assembler_sparc.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_assembler_sparc.cpp.incl"
27
28// Convert the raw encoding form into the form expected by the
29// constructor for Address.
30Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
31  assert(scale == 0, "not supported");
32  RelocationHolder rspec;
33  if (disp_is_oop) {
34    rspec = Relocation::spec_simple(relocInfo::oop_type);
35  }
36
37  Register rindex = as_Register(index);
38  if (rindex != G0) {
39    Address madr(as_Register(base), rindex);
40    madr._rspec = rspec;
41    return madr;
42  } else {
43    Address madr(as_Register(base), disp);
44    madr._rspec = rspec;
45    return madr;
46  }
47}
48
49Address Argument::address_in_frame() const {
50  // Warning: In LP64 mode disp will occupy more than 10 bits, but
51  //          op codes such as ld or ldx, only access disp() to get
52  //          their simm13 argument.
53  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
54  if (is_in())
55    return Address(FP, disp); // In argument.
56  else
57    return Address(SP, disp); // Out argument.
58}
59
60static const char* argumentNames[][2] = {
61  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
62  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
63  {"A(n>9)","P(n>9)"}
64};
65
66const char* Argument::name() const {
67  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
68  int num = number();
69  if (num >= nofArgs)  num = nofArgs - 1;
70  return argumentNames[num][is_in() ? 1 : 0];
71}
72
73void Assembler::print_instruction(int inst) {
74  const char* s;
75  switch (inv_op(inst)) {
76  default:         s = "????"; break;
77  case call_op:    s = "call"; break;
78  case branch_op:
79    switch (inv_op2(inst)) {
80      case bpr_op2:    s = "bpr";  break;
81      case fb_op2:     s = "fb";   break;
82      case fbp_op2:    s = "fbp";  break;
83      case br_op2:     s = "br";   break;
84      case bp_op2:     s = "bp";   break;
85      case cb_op2:     s = "cb";   break;
86      default:         s = "????"; break;
87    }
88  }
89  ::tty->print("%s", s);
90}
91
92
93// Patch instruction inst at offset inst_pos to refer to dest_pos
94// and return the resulting instruction.
95// We should have pcs, not offsets, but since all is relative, it will work out
96// OK.
97int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
98
99  int m; // mask for displacement field
100  int v; // new value for displacement field
101  const int word_aligned_ones = -4;
102  switch (inv_op(inst)) {
103  default: ShouldNotReachHere();
104  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
105  case branch_op:
106    switch (inv_op2(inst)) {
107      case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
108      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
109      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
110      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
111      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
112      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
113      default: ShouldNotReachHere();
114    }
115  }
116  return  inst & ~m  |  v;
117}
118
119// Return the offset of the branch destionation of instruction inst
120// at offset pos.
121// Should have pcs, but since all is relative, it works out.
122int Assembler::branch_destination(int inst, int pos) {
123  int r;
124  switch (inv_op(inst)) {
125  default: ShouldNotReachHere();
126  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
127  case branch_op:
128    switch (inv_op2(inst)) {
129      case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
130      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
131      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
132      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
133      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
134      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
135      default: ShouldNotReachHere();
136    }
137  }
138  return r;
139}
140
141int AbstractAssembler::code_fill_byte() {
142  return 0x00;                  // illegal instruction 0x00000000
143}
144
145Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
146  switch (in) {
147  case rc_z:   return equal;
148  case rc_lez: return lessEqual;
149  case rc_lz:  return less;
150  case rc_nz:  return notEqual;
151  case rc_gz:  return greater;
152  case rc_gez: return greaterEqual;
153  default:
154    ShouldNotReachHere();
155  }
156  return equal;
157}
158
159// Generate a bunch 'o stuff (including v9's
160#ifndef PRODUCT
161void Assembler::test_v9() {
162  add(    G0, G1, G2 );
163  add(    G3,  0, G4 );
164
165  addcc(  G5, G6, G7 );
166  addcc(  I0,  1, I1 );
167  addc(   I2, I3, I4 );
168  addc(   I5, -1, I6 );
169  addccc( I7, L0, L1 );
170  addccc( L2, (1 << 12) - 2, L3 );
171
172  Label lbl1, lbl2, lbl3;
173
174  bind(lbl1);
175
176  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
177  delayed()->nop();
178  bpr( rc_lez, false, pt, L5, lbl1);
179  delayed()->nop();
180
181  fb( f_never,     true, pc() + 4,  relocInfo::none);
182  delayed()->nop();
183  fb( f_notEqual, false, lbl2 );
184  delayed()->nop();
185
186  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
187  delayed()->nop();
188  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
189  delayed()->nop();
190
191  br( equal,  true, pc() + 1024, relocInfo::none);
192  delayed()->nop();
193  br( lessEqual, false, lbl1 );
194  delayed()->nop();
195  br( never, false, lbl1 );
196  delayed()->nop();
197
198  bp( less,               true, icc, pn, pc(), relocInfo::none);
199  delayed()->nop();
200  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
201  delayed()->nop();
202
203  call( pc(), relocInfo::none);
204  delayed()->nop();
205  call( lbl3 );
206  delayed()->nop();
207
208
209  casa(  L6, L7, O0 );
210  casxa( O1, O2, O3, 0 );
211
212  udiv(   O4, O5, O7 );
213  udiv(   G0, (1 << 12) - 1, G1 );
214  sdiv(   G1, G2, G3 );
215  sdiv(   G4, -((1 << 12) - 1), G5 );
216  udivcc( G6, G7, I0 );
217  udivcc( I1, -((1 << 12) - 2), I2 );
218  sdivcc( I3, I4, I5 );
219  sdivcc( I6, -((1 << 12) - 0), I7 );
220
221  done();
222  retry();
223
224  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
225  fsub( FloatRegisterImpl::D, F34, F0, F62 );
226
227  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
228  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
229
230  ftox( FloatRegisterImpl::D, F2, F4 );
231  ftoi( FloatRegisterImpl::Q, F4, F8 );
232
233  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
234
235  fxtof( FloatRegisterImpl::S, F4, F5 );
236  fitof( FloatRegisterImpl::D, F6, F8 );
237
238  fmov( FloatRegisterImpl::Q, F16, F20 );
239  fneg( FloatRegisterImpl::S, F6, F7 );
240  fabs( FloatRegisterImpl::D, F10, F12 );
241
242  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
243  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
244  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
245
246  fsqrt( FloatRegisterImpl::S, F13, F14 );
247
248  flush( L0, L1 );
249  flush( L2, -1 );
250
251  flushw();
252
253  illtrap( (1 << 22) - 2);
254
255  impdep1( 17, (1 << 19) - 1 );
256  impdep2( 3,  0 );
257
258  jmpl( L3, L4, L5 );
259  delayed()->nop();
260  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
261  delayed()->nop();
262
263
264  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
265  ldf(    FloatRegisterImpl::D, O2, -1, F14 );
266
267
268  ldfsr(  O3, O4 );
269  ldfsr(  O5, -1 );
270  ldxfsr( O6, O7 );
271  ldxfsr( I0, -1 );
272
273  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
274  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
275
276  ldsb(  I4, I5, I6 );
277  ldsb(  I7, -1, G0 );
278  ldsh(  G1, G3, G4 );
279  ldsh(  G5, -1, G6 );
280  ldsw(  G7, L0, L1 );
281  ldsw(  L2, -1, L3 );
282  ldub(  L4, L5, L6 );
283  ldub(  L7, -1, O0 );
284  lduh(  O1, O2, O3 );
285  lduh(  O4, -1, O5 );
286  lduw(  O6, O7, G0 );
287  lduw(  G1, -1, G2 );
288  ldx(   G3, G4, G5 );
289  ldx(   G6, -1, G7 );
290  ldd(   I0, I1, I2 );
291  ldd(   I3, -1, I4 );
292
293  ldsba(  I5, I6, 2, I7 );
294  ldsba(  L0, -1, L1 );
295  ldsha(  L2, L3, 3, L4 );
296  ldsha(  L5, -1, L6 );
297  ldswa(  L7, O0, (1 << 8) - 1, O1 );
298  ldswa(  O2, -1, O3 );
299  lduba(  O4, O5, 0, O6 );
300  lduba(  O7, -1, I0 );
301  lduha(  I1, I2, 1, I3 );
302  lduha(  I4, -1, I5 );
303  lduwa(  I6, I7, 2, L0 );
304  lduwa(  L1, -1, L2 );
305  ldxa(   L3, L4, 3, L5 );
306  ldxa(   L6, -1, L7 );
307  ldda(   G0, G1, 4, G2 );
308  ldda(   G3, -1, G4 );
309
310  ldstub(  G5, G6, G7 );
311  ldstub(  O0, -1, O1 );
312
313  ldstuba( O2, O3, 5, O4 );
314  ldstuba( O5, -1, O6 );
315
316  and3(    I0, L0, O0 );
317  and3(    G7, -1, O7 );
318  andcc(   L2, I2, G2 );
319  andcc(   L4, -1, G4 );
320  andn(    I5, I6, I7 );
321  andn(    I6, -1, I7 );
322  andncc(  I5, I6, I7 );
323  andncc(  I7, -1, I6 );
324  or3(     I5, I6, I7 );
325  or3(     I7, -1, I6 );
326  orcc(    I5, I6, I7 );
327  orcc(    I7, -1, I6 );
328  orn(     I5, I6, I7 );
329  orn(     I7, -1, I6 );
330  orncc(   I5, I6, I7 );
331  orncc(   I7, -1, I6 );
332  xor3(    I5, I6, I7 );
333  xor3(    I7, -1, I6 );
334  xorcc(   I5, I6, I7 );
335  xorcc(   I7, -1, I6 );
336  xnor(    I5, I6, I7 );
337  xnor(    I7, -1, I6 );
338  xnorcc(  I5, I6, I7 );
339  xnorcc(  I7, -1, I6 );
340
341  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
342  membar( StoreStore );
343  membar( LoadStore );
344  membar( StoreLoad );
345  membar( LoadLoad );
346  membar( Sync );
347  membar( MemIssue );
348  membar( Lookaside );
349
350  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
351  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
352
353  movcc( overflowClear,  false, icc, I6, L4 );
354  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
355
356  movr( rc_nz, I5, I6, I7 );
357  movr( rc_gz, L1, -1,  L2 );
358
359  mulx(  I5, I6, I7 );
360  mulx(  I7, -1, I6 );
361  sdivx( I5, I6, I7 );
362  sdivx( I7, -1, I6 );
363  udivx( I5, I6, I7 );
364  udivx( I7, -1, I6 );
365
366  umul(   I5, I6, I7 );
367  umul(   I7, -1, I6 );
368  smul(   I5, I6, I7 );
369  smul(   I7, -1, I6 );
370  umulcc( I5, I6, I7 );
371  umulcc( I7, -1, I6 );
372  smulcc( I5, I6, I7 );
373  smulcc( I7, -1, I6 );
374
375  mulscc(   I5, I6, I7 );
376  mulscc(   I7, -1, I6 );
377
378  nop();
379
380
381  popc( G0,  G1);
382  popc( -1, G2);
383
384  prefetch(   L1, L2,    severalReads );
385  prefetch(   L3, -1,    oneRead );
386  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
387  prefetcha(  G2, -1,    oneWrite );
388
389  rett( I7, I7);
390  delayed()->nop();
391  rett( G0, -1, relocInfo::none);
392  delayed()->nop();
393
394  save(    I5, I6, I7 );
395  save(    I7, -1, I6 );
396  restore( I5, I6, I7 );
397  restore( I7, -1, I6 );
398
399  saved();
400  restored();
401
402  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
403
404  sll(  I5, I6, I7 );
405  sll(  I7, 31, I6 );
406  srl(  I5, I6, I7 );
407  srl(  I7,  0, I6 );
408  sra(  I5, I6, I7 );
409  sra(  I7, 30, I6 );
410  sllx( I5, I6, I7 );
411  sllx( I7, 63, I6 );
412  srlx( I5, I6, I7 );
413  srlx( I7,  0, I6 );
414  srax( I5, I6, I7 );
415  srax( I7, 62, I6 );
416
417  sir( -1 );
418
419  stbar();
420
421  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
422  stf(    FloatRegisterImpl::S, F18, I3, -1 );
423
424  stfsr(  L1, L2 );
425  stfsr(  I7, -1 );
426  stxfsr( I6, I5 );
427  stxfsr( L4, -1 );
428
429  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
430  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
431
432  stb(  L5, O2, I7 );
433  stb(  I7, I6, -1 );
434  sth(  L5, O2, I7 );
435  sth(  I7, I6, -1 );
436  stw(  L5, O2, I7 );
437  stw(  I7, I6, -1 );
438  stx(  L5, O2, I7 );
439  stx(  I7, I6, -1 );
440  std(  L5, O2, I7 );
441  std(  I7, I6, -1 );
442
443  stba(  L5, O2, I7, 8 );
444  stba(  I7, I6, -1    );
445  stha(  L5, O2, I7, 9 );
446  stha(  I7, I6, -1    );
447  stwa(  L5, O2, I7, 0 );
448  stwa(  I7, I6, -1    );
449  stxa(  L5, O2, I7, 11 );
450  stxa(  I7, I6, -1     );
451  stda(  L5, O2, I7, 12 );
452  stda(  I7, I6, -1     );
453
454  sub(    I5, I6, I7 );
455  sub(    I7, -1, I6 );
456  subcc(  I5, I6, I7 );
457  subcc(  I7, -1, I6 );
458  subc(   I5, I6, I7 );
459  subc(   I7, -1, I6 );
460  subccc( I5, I6, I7 );
461  subccc( I7, -1, I6 );
462
463  swap( I5, I6, I7 );
464  swap( I7, -1, I6 );
465
466  swapa(   G0, G1, 13, G2 );
467  swapa(   I7, -1,     I6 );
468
469  taddcc(    I5, I6, I7 );
470  taddcc(    I7, -1, I6 );
471  taddcctv(  I5, I6, I7 );
472  taddcctv(  I7, -1, I6 );
473
474  tsubcc(    I5, I6, I7 );
475  tsubcc(    I7, -1, I6 );
476  tsubcctv(  I5, I6, I7 );
477  tsubcctv(  I7, -1, I6 );
478
479  trap( overflowClear, xcc, G0, G1 );
480  trap( lessEqual,     icc, I7, 17 );
481
482  bind(lbl2);
483  bind(lbl3);
484
485  code()->decode();
486}
487
488// Generate a bunch 'o stuff unique to V8
489void Assembler::test_v8_onlys() {
490  Label lbl1;
491
492  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
493  delayed()->nop();
494  cb( cp_never,    true, lbl1);
495  delayed()->nop();
496
497  cpop1(1, 2, 3, 4);
498  cpop2(5, 6, 7, 8);
499
500  ldc( I0, I1, 31);
501  ldc( I2, -1,  0);
502
503  lddc( I4, I4, 30);
504  lddc( I6,  0, 1 );
505
506  ldcsr( L0, L1, 0);
507  ldcsr( L1, (1 << 12) - 1, 17 );
508
509  stc( 31, L4, L5);
510  stc( 30, L6, -(1 << 12) );
511
512  stdc( 0, L7, G0);
513  stdc( 1, G1, 0 );
514
515  stcsr( 16, G2, G3);
516  stcsr( 17, G4, 1 );
517
518  stdcq( 4, G5, G6);
519  stdcq( 5, G7, -1 );
520
521  bind(lbl1);
522
523  code()->decode();
524}
525#endif
526
527// Implementation of MacroAssembler
528
529void MacroAssembler::null_check(Register reg, int offset) {
530  if (needs_explicit_null_check((intptr_t)offset)) {
531    // provoke OS NULL exception if reg = NULL by
532    // accessing M[reg] w/o changing any registers
533    ld_ptr(reg, 0, G0);
534  }
535  else {
536    // nothing to do, (later) access of M[reg + offset]
537    // will provoke OS NULL exception if reg = NULL
538  }
539}
540
541// Ring buffer jumps
542
543#ifndef PRODUCT
544void MacroAssembler::ret(  bool trace )   { if (trace) {
545                                                    mov(I7, O7); // traceable register
546                                                    JMP(O7, 2 * BytesPerInstWord);
547                                                  } else {
548                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
549                                                  }
550                                                }
551
552void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
553                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
554#endif /* PRODUCT */
555
556
557void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
558  assert_not_delayed();
559  // This can only be traceable if r1 & r2 are visible after a window save
560  if (TraceJumps) {
561#ifndef PRODUCT
562    save_frame(0);
563    verify_thread();
564    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
565    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
566    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
567    add(O2, O1, O1);
568
569    add(r1->after_save(), r2->after_save(), O2);
570    set((intptr_t)file, O3);
571    set(line, O4);
572    Label L;
573    // get nearby pc, store jmp target
574    call(L, relocInfo::none);  // No relocation for call to pc+0x8
575    delayed()->st(O2, O1, 0);
576    bind(L);
577
578    // store nearby pc
579    st(O7, O1, sizeof(intptr_t));
580    // store file
581    st(O3, O1, 2*sizeof(intptr_t));
582    // store line
583    st(O4, O1, 3*sizeof(intptr_t));
584    add(O0, 1, O0);
585    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
586    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
587    restore();
588#endif /* PRODUCT */
589  }
590  jmpl(r1, r2, G0);
591}
592void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
593  assert_not_delayed();
594  // This can only be traceable if r1 is visible after a window save
595  if (TraceJumps) {
596#ifndef PRODUCT
597    save_frame(0);
598    verify_thread();
599    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
600    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
601    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
602    add(O2, O1, O1);
603
604    add(r1->after_save(), offset, O2);
605    set((intptr_t)file, O3);
606    set(line, O4);
607    Label L;
608    // get nearby pc, store jmp target
609    call(L, relocInfo::none);  // No relocation for call to pc+0x8
610    delayed()->st(O2, O1, 0);
611    bind(L);
612
613    // store nearby pc
614    st(O7, O1, sizeof(intptr_t));
615    // store file
616    st(O3, O1, 2*sizeof(intptr_t));
617    // store line
618    st(O4, O1, 3*sizeof(intptr_t));
619    add(O0, 1, O0);
620    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
621    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
622    restore();
623#endif /* PRODUCT */
624  }
625  jmp(r1, offset);
626}
627
628// This code sequence is relocatable to any address, even on LP64.
629void MacroAssembler::jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
630  assert_not_delayed();
631  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
632  // variable length instruction streams.
633  patchable_sethi(addrlit, temp);
634  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
635  if (TraceJumps) {
636#ifndef PRODUCT
637    // Must do the add here so relocation can find the remainder of the
638    // value to be relocated.
