interp_masm_ppc_64.cpp revision 7863:96fec51ac851
1210311Sjmallett/*
2210311Sjmallett * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3210311Sjmallett * Copyright 2012, 2015 SAP AG. All rights reserved.
4210311Sjmallett * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5210311Sjmallett *
6210311Sjmallett * This code is free software; you can redistribute it and/or modify it
7210311Sjmallett * under the terms of the GNU General Public License version 2 only, as
8210311Sjmallett * published by the Free Software Foundation.
9210311Sjmallett *
10210311Sjmallett * This code is distributed in the hope that it will be useful, but WITHOUT
11210311Sjmallett * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12210311Sjmallett * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13210311Sjmallett * version 2 for more details (a copy is included in the LICENSE file that
14210311Sjmallett * accompanied this code).
15210311Sjmallett *
16210311Sjmallett * You should have received a copy of the GNU General Public License version
17210311Sjmallett * 2 along with this work; if not, write to the Free Software Foundation,
18210311Sjmallett * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19210311Sjmallett *
20210311Sjmallett * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21210311Sjmallett * or visit www.oracle.com if you need additional information or have any
22210311Sjmallett * questions.
23210311Sjmallett *
24210311Sjmallett */
25210311Sjmallett
26210311Sjmallett
27210311Sjmallett#include "precompiled.hpp"
28210311Sjmallett#include "asm/macroAssembler.inline.hpp"
29210311Sjmallett#include "interp_masm_ppc_64.hpp"
30210311Sjmallett#include "interpreter/interpreterRuntime.hpp"
31210311Sjmallett#include "prims/jvmtiThreadState.hpp"
32210311Sjmallett#include "runtime/sharedRuntime.hpp"
33210311Sjmallett
34210311Sjmallett#ifdef PRODUCT
35210311Sjmallett#define BLOCK_COMMENT(str) // nothing
36210311Sjmallett#else
37210311Sjmallett#define BLOCK_COMMENT(str) block_comment(str)
38210311Sjmallett#endif
39210311Sjmallett
40216092Sjmallettvoid InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
41210311Sjmallett#ifdef CC_INTERP
42210311Sjmallett  address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
43210311Sjmallett#else
44210311Sjmallett  address exception_entry = Interpreter::throw_NullPointerException_entry();
45210311Sjmallett#endif
46210311Sjmallett  MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
47210311Sjmallett}
48210311Sjmallett
49210311Sjmallettvoid InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
50210311Sjmallett  assert(entry, "Entry must have been generated by now");
51210311Sjmallett  if (is_within_range_of_b(entry, pc())) {
52210311Sjmallett    b(entry);
53210311Sjmallett  } else {
54210311Sjmallett    load_const_optimized(Rscratch, entry, R0);
55210311Sjmallett    mtctr(Rscratch);
56210311Sjmallett    bctr();
57210311Sjmallett  }
58210311Sjmallett}
59210311Sjmallett
60210311Sjmallett#ifndef CC_INTERP
61210311Sjmallett
62210311Sjmallettvoid InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
63210311Sjmallett  Register bytecode = R12_scratch2;
64210311Sjmallett  if (bcp_incr != 0) {
65210311Sjmallett    lbzu(bytecode, bcp_incr, R14_bcp);
66210311Sjmallett  } else {
67210311Sjmallett    lbz(bytecode, 0, R14_bcp);
68210311Sjmallett  }
69210311Sjmallett
70210311Sjmallett  dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
71210311Sjmallett}
72210311Sjmallett
73210311Sjmallettvoid InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
74210311Sjmallett  // Load current bytecode.
75210311Sjmallett  Register bytecode = R12_scratch2;
76210311Sjmallett  lbz(bytecode, 0, R14_bcp);
77210311Sjmallett  dispatch_Lbyte_code(state, bytecode, table);
78210311Sjmallett}
79210311Sjmallett
80210311Sjmallett// Dispatch code executed in the prolog of a bytecode which does not do it's
81210311Sjmallett// own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
82213090Sjmallettvoid InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
83213090Sjmallett  Register bytecode = R12_scratch2;
84216092Sjmallett  lbz(bytecode, bcp_incr, R14_bcp);
85216092Sjmallett
86216092Sjmallett  load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
87216092Sjmallett
88216092Sjmallett  sldi(bytecode, bytecode, LogBytesPerWord);
89210311Sjmallett  ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
90210311Sjmallett}
91210311Sjmallett
92210311Sjmallett// Dispatch code executed in the epilog of a bytecode which does not do it's
93216092Sjmallett// own dispatch. The dispatch address in R24_dispatch_addr is used for the
94216092Sjmallett// dispatch.
95216092Sjmallettvoid InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
96210311Sjmallett  mtctr(R24_dispatch_addr);
97210311Sjmallett  addi(R14_bcp, R14_bcp, bcp_incr);
98210311Sjmallett  bctr();
99216092Sjmallett}
100216092Sjmallett
101216092Sjmallettvoid InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
102210311Sjmallett  assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
103210311Sjmallett  if (JvmtiExport::can_pop_frame()) {
104210311Sjmallett    Label L;
105210311Sjmallett
106210311Sjmallett    // Check the "pending popframe condition" flag in the current thread.
107210311Sjmallett    lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
108210311Sjmallett
109210311Sjmallett    // Initiate popframe handling only if it is not already being
110210311Sjmallett    // processed. If the flag has the popframe_processing bit set, it
111210311Sjmallett    // means that this code is called *during* popframe handling - we
112210311Sjmallett    // don't want to reenter.
113210311Sjmallett    andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
114210311Sjmallett    beq(CCR0, L);
115210311Sjmallett
116210311Sjmallett    andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
117210311Sjmallett    bne(CCR0, L);
118210311Sjmallett
119210311Sjmallett    // Call the Interpreter::remove_activation_preserving_args_entry()
120210311Sjmallett    // func to get the address of the same-named entrypoint in the
121210311Sjmallett    // generated interpreter code.
122210311Sjmallett#if defined(ABI_ELFv2)
123210311Sjmallett    call_c(CAST_FROM_FN_PTR(address,
124210311Sjmallett                            Interpreter::remove_activation_preserving_args_entry),
125210311Sjmallett           relocInfo::none);
126210311Sjmallett#else
127210311Sjmallett    call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
128210311Sjmallett                            Interpreter::remove_activation_preserving_args_entry),
129210311Sjmallett           relocInfo::none);
130210311Sjmallett#endif
131210311Sjmallett
132210311Sjmallett    // Jump to Interpreter::_remove_activation_preserving_args_entry.
133210311Sjmallett    mtctr(R3_RET);
134210311Sjmallett    bctr();
135210311Sjmallett
136210311Sjmallett    align(32, 12);
137210311Sjmallett    bind(L);
138210311Sjmallett  }
139210311Sjmallett}
140210311Sjmallett
141210311Sjmallettvoid InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
142210311Sjmallett  const Register Rthr_state_addr = scratch_reg;
143210311Sjmallett  if (JvmtiExport::can_force_early_return()) {
144210311Sjmallett    Label Lno_early_ret;
145210311Sjmallett    ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
146210311Sjmallett    cmpdi(CCR0, Rthr_state_addr, 0);
147210311Sjmallett    beq(CCR0, Lno_early_ret);
148210311Sjmallett
149210311Sjmallett    lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
150210311Sjmallett    cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
151210311Sjmallett    bne(CCR0, Lno_early_ret);
152210311Sjmallett
153210311Sjmallett    // Jump to Interpreter::_earlyret_entry.
154210311Sjmallett    lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
155210311Sjmallett    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
156210311Sjmallett    mtlr(R3_RET);
157210311Sjmallett    blr();
158210311Sjmallett
159210311Sjmallett    align(32, 12);
160210311Sjmallett    bind(Lno_early_ret);
161210311Sjmallett  }
162210311Sjmallett}
163210311Sjmallett
164210311Sjmallettvoid InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
165210311Sjmallett  const Register RjvmtiState = Rscratch1;
166210311Sjmallett  const Register Rscratch2   = R0;
167210311Sjmallett
168210311Sjmallett  ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
169210311Sjmallett  li(Rscratch2, 0);
170210311Sjmallett
171210311Sjmallett  switch (state) {
172210311Sjmallett    case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
173210311Sjmallett               std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
174210311Sjmallett               break;
175210311Sjmallett    case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
176210311Sjmallett               break;
177210311Sjmallett    case btos: // fall through
178210311Sjmallett    case ctos: // fall through
179210311Sjmallett    case stos: // fall through
180210311Sjmallett    case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
181210311Sjmallett               break;
182210311Sjmallett    case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
183210311Sjmallett               break;
184210311Sjmallett    case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
185210311Sjmallett               break;
186210311Sjmallett    case vtos: break;
187210311Sjmallett    default  : ShouldNotReachHere();
188210311Sjmallett  }
189210311Sjmallett
190210311Sjmallett  // Clean up tos value in the jvmti thread state.
191210311Sjmallett  std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
192210311Sjmallett  // Set tos state field to illegal value.
193210311Sjmallett  li(Rscratch2, ilgl);
194210311Sjmallett  stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
195210311Sjmallett}
196210311Sjmallett
197210311Sjmallett// Common code to dispatch and dispatch_only.
198210311Sjmallett// Dispatch value in Lbyte_code and increment Lbcp.
199210311Sjmallett
200210311Sjmallettvoid InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
201210311Sjmallett  address table_base = (address)Interpreter::dispatch_table((TosState)0);
202210311Sjmallett  intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
203210311Sjmallett  if (is_simm16(table_offs)) {
204210311Sjmallett    addi(dst, R25_templateTableBase, (int)table_offs);
205210311Sjmallett  } else {
206210311Sjmallett    load_const_optimized(dst, table, R0);
207210311Sjmallett  }
208210311Sjmallett}
209210311Sjmallett
210210311Sjmallettvoid InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
211216092Sjmallett  if (verify) {
212210311Sjmallett    unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
213210311Sjmallett  }
214210311Sjmallett
215210311Sjmallett#ifdef FAST_DISPATCH
216210311Sjmallett  unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
217210311Sjmallett#else
218210311Sjmallett  assert_different_registers(bytecode, R11_scratch1);
219210311Sjmallett
220210311Sjmallett  // Calc dispatch table address.
