assembler_sparc.cpp revision 642:660978a2a31a
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_assembler_sparc.cpp.incl"
27
28// Implementation of Address
29
30Address::Address( addr_type t, int which ) {
31  switch (t) {
32   case extra_in_argument:
33   case extra_out_argument:
34     _base = t == extra_in_argument ? FP : SP;
35     _hi   = 0;
36// Warning:  In LP64 mode, _disp will occupy more than 10 bits.
37//           This is inconsistent with the other constructors but op
38//           codes such as ld or ldx, only access disp() to get their
39//           simm13 argument.
40     _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
41    break;
42   default:
43    ShouldNotReachHere();
44    break;
45  }
46}
47
48static const char* argumentNames[][2] = {
49  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
50  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
51  {"A(n>9)","P(n>9)"}
52};
53
54const char* Argument::name() const {
55  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
56  int num = number();
57  if (num >= nofArgs)  num = nofArgs - 1;
58  return argumentNames[num][is_in() ? 1 : 0];
59}
60
61void Assembler::print_instruction(int inst) {
62  const char* s;
63  switch (inv_op(inst)) {
64  default:         s = "????"; break;
65  case call_op:    s = "call"; break;
66  case branch_op:
67    switch (inv_op2(inst)) {
68      case bpr_op2:    s = "bpr";  break;
69      case fb_op2:     s = "fb";   break;
70      case fbp_op2:    s = "fbp";  break;
71      case br_op2:     s = "br";   break;
72      case bp_op2:     s = "bp";   break;
73      case cb_op2:     s = "cb";   break;
74      default:         s = "????"; break;
75    }
76  }
77  ::tty->print("%s", s);
78}
79
80
81// Patch instruction inst at offset inst_pos to refer to dest_pos
82// and return the resulting instruction.
83// We should have pcs, not offsets, but since all is relative, it will work out
84// OK.
85int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
86
87  int m; // mask for displacement field
88  int v; // new value for displacement field
89  const int word_aligned_ones = -4;
90  switch (inv_op(inst)) {
91  default: ShouldNotReachHere();
92  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
93  case branch_op:
94    switch (inv_op2(inst)) {
95      case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
96      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
97      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
98      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
99      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
100      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
101      default: ShouldNotReachHere();
102    }
103  }
104  return  inst & ~m  |  v;
105}
106
107// Return the offset of the branch destionation of instruction inst
108// at offset pos.
109// Should have pcs, but since all is relative, it works out.
110int Assembler::branch_destination(int inst, int pos) {
111  int r;
112  switch (inv_op(inst)) {
113  default: ShouldNotReachHere();
114  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
115  case branch_op:
116    switch (inv_op2(inst)) {
117      case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
118      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
119      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
120      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
121      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
122      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
123      default: ShouldNotReachHere();
124    }
125  }
126  return r;
127}
128
129int AbstractAssembler::code_fill_byte() {
130  return 0x00;                  // illegal instruction 0x00000000
131}
132
133Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
134  switch (in) {
135  case rc_z:   return equal;
136  case rc_lez: return lessEqual;
137  case rc_lz:  return less;
138  case rc_nz:  return notEqual;
139  case rc_gz:  return greater;
140  case rc_gez: return greaterEqual;
141  default:
142    ShouldNotReachHere();
143  }
144  return equal;
145}
146
147// Generate a bunch 'o stuff (including v9's
148#ifndef PRODUCT
149void Assembler::test_v9() {
150  add(    G0, G1, G2 );
151  add(    G3,  0, G4 );
152
153  addcc(  G5, G6, G7 );
154  addcc(  I0,  1, I1 );
155  addc(   I2, I3, I4 );
156  addc(   I5, -1, I6 );
157  addccc( I7, L0, L1 );
158  addccc( L2, (1 << 12) - 2, L3 );
159
160  Label lbl1, lbl2, lbl3;
161
162  bind(lbl1);
163
164  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
165  delayed()->nop();
166  bpr( rc_lez, false, pt, L5, lbl1);
167  delayed()->nop();
168
169  fb( f_never,     true, pc() + 4,  relocInfo::none);
170  delayed()->nop();
171  fb( f_notEqual, false, lbl2 );
172  delayed()->nop();
173
174  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
175  delayed()->nop();
176  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
177  delayed()->nop();
178
179  br( equal,  true, pc() + 1024, relocInfo::none);
180  delayed()->nop();
181  br( lessEqual, false, lbl1 );
182  delayed()->nop();
183  br( never, false, lbl1 );
184  delayed()->nop();
185
186  bp( less,               true, icc, pn, pc(), relocInfo::none);
187  delayed()->nop();
188  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
189  delayed()->nop();
190
191  call( pc(), relocInfo::none);
192  delayed()->nop();
193  call( lbl3 );
194  delayed()->nop();
195
196
197  casa(  L6, L7, O0 );
198  casxa( O1, O2, O3, 0 );
199
200  udiv(   O4, O5, O7 );
201  udiv(   G0, (1 << 12) - 1, G1 );
202  sdiv(   G1, G2, G3 );
203  sdiv(   G4, -((1 << 12) - 1), G5 );
204  udivcc( G6, G7, I0 );
205  udivcc( I1, -((1 << 12) - 2), I2 );
206  sdivcc( I3, I4, I5 );
207  sdivcc( I6, -((1 << 12) - 0), I7 );
208
209  done();
210  retry();
211
212  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
213  fsub( FloatRegisterImpl::D, F34, F0, F62 );
214
215  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
216  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
217
218  ftox( FloatRegisterImpl::D, F2, F4 );
219  ftoi( FloatRegisterImpl::Q, F4, F8 );
220
221  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
222
223  fxtof( FloatRegisterImpl::S, F4, F5 );
224  fitof( FloatRegisterImpl::D, F6, F8 );
225
226  fmov( FloatRegisterImpl::Q, F16, F20 );
227  fneg( FloatRegisterImpl::S, F6, F7 );
228  fabs( FloatRegisterImpl::D, F10, F12 );
229
230  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
231  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
232  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
233
234  fsqrt( FloatRegisterImpl::S, F13, F14 );
235
236  flush( L0, L1 );
237  flush( L2, -1 );
238
239  flushw();
240
241  illtrap( (1 << 22) - 2);
242
243  impdep1( 17, (1 << 19) - 1 );
244  impdep2( 3,  0 );
245
246  jmpl( L3, L4, L5 );
247  delayed()->nop();
248  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
249  delayed()->nop();
250
251
252  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
253  ldf(    FloatRegisterImpl::D, O2, -1, F14 );
254
255
256  ldfsr(  O3, O4 );
257  ldfsr(  O5, -1 );
258  ldxfsr( O6, O7 );
259  ldxfsr( I0, -1 );
260
261  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
262  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
263
264  ldsb(  I4, I5, I6 );
265  ldsb(  I7, -1, G0 );
266  ldsh(  G1, G3, G4 );
267  ldsh(  G5, -1, G6 );
268  ldsw(  G7, L0, L1 );
269  ldsw(  L2, -1, L3 );
270  ldub(  L4, L5, L6 );
271  ldub(  L7, -1, O0 );
272  lduh(  O1, O2, O3 );
273  lduh(  O4, -1, O5 );
274  lduw(  O6, O7, G0 );
275  lduw(  G1, -1, G2 );
276  ldx(   G3, G4, G5 );
277  ldx(   G6, -1, G7 );
278  ldd(   I0, I1, I2 );
279  ldd(   I3, -1, I4 );
280
281  ldsba(  I5, I6, 2, I7 );
282  ldsba(  L0, -1, L1 );
283  ldsha(  L2, L3, 3, L4 );
284  ldsha(  L5, -1, L6 );
285  ldswa(  L7, O0, (1 << 8) - 1, O1 );
286  ldswa(  O2, -1, O3 );
287  lduba(  O4, O5, 0, O6 );
288  lduba(  O7, -1, I0 );
289  lduha(  I1, I2, 1, I3 );
290  lduha(  I4, -1, I5 );
291  lduwa(  I6, I7, 2, L0 );
292  lduwa(  L1, -1, L2 );
293  ldxa(   L3, L4, 3, L5 );
294  ldxa(   L6, -1, L7 );
295  ldda(   G0, G1, 4, G2 );
296  ldda(   G3, -1, G4 );
297
298  ldstub(  G5, G6, G7 );
299  ldstub(  O0, -1, O1 );
300
301  ldstuba( O2, O3, 5, O4 );
302  ldstuba( O5, -1, O6 );
303
304  and3(    I0, L0, O0 );
305  and3(    G7, -1, O7 );
306  andcc(   L2, I2, G2 );
307  andcc(   L4, -1, G4 );
308  andn(    I5, I6, I7 );
309  andn(    I6, -1, I7 );
310  andncc(  I5, I6, I7 );
311  andncc(  I7, -1, I6 );
312  or3(     I5, I6, I7 );
313  or3(     I7, -1, I6 );
314  orcc(    I5, I6, I7 );
315  orcc(    I7, -1, I6 );
316  orn(     I5, I6, I7 );
317  orn(     I7, -1, I6 );
318  orncc(   I5, I6, I7 );
319  orncc(   I7, -1, I6 );
320  xor3(    I5, I6, I7 );
321  xor3(    I7, -1, I6 );
322  xorcc(   I5, I6, I7 );
323  xorcc(   I7, -1, I6 );
324  xnor(    I5, I6, I7 );
325  xnor(    I7, -1, I6 );
326  xnorcc(  I5, I6, I7 );
327  xnorcc(  I7, -1, I6 );
328
329  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
330  membar( StoreStore );
331  membar( LoadStore );
332  membar( StoreLoad );
333  membar( LoadLoad );
334  membar( Sync );
335  membar( MemIssue );
336  membar( Lookaside );
337
338  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
339  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
340
341  movcc( overflowClear,  false, icc, I6, L4 );
342  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
343
344  movr( rc_nz, I5, I6, I7 );
345  movr( rc_gz, L1, -1,  L2 );
346
347  mulx(  I5, I6, I7 );
348  mulx(  I7, -1, I6 );
349  sdivx( I5, I6, I7 );
350  sdivx( I7, -1, I6 );
351  udivx( I5, I6, I7 );
352  udivx( I7, -1, I6 );
353
354  umul(   I5, I6, I7 );
355  umul(   I7, -1, I6 );
356  smul(   I5, I6, I7 );
357  smul(   I7, -1, I6 );
358  umulcc( I5, I6, I7 );
359  umulcc( I7, -1, I6 );
360  smulcc( I5, I6, I7 );
361  smulcc( I7, -1, I6 );
362
363  mulscc(   I5, I6, I7 );
364  mulscc(   I7, -1, I6 );
365
366  nop();
367
368
369  popc( G0,  G1);
370  popc( -1, G2);
371
372  prefetch(   L1, L2,    severalReads );
373  prefetch(   L3, -1,    oneRead );
374  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
375  prefetcha(  G2, -1,    oneWrite );
376
377  rett( I7, I7);
378  delayed()->nop();
379  rett( G0, -1, relocInfo::none);
380  delayed()->nop();
381
382  save(    I5, I6, I7 );
383  save(    I7, -1, I6 );
384  restore( I5, I6, I7 );
385  restore( I7, -1, I6 );
386
387  saved();
388  restored();
389
390  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
391
392  sll(  I5, I6, I7 );
393  sll(  I7, 31, I6 );
394  srl(  I5, I6, I7 );
395  srl(  I7,  0, I6 );
396  sra(  I5, I6, I7 );
397  sra(  I7, 30, I6 );
398  sllx( I5, I6, I7 );
399  sllx( I7, 63, I6 );
400  srlx( I5, I6, I7 );
401  srlx( I7,  0, I6 );
402  srax( I5, I6, I7 );
403  srax( I7, 62, I6 );
404
405  sir( -1 );
406
407  stbar();
408
409  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
410  stf(    FloatRegisterImpl::S, F18, I3, -1 );
411
412  stfsr(  L1, L2 );
413  stfsr(  I7, -1 );
414  stxfsr( I6, I5 );
415  stxfsr( L4, -1 );
416
417  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
418  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
419
420  stb(  L5, O2, I7 );
421  stb(  I7, I6, -1 );
422  sth(  L5, O2, I7 );
423  sth(  I7, I6, -1 );
424  stw(  L5, O2, I7 );
425  stw(  I7, I6, -1 );
426  stx(  L5, O2, I7 );
427  stx(  I7, I6, -1 );
428  std(  L5, O2, I7 );
429  std(  I7, I6, -1 );
430
431  stba(  L5, O2, I7, 8 );
432  stba(  I7, I6, -1    );
433  stha(  L5, O2, I7, 9 );
434  stha(  I7, I6, -1    );
435  stwa(  L5, O2, I7, 0 );
436  stwa(  I7, I6, -1    );
437  stxa(  L5, O2, I7, 11 );
438  stxa(  I7, I6, -1     );
439  stda(  L5, O2, I7, 12 );
440  stda(  I7, I6, -1     );
441
442  sub(    I5, I6, I7 );
443  sub(    I7, -1, I6 );
444  subcc(  I5, I6, I7 );
445  subcc(  I7, -1, I6 );
446  subc(   I5, I6, I7 );
447  subc(   I7, -1, I6 );
448  subccc( I5, I6, I7 );
449  subccc( I7, -1, I6 );
450
451  swap( I5, I6, I7 );
452  swap( I7, -1, I6 );
453
454  swapa(   G0, G1, 13, G2 );
455  swapa(   I7, -1,     I6 );
456
457  taddcc(    I5, I6, I7 );
458  taddcc(    I7, -1, I6 );
459  taddcctv(  I5, I6, I7 );
460  taddcctv(  I7, -1, I6 );
461
462  tsubcc(    I5, I6, I7 );
463  tsubcc(    I7, -1, I6 );
464  tsubcctv(  I5, I6, I7 );
465  tsubcctv(  I7, -1, I6 );
466
467  trap( overflowClear, xcc, G0, G1 );
468  trap( lessEqual,     icc, I7, 17 );
469
470  bind(lbl2);
471  bind(lbl3);
472
473  code()->decode();
474}
475
476// Generate a bunch 'o stuff unique to V8
477void Assembler::test_v8_onlys() {
478  Label lbl1;
479
480  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
481  delayed()->nop();
482  cb( cp_never,    true, lbl1);
483  delayed()->nop();
484
485  cpop1(1, 2, 3, 4);
486  cpop2(5, 6, 7, 8);
487
488  ldc( I0, I1, 31);
489  ldc( I2, -1,  0);
490
491  lddc( I4, I4, 30);
492  lddc( I6,  0, 1 );
493
494  ldcsr( L0, L1, 0);
495  ldcsr( L1, (1 << 12) - 1, 17 );
496
497  stc( 31, L4, L5);
498  stc( 30, L6, -(1 << 12) );
499
500  stdc( 0, L7, G0);
501  stdc( 1, G1, 0 );
502
503  stcsr( 16, G2, G3);
504  stcsr( 17, G4, 1 );
505
506  stdcq( 4, G5, G6);
507  stdcq( 5, G7, -1 );
508
509  bind(lbl1);
510
511  code()->decode();
512}
513#endif
514
515// Implementation of MacroAssembler
516
517void MacroAssembler::null_check(Register reg, int offset) {
518  if (needs_explicit_null_check((intptr_t)offset)) {
519    // provoke OS NULL exception if reg = NULL by
520    // accessing M[reg] w/o changing any registers
521    ld_ptr(reg, 0, G0);
522  }
523  else {
524    // nothing to do, (later) access of M[reg + offset]
525    // will provoke OS NULL exception if reg = NULL
526  }
527}
528
529// Ring buffer jumps
530
531#ifndef PRODUCT
532void MacroAssembler::ret(  bool trace )   { if (trace) {
533                                                    mov(I7, O7); // traceable register
534                                                    JMP(O7, 2 * BytesPerInstWord);
535                                                  } else {
536                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
537                                                  }
538                                                }
539
540void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
541                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
542#endif /* PRODUCT */
543
544
545void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
546  assert_not_delayed();
547  // This can only be traceable if r1 & r2 are visible after a window save
548  if (TraceJumps) {
549#ifndef PRODUCT
550    save_frame(0);
551    verify_thread();
552    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
553    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
554    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
555    add(O2, O1, O1);
556
557    add(r1->after_save(), r2->after_save(), O2);
558    set((intptr_t)file, O3);
559    set(line, O4);
560    Label L;
561    // get nearby pc, store jmp target
562    call(L, relocInfo::none);  // No relocation for call to pc+0x8
563    delayed()->st(O2, O1, 0);
564    bind(L);
565
566    // store nearby pc
567    st(O7, O1, sizeof(intptr_t));
568    // store file
569    st(O3, O1, 2*sizeof(intptr_t));
570    // store line
571    st(O4, O1, 3*sizeof(intptr_t));
572    add(O0, 1, O0);
573    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
574    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
575    restore();
576#endif /* PRODUCT */
577  }
578  jmpl(r1, r2, G0);
579}
580void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
581  assert_not_delayed();
582  // This can only be traceable if r1 is visible after a window save
583  if (TraceJumps) {
584#ifndef PRODUCT
585    save_frame(0);
586    verify_thread();
587    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
588    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
589    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
590    add(O2, O1, O1);
591
592    add(r1->after_save(), offset, O2);
593    set((intptr_t)file, O3);
594    set(line, O4);
595    Label L;
596    // get nearby pc, store jmp target
597    call(L, relocInfo::none);  // No relocation for call to pc+0x8
598    delayed()->st(O2, O1, 0);
599    bind(L);
600
601    // store nearby pc
602    st(O7, O1, sizeof(intptr_t));
603    // store file
604    st(O3, O1, 2*sizeof(intptr_t));
605    // store line
606    st(O4, O1, 3*sizeof(intptr_t));
607    add(O0, 1, O0);
608    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
609    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
610    restore();
611#endif /* PRODUCT */
612  }
613  jmp(r1, offset);
614}
615
616// This code sequence is relocatable to any address, even on LP64.