639    add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
640    save_frame(0);
641    verify_thread();
642    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
643    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
644    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
645    add(O2, O1, O1);
646
647    set((intptr_t)file, O3);
648    set(line, O4);
649    Label L;
650
651    // get nearby pc, store jmp target
652    call(L, relocInfo::none);  // No relocation for call to pc+0x8
653    delayed()->st(a.base()->after_save(), O1, 0);
654    bind(L);
655
656    // store nearby pc
657    st(O7, O1, sizeof(intptr_t));
658    // store file
659    st(O3, O1, 2*sizeof(intptr_t));
660    // store line
661    st(O4, O1, 3*sizeof(intptr_t));
662    add(O0, 1, O0);
663    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
664    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
665    restore();
666    jmpl(a.base(), G0, d);
667#else
668    jmpl(a.base(), a.disp(), d);
669#endif /* PRODUCT */
670  } else {
671    jmpl(a.base(), a.disp(), d);
672  }
673}
674
675void MacroAssembler::jump(AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
676  jumpl(addrlit, temp, G0, offset, file, line);
677}
678
679
680// Convert to C varargs format
681void MacroAssembler::set_varargs( Argument inArg, Register d ) {
682  // spill register-resident args to their memory slots
683  // (SPARC calling convention requires callers to have already preallocated these)
684  // Note that the inArg might in fact be an outgoing argument,
685  // if a leaf routine or stub does some tricky argument shuffling.
686  // This routine must work even though one of the saved arguments
687  // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
688  for (Argument savePtr = inArg;
689       savePtr.is_register();
690       savePtr = savePtr.successor()) {
691    st_ptr(savePtr.as_register(), savePtr.address_in_frame());
692  }
693  // return the address of the first memory slot
694  Address a = inArg.address_in_frame();
695  add(a.base(), a.disp(), d);
696}
697
698// Conditional breakpoint (for assertion checks in assembly code)
699void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
700  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
701}
702
703// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
704void MacroAssembler::breakpoint_trap() {
705  trap(ST_RESERVED_FOR_USER_0);
706}
707
708// flush windows (except current) using flushw instruction if avail.
709void MacroAssembler::flush_windows() {
710  if (VM_Version::v9_instructions_work())  flushw();
711  else                                     flush_windows_trap();
712}
713
714// Write serialization page so VM thread can do a pseudo remote membar
715// We use the current thread pointer to calculate a thread specific
716// offset to write to within the page. This minimizes bus traffic
717// due to cache line collision.
718void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
719  srl(thread, os::get_serialize_page_shift_count(), tmp2);
720  if (Assembler::is_simm13(os::vm_page_size())) {
721    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
722  }
723  else {
724    set((os::vm_page_size() - sizeof(int)), tmp1);
725    and3(tmp2, tmp1, tmp2);
726  }
727  set(os::get_memory_serialize_page(), tmp1);
728  st(G0, tmp1, tmp2);
729}
730
731
732
733void MacroAssembler::enter() {
734  Unimplemented();
735}
736
737void MacroAssembler::leave() {
738  Unimplemented();
739}
740
741void MacroAssembler::mult(Register s1, Register s2, Register d) {
742  if(VM_Version::v9_instructions_work()) {
743    mulx (s1, s2, d);
744  } else {
745    smul (s1, s2, d);
746  }
747}
748
749void MacroAssembler::mult(Register s1, int simm13a, Register d) {
750  if(VM_Version::v9_instructions_work()) {
751    mulx (s1, simm13a, d);
752  } else {
753    smul (s1, simm13a, d);
754  }
755}
756
757
758#ifdef ASSERT
759void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
760  const Register s1 = G3_scratch;
761  const Register s2 = G4_scratch;
762  Label get_psr_test;
763  // Get the condition codes the V8 way.
764  read_ccr_trap(s1);
765  mov(ccr_save, s2);
766  // This is a test of V8 which has icc but not xcc
767  // so mask off the xcc bits
768  and3(s2, 0xf, s2);
769  // Compare condition codes from the V8 and V9 ways.
770  subcc(s2, s1, G0);
771  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
772  delayed()->breakpoint_trap();
773  bind(get_psr_test);
774}
775
776void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
777  const Register s1 = G3_scratch;
778  const Register s2 = G4_scratch;
779  Label set_psr_test;
780  // Write out the saved condition codes the V8 way
781  write_ccr_trap(ccr_save, s1, s2);
782  // Read back the condition codes using the V9 instruction
783  rdccr(s1);
784  mov(ccr_save, s2);
785  // This is a test of V8 which has icc but not xcc
786  // so mask off the xcc bits
787  and3(s2, 0xf, s2);
788  and3(s1, 0xf, s1);
789  // Compare the V8 way with the V9 way.
790  subcc(s2, s1, G0);
791  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
792  delayed()->breakpoint_trap();
793  bind(set_psr_test);
794}
795#else
796#define read_ccr_v8_assert(x)
797#define write_ccr_v8_assert(x)
798#endif // ASSERT
799
800void MacroAssembler::read_ccr(Register ccr_save) {
801  if (VM_Version::v9_instructions_work()) {
802    rdccr(ccr_save);
803    // Test code sequence used on V8.  Do not move above rdccr.
804    read_ccr_v8_assert(ccr_save);
805  } else {
806    read_ccr_trap(ccr_save);
807  }
808}
809
810void MacroAssembler::write_ccr(Register ccr_save) {
811  if (VM_Version::v9_instructions_work()) {
812    // Test code sequence used on V8.  Do not move below wrccr.
813    write_ccr_v8_assert(ccr_save);
814    wrccr(ccr_save);
815  } else {
816    const Register temp_reg1 = G3_scratch;
817    const Register temp_reg2 = G4_scratch;
818    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
819  }
820}
821
822
823// Calls to C land
824
825#ifdef ASSERT
826// a hook for debugging
827static Thread* reinitialize_thread() {
828  return ThreadLocalStorage::thread();
829}
830#else
831#define reinitialize_thread ThreadLocalStorage::thread
832#endif
833
834#ifdef ASSERT
835address last_get_thread = NULL;
836#endif
837
838// call this when G2_thread is not known to be valid
839void MacroAssembler::get_thread() {
840  save_frame(0);                // to avoid clobbering O0
841  mov(G1, L0);                  // avoid clobbering G1
842  mov(G5_method, L1);           // avoid clobbering G5
843  mov(G3, L2);                  // avoid clobbering G3 also
844  mov(G4, L5);                  // avoid clobbering G4
845#ifdef ASSERT
846  AddressLiteral last_get_thread_addrlit(&last_get_thread);
847  set(last_get_thread_addrlit, L3);
848  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
849  st_ptr(L4, L3, 0);
850#endif
851  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
852  delayed()->nop();
853  mov(L0, G1);
854  mov(L1, G5_method);
855  mov(L2, G3);
856  mov(L5, G4);
857  restore(O0, 0, G2_thread);
858}
859
860static Thread* verify_thread_subroutine(Thread* gthread_value) {
861  Thread* correct_value = ThreadLocalStorage::thread();
862  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
863  return correct_value;
864}
865
866void MacroAssembler::verify_thread() {
867  if (VerifyThread) {
868    // NOTE: this chops off the heads of the 64-bit O registers.
869#ifdef CC_INTERP
870    save_frame(0);
871#else
872    // make sure G2_thread contains the right value
873    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
874    mov(G1, L1);                // avoid clobbering G1
875    // G2 saved below
876    mov(G3, L3);                // avoid clobbering G3
877    mov(G4, L4);                // avoid clobbering G4
878    mov(G5_method, L5);         // avoid clobbering G5_method
879#endif /* CC_INTERP */
880#if defined(COMPILER2) && !defined(_LP64)
881    // Save & restore possible 64-bit Long arguments in G-regs
882    srlx(G1,32,L0);
883    srlx(G4,32,L6);
884#endif
885    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
886    delayed()->mov(G2_thread, O0);
887
888    mov(L1, G1);                // Restore G1
889    // G2 restored below
890    mov(L3, G3);                // restore G3
891    mov(L4, G4);                // restore G4
892    mov(L5, G5_method);         // restore G5_method
893#if defined(COMPILER2) && !defined(_LP64)
894    // Save & restore possible 64-bit Long arguments in G-regs
895    sllx(L0,32,G2);             // Move old high G1 bits high in G2
896    sllx(G1, 0,G1);             // Clear current high G1 bits
897    or3 (G1,G2,G1);             // Recover 64-bit G1
898    sllx(L6,32,G2);             // Move old high G4 bits high in G2
899    sllx(G4, 0,G4);             // Clear current high G4 bits
900    or3 (G4,G2,G4);             // Recover 64-bit G4
901#endif
902    restore(O0, 0, G2_thread);
903  }
904}
905
906
907void MacroAssembler::save_thread(const Register thread_cache) {
908  verify_thread();
909  if (thread_cache->is_valid()) {
910    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
911    mov(G2_thread, thread_cache);
912  }
913  if (VerifyThread) {
914    // smash G2_thread, as if the VM were about to anyway
915    set(0x67676767, G2_thread);
916  }
917}
918
919
920void MacroAssembler::restore_thread(const Register thread_cache) {
921  if (thread_cache->is_valid()) {
922    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
923    mov(thread_cache, G2_thread);
924    verify_thread();
925  } else {
926    // do it the slow way
927    get_thread();
928  }
929}
930
931
932// %%% maybe get rid of [re]set_last_Java_frame
933void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
934  assert_not_delayed();
935  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
936                           JavaFrameAnchor::flags_offset());
937  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
938
939  // Always set last_Java_pc and flags first because once last_Java_sp is visible
940  // has_last_Java_frame is true and users will look at the rest of the fields.
941  // (Note: flags should always be zero before we get here so doesn't need to be set.)
942
943#ifdef ASSERT
944  // Verify that flags was zeroed on return to Java
945  Label PcOk;
946  save_frame(0);                // to avoid clobbering O0
947  ld_ptr(pc_addr, L0);
948  tst(L0);
949#ifdef _LP64
950  brx(Assembler::zero, false, Assembler::pt, PcOk);
951#else
952  br(Assembler::zero, false, Assembler::pt, PcOk);
953#endif // _LP64
954  delayed() -> nop();
955  stop("last_Java_pc not zeroed before leaving Java");
956  bind(PcOk);
957
958  // Verify that flags was zeroed on return to Java
959  Label FlagsOk;
960  ld(flags, L0);
961  tst(L0);
962  br(Assembler::zero, false, Assembler::pt, FlagsOk);
963  delayed() -> restore();
964  stop("flags not zeroed before leaving Java");
965  bind(FlagsOk);
966#endif /* ASSERT */
967  //
968  // When returning from calling out from Java mode the frame anchor's last_Java_pc
969  // will always be set to NULL. It is set here so that if we are doing a call to
970  // native (not VM) that we capture the known pc and don't have to rely on the
971  // native call having a standard frame linkage where we can find the pc.
972
973  if (last_Java_pc->is_valid()) {
974    st_ptr(last_Java_pc, pc_addr);
975  }
976
977#ifdef _LP64
978#ifdef ASSERT
979  // Make sure that we have an odd stack
980  Label StackOk;
981  andcc(last_java_sp, 0x01, G0);
982  br(Assembler::notZero, false, Assembler::pt, StackOk);
983  delayed() -> nop();
984  stop("Stack Not Biased in set_last_Java_frame");
985  bind(StackOk);
986#endif // ASSERT
987  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
988  add( last_java_sp, STACK_BIAS, G4_scratch );
989  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
990#else
991  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
992#endif // _LP64
993}
994
995void MacroAssembler::reset_last_Java_frame(void) {
996  assert_not_delayed();
997
998  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
999  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1000  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1001
1002#ifdef ASSERT
1003  // check that it WAS previously set
1004#ifdef CC_INTERP
1005    save_frame(0);
1006#else
1007    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1008#endif /* CC_INTERP */
1009    ld_ptr(sp_addr, L0);
1010    tst(L0);
1011    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1012    restore();
1013#endif // ASSERT
1014
1015  st_ptr(G0, sp_addr);
1016  // Always return last_Java_pc to zero
1017  st_ptr(G0, pc_addr);
1018  // Always null flags after return to Java
1019  st(G0, flags);
1020}
1021
1022
1023void MacroAssembler::call_VM_base(
1024  Register        oop_result,
1025  Register        thread_cache,
1026  Register        last_java_sp,
1027  address         entry_point,
1028  int             number_of_arguments,
1029  bool            check_exceptions)
1030{
1031  assert_not_delayed();
1032
1033  // determine last_java_sp register
1034  if (!last_java_sp->is_valid()) {
1035    last_java_sp = SP;
1036  }
1037  // debugging support
1038  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1039
1040  // 64-bit last_java_sp is biased!
1041  set_last_Java_frame(last_java_sp, noreg);
1042  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1043  save_thread(thread_cache);
1044  // do the call
1045  call(entry_point, relocInfo::runtime_call_type);
1046  if (!VerifyThread)
1047    delayed()->mov(G2_thread, O0);  // pass thread as first argument
1048  else
1049    delayed()->nop();             // (thread already passed)
1050  restore_thread(thread_cache);
1051  reset_last_Java_frame();
1052
1053  // check for pending exceptions. use Gtemp as scratch register.
1054  if (check_exceptions) {
1055    check_and_forward_exception(Gtemp);
1056  }
1057
1058  // get oop result if there is one and reset the value in the thread
1059  if (oop_result->is_valid()) {
1060    get_vm_result(oop_result);
1061  }
1062}
1063
1064void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1065{
1066  Label L;
1067
1068  check_and_handle_popframe(scratch_reg);
1069  check_and_handle_earlyret(scratch_reg);
1070
1071  Address exception_addr(G2_thread, Thread::pending_exception_offset());
1072  ld_ptr(exception_addr, scratch_reg);
1073  br_null(scratch_reg,false,pt,L);
1074  delayed()->nop();
1075  // we use O7 linkage so that forward_exception_entry has the issuing PC
1076  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1077  delayed()->nop();
1078  bind(L);
1079}
1080
1081
1082void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1083}
1084
1085
1086void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1087}
1088
1089
1090void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1091  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1092}
1093
1094
1095void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1096  // O0 is reserved for the thread
1097  mov(arg_1, O1);
1098  call_VM(oop_result, entry_point, 1, check_exceptions);
1099}
1100
1101
1102void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1103  // O0 is reserved for the thread
1104  mov(arg_1, O1);
1105  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1106  call_VM(oop_result, entry_point, 2, check_exceptions);
1107}
1108
1109
1110void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1111  // O0 is reserved for the thread
1112  mov(arg_1, O1);
1113  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1114  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1115  call_VM(oop_result, entry_point, 3, check_exceptions);
1116}
1117
1118
1119
1120// Note: The following call_VM overloadings are useful when a "save"
1121// has already been performed by a stub, and the last Java frame is
1122// the previous one.  In that case, last_java_sp must be passed as FP
1123// instead of SP.
1124
1125
1126void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1127  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1128}
1129
1130
1131void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1132  // O0 is reserved for the thread
1133  mov(arg_1, O1);
1134  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1135}
1136
1137
1138void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1139  // O0 is reserved for the thread
1140  mov(arg_1, O1);
1141  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1142  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1143}
1144
1145
1146void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1147  // O0 is reserved for the thread
1148  mov(arg_1, O1);
1149  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1150  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1151  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1152}
1153
1154
1155
1156void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1157  assert_not_delayed();
1158  save_thread(thread_cache);
1159  // do the call
1160  call(entry_point, relocInfo::runtime_call_type);
1161  delayed()->nop();
1162  restore_thread(thread_cache);
1163}
1164
1165
1166void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1167  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1168}
1169
1170
1171void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1172  mov(arg_1, O0);
1173  call_VM_leaf(thread_cache, entry_point, 1);
1174}
1175
1176
1177void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1178  mov(arg_1, O0);
1179  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1180  call_VM_leaf(thread_cache, entry_point, 2);
1181}
1182
1183
1184void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1185  mov(arg_1, O0);
1186  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1187  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1188  call_VM_leaf(thread_cache, entry_point, 3);
1189}
1190
1191
1192void MacroAssembler::get_vm_result(Register oop_result) {
1193  verify_thread();
1194  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1195  ld_ptr(    vm_result_addr, oop_result);
1196  st_ptr(G0, vm_result_addr);
1197  verify_oop(oop_result);
1198}
1199
1200
1201void MacroAssembler::get_vm_result_2(Register oop_result) {
1202  verify_thread();
1203  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1204  ld_ptr(vm_result_addr_2, oop_result);
1205  st_ptr(G0, vm_result_addr_2);
1206  verify_oop(oop_result);
1207}
1208
1209
1210// We require that C code which does not return a value in vm_result will
1211// leave it undisturbed.
1212void MacroAssembler::set_vm_result(Register oop_result) {
1213  verify_thread();
1214  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1215  verify_oop(oop_result);
1216
1217# ifdef ASSERT
1218    // Check that we are not overwriting any other oop.
1219#ifdef CC_INTERP
1220    save_frame(0);
1221#else
1222    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1223#endif /* CC_INTERP */
1224    ld_ptr(vm_result_addr, L0);
1225    tst(L0);
1226    restore();
1227    breakpoint_trap(notZero, Assembler::ptr_cc);
1228    // }
1229# endif
1230
1231  st_ptr(oop_result, vm_result_addr);
1232}
1233
1234
1235void MacroAssembler::card_table_write(jbyte* byte_map_base,
1236                                      Register tmp, Register obj) {
1237#ifdef _LP64
1238  srlx(obj, CardTableModRefBS::card_shift, obj);
1239#else
1240  srl(obj, CardTableModRefBS::card_shift, obj);
1241#endif
1242  assert(tmp != obj, "need separate temp reg");
1243  set((address) byte_map_base, tmp);
1244  stb(G0, tmp, obj);
1245}
1246
1247
1248void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1249  address save_pc;
1250  int shiftcnt;
1251#ifdef _LP64
1252# ifdef CHECK_DELAY
1253  assert_not_delayed((char*) "cannot put two instructions in delay slot");
1254# endif
1255  v9_dep();
1256  save_pc = pc();
1257
1258  int msb32 = (int) (addrlit.value() >> 32);
1259  int lsb32 = (int) (addrlit.value());
1260
1261  if (msb32 == 0 && lsb32 >= 0) {
1262    Assembler::sethi(lsb32, d, addrlit.rspec());
1263  }
1264  else if (msb32 == -1) {
1265    Assembler::sethi(~lsb32, d, addrlit.rspec());
1266    xor3(d, ~low10(~0), d);
1267  }
1268  else {
1269    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
1270    if (msb32 & 0x3ff)                            // Any bits?
1271      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
1272    if (lsb32 & 0xFFFFFC00) {                     // done?
1273      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
1274        sllx(d, 12, d);                           // Make room for next 12 bits
1275        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
1276        shiftcnt = 0;                             // We already shifted
1277      }
1278      else
1279        shiftcnt = 12;
1280      if ((lsb32 >> 10) & 0x3ff) {
1281        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
1282        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
1283        shiftcnt = 0;
1284      }
1285      else
1286        shiftcnt = 10;
1287      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
1288    }
1289    else
1290      sllx(d, 32, d);
1291  }
1292  // Pad out the instruction sequence so it can be patched later.