221210311Sjmallett  load_dispatch_table(R11_scratch1, table);
222216092Sjmallett
223216092Sjmallett  sldi(R12_scratch2, bytecode, LogBytesPerWord);
224216092Sjmallett  ldx(R11_scratch1, R11_scratch1, R12_scratch2);
225210311Sjmallett
226210311Sjmallett  // Jump off!
227210311Sjmallett  mtctr(R11_scratch1);
228210311Sjmallett  bctr();
229210311Sjmallett#endif
230216092Sjmallett}
231216092Sjmallett
232216092Sjmallettvoid InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
233210311Sjmallett  sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
234216092Sjmallett  ldx(Rrecv_dst, Rrecv_dst, R15_esp);
235216092Sjmallett}
236216092Sjmallett
237210311Sjmallett// helpers for expression stack
238210311Sjmallett
239210311Sjmallettvoid InterpreterMacroAssembler::pop_i(Register r) {
240216092Sjmallett  lwzu(r, Interpreter::stackElementSize, R15_esp);
241210311Sjmallett}
242210311Sjmallett
243210311Sjmallettvoid InterpreterMacroAssembler::pop_ptr(Register r) {
244210311Sjmallett  ldu(r, Interpreter::stackElementSize, R15_esp);
245210311Sjmallett}
246210311Sjmallett
247210311Sjmallettvoid InterpreterMacroAssembler::pop_l(Register r) {
248210311Sjmallett  ld(r, Interpreter::stackElementSize, R15_esp);
249210311Sjmallett  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
250210311Sjmallett}
251210311Sjmallett
252210311Sjmallettvoid InterpreterMacroAssembler::pop_f(FloatRegister f) {
253210311Sjmallett  lfsu(f, Interpreter::stackElementSize, R15_esp);
254210311Sjmallett}
255210311Sjmallett
256210311Sjmallettvoid InterpreterMacroAssembler::pop_d(FloatRegister f) {
257213090Sjmallett  lfd(f, Interpreter::stackElementSize, R15_esp);
258213090Sjmallett  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
259213090Sjmallett}
260213090Sjmallett
261213090Sjmallettvoid InterpreterMacroAssembler::push_i(Register r) {
262213090Sjmallett  stw(r, 0, R15_esp);
263213090Sjmallett  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
264213090Sjmallett}
265213090Sjmallett
266213090Sjmallettvoid InterpreterMacroAssembler::push_ptr(Register r) {
267213090Sjmallett  std(r, 0, R15_esp);
268213090Sjmallett  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
269213090Sjmallett}
270216092Sjmallett
271216092Sjmallettvoid InterpreterMacroAssembler::push_l(Register r) {
272216092Sjmallett  std(r, - Interpreter::stackElementSize, R15_esp);
273216092Sjmallett  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
274216092Sjmallett}
275216092Sjmallett
276216092Sjmallettvoid InterpreterMacroAssembler::push_f(FloatRegister f) {
277216092Sjmallett  stfs(f, 0, R15_esp);
278216092Sjmallett  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
279216092Sjmallett}
280216092Sjmallett
281216092Sjmallettvoid InterpreterMacroAssembler::push_d(FloatRegister f)   {
282216092Sjmallett  stfd(f, - Interpreter::stackElementSize, R15_esp);
283216092Sjmallett  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
284216092Sjmallett}
285216092Sjmallett
286216092Sjmallettvoid InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
287216092Sjmallett  std(first, 0, R15_esp);
288216092Sjmallett  std(second, -Interpreter::stackElementSize, R15_esp);
289216092Sjmallett  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
290216092Sjmallett}
291216092Sjmallett
292216092Sjmallettvoid InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
293216092Sjmallett  std(l, 0, R15_esp);
294216092Sjmallett  lfd(d, 0, R15_esp);
295216092Sjmallett}
296216092Sjmallett
297216092Sjmallettvoid InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
298216092Sjmallett  stfd(d, 0, R15_esp);
299216092Sjmallett  ld(l, 0, R15_esp);
300216092Sjmallett}
301216092Sjmallett
302216092Sjmallettvoid InterpreterMacroAssembler::push(TosState state) {
303216092Sjmallett  switch (state) {
304216092Sjmallett    case atos: push_ptr();                break;
305216092Sjmallett    case btos:
306216092Sjmallett    case ctos:
307216092Sjmallett    case stos:
308216092Sjmallett    case itos: push_i();                  break;
309216092Sjmallett    case ltos: push_l();                  break;
310216092Sjmallett    case ftos: push_f();                  break;
311216092Sjmallett    case dtos: push_d();                  break;
312216092Sjmallett    case vtos: /* nothing to do */        break;
313216092Sjmallett    default  : ShouldNotReachHere();
314210311Sjmallett  }
315210311Sjmallett}
316210311Sjmallett
317210311Sjmallettvoid InterpreterMacroAssembler::pop(TosState state) {
318210311Sjmallett  switch (state) {
319210311Sjmallett    case atos: pop_ptr();            break;
320210311Sjmallett    case btos:
321210311Sjmallett    case ctos:
322210311Sjmallett    case stos:
323210311Sjmallett    case itos: pop_i();              break;
324210311Sjmallett    case ltos: pop_l();              break;
325210311Sjmallett    case ftos: pop_f();              break;
326210311Sjmallett    case dtos: pop_d();              break;
327210311Sjmallett    case vtos: /* nothing to do */   break;
328210311Sjmallett    default  : ShouldNotReachHere();
329210311Sjmallett  }
330210311Sjmallett  verify_oop(R17_tos, state);
331210311Sjmallett}
332210311Sjmallett
333210311Sjmallettvoid InterpreterMacroAssembler::empty_expression_stack() {
334210311Sjmallett  addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
335210311Sjmallett}
336210311Sjmallett
337210311Sjmallettvoid InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
338210311Sjmallett                                                          Register    Rdst,
339210311Sjmallett                                                          signedOrNot is_signed) {
340210311Sjmallett#if defined(VM_LITTLE_ENDIAN)
341210311Sjmallett  if (bcp_offset) {
342210311Sjmallett    load_const_optimized(Rdst, bcp_offset);
343210311Sjmallett    lhbrx(Rdst, R14_bcp, Rdst);
344216092Sjmallett  } else {
345216092Sjmallett    lhbrx(Rdst, R14_bcp);
346216092Sjmallett  }
347216092Sjmallett  if (is_signed == Signed) {
348216092Sjmallett    extsh(Rdst, Rdst);
349216092Sjmallett  }
350216092Sjmallett#else
351216092Sjmallett  // Read Java big endian format.
352216092Sjmallett  if (is_signed == Signed) {
353216092Sjmallett    lha(Rdst, bcp_offset, R14_bcp);
354216092Sjmallett  } else {
355216092Sjmallett    lhz(Rdst, bcp_offset, R14_bcp);
356216092Sjmallett  }
357216092Sjmallett#endif
358216092Sjmallett}
359216092Sjmallett
360216092Sjmallettvoid InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
361216092Sjmallett                                                          Register    Rdst,
362216092Sjmallett                                                          signedOrNot is_signed) {
363216092Sjmallett#if defined(VM_LITTLE_ENDIAN)
364216092Sjmallett  if (bcp_offset) {
365216092Sjmallett    load_const_optimized(Rdst, bcp_offset);
366210311Sjmallett    lwbrx(Rdst, R14_bcp, Rdst);
367210311Sjmallett  } else {
368210311Sjmallett    lwbrx(Rdst, R14_bcp);
369210311Sjmallett  }
370210311Sjmallett  if (is_signed == Signed) {
371210311Sjmallett    extsw(Rdst, Rdst);
372210311Sjmallett  }
373210311Sjmallett#else
374210311Sjmallett  // Read Java big endian format.
375210311Sjmallett  if (bcp_offset & 3) { // Offset unaligned?
376210311Sjmallett    load_const_optimized(Rdst, bcp_offset);
377210311Sjmallett    if (is_signed == Signed) {
378210311Sjmallett      lwax(Rdst, R14_bcp, Rdst);
379210311Sjmallett    } else {
380210311Sjmallett      lwzx(Rdst, R14_bcp, Rdst);
381210311Sjmallett    }
382210311Sjmallett  } else {
383210311Sjmallett    if (is_signed == Signed) {
384210311Sjmallett      lwa(Rdst, bcp_offset, R14_bcp);
385210311Sjmallett    } else {
386210311Sjmallett      lwz(Rdst, bcp_offset, R14_bcp);
387210311Sjmallett    }
388210311Sjmallett  }
389210311Sjmallett#endif
390216092Sjmallett}
391210311Sjmallett
392216092Sjmallett
393216092Sjmallett// Load the constant pool cache index from the bytecode stream.
394216092Sjmallett//
395216092Sjmallett// Kills / writes:
396216092Sjmallett//   - Rdst, Rscratch
397216092Sjmallettvoid InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
398216092Sjmallett  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
399216092Sjmallett  // Cache index is always in the native format, courtesy of Rewriter.
400216092Sjmallett  if (index_size == sizeof(u2)) {
401216092Sjmallett    lhz(Rdst, bcp_offset, R14_bcp);
402216092Sjmallett  } else if (index_size == sizeof(u4)) {
403216092Sjmallett    if (bcp_offset & 3) {
404216092Sjmallett      load_const_optimized(Rdst, bcp_offset);
405216092Sjmallett      lwax(Rdst, R14_bcp, Rdst);
406216092Sjmallett    } else {
407216092Sjmallett      lwa(Rdst, bcp_offset, R14_bcp);
408216092Sjmallett    }
409216092Sjmallett    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
410216092Sjmallett    nand(Rdst, Rdst, Rdst); // convert to plain index
411216092Sjmallett  } else if (index_size == sizeof(u1)) {
412216092Sjmallett    lbz(Rdst, bcp_offset, R14_bcp);
413210311Sjmallett  } else {
414210311Sjmallett    ShouldNotReachHere();
415210311Sjmallett  }
416210311Sjmallett  // Rdst now contains cp cache index.
417210311Sjmallett}
418210311Sjmallett
419210311Sjmallettvoid InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
420210311Sjmallett  get_cache_index_at_bcp(cache, bcp_offset, index_size);
421210311Sjmallett  sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
422210311Sjmallett  add(cache, R27_constPoolCache, cache);
423210311Sjmallett}
424210311Sjmallett
425210311Sjmallett// Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
426210311Sjmallett// from (Rsrc)+offset.
