::stx( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stx( d, a.base(), a.disp() + offset); }
273
274// v8 p 99
275
276inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
277inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
278inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
279inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
280inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
281inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
282inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
283inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
284
285
286// pp 231
287
288inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
289inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
290
291inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
292
293
294// Use the right loads/stores for the platform
295inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
296#ifdef _LP64
297  Assembler::ldx( s1, s2, d);
298#else
299  Assembler::ld(  s1, s2, d);
300#endif
301}
302
303inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
304#ifdef _LP64
305  Assembler::ldx( s1, simm13a, d);
306#else
307  Assembler::ld(  s1, simm13a, d);
308#endif
309}
310
311inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
312#ifdef _LP64
313  Assembler::ldx( s1, s2, d);
314#else
315  Assembler::ld(  s1, s2, d);
316#endif
317}
318
319inline void MacroAssembler::ld_ptr( const Address& a, Register d, int offset ) {
320#ifdef _LP64
321  Assembler::ldx(  a, d, offset );
322#else
323  Assembler::ld(   a, d, offset );
324#endif
325}
326
327inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
328#ifdef _LP64
329  Assembler::stx( d, s1, s2);
330#else
331  Assembler::st( d, s1, s2);
332#endif
333}
334
335inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
336#ifdef _LP64
337  Assembler::stx( d, s1, simm13a);
338#else
339  Assembler::st( d, s1, simm13a);
340#endif
341}
342
343inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
344#ifdef _LP64
345  Assembler::stx( d, s1, s2);
346#else
347  Assembler::st( d, s1, s2);
348#endif
349}
350
351inline void MacroAssembler::st_ptr(  Register d, const Address& a, int offset) {
352#ifdef _LP64
353  Assembler::stx(  d, a, offset);
354#else
355  Assembler::st(  d, a, offset);
356#endif
357}
358
359// Use the right loads/stores for the platform
360inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
361#ifdef _LP64
362  Assembler::ldx(s1, s2, d);
363#else
364  Assembler::ldd(s1, s2, d);
365#endif
366}
367
368inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
369#ifdef _LP64
370  Assembler::ldx(s1, simm13a, d);
371#else
372  Assembler::ldd(s1, simm13a, d);
373#endif
374}
375
376inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
377#ifdef _LP64
378  Assembler::ldx(s1, s2, d);
379#else
380  Assembler::ldd(s1, s2, d);
381#endif
382}
383
384inline void MacroAssembler::ld_long( const Address& a, Register d, int offset ) {
385#ifdef _LP64
386  Assembler::ldx(a, d, offset );
387#else
388  Assembler::ldd(a, d, offset );
389#endif
390}
391
392inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
393#ifdef _LP64
394  Assembler::stx(d, s1, s2);
395#else
396  Assembler::std(d, s1, s2);
397#endif
398}
399
400inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
401#ifdef _LP64
402  Assembler::stx(d, s1, simm13a);
403#else
404  Assembler::std(d, s1, simm13a);
405#endif
406}
407
408inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
409#ifdef _LP64
410  Assembler::stx(d, s1, s2);
411#else
412  Assembler::std(d, s1, s2);
413#endif
414}
415
416inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
417#ifdef _LP64
418  Assembler::stx(d, a, offset);
419#else
420  Assembler::std(d, a, offset);
421#endif
422}
423
424// Functions for isolating 64 bit shifts for LP64
425
426inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
427#ifdef _LP64
428  Assembler::sllx(s1, s2, d);
429#else
430  Assembler::sll(s1, s2, d);
431#endif
432}
433
434inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
435#ifdef _LP64
436  Assembler::sllx(s1, imm6a, d);
437#else
438  Assembler::sll(s1, imm6a, d);
439#endif
440}
441
442inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
443#ifdef _LP64
444  Assembler::srlx(s1, s2, d);
445#else
446  Assembler::srl(s1, s2, d);
447#endif
448}
449
450inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
451#ifdef _LP64
452  Assembler::srlx(s1, imm6a, d);
453#else
454  Assembler::srl(s1, imm6a, d);
455#endif
456}
457
458inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
459  if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
460  else                   sll_ptr(s1, s2.as_constant(), d);
461}
462
463// Use the right branch for the platform
464
465inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
466  if (VM_Version::v9_instructions_work())
467    Assembler::bp(c, a, icc, p, d, rt);
468  else
469    Assembler::br(c, a, d, rt);
470}
471
472inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
473  br(c, a, p, target(L));
474}
475
476
477// Branch that tests either xcc or icc depending on the