1293  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1294                           addrlit.rtype() != relocInfo::runtime_call_type)) {
1295    while (pc() < (save_pc + (7 * BytesPerInstWord)))
1296      nop();
1297  }
1298#else
1299  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1300#endif
1301}
1302
1303
1304void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1305  internal_sethi(addrlit, d, false);
1306}
1307
1308
1309void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1310  internal_sethi(addrlit, d, true);
1311}
1312
1313
1314int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1315#ifdef _LP64
1316  if (worst_case) return 7;
1317  intptr_t iaddr = (intptr_t)a;
1318  int hi32 = (int)(iaddr >> 32);
1319  int lo32 = (int)(iaddr);
1320  int inst_count;
1321  if (hi32 == 0 && lo32 >= 0)
1322    inst_count = 1;
1323  else if (hi32 == -1)
1324    inst_count = 2;
1325  else {
1326    inst_count = 2;
1327    if ( hi32 & 0x3ff )
1328      inst_count++;
1329    if ( lo32 & 0xFFFFFC00 ) {
1330      if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1331      if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1332    }
1333  }
1334  return BytesPerInstWord * inst_count;
1335#else
1336  return BytesPerInstWord;
1337#endif
1338}
1339
1340int MacroAssembler::worst_case_size_of_set() {
1341  return size_of_sethi(NULL, true) + 1;
1342}
1343
1344
1345void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1346  intptr_t value = addrlit.value();
1347
1348  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1349    // can optimize
1350    if (-4096 <= value && value <= 4095) {
1351      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1352      return;
1353    }
1354    if (inv_hi22(hi22(value)) == value) {
1355      sethi(addrlit, d);
1356      return;
1357    }
1358  }
1359  assert_not_delayed((char*) "cannot put two instructions in delay slot");
1360  internal_sethi(addrlit, d, ForceRelocatable);
1361  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1362    add(d, addrlit.low10(), d, addrlit.rspec());
1363  }
1364}
1365
1366void MacroAssembler::set(const AddressLiteral& al, Register d) {
1367  internal_set(al, d, false);
1368}
1369
1370void MacroAssembler::set(intptr_t value, Register d) {
1371  AddressLiteral al(value);
1372  internal_set(al, d, false);
1373}
1374
1375void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1376  AddressLiteral al(addr, rspec);
1377  internal_set(al, d, false);
1378}
1379
1380void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1381  internal_set(al, d, true);
1382}
1383
1384void MacroAssembler::patchable_set(intptr_t value, Register d) {
1385  AddressLiteral al(value);
1386  internal_set(al, d, true);
1387}
1388
1389
1390void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1391  assert_not_delayed();
1392  v9_dep();
1393
1394  int hi = (int)(value >> 32);
1395  int lo = (int)(value & ~0);
1396  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1397  if (Assembler::is_simm13(lo) && value == lo) {
1398    or3(G0, lo, d);
1399  } else if (hi == 0) {
1400    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1401    if (low10(lo) != 0)
1402      or3(d, low10(lo), d);
1403  }
1404  else if (hi == -1) {
1405    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1406    xor3(d, low10(lo) ^ ~low10(~0), d);
1407  }
1408  else if (lo == 0) {
1409    if (Assembler::is_simm13(hi)) {
1410      or3(G0, hi, d);
1411    } else {
1412      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1413      if (low10(hi) != 0)
1414        or3(d, low10(hi), d);
1415    }
1416    sllx(d, 32, d);
1417  }
1418  else {
1419    Assembler::sethi(hi, tmp);
1420    Assembler::sethi(lo,   d); // macro assembler version sign-extends
1421    if (low10(hi) != 0)
1422      or3 (tmp, low10(hi), tmp);
1423    if (low10(lo) != 0)
1424      or3 (  d, low10(lo),   d);
1425    sllx(tmp, 32, tmp);
1426    or3 (d, tmp, d);
1427  }
1428}
1429
1430// compute size in bytes of sparc frame, given
1431// number of extraWords
1432int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1433
1434  int nWords = frame::memory_parameter_word_sp_offset;
1435
1436  nWords += extraWords;
1437
1438  if (nWords & 1) ++nWords; // round up to double-word
1439
1440  return nWords * BytesPerWord;
1441}
1442
1443
1444// save_frame: given number of "extra" words in frame,
1445// issue approp. save instruction (p 200, v8 manual)
1446
1447void MacroAssembler::save_frame(int extraWords = 0) {
1448  int delta = -total_frame_size_in_bytes(extraWords);
1449  if (is_simm13(delta)) {
1450    save(SP, delta, SP);
1451  } else {
1452    set(delta, G3_scratch);
1453    save(SP, G3_scratch, SP);
1454  }
1455}
1456
1457
1458void MacroAssembler::save_frame_c1(int size_in_bytes) {
1459  if (is_simm13(-size_in_bytes)) {
1460    save(SP, -size_in_bytes, SP);
1461  } else {
1462    set(-size_in_bytes, G3_scratch);
1463    save(SP, G3_scratch, SP);
1464  }
1465}
1466
1467
1468void MacroAssembler::save_frame_and_mov(int extraWords,
1469                                        Register s1, Register d1,
1470                                        Register s2, Register d2) {
1471  assert_not_delayed();
1472
1473  // The trick here is to use precisely the same memory word
1474  // that trap handlers also use to save the register.
1475  // This word cannot be used for any other purpose, but
1476  // it works fine to save the register's value, whether or not
1477  // an interrupt flushes register windows at any given moment!
1478  Address s1_addr;
1479  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1480    s1_addr = s1->address_in_saved_window();
1481    st_ptr(s1, s1_addr);
1482  }
1483
1484  Address s2_addr;
1485  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1486    s2_addr = s2->address_in_saved_window();
1487    st_ptr(s2, s2_addr);
1488  }
1489
1490  save_frame(extraWords);
1491
1492  if (s1_addr.base() == SP) {
1493    ld_ptr(s1_addr.after_save(), d1);
1494  } else if (s1->is_valid()) {
1495    mov(s1->after_save(), d1);
1496  }
1497
1498  if (s2_addr.base() == SP) {
1499    ld_ptr(s2_addr.after_save(), d2);
1500  } else if (s2->is_valid()) {
1501    mov(s2->after_save(), d2);
1502  }
1503}
1504
1505
1506AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1507  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1508  int oop_index = oop_recorder()->allocate_index(obj);
1509  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1510}
1511
1512
1513AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1514  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1515  int oop_index = oop_recorder()->find_index(obj);
1516  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1517}
1518
1519void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1520  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1521  int oop_index = oop_recorder()->find_index(obj);
1522  RelocationHolder rspec = oop_Relocation::spec(oop_index);
1523
1524  assert_not_delayed();
1525  // Relocation with special format (see relocInfo_sparc.hpp).
1526  relocate(rspec, 1);
1527  // Assembler::sethi(0x3fffff, d);
1528  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1529  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1530  add(d, 0x3ff, d);
1531
1532}
1533
1534
1535void MacroAssembler::align(int modulus) {
1536  while (offset() % modulus != 0) nop();
1537}
1538
1539
1540void MacroAssembler::safepoint() {
1541  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1542}
1543
1544
1545void RegistersForDebugging::print(outputStream* s) {
1546  int j;
1547  for ( j = 0;  j < 8;  ++j )
1548    if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1549    else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1550  s->cr();
1551
1552  for ( j = 0;  j < 8;  ++j )
1553    s->print_cr("l%d = 0x%.16lx", j, l[j]);
1554  s->cr();
1555
1556  for ( j = 0;  j < 8;  ++j )
1557    if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1558    else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1559  s->cr();
1560
1561  for ( j = 0;  j < 8;  ++j )
1562    s->print_cr("g%d = 0x%.16lx", j, g[j]);
1563  s->cr();
1564
1565  // print out floats with compression
1566  for (j = 0; j < 32; ) {
1567    jfloat val = f[j];
1568    int last = j;
1569    for ( ;  last+1 < 32;  ++last ) {
1570      char b1[1024], b2[1024];
1571      sprintf(b1, "%f", val);
1572      sprintf(b2, "%f", f[last+1]);
1573      if (strcmp(b1, b2))
1574        break;
1575    }
1576    s->print("f%d", j);
1577    if ( j != last )  s->print(" - f%d", last);
1578    s->print(" = %f", val);
1579    s->fill_to(25);
1580    s->print_cr(" (0x%x)", val);
1581    j = last + 1;
1582  }
1583  s->cr();
1584
1585  // and doubles (evens only)
1586  for (j = 0; j < 32; ) {
1587    jdouble val = d[j];
1588    int last = j;
1589    for ( ;  last+1 < 32;  ++last ) {
1590      char b1[1024], b2[1024];
1591      sprintf(b1, "%f", val);
1592      sprintf(b2, "%f", d[last+1]);
1593      if (strcmp(b1, b2))
1594        break;
1595    }
1596    s->print("d%d", 2 * j);
1597    if ( j != last )  s->print(" - d%d", last);
1598    s->print(" = %f", val);
1599    s->fill_to(30);
1600    s->print("(0x%x)", *(int*)&val);
1601    s->fill_to(42);
1602    s->print_cr("(0x%x)", *(1 + (int*)&val));
1603    j = last + 1;
1604  }
1605  s->cr();
1606}
1607
1608void RegistersForDebugging::save_registers(MacroAssembler* a) {
1609  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1610  a->flush_windows();
1611  int i;
1612  for (i = 0; i < 8; ++i) {
1613    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1614    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1615    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1616    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1617  }
1618  for (i = 0;  i < 32; ++i) {
1619    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1620  }
1621  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1622    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1623  }
1624}
1625
1626void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1627  for (int i = 1; i < 8;  ++i) {
1628    a->ld_ptr(r, g_offset(i), as_gRegister(i));
1629  }
1630  for (int j = 0; j < 32; ++j) {
1631    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1632  }
1633  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1634    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1635  }
1636}
1637
1638
1639// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1640void MacroAssembler::push_fTOS() {
1641  // %%%%%% need to implement this
1642}
1643
1644// pops double TOS element from CPU stack and pushes on FPU stack
1645void MacroAssembler::pop_fTOS() {
1646  // %%%%%% need to implement this
1647}
1648
1649void MacroAssembler::empty_FPU_stack() {
1650  // %%%%%% need to implement this
1651}
1652
1653void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1654  // plausibility check for oops
1655  if (!VerifyOops) return;
1656
1657  if (reg == G0)  return;       // always NULL, which is always an oop
1658
1659  char buffer[64];
1660#ifdef COMPILER1
1661  if (CommentedAssembly) {
1662    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1663    block_comment(buffer);
1664  }
1665#endif
1666
1667  int len = strlen(file) + strlen(msg) + 1 + 4;
1668  sprintf(buffer, "%d", line);
1669  len += strlen(buffer);
1670  sprintf(buffer, " at offset %d ", offset());
1671  len += strlen(buffer);
1672  char * real_msg = new char[len];
1673  sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1674
1675  // Call indirectly to solve generation ordering problem
1676  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1677
1678  // Make some space on stack above the current register window.
1679  // Enough to hold 8 64-bit registers.
1680  add(SP,-8*8,SP);
1681
1682  // Save some 64-bit registers; a normal 'save' chops the heads off
1683  // of 64-bit longs in the 32-bit build.
1684  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1685  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1686  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1687  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1688
1689  set((intptr_t)real_msg, O1);
1690  // Load address to call to into O7
1691  load_ptr_contents(a, O7);
1692  // Register call to verify_oop_subroutine
1693  callr(O7, G0);
1694  delayed()->nop();
1695  // recover frame size
1696  add(SP, 8*8,SP);
1697}
1698
1699void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1700  // plausibility check for oops
1701  if (!VerifyOops) return;
1702
1703  char buffer[64];
1704  sprintf(buffer, "%d", line);
1705  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1706  sprintf(buffer, " at SP+%d ", addr.disp());
1707  len += strlen(buffer);
1708  char * real_msg = new char[len];
1709  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1710
1711  // Call indirectly to solve generation ordering problem
1712  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1713
1714  // Make some space on stack above the current register window.
1715  // Enough to hold 8 64-bit registers.
1716  add(SP,-8*8,SP);
1717
1718  // Save some 64-bit registers; a normal 'save' chops the heads off
1719  // of 64-bit longs in the 32-bit build.
1720  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1721  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1722  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1723  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1724
1725  set((intptr_t)real_msg, O1);
1726  // Load address to call to into O7
1727  load_ptr_contents(a, O7);
1728  // Register call to verify_oop_subroutine
1729  callr(O7, G0);
1730  delayed()->nop();
1731  // recover frame size
1732  add(SP, 8*8,SP);
1733}
1734
1735// side-door communication with signalHandler in os_solaris.cpp
1736address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1737
1738// This macro is expanded just once; it creates shared code.  Contract:
1739// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1740// registers, including flags.  May not use a register 'save', as this blows
1741// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1742// call.
1743void MacroAssembler::verify_oop_subroutine() {
1744  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1745
1746  // Leaf call; no frame.
1747  Label succeed, fail, null_or_fail;
1748
1749  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1750  // O0 is now the oop to be checked.  O7 is the return address.
1751  Register O0_obj = O0;
1752
1753  // Save some more registers for temps.
1754  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1755  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1756  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1757  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1758
1759  // Save flags
1760  Register O5_save_flags = O5;
1761  rdccr( O5_save_flags );
1762
1763  { // count number of verifies
1764    Register O2_adr   = O2;
1765    Register O3_accum = O3;
1766    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1767  }
1768
1769  Register O2_mask = O2;
1770  Register O3_bits = O3;
1771  Register O4_temp = O4;
1772
1773  // mark lower end of faulting range
1774  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1775  _verify_oop_implicit_branch[0] = pc();
1776
1777  // We can't check the mark oop because it could be in the process of
1778  // locking or unlocking while this is running.
1779  set(Universe::verify_oop_mask (), O2_mask);
1780  set(Universe::verify_oop_bits (), O3_bits);
1781
1782  // assert((obj & oop_mask) == oop_bits);
1783  and3(O0_obj, O2_mask, O4_temp);
1784  cmp(O4_temp, O3_bits);
1785  brx(notEqual, false, pn, null_or_fail);
1786  delayed()->nop();
1787
1788  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1789    // the null_or_fail case is useless; must test for null separately
1790    br_null(O0_obj, false, pn, succeed);
1791    delayed()->nop();
1792  }
1793
1794  // Check the klassOop of this object for being in the right area of memory.
1795  // Cannot do the load in the delay above slot in case O0 is null
1796  load_klass(O0_obj, O0_obj);
1797  // assert((klass & klass_mask) == klass_bits);
1798  if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1799    set(Universe::verify_klass_mask(), O2_mask);
1800  if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1801    set(Universe::verify_klass_bits(), O3_bits);
1802  and3(O0_obj, O2_mask, O4_temp);
1803  cmp(O4_temp, O3_bits);
1804  brx(notEqual, false, pn, fail);
1805  delayed()->nop();
1806  // Check the klass's klass
1807  load_klass(O0_obj, O0_obj);
1808  and3(O0_obj, O2_mask, O4_temp);
1809  cmp(O4_temp, O3_bits);
1810  brx(notEqual, false, pn, fail);
1811  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1812
1813  // mark upper end of faulting range
1814  _verify_oop_implicit_branch[1] = pc();
1815
1816  //-----------------------
1817  // all tests pass
1818  bind(succeed);
1819
1820  // Restore prior 64-bit registers
1821  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1822  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1823  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1824  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1825  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1826  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1827
1828  retl();                       // Leaf return; restore prior O7 in delay slot
1829  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1830
1831  //-----------------------
1832  bind(null_or_fail);           // nulls are less common but OK
1833  br_null(O0_obj, false, pt, succeed);
1834  delayed()->wrccr( O5_save_flags ); // Restore CCR's
1835
1836  //-----------------------
1837  // report failure:
1838  bind(fail);
1839  _verify_oop_implicit_branch[2] = pc();
1840
1841  wrccr( O5_save_flags ); // Restore CCR's
1842
1843  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1844
1845  // stop_subroutine expects message pointer in I1.
1846  mov(I1, O1);
1847
1848  // Restore prior 64-bit registers
1849  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1850  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1851  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1852  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1853  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1854  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1855
1856  // factor long stop-sequence into subroutine to save space
1857  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1858
1859  // call indirectly to solve generation ordering problem
1860  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1861  load_ptr_contents(al, O5);
1862  jmpl(O5, 0, O7);
1863  delayed()->nop();
1864}
1865
1866
1867void MacroAssembler::stop(const char* msg) {
1868  // save frame first to get O7 for return address
1869  // add one word to size in case struct is odd number of words long
1870  // It must be doubleword-aligned for storing doubles into it.
1871
1872    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1873
1874    // stop_subroutine expects message pointer in I1.
1875    set((intptr_t)msg, O1);
1876
1877    // factor long stop-sequence into subroutine to save space
1878    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1879
1880    // call indirectly to solve generation ordering problem
1881    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1882    load_ptr_contents(a, O5);
1883    jmpl(O5, 0, O7);
1884    delayed()->nop();
1885
1886    breakpoint_trap();   // make stop actually stop rather than writing
1887                         // unnoticeable results in the output files.
1888
1889    // restore(); done in callee to save space!
1890}
1891
1892
1893void MacroAssembler::warn(const char* msg) {
1894  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1895  RegistersForDebugging::save_registers(this);
1896  mov(O0, L0);
1897  set((intptr_t)msg, O0);
1898  call( CAST_FROM_FN_PTR(address, warning) );
1899  delayed()->nop();
1900//  ret();
1901//  delayed()->restore();
1902  RegistersForDebugging::restore_registers(this, L0);
1903  restore();
1904}
1905
1906
1907void MacroAssembler::untested(const char* what) {
1908  // We must be able to turn interactive prompting off
1909  // in order to run automated test scripts on the VM
1910  // Use the flag ShowMessageBoxOnError
1911
1912  char* b = new char[1024];
1913  sprintf(b, "untested: %s", what);
1914
1915  if ( ShowMessageBoxOnError )   stop(b);
1916  else                           warn(b);
1917}
1918
1919
1920void MacroAssembler::stop_subroutine() {
1921  RegistersForDebugging::save_registers(this);
1922
1923  // for the sake of the debugger, stick a PC on the current frame
1924  // (this assumes that the caller has performed an extra "save")
1925  mov(I7, L7);
1926  add(O7, -7 * BytesPerInt, I7);
1927
1928  save_frame(); // one more save to free up another O7 register
1929  mov(I0, O1); // addr of reg save area
1930
1931  // We expect pointer to message in I1. Caller must set it up in O1
1932  mov(I1, O0); // get msg
1933  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1934  delayed()->nop();
1935
1936  restore();
1937
1938  RegistersForDebugging::restore_registers(this, O0);
1939
1940  save_frame(0);
1941  call(CAST_FROM_FN_PTR(address,breakpoint));
1942  delayed()->nop();
1943  restore();
1944
1945  mov(L7, I7);
1946  retl();
1947  delayed()->restore(); // see stop above
1948}
1949
1950
1951void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1952  if ( ShowMessageBoxOnError ) {
1953      JavaThreadState saved_state = JavaThread::current()->thread_state();
1954      JavaThread::current()->set_thread_state(_thread_in_vm);
1955      {
1956        // In order to get locks work, we need to fake a in_VM state
1957        ttyLocker ttyl;
1958        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1959        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1960          ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1961        }
1962        if (os::message_box(msg, "Execution stopped, print registers?"))