427210311Sjmallettvoid InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
428210311Sjmallett                                       signedOrNot is_signed) {
429210311Sjmallett#if defined(VM_LITTLE_ENDIAN)
430210311Sjmallett  if (offset) {
431210311Sjmallett    load_const_optimized(Rdst, offset);
432210311Sjmallett    lwbrx(Rdst, Rdst, Rsrc);
433210311Sjmallett  } else {
434210311Sjmallett    lwbrx(Rdst, Rsrc);
435210311Sjmallett  }
436210311Sjmallett  if (is_signed == Signed) {
437210311Sjmallett    extsw(Rdst, Rdst);
438210311Sjmallett  }
439210311Sjmallett#else
440210311Sjmallett  if (is_signed == Signed) {
441210311Sjmallett    lwa(Rdst, offset, Rsrc);
442210311Sjmallett  } else {
443210311Sjmallett    lwz(Rdst, offset, Rsrc);
444210311Sjmallett  }
445210311Sjmallett#endif
446210311Sjmallett}
447210311Sjmallett
448210311Sjmallett// Load object from cpool->resolved_references(index).
449210311Sjmallettvoid InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
450210311Sjmallett  assert_different_registers(result, index);
451210311Sjmallett  get_constant_pool(result);
452210311Sjmallett
453210311Sjmallett  // Convert from field index to resolved_references() index and from
454210311Sjmallett  // word index to byte offset. Since this is a java object, it can be compressed.
455210311Sjmallett  Register tmp = index;  // reuse
456210311Sjmallett  sldi(tmp, index, LogBytesPerHeapOop);
457210311Sjmallett  // Load pointer for resolved_references[] objArray.
458210311Sjmallett  ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
459210311Sjmallett  // JNIHandles::resolve(result)
460210311Sjmallett  ld(result, 0, result);
461210311Sjmallett#ifdef ASSERT
462210311Sjmallett  Label index_ok;
463210311Sjmallett  lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
464210311Sjmallett  sldi(R0, R0, LogBytesPerHeapOop);
465210311Sjmallett  cmpd(CCR0, tmp, R0);
466210311Sjmallett  blt(CCR0, index_ok);
467210311Sjmallett  stop("resolved reference index out of bounds", 0x09256);
468210311Sjmallett  bind(index_ok);
469210311Sjmallett#endif
470213090Sjmallett  // Add in the index.
471216092Sjmallett  add(result, tmp, result);
472216092Sjmallett  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
473216092Sjmallett}
474216092Sjmallett
475210311Sjmallett// Generate a subtype check: branch to ok_is_subtype if sub_klass is
476210311Sjmallett// a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
477210311Sjmallettvoid InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
478210311Sjmallett                                                  Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
479210311Sjmallett  // Profile the not-null value's klass.
480210311Sjmallett  profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
481210311Sjmallett  check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
482210311Sjmallett  profile_typecheck_failed(Rtmp1, Rtmp2);
483210311Sjmallett}
484210311Sjmallett
485210311Sjmallettvoid InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
486210311Sjmallett  Label done;
487210311Sjmallett  sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
488210311Sjmallett  ld(Rscratch1, thread_(stack_overflow_limit));
489  cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
490  bgt(CCR0/*is_stack_overflow*/, done);
491
492  // Load target address of the runtime stub.
493  assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
494  load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
495  mtctr(Rscratch1);
496  // Restore caller_sp.
497#ifdef ASSERT
498  ld(Rscratch1, 0, R1_SP);
499  ld(R0, 0, R21_sender_SP);
500  cmpd(CCR0, R0, Rscratch1);
501  asm_assert_eq("backlink", 0x547);
502#endif // ASSERT
503  mr(R1_SP, R21_sender_SP);
504  bctr();
505
506  align(32, 12);
507  bind(done);
508}
509
510// Separate these two to allow for delay slot in middle.
511// These are used to do a test and full jump to exception-throwing code.
512
513// Check that index is in range for array, then shift index by index_shift,
514// and put arrayOop + shifted_index into res.
515// Note: res is still shy of address by array offset into object.
516
517void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
518  // Check that index is in range for array, then shift index by index_shift,
519  // and put arrayOop + shifted_index into res.
520  // Note: res is still shy of address by array offset into object.
521  // Kills:
522  //   - Rindex
523  // Writes:
524  //   - Rres: Address that corresponds to the array index if check was successful.
525  verify_oop(Rarray);
526  const Register Rlength   = R0;
527  const Register RsxtIndex = Rtmp;
528  Label LisNull, LnotOOR;
529
530  // Array nullcheck
531  if (!ImplicitNullChecks) {
532    cmpdi(CCR0, Rarray, 0);
533    beq(CCR0, LisNull);
534  } else {
535    null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
536  }
537
538  // Rindex might contain garbage in upper bits (remember that we don't sign extend
539  // during integer arithmetic operations). So kill them and put value into same register
540  // where ArrayIndexOutOfBounds would expect the index in.
541  rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
542
543  // Index check
544  lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
545  cmplw(CCR0, Rindex, Rlength);
546  sldi(RsxtIndex, RsxtIndex, index_shift);
547  blt(CCR0, LnotOOR);
548  // Index should be in R17_tos, array should be in R4_ARG2.
549  mr(R17_tos, Rindex);
550  mr(R4_ARG2, Rarray);
551  load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
552  mtctr(Rtmp);
553  bctr();
554
555  if (!ImplicitNullChecks) {
556    bind(LisNull);
557    load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
558    mtctr(Rtmp);
559    bctr();
560  }
561
562  align(32, 16);
563  bind(LnotOOR);
564
565  // Calc address
566  add(Rres, RsxtIndex, Rarray);
567}
568
569void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
570  // pop array
571  pop_ptr(array);
572
573  // check array
574  index_check_without_pop(array, index, index_shift, tmp, res);
575}
576
577void InterpreterMacroAssembler::get_const(Register Rdst) {
578  ld(Rdst, in_bytes(Method::const_offset()), R19_method);
579}
580
581void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
582  get_const(Rdst);
583  ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
584}
585
586void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
587  get_constant_pool(Rdst);
588  ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
589}
590
591void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
592  get_constant_pool(Rcpool);
593  ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
594}
595
596// Unlock if synchronized method.
597//
598// Unlock the receiver if this is a synchronized method.
599// Unlock any Java monitors from synchronized blocks.
600//
601// If there are locked Java monitors
602//   If throw_monitor_exception
603//     throws IllegalMonitorStateException
604//   Else if install_monitor_exception
605//     installs IllegalMonitorStateException
606//   Else
607//     no error processing
608void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
609                                                              bool throw_monitor_exception,
610                                                              bool install_monitor_exception) {
611  Label Lunlocked, Lno_unlock;
612  {
613    Register Rdo_not_unlock_flag = R11_scratch1;
614    Register Raccess_flags       = R12_scratch2;
615
616    // Check if synchronized method or unlocking prevented by
617    // JavaThread::do_not_unlock_if_synchronized flag.
618    lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
619    lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
620    li(R0, 0);
621    stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
622
623    push(state);
624
625    // Skip if we don't have to unlock.
626    rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
627    beq(CCR0, Lunlocked);
628
629    cmpwi(CCR0, Rdo_not_unlock_flag, 0);
630    bne(CCR0, Lno_unlock);
631  }
632
633  // Unlock
634  {
635    Register Rmonitor_base = R11_scratch1;
636
637    Label Lunlock;
638    // If it's still locked, everything is ok, unlock it.
639    ld(Rmonitor_base, 0, R1_SP);
640    addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
641
642    ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
643    cmpdi(CCR0, R0, 0);
644    bne(CCR0, Lunlock);
645
646    // If it's already unlocked, throw exception.
647    if (throw_monitor_exception) {
648      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
649      should_not_reach_here();
650    } else {
651      if (install_monitor_exception) {
652        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
653        b(Lunlocked);
654      }
655    }
656
657    bind(Lunlock);
658    unlock_object(Rmonitor_base);
659  }
660
661  // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
662  bind(Lunlocked);
663  {
664    Label Lexception, Lrestart;
665    Register Rcurrent_obj_addr = R11_scratch1;
666    const int delta = frame::interpreter_frame_monitor_size_in_bytes();
667    assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
668
669    bind(Lrestart);
670    // Set up search loop: Calc num of iterations.
671    {
672      Register Riterations = R12_scratch2;
673      Register Rmonitor_base = Rcurrent_obj_addr;
674      ld(Rmonitor_base, 0, R1_SP);
675      addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
676
677      subf_(Riterations, R26_monitor, Rmonitor_base);
678      ble(CCR0, Lno_unlock);
679
680      addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
681      // Check if any monitor is on stack, bail out if not
682      srdi(Riterations, Riterations, exact_log2(delta));
683      mtctr(Riterations);
684    }
685
686    // The search loop: Look for locked monitors.
687    {
688      const Register Rcurrent_obj = R0;
689      Label Lloop;
690
691      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
692      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
693      bind(Lloop);
694
695      // Check if current entry is used.
696      cmpdi(CCR0, Rcurrent_obj, 0);
697      bne(CCR0, Lexception);
698      // Preload next iteration's compare value.
699      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
700      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
701      bdnz(Lloop);
702    }
703    // Fell through: Everything's unlocked => finish.
704    b(Lno_unlock);
705
706    // An object is still locked => need to throw exception.
707    bind(Lexception);
708    if (throw_monitor_exception) {
709      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
710      should_not_reach_here();
711    } else {
712      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
713      // Unlock does not block, so don't have to worry about the frame.
714      Register Rmonitor_addr = R11_scratch1;
715      addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
716      unlock_object(Rmonitor_addr);
717      if (install_monitor_exception) {
718        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
719      }
720      b(Lrestart);
721    }
722  }
723
724  align(32, 12);
725  bind(Lno_unlock);
726  pop(state);
727}
728
729// Support function for remove_activation & Co.
730void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
731  // Pop interpreter frame.
732  ld(Rscratch1, 0, R1_SP); // *SP
733  ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
734  ld(Rscratch2, 0, Rscratch1); // **SP
735#ifdef ASSERT
736  {
737    Label Lok;
738    ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
739    cmpdi(CCR0, R0, 0x5afe);
740    beq(CCR0, Lok);
741    stop("frame corrupted (remove activation)", 0x5afe);
742    bind(Lok);
743  }
744#endif
745  if (return_pc!=noreg) {
746    ld(return_pc, _abi(lr), Rscratch1); // LR
747  }
748
749  // Merge top frames.