617void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
618  assert_not_delayed();
619  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
620  // variable length instruction streams.
621  sethi(a, /*ForceRelocatable=*/ true);
622  if (TraceJumps) {
623#ifndef PRODUCT
624    // Must do the add here so relocation can find the remainder of the
625    // value to be relocated.
626    add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
627    save_frame(0);
628    verify_thread();
629    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
630    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
631    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
632    add(O2, O1, O1);
633
634    set((intptr_t)file, O3);
635    set(line, O4);
636    Label L;
637
638    // get nearby pc, store jmp target
639    call(L, relocInfo::none);  // No relocation for call to pc+0x8
640    delayed()->st(a.base()->after_save(), O1, 0);
641    bind(L);
642
643    // store nearby pc
644    st(O7, O1, sizeof(intptr_t));
645    // store file
646    st(O3, O1, 2*sizeof(intptr_t));
647    // store line
648    st(O4, O1, 3*sizeof(intptr_t));
649    add(O0, 1, O0);
650    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
651    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
652    restore();
653    jmpl(a.base(), G0, d);
654#else
655    jmpl(a, d, offset);
656#endif /* PRODUCT */
657  } else {
658    jmpl(a, d, offset);
659  }
660}
661
662void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
663  jumpl( a, G0, offset, file, line );
664}
665
666
667// Convert to C varargs format
668void MacroAssembler::set_varargs( Argument inArg, Register d ) {
669  // spill register-resident args to their memory slots
670  // (SPARC calling convention requires callers to have already preallocated these)
671  // Note that the inArg might in fact be an outgoing argument,
672  // if a leaf routine or stub does some tricky argument shuffling.
673  // This routine must work even though one of the saved arguments
674  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
675  for (Argument savePtr = inArg;
676       savePtr.is_register();
677       savePtr = savePtr.successor()) {
678    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
679  }
680  // return the address of the first memory slot
681  add(inArg.address_in_frame(), d);
682}
683
684// Conditional breakpoint (for assertion checks in assembly code)
685void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
686  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
687}
688
689// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
690void MacroAssembler::breakpoint_trap() {
691  trap(ST_RESERVED_FOR_USER_0);
692}
693
694// flush windows (except current) using flushw instruction if avail.
695void MacroAssembler::flush_windows() {
696  if (VM_Version::v9_instructions_work())  flushw();
697  else                                     flush_windows_trap();
698}
699
700// Write serialization page so VM thread can do a pseudo remote membar
701// We use the current thread pointer to calculate a thread specific
702// offset to write to within the page. This minimizes bus traffic
703// due to cache line collision.
704void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
705  Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
706  srl(thread, os::get_serialize_page_shift_count(), tmp2);
707  if (Assembler::is_simm13(os::vm_page_size())) {
708    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
709  }
710  else {
711    set((os::vm_page_size() - sizeof(int)), tmp1);
712    and3(tmp2, tmp1, tmp2);
713  }
714  load_address(mem_serialize_page);
715  st(G0, tmp1, tmp2);
716}
717
718
719
720void MacroAssembler::enter() {
721  Unimplemented();
722}
723
724void MacroAssembler::leave() {
725  Unimplemented();
726}
727
728void MacroAssembler::mult(Register s1, Register s2, Register d) {
729  if(VM_Version::v9_instructions_work()) {
730    mulx (s1, s2, d);
731  } else {
732    smul (s1, s2, d);
733  }
734}
735
736void MacroAssembler::mult(Register s1, int simm13a, Register d) {
737  if(VM_Version::v9_instructions_work()) {
738    mulx (s1, simm13a, d);
739  } else {
740    smul (s1, simm13a, d);
741  }
742}
743
744
745#ifdef ASSERT
746void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
747  const Register s1 = G3_scratch;
748  const Register s2 = G4_scratch;
749  Label get_psr_test;
750  // Get the condition codes the V8 way.
751  read_ccr_trap(s1);
752  mov(ccr_save, s2);
753  // This is a test of V8 which has icc but not xcc
754  // so mask off the xcc bits
755  and3(s2, 0xf, s2);
756  // Compare condition codes from the V8 and V9 ways.
757  subcc(s2, s1, G0);
758  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
759  delayed()->breakpoint_trap();
760  bind(get_psr_test);
761}
762
763void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
764  const Register s1 = G3_scratch;
765  const Register s2 = G4_scratch;
766  Label set_psr_test;
767  // Write out the saved condition codes the V8 way
768  write_ccr_trap(ccr_save, s1, s2);
769  // Read back the condition codes using the V9 instruction
770  rdccr(s1);
771  mov(ccr_save, s2);
772  // This is a test of V8 which has icc but not xcc
773  // so mask off the xcc bits
774  and3(s2, 0xf, s2);
775  and3(s1, 0xf, s1);
776  // Compare the V8 way with the V9 way.
777  subcc(s2, s1, G0);
778  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
779  delayed()->breakpoint_trap();
780  bind(set_psr_test);
781}
782#else
783#define read_ccr_v8_assert(x)
784#define write_ccr_v8_assert(x)
785#endif // ASSERT
786
787void MacroAssembler::read_ccr(Register ccr_save) {
788  if (VM_Version::v9_instructions_work()) {
789    rdccr(ccr_save);
790    // Test code sequence used on V8.  Do not move above rdccr.
791    read_ccr_v8_assert(ccr_save);
792  } else {
793    read_ccr_trap(ccr_save);
794  }
795}
796
797void MacroAssembler::write_ccr(Register ccr_save) {
798  if (VM_Version::v9_instructions_work()) {
799    // Test code sequence used on V8.  Do not move below wrccr.
800    write_ccr_v8_assert(ccr_save);
801    wrccr(ccr_save);
802  } else {
803    const Register temp_reg1 = G3_scratch;
804    const Register temp_reg2 = G4_scratch;
805    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
806  }
807}
808
809
810// Calls to C land
811
812#ifdef ASSERT
813// a hook for debugging
814static Thread* reinitialize_thread() {
815  return ThreadLocalStorage::thread();
816}
817#else
818#define reinitialize_thread ThreadLocalStorage::thread
819#endif
820
821#ifdef ASSERT
822address last_get_thread = NULL;
823#endif
824
825// call this when G2_thread is not known to be valid
826void MacroAssembler::get_thread() {
827  save_frame(0);                // to avoid clobbering O0
828  mov(G1, L0);                  // avoid clobbering G1
829  mov(G5_method, L1);           // avoid clobbering G5
830  mov(G3, L2);                  // avoid clobbering G3 also
831  mov(G4, L5);                  // avoid clobbering G4
832#ifdef ASSERT
833  Address last_get_thread_addr(L3, (address)&last_get_thread);
834  sethi(last_get_thread_addr);
835  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
836  st_ptr(L4, last_get_thread_addr);
837#endif
838  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
839  delayed()->nop();
840  mov(L0, G1);
841  mov(L1, G5_method);
842  mov(L2, G3);
843  mov(L5, G4);
844  restore(O0, 0, G2_thread);
845}
846
847static Thread* verify_thread_subroutine(Thread* gthread_value) {
848  Thread* correct_value = ThreadLocalStorage::thread();
849  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
850  return correct_value;
851}
852
853void MacroAssembler::verify_thread() {
854  if (VerifyThread) {
855    // NOTE: this chops off the heads of the 64-bit O registers.
856#ifdef CC_INTERP
857    save_frame(0);
858#else
859    // make sure G2_thread contains the right value
860    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
861    mov(G1, L1);                // avoid clobbering G1
862    // G2 saved below
863    mov(G3, L3);                // avoid clobbering G3
864    mov(G4, L4);                // avoid clobbering G4
865    mov(G5_method, L5);         // avoid clobbering G5_method
866#endif /* CC_INTERP */
867#if defined(COMPILER2) && !defined(_LP64)
868    // Save & restore possible 64-bit Long arguments in G-regs
869    srlx(G1,32,L0);
870    srlx(G4,32,L6);
871#endif
872    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
873    delayed()->mov(G2_thread, O0);
874
875    mov(L1, G1);                // Restore G1
876    // G2 restored below
877    mov(L3, G3);                // restore G3
878    mov(L4, G4);                // restore G4
879    mov(L5, G5_method);         // restore G5_method
880#if defined(COMPILER2) && !defined(_LP64)
881    // Save & restore possible 64-bit Long arguments in G-regs
882    sllx(L0,32,G2);             // Move old high G1 bits high in G2
883    sllx(G1, 0,G1);             // Clear current high G1 bits
884    or3 (G1,G2,G1);             // Recover 64-bit G1
885    sllx(L6,32,G2);             // Move old high G4 bits high in G2
886    sllx(G4, 0,G4);             // Clear current high G4 bits
887    or3 (G4,G2,G4);             // Recover 64-bit G4
888#endif
889    restore(O0, 0, G2_thread);
890  }
891}
892
893
894void MacroAssembler::save_thread(const Register thread_cache) {
895  verify_thread();
896  if (thread_cache->is_valid()) {
897    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
898    mov(G2_thread, thread_cache);
899  }
900  if (VerifyThread) {
901    // smash G2_thread, as if the VM were about to anyway
902    set(0x67676767, G2_thread);
903  }
904}
905
906
907void MacroAssembler::restore_thread(const Register thread_cache) {
908  if (thread_cache->is_valid()) {
909    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
910    mov(thread_cache, G2_thread);
911    verify_thread();
912  } else {
913    // do it the slow way
914    get_thread();
915  }
916}
917
918
919// %%% maybe get rid of [re]set_last_Java_frame
920void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
921  assert_not_delayed();
922  Address flags(G2_thread,
923                0,
924                in_bytes(JavaThread::frame_anchor_offset()) +
925                         in_bytes(JavaFrameAnchor::flags_offset()));
926  Address pc_addr(G2_thread,
927                  0,
928                  in_bytes(JavaThread::last_Java_pc_offset()));
929
930  // Always set last_Java_pc and flags first because once last_Java_sp is visible
931  // has_last_Java_frame is true and users will look at the rest of the fields.
932  // (Note: flags should always be zero before we get here so doesn't need to be set.)
933
934#ifdef ASSERT
935  // Verify that flags was zeroed on return to Java
936  Label PcOk;
937  save_frame(0);                // to avoid clobbering O0
938  ld_ptr(pc_addr, L0);
939  tst(L0);
940#ifdef _LP64
941  brx(Assembler::zero, false, Assembler::pt, PcOk);
942#else
943  br(Assembler::zero, false, Assembler::pt, PcOk);
944#endif // _LP64
945  delayed() -> nop();
946  stop("last_Java_pc not zeroed before leaving Java");
947  bind(PcOk);
948
949  // Verify that flags was zeroed on return to Java
950  Label FlagsOk;
951  ld(flags, L0);
952  tst(L0);
953  br(Assembler::zero, false, Assembler::pt, FlagsOk);
954  delayed() -> restore();
955  stop("flags not zeroed before leaving Java");
956  bind(FlagsOk);
957#endif /* ASSERT */
958  //
959  // When returning from calling out from Java mode the frame anchor's last_Java_pc
960  // will always be set to NULL. It is set here so that if we are doing a call to
961  // native (not VM) that we capture the known pc and don't have to rely on the
962  // native call having a standard frame linkage where we can find the pc.
963
964  if (last_Java_pc->is_valid()) {
965    st_ptr(last_Java_pc, pc_addr);
966  }
967
968#ifdef _LP64
969#ifdef ASSERT
970  // Make sure that we have an odd stack
971  Label StackOk;
972  andcc(last_java_sp, 0x01, G0);
973  br(Assembler::notZero, false, Assembler::pt, StackOk);
974  delayed() -> nop();
975  stop("Stack Not Biased in set_last_Java_frame");
976  bind(StackOk);
977#endif // ASSERT
978  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
979  add( last_java_sp, STACK_BIAS, G4_scratch );
980  st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
981#else
982  st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
983#endif // _LP64
984}
985
986void MacroAssembler::reset_last_Java_frame(void) {
987  assert_not_delayed();
988
989  Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
990  Address pc_addr(G2_thread,
991                  0,
992                  in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
993  Address flags(G2_thread,
994                0,
995                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
996
997#ifdef ASSERT
998  // check that it WAS previously set
999#ifdef CC_INTERP
1000    save_frame(0);
1001#else
1002    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1003#endif /* CC_INTERP */
1004    ld_ptr(sp_addr, L0);
1005    tst(L0);
1006    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1007    restore();
1008#endif // ASSERT
1009
1010  st_ptr(G0, sp_addr);
1011  // Always return last_Java_pc to zero
1012  st_ptr(G0, pc_addr);
1013  // Always null flags after return to Java
1014  st(G0, flags);
1015}
1016
1017
1018void MacroAssembler::call_VM_base(
1019  Register        oop_result,
1020  Register        thread_cache,
1021  Register        last_java_sp,
1022  address         entry_point,
1023  int             number_of_arguments,
1024  bool            check_exceptions)
1025{
1026  assert_not_delayed();
1027
1028  // determine last_java_sp register
1029  if (!last_java_sp->is_valid()) {
1030    last_java_sp = SP;
1031  }
1032  // debugging support
1033  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1034
1035  // 64-bit last_java_sp is biased!
1036  set_last_Java_frame(last_java_sp, noreg);
1037  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1038  save_thread(thread_cache);
1039  // do the call
1040  call(entry_point, relocInfo::runtime_call_type);
1041  if (!VerifyThread)
1042    delayed()->mov(G2_thread, O0);  // pass thread as first argument
1043  else
1044    delayed()->nop();             // (thread already passed)
1045  restore_thread(thread_cache);
1046  reset_last_Java_frame();
1047
1048  // check for pending exceptions. use Gtemp as scratch register.
1049  if (check_exceptions) {
1050    check_and_forward_exception(Gtemp);
1051  }
1052
1053  // get oop result if there is one and reset the value in the thread
1054  if (oop_result->is_valid()) {
1055    get_vm_result(oop_result);
1056  }
1057}
1058
1059void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1060{
1061  Label L;
1062
1063  check_and_handle_popframe(scratch_reg);
1064  check_and_handle_earlyret(scratch_reg);
1065
1066  Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1067  ld_ptr(exception_addr, scratch_reg);
1068  br_null(scratch_reg,false,pt,L);
1069  delayed()->nop();
1070  // we use O7 linkage so that forward_exception_entry has the issuing PC
1071  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1072  delayed()->nop();
1073  bind(L);
1074}
1075
1076
1077void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1078}
1079
1080
1081void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1082}
1083
1084
1085void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1086  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1087}
1088
1089
1090void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1091  // O0 is reserved for the thread
1092  mov(arg_1, O1);
1093  call_VM(oop_result, entry_point, 1, check_exceptions);
1094}
1095
1096
1097void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1098  // O0 is reserved for the thread
1099  mov(arg_1, O1);
1100  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1101  call_VM(oop_result, entry_point, 2, check_exceptions);
1102}
1103
1104
1105void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1106  // O0 is reserved for the thread
1107  mov(arg_1, O1);
1108  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1109  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1110  call_VM(oop_result, entry_point, 3, check_exceptions);
1111}
1112
1113
1114
1115// Note: The following call_VM overloadings are useful when a "save"
1116// has already been performed by a stub, and the last Java frame is
1117// the previous one.  In that case, last_java_sp must be passed as FP
1118// instead of SP.
1119
1120
1121void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1122  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1123}
1124
1125
1126void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1127  // O0 is reserved for the thread
1128  mov(arg_1, O1);
1129  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1130}
1131
1132
1133void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1134  // O0 is reserved for the thread
1135  mov(arg_1, O1);
1136  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1137  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1138}
1139
1140
1141void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1142  // O0 is reserved for the thread
1143  mov(arg_1, O1);
1144  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1145  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1146  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1147}
1148
1149
1150
1151void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1152  assert_not_delayed();
1153  save_thread(thread_cache);
1154  // do the call
1155  call(entry_point, relocInfo::runtime_call_type);
1156  delayed()->nop();
1157  restore_thread(thread_cache);
1158}
1159
1160
1161void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1162  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1163}
1164
1165
1166void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1167  mov(arg_1, O0);
1168  call_VM_leaf(thread_cache, entry_point, 1);
1169}
1170
1171
1172void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1173  mov(arg_1, O0);
1174  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1175  call_VM_leaf(thread_cache, entry_point, 2);
1176}
1177
1178
1179void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1180  mov(arg_1, O0);
1181  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1182  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1183  call_VM_leaf(thread_cache, entry_point, 3);
1184}
1185
1186
1187void MacroAssembler::get_vm_result(Register oop_result) {
1188  verify_thread();
1189  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1190  ld_ptr(    vm_result_addr, oop_result);
1191  st_ptr(G0, vm_result_addr);
1192  verify_oop(oop_result);
1193}
1194
1195
1196void MacroAssembler::get_vm_result_2(Register oop_result) {
1197  verify_thread();
1198  Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
1199  ld_ptr(vm_result_addr_2, oop_result);
1200  st_ptr(G0, vm_result_addr_2);
1201  verify_oop(oop_result);
1202}
1203
1204
1205// We require that C code which does not return a value in vm_result will
1206// leave it undisturbed.