1963          regs->print(::tty);
1964      }
1965      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1966  }
1967  else
1968     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1969  assert(false, "error");
1970}
1971
1972
1973#ifndef PRODUCT
1974void MacroAssembler::test() {
1975  ResourceMark rm;
1976
1977  CodeBuffer cb("test", 10000, 10000);
1978  MacroAssembler* a = new MacroAssembler(&cb);
1979  VM_Version::allow_all();
1980  a->test_v9();
1981  a->test_v8_onlys();
1982  VM_Version::revert();
1983
1984  StubRoutines::Sparc::test_stop_entry()();
1985}
1986#endif
1987
1988
1989void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1990  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1991  Label no_extras;
1992  br( negative, true, pt, no_extras ); // if neg, clear reg
1993  delayed()->set(0, Rresult);          // annuled, so only if taken
1994  bind( no_extras );
1995}
1996
1997
1998void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1999#ifdef _LP64
2000  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2001#else
2002  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2003#endif
2004  bclr(1, Rresult);
2005  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2006}
2007
2008
2009void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2010  calc_frame_size(Rextra_words, Rresult);
2011  neg(Rresult);
2012  save(SP, Rresult, SP);
2013}
2014
2015
2016// ---------------------------------------------------------
2017Assembler::RCondition cond2rcond(Assembler::Condition c) {
2018  switch (c) {
2019    /*case zero: */
2020    case Assembler::equal:        return Assembler::rc_z;
2021    case Assembler::lessEqual:    return Assembler::rc_lez;
2022    case Assembler::less:         return Assembler::rc_lz;
2023    /*case notZero:*/
2024    case Assembler::notEqual:     return Assembler::rc_nz;
2025    case Assembler::greater:      return Assembler::rc_gz;
2026    case Assembler::greaterEqual: return Assembler::rc_gez;
2027  }
2028  ShouldNotReachHere();
2029  return Assembler::rc_z;
2030}
2031
2032// compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2033void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2034  tst(s1);
2035  br (c, a, p, L);
2036}
2037
2038
2039// Compares a pointer register with zero and branches on null.
2040// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2041void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2042  assert_not_delayed();
2043#ifdef _LP64
2044  bpr( rc_z, a, p, s1, L );
2045#else
2046  tst(s1);
2047  br ( zero, a, p, L );
2048#endif
2049}
2050
2051void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2052  assert_not_delayed();
2053#ifdef _LP64
2054  bpr( rc_nz, a, p, s1, L );
2055#else
2056  tst(s1);
2057  br ( notZero, a, p, L );
2058#endif
2059}
2060
2061void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2062                                     Register s1, address d,
2063                                     relocInfo::relocType rt ) {
2064  if (VM_Version::v9_instructions_work()) {
2065    bpr(rc, a, p, s1, d, rt);
2066  } else {
2067    tst(s1);
2068    br(reg_cond_to_cc_cond(rc), a, p, d, rt);
2069  }
2070}
2071
2072void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2073                                     Register s1, Label& L ) {
2074  if (VM_Version::v9_instructions_work()) {
2075    bpr(rc, a, p, s1, L);
2076  } else {
2077    tst(s1);
2078    br(reg_cond_to_cc_cond(rc), a, p, L);
2079  }
2080}
2081
2082
2083// instruction sequences factored across compiler & interpreter
2084
2085
2086void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2087                           Register Rb_hi, Register Rb_low,
2088                           Register Rresult) {
2089
2090  Label check_low_parts, done;
2091
2092  cmp(Ra_hi, Rb_hi );  // compare hi parts
2093  br(equal, true, pt, check_low_parts);
2094  delayed()->cmp(Ra_low, Rb_low); // test low parts
2095
2096  // And, with an unsigned comparison, it does not matter if the numbers
2097  // are negative or not.
2098  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2099  // The second one is bigger (unsignedly).
2100
2101  // Other notes:  The first move in each triplet can be unconditional
2102  // (and therefore probably prefetchable).
2103  // And the equals case for the high part does not need testing,
2104  // since that triplet is reached only after finding the high halves differ.
2105
2106  if (VM_Version::v9_instructions_work()) {
2107
2108                                    mov  (                     -1, Rresult);
2109    ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2110  }
2111  else {
2112    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2113    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2114  }
2115
2116  bind( check_low_parts );
2117
2118  if (VM_Version::v9_instructions_work()) {
2119    mov(                               -1, Rresult);
2120    movcc(equal,           false, icc,  0, Rresult);
2121    movcc(greaterUnsigned, false, icc,  1, Rresult);
2122  }
2123  else {
2124                                                    set(-1, Rresult);
2125    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2126    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2127  }
2128  bind( done );
2129}
2130
2131void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2132  subcc(  G0, Rlow, Rlow );
2133  subc(   G0, Rhi,  Rhi  );
2134}
2135
2136void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2137                           Register Rcount,
2138                           Register Rout_high, Register Rout_low,
2139                           Register Rtemp ) {
2140
2141
2142  Register Ralt_count = Rtemp;
2143  Register Rxfer_bits = Rtemp;
2144
2145  assert( Ralt_count != Rin_high
2146      &&  Ralt_count != Rin_low
2147      &&  Ralt_count != Rcount
2148      &&  Rxfer_bits != Rin_low
2149      &&  Rxfer_bits != Rin_high
2150      &&  Rxfer_bits != Rcount
2151      &&  Rxfer_bits != Rout_low
2152      &&  Rout_low   != Rin_high,
2153        "register alias checks");
2154
2155  Label big_shift, done;
2156
2157  // This code can be optimized to use the 64 bit shifts in V9.
2158  // Here we use the 32 bit shifts.
2159
2160  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2161  subcc(Rcount,         31,             Ralt_count);
2162  br(greater, true, pn, big_shift);
2163  delayed()->
2164  dec(Ralt_count);
2165
2166  // shift < 32 bits, Ralt_count = Rcount-31
2167
2168  // We get the transfer bits by shifting right by 32-count the low
2169  // register. This is done by shifting right by 31-count and then by one
2170  // more to take care of the special (rare) case where count is zero
2171  // (shifting by 32 would not work).
2172
2173  neg(  Ralt_count                                 );
2174
2175  // The order of the next two instructions is critical in the case where
2176  // Rin and Rout are the same and should not be reversed.
2177
2178  srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2179  if (Rcount != Rout_low) {
2180    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2181  }
2182  sll(  Rin_high,       Rcount,         Rout_high  );
2183  if (Rcount == Rout_low) {
2184    sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2185  }
2186  srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2187  ba (false, done);
2188  delayed()->
2189  or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2190
2191  // shift >= 32 bits, Ralt_count = Rcount-32
2192  bind(big_shift);
2193  sll(  Rin_low,        Ralt_count,     Rout_high  );
2194  clr(  Rout_low                                   );
2195
2196  bind(done);
2197}
2198
2199
2200void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2201                           Register Rcount,
2202                           Register Rout_high, Register Rout_low,
2203                           Register Rtemp ) {
2204
2205  Register Ralt_count = Rtemp;
2206  Register Rxfer_bits = Rtemp;
2207
2208  assert( Ralt_count != Rin_high
2209      &&  Ralt_count != Rin_low
2210      &&  Ralt_count != Rcount
2211      &&  Rxfer_bits != Rin_low
2212      &&  Rxfer_bits != Rin_high
2213      &&  Rxfer_bits != Rcount
2214      &&  Rxfer_bits != Rout_high
2215      &&  Rout_high  != Rin_low,
2216        "register alias checks");
2217
2218  Label big_shift, done;
2219
2220  // This code can be optimized to use the 64 bit shifts in V9.
2221  // Here we use the 32 bit shifts.
2222
2223  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2224  subcc(Rcount,         31,             Ralt_count);
2225  br(greater, true, pn, big_shift);
2226  delayed()->dec(Ralt_count);
2227
2228  // shift < 32 bits, Ralt_count = Rcount-31
2229
2230  // We get the transfer bits by shifting left by 32-count the high
2231  // register. This is done by shifting left by 31-count and then by one
2232  // more to take care of the special (rare) case where count is zero
2233  // (shifting by 32 would not work).
2234
2235  neg(  Ralt_count                                  );
2236  if (Rcount != Rout_low) {
2237    srl(        Rin_low,        Rcount,         Rout_low    );
2238  }
2239
2240  // The order of the next two instructions is critical in the case where
2241  // Rin and Rout are the same and should not be reversed.
2242
2243  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2244  sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2245  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2246  if (Rcount == Rout_low) {
2247    srl(        Rin_low,        Rcount,         Rout_low    );
2248  }
2249  ba (false, done);
2250  delayed()->
2251  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2252
2253  // shift >= 32 bits, Ralt_count = Rcount-32
2254  bind(big_shift);
2255
2256  sra(  Rin_high,       Ralt_count,     Rout_low    );
2257  sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2258
2259  bind( done );
2260}
2261
2262
2263
2264void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2265                            Register Rcount,
2266                            Register Rout_high, Register Rout_low,
2267                            Register Rtemp ) {
2268
2269  Register Ralt_count = Rtemp;
2270  Register Rxfer_bits = Rtemp;
2271
2272  assert( Ralt_count != Rin_high
2273      &&  Ralt_count != Rin_low
2274      &&  Ralt_count != Rcount
2275      &&  Rxfer_bits != Rin_low
2276      &&  Rxfer_bits != Rin_high
2277      &&  Rxfer_bits != Rcount
2278      &&  Rxfer_bits != Rout_high
2279      &&  Rout_high  != Rin_low,
2280        "register alias checks");
2281
2282  Label big_shift, done;
2283
2284  // This code can be optimized to use the 64 bit shifts in V9.
2285  // Here we use the 32 bit shifts.
2286
2287  and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2288  subcc(Rcount,         31,             Ralt_count);
2289  br(greater, true, pn, big_shift);
2290  delayed()->dec(Ralt_count);
2291
2292  // shift < 32 bits, Ralt_count = Rcount-31
2293
2294  // We get the transfer bits by shifting left by 32-count the high
2295  // register. This is done by shifting left by 31-count and then by one
2296  // more to take care of the special (rare) case where count is zero
2297  // (shifting by 32 would not work).
2298
2299  neg(  Ralt_count                                  );
2300  if (Rcount != Rout_low) {
2301    srl(        Rin_low,        Rcount,         Rout_low    );
2302  }
2303
2304  // The order of the next two instructions is critical in the case where
2305  // Rin and Rout are the same and should not be reversed.
2306
2307  sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2308  srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2309  sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2310  if (Rcount == Rout_low) {
2311    srl(        Rin_low,        Rcount,         Rout_low    );
2312  }
2313  ba (false, done);
2314  delayed()->
2315  or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2316
2317  // shift >= 32 bits, Ralt_count = Rcount-32
2318  bind(big_shift);
2319
2320  srl(  Rin_high,       Ralt_count,     Rout_low    );
2321  clr(  Rout_high                                   );
2322
2323  bind( done );
2324}
2325
2326#ifdef _LP64
2327void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2328  cmp(Ra, Rb);
2329  mov(                       -1, Rresult);
2330  movcc(equal,   false, xcc,  0, Rresult);
2331  movcc(greater, false, xcc,  1, Rresult);
2332}
2333#endif
2334
2335
2336void MacroAssembler::load_sized_value(Address src, Register dst,
2337                                      size_t size_in_bytes, bool is_signed) {
2338  switch (size_in_bytes) {
2339  case  8: ldx(src, dst); break;
2340  case  4: ld( src, dst); break;
2341  case  2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2342  case  1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2343  default: ShouldNotReachHere();
2344  }
2345}
2346
2347
2348void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2349                                FloatRegister Fa, FloatRegister Fb,
2350                                Register Rresult) {
2351
2352  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2353
2354  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2355  Condition eq =                          f_equal;
2356  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2357
2358  if (VM_Version::v9_instructions_work()) {
2359
2360    mov(                   -1, Rresult );
2361    movcc( eq, true, fcc0,  0, Rresult );
2362    movcc( gt, true, fcc0,  1, Rresult );
2363
2364  } else {
2365    Label done;
2366
2367                                         set( -1, Rresult );
2368    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2369    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2370    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2371
2372    bind (done);
2373  }
2374}
2375
2376
2377void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2378{
2379  if (VM_Version::v9_instructions_work()) {
2380    Assembler::fneg(w, s, d);
2381  } else {
2382    if (w == FloatRegisterImpl::S) {
2383      Assembler::fneg(w, s, d);
2384    } else if (w == FloatRegisterImpl::D) {
2385      // number() does a sanity check on the alignment.
2386      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2387        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2388
2389      Assembler::fneg(FloatRegisterImpl::S, s, d);
2390      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2391    } else {
2392      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2393
2394      // number() does a sanity check on the alignment.
2395      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2396        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2397
2398      Assembler::fneg(FloatRegisterImpl::S, s, d);
2399      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2400      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2401      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2402    }
2403  }
2404}
2405
2406void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2407{
2408  if (VM_Version::v9_instructions_work()) {
2409    Assembler::fmov(w, s, d);
2410  } else {
2411    if (w == FloatRegisterImpl::S) {
2412      Assembler::fmov(w, s, d);
2413    } else if (w == FloatRegisterImpl::D) {
2414      // number() does a sanity check on the alignment.
2415      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2416        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2417
2418      Assembler::fmov(FloatRegisterImpl::S, s, d);
2419      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2420    } else {
2421      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2422
2423      // number() does a sanity check on the alignment.
2424      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2425        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2426
2427      Assembler::fmov(FloatRegisterImpl::S, s, d);
2428      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2429      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2430      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2431    }
2432  }
2433}
2434
2435void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2436{
2437  if (VM_Version::v9_instructions_work()) {
2438    Assembler::fabs(w, s, d);
2439  } else {
2440    if (w == FloatRegisterImpl::S) {
2441      Assembler::fabs(w, s, d);
2442    } else if (w == FloatRegisterImpl::D) {
2443      // number() does a sanity check on the alignment.
2444      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2445        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2446
2447      Assembler::fabs(FloatRegisterImpl::S, s, d);
2448      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2449    } else {
2450      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2451
2452      // number() does a sanity check on the alignment.
2453      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2454       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2455
2456      Assembler::fabs(FloatRegisterImpl::S, s, d);
2457      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2458      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2459      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2460    }
2461  }
2462}
2463
2464void MacroAssembler::save_all_globals_into_locals() {
2465  mov(G1,L1);
2466  mov(G2,L2);
2467  mov(G3,L3);
2468  mov(G4,L4);
2469  mov(G5,L5);
2470  mov(G6,L6);
2471  mov(G7,L7);
2472}
2473
2474void MacroAssembler::restore_globals_from_locals() {
2475  mov(L1,G1);
2476  mov(L2,G2);
2477  mov(L3,G3);
2478  mov(L4,G4);
2479  mov(L5,G5);
2480  mov(L6,G6);
2481  mov(L7,G7);
2482}
2483
2484// Use for 64 bit operation.
2485void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2486{
2487  // store ptr_reg as the new top value
2488#ifdef _LP64
2489  casx(top_ptr_reg, top_reg, ptr_reg);
2490#else
2491  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2492#endif // _LP64
2493}
2494
2495// [RGV] This routine does not handle 64 bit operations.
2496//       use casx_under_lock() or casx directly!!!
2497void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2498{
2499  // store ptr_reg as the new top value
2500  if (VM_Version::v9_instructions_work()) {
2501    cas(top_ptr_reg, top_reg, ptr_reg);
2502  } else {
2503
2504    // If the register is not an out nor global, it is not visible
2505    // after the save.  Allocate a register for it, save its
2506    // value in the register save area (the save may not flush
2507    // registers to the save area).
2508
2509    Register top_ptr_reg_after_save;
2510    Register top_reg_after_save;
2511    Register ptr_reg_after_save;
2512
2513    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2514      top_ptr_reg_after_save = top_ptr_reg->after_save();
2515    } else {
2516      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2517      top_ptr_reg_after_save = L0;
2518      st(top_ptr_reg, reg_save_addr);
2519    }
2520
2521    if (top_reg->is_out() || top_reg->is_global()) {
2522      top_reg_after_save = top_reg->after_save();
2523    } else {
2524      Address reg_save_addr = top_reg->address_in_saved_window();
2525      top_reg_after_save = L1;
2526      st(top_reg, reg_save_addr);
2527    }
2528
2529    if (ptr_reg->is_out() || ptr_reg->is_global()) {
2530      ptr_reg_after_save = ptr_reg->after_save();
2531    } else {
2532      Address reg_save_addr = ptr_reg->address_in_saved_window();
2533      ptr_reg_after_save = L2;
2534      st(ptr_reg, reg_save_addr);
2535    }
2536
2537    const Register& lock_reg = L3;
2538    const Register& lock_ptr_reg = L4;
2539    const Register& value_reg = L5;
2540    const Register& yield_reg = L6;
2541    const Register& yieldall_reg = L7;
2542
2543    save_frame();
2544
2545    if (top_ptr_reg_after_save == L0) {
2546      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2547    }
2548
2549    if (top_reg_after_save == L1) {
2550      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2551    }
2552
2553    if (ptr_reg_after_save == L2) {
2554      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2555    }
2556
2557    Label(retry_get_lock);
2558    Label(not_same);
2559    Label(dont_yield);
2560
2561    assert(lock_addr, "lock_address should be non null for v8");
2562    set((intptr_t)lock_addr, lock_ptr_reg);
2563    // Initialize yield counter
2564    mov(G0,yield_reg);
2565    mov(G0, yieldall_reg);
2566    set(StubRoutines::Sparc::locked, lock_reg);
2567
2568    bind(retry_get_lock);
2569    cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2570    br(Assembler::less, false, Assembler::pt, dont_yield);
2571    delayed()->nop();
2572
2573    if(use_call_vm) {
2574      Untested("Need to verify global reg consistancy");
2575      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2576    } else {
2577      // Save the regs and make space for a C call
2578      save(SP, -96, SP);
2579      save_all_globals_into_locals();
2580      call(CAST_FROM_FN_PTR(address,os::yield_all));
2581      delayed()->mov(yieldall_reg, O0);
2582      restore_globals_from_locals();
2583      restore();
2584    }
2585
2586    // reset the counter
2587    mov(G0,yield_reg);
2588    add(yieldall_reg, 1, yieldall_reg);
2589
2590    bind(dont_yield);
2591    // try to get lock
2592    swap(lock_ptr_reg, 0, lock_reg);
2593
2594    // did we get the lock?