750  subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
751  stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
752}
753
754// Remove activation.
755//
756// Unlock the receiver if this is a synchronized method.
757// Unlock any Java monitors from synchronized blocks.
758// Remove the activation from the stack.
759//
760// If there are locked Java monitors
761//    If throw_monitor_exception
762//       throws IllegalMonitorStateException
763//    Else if install_monitor_exception
764//       installs IllegalMonitorStateException
765//    Else
766//       no error processing
767void InterpreterMacroAssembler::remove_activation(TosState state,
768                                                  bool throw_monitor_exception,
769                                                  bool install_monitor_exception) {
770  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
771
772  // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
773  notify_method_exit(false, state, NotifyJVMTI, true);
774
775  verify_oop(R17_tos, state);
776  verify_thread();
777
778  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
779  mtlr(R0);
780}
781
782#endif // !CC_INTERP
783
784// Lock object
785//
786// Registers alive
787//   monitor - Address of the BasicObjectLock to be used for locking,
788//             which must be initialized with the object to lock.
789//   object  - Address of the object to be locked.
790//
791void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
792  if (UseHeavyMonitors) {
793    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
794            monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
795  } else {
796    // template code:
797    //
798    // markOop displaced_header = obj->mark().set_unlocked();
799    // monitor->lock()->set_displaced_header(displaced_header);
800    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
801    //   // We stored the monitor address into the object's mark word.
802    // } else if (THREAD->is_lock_owned((address)displaced_header))
803    //   // Simple recursive case.
804    //   monitor->lock()->set_displaced_header(NULL);
805    // } else {
806    //   // Slow path.
807    //   InterpreterRuntime::monitorenter(THREAD, monitor);
808    // }
809
810    const Register displaced_header = R7_ARG5;
811    const Register object_mark_addr = R8_ARG6;
812    const Register current_header   = R9_ARG7;
813    const Register tmp              = R10_ARG8;
814
815    Label done;
816    Label cas_failed, slow_case;
817
818    assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
819
820    // markOop displaced_header = obj->mark().set_unlocked();
821
822    // Load markOop from object into displaced_header.
823    ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
824
825    if (UseBiasedLocking) {
826      biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
827    }
828
829    // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
830    ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
831
832    // monitor->lock()->set_displaced_header(displaced_header);
833
834    // Initialize the box (Must happen before we update the object mark!).
835    std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
836        BasicLock::displaced_header_offset_in_bytes(), monitor);
837
838    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
839
840    // Store stack address of the BasicObjectLock (this is monitor) into object.
841    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
842
843    // Must fence, otherwise, preceding store(s) may float below cmpxchg.
844    // CmpxchgX sets CCR0 to cmpX(current, displaced).
845    fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
846    cmpxchgd(/*flag=*/CCR0,
847             /*current_value=*/current_header,
848             /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
849             /*where=*/object_mark_addr,
850             MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
851             MacroAssembler::cmpxchgx_hint_acquire_lock(),
852             noreg,
853             &cas_failed);
854
855    // If the compare-and-exchange succeeded, then we found an unlocked
856    // object and we have now locked it.
857    b(done);
858    bind(cas_failed);
859
860    // } else if (THREAD->is_lock_owned((address)displaced_header))
861    //   // Simple recursive case.
862    //   monitor->lock()->set_displaced_header(NULL);
863
864    // We did not see an unlocked object so try the fast recursive case.
865
866    // Check if owner is self by comparing the value in the markOop of object
867    // (current_header) with the stack pointer.
868    sub(current_header, current_header, R1_SP);
869
870    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
871    load_const_optimized(tmp,
872                         (address) (~(os::vm_page_size()-1) |
873                                    markOopDesc::lock_mask_in_place));
874
875    and_(R0/*==0?*/, current_header, tmp);
876    // If condition is true we are done and hence we can store 0 in the displaced
877    // header indicating it is a recursive lock.
878    bne(CCR0, slow_case);
879    release();
880    std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
881        BasicLock::displaced_header_offset_in_bytes(), monitor);
882    b(done);
883
884    // } else {
885    //   // Slow path.
886    //   InterpreterRuntime::monitorenter(THREAD, monitor);
887
888    // None of the above fast optimizations worked so we have to get into the
889    // slow case of monitor enter.
890    bind(slow_case);
891    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
892            monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
893    // }
894    align(32, 12);
895    bind(done);
896  }
897}
898
899// Unlocks an object. Used in monitorexit bytecode and remove_activation.
900//
901// Registers alive
902//   monitor - Address of the BasicObjectLock to be used for locking,
903//             which must be initialized with the object to lock.
904//
905// Throw IllegalMonitorException if object is not locked by current thread.
906void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
907  if (UseHeavyMonitors) {
908    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
909            monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
910  } else {
911
912    // template code:
913    //
914    // if ((displaced_header = monitor->displaced_header()) == NULL) {
915    //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
916    //   monitor->set_obj(NULL);
917    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
918    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
919    //   monitor->set_obj(NULL);
920    // } else {
921    //   // Slow path.
922    //   InterpreterRuntime::monitorexit(THREAD, monitor);
923    // }
924
925    const Register object           = R7_ARG5;
926    const Register displaced_header = R8_ARG6;
927    const Register object_mark_addr = R9_ARG7;
928    const Register current_header   = R10_ARG8;
929
930    Label free_slot;
931    Label slow_case;
932
933    assert_different_registers(object, displaced_header, object_mark_addr, current_header);
934
935    if (UseBiasedLocking) {
936      // The object address from the monitor is in object.
937      ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
938      assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
939      biased_locking_exit(CCR0, object, displaced_header, free_slot);
940    }
941
942    // Test first if we are in the fast recursive case.
943    ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
944           BasicLock::displaced_header_offset_in_bytes(), monitor);
945
946    // If the displaced header is zero, we have a recursive unlock.
947    cmpdi(CCR0, displaced_header, 0);
948    beq(CCR0, free_slot); // recursive unlock
949
950    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
951    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
952    //   monitor->set_obj(NULL);
953
954    // If we still have a lightweight lock, unlock the object and be done.
955
956    // The object address from the monitor is in object.
957    if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
958    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
959
960    // We have the displaced header in displaced_header. If the lock is still
961    // lightweight, it will contain the monitor address and we'll store the
962    // displaced header back into the object's mark word.
963    // CmpxchgX sets CCR0 to cmpX(current, monitor).
964    cmpxchgd(/*flag=*/CCR0,
965             /*current_value=*/current_header,
966             /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
967             /*where=*/object_mark_addr,
968             MacroAssembler::MemBarRel,
969             MacroAssembler::cmpxchgx_hint_release_lock(),
970             noreg,
971             &slow_case);
972    b(free_slot);
973
974    // } else {
975    //   // Slow path.
976    //   InterpreterRuntime::monitorexit(THREAD, monitor);
977
978    // The lock has been converted into a heavy lock and hence
979    // we need to get into the slow case.
980    bind(slow_case);
981    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
982            monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
983    // }
984
985    Label done;
986    b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
987
988    // Exchange worked, do monitor->set_obj(NULL);
989    align(32, 12);
990    bind(free_slot);
991    li(R0, 0);
992    std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
993    bind(done);
994  }
995}
996
997#ifndef CC_INTERP
998
999// Load compiled (i2c) or interpreter entry when calling from interpreted and
1000// do the call. Centralized so that all interpreter calls will do the same actions.
1001// If jvmti single stepping is on for a thread we must not call compiled code.
1002//
1003// Input:
1004//   - Rtarget_method: method to call
1005//   - Rret_addr:      return address
1006//   - 2 scratch regs
1007//
1008void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
1009  assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1010  // Assume we want to go compiled if available.
1011  const Register Rtarget_addr = Rscratch1;
1012  const Register Rinterp_only = Rscratch2;
1013
1014  ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1015
1016  if (JvmtiExport::can_post_interpreter_events()) {
1017    lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1018
1019    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1020    // compiled code in threads for which the event is enabled. Check here for
1021    // interp_only_mode if these events CAN be enabled.
1022    Label done;
1023    verify_thread();
1024    cmpwi(CCR0, Rinterp_only, 0);
1025    beq(CCR0, done);
1026    ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1027    align(32, 12);
1028    bind(done);
1029  }
1030
1031#ifdef ASSERT
1032  {
1033    Label Lok;
1034    cmpdi(CCR0, Rtarget_addr, 0);
1035    bne(CCR0, Lok);
1036    stop("null entry point");
1037    bind(Lok);
1038  }
1039#endif // ASSERT
1040
1041  mr(R21_sender_SP, R1_SP);
1042
1043  // Calc a precise SP for the call. The SP value we calculated in
1044  // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1045  // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1046  // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1047  // Since esp already points to an empty slot, we just have to sub 1 additional slot
1048  // to meet the abi scratch requirements.
1049  // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1050  // the return entry of the interpreter.
1051  addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1052  clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1053  resize_frame_absolute(Rscratch2, Rscratch2, R0);
1054
1055  mr_if_needed(R19_method, Rtarget_method);
1056  mtctr(Rtarget_addr);
1057  mtlr(Rret_addr);
1058
1059  save_interpreter_state(Rscratch2);
1060#ifdef ASSERT
1061  ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1062  cmpd(CCR0, R21_sender_SP, Rscratch1);
1063  asm_assert_eq("top_frame_sp incorrect", 0x951);
1064#endif
1065
1066  bctr();
1067}
1068
1069// Set the method data pointer for the current bcp.
1070void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1071  assert(ProfileInterpreter, "must be profiling interpreter");
1072  Label get_continue;
1073  ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1074  test_method_data_pointer(get_continue);
1075  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1076
1077  addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1078  add(R28_mdx, R28_mdx, R3_RET);
1079  bind(get_continue);
1080}
1081
1082// Test ImethodDataPtr. If it is null, continue at the specified label.
1083void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1084  assert(ProfileInterpreter, "must be profiling interpreter");
1085  cmpdi(CCR0, R28_mdx, 0);
1086  beq(CCR0, zero_continue);
1087}
1088
1089void InterpreterMacroAssembler::verify_method_data_pointer() {
1090  assert(ProfileInterpreter, "must be profiling interpreter");
1091#ifdef ASSERT
1092  Label verify_continue;
1093  test_method_data_pointer(verify_continue);
1094
1095  // If the mdp is valid, it will point to a DataLayout header which is
1096  // consistent with the bcp. The converse is highly probable also.