1207void MacroAssembler::set_vm_result(Register oop_result) {
1208  verify_thread();
1209  Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1210  verify_oop(oop_result);
1211
1212# ifdef ASSERT
1213    // Check that we are not overwriting any other oop.
1214#ifdef CC_INTERP
1215    save_frame(0);
1216#else
1217    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1218#endif /* CC_INTERP */
1219    ld_ptr(vm_result_addr, L0);
1220    tst(L0);
1221    restore();
1222    breakpoint_trap(notZero, Assembler::ptr_cc);
1223    // }
1224# endif
1225
1226  st_ptr(oop_result, vm_result_addr);
1227}
1228
1229
1230void MacroAssembler::card_table_write(jbyte* byte_map_base,
1231                                      Register tmp, Register obj) {
1232#ifdef _LP64
1233  srlx(obj, CardTableModRefBS::card_shift, obj);
1234#else
1235  srl(obj, CardTableModRefBS::card_shift, obj);
1236#endif
1237  assert( tmp != obj, "need separate temp reg");
1238  Address rs(tmp, (address)byte_map_base);
1239  load_address(rs);
1240  stb(G0, rs.base(), obj);
1241}
1242
1243// %%% Note:  The following six instructions have been moved,
1244//            unchanged, from assembler_sparc.inline.hpp.
1245//            They will be refactored at a later date.
1246
1247void MacroAssembler::sethi(intptr_t imm22a,
1248                            Register d,
1249                            bool ForceRelocatable,
1250                            RelocationHolder const& rspec) {
1251  Address adr( d, (address)imm22a, rspec );
1252  MacroAssembler::sethi( adr, ForceRelocatable );
1253}
1254
1255
1256void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
1257  address save_pc;
1258  int shiftcnt;
1259  // if addr of local, do not need to load it
1260  assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
1261#ifdef _LP64
1262# ifdef CHECK_DELAY
1263  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1264# endif
1265  v9_dep();
1266//  ForceRelocatable = 1;
1267  save_pc = pc();
1268  if (a.hi32() == 0 && a.low32() >= 0) {
1269    Assembler::sethi(a.low32(), a.base(), a.rspec());
1270  }
1271  else if (a.hi32() == -1) {
1272    Assembler::sethi(~a.low32(), a.base(), a.rspec());
1273    xor3(a.base(), ~low10(~0), a.base());
1274  }
1275  else {
1276    Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
1277    if ( a.hi32() & 0x3ff )                     // Any bits?
1278      or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
1279    if ( a.low32() & 0xFFFFFC00 ) {             // done?
1280      if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
1281        sllx(a.base(), 12, a.base());           // Make room for next 12 bits
1282        or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
1283        shiftcnt = 0;                           // We already shifted
1284      }
1285      else
1286        shiftcnt = 12;
1287      if( (a.low32() >> 10) & 0x3ff ) {
1288        sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
1289        or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
1290        shiftcnt = 0;
1291      }
1292      else
1293        shiftcnt = 10;
1294      sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
1295    }
1296    else
1297      sllx( a.base(), 32, a.base() );
1298  }
1299  // Pad out the instruction sequence so it can be
1300  // patched later.
1301  if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
1302                            a.rtype() != relocInfo::runtime_call_type) ) {
1303    while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
1304      nop();
1305  }
1306#else
1307  Assembler::sethi(a.hi(), a.base(), a.rspec());
1308#endif
1309
1310}
1311
1312int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1313#ifdef _LP64
1314  if (worst_case) return 7;
1315  intptr_t iaddr = (intptr_t)a;
1316  int hi32 = (int)(iaddr >> 32);
1317  int lo32 = (int)(iaddr);
1318  int inst_count;
1319  if (hi32 == 0 && lo32 >= 0)
1320    inst_count = 1;
1321  else if (hi32 == -1)
1322    inst_count = 2;
1323  else {
1324    inst_count = 2;
1325    if ( hi32 & 0x3ff )
1326      inst_count++;
1327    if ( lo32 & 0xFFFFFC00 ) {
1328      if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1329      if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1330    }
1331  }
1332  return BytesPerInstWord * inst_count;
1333#else
1334  return BytesPerInstWord;
1335#endif
1336}
1337
1338int MacroAssembler::worst_case_size_of_set() {
1339  return size_of_sethi(NULL, true) + 1;
1340}
1341
1342void MacroAssembler::set(intptr_t value, Register d,
1343                         RelocationHolder const& rspec) {
1344  Address val( d, (address)value, rspec);
1345
1346  if ( rspec.type() == relocInfo::none ) {
1347    // can optimize
1348    if (-4096 <= value  &&  value <= 4095) {
1349      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1350      return;
1351    }
1352    if (inv_hi22(hi22(value)) == value) {
1353      sethi(val);
1354      return;
1355    }
1356  }
1357  assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1358  sethi( val );
1359  if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
1360    add( d, value &  0x3ff, d, rspec);
1361  }
1362}
1363
1364void MacroAssembler::setsw(int value, Register d,
1365                           RelocationHolder const& rspec) {
1366  Address val( d, (address)value, rspec);
1367  if ( rspec.type() == relocInfo::none ) {
1368    // can optimize
1369    if (-4096 <= value  &&  value <= 4095) {
1370      or3(G0, value, d);
1371      return;
1372    }
1373    if (inv_hi22(hi22(value)) == value) {
1374      sethi( val );
1375#ifndef _LP64
1376      if ( value < 0 ) {
1377        assert_not_delayed();
1378        sra (d, G0, d);
1379      }
1380#endif
1381      return;
1382    }
1383  }
1384  assert_not_delayed();
1385  sethi( val );
1386  add( d, value &  0x3ff, d, rspec);
1387
1388  // (A negative value could be loaded in 2 insns with sethi/xor,
1389  // but it would take a more complex relocation.)
1390#ifndef _LP64
1391  if ( value < 0)
1392    sra(d, G0, d);
1393#endif
1394}
1395
1396// %%% End of moved six set instructions.
1397
1398
1399void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1400  assert_not_delayed();
1401  v9_dep();
1402
1403  int hi = (int)(value >> 32);
1404  int lo = (int)(value & ~0);
1405  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1406  if (Assembler::is_simm13(lo) && value == lo) {
1407    or3(G0, lo, d);
1408  } else if (hi == 0) {
1409    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1410    if (low10(lo) != 0)
1411      or3(d, low10(lo), d);
1412  }
1413  else if (hi == -1) {
1414    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1415    xor3(d, low10(lo) ^ ~low10(~0), d);
1416  }
1417  else if (lo == 0) {
1418    if (Assembler::is_simm13(hi)) {
1419      or3(G0, hi, d);
1420    } else {
1421      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1422      if (low10(hi) != 0)
1423        or3(d, low10(hi), d);
1424    }
1425    sllx(d, 32, d);
1426  }
1427  else {
1428    Assembler::sethi(hi, tmp);
1429    Assembler::sethi(lo,   d); // macro assembler version sign-extends
1430    if (low10(hi) != 0)
1431      or3 (tmp, low10(hi), tmp);
1432    if (low10(lo) != 0)
1433      or3 (  d, low10(lo),   d);
1434    sllx(tmp, 32, tmp);
1435    or3 (d, tmp, d);
1436  }
1437}
1438
1439// compute size in bytes of sparc frame, given
1440// number of extraWords
1441int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1442
1443  int nWords = frame::memory_parameter_word_sp_offset;
1444
1445  nWords += extraWords;
1446
1447  if (nWords & 1) ++nWords; // round up to double-word
1448
1449  return nWords * BytesPerWord;
1450}
1451
1452
1453// save_frame: given number of "extra" words in frame,
1454// issue approp. save instruction (p 200, v8 manual)
1455
1456void MacroAssembler::save_frame(int extraWords = 0) {
1457  int delta = -total_frame_size_in_bytes(extraWords);
1458  if (is_simm13(delta)) {
1459    save(SP, delta, SP);
1460  } else {
1461    set(delta, G3_scratch);
1462    save(SP, G3_scratch, SP);
1463  }
1464}
1465
1466
1467void MacroAssembler::save_frame_c1(int size_in_bytes) {
1468  if (is_simm13(-size_in_bytes)) {
1469    save(SP, -size_in_bytes, SP);
1470  } else {
1471    set(-size_in_bytes, G3_scratch);
1472    save(SP, G3_scratch, SP);
1473  }
1474}
1475
1476
1477void MacroAssembler::save_frame_and_mov(int extraWords,
1478                                        Register s1, Register d1,
1479                                        Register s2, Register d2) {
1480  assert_not_delayed();
1481
1482  // The trick here is to use precisely the same memory word
1483  // that trap handlers also use to save the register.
1484  // This word cannot be used for any other purpose, but
1485  // it works fine to save the register's value, whether or not
1486  // an interrupt flushes register windows at any given moment!
1487  Address s1_addr;
1488  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1489    s1_addr = s1->address_in_saved_window();
1490    st_ptr(s1, s1_addr);
1491  }
1492
1493  Address s2_addr;
1494  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1495    s2_addr = s2->address_in_saved_window();
1496    st_ptr(s2, s2_addr);
1497  }
1498
1499  save_frame(extraWords);
1500
1501  if (s1_addr.base() == SP) {
1502    ld_ptr(s1_addr.after_save(), d1);
1503  } else if (s1->is_valid()) {
1504    mov(s1->after_save(), d1);
1505  }
1506
1507  if (s2_addr.base() == SP) {
1508    ld_ptr(s2_addr.after_save(), d2);
1509  } else if (s2->is_valid()) {
1510    mov(s2->after_save(), d2);
1511  }
1512}
1513
1514
1515Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
1516  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1517  int oop_index = oop_recorder()->allocate_index(obj);
1518  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1519}
1520
1521
1522Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
1523  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1524  int oop_index = oop_recorder()->find_index(obj);
1525  return Address(d, address(obj), oop_Relocation::spec(oop_index));
1526}
1527
1528void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1529  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1530  int oop_index = oop_recorder()->find_index(obj);
1531  RelocationHolder rspec = oop_Relocation::spec(oop_index);
1532
1533  assert_not_delayed();
1534  // Relocation with special format (see relocInfo_sparc.hpp).
1535  relocate(rspec, 1);
1536  // Assembler::sethi(0x3fffff, d);
1537  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1538  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1539  add(d, 0x3ff, d);
1540
1541}
1542
1543
1544void MacroAssembler::align(int modulus) {
1545  while (offset() % modulus != 0) nop();
1546}
1547
1548
1549void MacroAssembler::safepoint() {
1550  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1551}
1552
1553
1554void RegistersForDebugging::print(outputStream* s) {
1555  int j;
1556  for ( j = 0;  j < 8;  ++j )
1557    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1558    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1559  s->cr();
1560
1561  for ( j = 0;  j < 8;  ++j )
1562    s->print_cr("l%d = 0x%.16lx", j, l[j]);
1563  s->cr();
1564
1565  for ( j = 0;  j < 8;  ++j )
1566    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1567    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1568  s->cr();
1569
1570  for ( j = 0;  j < 8;  ++j )
1571    s->print_cr("g%d = 0x%.16lx", j, g[j]);
1572  s->cr();
1573
1574  // print out floats with compression
1575  for (j = 0; j < 32; ) {
1576    jfloat val = f[j];
1577    int last = j;
1578    for ( ;  last+1 < 32;  ++last ) {
1579      char b1[1024], b2[1024];
1580      sprintf(b1, "%f", val);
1581      sprintf(b2, "%f", f[last+1]);
1582      if (strcmp(b1, b2))
1583        break;
1584    }
1585    s->print("f%d", j);
1586    if ( j != last )  s->print(" - f%d", last);
1587    s->print(" = %f", val);
1588    s->fill_to(25);
1589    s->print_cr(" (0x%x)", val);
1590    j = last + 1;
1591  }
1592  s->cr();
1593
1594  // and doubles (evens only)
1595  for (j = 0; j < 32; ) {
1596    jdouble val = d[j];
1597    int last = j;
1598    for ( ;  last+1 < 32;  ++last ) {
1599      char b1[1024], b2[1024];
1600      sprintf(b1, "%f", val);
1601      sprintf(b2, "%f", d[last+1]);
1602      if (strcmp(b1, b2))
1603        break;
1604    }
1605    s->print("d%d", 2 * j);
1606    if ( j != last )  s->print(" - d%d", last);
1607    s->print(" = %f", val);
1608    s->fill_to(30);
1609    s->print("(0x%x)", *(int*)&val);
1610    s->fill_to(42);
1611    s->print_cr("(0x%x)", *(1 + (int*)&val));
1612    j = last + 1;
1613  }
1614  s->cr();
1615}
1616
1617void RegistersForDebugging::save_registers(MacroAssembler* a) {
1618  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1619  a->flush_windows();
1620  int i;
1621  for (i = 0; i < 8; ++i) {
1622    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1623    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1624    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1625    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1626  }
1627  for (i = 0;  i < 32; ++i) {
1628    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1629  }
1630  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1631    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1632  }
1633}
1634
1635void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1636  for (int i = 1; i < 8;  ++i) {
1637    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1638  }
1639  for (int j = 0; j < 32; ++j) {
1640    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1641  }
1642  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1643    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1644  }
1645}
1646
1647
1648// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1649void MacroAssembler::push_fTOS() {
1650  // %%%%%% need to implement this
1651}
1652
1653// pops double TOS element from CPU stack and pushes on FPU stack
1654void MacroAssembler::pop_fTOS() {
1655  // %%%%%% need to implement this
1656}
1657
1658void MacroAssembler::empty_FPU_stack() {
1659  // %%%%%% need to implement this
1660}
1661
1662void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1663  // plausibility check for oops
1664  if (!VerifyOops) return;
1665
1666  if (reg == G0)  return;       // always NULL, which is always an oop
1667
1668  char buffer[64];
1669#ifdef COMPILER1
1670  if (CommentedAssembly) {
1671    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1672    block_comment(buffer);
1673  }
1674#endif
1675
1676  int len = strlen(file) + strlen(msg) + 1 + 4;
1677  sprintf(buffer, "%d", line);
1678  len += strlen(buffer);
1679  sprintf(buffer, " at offset %d ", offset());
1680  len += strlen(buffer);
1681  char * real_msg = new char[len];
1682  sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1683
1684  // Call indirectly to solve generation ordering problem
1685  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1686
1687  // Make some space on stack above the current register window.
1688  // Enough to hold 8 64-bit registers.
1689  add(SP,-8*8,SP);
1690
1691  // Save some 64-bit registers; a normal 'save' chops the heads off
1692  // of 64-bit longs in the 32-bit build.
1693  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1694  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1695  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1696  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1697
1698  set((intptr_t)real_msg, O1);
1699  // Load address to call to into O7
1700  load_ptr_contents(a, O7);
1701  // Register call to verify_oop_subroutine
1702  callr(O7, G0);
1703  delayed()->nop();
1704  // recover frame size
1705  add(SP, 8*8,SP);
1706}
1707
1708void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1709  // plausibility check for oops
1710  if (!VerifyOops) return;
1711
1712  char buffer[64];
1713  sprintf(buffer, "%d", line);
1714  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1715  sprintf(buffer, " at SP+%d ", addr.disp());
1716  len += strlen(buffer);
1717  char * real_msg = new char[len];
1718  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1719
1720  // Call indirectly to solve generation ordering problem
1721  Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1722
1723  // Make some space on stack above the current register window.
1724  // Enough to hold 8 64-bit registers.
1725  add(SP,-8*8,SP);
1726
1727  // Save some 64-bit registers; a normal 'save' chops the heads off
1728  // of 64-bit longs in the 32-bit build.
1729  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1730  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1731  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1732  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1733
1734  set((intptr_t)real_msg, O1);
1735  // Load address to call to into O7
1736  load_ptr_contents(a, O7);
1737  // Register call to verify_oop_subroutine
1738  callr(O7, G0);
1739  delayed()->nop();
1740  // recover frame size
1741  add(SP, 8*8,SP);
1742}
1743
1744// side-door communication with signalHandler in os_solaris.cpp
1745address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1746
1747// This macro is expanded just once; it creates shared code.  Contract:
1748// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1749// registers, including flags.  May not use a register 'save', as this blows
1750// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1751// call.
1752void MacroAssembler::verify_oop_subroutine() {
1753  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1754
1755  // Leaf call; no frame.
1756  Label succeed, fail, null_or_fail;
1757
1758  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1759  // O0 is now the oop to be checked.  O7 is the return address.
1760  Register O0_obj = O0;
1761
1762  // Save some more registers for temps.