2595    cmp(lock_reg, StubRoutines::Sparc::unlocked);
2596    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2597    delayed()->add(yield_reg,1,yield_reg);
2598
2599    // yes, got lock.  do we have the same top?
2600    ld(top_ptr_reg_after_save, 0, value_reg);
2601    cmp(value_reg, top_reg_after_save);
2602    br(Assembler::notEqual, false, Assembler::pn, not_same);
2603    delayed()->nop();
2604
2605    // yes, same top.
2606    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2607    membar(Assembler::StoreStore);
2608
2609    bind(not_same);
2610    mov(value_reg, ptr_reg_after_save);
2611    st(lock_reg, lock_ptr_reg, 0); // unlock
2612
2613    restore();
2614  }
2615}
2616
2617RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2618                                                      Register tmp,
2619                                                      int offset) {
2620  intptr_t value = *delayed_value_addr;
2621  if (value != 0)
2622    return RegisterOrConstant(value + offset);
2623
2624  // load indirectly to solve generation ordering problem
2625  AddressLiteral a(delayed_value_addr);
2626  load_ptr_contents(a, tmp);
2627
2628#ifdef ASSERT
2629  tst(tmp);
2630  breakpoint_trap(zero, xcc);
2631#endif
2632
2633  if (offset != 0)
2634    add(tmp, offset, tmp);
2635
2636  return RegisterOrConstant(tmp);
2637}
2638
2639
2640RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2641  assert(d.register_or_noreg() != G0, "lost side effect");
2642  if ((s2.is_constant() && s2.as_constant() == 0) ||
2643      (s2.is_register() && s2.as_register() == G0)) {
2644    // Do nothing, just move value.
2645    if (s1.is_register()) {
2646      if (d.is_constant())  d = temp;
2647      mov(s1.as_register(), d.as_register());
2648      return d;
2649    } else {
2650      return s1;
2651    }
2652  }
2653
2654  if (s1.is_register()) {
2655    assert_different_registers(s1.as_register(), temp);
2656    if (d.is_constant())  d = temp;
2657    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2658    return d;
2659  } else {
2660    if (s2.is_register()) {
2661      assert_different_registers(s2.as_register(), temp);
2662      if (d.is_constant())  d = temp;
2663      set(s1.as_constant(), temp);
2664      andn(temp, s2.as_register(), d.as_register());
2665      return d;
2666    } else {
2667      intptr_t res = s1.as_constant() & ~s2.as_constant();
2668      return res;
2669    }
2670  }
2671}
2672
2673RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2674  assert(d.register_or_noreg() != G0, "lost side effect");
2675  if ((s2.is_constant() && s2.as_constant() == 0) ||
2676      (s2.is_register() && s2.as_register() == G0)) {
2677    // Do nothing, just move value.
2678    if (s1.is_register()) {
2679      if (d.is_constant())  d = temp;
2680      mov(s1.as_register(), d.as_register());
2681      return d;
2682    } else {
2683      return s1;
2684    }
2685  }
2686
2687  if (s1.is_register()) {
2688    assert_different_registers(s1.as_register(), temp);
2689    if (d.is_constant())  d = temp;
2690    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2691    return d;
2692  } else {
2693    if (s2.is_register()) {
2694      assert_different_registers(s2.as_register(), temp);
2695      if (d.is_constant())  d = temp;
2696      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2697      return d;
2698    } else {
2699      intptr_t res = s1.as_constant() + s2.as_constant();
2700      return res;
2701    }
2702  }
2703}
2704
2705RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2706  assert(d.register_or_noreg() != G0, "lost side effect");
2707  if (!is_simm13(s2.constant_or_zero()))
2708    s2 = (s2.as_constant() & 0xFF);
2709  if ((s2.is_constant() && s2.as_constant() == 0) ||
2710      (s2.is_register() && s2.as_register() == G0)) {
2711    // Do nothing, just move value.
2712    if (s1.is_register()) {
2713      if (d.is_constant())  d = temp;
2714      mov(s1.as_register(), d.as_register());
2715      return d;
2716    } else {
2717      return s1;
2718    }
2719  }
2720
2721  if (s1.is_register()) {
2722    assert_different_registers(s1.as_register(), temp);
2723    if (d.is_constant())  d = temp;
2724    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2725    return d;
2726  } else {
2727    if (s2.is_register()) {
2728      assert_different_registers(s2.as_register(), temp);
2729      if (d.is_constant())  d = temp;
2730      set(s1.as_constant(), temp);
2731      sll_ptr(temp, s2.as_register(), d.as_register());
2732      return d;
2733    } else {
2734      intptr_t res = s1.as_constant() << s2.as_constant();
2735      return res;
2736    }
2737  }
2738}
2739
2740
2741// Look up the method for a megamorphic invokeinterface call.
2742// The target method is determined by <intf_klass, itable_index>.
2743// The receiver klass is in recv_klass.
2744// On success, the result will be in method_result, and execution falls through.
2745// On failure, execution transfers to the given label.
2746void MacroAssembler::lookup_interface_method(Register recv_klass,
2747                                             Register intf_klass,
2748                                             RegisterOrConstant itable_index,
2749                                             Register method_result,
2750                                             Register scan_temp,
2751                                             Register sethi_temp,
2752                                             Label& L_no_such_interface) {
2753  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2754  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2755         "caller must use same register for non-constant itable index as for method");
2756
2757  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2758  int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
2759  int scan_step   = itableOffsetEntry::size() * wordSize;
2760  int vte_size    = vtableEntry::size() * wordSize;
2761
2762  lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
2763  // %%% We should store the aligned, prescaled offset in the klassoop.
2764  // Then the next several instructions would fold away.
2765
2766  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2767  int itb_offset = vtable_base;
2768  if (round_to_unit != 0) {
2769    // hoist first instruction of round_to(scan_temp, BytesPerLong):
2770    itb_offset += round_to_unit - wordSize;
2771  }
2772  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2773  sll(scan_temp, itb_scale,  scan_temp);
2774  add(scan_temp, itb_offset, scan_temp);
2775  if (round_to_unit != 0) {
2776    // Round up to align_object_offset boundary
2777    // see code for instanceKlass::start_of_itable!
2778    // Was: round_to(scan_temp, BytesPerLong);
2779    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2780    and3(scan_temp, -round_to_unit, scan_temp);
2781  }
2782  add(recv_klass, scan_temp, scan_temp);
2783
2784  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2785  RegisterOrConstant itable_offset = itable_index;
2786  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2787  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2788  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2789
2790  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2791  //   if (scan->interface() == intf) {
2792  //     result = (klass + scan->offset() + itable_index);
2793  //   }
2794  // }
2795  Label search, found_method;
2796
2797  for (int peel = 1; peel >= 0; peel--) {
2798    // %%%% Could load both offset and interface in one ldx, if they were
2799    // in the opposite order.  This would save a load.
2800    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2801
2802    // Check that this entry is non-null.  A null entry means that
2803    // the receiver class doesn't implement the interface, and wasn't the
2804    // same as when the caller was compiled.
2805    bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
2806    delayed()->cmp(method_result, intf_klass);
2807
2808    if (peel) {
2809      brx(Assembler::equal,    false, Assembler::pt, found_method);
2810    } else {
2811      brx(Assembler::notEqual, false, Assembler::pn, search);
2812      // (invert the test to fall through to found_method...)
2813    }
2814    delayed()->add(scan_temp, scan_step, scan_temp);
2815
2816    if (!peel)  break;
2817
2818    bind(search);
2819  }
2820
2821  bind(found_method);
2822
2823  // Got a hit.
2824  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2825  // scan_temp[-scan_step] points to the vtable offset we need
2826  ito_offset -= scan_step;
2827  lduw(scan_temp, ito_offset, scan_temp);
2828  ld_ptr(recv_klass, scan_temp, method_result);
2829}
2830
2831
2832void MacroAssembler::check_klass_subtype(Register sub_klass,
2833                                         Register super_klass,
2834                                         Register temp_reg,
2835                                         Register temp2_reg,
2836                                         Label& L_success) {
2837  Label L_failure, L_pop_to_failure;
2838  check_klass_subtype_fast_path(sub_klass, super_klass,
2839                                temp_reg, temp2_reg,
2840                                &L_success, &L_failure, NULL);
2841  Register sub_2 = sub_klass;
2842  Register sup_2 = super_klass;
2843  if (!sub_2->is_global())  sub_2 = L0;
2844  if (!sup_2->is_global())  sup_2 = L1;
2845
2846  save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2847  check_klass_subtype_slow_path(sub_2, sup_2,
2848                                L2, L3, L4, L5,
2849                                NULL, &L_pop_to_failure);
2850
2851  // on success:
2852  restore();
2853  ba(false, L_success);
2854  delayed()->nop();
2855
2856  // on failure:
2857  bind(L_pop_to_failure);
2858  restore();
2859  bind(L_failure);
2860}
2861
2862
2863void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2864                                                   Register super_klass,
2865                                                   Register temp_reg,
2866                                                   Register temp2_reg,
2867                                                   Label* L_success,
2868                                                   Label* L_failure,
2869                                                   Label* L_slow_path,
2870                                        RegisterOrConstant super_check_offset,
2871                                        Register instanceof_hack) {
2872  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2873                   Klass::secondary_super_cache_offset_in_bytes());
2874  int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2875                    Klass::super_check_offset_offset_in_bytes());
2876
2877  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2878  bool need_slow_path = (must_load_sco ||
2879                         super_check_offset.constant_or_zero() == sco_offset);
2880
2881  assert_different_registers(sub_klass, super_klass, temp_reg);
2882  if (super_check_offset.is_register()) {
2883    assert_different_registers(sub_klass, super_klass, temp_reg,
2884                               super_check_offset.as_register());
2885  } else if (must_load_sco) {
2886    assert(temp2_reg != noreg, "supply either a temp or a register offset");
2887  }
2888
2889  Label L_fallthrough;
2890  int label_nulls = 0;
2891  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2892  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2893  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2894  assert(label_nulls <= 1 || instanceof_hack != noreg ||
2895         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2896         "at most one NULL in the batch, usually");
2897
2898  // Support for the instanceof hack, which uses delay slots to
2899  // set a destination register to zero or one.
2900  bool do_bool_sets = (instanceof_hack != noreg);
2901#define BOOL_SET(bool_value)                            \
2902  if (do_bool_sets && bool_value >= 0)                  \
2903    set(bool_value, instanceof_hack)
2904#define DELAYED_BOOL_SET(bool_value)                    \
2905  if (do_bool_sets && bool_value >= 0)                  \
2906    delayed()->set(bool_value, instanceof_hack);        \
2907  else delayed()->nop()
2908  // Hacked ba(), which may only be used just before L_fallthrough.
2909#define FINAL_JUMP(label, bool_value)                   \
2910  if (&(label) == &L_fallthrough) {                     \
2911    BOOL_SET(bool_value);                               \
2912  } else {                                              \
2913    ba((do_bool_sets && bool_value >= 0), label);       \
2914    DELAYED_BOOL_SET(bool_value);                       \
2915  }
2916
2917  // If the pointers are equal, we are done (e.g., String[] elements).
2918  // This self-check enables sharing of secondary supertype arrays among
2919  // non-primary types such as array-of-interface.  Otherwise, each such
2920  // type would need its own customized SSA.
2921  // We move this check to the front of the fast path because many
2922  // type checks are in fact trivially successful in this manner,
2923  // so we get a nicely predicted branch right at the start of the check.
2924  cmp(super_klass, sub_klass);
2925  brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2926  DELAYED_BOOL_SET(1);
2927
2928  // Check the supertype display:
2929  if (must_load_sco) {
2930    // The super check offset is always positive...
2931    lduw(super_klass, sco_offset, temp2_reg);
2932    super_check_offset = RegisterOrConstant(temp2_reg);
2933    // super_check_offset is register.
2934    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2935  }
2936  ld_ptr(sub_klass, super_check_offset, temp_reg);
2937  cmp(super_klass, temp_reg);
2938
2939  // This check has worked decisively for primary supers.
2940  // Secondary supers are sought in the super_cache ('super_cache_addr').
2941  // (Secondary supers are interfaces and very deeply nested subtypes.)
2942  // This works in the same check above because of a tricky aliasing
2943  // between the super_cache and the primary super display elements.
2944  // (The 'super_check_addr' can address either, as the case requires.)
2945  // Note that the cache is updated below if it does not help us find
2946  // what we need immediately.
2947  // So if it was a primary super, we can just fail immediately.
2948  // Otherwise, it's the slow path for us (no success at this point).
2949
2950  if (super_check_offset.is_register()) {
2951    brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2952    delayed(); if (do_bool_sets)  BOOL_SET(1);
2953    // if !do_bool_sets, sneak the next cmp into the delay slot:
2954    cmp(super_check_offset.as_register(), sc_offset);
2955
2956    if (L_failure == &L_fallthrough) {
2957      brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
2958      delayed()->nop();
2959      BOOL_SET(0);  // fallthrough on failure
2960    } else {
2961      brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2962      DELAYED_BOOL_SET(0);
2963      FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
2964    }
2965  } else if (super_check_offset.as_constant() == sc_offset) {
2966    // Need a slow path; fast failure is impossible.
2967    if (L_slow_path == &L_fallthrough) {
2968      brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2969      DELAYED_BOOL_SET(1);
2970    } else {
2971      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2972      delayed()->nop();
2973      FINAL_JUMP(*L_success, 1);
2974    }
2975  } else {
2976    // No slow path; it's a fast decision.
2977    if (L_failure == &L_fallthrough) {
2978      brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2979      DELAYED_BOOL_SET(1);
2980      BOOL_SET(0);
2981    } else {
2982      brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2983      DELAYED_BOOL_SET(0);
2984      FINAL_JUMP(*L_success, 1);
2985    }
2986  }
2987
2988  bind(L_fallthrough);
2989
2990#undef final_jump
2991#undef bool_set
2992#undef DELAYED_BOOL_SET
2993#undef final_jump
2994}
2995
2996
2997void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2998                                                   Register super_klass,
2999                                                   Register count_temp,
3000                                                   Register scan_temp,
3001                                                   Register scratch_reg,
3002                                                   Register coop_reg,
3003                                                   Label* L_success,
3004                                                   Label* L_failure) {
3005  assert_different_registers(sub_klass, super_klass,
3006                             count_temp, scan_temp, scratch_reg, coop_reg);
3007
3008  Label L_fallthrough, L_loop;
3009  int label_nulls = 0;
3010  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3011  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3012  assert(label_nulls <= 1, "at most one NULL in the batch");
3013
3014  // a couple of useful fields in sub_klass:
3015  int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
3016                   Klass::secondary_supers_offset_in_bytes());
3017  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
3018                   Klass::secondary_super_cache_offset_in_bytes());
3019
3020  // Do a linear scan of the secondary super-klass chain.
3021  // This code is rarely used, so simplicity is a virtue here.
3022
3023#ifndef PRODUCT
3024  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3025  inc_counter((address) pst_counter, count_temp, scan_temp);
3026#endif
3027
3028  // We will consult the secondary-super array.
3029  ld_ptr(sub_klass, ss_offset, scan_temp);
3030
3031  // Compress superclass if necessary.
3032  Register search_key = super_klass;
3033  bool decode_super_klass = false;
3034  if (UseCompressedOops) {
3035    if (coop_reg != noreg) {
3036      encode_heap_oop_not_null(super_klass, coop_reg);
3037      search_key = coop_reg;
3038    } else {
3039      encode_heap_oop_not_null(super_klass);
3040      decode_super_klass = true; // scarce temps!
3041    }
3042    // The superclass is never null; it would be a basic system error if a null
3043    // pointer were to sneak in here.  Note that we have already loaded the
3044    // Klass::super_check_offset from the super_klass in the fast path,
3045    // so if there is a null in that register, we are already in the afterlife.
3046  }
3047
3048  // Load the array length.  (Positive movl does right thing on LP64.)
3049  lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
3050
3051  // Check for empty secondary super list
3052  tst(count_temp);
3053
3054  // Top of search loop
3055  bind(L_loop);
3056  br(Assembler::equal, false, Assembler::pn, *L_failure);
3057  delayed()->add(scan_temp, heapOopSize, scan_temp);
3058  assert(heapOopSize != 0, "heapOopSize should be initialized");
3059
3060  // Skip the array header in all array accesses.
3061  int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
3062  elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
3063
3064  // Load next super to check
3065  if (UseCompressedOops) {
3066    // Don't use load_heap_oop; we don't want to decode the element.
3067    lduw(   scan_temp, elem_offset, scratch_reg );
3068  } else {
3069    ld_ptr( scan_temp, elem_offset, scratch_reg );
3070  }
3071
3072  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3073  cmp(scratch_reg, search_key);
3074
3075  // A miss means we are NOT a subtype and need to keep looping
3076  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3077  delayed()->deccc(count_temp); // decrement trip counter in delay slot
3078
3079  // Falling out the bottom means we found a hit; we ARE a subtype
3080  if (decode_super_klass) decode_heap_oop(super_klass);
3081
3082  // Success.  Cache the super we found and proceed in triumph.
3083  st_ptr(super_klass, sub_klass, sc_offset);
3084
3085  if (L_success != &L_fallthrough) {
3086    ba(false, *L_success);
3087    delayed()->nop();
3088  }
3089
3090  bind(L_fallthrough);
3091}
3092
3093
3094void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
3095                                              Register temp_reg,
3096                                              Label& wrong_method_type) {
3097  if (UseCompressedOops)  unimplemented("coop");  // field accesses must decode
3098  assert_different_registers(mtype_reg, mh_reg, temp_reg);
3099  // compare method type against that of the receiver
3100  RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
3101  ld_ptr(mh_reg, mhtype_offset, temp_reg);
3102  cmp(temp_reg, mtype_reg);
3103  br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
3104  delayed()->nop();
3105}
3106
3107
3108// A method handle has a "vmslots" field which gives the size of its
3109// argument list in JVM stack slots.  This field is either located directly
3110// in every method handle, or else is indirectly accessed through the
3111// method handle's MethodType.  This macro hides the distinction.
3112void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
3113                                                Register temp_reg) {
3114  assert_different_registers(vmslots_reg, mh_reg, temp_reg);
3115  if (UseCompressedOops)  unimplemented("coop");  // field accesses must decode
3116  // load mh.type.form.vmslots
3117  if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
3118    // hoist vmslots into every mh to avoid dependent load chain
3119    ld(    Address(mh_reg,    delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
3120  } else {
3121    Register temp2_reg = vmslots_reg;
3122    ld_ptr(Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
3123    ld_ptr(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
3124    ld(    Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
3125  }
3126}
3127
3128
3129void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
3130  assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
3131  assert_different_registers(mh_reg, temp_reg);
3132
3133  if (UseCompressedOops)  unimplemented("coop");  // field accesses must decode
3134
3135  // pick out the interpreted side of the handler
3136  ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
3137
3138  // off we go...