1097  lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1098  ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1099  addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1100  add(R11_scratch1, R12_scratch2, R12_scratch2);
1101  cmpd(CCR0, R11_scratch1, R14_bcp);
1102  beq(CCR0, verify_continue);
1103
1104  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1105
1106  bind(verify_continue);
1107#endif
1108}
1109
1110void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1111                                                                Register Rscratch,
1112                                                                Label &profile_continue) {
1113  assert(ProfileInterpreter, "must be profiling interpreter");
1114  // Control will flow to "profile_continue" if the counter is less than the
1115  // limit or if we call profile_method().
1116  Label done;
1117
1118  // If no method data exists, and the counter is high enough, make one.
1119  int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
1120  lwz(Rscratch, ipl_offs, Rscratch);
1121
1122  cmpdi(CCR0, R28_mdx, 0);
1123  // Test to see if we should create a method data oop.
1124  cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
1125  bne(CCR0, done);
1126  bge(CCR1, profile_continue);
1127
1128  // Build it now.
1129  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1130  set_method_data_pointer_for_bcp();
1131  b(profile_continue);
1132
1133  align(32, 12);
1134  bind(done);
1135}
1136
1137void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
1138  assert_different_registers(backedge_count, Rtmp, branch_bcp);
1139  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1140
1141  Label did_not_overflow;
1142  Label overflow_with_error;
1143
1144  int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
1145  lwz(Rtmp, ibbl_offs, Rtmp);
1146  cmpw(CCR0, backedge_count, Rtmp);
1147
1148  blt(CCR0, did_not_overflow);
1149
1150  // When ProfileInterpreter is on, the backedge_count comes from the
1151  // methodDataOop, which value does not get reset on the call to
1152  // frequency_counter_overflow(). To avoid excessive calls to the overflow
1153  // routine while the method is being compiled, add a second test to make sure
1154  // the overflow function is called only once every overflow_frequency.
1155  if (ProfileInterpreter) {
1156    const int overflow_frequency = 1024;
1157    li(Rtmp, overflow_frequency-1);
1158    andr(Rtmp, Rtmp, backedge_count);
1159    cmpwi(CCR0, Rtmp, 0);
1160    bne(CCR0, did_not_overflow);
1161  }
1162
1163  // Overflow in loop, pass branch bytecode.
1164  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
1165
1166  // Was an OSR adapter generated?
1167  // O0 = osr nmethod
1168  cmpdi(CCR0, R3_RET, 0);
1169  beq(CCR0, overflow_with_error);
1170
1171  // Has the nmethod been invalidated already?
1172  lbz(Rtmp, nmethod::state_offset(), R3_RET);
1173  cmpwi(CCR0, Rtmp, nmethod::in_use);
1174  bne(CCR0, overflow_with_error);
1175
1176  // Migrate the interpreter frame off of the stack.
1177  // We can use all registers because we will not return to interpreter from this point.
1178
1179  // Save nmethod.
1180  const Register osr_nmethod = R31;
1181  mr(osr_nmethod, R3_RET);
1182  set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1183  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1184  reset_last_Java_frame();
1185  // OSR buffer is in ARG1
1186
1187  // Remove the interpreter frame.
1188  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1189
1190  // Jump to the osr code.
1191  ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1192  mtlr(R0);
1193  mtctr(R11_scratch1);
1194  bctr();
1195
1196  align(32, 12);
1197  bind(overflow_with_error);
1198  bind(did_not_overflow);
1199}
1200
1201// Store a value at some constant offset from the method data pointer.
1202void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1203  assert(ProfileInterpreter, "must be profiling interpreter");
1204
1205  std(value, constant, R28_mdx);
1206}
1207
1208// Increment the value at some constant offset from the method data pointer.
1209void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1210                                                      Register counter_addr,
1211                                                      Register Rbumped_count,
1212                                                      bool decrement) {
1213  // Locate the counter at a fixed offset from the mdp:
1214  addi(counter_addr, R28_mdx, constant);
1215  increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1216}
1217
1218// Increment the value at some non-fixed (reg + constant) offset from
1219// the method data pointer.
1220void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1221                                                      int constant,
1222                                                      Register scratch,
1223                                                      Register Rbumped_count,
1224                                                      bool decrement) {
1225  // Add the constant to reg to get the offset.
1226  add(scratch, R28_mdx, reg);
1227  // Then calculate the counter address.
1228  addi(scratch, scratch, constant);
1229  increment_mdp_data_at(scratch, Rbumped_count, decrement);
1230}
1231
1232void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1233                                                      Register Rbumped_count,
1234                                                      bool decrement) {
1235  assert(ProfileInterpreter, "must be profiling interpreter");
1236
1237  // Load the counter.
1238  ld(Rbumped_count, 0, counter_addr);
1239
1240  if (decrement) {
1241    // Decrement the register. Set condition codes.
1242    addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1243    // Store the decremented counter, if it is still negative.
1244    std(Rbumped_count, 0, counter_addr);
1245    // Note: add/sub overflow check are not ported, since 64 bit
1246    // calculation should never overflow.
1247  } else {
1248    // Increment the register. Set carry flag.
1249    addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1250    // Store the incremented counter.
1251    std(Rbumped_count, 0, counter_addr);
1252  }
1253}
1254
1255// Set a flag value at the current method data pointer position.
1256void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1257                                                Register scratch) {
1258  assert(ProfileInterpreter, "must be profiling interpreter");
1259  // Load the data header.
1260  lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1261  // Set the flag.
1262  ori(scratch, scratch, flag_constant);
1263  // Store the modified header.
1264  stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1265}
1266
1267// Test the location at some offset from the method data pointer.
1268// If it is not equal to value, branch to the not_equal_continue Label.
1269void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1270                                                 Register value,
1271                                                 Label& not_equal_continue,
1272                                                 Register test_out) {
1273  assert(ProfileInterpreter, "must be profiling interpreter");
1274
1275  ld(test_out, offset, R28_mdx);
1276  cmpd(CCR0,  value, test_out);
1277  bne(CCR0, not_equal_continue);
1278}
1279
1280// Update the method data pointer by the displacement located at some fixed
1281// offset from the method data pointer.
1282void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1283                                                     Register scratch) {
1284  assert(ProfileInterpreter, "must be profiling interpreter");
1285
1286  ld(scratch, offset_of_disp, R28_mdx);
1287  add(R28_mdx, scratch, R28_mdx);
1288}
1289
1290// Update the method data pointer by the displacement located at the
1291// offset (reg + offset_of_disp).
1292void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1293                                                     int offset_of_disp,
1294                                                     Register scratch) {
1295  assert(ProfileInterpreter, "must be profiling interpreter");
1296
1297  add(scratch, reg, R28_mdx);
1298  ld(scratch, offset_of_disp, scratch);
1299  add(R28_mdx, scratch, R28_mdx);
1300}
1301
1302// Update the method data pointer by a simple constant displacement.
1303void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1304  assert(ProfileInterpreter, "must be profiling interpreter");
1305  addi(R28_mdx, R28_mdx, constant);
1306}
1307
1308// Update the method data pointer for a _ret bytecode whose target
1309// was not among our cached targets.
1310void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1311                                                   Register return_bci) {
1312  assert(ProfileInterpreter, "must be profiling interpreter");
1313
1314  push(state);
1315  assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1316  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1317  pop(state);
1318}
1319
1320// Increments the backedge counter.
1321// Returns backedge counter + invocation counter in Rdst.
1322void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1323                                                           const Register Rtmp1, Register Rscratch) {
1324  assert(UseCompiler, "incrementing must be useful");
1325  assert_different_registers(Rdst, Rtmp1);
1326  const Register invocation_counter = Rtmp1;
1327  const Register counter = Rdst;
1328  // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1329
1330  // Load backedge counter.
1331  lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1332               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1333  // Load invocation counter.
1334  lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1335                          in_bytes(InvocationCounter::counter_offset()), Rcounters);
1336
1337  // Add the delta to the backedge counter.
1338  addi(counter, counter, InvocationCounter::count_increment);
1339
1340  // Mask the invocation counter.
1341  li(Rscratch, InvocationCounter::count_mask_value);
1342  andr(invocation_counter, invocation_counter, Rscratch);
1343
1344  // Store new counter value.
1345  stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1346               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1347  // Return invocation counter + backedge counter.
1348  add(counter, counter, invocation_counter);
1349}
1350
1351// Count a taken branch in the bytecodes.
1352void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1353  if (ProfileInterpreter) {
1354    Label profile_continue;
1355
1356    // If no method data exists, go to profile_continue.
1357    test_method_data_pointer(profile_continue);
1358
1359    // We are taking a branch. Increment the taken count.
1360    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1361
1362    // The method data pointer needs to be updated to reflect the new target.
1363    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1364    bind (profile_continue);
1365  }
1366}
1367
1368// Count a not-taken branch in the bytecodes.
1369void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1370  if (ProfileInterpreter) {
1371    Label profile_continue;
1372
1373    // If no method data exists, go to profile_continue.
1374    test_method_data_pointer(profile_continue);
1375
1376    // We are taking a branch. Increment the not taken count.
1377    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1378
1379    // The method data pointer needs to be updated to correspond to the
1380    // next bytecode.
1381    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1382    bind (profile_continue);
1383  }
1384}
1385
1386// Count a non-virtual call in the bytecodes.
1387void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1388  if (ProfileInterpreter) {
1389    Label profile_continue;
1390
1391    // If no method data exists, go to profile_continue.
1392    test_method_data_pointer(profile_continue);
1393
1394    // We are making a call. Increment the count.
1395    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1396
1397    // The method data pointer needs to be updated to reflect the new target.
1398    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1399    bind (profile_continue);
1400  }
1401}
1402
1403// Count a final call in the bytecodes.
1404void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1405  if (ProfileInterpreter) {
1406    Label profile_continue;
1407
1408    // If no method data exists, go to profile_continue.
1409    test_method_data_pointer(profile_continue);
1410
1411    // We are making a call. Increment the count.
1412    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1413
1414    // The method data pointer needs to be updated to reflect the new target.