1763  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1764  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1765  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1766  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1767
1768  // Save flags
1769  Register O5_save_flags = O5;
1770  rdccr( O5_save_flags );
1771
1772  { // count number of verifies
1773    Register O2_adr   = O2;
1774    Register O3_accum = O3;
1775    Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
1776    sethi(count_addr);
1777    ld(count_addr, O3_accum);
1778    inc(O3_accum);
1779    st(O3_accum, count_addr);
1780  }
1781
1782  Register O2_mask = O2;
1783  Register O3_bits = O3;
1784  Register O4_temp = O4;
1785
1786  // mark lower end of faulting range
1787  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1788  _verify_oop_implicit_branch[0] = pc();
1789
1790  // We can't check the mark oop because it could be in the process of
1791  // locking or unlocking while this is running.
1792  set(Universe::verify_oop_mask (), O2_mask);
1793  set(Universe::verify_oop_bits (), O3_bits);
1794
1795  // assert((obj & oop_mask) == oop_bits);
1796  and3(O0_obj, O2_mask, O4_temp);
1797  cmp(O4_temp, O3_bits);
1798  brx(notEqual, false, pn, null_or_fail);
1799  delayed()->nop();
1800
1801  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1802    // the null_or_fail case is useless; must test for null separately
1803    br_null(O0_obj, false, pn, succeed);
1804    delayed()->nop();
1805  }
1806
1807  // Check the klassOop of this object for being in the right area of memory.
1808  // Cannot do the load in the delay above slot in case O0 is null
1809  load_klass(O0_obj, O0_obj);
1810  // assert((klass & klass_mask) == klass_bits);
1811  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1812    set(Universe::verify_klass_mask(), O2_mask);
1813  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1814    set(Universe::verify_klass_bits(), O3_bits);
1815  and3(O0_obj, O2_mask, O4_temp);
1816  cmp(O4_temp, O3_bits);
1817  brx(notEqual, false, pn, fail);
1818  delayed()->nop();
1819  // Check the klass's klass
1820  load_klass(O0_obj, O0_obj);
1821  and3(O0_obj, O2_mask, O4_temp);
1822  cmp(O4_temp, O3_bits);
1823  brx(notEqual, false, pn, fail);
1824  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1825
1826  // mark upper end of faulting range
1827  _verify_oop_implicit_branch[1] = pc();
1828
1829  //-----------------------
1830  // all tests pass
1831  bind(succeed);
1832
1833  // Restore prior 64-bit registers
1834  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1835  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1836  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1837  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1838  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1839  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1840
1841  retl();                       // Leaf return; restore prior O7 in delay slot
1842  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1843
1844  //-----------------------
1845  bind(null_or_fail);           // nulls are less common but OK
1846  br_null(O0_obj, false, pt, succeed);
1847  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1848
1849  //-----------------------
1850  // report failure:
1851  bind(fail);
1852  _verify_oop_implicit_branch[2] = pc();
1853
1854  wrccr( O5_save_flags ); // Restore CCR's
1855
1856  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1857
1858  // stop_subroutine expects message pointer in I1.
1859  mov(I1, O1);
1860
1861  // Restore prior 64-bit registers
1862  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1863  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1864  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1865  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1866  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1867  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1868
1869  // factor long stop-sequence into subroutine to save space
1870  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1871
1872  // call indirectly to solve generation ordering problem
1873  Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1874  load_ptr_contents(a, O5);
1875  jmpl(O5, 0, O7);
1876  delayed()->nop();
1877}
1878
1879
1880void MacroAssembler::stop(const char* msg) {
1881  // save frame first to get O7 for return address
1882  // add one word to size in case struct is odd number of words long
1883  // It must be doubleword-aligned for storing doubles into it.
1884
1885    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1886
1887    // stop_subroutine expects message pointer in I1.
1888    set((intptr_t)msg, O1);
1889
1890    // factor long stop-sequence into subroutine to save space
1891    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1892
1893    // call indirectly to solve generation ordering problem
1894    Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1895    load_ptr_contents(a, O5);
1896    jmpl(O5, 0, O7);
1897    delayed()->nop();
1898
1899    breakpoint_trap();   // make stop actually stop rather than writing
1900                         // unnoticeable results in the output files.
1901
1902    // restore(); done in callee to save space!
1903}
1904
1905
1906void MacroAssembler::warn(const char* msg) {
1907  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1908  RegistersForDebugging::save_registers(this);
1909  mov(O0, L0);
1910  set((intptr_t)msg, O0);
1911  call( CAST_FROM_FN_PTR(address, warning) );
1912  delayed()->nop();
1913//  ret();
1914//  delayed()->restore();
1915  RegistersForDebugging::restore_registers(this, L0);
1916  restore();
1917}
1918
1919
1920void MacroAssembler::untested(const char* what) {
1921  // We must be able to turn interactive prompting off
1922  // in order to run automated test scripts on the VM
1923  // Use the flag ShowMessageBoxOnError
1924
1925  char* b = new char[1024];
1926  sprintf(b, "untested: %s", what);
1927
1928  if ( ShowMessageBoxOnError )   stop(b);
1929  else                           warn(b);
1930}
1931
1932
1933void MacroAssembler::stop_subroutine() {
1934  RegistersForDebugging::save_registers(this);
1935
1936  // for the sake of the debugger, stick a PC on the current frame
1937  // (this assumes that the caller has performed an extra "save")
1938  mov(I7, L7);
1939  add(O7, -7 * BytesPerInt, I7);
1940
1941  save_frame(); // one more save to free up another O7 register
1942  mov(I0, O1); // addr of reg save area
1943
1944  // We expect pointer to message in I1. Caller must set it up in O1
1945  mov(I1, O0); // get msg
1946  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1947  delayed()->nop();
1948
1949  restore();
1950
1951  RegistersForDebugging::restore_registers(this, O0);
1952
1953  save_frame(0);
1954  call(CAST_FROM_FN_PTR(address,breakpoint));
1955  delayed()->nop();
1956  restore();
1957
1958  mov(L7, I7);
1959  retl();
1960  delayed()->restore(); // see stop above
1961}
1962
1963
1964void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1965  if ( ShowMessageBoxOnError ) {
1966      JavaThreadState saved_state = JavaThread::current()->thread_state();
1967      JavaThread::current()->set_thread_state(_thread_in_vm);
1968      {
1969        // In order to get locks work, we need to fake a in_VM state
1970        ttyLocker ttyl;
1971        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1972        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1973          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1974        }
1975        if (os::message_box(msg, "Execution stopped, print registers?"))
1976          regs->print(::tty);
1977      }
1978      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1979  }
1980  else
1981     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1982  assert(false, "error");
1983}
1984
1985
1986#ifndef PRODUCT
1987void MacroAssembler::test() {
1988  ResourceMark rm;
1989
1990  CodeBuffer cb("test", 10000, 10000);
1991  MacroAssembler* a = new MacroAssembler(&cb);
1992  VM_Version::allow_all();
1993  a->test_v9();
1994  a->test_v8_onlys();
1995  VM_Version::revert();
1996
1997  StubRoutines::Sparc::test_stop_entry()();
1998}
1999#endif
2000
2001
2002void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
2003  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
2004  Label no_extras;
2005  br( negative, true, pt, no_extras ); // if neg, clear reg
2006  delayed()->set( 0, Rresult);         // annuled, so only if taken
2007  bind( no_extras );
2008}
2009
2010
2011void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2012#ifdef _LP64
2013  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2014#else
2015  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2016#endif
2017  bclr(1, Rresult);
2018  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2019}
2020
2021
2022void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2023  calc_frame_size(Rextra_words, Rresult);
2024  neg(Rresult);
2025  save(SP, Rresult, SP);
2026}
2027
2028
2029// ---------------------------------------------------------
2030Assembler::RCondition cond2rcond(Assembler::Condition c) {
2031  switch (c) {
2032    /*case zero: */
2033    case Assembler::equal:        return Assembler::rc_z;
2034    case Assembler::lessEqual:    return Assembler::rc_lez;
2035    case Assembler::less:         return Assembler::rc_lz;
2036    /*case notZero:*/
2037    case Assembler::notEqual:     return Assembler::rc_nz;
2038    case Assembler::greater:      return Assembler::rc_gz;
2039    case Assembler::greaterEqual: return Assembler::rc_gez;
2040  }
2041  ShouldNotReachHere();
2042  return Assembler::rc_z;
2043}
2044
2045// compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2046void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2047  tst(s1);
2048  br (c, a, p, L);
2049}
2050
2051
2052// Compares a pointer register with zero and branches on null.
2053// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2054void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2055  assert_not_delayed();
2056#ifdef _LP64
2057  bpr( rc_z, a, p, s1, L );
2058#else
2059  tst(s1);
2060  br ( zero, a, p, L );
2061#endif
2062}
2063
2064void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2065  assert_not_delayed();
2066#ifdef _LP64
2067  bpr( rc_nz, a, p, s1, L );
2068#else
2069  tst(s1);
2070  br ( notZero, a, p, L );
2071#endif
2072}
2073
2074void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2075                                     Register s1, address d,
2076                                     relocInfo::relocType rt ) {
2077  if (VM_Version::v9_instructions_work()) {
2078    bpr(rc, a, p, s1, d, rt);
2079  } else {
2080    tst(s1);
2081    br(reg_cond_to_cc_cond(rc), a, p, d, rt);
2082  }
2083}
2084
2085void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2086                                     Register s1, Label& L ) {
2087  if (VM_Version::v9_instructions_work()) {
2088    bpr(rc, a, p, s1, L);
2089  } else {
2090    tst(s1);
2091    br(reg_cond_to_cc_cond(rc), a, p, L);
2092  }
2093}
2094
2095
2096// instruction sequences factored across compiler & interpreter
2097
2098
2099void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2100                           Register Rb_hi, Register Rb_low,
2101                           Register Rresult) {
2102
2103  Label check_low_parts, done;
2104
2105  cmp(Ra_hi, Rb_hi );  // compare hi parts
2106  br(equal, true, pt, check_low_parts);
2107  delayed()->cmp(Ra_low, Rb_low); // test low parts
2108
2109  // And, with an unsigned comparison, it does not matter if the numbers
2110  // are negative or not.
2111  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2112  // The second one is bigger (unsignedly).
2113
2114  // Other notes:  The first move in each triplet can be unconditional
2115  // (and therefore probably prefetchable).
2116  // And the equals case for the high part does not need testing,
2117  // since that triplet is reached only after finding the high halves differ.
2118
2119  if (VM_Version::v9_instructions_work()) {
2120
2121                                    mov  (                     -1, Rresult);
2122    ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2123  }
2124  else {
2125    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2126    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2127  }
2128
2129  bind( check_low_parts );
2130
2131  if (VM_Version::v9_instructions_work()) {
2132    mov(                               -1, Rresult);
2133    movcc(equal,           false, icc,  0, Rresult);
2134    movcc(greaterUnsigned, false, icc,  1, Rresult);
2135  }
2136  else {
2137                                                    set(-1, Rresult);
2138    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2139    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2140  }
2141  bind( done );
2142}
2143
2144void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2145  subcc(  G0, Rlow, Rlow );
2146  subc(   G0, Rhi,  Rhi  );
2147}
2148
2149void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2150                           Register Rcount,
2151                           Register Rout_high, Register Rout_low,
2152                           Register Rtemp ) {
2153
2154
2155  Register Ralt_count = Rtemp;
2156  Register Rxfer_bits = Rtemp;
2157
2158  assert( Ralt_count != Rin_high
2159      &&  Ralt_count != Rin_low
2160      &&  Ralt_count != Rcount
2161      &&  Rxfer_bits != Rin_low
2162      &&  Rxfer_bits != Rin_high
2163      &&  Rxfer_bits != Rcount
2164      &&  Rxfer_bits != Rout_low
2165      &&  Rout_low   != Rin_high,
2166        "register alias checks");
2167
2168  Label big_shift, done;
2169
2170  // This code can be optimized to use the 64 bit shifts in V9.
2171  // Here we use the 32 bit shifts.
2172
2173  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2174  subcc(Rcount,         31,             Ralt_count);
2175  br(greater, true, pn, big_shift);
2176  delayed()->
2177  dec(Ralt_count);
2178
2179  // shift < 32 bits, Ralt_count = Rcount-31
2180
2181  // We get the transfer bits by shifting right by 32-count the low
2182  // register. This is done by shifting right by 31-count and then by one
2183  // more to take care of the special (rare) case where count is zero
2184  // (shifting by 32 would not work).
2185
2186  neg(  Ralt_count                                 );
2187
2188  // The order of the next two instructions is critical in the case where
2189  // Rin and Rout are the same and should not be reversed.
2190
2191  srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2192  if (Rcount != Rout_low) {
2193    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2194  }
2195  sll(  Rin_high,       Rcount,         Rout_high  );
2196  if (Rcount == Rout_low) {
2197    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2198  }
2199  srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2200  ba (false, done);
2201  delayed()->
2202  or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2203
2204  // shift >= 32 bits, Ralt_count = Rcount-32
2205  bind(big_shift);
2206  sll(  Rin_low,        Ralt_count,     Rout_high  );
2207  clr(  Rout_low                                   );
2208
2209  bind(done);
2210}
2211
2212
2213void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2214                           Register Rcount,
2215                           Register Rout_high, Register Rout_low,
2216                           Register Rtemp ) {
2217
2218  Register Ralt_count = Rtemp;
2219  Register Rxfer_bits = Rtemp;
2220
2221  assert( Ralt_count != Rin_high
2222      &&  Ralt_count != Rin_low
2223      &&  Ralt_count != Rcount
2224      &&  Rxfer_bits != Rin_low
2225      &&  Rxfer_bits != Rin_high
2226      &&  Rxfer_bits != Rcount
2227      &&  Rxfer_bits != Rout_high
2228      &&  Rout_high  != Rin_low,
2229        "register alias checks");
2230
2231  Label big_shift, done;
2232
2233  // This code can be optimized to use the 64 bit shifts in V9.
2234  // Here we use the 32 bit shifts.
2235
2236  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2237  subcc(Rcount,         31,             Ralt_count);
2238  br(greater, true, pn, big_shift);
2239  delayed()->dec(Ralt_count);
2240
2241  // shift < 32 bits, Ralt_count = Rcount-31
2242
2243  // We get the transfer bits by shifting left by 32-count the high
2244  // register. This is done by shifting left by 31-count and then by one
2245  // more to take care of the special (rare) case where count is zero
2246  // (shifting by 32 would not work).
2247
2248  neg(  Ralt_count                                  );
2249  if (Rcount != Rout_low) {
2250    srl(        Rin_low,        Rcount,         Rout_low    );
2251  }
2252
2253  // The order of the next two instructions is critical in the case where
2254  // Rin and Rout are the same and should not be reversed.
2255
2256  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2257  sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2258  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2259  if (Rcount == Rout_low) {
2260    srl(        Rin_low,        Rcount,         Rout_low    );
2261  }
2262  ba (false, done);
2263  delayed()->
2264  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2265
2266  // shift >= 32 bits, Ralt_count = Rcount-32
2267  bind(big_shift);
2268
2269  sra(  Rin_high,       Ralt_count,     Rout_low    );
2270  sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2271
2272  bind( done );
2273}
2274
2275
2276
2277void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2278                            Register Rcount,
2279                            Register Rout_high, Register Rout_low,
2280                            Register Rtemp ) {
2281
2282  Register Ralt_count = Rtemp;
2283  Register Rxfer_bits = Rtemp;
2284
2285  assert( Ralt_count != Rin_high
2286      &&  Ralt_count != Rin_low
2287      &&  Ralt_count != Rcount
2288      &&  Rxfer_bits != Rin_low
2289      &&  Rxfer_bits != Rin_high
2290      &&  Rxfer_bits != Rcount
2291      &&  Rxfer_bits != Rout_high
2292      &&  Rout_high  != Rin_low,
2293        "register alias checks");
2294
2295  Label big_shift, done;
2296
2297  // This code can be optimized to use the 64 bit shifts in V9.
2298  // Here we use the 32 bit shifts.
2299
2300  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2301  subcc(Rcount,         31,             Ralt_count);
2302  br(greater, true, pn, big_shift);
2303  delayed()->dec(Ralt_count);
2304
2305  // shift < 32 bits, Ralt_count = Rcount-31
2306
2307  // We get the transfer bits by shifting left by 32-count the high
2308  // register. This is done by shifting left by 31-count and then by one
2309  // more to take care of the special (rare) case where count is zero
2310  // (shifting by 32 would not work).
2311
2312  neg(  Ralt_count                                  );
2313  if (Rcount != Rout_low) {
2314    srl(        Rin_low,        Rcount,         Rout_low    );
2315  }
2316
2317  // The order of the next two instructions is critical in the case where
2318  // Rin and Rout are the same and should not be reversed.
2319
2320  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2321  srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2322  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2323  if (Rcount == Rout_low) {
2324    srl(        Rin_low,        Rcount,         Rout_low    );
2325  }
2326  ba (false, done);
2327  delayed()->
2328  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2329
2330  // shift >= 32 bits, Ralt_count = Rcount-32
2331  bind(big_shift);
2332
2333  srl(  Rin_high,       Ralt_count,     Rout_low    );
2334  clr(  Rout_high                                   );
2335
2336  bind( done );
2337}
2338
2339#ifdef _LP64
2340void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2341  cmp(Ra, Rb);
2342  mov(                       -1, Rresult);
2343  movcc(equal,   false, xcc,  0, Rresult);
2344  movcc(greater, false, xcc,  1, Rresult);
2345}
2346#endif
2347
2348
2349void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2350                                FloatRegister Fa, FloatRegister Fb,
2351                                Register Rresult) {
2352
2353  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2354
2355  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2356  Condition eq =                          f_equal;
2357  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2358
2359  if (VM_Version::v9_instructions_work()) {
2360
2361    mov(                   -1, Rresult );
2362    movcc( eq, true, fcc0,  0, Rresult );
2363    movcc( gt, true, fcc0,  1, Rresult );
2364
2365  } else {
2366    Label done;
2367
2368                                         set( -1, Rresult );
2369    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2370    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2371    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2372
2373    bind (done);
2374  }
2375}
2376
2377
2378void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2379{
2380  if (VM_Version::v9_instructions_work()) {
2381    Assembler::fneg(w, s, d);
2382  } else {
2383    if (w == FloatRegisterImpl::S) {
2384      Assembler::fneg(w, s, d);
2385    } else if (w == FloatRegisterImpl::D) {
2386      // number() does a sanity check on the alignment.