3139  ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
3140  jmp(temp_reg, 0);
3141
3142  // for the various stubs which take control at this point,
3143  // see MethodHandles::generate_method_handle_stub
3144
3145  // Some callers can fill the delay slot.
3146  if (emit_delayed_nop) {
3147    delayed()->nop();
3148  }
3149}
3150
3151
3152RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3153                                                   int extra_slot_offset) {
3154  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3155  int stackElementSize = Interpreter::stackElementSize;
3156  int offset = extra_slot_offset * stackElementSize;
3157  if (arg_slot.is_constant()) {
3158    offset += arg_slot.as_constant() * stackElementSize;
3159    return offset;
3160  } else {
3161    Register temp = arg_slot.as_register();
3162    sll_ptr(temp, exact_log2(stackElementSize), temp);
3163    if (offset != 0)
3164      add(temp, offset, temp);
3165    return temp;
3166  }
3167}
3168
3169
3170Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3171                                         int extra_slot_offset) {
3172  return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
3173}
3174
3175
3176void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3177                                          Register temp_reg,
3178                                          Label& done, Label* slow_case,
3179                                          BiasedLockingCounters* counters) {
3180  assert(UseBiasedLocking, "why call this otherwise?");
3181
3182  if (PrintBiasedLockingStatistics) {
3183    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3184    if (counters == NULL)
3185      counters = BiasedLocking::counters();
3186  }
3187
3188  Label cas_label;
3189
3190  // Biased locking
3191  // See whether the lock is currently biased toward our thread and
3192  // whether the epoch is still valid
3193  // Note that the runtime guarantees sufficient alignment of JavaThread
3194  // pointers to allow age to be placed into low bits
3195  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3196  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3197  cmp(temp_reg, markOopDesc::biased_lock_pattern);
3198  brx(Assembler::notEqual, false, Assembler::pn, cas_label);
3199  delayed()->nop();
3200
3201  load_klass(obj_reg, temp_reg);
3202  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3203  or3(G2_thread, temp_reg, temp_reg);
3204  xor3(mark_reg, temp_reg, temp_reg);
3205  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3206  if (counters != NULL) {
3207    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3208    // Reload mark_reg as we may need it later
3209    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3210  }
3211  brx(Assembler::equal, true, Assembler::pt, done);
3212  delayed()->nop();
3213
3214  Label try_revoke_bias;
3215  Label try_rebias;
3216  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3217  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3218
3219  // At this point we know that the header has the bias pattern and
3220  // that we are not the bias owner in the current epoch. We need to
3221  // figure out more details about the state of the header in order to
3222  // know what operations can be legally performed on the object's
3223  // header.
3224
3225  // If the low three bits in the xor result aren't clear, that means
3226  // the prototype header is no longer biased and we have to revoke
3227  // the bias on this object.
3228  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3229  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3230
3231  // Biasing is still enabled for this data type. See whether the
3232  // epoch of the current bias is still valid, meaning that the epoch
3233  // bits of the mark word are equal to the epoch bits of the
3234  // prototype header. (Note that the prototype header's epoch bits
3235  // only change at a safepoint.) If not, attempt to rebias the object
3236  // toward the current thread. Note that we must be absolutely sure
3237  // that the current epoch is invalid in order to do this because
3238  // otherwise the manipulations it performs on the mark word are
3239  // illegal.
3240  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3241  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3242
3243  // The epoch of the current bias is still valid but we know nothing
3244  // about the owner; it might be set or it might be clear. Try to
3245  // acquire the bias of the object using an atomic operation. If this
3246  // fails we will go in to the runtime to revoke the object's bias.
3247  // Note that we first construct the presumed unbiased header so we
3248  // don't accidentally blow away another thread's valid bias.
3249  delayed()->and3(mark_reg,
3250                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3251                  mark_reg);
3252  or3(G2_thread, mark_reg, temp_reg);
3253  casn(mark_addr.base(), mark_reg, temp_reg);
3254  // If the biasing toward our thread failed, this means that
3255  // another thread succeeded in biasing it toward itself and we
3256  // need to revoke that bias. The revocation will occur in the
3257  // interpreter runtime in the slow case.
3258  cmp(mark_reg, temp_reg);
3259  if (counters != NULL) {
3260    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3261  }
3262  if (slow_case != NULL) {
3263    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3264    delayed()->nop();
3265  }
3266  br(Assembler::always, false, Assembler::pt, done);
3267  delayed()->nop();
3268
3269  bind(try_rebias);
3270  // At this point we know the epoch has expired, meaning that the
3271  // current "bias owner", if any, is actually invalid. Under these
3272  // circumstances _only_, we are allowed to use the current header's
3273  // value as the comparison value when doing the cas to acquire the
3274  // bias in the current epoch. In other words, we allow transfer of
3275  // the bias from one thread to another directly in this situation.
3276  //
3277  // FIXME: due to a lack of registers we currently blow away the age
3278  // bits in this situation. Should attempt to preserve them.
3279  load_klass(obj_reg, temp_reg);
3280  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3281  or3(G2_thread, temp_reg, temp_reg);
3282  casn(mark_addr.base(), mark_reg, temp_reg);
3283  // If the biasing toward our thread failed, this means that
3284  // another thread succeeded in biasing it toward itself and we
3285  // need to revoke that bias. The revocation will occur in the
3286  // interpreter runtime in the slow case.
3287  cmp(mark_reg, temp_reg);
3288  if (counters != NULL) {
3289    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3290  }
3291  if (slow_case != NULL) {
3292    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3293    delayed()->nop();
3294  }
3295  br(Assembler::always, false, Assembler::pt, done);
3296  delayed()->nop();
3297
3298  bind(try_revoke_bias);
3299  // The prototype mark in the klass doesn't have the bias bit set any
3300  // more, indicating that objects of this data type are not supposed
3301  // to be biased any more. We are going to try to reset the mark of
3302  // this object to the prototype value and fall through to the
3303  // CAS-based locking scheme. Note that if our CAS fails, it means
3304  // that another thread raced us for the privilege of revoking the
3305  // bias of this particular object, so it's okay to continue in the
3306  // normal locking code.
3307  //
3308  // FIXME: due to a lack of registers we currently blow away the age
3309  // bits in this situation. Should attempt to preserve them.
3310  load_klass(obj_reg, temp_reg);
3311  ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3312  casn(mark_addr.base(), mark_reg, temp_reg);
3313  // Fall through to the normal CAS-based lock, because no matter what
3314  // the result of the above CAS, some thread must have succeeded in
3315  // removing the bias bit from the object's header.
3316  if (counters != NULL) {
3317    cmp(mark_reg, temp_reg);
3318    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3319  }
3320
3321  bind(cas_label);
3322}
3323
3324void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3325                                          bool allow_delay_slot_filling) {
3326  // Check for biased locking unlock case, which is a no-op
3327  // Note: we do not have to check the thread ID for two reasons.
3328  // First, the interpreter checks for IllegalMonitorStateException at
3329  // a higher level. Second, if the bias was revoked while we held the
3330  // lock, the object could not be rebiased toward another thread, so
3331  // the bias bit would be clear.
3332  ld_ptr(mark_addr, temp_reg);
3333  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3334  cmp(temp_reg, markOopDesc::biased_lock_pattern);
3335  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3336  delayed();
3337  if (!allow_delay_slot_filling) {
3338    nop();
3339  }
3340}
3341
3342
3343// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3344// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3345
3346void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3347  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
3348}
3349
3350
3351
3352// compiler_lock_object() and compiler_unlock_object() are direct transliterations
3353// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3354// The code could be tightened up considerably.
3355//
3356// box->dhw disposition - post-conditions at DONE_LABEL.
3357// -   Successful inflated lock:  box->dhw != 0.
3358//     Any non-zero value suffices.
3359//     Consider G2_thread, rsp, boxReg, or unused_mark()
3360// -   Successful Stack-lock: box->dhw == mark.
3361//     box->dhw must contain the displaced mark word value
3362// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3363//     The slow-path fast_enter() and slow_enter() operators
3364//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3365// -   Biased: box->dhw is undefined
3366//
3367// SPARC refworkload performance - specifically jetstream and scimark - are
3368// extremely sensitive to the size of the code emitted by compiler_lock_object
3369// and compiler_unlock_object.  Critically, the key factor is code size, not path
3370// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3371// effect).
3372
3373
3374void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3375                                          Register Rbox, Register Rscratch,
3376                                          BiasedLockingCounters* counters,
3377                                          bool try_bias) {
3378   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3379
3380   verify_oop(Roop);
3381   Label done ;
3382
3383   if (counters != NULL) {
3384     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3385   }
3386
3387   if (EmitSync & 1) {
3388     mov    (3, Rscratch) ;
3389     st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3390     cmp    (SP, G0) ;
3391     return ;
3392   }
3393
3394   if (EmitSync & 2) {
3395
3396     // Fetch object's markword
3397     ld_ptr(mark_addr, Rmark);
3398
3399     if (try_bias) {
3400        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3401     }
3402
3403     // Save Rbox in Rscratch to be used for the cas operation
3404     mov(Rbox, Rscratch);
3405
3406     // set Rmark to markOop | markOopDesc::unlocked_value
3407     or3(Rmark, markOopDesc::unlocked_value, Rmark);
3408
3409     // Initialize the box.  (Must happen before we update the object mark!)
3410     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3411
3412     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3413     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3414     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3415        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3416
3417     // if compare/exchange succeeded we found an unlocked object and we now have locked it
3418     // hence we are done
3419     cmp(Rmark, Rscratch);
3420#ifdef _LP64
3421     sub(Rscratch, STACK_BIAS, Rscratch);
3422#endif
3423     brx(Assembler::equal, false, Assembler::pt, done);
3424     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3425
3426     // we did not find an unlocked object so see if this is a recursive case
3427     // sub(Rscratch, SP, Rscratch);
3428     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3429     andcc(Rscratch, 0xfffff003, Rscratch);
3430     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3431     bind (done) ;
3432     return ;
3433   }
3434
3435   Label Egress ;
3436
3437   if (EmitSync & 256) {
3438      Label IsInflated ;
3439
3440      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3441      // Triage: biased, stack-locked, neutral, inflated
3442      if (try_bias) {
3443        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3444        // Invariant: if control reaches this point in the emitted stream
3445        // then Rmark has not been modified.
3446      }
3447
3448      // Store mark into displaced mark field in the on-stack basic-lock "box"
3449      // Critically, this must happen before the CAS
3450      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3451      st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3452      andcc  (Rmark, 2, G0) ;
3453      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3454      delayed() ->
3455
3456      // Try stack-lock acquisition.
3457      // Beware: the 1st instruction is in a delay slot
3458      mov    (Rbox,  Rscratch);
3459      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3460      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3461      casn   (mark_addr.base(), Rmark, Rscratch) ;
3462      cmp    (Rmark, Rscratch);
3463      brx    (Assembler::equal, false, Assembler::pt, done);
3464      delayed()->sub(Rscratch, SP, Rscratch);
3465
3466      // Stack-lock attempt failed - check for recursive stack-lock.
3467      // See the comments below about how we might remove this case.
3468#ifdef _LP64
3469      sub    (Rscratch, STACK_BIAS, Rscratch);
3470#endif
3471      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3472      andcc  (Rscratch, 0xfffff003, Rscratch);
3473      br     (Assembler::always, false, Assembler::pt, done) ;
3474      delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3475
3476      bind   (IsInflated) ;
3477      if (EmitSync & 64) {
3478         // If m->owner != null goto IsLocked
3479         // Pessimistic form: Test-and-CAS vs CAS
3480         // The optimistic form avoids RTS->RTO cache line upgrades.
3481         ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3482         andcc  (Rscratch, Rscratch, G0) ;
3483         brx    (Assembler::notZero, false, Assembler::pn, done) ;
3484         delayed()->nop() ;
3485         // m->owner == null : it's unlocked.
3486      }
3487
3488      // Try to CAS m->owner from null to Self
3489      // Invariant: if we acquire the lock then _recursions should be 0.
3490      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3491      mov    (G2_thread, Rscratch) ;
3492      casn   (Rmark, G0, Rscratch) ;
3493      cmp    (Rscratch, G0) ;
3494      // Intentional fall-through into done
3495   } else {
3496      // Aggressively avoid the Store-before-CAS penalty
3497      // Defer the store into box->dhw until after the CAS
3498      Label IsInflated, Recursive ;
3499
3500// Anticipate CAS -- Avoid RTS->RTO upgrade
3501// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3502
3503      ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3504      // Triage: biased, stack-locked, neutral, inflated
3505
3506      if (try_bias) {
3507        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3508        // Invariant: if control reaches this point in the emitted stream
3509        // then Rmark has not been modified.
3510      }
3511      andcc  (Rmark, 2, G0) ;
3512      brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3513      delayed()->                         // Beware - dangling delay-slot
3514
3515      // Try stack-lock acquisition.
3516      // Transiently install BUSY (0) encoding in the mark word.
3517      // if the CAS of 0 into the mark was successful then we execute:
3518      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3519      //   ST obj->mark = box    -- overwrite transient 0 value
3520      // This presumes TSO, of course.
3521
3522      mov    (0, Rscratch) ;
3523      or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3524      assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3525      casn   (mark_addr.base(), Rmark, Rscratch) ;
3526// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3527      cmp    (Rscratch, Rmark) ;
3528      brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
3529      delayed() ->
3530        st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3531      if (counters != NULL) {
3532        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3533      }
3534      br     (Assembler::always, false, Assembler::pt, done);
3535      delayed() ->
3536        st_ptr (Rbox, mark_addr) ;
3537
3538      bind   (Recursive) ;
3539      // Stack-lock attempt failed - check for recursive stack-lock.
3540      // Tests show that we can remove the recursive case with no impact
3541      // on refworkload 0.83.  If we need to reduce the size of the code
3542      // emitted by compiler_lock_object() the recursive case is perfect
3543      // candidate.
3544      //
3545      // A more extreme idea is to always inflate on stack-lock recursion.
3546      // This lets us eliminate the recursive checks in compiler_lock_object
3547      // and compiler_unlock_object and the (box->dhw == 0) encoding.
3548      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3549      // and showed a performance *increase*.  In the same experiment I eliminated
3550      // the fast-path stack-lock code from the interpreter and always passed
3551      // control to the "slow" operators in synchronizer.cpp.
3552
3553      // RScratch contains the fetched obj->mark value from the failed CASN.
3554#ifdef _LP64
3555      sub    (Rscratch, STACK_BIAS, Rscratch);
3556#endif
3557      sub(Rscratch, SP, Rscratch);
3558      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3559      andcc  (Rscratch, 0xfffff003, Rscratch);
3560      if (counters != NULL) {
3561        // Accounting needs the Rscratch register
3562        st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3563        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3564        br     (Assembler::always, false, Assembler::pt, done) ;
3565        delayed()->nop() ;
3566      } else {
3567        br     (Assembler::always, false, Assembler::pt, done) ;
3568        delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3569      }
3570
3571      bind   (IsInflated) ;
3572      if (EmitSync & 64) {
3573         // If m->owner != null goto IsLocked
3574         // Test-and-CAS vs CAS
3575         // Pessimistic form avoids futile (doomed) CAS attempts
3576         // The optimistic form avoids RTS->RTO cache line upgrades.
3577         ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3578         andcc  (Rscratch, Rscratch, G0) ;
3579         brx    (Assembler::notZero, false, Assembler::pn, done) ;
3580         delayed()->nop() ;
3581         // m->owner == null : it's unlocked.
3582      }
3583
3584      // Try to CAS m->owner from null to Self
3585      // Invariant: if we acquire the lock then _recursions should be 0.
3586      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3587      mov    (G2_thread, Rscratch) ;
3588      casn   (Rmark, G0, Rscratch) ;
3589      cmp    (Rscratch, G0) ;
3590      // ST box->displaced_header = NonZero.
3591      // Any non-zero value suffices:
3592      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3593      st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3594      // Intentional fall-through into done
3595   }
3596
3597   bind   (done) ;
3598}
3599
3600void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3601                                            Register Rbox, Register Rscratch,
3602                                            bool try_bias) {
3603   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3604
3605   Label done ;
3606
3607   if (EmitSync & 4) {
3608     cmp  (SP, G0) ;
3609     return ;
3610   }
3611
3612   if (EmitSync & 8) {
3613     if (try_bias) {
3614        biased_locking_exit(mark_addr, Rscratch, done);
3615     }
3616
3617     // Test first if it is a fast recursive unlock
3618     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3619     cmp(Rmark, G0);
3620     brx(Assembler::equal, false, Assembler::pt, done);
3621     delayed()->nop();
3622
3623     // Check if it is still a light weight lock, this is is true if we see
3624     // the stack address of the basicLock in the markOop of the object
3625     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3626     casx_under_lock(mark_addr.base(), Rbox, Rmark,
3627       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3628     br (Assembler::always, false, Assembler::pt, done);
3629     delayed()->cmp(Rbox, Rmark);
3630     bind (done) ;
3631     return ;
3632   }
3633
3634   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3635   // is too large performance rolls abruptly off a cliff.
3636   // This could be related to inlining policies, code cache management, or
3637   // I$ effects.
3638   Label LStacked ;
3639
3640   if (try_bias) {
3641      // TODO: eliminate redundant LDs of obj->mark
3642      biased_locking_exit(mark_addr, Rscratch, done);
3643   }
3644
3645   ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3646   ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3647   andcc  (Rscratch, Rscratch, G0);
3648   brx    (Assembler::zero, false, Assembler::pn, done);
3649   delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3650   andcc  (Rmark, 2, G0) ;
3651   brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3652   delayed()-> nop() ;
3653
3654   // It's inflated
3655   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3656   // the ST of 0 into _owner which releases the lock.  This prevents loads
3657   // and stores within the critical section from reordering (floating)
3658   // past the store that releases the lock.  But TSO is a strong memory model
3659   // and that particular flavor of barrier is a noop, so we can safely elide it.
3660   // Note that we use 1-0 locking by default for the inflated case.  We
3661   // close the resultant (and rare) race by having contented threads in
3662   // monitorenter periodically poll _owner.