1415    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1416    bind (profile_continue);
1417  }
1418}
1419
1420// Count a virtual call in the bytecodes.
1421void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1422                                                     Register Rscratch1,
1423                                                     Register Rscratch2,
1424                                                     bool receiver_can_be_null) {
1425  if (!ProfileInterpreter) { return; }
1426  Label profile_continue;
1427
1428  // If no method data exists, go to profile_continue.
1429  test_method_data_pointer(profile_continue);
1430
1431  Label skip_receiver_profile;
1432  if (receiver_can_be_null) {
1433    Label not_null;
1434    cmpdi(CCR0, Rreceiver, 0);
1435    bne(CCR0, not_null);
1436    // We are making a call. Increment the count for null receiver.
1437    increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1438    b(skip_receiver_profile);
1439    bind(not_null);
1440  }
1441
1442  // Record the receiver type.
1443  record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1444  bind(skip_receiver_profile);
1445
1446  // The method data pointer needs to be updated to reflect the new target.
1447  update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1448  bind (profile_continue);
1449}
1450
1451void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1452  if (ProfileInterpreter) {
1453    Label profile_continue;
1454
1455    // If no method data exists, go to profile_continue.
1456    test_method_data_pointer(profile_continue);
1457
1458    int mdp_delta = in_bytes(BitData::bit_data_size());
1459    if (TypeProfileCasts) {
1460      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1461
1462      // Record the object type.
1463      record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1464    }
1465
1466    // The method data pointer needs to be updated.
1467    update_mdp_by_constant(mdp_delta);
1468
1469    bind (profile_continue);
1470  }
1471}
1472
1473void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1474  if (ProfileInterpreter && TypeProfileCasts) {
1475    Label profile_continue;
1476
1477    // If no method data exists, go to profile_continue.
1478    test_method_data_pointer(profile_continue);
1479
1480    int count_offset = in_bytes(CounterData::count_offset());
1481    // Back up the address, since we have already bumped the mdp.
1482    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1483
1484    // *Decrement* the counter. We expect to see zero or small negatives.
1485    increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1486
1487    bind (profile_continue);
1488  }
1489}
1490
1491// Count a ret in the bytecodes.
1492void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
1493  if (ProfileInterpreter) {
1494    Label profile_continue;
1495    uint row;
1496
1497    // If no method data exists, go to profile_continue.
1498    test_method_data_pointer(profile_continue);
1499
1500    // Update the total ret count.
1501    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1502
1503    for (row = 0; row < RetData::row_limit(); row++) {
1504      Label next_test;
1505
1506      // See if return_bci is equal to bci[n]:
1507      test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1508
1509      // return_bci is equal to bci[n]. Increment the count.
1510      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1511
1512      // The method data pointer needs to be updated to reflect the new target.
1513      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1514      b(profile_continue);
1515      bind(next_test);
1516    }
1517
1518    update_mdp_for_ret(state, return_bci);
1519
1520    bind (profile_continue);
1521  }
1522}
1523
1524// Count the default case of a switch construct.
1525void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1526  if (ProfileInterpreter) {
1527    Label profile_continue;
1528
1529    // If no method data exists, go to profile_continue.
1530    test_method_data_pointer(profile_continue);
1531
1532    // Update the default case count
1533    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1534                          scratch1, scratch2);
1535
1536    // The method data pointer needs to be updated.
1537    update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1538                         scratch1);
1539
1540    bind (profile_continue);
1541  }
1542}
1543
1544// Count the index'th case of a switch construct.
1545void InterpreterMacroAssembler::profile_switch_case(Register index,
1546                                                    Register scratch1,
1547                                                    Register scratch2,
1548                                                    Register scratch3) {
1549  if (ProfileInterpreter) {
1550    assert_different_registers(index, scratch1, scratch2, scratch3);
1551    Label profile_continue;
1552
1553    // If no method data exists, go to profile_continue.
1554    test_method_data_pointer(profile_continue);
1555
1556    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1557    li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1558
1559    assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1560    sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1561    add(scratch1, scratch1, scratch3);
1562
1563    // Update the case count.
1564    increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1565
1566    // The method data pointer needs to be updated.
1567    update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1568
1569    bind (profile_continue);
1570  }
1571}
1572
1573void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1574  if (ProfileInterpreter) {
1575    assert_different_registers(Rscratch1, Rscratch2);
1576    Label profile_continue;
1577
1578    // If no method data exists, go to profile_continue.
1579    test_method_data_pointer(profile_continue);
1580
1581    set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1582
1583    // The method data pointer needs to be updated.
1584    int mdp_delta = in_bytes(BitData::bit_data_size());
1585    if (TypeProfileCasts) {
1586      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1587    }
1588    update_mdp_by_constant(mdp_delta);
1589
1590    bind (profile_continue);
1591  }
1592}
1593
1594void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1595                                                        Register Rscratch1, Register Rscratch2,
1596                                                        bool is_virtual_call) {
1597  assert(ProfileInterpreter, "must be profiling");
1598  assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1599
1600  Label done;
1601  record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1602  bind (done);
1603}
1604
1605void InterpreterMacroAssembler::record_klass_in_profile_helper(
1606                                        Register receiver, Register scratch1, Register scratch2,
1607                                        int start_row, Label& done, bool is_virtual_call) {
1608  if (TypeProfileWidth == 0) {
1609    if (is_virtual_call) {
1610      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1611    }
1612    return;
1613  }
1614
1615  int last_row = VirtualCallData::row_limit() - 1;
1616  assert(start_row <= last_row, "must be work left to do");
1617  // Test this row for both the receiver and for null.
1618  // Take any of three different outcomes:
1619  //   1. found receiver => increment count and goto done
1620  //   2. found null => keep looking for case 1, maybe allocate this cell
1621  //   3. found something else => keep looking for cases 1 and 2
1622  // Case 3 is handled by a recursive call.
1623  for (int row = start_row; row <= last_row; row++) {
1624    Label next_test;
1625    bool test_for_null_also = (row == start_row);
1626
1627    // See if the receiver is receiver[n].
1628    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1629    test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1630    // delayed()->tst(scratch);
1631
1632    // The receiver is receiver[n]. Increment count[n].
1633    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1634    increment_mdp_data_at(count_offset, scratch1, scratch2);
1635    b(done);
1636    bind(next_test);
1637
1638    if (test_for_null_also) {
1639      Label found_null;
1640      // Failed the equality check on receiver[n]... Test for null.
1641      if (start_row == last_row) {
1642        // The only thing left to do is handle the null case.
1643        if (is_virtual_call) {
1644          // Scratch1 contains test_out from test_mdp_data_at.
1645          cmpdi(CCR0, scratch1, 0);
1646          beq(CCR0, found_null);
1647          // Receiver did not match any saved receiver and there is no empty row for it.
1648          // Increment total counter to indicate polymorphic case.
1649          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1650          b(done);
1651          bind(found_null);
1652        } else {
1653          cmpdi(CCR0, scratch1, 0);
1654          bne(CCR0, done);
1655        }
1656        break;
1657      }
1658      // Since null is rare, make it be the branch-taken case.
1659      cmpdi(CCR0, scratch1, 0);
1660      beq(CCR0, found_null);
1661
1662      // Put all the "Case 3" tests here.
1663      record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1664
1665      // Found a null. Keep searching for a matching receiver,
1666      // but remember that this is an empty (unused) slot.
1667      bind(found_null);
1668    }
1669  }
1670
1671  // In the fall-through case, we found no matching receiver, but we
1672  // observed the receiver[start_row] is NULL.
1673
1674  // Fill in the receiver field and increment the count.
1675  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1676  set_mdp_data_at(recvr_offset, receiver);
1677  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1678  li(scratch1, DataLayout::counter_increment);
1679  set_mdp_data_at(count_offset, scratch1);
1680  if (start_row > 0) {
1681    b(done);
1682  }
1683}
1684
1685// Argument and return type profilig.
1686// kills: tmp, tmp2, R0, CR0, CR1
1687void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1688                                                 RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) {
1689  Label do_nothing, do_update;
1690
1691  // tmp2 = obj is allowed
1692  assert_different_registers(obj, mdo_addr_base, tmp, R0);
1693  assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1694  const Register klass = tmp2;
1695
1696  verify_oop(obj);
1697
1698  ld(tmp, mdo_addr_offs, mdo_addr_base);
1699
1700  // Set null_seen if obj is 0.
1701  cmpdi(CCR0, obj, 0);
1702  ori(R0, tmp, TypeEntries::null_seen);
1703  beq(CCR0, do_update);
1704
1705  load_klass(klass, obj);
1706
1707  clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1708  // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1709  cmpd(CCR1, R0, klass);
1710  // Klass seen before, nothing to do (regardless of unknown bit).
1711  //beq(CCR1, do_nothing);
1712
1713  andi_(R0, klass, TypeEntries::type_unknown);
1714  // Already unknown. Nothing to do anymore.
1715  //bne(CCR0, do_nothing);
1716  crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
1717  beq(CCR0, do_nothing);
1718
1719  clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1720  orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1721  beq(CCR0, do_update); // First time here. Set profile type.
1722
1723  // Different than before. Cannot keep accurate profile.
1724  ori(R0, tmp, TypeEntries::type_unknown);
1725
1726  bind(do_update);
1727  // update profile
1728  std(R0, mdo_addr_offs, mdo_addr_base);
1729
1730  align(32, 12);
1731  bind(do_nothing);
1732}
1733
1734void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1735  if (!ProfileInterpreter) {
1736    return;
1737  }
1738
1739  assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1740
1741  if (MethodData::profile_arguments() || MethodData::profile_return()) {
1742    Label profile_continue;
1743
1744    test_method_data_pointer(profile_continue);
1745
1746    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1747
1748    lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1749    cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1750    bne(CCR0, profile_continue);
1751
1752    if (MethodData::profile_arguments()) {
1753      Label done;
1754      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1755      add(R28_mdx, off_to_args, R28_mdx);
1756
1757      for (int i = 0; i < TypeProfileArgsLimit; i++) {
1758        if (i > 0 || MethodData::profile_return()) {
1759          // If return value type is profiled we may have no argument to profile.