478// architecture compiled (LP64 or not)
479inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
480#ifdef _LP64
481    Assembler::bp(c, a, xcc, p, d, rt);
482#else
483    MacroAssembler::br(c, a, p, d, rt);
484#endif
485}
486
487inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
488  brx(c, a, p, target(L));
489}
490
491inline void MacroAssembler::ba( bool a, Label& L ) {
492  br(always, a, pt, L);
493}
494
495// Warning: V9 only functions
496inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
497  Assembler::bp(c, a, cc, p, d, rt);
498}
499
500inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
501  Assembler::bp(c, a, cc, p, L);
502}
503
504inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
505  if (VM_Version::v9_instructions_work())
506    fbp(c, a, fcc0, p, d, rt);
507  else
508    Assembler::fb(c, a, d, rt);
509}
510
511inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
512  fb(c, a, p, target(L));
513}
514
515inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
516  Assembler::fbp(c, a, cc, p, d, rt);
517}
518
519inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
520  Assembler::fbp(c, a, cc, p, L);
521}
522
523inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
524inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
525
526// Call with a check to see if we need to deal with the added
527// expense of relocation and if we overflow the displacement
528// of the quick call instruction./
529// Check to see if we have to deal with relocations
530inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
531#ifdef _LP64
532  intptr_t disp;
533  // NULL is ok because it will be relocated later.
534  // Must change NULL to a reachable address in order to
535  // pass asserts here and in wdisp.
536  if ( d == NULL )
537    d = pc();
538
539  // Is this address within range of the call instruction?
540  // If not, use the expensive instruction sequence
541  disp = (intptr_t)d - (intptr_t)pc();
542  if ( disp != (intptr_t)(int32_t)disp ) {
543    relocate(rt);
544    Address dest(O7, (address)d);
545    sethi(dest, /*ForceRelocatable=*/ true);
546    jmpl(dest, O7);
547  }
548  else {
549    Assembler::call( d, rt );
550  }
551#else
552  Assembler::call( d, rt );
553#endif
554}
555
556inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
557  MacroAssembler::call( target(L), rt);
558}
559
560
561
562inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
563inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
564
565// prefetch instruction
566inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
567  if (VM_Version::v9_instructions_work())
568    Assembler::bp( never, true, xcc, pt, d, rt );
569}
570inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
571
572
573// clobbers o7 on V8!!
574// returns delta from gotten pc to addr after
575inline int MacroAssembler::get_pc( Register d ) {
576  int x = offset();
577  if (VM_Version::v9_instructions_work())
578    rdpc(d);
579  else {
580    Label lbl;
581    Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
582    if (d == O7)  delayed()->nop();
583    else          delayed()->mov(O7, d);
584    bind(lbl);
585  }
586  return offset() - x;
587}
588
589
590// Note:  All MacroAssembler::set_foo functions are defined out-of-line.
591
592
593// Loads the current PC of the following instruction as an immediate value in
594// 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
595inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
596  intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
597#ifdef _LP64
598  Unimplemented();
599#else
600  Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
601  Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
602#endif
603  return thepc;
604}
605
606inline void MacroAssembler::load_address( Address& a, int offset ) {
607  assert_not_delayed();
608#ifdef _LP64
609  sethi(a);
610  add(a, a.base(), offset);
611#else
612  if (a.hi() == 0 && a.rtype() == relocInfo::none) {
613    set(a.disp() + offset, a.base());
614  }
615  else {
616    sethi(a);
617    add(a, a.base(), offset);
618  }
619#endif
620}
621
622
623inline void MacroAssembler::split_disp( Address& a, Register temp ) {
624  assert_not_delayed();
625  a = a.split_disp();
626  Assembler::sethi(a.hi(), temp, a.rspec());
627  add(a.base(), temp, a.base());
628}
629
630
631inline void MacroAssembler::load_contents( Address& a, Register d, int offset ) {
632  assert_not_delayed();
633  sethi(a);
634  ld(a, d, offset);
635}
636
637
638inline void MacroAssembler::load_ptr_contents( Address& a, Register d, int offset ) {
639  assert_not_delayed();
640  sethi(a);
641  ld_ptr(a, d, offset);
642}
643
644
645inline void MacroAssembler::store_contents( Register s, Address& a, int offset ) {
646  assert_not_delayed();
647  sethi(a);
648  st(s, a, offset);
649}
650
651
652inline void MacroAssembler::store_ptr_contents( Register s, Address& a, int offset ) {
653  assert_not_delayed();
654  sethi(a);
655  st_ptr(s, a, offset);
656}
657
658
659// This code sequence is relocatable to any address, even on LP64.