3663   ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3664   ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3665   xor3   (Rscratch, G2_thread, Rscratch) ;
3666   orcc   (Rbox, Rscratch, Rbox) ;
3667   brx    (Assembler::notZero, false, Assembler::pn, done) ;
3668   delayed()->
3669   ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3670   ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3671   orcc   (Rbox, Rscratch, G0) ;
3672   if (EmitSync & 65536) {
3673      Label LSucc ;
3674      brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3675      delayed()->nop() ;
3676      br     (Assembler::always, false, Assembler::pt, done) ;
3677      delayed()->
3678      st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3679
3680      bind   (LSucc) ;
3681      st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3682      if (os::is_MP()) { membar (StoreLoad) ; }
3683      ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3684      andcc  (Rscratch, Rscratch, G0) ;
3685      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3686      delayed()-> andcc (G0, G0, G0) ;
3687      add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3688      mov    (G2_thread, Rscratch) ;
3689      casn   (Rmark, G0, Rscratch) ;
3690      cmp    (Rscratch, G0) ;
3691      // invert icc.zf and goto done
3692      brx    (Assembler::notZero, false, Assembler::pt, done) ;
3693      delayed() -> cmp (G0, G0) ;
3694      br     (Assembler::always, false, Assembler::pt, done);
3695      delayed() -> cmp (G0, 1) ;
3696   } else {
3697      brx    (Assembler::notZero, false, Assembler::pn, done) ;
3698      delayed()->nop() ;
3699      br     (Assembler::always, false, Assembler::pt, done) ;
3700      delayed()->
3701      st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3702   }
3703
3704   bind   (LStacked) ;
3705   // Consider: we could replace the expensive CAS in the exit
3706   // path with a simple ST of the displaced mark value fetched from
3707   // the on-stack basiclock box.  That admits a race where a thread T2
3708   // in the slow lock path -- inflating with monitor M -- could race a
3709   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3710   // More precisely T1 in the stack-lock unlock path could "stomp" the
3711   // inflated mark value M installed by T2, resulting in an orphan
3712   // object monitor M and T2 becoming stranded.  We can remedy that situation
3713   // by having T2 periodically poll the object's mark word using timed wait
3714   // operations.  If T2 discovers that a stomp has occurred it vacates
3715   // the monitor M and wakes any other threads stranded on the now-orphan M.
3716   // In addition the monitor scavenger, which performs deflation,
3717   // would also need to check for orpan monitors and stranded threads.
3718   //
3719   // Finally, inflation is also used when T2 needs to assign a hashCode
3720   // to O and O is stack-locked by T1.  The "stomp" race could cause
3721   // an assigned hashCode value to be lost.  We can avoid that condition
3722   // and provide the necessary hashCode stability invariants by ensuring
3723   // that hashCode generation is idempotent between copying GCs.
3724   // For example we could compute the hashCode of an object O as
3725   // O's heap address XOR some high quality RNG value that is refreshed
3726   // at GC-time.  The monitor scavenger would install the hashCode
3727   // found in any orphan monitors.  Again, the mechanism admits a
3728   // lost-update "stomp" WAW race but detects and recovers as needed.
3729   //
3730   // A prototype implementation showed excellent results, although
3731   // the scavenger and timeout code was rather involved.
3732
3733   casn   (mark_addr.base(), Rbox, Rscratch) ;
3734   cmp    (Rbox, Rscratch);
3735   // Intentional fall through into done ...
3736
3737   bind   (done) ;
3738}
3739
3740
3741
3742void MacroAssembler::print_CPU_state() {
3743  // %%%%% need to implement this
3744}
3745
3746void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3747  // %%%%% need to implement this
3748}
3749
3750void MacroAssembler::push_IU_state() {
3751  // %%%%% need to implement this
3752}
3753
3754
3755void MacroAssembler::pop_IU_state() {
3756  // %%%%% need to implement this
3757}
3758
3759
3760void MacroAssembler::push_FPU_state() {
3761  // %%%%% need to implement this
3762}
3763
3764
3765void MacroAssembler::pop_FPU_state() {
3766  // %%%%% need to implement this
3767}
3768
3769
3770void MacroAssembler::push_CPU_state() {
3771  // %%%%% need to implement this
3772}
3773
3774
3775void MacroAssembler::pop_CPU_state() {
3776  // %%%%% need to implement this
3777}
3778
3779
3780
3781void MacroAssembler::verify_tlab() {
3782#ifdef ASSERT
3783  if (UseTLAB && VerifyOops) {
3784    Label next, next2, ok;
3785    Register t1 = L0;
3786    Register t2 = L1;
3787    Register t3 = L2;
3788
3789    save_frame(0);
3790    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3791    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3792    or3(t1, t2, t3);
3793    cmp(t1, t2);
3794    br(Assembler::greaterEqual, false, Assembler::pn, next);
3795    delayed()->nop();
3796    stop("assert(top >= start)");
3797    should_not_reach_here();
3798
3799    bind(next);
3800    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3801    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3802    or3(t3, t2, t3);
3803    cmp(t1, t2);
3804    br(Assembler::lessEqual, false, Assembler::pn, next2);
3805    delayed()->nop();
3806    stop("assert(top <= end)");
3807    should_not_reach_here();
3808
3809    bind(next2);
3810    and3(t3, MinObjAlignmentInBytesMask, t3);
3811    cmp(t3, 0);
3812    br(Assembler::lessEqual, false, Assembler::pn, ok);
3813    delayed()->nop();
3814    stop("assert(aligned)");
3815    should_not_reach_here();
3816
3817    bind(ok);
3818    restore();
3819  }
3820#endif
3821}
3822
3823
3824void MacroAssembler::eden_allocate(
3825  Register obj,                        // result: pointer to object after successful allocation
3826  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3827  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3828  Register t1,                         // temp register
3829  Register t2,                         // temp register
3830  Label&   slow_case                   // continuation point if fast allocation fails
3831){
3832  // make sure arguments make sense
3833  assert_different_registers(obj, var_size_in_bytes, t1, t2);
3834  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3835  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3836
3837  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3838    // No allocation in the shared eden.
3839    br(Assembler::always, false, Assembler::pt, slow_case);
3840    delayed()->nop();
3841  } else {
3842    // get eden boundaries
3843    // note: we need both top & top_addr!
3844    const Register top_addr = t1;
3845    const Register end      = t2;
3846
3847    CollectedHeap* ch = Universe::heap();
3848    set((intx)ch->top_addr(), top_addr);
3849    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3850    ld_ptr(top_addr, delta, end);
3851    ld_ptr(top_addr, 0, obj);
3852
3853    // try to allocate
3854    Label retry;
3855    bind(retry);
3856#ifdef ASSERT
3857    // make sure eden top is properly aligned
3858    {
3859      Label L;
3860      btst(MinObjAlignmentInBytesMask, obj);
3861      br(Assembler::zero, false, Assembler::pt, L);
3862      delayed()->nop();
3863      stop("eden top is not properly aligned");
3864      bind(L);
3865    }
3866#endif // ASSERT
3867    const Register free = end;
3868    sub(end, obj, free);                                   // compute amount of free space
3869    if (var_size_in_bytes->is_valid()) {
3870      // size is unknown at compile time
3871      cmp(free, var_size_in_bytes);
3872      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3873      delayed()->add(obj, var_size_in_bytes, end);
3874    } else {
3875      // size is known at compile time
3876      cmp(free, con_size_in_bytes);
3877      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3878      delayed()->add(obj, con_size_in_bytes, end);
3879    }
3880    // Compare obj with the value at top_addr; if still equal, swap the value of
3881    // end with the value at top_addr. If not equal, read the value at top_addr
3882    // into end.
3883    casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3884    // if someone beat us on the allocation, try again, otherwise continue
3885    cmp(obj, end);
3886    brx(Assembler::notEqual, false, Assembler::pn, retry);
3887    delayed()->mov(end, obj);                              // nop if successfull since obj == end
3888
3889#ifdef ASSERT
3890    // make sure eden top is properly aligned
3891    {
3892      Label L;
3893      const Register top_addr = t1;
3894
3895      set((intx)ch->top_addr(), top_addr);
3896      ld_ptr(top_addr, 0, top_addr);
3897      btst(MinObjAlignmentInBytesMask, top_addr);
3898      br(Assembler::zero, false, Assembler::pt, L);
3899      delayed()->nop();
3900      stop("eden top is not properly aligned");
3901      bind(L);
3902    }
3903#endif // ASSERT
3904  }
3905}
3906
3907
3908void MacroAssembler::tlab_allocate(
3909  Register obj,                        // result: pointer to object after successful allocation
3910  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3911  int      con_size_in_bytes,          // object size in bytes if   known at compile time
3912  Register t1,                         // temp register
3913  Label&   slow_case                   // continuation point if fast allocation fails
3914){
3915  // make sure arguments make sense
3916  assert_different_registers(obj, var_size_in_bytes, t1);
3917  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3918  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3919
3920  const Register free  = t1;
3921
3922  verify_tlab();
3923
3924  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3925
3926  // calculate amount of free space
3927  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3928  sub(free, obj, free);
3929
3930  Label done;
3931  if (var_size_in_bytes == noreg) {
3932    cmp(free, con_size_in_bytes);
3933  } else {
3934    cmp(free, var_size_in_bytes);
3935  }
3936  br(Assembler::less, false, Assembler::pn, slow_case);
3937  // calculate the new top pointer
3938  if (var_size_in_bytes == noreg) {
3939    delayed()->add(obj, con_size_in_bytes, free);
3940  } else {
3941    delayed()->add(obj, var_size_in_bytes, free);
3942  }
3943
3944  bind(done);
3945
3946#ifdef ASSERT
3947  // make sure new free pointer is properly aligned
3948  {
3949    Label L;
3950    btst(MinObjAlignmentInBytesMask, free);
3951    br(Assembler::zero, false, Assembler::pt, L);
3952    delayed()->nop();
3953    stop("updated TLAB free is not properly aligned");
3954    bind(L);
3955  }
3956#endif // ASSERT
3957
3958  // update the tlab top pointer
3959  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3960  verify_tlab();
3961}
3962
3963
3964void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3965  Register top = O0;
3966  Register t1 = G1;
3967  Register t2 = G3;
3968  Register t3 = O1;
3969  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3970  Label do_refill, discard_tlab;
3971
3972  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3973    // No allocation in the shared eden.
3974    br(Assembler::always, false, Assembler::pt, slow_case);
3975    delayed()->nop();
3976  }
3977
3978  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3979  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3980  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3981
3982  // calculate amount of free space
3983  sub(t1, top, t1);
3984  srl_ptr(t1, LogHeapWordSize, t1);
3985
3986  // Retain tlab and allocate object in shared space if
3987  // the amount free in the tlab is too large to discard.
3988  cmp(t1, t2);
3989  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3990
3991  // increment waste limit to prevent getting stuck on this slow path
3992  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3993  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3994  if (TLABStats) {
3995    // increment number of slow_allocations
3996    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3997    add(t2, 1, t2);
3998    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3999  }
4000  br(Assembler::always, false, Assembler::pt, try_eden);
4001  delayed()->nop();
4002
4003  bind(discard_tlab);
4004  if (TLABStats) {
4005    // increment number of refills
4006    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
4007    add(t2, 1, t2);
4008    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
4009    // accumulate wastage
4010    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
4011    add(t2, t1, t2);
4012    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
4013  }
4014
4015  // if tlab is currently allocated (top or end != null) then
4016  // fill [top, end + alignment_reserve) with array object
4017  br_null(top, false, Assembler::pn, do_refill);
4018  delayed()->nop();
4019
4020  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
4021  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
4022  // set klass to intArrayKlass
4023  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
4024  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
4025  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
4026  st(t1, top, arrayOopDesc::length_offset_in_bytes());
4027  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
4028  ld_ptr(t2, 0, t2);
4029  // store klass last.  concurrent gcs assumes klass length is valid if
4030  // klass field is not null.
4031  store_klass(t2, top);
4032  verify_oop(top);
4033
4034  // refill the tlab with an eden allocation
4035  bind(do_refill);
4036  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
4037  sll_ptr(t1, LogHeapWordSize, t1);
4038  // add object_size ??
4039  eden_allocate(top, t1, 0, t2, t3, slow_case);
4040
4041  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
4042  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4043#ifdef ASSERT
4044  // check that tlab_size (t1) is still valid
4045  {
4046    Label ok;
4047    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
4048    sll_ptr(t2, LogHeapWordSize, t2);
4049    cmp(t1, t2);
4050    br(Assembler::equal, false, Assembler::pt, ok);
4051    delayed()->nop();
4052    stop("assert(t1 == tlab_size)");
4053    should_not_reach_here();
4054
4055    bind(ok);
4056  }
4057#endif // ASSERT
4058  add(top, t1, top); // t1 is tlab_size
4059  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
4060  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
4061  verify_tlab();
4062  br(Assembler::always, false, Assembler::pt, retry);
4063  delayed()->nop();
4064}
4065
4066Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
4067  switch (cond) {
4068    // Note some conditions are synonyms for others
4069    case Assembler::never:                return Assembler::always;
4070    case Assembler::zero:                 return Assembler::notZero;
4071    case Assembler::lessEqual:            return Assembler::greater;
4072    case Assembler::less:                 return Assembler::greaterEqual;
4073    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
4074    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
4075    case Assembler::negative:             return Assembler::positive;
4076    case Assembler::overflowSet:          return Assembler::overflowClear;
4077    case Assembler::always:               return Assembler::never;
4078    case Assembler::notZero:              return Assembler::zero;
4079    case Assembler::greater:              return Assembler::lessEqual;
4080    case Assembler::greaterEqual:         return Assembler::less;
4081    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
4082    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
4083    case Assembler::positive:             return Assembler::negative;
4084    case Assembler::overflowClear:        return Assembler::overflowSet;
4085  }
4086
4087  ShouldNotReachHere(); return Assembler::overflowClear;
4088}
4089
4090void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
4091                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
4092  Condition negated_cond = negate_condition(cond);
4093  Label L;
4094  brx(negated_cond, false, Assembler::pt, L);
4095  delayed()->nop();
4096  inc_counter(counter_ptr, Rtmp1, Rtmp2);
4097  bind(L);
4098}
4099
4100void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
4101  AddressLiteral addrlit(counter_addr);
4102  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
4103  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
4104  ld(addr, Rtmp2);
4105  inc(Rtmp2);
4106  st(Rtmp2, addr);
4107}
4108
4109void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4110  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4111}
4112
4113SkipIfEqual::SkipIfEqual(
4114    MacroAssembler* masm, Register temp, const bool* flag_addr,
4115    Assembler::Condition condition) {
4116  _masm = masm;
4117  AddressLiteral flag(flag_addr);
4118  _masm->sethi(flag, temp);
4119  _masm->ldub(temp, flag.low10(), temp);
4120  _masm->tst(temp);
4121  _masm->br(condition, false, Assembler::pt, _label);
4122  _masm->delayed()->nop();
4123}
4124
4125SkipIfEqual::~SkipIfEqual() {
4126  _masm->bind(_label);
4127}
4128
4129
4130// Writes to stack successive pages until offset reached to check for
4131// stack overflow + shadow pages.  This clobbers tsp and scratch.
4132void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4133                                     Register Rscratch) {
4134  // Use stack pointer in temp stack pointer
4135  mov(SP, Rtsp);
4136
4137  // Bang stack for total size given plus stack shadow page size.
4138  // Bang one page at a time because a large size can overflow yellow and
4139  // red zones (the bang will fail but stack overflow handling can't tell that
4140  // it was a stack overflow bang vs a regular segv).
4141  int offset = os::vm_page_size();
4142  Register Roffset = Rscratch;
4143
4144  Label loop;
4145  bind(loop);
4146  set((-offset)+STACK_BIAS, Rscratch);
4147  st(G0, Rtsp, Rscratch);
4148  set(offset, Roffset);
4149  sub(Rsize, Roffset, Rsize);
4150  cmp(Rsize, G0);
4151  br(Assembler::greater, false, Assembler::pn, loop);
4152  delayed()->sub(Rtsp, Roffset, Rtsp);
4153
4154  // Bang down shadow pages too.
4155  // The -1 because we already subtracted 1 page.
4156  for (int i = 0; i< StackShadowPages-1; i++) {
4157    set((-i*offset)+STACK_BIAS, Rscratch);
4158    st(G0, Rtsp, Rscratch);
4159  }
4160}
4161
4162///////////////////////////////////////////////////////////////////////////////////
4163#ifndef SERIALGC
4164
4165static uint num_stores = 0;
4166static uint num_null_pre_stores = 0;
4167
4168static void count_null_pre_vals(void* pre_val) {
4169  num_stores++;
4170  if (pre_val == NULL) num_null_pre_stores++;
4171  if ((num_stores % 1000000) == 0) {
4172    tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
4173                  num_stores, num_null_pre_stores,
4174                  100.0*(float)num_null_pre_stores/(float)num_stores);
4175  }
4176}
4177
4178static address satb_log_enqueue_with_frame = 0;
4179static u_char* satb_log_enqueue_with_frame_end = 0;
4180
4181static address satb_log_enqueue_frameless = 0;
4182static u_char* satb_log_enqueue_frameless_end = 0;
4183
4184static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4185
4186// The calls to this don't work.  We'd need to do a fair amount of work to
4187// make it work.
4188static void check_index(int ind) {
4189  assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
4190         "Invariants.");
4191}
4192
4193static void generate_satb_log_enqueue(bool with_frame) {
4194  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4195  CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
4196  MacroAssembler masm(&buf);
4197  address start = masm.pc();
4198  Register pre_val;
4199
4200  Label refill, restart;
4201  if (with_frame) {
4202    masm.save_frame(0);
4203    pre_val = I0;  // Was O0 before the save.
4204  } else {
4205    pre_val = O0;
4206  }
4207  int satb_q_index_byte_offset =
4208    in_bytes(JavaThread::satb_mark_queue_offset() +
4209             PtrQueue::byte_offset_of_index());
4210  int satb_q_buf_byte_offset =
4211    in_bytes(JavaThread::satb_mark_queue_offset() +
4212             PtrQueue::byte_offset_of_buf());
4213  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4214         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4215         "check sizes in assembly below");
4216
4217  masm.bind(restart);
4218  masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4219
4220  masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
4221  // If the branch is taken, no harm in executing this in the delay slot.
4222  masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4223  masm.sub(L0, oopSize, L0);
4224
4225  masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4226  if (!with_frame) {
4227    // Use return-from-leaf
4228    masm.retl();
4229    masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4230  } else {
4231    // Not delayed.
4232    masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4233  }
4234  if (with_frame) {
4235    masm.ret();
4236    masm.delayed()->restore();
4237  }
4238  masm.bind(refill);
4239
4240  address handle_zero =
4241    CAST_FROM_FN_PTR(address,
4242                     &SATBMarkQueueSet::handle_zero_index_for_thread);
4243  // This should be rare enough that we can afford to save all the
4244  // scratch registers that the calling context might be using.
4245  masm.mov(G1_scratch, L0);
4246  masm.mov(G3_scratch, L1);
4247  masm.mov(G4, L2);
4248  // We need the value of O0 above (for the write into the buffer), so we
4249  // save and restore it.
4250  masm.mov(O0, L3);
4251  // Since the call will overwrite O7, we save and restore that, as well.