2387      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2388        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2389
2390      Assembler::fneg(FloatRegisterImpl::S, s, d);
2391      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2392    } else {
2393      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2394
2395      // number() does a sanity check on the alignment.
2396      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2397        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2398
2399      Assembler::fneg(FloatRegisterImpl::S, s, d);
2400      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2401      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2402      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2403    }
2404  }
2405}
2406
2407void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2408{
2409  if (VM_Version::v9_instructions_work()) {
2410    Assembler::fmov(w, s, d);
2411  } else {
2412    if (w == FloatRegisterImpl::S) {
2413      Assembler::fmov(w, s, d);
2414    } else if (w == FloatRegisterImpl::D) {
2415      // number() does a sanity check on the alignment.
2416      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2417        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2418
2419      Assembler::fmov(FloatRegisterImpl::S, s, d);
2420      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2421    } else {
2422      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2423
2424      // number() does a sanity check on the alignment.
2425      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2426        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2427
2428      Assembler::fmov(FloatRegisterImpl::S, s, d);
2429      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2430      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2431      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2432    }
2433  }
2434}
2435
2436void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2437{
2438  if (VM_Version::v9_instructions_work()) {
2439    Assembler::fabs(w, s, d);
2440  } else {
2441    if (w == FloatRegisterImpl::S) {
2442      Assembler::fabs(w, s, d);
2443    } else if (w == FloatRegisterImpl::D) {
2444      // number() does a sanity check on the alignment.
2445      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2446        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2447
2448      Assembler::fabs(FloatRegisterImpl::S, s, d);
2449      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2450    } else {
2451      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2452
2453      // number() does a sanity check on the alignment.
2454      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2455       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2456
2457      Assembler::fabs(FloatRegisterImpl::S, s, d);
2458      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2459      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2460      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2461    }
2462  }
2463}
2464
2465void MacroAssembler::save_all_globals_into_locals() {
2466  mov(G1,L1);
2467  mov(G2,L2);
2468  mov(G3,L3);
2469  mov(G4,L4);
2470  mov(G5,L5);
2471  mov(G6,L6);
2472  mov(G7,L7);
2473}
2474
2475void MacroAssembler::restore_globals_from_locals() {
2476  mov(L1,G1);
2477  mov(L2,G2);
2478  mov(L3,G3);
2479  mov(L4,G4);
2480  mov(L5,G5);
2481  mov(L6,G6);
2482  mov(L7,G7);
2483}
2484
2485// Use for 64 bit operation.
2486void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2487{
2488  // store ptr_reg as the new top value
2489#ifdef _LP64
2490  casx(top_ptr_reg, top_reg, ptr_reg);
2491#else
2492  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2493#endif // _LP64
2494}
2495
2496// [RGV] This routine does not handle 64 bit operations.
2497//       use casx_under_lock() or casx directly!!!
2498void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2499{
2500  // store ptr_reg as the new top value
2501  if (VM_Version::v9_instructions_work()) {
2502    cas(top_ptr_reg, top_reg, ptr_reg);
2503  } else {
2504
2505    // If the register is not an out nor global, it is not visible
2506    // after the save.  Allocate a register for it, save its
2507    // value in the register save area (the save may not flush
2508    // registers to the save area).
2509
2510    Register top_ptr_reg_after_save;
2511    Register top_reg_after_save;
2512    Register ptr_reg_after_save;
2513
2514    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2515      top_ptr_reg_after_save = top_ptr_reg->after_save();
2516    } else {
2517      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2518      top_ptr_reg_after_save = L0;
2519      st(top_ptr_reg, reg_save_addr);
2520    }
2521
2522    if (top_reg->is_out() || top_reg->is_global()) {
2523      top_reg_after_save = top_reg->after_save();
2524    } else {
2525      Address reg_save_addr = top_reg->address_in_saved_window();
2526      top_reg_after_save = L1;
2527      st(top_reg, reg_save_addr);
2528    }
2529
2530    if (ptr_reg->is_out() || ptr_reg->is_global()) {
2531      ptr_reg_after_save = ptr_reg->after_save();
2532    } else {
2533      Address reg_save_addr = ptr_reg->address_in_saved_window();
2534      ptr_reg_after_save = L2;
2535      st(ptr_reg, reg_save_addr);
2536    }
2537
2538    const Register& lock_reg = L3;
2539    const Register& lock_ptr_reg = L4;
2540    const Register& value_reg = L5;
2541    const Register& yield_reg = L6;
2542    const Register& yieldall_reg = L7;
2543
2544    save_frame();
2545
2546    if (top_ptr_reg_after_save == L0) {
2547      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2548    }
2549
2550    if (top_reg_after_save == L1) {
2551      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2552    }
2553
2554    if (ptr_reg_after_save == L2) {
2555      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2556    }
2557
2558    Label(retry_get_lock);
2559    Label(not_same);
2560    Label(dont_yield);
2561
2562    assert(lock_addr, "lock_address should be non null for v8");
2563    set((intptr_t)lock_addr, lock_ptr_reg);
2564    // Initialize yield counter
2565    mov(G0,yield_reg);
2566    mov(G0, yieldall_reg);
2567    set(StubRoutines::Sparc::locked, lock_reg);
2568
2569    bind(retry_get_lock);
2570    cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2571    br(Assembler::less, false, Assembler::pt, dont_yield);
2572    delayed()->nop();
2573
2574    if(use_call_vm) {
2575      Untested("Need to verify global reg consistancy");
2576      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2577    } else {
2578      // Save the regs and make space for a C call
2579      save(SP, -96, SP);
2580      save_all_globals_into_locals();
2581      call(CAST_FROM_FN_PTR(address,os::yield_all));
2582      delayed()->mov(yieldall_reg, O0);
2583      restore_globals_from_locals();
2584      restore();
2585    }
2586
2587    // reset the counter
2588    mov(G0,yield_reg);
2589    add(yieldall_reg, 1, yieldall_reg);
2590
2591    bind(dont_yield);
2592    // try to get lock
2593    swap(lock_ptr_reg, 0, lock_reg);
2594
2595    // did we get the lock?
2596    cmp(lock_reg, StubRoutines::Sparc::unlocked);
2597    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2598    delayed()->add(yield_reg,1,yield_reg);
2599
2600    // yes, got lock.  do we have the same top?
2601    ld(top_ptr_reg_after_save, 0, value_reg);
2602    cmp(value_reg, top_reg_after_save);
2603    br(Assembler::notEqual, false, Assembler::pn, not_same);
2604    delayed()->nop();
2605
2606    // yes, same top.
2607    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2608    membar(Assembler::StoreStore);
2609
2610    bind(not_same);
2611    mov(value_reg, ptr_reg_after_save);
2612    st(lock_reg, lock_ptr_reg, 0); // unlock
2613
2614    restore();
2615  }
2616}
2617
2618RegisterConstant MacroAssembler::delayed_value(intptr_t* delayed_value_addr,
2619                                               Register tmp,
2620                                               int offset) {
2621  intptr_t value = *delayed_value_addr;
2622  if (value != 0)
2623    return RegisterConstant(value + offset);
2624
2625  // load indirectly to solve generation ordering problem
2626  Address a(tmp, (address) delayed_value_addr);
2627  load_ptr_contents(a, tmp);
2628
2629#ifdef ASSERT
2630  tst(tmp);
2631  breakpoint_trap(zero, xcc);
2632#endif
2633
2634  if (offset != 0)
2635    add(tmp, offset, tmp);
2636
2637  return RegisterConstant(tmp);
2638}
2639
2640
2641void MacroAssembler::regcon_inc_ptr( RegisterConstant& dest, RegisterConstant src, Register temp ) {
2642  assert(dest.register_or_noreg() != G0, "lost side effect");
2643  if ((src.is_constant() && src.as_constant() == 0) ||
2644      (src.is_register() && src.as_register() == G0)) {
2645    // do nothing
2646  } else if (dest.is_register()) {
2647    add(dest.as_register(), ensure_rs2(src, temp), dest.as_register());
2648  } else if (src.is_constant()) {
2649    intptr_t res = dest.as_constant() + src.as_constant();
2650    dest = RegisterConstant(res); // side effect seen by caller
2651  } else {
2652    assert(temp != noreg, "cannot handle constant += register");
2653    add(src.as_register(), ensure_rs2(dest, temp), temp);
2654    dest = RegisterConstant(temp); // side effect seen by caller
2655  }
2656}
2657
2658void MacroAssembler::regcon_sll_ptr( RegisterConstant& dest, RegisterConstant src, Register temp ) {
2659  assert(dest.register_or_noreg() != G0, "lost side effect");
2660  if (!is_simm13(src.constant_or_zero()))
2661    src = (src.as_constant() & 0xFF);
2662  if ((src.is_constant() && src.as_constant() == 0) ||
2663      (src.is_register() && src.as_register() == G0)) {
2664    // do nothing
2665  } else if (dest.is_register()) {
2666    sll_ptr(dest.as_register(), src, dest.as_register());
2667  } else if (src.is_constant()) {
2668    intptr_t res = dest.as_constant() << src.as_constant();
2669    dest = RegisterConstant(res); // side effect seen by caller
2670  } else {
2671    assert(temp != noreg, "cannot handle constant <<= register");
2672    set(dest.as_constant(), temp);
2673    sll_ptr(temp, src, temp);
2674    dest = RegisterConstant(temp); // side effect seen by caller
2675  }
2676}
2677
2678
2679// Look up the method for a megamorphic invokeinterface call.
2680// The target method is determined by <intf_klass, itable_index>.
2681// The receiver klass is in recv_klass.
2682// On success, the result will be in method_result, and execution falls through.
2683// On failure, execution transfers to the given label.
2684void MacroAssembler::lookup_interface_method(Register recv_klass,
2685                                             Register intf_klass,
2686                                             RegisterConstant itable_index,
2687                                             Register method_result,
2688                                             Register scan_temp,
2689                                             Register sethi_temp,
2690                                             Label& L_no_such_interface) {
2691  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2692  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2693         "caller must use same register for non-constant itable index as for method");
2694
2695  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2696  int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
2697  int scan_step   = itableOffsetEntry::size() * wordSize;
2698  int vte_size    = vtableEntry::size() * wordSize;
2699
2700  lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
2701  // %%% We should store the aligned, prescaled offset in the klassoop.
2702  // Then the next several instructions would fold away.
2703
2704  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2705  int itb_offset = vtable_base;
2706  if (round_to_unit != 0) {
2707    // hoist first instruction of round_to(scan_temp, BytesPerLong):
2708    itb_offset += round_to_unit - wordSize;
2709  }
2710  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2711  sll(scan_temp, itb_scale,  scan_temp);
2712  add(scan_temp, itb_offset, scan_temp);
2713  if (round_to_unit != 0) {
2714    // Round up to align_object_offset boundary
2715    // see code for instanceKlass::start_of_itable!
2716    // Was: round_to(scan_temp, BytesPerLong);
2717    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2718    and3(scan_temp, -round_to_unit, scan_temp);
2719  }
2720  add(recv_klass, scan_temp, scan_temp);
2721
2722  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2723  RegisterConstant itable_offset = itable_index;
2724  regcon_sll_ptr(itable_offset, exact_log2(itableMethodEntry::size() * wordSize));
2725  regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes());
2726  add(recv_klass, ensure_rs2(itable_offset, sethi_temp), recv_klass);
2727
2728  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2729  //   if (scan->interface() == intf) {
2730  //     result = (klass + scan->offset() + itable_index);
2731  //   }
2732  // }
2733  Label search, found_method;
2734
2735  for (int peel = 1; peel >= 0; peel--) {
2736    // %%%% Could load both offset and interface in one ldx, if they were
2737    // in the opposite order.  This would save a load.
2738    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2739
2740    // Check that this entry is non-null.  A null entry means that
2741    // the receiver class doesn't implement the interface, and wasn't the
2742    // same as when the caller was compiled.
2743    bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
2744    delayed()->cmp(method_result, intf_klass);
2745
2746    if (peel) {
2747      brx(Assembler::equal,    false, Assembler::pt, found_method);
2748    } else {
2749      brx(Assembler::notEqual, false, Assembler::pn, search);
2750      // (invert the test to fall through to found_method...)
2751    }
2752    delayed()->add(scan_temp, scan_step, scan_temp);
2753
2754    if (!peel)  break;
2755
2756    bind(search);
2757  }
2758
2759  bind(found_method);
2760
2761  // Got a hit.
2762  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2763  // scan_temp[-scan_step] points to the vtable offset we need
2764  ito_offset -= scan_step;
2765  lduw(scan_temp, ito_offset, scan_temp);
2766  ld_ptr(recv_klass, scan_temp, method_result);
2767}
2768
2769
2770void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2771                                          Register temp_reg,
2772                                          Label& done, Label* slow_case,
2773                                          BiasedLockingCounters* counters) {
2774  assert(UseBiasedLocking, "why call this otherwise?");
2775
2776  if (PrintBiasedLockingStatistics) {
2777    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2778    if (counters == NULL)
2779      counters = BiasedLocking::counters();
2780  }
2781
2782  Label cas_label;
2783
2784  // Biased locking
2785  // See whether the lock is currently biased toward our thread and
2786  // whether the epoch is still valid
2787  // Note that the runtime guarantees sufficient alignment of JavaThread
2788  // pointers to allow age to be placed into low bits
2789  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2790  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2791  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2792  brx(Assembler::notEqual, false, Assembler::pn, cas_label);
2793  delayed()->nop();
2794
2795  load_klass(obj_reg, temp_reg);
2796  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2797  or3(G2_thread, temp_reg, temp_reg);
2798  xor3(mark_reg, temp_reg, temp_reg);
2799  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2800  if (counters != NULL) {
2801    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2802    // Reload mark_reg as we may need it later
2803    ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
2804  }
2805  brx(Assembler::equal, true, Assembler::pt, done);
2806  delayed()->nop();
2807
2808  Label try_revoke_bias;
2809  Label try_rebias;
2810  Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
2811  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2812
2813  // At this point we know that the header has the bias pattern and
2814  // that we are not the bias owner in the current epoch. We need to
2815  // figure out more details about the state of the header in order to
2816  // know what operations can be legally performed on the object's
2817  // header.
2818
2819  // If the low three bits in the xor result aren't clear, that means
2820  // the prototype header is no longer biased and we have to revoke
2821  // the bias on this object.
2822  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2823  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2824
2825  // Biasing is still enabled for this data type. See whether the
2826  // epoch of the current bias is still valid, meaning that the epoch
2827  // bits of the mark word are equal to the epoch bits of the
2828  // prototype header. (Note that the prototype header's epoch bits
2829  // only change at a safepoint.) If not, attempt to rebias the object
2830  // toward the current thread. Note that we must be absolutely sure
2831  // that the current epoch is invalid in order to do this because
2832  // otherwise the manipulations it performs on the mark word are
2833  // illegal.
2834  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2835  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2836
2837  // The epoch of the current bias is still valid but we know nothing
2838  // about the owner; it might be set or it might be clear. Try to
2839  // acquire the bias of the object using an atomic operation. If this
2840  // fails we will go in to the runtime to revoke the object's bias.
2841  // Note that we first construct the presumed unbiased header so we
2842  // don't accidentally blow away another thread's valid bias.
2843  delayed()->and3(mark_reg,
2844                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2845                  mark_reg);
2846  or3(G2_thread, mark_reg, temp_reg);
2847  casn(mark_addr.base(), mark_reg, temp_reg);
2848  // If the biasing toward our thread failed, this means that
2849  // another thread succeeded in biasing it toward itself and we
2850  // need to revoke that bias. The revocation will occur in the
2851  // interpreter runtime in the slow case.
2852  cmp(mark_reg, temp_reg);
2853  if (counters != NULL) {
2854    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2855  }
2856  if (slow_case != NULL) {
2857    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2858    delayed()->nop();
2859  }
2860  br(Assembler::always, false, Assembler::pt, done);
2861  delayed()->nop();
2862
2863  bind(try_rebias);
2864  // At this point we know the epoch has expired, meaning that the
2865  // current "bias owner", if any, is actually invalid. Under these
2866  // circumstances _only_, we are allowed to use the current header's
2867  // value as the comparison value when doing the cas to acquire the
2868  // bias in the current epoch. In other words, we allow transfer of
2869  // the bias from one thread to another directly in this situation.
2870  //
2871  // FIXME: due to a lack of registers we currently blow away the age
2872  // bits in this situation. Should attempt to preserve them.