1760          ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1761          cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1762          addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1763          blt(CCR0, done);
1764        }
1765        ld(tmp1, in_bytes(Method::const_offset()), callee);
1766        lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1767        // Stack offset o (zero based) from the start of the argument
1768        // list, for n arguments translates into offset n - o - 1 from
1769        // the end of the argument list. But there's an extra slot at
1770        // the top of the stack. So the offset is n - o from Lesp.
1771        ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1772        subf(tmp1, tmp2, tmp1);
1773
1774        sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1775        ldx(tmp1, tmp1, R15_esp);
1776
1777        profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1778
1779        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1780        addi(R28_mdx, R28_mdx, to_add);
1781        off_to_args += to_add;
1782      }
1783
1784      if (MethodData::profile_return()) {
1785        ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1786        addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1787      }
1788
1789      bind(done);
1790
1791      if (MethodData::profile_return()) {
1792        // We're right after the type profile for the last
1793        // argument. tmp1 is the number of cells left in the
1794        // CallTypeData/VirtualCallTypeData to reach its end. Non null
1795        // if there's a return to profile.
1796        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1797        sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1798        add(R28_mdx, tmp1, R28_mdx);
1799      }
1800    } else {
1801      assert(MethodData::profile_return(), "either profile call args or call ret");
1802      update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1803    }
1804
1805    // Mdp points right after the end of the
1806    // CallTypeData/VirtualCallTypeData, right after the cells for the
1807    // return value type if there's one.
1808    align(32, 12);
1809    bind(profile_continue);
1810  }
1811}
1812
1813void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1814  assert_different_registers(ret, tmp1, tmp2);
1815  if (ProfileInterpreter && MethodData::profile_return()) {
1816    Label profile_continue;
1817
1818    test_method_data_pointer(profile_continue);
1819
1820    if (MethodData::profile_return_jsr292_only()) {
1821      // If we don't profile all invoke bytecodes we must make sure
1822      // it's a bytecode we indeed profile. We can't go back to the
1823      // begining of the ProfileData we intend to update to check its
1824      // type because we're right after it and we don't known its
1825      // length.
1826      lbz(tmp1, 0, R14_bcp);
1827      lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1828      cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1829      cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1830      cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1831      cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1832      cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1833      bne(CCR0, profile_continue);
1834    }
1835
1836    profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1837
1838    align(32, 12);
1839    bind(profile_continue);
1840  }
1841}
1842
1843void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
1844  if (ProfileInterpreter && MethodData::profile_parameters()) {
1845    Label profile_continue, done;
1846
1847    test_method_data_pointer(profile_continue);
1848
1849    // Load the offset of the area within the MDO used for
1850    // parameters. If it's negative we're not profiling any parameters.
1851    lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1852    cmpwi(CCR0, tmp1, 0);
1853    blt(CCR0, profile_continue);
1854
1855    // Compute a pointer to the area for parameters from the offset
1856    // and move the pointer to the slot for the last
1857    // parameters. Collect profiling from last parameter down.
1858    // mdo start + parameters offset + array length - 1
1859
1860    // Pointer to the parameter area in the MDO.
1861    const Register mdp = tmp1;
1862    add(mdp, tmp1, R28_mdx);
1863
1864    // Pffset of the current profile entry to update.
1865    const Register entry_offset = tmp2;
1866    // entry_offset = array len in number of cells
1867    ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1868
1869    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1870    assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1871
1872    // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1873    addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1874    // entry_offset in bytes
1875    sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1876
1877    Label loop;
1878    align(32, 12);
1879    bind(loop);
1880
1881    // Load offset on the stack from the slot for this parameter.
1882    ld(tmp3, entry_offset, mdp);
1883    sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1884    neg(tmp3, tmp3);
1885    // Read the parameter from the local area.
1886    ldx(tmp3, tmp3, R18_locals);
1887
1888    // Make entry_offset now point to the type field for this parameter.
1889    int type_base = in_bytes(ParametersTypeData::type_offset(0));
1890    assert(type_base > off_base, "unexpected");
1891    addi(entry_offset, entry_offset, type_base - off_base);
1892
1893    // Profile the parameter.
1894    profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1895
1896    // Go to next parameter.
1897    int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1898    cmpdi(CCR0, entry_offset, off_base + delta);
1899    addi(entry_offset, entry_offset, -delta);
1900    bge(CCR0, loop);
1901
1902    align(32, 12);
1903    bind(profile_continue);
1904  }
1905}
1906
1907// Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1908void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1909
1910  // Very-local scratch registers.
1911  const Register esp  = Rtemp1;
1912  const Register slot = Rtemp2;
1913
1914  // Extracted monitor_size.
1915  int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1916  assert(Assembler::is_aligned((unsigned int)monitor_size,
1917                               (unsigned int)frame::alignment_in_bytes),
1918         "size of a monitor must respect alignment of SP");
1919
1920  resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1921  std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1922
1923  // Shuffle expression stack down. Recall that stack_base points
1924  // just above the new expression stack bottom. Old_tos and new_tos
1925  // are used to scan thru the old and new expression stacks.
1926  if (!stack_is_empty) {
1927    Label copy_slot, copy_slot_finished;
1928    const Register n_slots = slot;
1929
1930    addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1931    subf(n_slots, esp, R26_monitor);
1932    srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1933    assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1934    beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1935
1936    mtctr(n_slots);
1937
1938    // loop
1939    bind(copy_slot);
1940    ld(slot, 0, esp);              // Move expression stack down.
1941    std(slot, -monitor_size, esp); // distance = monitor_size
1942    addi(esp, esp, BytesPerWord);
1943    bdnz(copy_slot);
1944
1945    bind(copy_slot_finished);
1946  }
1947
1948  addi(R15_esp, R15_esp, -monitor_size);
1949  addi(R26_monitor, R26_monitor, -monitor_size);
1950
1951  // Restart interpreter
1952}
1953
1954// ============================================================================
1955// Java locals access
1956
1957// Load a local variable at index in Rindex into register Rdst_value.
1958// Also puts address of local into Rdst_address as a service.
1959// Kills:
1960//   - Rdst_value
1961//   - Rdst_address
1962void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
1963  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1964  subf(Rdst_address, Rdst_address, R18_locals);
1965  lwz(Rdst_value, 0, Rdst_address);
1966}
1967
1968// Load a local variable at index in Rindex into register Rdst_value.
1969// Also puts address of local into Rdst_address as a service.
1970// Kills:
1971//   - Rdst_value
1972//   - Rdst_address
1973void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
1974  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1975  subf(Rdst_address, Rdst_address, R18_locals);
1976  ld(Rdst_value, -8, Rdst_address);
1977}
1978
1979// Load a local variable at index in Rindex into register Rdst_value.
1980// Also puts address of local into Rdst_address as a service.
1981// Input:
1982//   - Rindex:      slot nr of local variable
1983// Kills:
1984//   - Rdst_value
1985//   - Rdst_address
1986void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
1987  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1988  subf(Rdst_address, Rdst_address, R18_locals);
1989  ld(Rdst_value, 0, Rdst_address);
1990}
1991
1992// Load a local variable at index in Rindex into register Rdst_value.
1993// Also puts address of local into Rdst_address as a service.
1994// Kills:
1995//   - Rdst_value
1996//   - Rdst_address
1997void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1998  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1999  subf(Rdst_address, Rdst_address, R18_locals);
2000  lfs(Rdst_value, 0, Rdst_address);
2001}
2002
2003// Load a local variable at index in Rindex into register Rdst_value.
2004// Also puts address of local into Rdst_address as a service.
2005// Kills:
2006//   - Rdst_value
2007//   - Rdst_address
2008void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
2009  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2010  subf(Rdst_address, Rdst_address, R18_locals);
2011  lfd(Rdst_value, -8, Rdst_address);
2012}
2013
2014// Store an int value at local variable slot Rindex.
2015// Kills:
2016//   - Rindex
2017void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2018  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2019  subf(Rindex, Rindex, R18_locals);
2020  stw(Rvalue, 0, Rindex);
2021}
2022
2023// Store a long value at local variable slot Rindex.
2024// Kills:
2025//   - Rindex
2026void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2027  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2028  subf(Rindex, Rindex, R18_locals);
2029  std(Rvalue, -8, Rindex);
2030}
2031
2032// Store an oop value at local variable slot Rindex.
2033// Kills:
2034//   - Rindex
2035void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2036  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2037  subf(Rindex, Rindex, R18_locals);
2038  std(Rvalue, 0, Rindex);
2039}
2040
2041// Store an int value at local variable slot Rindex.
2042// Kills:
2043//   - Rindex
2044void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2045  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2046  subf(Rindex, Rindex, R18_locals);
2047  stfs(Rvalue, 0, Rindex);
2048}
2049
2050// Store an int value at local variable slot Rindex.
2051// Kills:
2052//   - Rindex
2053void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2054  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2055  subf(Rindex, Rindex, R18_locals);
2056  stfd(Rvalue, -8, Rindex);
2057}
2058
2059// Read pending exception from thread and jump to interpreter.
2060// Throw exception entry if one if pending. Fall through otherwise.
2061void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2062  assert_different_registers(Rscratch1, Rscratch2, R3);
2063  Register Rexception = Rscratch1;
2064  Register Rtmp       = Rscratch2;
2065  Label Ldone;
2066  // Get pending exception oop.
2067  ld(Rexception, thread_(pending_exception));
2068  cmpdi(CCR0, Rexception, 0);
2069  beq(CCR0, Ldone);
2070  li(Rtmp, 0);
2071  mr_if_needed(R3, Rexception);
2072  std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2073  if (Interpreter::rethrow_exception_entry() != NULL) {
2074    // Already got entry address.
2075    load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2076  } else {
2077    // Dynamically load entry address.
2078    int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2079    ld(Rtmp, simm16_rest, Rtmp);
2080  }
2081  mtctr(Rtmp);
2082  save_interpreter_state(Rtmp);
2083  bctr();
2084
2085  align(32, 12);
2086  bind(Ldone);
2087}
2088
2089void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2090  save_interpreter_state(R11_scratch1);
2091
2092  MacroAssembler::call_VM(oop_result, entry_point, false);
2093
2094  restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2095
2096  check_and_handle_popframe(R11_scratch1);
2097  check_and_handle_earlyret(R11_scratch1);
2098  // Now check exceptions manually.
2099  if (check_exceptions) {
2100    check_and_forward_exception(R11_scratch1, R12_scratch2);
2101  }
2102}
2103
2104void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2105  // ARG1 is reserved for the thread.