660inline void MacroAssembler::jumpl_to( Address& a, Register d, int offset ) {
661  assert_not_delayed();
662  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
663  // variable length instruction streams.
664  sethi(a, /*ForceRelocatable=*/ true);
665  jmpl(a, d, offset);
666}
667
668
669inline void MacroAssembler::jump_to( Address& a, int offset ) {
670  jumpl_to( a, G0, offset );
671}
672
673
674inline void MacroAssembler::jump_indirect_to(  Address& a, Register temp,
675                                               int ld_offset, int jmp_offset ) {
676  assert_not_delayed();
677  //sethi(a);                   // sethi is caller responsibility for this one
678  ld_ptr(a, temp, ld_offset);
679  jmp(temp, jmp_offset);
680}
681
682
683inline void MacroAssembler::set_oop( jobject obj, Register d ) {
684  set_oop(allocate_oop_address(obj, d));
685}
686
687
688inline void MacroAssembler::set_oop_constant( jobject obj, Register d ) {
689  set_oop(constant_oop_address(obj, d));
690}
691
692
693inline void MacroAssembler::set_oop( Address obj_addr ) {
694  assert(obj_addr.rspec().type()==relocInfo::oop_type, "must be an oop reloc");
695  load_address(obj_addr);
696}
697
698
699inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
700  if (a.is_register())
701    mov(a.as_register(), d);
702  else
703    ld (a.as_address(),  d);
704}
705
706inline void MacroAssembler::store_argument( Register s, Argument& a ) {
707  if (a.is_register())
708    mov(s, a.as_register());
709  else
710    st_ptr (s, a.as_address());         // ABI says everything is right justified.
711}
712
713inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
714  if (a.is_register())
715    mov(s, a.as_register());
716  else
717    st_ptr (s, a.as_address());
718}
719
720
721#ifdef _LP64
722inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
723  if (a.is_float_register())
724// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
725    fmov(FloatRegisterImpl::S, s, a.as_float_register() );
726  else
727    // Floats are stored in the high half of the stack entry
728    // The low half is undefined per the ABI.
729    stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
730}
731
732inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
733  if (a.is_float_register())
734// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
735    fmov(FloatRegisterImpl::D, s, a.as_double_register() );
736  else
737    stf(FloatRegisterImpl::D, s, a.as_address());
738}
739
740inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
741  if (a.is_register())
742    mov(s, a.as_register());
743  else
744    stx(s, a.as_address());
745}
746#endif
747
748inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
749inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
750inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
751inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
752
753inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
754inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
755inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
756inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
757
758// returns if membar generates anything, obviously this code should mirror
759// membar below.
760inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
761  if( !os::is_MP() ) return false;  // Not needed on single CPU
762  if( VM_Version::v9_instructions_work() ) {
763    const Membar_mask_bits effective_mask =
764        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
765    return (effective_mask != 0);
766  } else {
767    return true;
768  }
769}
770
771inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
772  // Uniprocessors do not need memory barriers
773  if (!os::is_MP()) return;
774  // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
775  // 8.4.4.3, a.31 and a.50.
776  if( VM_Version::v9_instructions_work() ) {
777    // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
778    // of the mmask subfield of const7a that does anything that isn't done
779    // implicitly is StoreLoad.
780    const Membar_mask_bits effective_mask =
781        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
782    if ( effective_mask != 0 ) {
783      Assembler::membar( effective_mask );
784    }
785  } else {
786    // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
787    // do not issue the stbar because to my knowledge all v8 machines implement TSO,
788    // which guarantees that all stores behave as if an stbar were issued just after
789    // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
790    // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
791    // it can't be specified by stbar, nor have I come up with a way to simulate it.
792    //
793    // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
794    // space.  Put one here to be on the safe side.
795    Assembler::ldstub(SP, 0, G0);
796  }
797}
798