2873  load_klass(obj_reg, temp_reg);
2874  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2875  or3(G2_thread, temp_reg, temp_reg);
2876  casn(mark_addr.base(), mark_reg, temp_reg);
2877  // If the biasing toward our thread failed, this means that
2878  // another thread succeeded in biasing it toward itself and we
2879  // need to revoke that bias. The revocation will occur in the
2880  // interpreter runtime in the slow case.
2881  cmp(mark_reg, temp_reg);
2882  if (counters != NULL) {
2883    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2884  }
2885  if (slow_case != NULL) {
2886    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2887    delayed()->nop();
2888  }
2889  br(Assembler::always, false, Assembler::pt, done);
2890  delayed()->nop();
2891
2892  bind(try_revoke_bias);
2893  // The prototype mark in the klass doesn't have the bias bit set any
2894  // more, indicating that objects of this data type are not supposed
2895  // to be biased any more. We are going to try to reset the mark of
2896  // this object to the prototype value and fall through to the
2897  // CAS-based locking scheme. Note that if our CAS fails, it means
2898  // that another thread raced us for the privilege of revoking the
2899  // bias of this particular object, so it's okay to continue in the
2900  // normal locking code.
2901  //
2902  // FIXME: due to a lack of registers we currently blow away the age
2903  // bits in this situation. Should attempt to preserve them.
2904  load_klass(obj_reg, temp_reg);
2905  ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2906  casn(mark_addr.base(), mark_reg, temp_reg);
2907  // Fall through to the normal CAS-based lock, because no matter what
2908  // the result of the above CAS, some thread must have succeeded in
2909  // removing the bias bit from the object's header.
2910  if (counters != NULL) {
2911    cmp(mark_reg, temp_reg);
2912    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2913  }
2914
2915  bind(cas_label);
2916}
2917
2918void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2919                                          bool allow_delay_slot_filling) {
2920  // Check for biased locking unlock case, which is a no-op
2921  // Note: we do not have to check the thread ID for two reasons.
2922  // First, the interpreter checks for IllegalMonitorStateException at
2923  // a higher level. Second, if the bias was revoked while we held the
2924  // lock, the object could not be rebiased toward another thread, so
2925  // the bias bit would be clear.
2926  ld_ptr(mark_addr, temp_reg);
2927  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2928  cmp(temp_reg, markOopDesc::biased_lock_pattern);
2929  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2930  delayed();
2931  if (!allow_delay_slot_filling) {
2932    nop();
2933  }
2934}
2935
2936
2937// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
2938// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
2939
2940void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
2941  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
2942}
2943
2944
2945
2946// compiler_lock_object() and compiler_unlock_object() are direct transliterations
2947// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2948// The code could be tightened up considerably.
2949//
2950// box->dhw disposition - post-conditions at DONE_LABEL.
2951// -   Successful inflated lock:  box->dhw != 0.
2952//     Any non-zero value suffices.
2953//     Consider G2_thread, rsp, boxReg, or unused_mark()
2954// -   Successful Stack-lock: box->dhw == mark.
2955//     box->dhw must contain the displaced mark word value
2956// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2957//     The slow-path fast_enter() and slow_enter() operators
2958//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
2959// -   Biased: box->dhw is undefined
2960//
2961// SPARC refworkload performance - specifically jetstream and scimark - are
2962// extremely sensitive to the size of the code emitted by compiler_lock_object
2963// and compiler_unlock_object.  Critically, the key factor is code size, not path
2964// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2965// effect).
2966
2967
2968void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2969                                          Register Rbox, Register Rscratch,
2970                                          BiasedLockingCounters* counters,
2971                                          bool try_bias) {
2972   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2973
2974   verify_oop(Roop);
2975   Label done ;
2976
2977   if (counters != NULL) {
2978     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2979   }
2980
2981   if (EmitSync & 1) {
2982     mov    (3, Rscratch) ;
2983     st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2984     cmp    (SP, G0) ;
2985     return ;
2986   }
2987
2988   if (EmitSync & 2) {
2989
2990     // Fetch object's markword
2991     ld_ptr(mark_addr, Rmark);
2992
2993     if (try_bias) {
2994        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2995     }
2996
2997     // Save Rbox in Rscratch to be used for the cas operation
2998     mov(Rbox, Rscratch);
2999
3000     // set Rmark to markOop | markOopDesc::unlocked_value
3001     or3(Rmark, markOopDesc::unlocked_value, Rmark);
3002
3003     // Initialize the box.  (Must happen before we update the object mark!)
3004     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3005
3006     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3007     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3008     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3009        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3010
3011     // if compare/exchange succeeded we found an unlocked object and we now have locked it
3012     // hence we are done
3013     cmp(Rmark, Rscratch);
3014#ifdef _LP64
3015     sub(Rscratch, STACK_BIAS, Rscratch);
3016#endif
3017     brx(Assembler::equal, false, Assembler::pt, done);
3018     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3019
3020     // we did not find an unlocked object so see if this is a recursive case
3021     // sub(Rscratch, SP, Rscratch);
3022     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3023     andcc(Rscratch, 0xfffff003, Rscratch);
3024     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3025     bind (done) ;
3026     return ;
3027   }
3028
3029   Label Egress ;
3030
3031   if (EmitSync & 256) {
3032      Label IsInflated ;
3033
3034      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3035      // Triage: biased, stack-locked, neutral, inflated
3036      if (try_bias) {
3037        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3038        // Invariant: if control reaches this point in the emitted stream
3039        // then Rmark has not been modified.
3040      }
3041
3042      // Store mark into displaced mark field in the on-stack basic-lock "box"
3043      // Critically, this must happen before the CAS
3044      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3045      st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3046      andcc  (Rmark, 2, G0) ;
3047      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3048      delayed() ->
3049
3050      // Try stack-lock acquisition.
3051      // Beware: the 1st instruction is in a delay slot
3052      mov    (Rbox,  Rscratch);
3053      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3054      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3055      casn   (mark_addr.base(), Rmark, Rscratch) ;
3056      cmp    (Rmark, Rscratch);
3057      brx    (Assembler::equal, false, Assembler::pt, done);
3058      delayed()->sub(Rscratch, SP, Rscratch);
3059
3060      // Stack-lock attempt failed - check for recursive stack-lock.
3061      // See the comments below about how we might remove this case.
3062#ifdef _LP64
3063      sub    (Rscratch, STACK_BIAS, Rscratch);
3064#endif
3065      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3066      andcc  (Rscratch, 0xfffff003, Rscratch);
3067      br     (Assembler::always, false, Assembler::pt, done) ;
3068      delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3069
3070      bind   (IsInflated) ;
3071      if (EmitSync & 64) {
3072         // If m->owner != null goto IsLocked
3073         // Pessimistic form: Test-and-CAS vs CAS
3074         // The optimistic form avoids RTS->RTO cache line upgrades.
3075         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3076         andcc  (Rscratch, Rscratch, G0) ;
3077         brx    (Assembler::notZero, false, Assembler::pn, done) ;
3078         delayed()->nop() ;
3079         // m->owner == null : it's unlocked.
3080      }
3081
3082      // Try to CAS m->owner from null to Self
3083      // Invariant: if we acquire the lock then _recursions should be 0.
3084      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3085      mov    (G2_thread, Rscratch) ;
3086      casn   (Rmark, G0, Rscratch) ;
3087      cmp    (Rscratch, G0) ;
3088      // Intentional fall-through into done
3089   } else {
3090      // Aggressively avoid the Store-before-CAS penalty
3091      // Defer the store into box->dhw until after the CAS
3092      Label IsInflated, Recursive ;
3093
3094// Anticipate CAS -- Avoid RTS->RTO upgrade
3095// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3096
3097      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3098      // Triage: biased, stack-locked, neutral, inflated
3099
3100      if (try_bias) {
3101        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3102        // Invariant: if control reaches this point in the emitted stream
3103        // then Rmark has not been modified.
3104      }
3105      andcc  (Rmark, 2, G0) ;
3106      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3107      delayed()->                         // Beware - dangling delay-slot
3108
3109      // Try stack-lock acquisition.
3110      // Transiently install BUSY (0) encoding in the mark word.
3111      // if the CAS of 0 into the mark was successful then we execute:
3112      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3113      //   ST obj->mark = box    -- overwrite transient 0 value
3114      // This presumes TSO, of course.
3115
3116      mov    (0, Rscratch) ;
3117      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3118      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3119      casn   (mark_addr.base(), Rmark, Rscratch) ;
3120// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3121      cmp    (Rscratch, Rmark) ;
3122      brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
3123      delayed() ->
3124        st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3125      if (counters != NULL) {
3126        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3127      }
3128      br     (Assembler::always, false, Assembler::pt, done);
3129      delayed() ->
3130        st_ptr (Rbox, mark_addr) ;
3131
3132      bind   (Recursive) ;
3133      // Stack-lock attempt failed - check for recursive stack-lock.
3134      // Tests show that we can remove the recursive case with no impact
3135      // on refworkload 0.83.  If we need to reduce the size of the code
3136      // emitted by compiler_lock_object() the recursive case is perfect
3137      // candidate.
3138      //
3139      // A more extreme idea is to always inflate on stack-lock recursion.
3140      // This lets us eliminate the recursive checks in compiler_lock_object
3141      // and compiler_unlock_object and the (box->dhw == 0) encoding.
3142      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3143      // and showed a performance *increase*.  In the same experiment I eliminated
3144      // the fast-path stack-lock code from the interpreter and always passed
3145      // control to the "slow" operators in synchronizer.cpp.
3146
3147      // RScratch contains the fetched obj->mark value from the failed CASN.
3148#ifdef _LP64
3149      sub    (Rscratch, STACK_BIAS, Rscratch);
3150#endif
3151      sub(Rscratch, SP, Rscratch);
3152      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3153      andcc  (Rscratch, 0xfffff003, Rscratch);
3154      if (counters != NULL) {
3155        // Accounting needs the Rscratch register
3156        st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3157        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3158        br     (Assembler::always, false, Assembler::pt, done) ;
3159        delayed()->nop() ;
3160      } else {
3161        br     (Assembler::always, false, Assembler::pt, done) ;
3162        delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3163      }
3164
3165      bind   (IsInflated) ;
3166      if (EmitSync & 64) {
3167         // If m->owner != null goto IsLocked
3168         // Test-and-CAS vs CAS
3169         // Pessimistic form avoids futile (doomed) CAS attempts
3170         // The optimistic form avoids RTS->RTO cache line upgrades.
3171         ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3172         andcc  (Rscratch, Rscratch, G0) ;
3173         brx    (Assembler::notZero, false, Assembler::pn, done) ;
3174         delayed()->nop() ;
3175         // m->owner == null : it's unlocked.
3176      }
3177
3178      // Try to CAS m->owner from null to Self
3179      // Invariant: if we acquire the lock then _recursions should be 0.
3180      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3181      mov    (G2_thread, Rscratch) ;
3182      casn   (Rmark, G0, Rscratch) ;
3183      cmp    (Rscratch, G0) ;
3184      // ST box->displaced_header = NonZero.
3185      // Any non-zero value suffices:
3186      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3187      st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3188      // Intentional fall-through into done
3189   }
3190
3191   bind   (done) ;
3192}
3193
3194void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3195                                            Register Rbox, Register Rscratch,
3196                                            bool try_bias) {
3197   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
3198
3199   Label done ;
3200
3201   if (EmitSync & 4) {
3202     cmp  (SP, G0) ;
3203     return ;
3204   }
3205
3206   if (EmitSync & 8) {
3207     if (try_bias) {
3208        biased_locking_exit(mark_addr, Rscratch, done);
3209     }
3210
3211     // Test first if it is a fast recursive unlock
3212     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3213     cmp(Rmark, G0);
3214     brx(Assembler::equal, false, Assembler::pt, done);
3215     delayed()->nop();
3216
3217     // Check if it is still a light weight lock, this is is true if we see
3218     // the stack address of the basicLock in the markOop of the object
3219     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3220     casx_under_lock(mark_addr.base(), Rbox, Rmark,
3221       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3222     br (Assembler::always, false, Assembler::pt, done);
3223     delayed()->cmp(Rbox, Rmark);
3224     bind (done) ;
3225     return ;
3226   }
3227
3228   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3229   // is too large performance rolls abruptly off a cliff.
3230   // This could be related to inlining policies, code cache management, or
3231   // I$ effects.
3232   Label LStacked ;
3233
3234   if (try_bias) {
3235      // TODO: eliminate redundant LDs of obj->mark
3236      biased_locking_exit(mark_addr, Rscratch, done);
3237   }
3238
3239   ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3240   ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3241   andcc  (Rscratch, Rscratch, G0);
3242   brx    (Assembler::zero, false, Assembler::pn, done);
3243   delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3244   andcc  (Rmark, 2, G0) ;
3245   brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3246   delayed()-> nop() ;
3247
3248   // It's inflated
3249   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3250   // the ST of 0 into _owner which releases the lock.  This prevents loads
3251   // and stores within the critical section from reordering (floating)
3252   // past the store that releases the lock.  But TSO is a strong memory model
3253   // and that particular flavor of barrier is a noop, so we can safely elide it.
3254   // Note that we use 1-0 locking by default for the inflated case.  We
3255   // close the resultant (and rare) race by having contented threads in
3256   // monitorenter periodically poll _owner.
3257   ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3258   ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
3259   xor3   (Rscratch, G2_thread, Rscratch) ;
3260   orcc   (Rbox, Rscratch, Rbox) ;
3261   brx    (Assembler::notZero, false, Assembler::pn, done) ;
3262   delayed()->
3263   ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
3264   ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
3265   orcc   (Rbox, Rscratch, G0) ;
3266   if (EmitSync & 65536) {
3267      Label LSucc ;
3268      brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3269      delayed()->nop() ;
3270      br     (Assembler::always, false, Assembler::pt, done) ;
3271      delayed()->
3272      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3273
3274      bind   (LSucc) ;
3275      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3276      if (os::is_MP()) { membar (StoreLoad) ; }
3277      ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
3278      andcc  (Rscratch, Rscratch, G0) ;
3279      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3280      delayed()-> andcc (G0, G0, G0) ;
3281      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3282      mov    (G2_thread, Rscratch) ;
3283      casn   (Rmark, G0, Rscratch) ;
3284      cmp    (Rscratch, G0) ;
3285      // invert icc.zf and goto done
3286      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3287      delayed() -> cmp (G0, G0) ;
3288      br     (Assembler::always, false, Assembler::pt, done);
3289      delayed() -> cmp (G0, 1) ;
3290   } else {
3291      brx    (Assembler::notZero, false, Assembler::pn, done) ;
3292      delayed()->nop() ;
3293      br     (Assembler::always, false, Assembler::pt, done) ;
3294      delayed()->
3295      st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3296   }
3297
3298   bind   (LStacked) ;
3299   // Consider: we could replace the expensive CAS in the exit
3300   // path with a simple ST of the displaced mark value fetched from
3301   // the on-stack basiclock box.  That admits a race where a thread T2
3302   // in the slow lock path -- inflating with monitor M -- could race a
3303   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3304   // More precisely T1 in the stack-lock unlock path could "stomp" the
3305   // inflated mark value M installed by T2, resulting in an orphan
3306   // object monitor M and T2 becoming stranded.  We can remedy that situation
3307   // by having T2 periodically poll the object's mark word using timed wait
3308   // operations.  If T2 discovers that a stomp has occurred it vacates
3309   // the monitor M and wakes any other threads stranded on the now-orphan M.
3310   // In addition the monitor scavenger, which performs deflation,
3311   // would also need to check for orpan monitors and stranded threads.
3312   //
3313   // Finally, inflation is also used when T2 needs to assign a hashCode
3314   // to O and O is stack-locked by T1.  The "stomp" race could cause
3315   // an assigned hashCode value to be lost.  We can avoid that condition
3316   // and provide the necessary hashCode stability invariants by ensuring
3317   // that hashCode generation is idempotent between copying GCs.
3318   // For example we could compute the hashCode of an object O as
3319   // O's heap address XOR some high quality RNG value that is refreshed
3320   // at GC-time.  The monitor scavenger would install the hashCode
3321   // found in any orphan monitors.  Again, the mechanism admits a
3322   // lost-update "stomp" WAW race but detects and recovers as needed.
3323   //
3324   // A prototype implementation showed excellent results, although
3325   // the scavenger and timeout code was rather involved.
3326
3327   casn   (mark_addr.base(), Rbox, Rscratch) ;
3328   cmp    (Rbox, Rscratch);
3329   // Intentional fall through into done ...