4252  masm.mov(O7, L4);
4253  masm.call_VM_leaf(L5, handle_zero, G2_thread);
4254  masm.mov(L0, G1_scratch);
4255  masm.mov(L1, G3_scratch);
4256  masm.mov(L2, G4);
4257  masm.mov(L3, O0);
4258  masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4259  masm.delayed()->mov(L4, O7);
4260
4261  if (with_frame) {
4262    satb_log_enqueue_with_frame = start;
4263    satb_log_enqueue_with_frame_end = masm.pc();
4264  } else {
4265    satb_log_enqueue_frameless = start;
4266    satb_log_enqueue_frameless_end = masm.pc();
4267  }
4268}
4269
4270static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4271  if (with_frame) {
4272    if (satb_log_enqueue_with_frame == 0) {
4273      generate_satb_log_enqueue(with_frame);
4274      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4275      if (G1SATBPrintStubs) {
4276        tty->print_cr("Generated with-frame satb enqueue:");
4277        Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4278                             satb_log_enqueue_with_frame_end,
4279                             tty);
4280      }
4281    }
4282  } else {
4283    if (satb_log_enqueue_frameless == 0) {
4284      generate_satb_log_enqueue(with_frame);
4285      assert(satb_log_enqueue_frameless != 0, "postcondition.");
4286      if (G1SATBPrintStubs) {
4287        tty->print_cr("Generated frameless satb enqueue:");
4288        Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4289                             satb_log_enqueue_frameless_end,
4290                             tty);
4291      }
4292    }
4293  }
4294}
4295
4296void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
4297  assert(offset == 0 || index == noreg, "choose one");
4298
4299  if (G1DisablePreBarrier) return;
4300  // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
4301  Label filtered;
4302  // satb_log_barrier_work0(tmp, filtered);
4303  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4304    ld(G2,
4305       in_bytes(JavaThread::satb_mark_queue_offset() +
4306                PtrQueue::byte_offset_of_active()),
4307       tmp);
4308  } else {
4309    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4310              "Assumption");
4311    ldsb(G2,
4312         in_bytes(JavaThread::satb_mark_queue_offset() +
4313                  PtrQueue::byte_offset_of_active()),
4314         tmp);
4315  }
4316
4317  // Check on whether to annul.
4318  br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4319  delayed() -> nop();
4320
4321  // satb_log_barrier_work1(tmp, offset);
4322  if (index == noreg) {
4323    if (Assembler::is_simm13(offset)) {
4324      load_heap_oop(obj, offset, tmp);
4325    } else {
4326      set(offset, tmp);
4327      load_heap_oop(obj, tmp, tmp);
4328    }
4329  } else {
4330    load_heap_oop(obj, index, tmp);
4331  }
4332
4333  // satb_log_barrier_work2(obj, tmp, offset);
4334
4335  // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
4336
4337  const Register pre_val = tmp;
4338
4339  if (G1SATBBarrierPrintNullPreVals) {
4340    save_frame(0);
4341    mov(pre_val, O0);
4342    // Save G-regs that target may use.
4343    mov(G1, L1);
4344    mov(G2, L2);
4345    mov(G3, L3);
4346    mov(G4, L4);
4347    mov(G5, L5);
4348    call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
4349    delayed()->nop();
4350    // Restore G-regs that target may have used.
4351    mov(L1, G1);
4352    mov(L2, G2);
4353    mov(L3, G3);
4354    mov(L4, G4);
4355    mov(L5, G5);
4356    restore(G0, G0, G0);
4357  }
4358
4359  // Check on whether to annul.
4360  br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
4361  delayed() -> nop();
4362
4363  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4364  // case, pre_val will be a scratch G-reg, but there's some cases in which
4365  // it's an O-reg.  In the first case, do a normal call.  In the latter,
4366  // do a save here and call the frameless version.
4367
4368  guarantee(pre_val->is_global() || pre_val->is_out(),
4369            "Or we need to think harder.");
4370  if (pre_val->is_global() && !preserve_o_regs) {
4371    generate_satb_log_enqueue_if_necessary(true); // with frame.
4372    call(satb_log_enqueue_with_frame);
4373    delayed()->mov(pre_val, O0);
4374  } else {
4375    generate_satb_log_enqueue_if_necessary(false); // with frameless.
4376    save_frame(0);
4377    call(satb_log_enqueue_frameless);
4378    delayed()->mov(pre_val->after_save(), O0);
4379    restore();
4380  }
4381
4382  bind(filtered);
4383}
4384
4385static jint num_ct_writes = 0;
4386static jint num_ct_writes_filtered_in_hr = 0;
4387static jint num_ct_writes_filtered_null = 0;
4388static G1CollectedHeap* g1 = NULL;
4389
4390static Thread* count_ct_writes(void* filter_val, void* new_val) {
4391  Atomic::inc(&num_ct_writes);
4392  if (filter_val == NULL) {
4393    Atomic::inc(&num_ct_writes_filtered_in_hr);
4394  } else if (new_val == NULL) {
4395    Atomic::inc(&num_ct_writes_filtered_null);
4396  } else {
4397    if (g1 == NULL) {
4398      g1 = G1CollectedHeap::heap();
4399    }
4400  }
4401  if ((num_ct_writes % 1000000) == 0) {
4402    jint num_ct_writes_filtered =
4403      num_ct_writes_filtered_in_hr +
4404      num_ct_writes_filtered_null;
4405
4406    tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
4407                  "   (%5.2f%% intra-HR, %5.2f%% null).",
4408                  num_ct_writes,
4409                  100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
4410                  100.0*(float)num_ct_writes_filtered_in_hr/
4411                  (float)num_ct_writes,
4412                  100.0*(float)num_ct_writes_filtered_null/
4413                  (float)num_ct_writes);
4414  }
4415  return Thread::current();
4416}
4417
4418static address dirty_card_log_enqueue = 0;
4419static u_char* dirty_card_log_enqueue_end = 0;
4420
4421// This gets to assume that o0 contains the object address.
4422static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4423  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4424  CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
4425  MacroAssembler masm(&buf);
4426  address start = masm.pc();
4427
4428  Label not_already_dirty, restart, refill;
4429
4430#ifdef _LP64
4431  masm.srlx(O0, CardTableModRefBS::card_shift, O0);
4432#else
4433  masm.srl(O0, CardTableModRefBS::card_shift, O0);
4434#endif
4435  AddressLiteral addrlit(byte_map_base);
4436  masm.set(addrlit, O1); // O1 := <card table base>
4437  masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
4438
4439  masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
4440                      O2, not_already_dirty);
4441  // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
4442  // case, harmless if not.
4443  masm.delayed()->add(O0, O1, O3);
4444
4445  // We didn't take the branch, so we're already dirty: return.
4446  // Use return-from-leaf
4447  masm.retl();
4448  masm.delayed()->nop();
4449
4450  // Not dirty.
4451  masm.bind(not_already_dirty);
4452  // First, dirty it.
4453  masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4454  int dirty_card_q_index_byte_offset =
4455    in_bytes(JavaThread::dirty_card_queue_offset() +
4456             PtrQueue::byte_offset_of_index());
4457  int dirty_card_q_buf_byte_offset =
4458    in_bytes(JavaThread::dirty_card_queue_offset() +
4459             PtrQueue::byte_offset_of_buf());
4460  masm.bind(restart);
4461  masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4462
4463  masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
4464                      L0, refill);
4465  // If the branch is taken, no harm in executing this in the delay slot.
4466  masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4467  masm.sub(L0, oopSize, L0);
4468
4469  masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
4470  // Use return-from-leaf
4471  masm.retl();
4472  masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4473
4474  masm.bind(refill);
4475  address handle_zero =
4476    CAST_FROM_FN_PTR(address,
4477                     &DirtyCardQueueSet::handle_zero_index_for_thread);
4478  // This should be rare enough that we can afford to save all the
4479  // scratch registers that the calling context might be using.
4480  masm.mov(G1_scratch, L3);
4481  masm.mov(G3_scratch, L5);
4482  // We need the value of O3 above (for the write into the buffer), so we
4483  // save and restore it.
4484  masm.mov(O3, L6);
4485  // Since the call will overwrite O7, we save and restore that, as well.
4486  masm.mov(O7, L4);
4487
4488  masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4489  masm.mov(L3, G1_scratch);
4490  masm.mov(L5, G3_scratch);
4491  masm.mov(L6, O3);
4492  masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4493  masm.delayed()->mov(L4, O7);
4494
4495  dirty_card_log_enqueue = start;
4496  dirty_card_log_enqueue_end = masm.pc();
4497  // XXX Should have a guarantee here about not going off the end!
4498  // Does it already do so?  Do an experiment...
4499}
4500
4501static inline void
4502generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4503  if (dirty_card_log_enqueue == 0) {
4504    generate_dirty_card_log_enqueue(byte_map_base);
4505    assert(dirty_card_log_enqueue != 0, "postcondition.");
4506    if (G1SATBPrintStubs) {
4507      tty->print_cr("Generated dirty_card enqueue:");
4508      Disassembler::decode((u_char*)dirty_card_log_enqueue,
4509                           dirty_card_log_enqueue_end,
4510                           tty);
4511    }
4512  }
4513}
4514
4515
4516void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4517
4518  Label filtered;
4519  MacroAssembler* post_filter_masm = this;
4520
4521  if (new_val == G0) return;
4522  if (G1DisablePostBarrier) return;
4523
4524  G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4525  assert(bs->kind() == BarrierSet::G1SATBCT ||
4526         bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4527  if (G1RSBarrierRegionFilter) {
4528    xor3(store_addr, new_val, tmp);
4529#ifdef _LP64
4530    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4531#else
4532    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4533#endif
4534    if (G1PrintCTFilterStats) {
4535      guarantee(tmp->is_global(), "Or stats won't work...");
4536      // This is a sleazy hack: I'm temporarily hijacking G2, which I
4537      // promise to restore.
4538      mov(new_val, G2);
4539      save_frame(0);
4540      mov(tmp, O0);
4541      mov(G2, O1);
4542      // Save G-regs that target may use.
4543      mov(G1, L1);
4544      mov(G2, L2);
4545      mov(G3, L3);
4546      mov(G4, L4);
4547      mov(G5, L5);
4548      call(CAST_FROM_FN_PTR(address, &count_ct_writes));
4549      delayed()->nop();
4550      mov(O0, G2);
4551      // Restore G-regs that target may have used.
4552      mov(L1, G1);
4553      mov(L3, G3);
4554      mov(L4, G4);
4555      mov(L5, G5);
4556      restore(G0, G0, G0);
4557    }
4558    // XXX Should I predict this taken or not?  Does it mattern?
4559    br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4560    delayed()->nop();
4561  }
4562
4563  // If the "store_addr" register is an "in" or "local" register, move it to
4564  // a scratch reg so we can pass it as an argument.
4565  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4566  // Pick a scratch register different from "tmp".
4567  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4568  // Make sure we use up the delay slot!
4569  if (use_scr) {
4570    post_filter_masm->mov(store_addr, scr);
4571  } else {
4572    post_filter_masm->nop();
4573  }
4574  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4575  save_frame(0);
4576  call(dirty_card_log_enqueue);
4577  if (use_scr) {
4578    delayed()->mov(scr, O0);
4579  } else {
4580    delayed()->mov(store_addr->after_save(), O0);
4581  }
4582  restore();
4583
4584  bind(filtered);
4585
4586}
4587
4588#endif  // SERIALGC
4589///////////////////////////////////////////////////////////////////////////////////
4590
4591void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4592  // If we're writing constant NULL, we can skip the write barrier.
4593  if (new_val == G0) return;
4594  CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4595  assert(bs->kind() == BarrierSet::CardTableModRef ||
4596         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4597  card_table_write(bs->byte_map_base, tmp, store_addr);
4598}
4599
4600void MacroAssembler::load_klass(Register src_oop, Register klass) {
4601  // The number of bytes in this code is used by
4602  // MachCallDynamicJavaNode::ret_addr_offset()
4603  // if this changes, change that.
4604  if (UseCompressedOops) {
4605    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4606    decode_heap_oop_not_null(klass);
4607  } else {
4608    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4609  }
4610}
4611
4612void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4613  if (UseCompressedOops) {
4614    assert(dst_oop != klass, "not enough registers");
4615    encode_heap_oop_not_null(klass);
4616    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4617  } else {
4618    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4619  }
4620}
4621
4622void MacroAssembler::store_klass_gap(Register s, Register d) {
4623  if (UseCompressedOops) {
4624    assert(s != d, "not enough registers");
4625    st(s, d, oopDesc::klass_gap_offset_in_bytes());
4626  }
4627}
4628
4629void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4630  if (UseCompressedOops) {
4631    lduw(s, d);
4632    decode_heap_oop(d);
4633  } else {
4634    ld_ptr(s, d);
4635  }
4636}
4637
4638void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4639   if (UseCompressedOops) {
4640    lduw(s1, s2, d);
4641    decode_heap_oop(d, d);
4642  } else {
4643    ld_ptr(s1, s2, d);
4644  }
4645}
4646
4647void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4648   if (UseCompressedOops) {
4649    lduw(s1, simm13a, d);
4650    decode_heap_oop(d, d);
4651  } else {
4652    ld_ptr(s1, simm13a, d);
4653  }
4654}
4655
4656void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4657  if (UseCompressedOops) {
4658    assert(s1 != d && s2 != d, "not enough registers");
4659    encode_heap_oop(d);
4660    st(d, s1, s2);
4661  } else {
4662    st_ptr(d, s1, s2);
4663  }
4664}
4665
4666void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4667  if (UseCompressedOops) {
4668    assert(s1 != d, "not enough registers");
4669    encode_heap_oop(d);
4670    st(d, s1, simm13a);
4671  } else {
4672    st_ptr(d, s1, simm13a);
4673  }
4674}
4675
4676void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4677  if (UseCompressedOops) {
4678    assert(a.base() != d, "not enough registers");
4679    encode_heap_oop(d);
4680    st(d, a, offset);
4681  } else {
4682    st_ptr(d, a, offset);
4683  }
4684}
4685
4686
4687void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4688  assert (UseCompressedOops, "must be compressed");
4689  assert (Universe::heap() != NULL, "java heap should be initialized");
4690  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4691  verify_oop(src);
4692  if (Universe::narrow_oop_base() == NULL) {
4693    srlx(src, LogMinObjAlignmentInBytes, dst);
4694    return;
4695  }
4696  Label done;
4697  if (src == dst) {
4698    // optimize for frequent case src == dst
4699    bpr(rc_nz, true, Assembler::pt, src, done);
4700    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4701    bind(done);
4702    srlx(src, LogMinObjAlignmentInBytes, dst);
4703  } else {
4704    bpr(rc_z, false, Assembler::pn, src, done);
4705    delayed() -> mov(G0, dst);
4706    // could be moved before branch, and annulate delay,
4707    // but may add some unneeded work decoding null
4708    sub(src, G6_heapbase, dst);
4709    srlx(dst, LogMinObjAlignmentInBytes, dst);
4710    bind(done);
4711  }
4712}
4713
4714
4715void MacroAssembler::encode_heap_oop_not_null(Register r) {
4716  assert (UseCompressedOops, "must be compressed");
4717  assert (Universe::heap() != NULL, "java heap should be initialized");
4718  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4719  verify_oop(r);
4720  if (Universe::narrow_oop_base() != NULL)
4721    sub(r, G6_heapbase, r);
4722  srlx(r, LogMinObjAlignmentInBytes, r);
4723}
4724
4725void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4726  assert (UseCompressedOops, "must be compressed");
4727  assert (Universe::heap() != NULL, "java heap should be initialized");
4728  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4729  verify_oop(src);
4730  if (Universe::narrow_oop_base() == NULL) {
4731    srlx(src, LogMinObjAlignmentInBytes, dst);
4732  } else {
4733    sub(src, G6_heapbase, dst);
4734    srlx(dst, LogMinObjAlignmentInBytes, dst);
4735  }
4736}
4737
4738// Same algorithm as oops.inline.hpp decode_heap_oop.
4739void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4740  assert (UseCompressedOops, "must be compressed");
4741  assert (Universe::heap() != NULL, "java heap should be initialized");
4742  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4743  sllx(src, LogMinObjAlignmentInBytes, dst);
4744  if (Universe::narrow_oop_base() != NULL) {
4745    Label done;
4746    bpr(rc_nz, true, Assembler::pt, dst, done);
4747    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4748    bind(done);
4749  }
4750  verify_oop(dst);
4751}
4752
4753void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4754  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4755  // pd_code_size_limit.
4756  // Also do not verify_oop as this is called by verify_oop.
4757  assert (UseCompressedOops, "must be compressed");
4758  assert (Universe::heap() != NULL, "java heap should be initialized");
4759  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4760  sllx(r, LogMinObjAlignmentInBytes, r);
4761  if (Universe::narrow_oop_base() != NULL)
4762    add(r, G6_heapbase, r);
4763}
4764
4765void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4766  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4767  // pd_code_size_limit.
4768  // Also do not verify_oop as this is called by verify_oop.
4769  assert (UseCompressedOops, "must be compressed");
4770  assert (Universe::heap() != NULL, "java heap should be initialized");
4771  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4772  sllx(src, LogMinObjAlignmentInBytes, dst);
4773  if (Universe::narrow_oop_base() != NULL)
4774    add(dst, G6_heapbase, dst);
4775}
4776
4777void MacroAssembler::reinit_heapbase() {
4778  if (UseCompressedOops) {
4779    // call indirectly to solve generation ordering problem
4780    AddressLiteral base(Universe::narrow_oop_base_addr());
4781    load_ptr_contents(base, G6_heapbase);
4782  }
4783}
4784
4785// Compare char[] arrays aligned to 4 bytes.
4786void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4787                                        Register limit, Register result,
4788                                        Register chr1, Register chr2, Label& Ldone) {
4789  Label Lvector, Lloop;
4790  assert(chr1 == result, "should be the same");
4791
4792  // Note: limit contains number of bytes (2*char_elements) != 0.
4793  andcc(limit, 0x2, chr1); // trailing character ?
4794  br(Assembler::zero, false, Assembler::pt, Lvector);
4795  delayed()->nop();
4796
4797  // compare the trailing char
4798  sub(limit, sizeof(jchar), limit);
4799  lduh(ary1, limit, chr1);
4800  lduh(ary2, limit, chr2);
4801  cmp(chr1, chr2);
4802  br(Assembler::notEqual, true, Assembler::pt, Ldone);
4803  delayed()->mov(G0, result);     // not equal
4804
4805  // only one char ?
4806  br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
4807  delayed()->add(G0, 1, result); // zero-length arrays are equal
4808
4809  // word by word compare, dont't need alignment check
4810  bind(Lvector);
4811  // Shift ary1 and ary2 to the end of the arrays, negate limit
4812  add(ary1, limit, ary1);
4813  add(ary2, limit, ary2);
4814  neg(limit, limit);
4815
4816  lduw(ary1, limit, chr1);
4817  bind(Lloop);
4818  lduw(ary2, limit, chr2);
4819  cmp(chr1, chr2);
4820  br(Assembler::notEqual, true, Assembler::pt, Ldone);
4821  delayed()->mov(G0, result);     // not equal
4822  inccc(limit, 2*sizeof(jchar));
4823  // annul LDUW if branch is not taken to prevent access past end of array
4824  br(Assembler::notZero, true, Assembler::pt, Lloop);
4825  delayed()->lduw(ary1, limit, chr1); // hoisted
4826
4827  // Caller should set it:
4828  // add(G0, 1, result); // equals
4829}
4830
4831