3330
3331   bind   (done) ;
3332}
3333
3334
3335
3336void MacroAssembler::print_CPU_state() {
3337  // %%%%% need to implement this
3338}
3339
3340void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3341  // %%%%% need to implement this
3342}
3343
3344void MacroAssembler::push_IU_state() {
3345  // %%%%% need to implement this
3346}
3347
3348
3349void MacroAssembler::pop_IU_state() {
3350  // %%%%% need to implement this
3351}
3352
3353
3354void MacroAssembler::push_FPU_state() {
3355  // %%%%% need to implement this
3356}
3357
3358
3359void MacroAssembler::pop_FPU_state() {
3360  // %%%%% need to implement this
3361}
3362
3363
3364void MacroAssembler::push_CPU_state() {
3365  // %%%%% need to implement this
3366}
3367
3368
3369void MacroAssembler::pop_CPU_state() {
3370  // %%%%% need to implement this
3371}
3372
3373
3374
3375void MacroAssembler::verify_tlab() {
3376#ifdef ASSERT
3377  if (UseTLAB && VerifyOops) {
3378    Label next, next2, ok;
3379    Register t1 = L0;
3380    Register t2 = L1;
3381    Register t3 = L2;
3382
3383    save_frame(0);
3384    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3385    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3386    or3(t1, t2, t3);
3387    cmp(t1, t2);
3388    br(Assembler::greaterEqual, false, Assembler::pn, next);
3389    delayed()->nop();
3390    stop("assert(top >= start)");
3391    should_not_reach_here();
3392
3393    bind(next);
3394    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3395    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3396    or3(t3, t2, t3);
3397    cmp(t1, t2);
3398    br(Assembler::lessEqual, false, Assembler::pn, next2);
3399    delayed()->nop();
3400    stop("assert(top <= end)");
3401    should_not_reach_here();
3402
3403    bind(next2);
3404    and3(t3, MinObjAlignmentInBytesMask, t3);
3405    cmp(t3, 0);
3406    br(Assembler::lessEqual, false, Assembler::pn, ok);
3407    delayed()->nop();
3408    stop("assert(aligned)");
3409    should_not_reach_here();
3410
3411    bind(ok);
3412    restore();
3413  }
3414#endif
3415}
3416
3417
3418void MacroAssembler::eden_allocate(
3419  Register obj,                        // result: pointer to object after successful allocation
3420  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3421  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3422  Register t1,                         // temp register
3423  Register t2,                         // temp register
3424  Label&   slow_case                   // continuation point if fast allocation fails
3425){
3426  // make sure arguments make sense
3427  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3428  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3429  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3430
3431  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3432    // No allocation in the shared eden.
3433    br(Assembler::always, false, Assembler::pt, slow_case);
3434    delayed()->nop();
3435  } else {
3436    // get eden boundaries
3437    // note: we need both top & top_addr!
3438    const Register top_addr = t1;
3439    const Register end      = t2;
3440
3441    CollectedHeap* ch = Universe::heap();
3442    set((intx)ch->top_addr(), top_addr);
3443    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3444    ld_ptr(top_addr, delta, end);
3445    ld_ptr(top_addr, 0, obj);
3446
3447    // try to allocate
3448    Label retry;
3449    bind(retry);
3450#ifdef ASSERT
3451    // make sure eden top is properly aligned
3452    {
3453      Label L;
3454      btst(MinObjAlignmentInBytesMask, obj);
3455      br(Assembler::zero, false, Assembler::pt, L);
3456      delayed()->nop();
3457      stop("eden top is not properly aligned");
3458      bind(L);
3459    }
3460#endif // ASSERT
3461    const Register free = end;
3462    sub(end, obj, free);                                   // compute amount of free space
3463    if (var_size_in_bytes->is_valid()) {
3464      // size is unknown at compile time
3465      cmp(free, var_size_in_bytes);
3466      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3467      delayed()->add(obj, var_size_in_bytes, end);
3468    } else {
3469      // size is known at compile time
3470      cmp(free, con_size_in_bytes);
3471      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3472      delayed()->add(obj, con_size_in_bytes, end);
3473    }
3474    // Compare obj with the value at top_addr; if still equal, swap the value of
3475    // end with the value at top_addr. If not equal, read the value at top_addr
3476    // into end.
3477    casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3478    // if someone beat us on the allocation, try again, otherwise continue
3479    cmp(obj, end);
3480    brx(Assembler::notEqual, false, Assembler::pn, retry);
3481    delayed()->mov(end, obj);                              // nop if successfull since obj == end
3482
3483#ifdef ASSERT
3484    // make sure eden top is properly aligned
3485    {
3486      Label L;
3487      const Register top_addr = t1;
3488
3489      set((intx)ch->top_addr(), top_addr);
3490      ld_ptr(top_addr, 0, top_addr);
3491      btst(MinObjAlignmentInBytesMask, top_addr);
3492      br(Assembler::zero, false, Assembler::pt, L);
3493      delayed()->nop();
3494      stop("eden top is not properly aligned");
3495      bind(L);
3496    }
3497#endif // ASSERT
3498  }
3499}
3500
3501
3502void MacroAssembler::tlab_allocate(
3503  Register obj,                        // result: pointer to object after successful allocation
3504  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3505  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3506  Register t1,                         // temp register
3507  Label&   slow_case                   // continuation point if fast allocation fails
3508){
3509  // make sure arguments make sense
3510  assert_different_registers(obj, var_size_in_bytes, t1);
3511  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3512  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3513
3514  const Register free  = t1;
3515
3516  verify_tlab();
3517
3518  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3519
3520  // calculate amount of free space
3521  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3522  sub(free, obj, free);
3523
3524  Label done;
3525  if (var_size_in_bytes == noreg) {
3526    cmp(free, con_size_in_bytes);
3527  } else {
3528    cmp(free, var_size_in_bytes);
3529  }
3530  br(Assembler::less, false, Assembler::pn, slow_case);
3531  // calculate the new top pointer
3532  if (var_size_in_bytes == noreg) {
3533    delayed()->add(obj, con_size_in_bytes, free);
3534  } else {
3535    delayed()->add(obj, var_size_in_bytes, free);
3536  }
3537
3538  bind(done);
3539
3540#ifdef ASSERT
3541  // make sure new free pointer is properly aligned
3542  {
3543    Label L;
3544    btst(MinObjAlignmentInBytesMask, free);
3545    br(Assembler::zero, false, Assembler::pt, L);
3546    delayed()->nop();
3547    stop("updated TLAB free is not properly aligned");
3548    bind(L);
3549  }
3550#endif // ASSERT
3551
3552  // update the tlab top pointer
3553  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3554  verify_tlab();
3555}
3556
3557
3558void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3559  Register top = O0;
3560  Register t1 = G1;
3561  Register t2 = G3;
3562  Register t3 = O1;
3563  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3564  Label do_refill, discard_tlab;
3565
3566  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3567    // No allocation in the shared eden.
3568    br(Assembler::always, false, Assembler::pt, slow_case);
3569    delayed()->nop();
3570  }
3571
3572  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3573  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3574  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3575
3576  // calculate amount of free space
3577  sub(t1, top, t1);
3578  srl_ptr(t1, LogHeapWordSize, t1);
3579
3580  // Retain tlab and allocate object in shared space if
3581  // the amount free in the tlab is too large to discard.
3582  cmp(t1, t2);
3583  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3584
3585  // increment waste limit to prevent getting stuck on this slow path
3586  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3587  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3588  if (TLABStats) {
3589    // increment number of slow_allocations
3590    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3591    add(t2, 1, t2);
3592    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3593  }
3594  br(Assembler::always, false, Assembler::pt, try_eden);
3595  delayed()->nop();
3596
3597  bind(discard_tlab);
3598  if (TLABStats) {
3599    // increment number of refills
3600    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3601    add(t2, 1, t2);
3602    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3603    // accumulate wastage
3604    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3605    add(t2, t1, t2);
3606    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3607  }
3608
3609  // if tlab is currently allocated (top or end != null) then
3610  // fill [top, end + alignment_reserve) with array object
3611  br_null(top, false, Assembler::pn, do_refill);
3612  delayed()->nop();
3613
3614  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3615  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3616  // set klass to intArrayKlass
3617  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3618  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3619  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3620  st(t1, top, arrayOopDesc::length_offset_in_bytes());
3621  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3622  ld_ptr(t2, 0, t2);
3623  // store klass last.  concurrent gcs assumes klass length is valid if
3624  // klass field is not null.
3625  store_klass(t2, top);
3626  verify_oop(top);
3627
3628  // refill the tlab with an eden allocation
3629  bind(do_refill);
3630  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3631  sll_ptr(t1, LogHeapWordSize, t1);
3632  // add object_size ??
3633  eden_allocate(top, t1, 0, t2, t3, slow_case);
3634
3635  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3636  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3637#ifdef ASSERT
3638  // check that tlab_size (t1) is still valid
3639  {
3640    Label ok;
3641    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3642    sll_ptr(t2, LogHeapWordSize, t2);
3643    cmp(t1, t2);
3644    br(Assembler::equal, false, Assembler::pt, ok);
3645    delayed()->nop();
3646    stop("assert(t1 == tlab_size)");
3647    should_not_reach_here();
3648
3649    bind(ok);
3650  }
3651#endif // ASSERT
3652  add(top, t1, top); // t1 is tlab_size
3653  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3654  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3655  verify_tlab();
3656  br(Assembler::always, false, Assembler::pt, retry);
3657  delayed()->nop();
3658}
3659
3660Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3661  switch (cond) {
3662    // Note some conditions are synonyms for others
3663    case Assembler::never:                return Assembler::always;
3664    case Assembler::zero:                 return Assembler::notZero;
3665    case Assembler::lessEqual:            return Assembler::greater;
3666    case Assembler::less:                 return Assembler::greaterEqual;
3667    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3668    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3669    case Assembler::negative:             return Assembler::positive;
3670    case Assembler::overflowSet:          return Assembler::overflowClear;
3671    case Assembler::always:               return Assembler::never;
3672    case Assembler::notZero:              return Assembler::zero;
3673    case Assembler::greater:              return Assembler::lessEqual;
3674    case Assembler::greaterEqual:         return Assembler::less;
3675    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3676    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3677    case Assembler::positive:             return Assembler::negative;
3678    case Assembler::overflowClear:        return Assembler::overflowSet;
3679  }
3680
3681  ShouldNotReachHere(); return Assembler::overflowClear;
3682}
3683
3684void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3685                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3686  Condition negated_cond = negate_condition(cond);
3687  Label L;
3688  brx(negated_cond, false, Assembler::pt, L);
3689  delayed()->nop();
3690  inc_counter(counter_ptr, Rtmp1, Rtmp2);
3691  bind(L);
3692}
3693
3694void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
3695  Address counter_addr(Rtmp1, counter_ptr);
3696  load_contents(counter_addr, Rtmp2);
3697  inc(Rtmp2);
3698  store_contents(Rtmp2, counter_addr);
3699}
3700
3701SkipIfEqual::SkipIfEqual(
3702    MacroAssembler* masm, Register temp, const bool* flag_addr,
3703    Assembler::Condition condition) {
3704  _masm = masm;
3705  Address flag(temp, (address)flag_addr, relocInfo::none);
3706  _masm->sethi(flag);
3707  _masm->ldub(flag, temp);
3708  _masm->tst(temp);
3709  _masm->br(condition, false, Assembler::pt, _label);
3710  _masm->delayed()->nop();
3711}
3712
3713SkipIfEqual::~SkipIfEqual() {
3714  _masm->bind(_label);
3715}
3716
3717
3718// Writes to stack successive pages until offset reached to check for
3719// stack overflow + shadow pages.  This clobbers tsp and scratch.
3720void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3721                                     Register Rscratch) {
3722  // Use stack pointer in temp stack pointer
3723  mov(SP, Rtsp);
3724
3725  // Bang stack for total size given plus stack shadow page size.
3726  // Bang one page at a time because a large size can overflow yellow and
3727  // red zones (the bang will fail but stack overflow handling can't tell that
3728  // it was a stack overflow bang vs a regular segv).
3729  int offset = os::vm_page_size();
3730  Register Roffset = Rscratch;
3731
3732  Label loop;
3733  bind(loop);
3734  set((-offset)+STACK_BIAS, Rscratch);
3735  st(G0, Rtsp, Rscratch);
3736  set(offset, Roffset);
3737  sub(Rsize, Roffset, Rsize);
3738  cmp(Rsize, G0);
3739  br(Assembler::greater, false, Assembler::pn, loop);
3740  delayed()->sub(Rtsp, Roffset, Rtsp);
3741
3742  // Bang down shadow pages too.
3743  // The -1 because we already subtracted 1 page.
3744  for (int i = 0; i< StackShadowPages-1; i++) {
3745    set((-i*offset)+STACK_BIAS, Rscratch);
3746    st(G0, Rtsp, Rscratch);
3747  }
3748}
3749
3750///////////////////////////////////////////////////////////////////////////////////
3751#ifndef SERIALGC
3752
3753static uint num_stores = 0;
3754static uint num_null_pre_stores = 0;
3755
3756static void count_null_pre_vals(void* pre_val) {
3757  num_stores++;
3758  if (pre_val == NULL) num_null_pre_stores++;
3759  if ((num_stores % 1000000) == 0) {
3760    tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
3761                  num_stores, num_null_pre_stores,
3762                  100.0*(float)num_null_pre_stores/(float)num_stores);
3763  }
3764}
3765
3766static address satb_log_enqueue_with_frame = 0;
3767static u_char* satb_log_enqueue_with_frame_end = 0;
3768
3769static address satb_log_enqueue_frameless = 0;
3770static u_char* satb_log_enqueue_frameless_end = 0;
3771
3772static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3773
3774// The calls to this don't work.  We'd need to do a fair amount of work to
3775// make it work.
3776static void check_index(int ind) {
3777  assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
3778         "Invariants.")
3779}
3780
3781static void generate_satb_log_enqueue(bool with_frame) {
3782  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3783  CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
3784  MacroAssembler masm(&buf);
3785  address start = masm.pc();
3786  Register pre_val;
3787
3788  Label refill, restart;
3789  if (with_frame) {
3790    masm.save_frame(0);
3791    pre_val = I0;  // Was O0 before the save.
3792  } else {
3793    pre_val = O0;
3794  }
3795  int satb_q_index_byte_offset =
3796    in_bytes(JavaThread::satb_mark_queue_offset() +
3797             PtrQueue::byte_offset_of_index());
3798  int satb_q_buf_byte_offset =
3799    in_bytes(JavaThread::satb_mark_queue_offset() +
3800             PtrQueue::byte_offset_of_buf());
3801  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3802         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
3803         "check sizes in assembly below");
3804
3805  masm.bind(restart);
3806  masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3807
3808  masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
3809  // If the branch is taken, no harm in executing this in the delay slot.
3810  masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3811  masm.sub(L0, oopSize, L0);
3812
3813  masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3814  if (!with_frame) {
3815    // Use return-from-leaf
3816    masm.retl();
3817    masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3818  } else {
3819    // Not delayed.
3820    masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3821  }
3822  if (with_frame) {
3823    masm.ret();
3824    masm.delayed()->restore();
3825  }
3826  masm.bind(refill);
3827
3828  address handle_zero =
3829    CAST_FROM_FN_PTR(address,
3830                     &SATBMarkQueueSet::handle_zero_index_for_thread);
3831  // This should be rare enough that we can afford to save all the
3832  // scratch registers that the calling context might be using.
3833  masm.mov(G1_scratch, L0);
3834  masm.mov(G3_scratch, L1);
3835  masm.mov(G4, L2);
3836  // We need the value of O0 above (for the write into the buffer), so we
3837  // save and restore it.
3838  masm.mov(O0, L3);
3839  // Since the call will overwrite O7, we save and restore that, as well.
3840  masm.mov(O7, L4);
3841  masm.call_VM_leaf(L5, handle_zero, G2_thread);
3842  masm.mov(L0, G1_scratch);
3843  masm.mov(L1, G3_scratch);
3844  masm.mov(L2, G4);
3845  masm.mov(L3, O0);
3846  masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3847  masm.delayed()->mov(L4, O7);
3848
3849  if (with_frame) {
3850    satb_log_enqueue_with_frame = start;
3851    satb_log_enqueue_with_frame_end = masm.pc();
3852  } else {
3853    satb_log_enqueue_frameless = start;
3854    satb_log_enqueue_frameless_end = masm.pc();
3855  }
3856}
3857
3858static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3859  if (with_frame) {
3860    if (satb_log_enqueue_with_frame == 0) {
3861      generate_satb_log_enqueue(with_frame);
3862      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3863      if (G1SATBPrintStubs) {
3864        tty->print_cr("Generated with-frame satb enqueue:");
3865        Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
3866                             satb_log_enqueue_with_frame_end,
3867                             tty);
3868      }
3869    }
3870  } else {
3871    if (satb_log_enqueue_frameless == 0) {
3872      generate_satb_log_enqueue(with_frame);
3873      assert(satb_log_enqueue_frameless != 0, "postcondition.");
3874      if (G1SATBPrintStubs) {
3875        tty->print_cr("Generated frameless satb enqueue:");
3876        Disassembler::decode((u_char*)satb_log_enqueue_frameless,
3877                             satb_log_enqueue_frameless_end,
3878                             tty);
3879      }
3880    }
3881  }
3882}
3883
3884void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
3885  assert(offset == 0 || index == noreg, "choose one");
3886
3887  if (G1DisablePreBarrier) return;
3888  // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
3889  Label filtered;
3890  // satb_log_barrier_work0(tmp, filtered);
3891  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3892    ld(G2,
3893       in_bytes(JavaThread::satb_mark_queue_offset() +
3894                PtrQueue::byte_offset_of_active()),
3895       tmp);
3896  } else {
3897    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
3898              "Assumption");
3899    ldsb(G2,
3900         in_bytes(JavaThread::satb_mark_queue_offset() +
3901                  PtrQueue::byte_offset_of_active()),
3902         tmp);
3903  }
3904  // Check on whether to annul.
3905  br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
3906  delayed() -> nop();
3907
3908  // satb_log_barrier_work1(tmp, offset);
3909  if (index == noreg) {
3910    if (Assembler::is_simm13(offset)) {
3911      ld_ptr(obj, offset, tmp);
3912    } else {
3913      set(offset, tmp);
3914      ld_ptr(obj, tmp, tmp);
3915    }
3916  } else {
3917    ld_ptr(obj, index, tmp);
3918  }
3919
3920  // satb_log_barrier_work2(obj, tmp, offset);
3921
3922  // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
3923
3924  const Register pre_val = tmp;
3925
3926  if (G1SATBBarrierPrintNullPreVals) {
3927    save_frame(0);
3928    mov(pre_val, O0);
3929    // Save G-regs that target may use.
3930    mov(G1, L1);
3931    mov(G2, L2);
3932    mov(G3, L3);
3933    mov(G4, L4);
3934    mov(G5, L5);
3935    call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
3936    delayed()->nop();
3937    // Restore G-regs that target may have used.
3938    mov(L1, G1);
3939    mov(L2, G2);
3940    mov(L3, G3);
3941    mov(L4, G4);
3942    mov(L5, G5);
3943    restore(G0, G0, G0);
3944  }
3945
3946  // Check on whether to annul.
3947  br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
3948  delayed() -> nop();
3949
3950  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3951  // case, pre_val will be a scratch G-reg, but there's some cases in which
3952  // it's an O-reg.  In the first case, do a normal call.  In the latter,
3953  // do a save here and call the frameless version.
3954
3955  guarantee(pre_val->is_global() || pre_val->is_out(),
3956            "Or we need to think harder.");
3957  if (pre_val->is_global() && !preserve_o_regs) {
3958    generate_satb_log_enqueue_if_necessary(true); // with frame.
3959    call(satb_log_enqueue_with_frame);
3960    delayed()->mov(pre_val, O0);
3961  } else {
3962    generate_satb_log_enqueue_if_necessary(false); // with frameless.
3963    save_frame(0);
3964    call(satb_log_enqueue_frameless);
3965    delayed()->mov(pre_val->after_save(), O0);
3966    restore();
3967  }
3968
3969  bind(filtered);
3970}
3971
3972static jint num_ct_writes = 0;
3973static jint num_ct_writes_filtered_in_hr = 0;
3974static jint num_ct_writes_filtered_null = 0;
3975static jint num_ct_writes_filtered_pop = 0;
3976static G1CollectedHeap* g1 = NULL;
3977
3978static Thread* count_ct_writes(void* filter_val, void* new_val) {
3979  Atomic::inc(&num_ct_writes);
3980  if (filter_val == NULL) {
3981    Atomic::inc(&num_ct_writes_filtered_in_hr);
3982  } else if (new_val == NULL) {
3983    Atomic::inc(&num_ct_writes_filtered_null);
3984  } else {
3985    if (g1 == NULL) {
3986      g1 = G1CollectedHeap::heap();
3987    }
3988    if ((HeapWord*)new_val < g1->popular_object_boundary()) {
3989      Atomic::inc(&num_ct_writes_filtered_pop);
3990    }
3991  }
3992  if ((num_ct_writes % 1000000) == 0) {
3993    jint num_ct_writes_filtered =
3994      num_ct_writes_filtered_in_hr +
3995      num_ct_writes_filtered_null +
3996      num_ct_writes_filtered_pop;
3997
3998    tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
3999                  "   (%5.2f%% intra-HR, %5.2f%% null, %5.2f%% popular).",
4000                  num_ct_writes,
4001                  100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
4002                  100.0*(float)num_ct_writes_filtered_in_hr/
4003                  (float)num_ct_writes,
4004                  100.0*(float)num_ct_writes_filtered_null/
4005                  (float)num_ct_writes,
4006                  100.0*(float)num_ct_writes_filtered_pop/
4007                  (float)num_ct_writes);
4008  }
4009  return Thread::current();
4010}
4011
4012static address dirty_card_log_enqueue = 0;
4013static u_char* dirty_card_log_enqueue_end = 0;
4014
4015// This gets to assume that o0 contains the object address.
4016static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4017  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4018  CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
4019  MacroAssembler masm(&buf);
4020  address start = masm.pc();
4021
4022  Label not_already_dirty, restart, refill;
4023
4024#ifdef _LP64
4025  masm.srlx(O0, CardTableModRefBS::card_shift, O0);
4026#else
4027  masm.srl(O0, CardTableModRefBS::card_shift, O0);
4028#endif
4029  Address rs(O1, (address)byte_map_base);
4030  masm.load_address(rs); // O1 := <card table base>
4031  masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
4032
4033  masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
4034                      O2, not_already_dirty);
4035  // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
4036  // case, harmless if not.
4037  masm.delayed()->add(O0, O1, O3);
4038
4039  // We didn't take the branch, so we're already dirty: return.
4040  // Use return-from-leaf
4041  masm.retl();
4042  masm.delayed()->nop();
4043
4044  // Not dirty.
4045  masm.bind(not_already_dirty);
4046  // First, dirty it.
4047  masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4048  int dirty_card_q_index_byte_offset =
4049    in_bytes(JavaThread::dirty_card_queue_offset() +
4050             PtrQueue::byte_offset_of_index());
4051  int dirty_card_q_buf_byte_offset =
4052    in_bytes(JavaThread::dirty_card_queue_offset() +
4053             PtrQueue::byte_offset_of_buf());
4054  masm.bind(restart);
4055  masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4056
4057  masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
4058                      L0, refill);
4059  // If the branch is taken, no harm in executing this in the delay slot.
4060  masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4061  masm.sub(L0, oopSize, L0);
4062
4063  masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
4064  // Use return-from-leaf
4065  masm.retl();
4066  masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4067
4068  masm.bind(refill);
4069  address handle_zero =
4070    CAST_FROM_FN_PTR(address,
4071                     &DirtyCardQueueSet::handle_zero_index_for_thread);
4072  // This should be rare enough that we can afford to save all the
4073  // scratch registers that the calling context might be using.
4074  masm.mov(G1_scratch, L3);
4075  masm.mov(G3_scratch, L5);
4076  // We need the value of O3 above (for the write into the buffer), so we
4077  // save and restore it.
4078  masm.mov(O3, L6);
4079  // Since the call will overwrite O7, we save and restore that, as well.
4080  masm.mov(O7, L4);
4081
4082  masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4083  masm.mov(L3, G1_scratch);
4084  masm.mov(L5, G3_scratch);
4085  masm.mov(L6, O3);
4086  masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4087  masm.delayed()->mov(L4, O7);
4088
4089  dirty_card_log_enqueue = start;
4090  dirty_card_log_enqueue_end = masm.pc();
4091  // XXX Should have a guarantee here about not going off the end!
4092  // Does it already do so?  Do an experiment...
4093}
4094
4095static inline void
4096generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4097  if (dirty_card_log_enqueue == 0) {
4098    generate_dirty_card_log_enqueue(byte_map_base);
4099    assert(dirty_card_log_enqueue != 0, "postcondition.");
4100    if (G1SATBPrintStubs) {
4101      tty->print_cr("Generated dirty_card enqueue:");
4102      Disassembler::decode((u_char*)dirty_card_log_enqueue,
4103                           dirty_card_log_enqueue_end,
4104                           tty);
4105    }
4106  }
4107}
4108
4109
4110void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4111
4112  Label filtered;
4113  MacroAssembler* post_filter_masm = this;
4114
4115  if (new_val == G0) return;
4116  if (G1DisablePostBarrier) return;
4117
4118  G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4119  assert(bs->kind() == BarrierSet::G1SATBCT ||
4120         bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4121  if (G1RSBarrierRegionFilter) {
4122    xor3(store_addr, new_val, tmp);
4123#ifdef _LP64
4124    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4125#else
4126    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4127#endif
4128    if (G1PrintCTFilterStats) {
4129      guarantee(tmp->is_global(), "Or stats won't work...");
4130      // This is a sleazy hack: I'm temporarily hijacking G2, which I
4131      // promise to restore.
4132      mov(new_val, G2);
4133      save_frame(0);
4134      mov(tmp, O0);
4135      mov(G2, O1);
4136      // Save G-regs that target may use.
4137      mov(G1, L1);
4138      mov(G2, L2);
4139      mov(G3, L3);
4140      mov(G4, L4);
4141      mov(G5, L5);
4142      call(CAST_FROM_FN_PTR(address, &count_ct_writes));
4143      delayed()->nop();
4144      mov(O0, G2);
4145      // Restore G-regs that target may have used.
4146      mov(L1, G1);
4147      mov(L3, G3);
4148      mov(L4, G4);
4149      mov(L5, G5);
4150      restore(G0, G0, G0);
4151    }
4152    // XXX Should I predict this taken or not?  Does it mattern?
4153    br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4154    delayed()->nop();
4155  }
4156
4157  // Now we decide how to generate the card table write.  If we're
4158  // enqueueing, we call out to a generated function.  Otherwise, we do it
4159  // inline here.
4160
4161  if (G1RSBarrierUseQueue) {
4162    // If the "store_addr" register is an "in" or "local" register, move it to
4163    // a scratch reg so we can pass it as an argument.
4164    bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4165    // Pick a scratch register different from "tmp".
4166    Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4167    // Make sure we use up the delay slot!
4168    if (use_scr) {
4169      post_filter_masm->mov(store_addr, scr);
4170    } else {
4171      post_filter_masm->nop();
4172    }
4173    generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4174    save_frame(0);
4175    call(dirty_card_log_enqueue);
4176    if (use_scr) {
4177      delayed()->mov(scr, O0);
4178    } else {
4179      delayed()->mov(store_addr->after_save(), O0);
4180    }
4181    restore();
4182
4183  } else {
4184
4185#ifdef _LP64
4186    post_filter_masm->srlx(store_addr, CardTableModRefBS::card_shift, store_addr);
4187#else
4188    post_filter_masm->srl(store_addr, CardTableModRefBS::card_shift, store_addr);
4189#endif
4190    assert( tmp != store_addr, "need separate temp reg");
4191    Address rs(tmp, (address)bs->byte_map_base);
4192    load_address(rs);
4193    stb(G0, rs.base(), store_addr);
4194  }
4195
4196  bind(filtered);
4197
4198}
4199
4200#endif  // SERIALGC
4201///////////////////////////////////////////////////////////////////////////////////
4202
4203void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4204  // If we're writing constant NULL, we can skip the write barrier.
4205  if (new_val == G0) return;
4206  CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4207  assert(bs->kind() == BarrierSet::CardTableModRef ||
4208         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4209  card_table_write(bs->byte_map_base, tmp, store_addr);
4210}
4211
4212// Loading values by size and signed-ness
4213void MacroAssembler::load_sized_value(Register s1, RegisterConstant s2, Register d,
4214                                      int size_in_bytes, bool is_signed) {
4215  switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
4216  case ~8:  // fall through:
4217  case  8:  ld_long( s1, s2, d ); break;
4218  case ~4:  ldsw(    s1, s2, d ); break;
4219  case  4:  lduw(    s1, s2, d ); break;
4220  case ~2:  ldsh(    s1, s2, d ); break;
4221  case  2:  lduh(    s1, s2, d ); break;
4222  case ~1:  ldsb(    s1, s2, d ); break;
4223  case  1:  ldub(    s1, s2, d ); break;
4224  default:  ShouldNotReachHere();
4225  }
4226}
4227
4228
4229
4230void MacroAssembler::load_klass(Register src_oop, Register klass) {
4231  // The number of bytes in this code is used by
4232  // MachCallDynamicJavaNode::ret_addr_offset()
4233  // if this changes, change that.
4234  if (UseCompressedOops) {
4235    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4236    decode_heap_oop_not_null(klass);
4237  } else {
4238    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4239  }
4240}
4241
4242void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4243  if (UseCompressedOops) {
4244    assert(dst_oop != klass, "not enough registers");
4245    encode_heap_oop_not_null(klass);
4246    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4247  } else {
4248    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4249  }
4250}
4251
4252void MacroAssembler::store_klass_gap(Register s, Register d) {
4253  if (UseCompressedOops) {
4254    assert(s != d, "not enough registers");
4255    st(s, d, oopDesc::klass_gap_offset_in_bytes());
4256  }
4257}
4258
4259void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
4260  if (UseCompressedOops) {
4261    lduw(s, d, offset);
4262    decode_heap_oop(d);
4263  } else {
4264    ld_ptr(s, d, offset);
4265  }
4266}
4267
4268void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4269   if (UseCompressedOops) {
4270    lduw(s1, s2, d);
4271    decode_heap_oop(d, d);
4272  } else {
4273    ld_ptr(s1, s2, d);
4274  }
4275}
4276
4277void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4278   if (UseCompressedOops) {
4279    lduw(s1, simm13a, d);
4280    decode_heap_oop(d, d);
4281  } else {
4282    ld_ptr(s1, simm13a, d);
4283  }
4284}
4285
4286void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4287  if (UseCompressedOops) {
4288    assert(s1 != d && s2 != d, "not enough registers");
4289    encode_heap_oop(d);
4290    st(d, s1, s2);
4291  } else {
4292    st_ptr(d, s1, s2);
4293  }
4294}
4295
4296void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4297  if (UseCompressedOops) {
4298    assert(s1 != d, "not enough registers");
4299    encode_heap_oop(d);
4300    st(d, s1, simm13a);
4301  } else {
4302    st_ptr(d, s1, simm13a);
4303  }
4304}
4305
4306void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4307  if (UseCompressedOops) {
4308    assert(a.base() != d, "not enough registers");
4309    encode_heap_oop(d);
4310    st(d, a, offset);
4311  } else {
4312    st_ptr(d, a, offset);
4313  }
4314}
4315
4316
4317void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4318  assert (UseCompressedOops, "must be compressed");
4319  assert (Universe::heap() != NULL, "java heap should be initialized");
4320  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4321  verify_oop(src);
4322  if (Universe::narrow_oop_base() == NULL) {
4323    srlx(src, LogMinObjAlignmentInBytes, dst);
4324    return;
4325  }
4326  Label done;
4327  if (src == dst) {
4328    // optimize for frequent case src == dst
4329    bpr(rc_nz, true, Assembler::pt, src, done);
4330    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4331    bind(done);
4332    srlx(src, LogMinObjAlignmentInBytes, dst);
4333  } else {
4334    bpr(rc_z, false, Assembler::pn, src, done);
4335    delayed() -> mov(G0, dst);
4336    // could be moved before branch, and annulate delay,
4337    // but may add some unneeded work decoding null
4338    sub(src, G6_heapbase, dst);
4339    srlx(dst, LogMinObjAlignmentInBytes, dst);
4340    bind(done);
4341  }
4342}
4343
4344
4345void MacroAssembler::encode_heap_oop_not_null(Register r) {
4346  assert (UseCompressedOops, "must be compressed");
4347  assert (Universe::heap() != NULL, "java heap should be initialized");
4348  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4349  verify_oop(r);
4350  if (Universe::narrow_oop_base() != NULL)
4351    sub(r, G6_heapbase, r);
4352  srlx(r, LogMinObjAlignmentInBytes, r);
4353}
4354
4355void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4356  assert (UseCompressedOops, "must be compressed");
4357  assert (Universe::heap() != NULL, "java heap should be initialized");
4358  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4359  verify_oop(src);
4360  if (Universe::narrow_oop_base() == NULL) {
4361    srlx(src, LogMinObjAlignmentInBytes, dst);
4362  } else {
4363    sub(src, G6_heapbase, dst);
4364    srlx(dst, LogMinObjAlignmentInBytes, dst);
4365  }
4366}
4367
4368// Same algorithm as oops.inline.hpp decode_heap_oop.
4369void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4370  assert (UseCompressedOops, "must be compressed");
4371  assert (Universe::heap() != NULL, "java heap should be initialized");
4372  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4373  sllx(src, LogMinObjAlignmentInBytes, dst);
4374  if (Universe::narrow_oop_base() != NULL) {
4375    Label done;
4376    bpr(rc_nz, true, Assembler::pt, dst, done);
4377    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4378    bind(done);
4379  }
4380  verify_oop(dst);
4381}
4382
4383void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4384  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4385  // pd_code_size_limit.
4386  // Also do not verify_oop as this is called by verify_oop.
4387  assert (UseCompressedOops, "must be compressed");
4388  assert (Universe::heap() != NULL, "java heap should be initialized");
4389  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4390  sllx(r, LogMinObjAlignmentInBytes, r);
4391  if (Universe::narrow_oop_base() != NULL)
4392    add(r, G6_heapbase, r);
4393}
4394
4395void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4396  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4397  // pd_code_size_limit.
4398  // Also do not verify_oop as this is called by verify_oop.
4399  assert (UseCompressedOops, "must be compressed");
4400  assert (Universe::heap() != NULL, "java heap should be initialized");
4401  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4402  sllx(src, LogMinObjAlignmentInBytes, dst);
4403  if (Universe::narrow_oop_base() != NULL)
4404    add(dst, G6_heapbase, dst);
4405}
4406
4407void MacroAssembler::reinit_heapbase() {
4408  if (UseCompressedOops) {
4409    // call indirectly to solve generation ordering problem
4410    Address base(G6_heapbase, (address)Universe::narrow_oop_base_addr());
4411    load_ptr_contents(base, G6_heapbase);
4412  }
4413}
4414