2106  mr_if_needed(R4_ARG2, arg_1);
2107  call_VM(oop_result, entry_point, check_exceptions);
2108}
2109
2110void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2111  // ARG1 is reserved for the thread.
2112  mr_if_needed(R4_ARG2, arg_1);
2113  assert(arg_2 != R4_ARG2, "smashed argument");
2114  mr_if_needed(R5_ARG3, arg_2);
2115  call_VM(oop_result, entry_point, check_exceptions);
2116}
2117
2118void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
2119  // ARG1 is reserved for the thread.
2120  mr_if_needed(R4_ARG2, arg_1);
2121  assert(arg_2 != R4_ARG2, "smashed argument");
2122  mr_if_needed(R5_ARG3, arg_2);
2123  assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2124  mr_if_needed(R6_ARG4, arg_3);
2125  call_VM(oop_result, entry_point, check_exceptions);
2126}
2127
2128void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2129  ld(scratch, 0, R1_SP);
2130  std(R15_esp, _ijava_state_neg(esp), scratch);
2131  std(R14_bcp, _ijava_state_neg(bcp), scratch);
2132  std(R26_monitor, _ijava_state_neg(monitors), scratch);
2133  if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2134  // Other entries should be unchanged.
2135}
2136
2137void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2138  ld(scratch, 0, R1_SP);
2139  ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2140  if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2141  if (!bcp_and_mdx_only) {
2142    // Following ones are Metadata.
2143    ld(R19_method, _ijava_state_neg(method), scratch);
2144    ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2145    // Following ones are stack addresses and don't require reload.
2146    ld(R15_esp, _ijava_state_neg(esp), scratch);
2147    ld(R18_locals, _ijava_state_neg(locals), scratch);
2148    ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2149  }
2150#ifdef ASSERT
2151  {
2152    Label Lok;
2153    subf(R0, R1_SP, scratch);
2154    cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2155    bge(CCR0, Lok);
2156    stop("frame too small (restore istate)", 0x5432);
2157    bind(Lok);
2158  }
2159  {
2160    Label Lok;
2161    ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2162    cmpdi(CCR0, R0, 0x5afe);
2163    beq(CCR0, Lok);
2164    stop("frame corrupted (restore istate)", 0x5afe);
2165    bind(Lok);
2166  }
2167#endif
2168}
2169
2170#endif // !CC_INTERP
2171
2172void InterpreterMacroAssembler::get_method_counters(Register method,
2173                                                    Register Rcounters,
2174                                                    Label& skip) {
2175  BLOCK_COMMENT("Load and ev. allocate counter object {");
2176  Label has_counters;
2177  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2178  cmpdi(CCR0, Rcounters, 0);
2179  bne(CCR0, has_counters);
2180  call_VM(noreg, CAST_FROM_FN_PTR(address,
2181                                  InterpreterRuntime::build_method_counters), method, false);
2182  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2183  cmpdi(CCR0, Rcounters, 0);
2184  beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2185  BLOCK_COMMENT("} Load and ev. allocate counter object");
2186
2187  bind(has_counters);
2188}
2189
2190void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
2191  assert(UseCompiler, "incrementing must be useful");
2192  Register invocation_count = iv_be_count;
2193  Register backedge_count   = Rtmp_r0;
2194  int delta = InvocationCounter::count_increment;
2195
2196  // Load each counter in a register.
2197  //  ld(inv_counter, Rtmp);
2198  //  ld(be_counter, Rtmp2);
2199  int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2200                                    InvocationCounter::counter_offset());
2201  int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2202                                    InvocationCounter::counter_offset());
2203
2204  BLOCK_COMMENT("Increment profiling counters {");
2205
2206  // Load the backedge counter.
2207  lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2208  // Mask the backedge counter.
2209  Register tmp = invocation_count;
2210  li(tmp, InvocationCounter::count_mask_value);
2211  andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
2212
2213  // Load the invocation counter.
2214  lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2215  // Add the delta to the invocation counter and store the result.
2216  addi(invocation_count, invocation_count, delta);
2217  // Store value.
2218  stw(invocation_count, inv_counter_offset, Rcounters);
2219
2220  // Add invocation counter + backedge counter.
2221  add(iv_be_count, backedge_count, invocation_count);
2222
2223  // Note that this macro must leave the backedge_count + invocation_count in
2224  // register iv_be_count!
2225  BLOCK_COMMENT("} Increment profiling counters");
2226}
2227
2228void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2229  if (state == atos) { MacroAssembler::verify_oop(reg); }
2230}
2231
2232#ifndef CC_INTERP
2233// Local helper function for the verify_oop_or_return_address macro.
2234static bool verify_return_address(Method* m, int bci) {
2235#ifndef PRODUCT
2236  address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2237  // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2238  if (!m->contains(pc))                                            return false;
2239  address jsr_pc;
2240  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2241  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2242  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2243  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2244#endif // PRODUCT
2245  return false;
2246}
2247
2248void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2249  if (VerifyFPU) {
2250    unimplemented("verfiyFPU");
2251  }
2252}
2253
2254void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2255  if (!VerifyOops) return;
2256
2257  // The VM documentation for the astore[_wide] bytecode allows
2258  // the TOS to be not only an oop but also a return address.
2259  Label test;
2260  Label skip;
2261  // See if it is an address (in the current method):
2262
2263  const int log2_bytecode_size_limit = 16;
2264  srdi_(Rtmp, reg, log2_bytecode_size_limit);
2265  bne(CCR0, test);
2266
2267  address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2268  const int nbytes_save = 11*8; // volatile gprs except R0
2269  save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2270  save_LR_CR(Rtmp); // Save in old frame.
2271  push_frame_reg_args(nbytes_save, Rtmp);
2272
2273  load_const_optimized(Rtmp, fd, R0);
2274  mr_if_needed(R4_ARG2, reg);
2275  mr(R3_ARG1, R19_method);
2276  call_c(Rtmp); // call C
2277
2278  pop_frame();
2279  restore_LR_CR(Rtmp);
2280  restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2281  b(skip);
2282
2283  // Perform a more elaborate out-of-line call.
2284  // Not an address; verify it:
2285  bind(test);
2286  verify_oop(reg);
2287  bind(skip);
2288}
2289#endif // !CC_INTERP
2290
2291// Inline assembly for:
2292//
2293// if (thread is in interp_only_mode) {
2294//   InterpreterRuntime::post_method_entry();
2295// }
2296// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2297//     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2298//   SharedRuntime::jvmpi_method_entry(method, receiver);
2299// }
2300void InterpreterMacroAssembler::notify_method_entry() {
2301  // JVMTI
2302  // Whenever JVMTI puts a thread in interp_only_mode, method
2303  // entry/exit events are sent for that thread to track stack
2304  // depth. If it is possible to enter interp_only_mode we add
2305  // the code to check if the event should be sent.
2306  if (JvmtiExport::can_post_interpreter_events()) {
2307    Label jvmti_post_done;
2308
2309    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2310    cmpwi(CCR0, R0, 0);
2311    beq(CCR0, jvmti_post_done);
2312    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2313            /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
2314
2315    bind(jvmti_post_done);
2316  }
2317}
2318
2319// Inline assembly for:
2320//
2321// if (thread is in interp_only_mode) {
2322//   // save result
2323//   InterpreterRuntime::post_method_exit();
2324//   // restore result
2325// }
2326// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2327//   // save result
2328//   SharedRuntime::jvmpi_method_exit();
2329//   // restore result
2330// }
2331//
2332// Native methods have their result stored in d_tmp and l_tmp.
2333// Java methods have their result stored in the expression stack.
2334void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2335                                                   NotifyMethodExitMode mode, bool check_exceptions) {
2336  // JVMTI
2337  // Whenever JVMTI puts a thread in interp_only_mode, method
2338  // entry/exit events are sent for that thread to track stack
2339  // depth. If it is possible to enter interp_only_mode we add
2340  // the code to check if the event should be sent.
2341  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2342    Label jvmti_post_done;
2343
2344    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2345    cmpwi(CCR0, R0, 0);
2346    beq(CCR0, jvmti_post_done);
2347    CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
2348    if (!is_native_method) push(state); // Expose tos to GC.
2349    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2350            /*check_exceptions=*/check_exceptions);
2351    if (!is_native_method) pop(state);
2352
2353    align(32, 12);
2354    bind(jvmti_post_done);
2355  }
2356
2357  // Dtrace support not implemented.
2358}
2359
2360#ifdef CC_INTERP
2361// Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
2362// (using parent_frame_resize) and push a new interpreter
2363// TOP_IJAVA_FRAME (using frame_size).
2364void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
2365                                                       Register tmp1, Register tmp2, Register tmp3,
2366                                                       Register tmp4, Register pc) {
2367  assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
2368  ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2369  mr(tmp2/*top_frame_sp*/, R1_SP);
2370  // Move initial_caller_sp.
2371  ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2372  neg(parent_frame_resize, parent_frame_resize);
2373  resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
2374
2375  // Set LR in new parent frame.
2376  std(tmp1, _abi(lr), R1_SP);
2377  // Set top_frame_sp info for new parent frame.
2378  std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
2379  std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2380
2381  // Push new TOP_IJAVA_FRAME.
2382  push_frame(top_frame_size, tmp2);
2383
2384  get_PC_trash_LR(tmp3);
2385  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2386  // Used for non-initial callers by unextended_sp().
2387  std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2388}
2389
2390// Pop the topmost TOP_IJAVA_FRAME and convert the previous
2391// PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
2392void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2393  assert_different_registers(tmp1, tmp2, tmp3, tmp4);
2394
2395  ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
2396  ld(tmp3, _abi(lr), tmp1);
2397
2398  ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
2399
2400  ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
2401  // Merge top frame.
2402  std(tmp2, _abi(callers_sp), R1_SP);
2403
2404  ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
2405
2406  // Update C stack pointer to caller's top_abi.
2407  resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2408
2409  // Update LR in top_frame.
2410  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2411
2412  std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2413
2414  // Store the top-frame stack-pointer for c2i adapters.
2415  std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
2416}
2417
2418// Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
2419void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
2420  assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
2421
2422  if (state == R14_state) {
2423    ld(tmp1/*state's fp*/, state_(_last_Java_fp));
2424    ld(tmp2/*state's sp*/, state_(_last_Java_sp));
2425  } else if (state == R15_prev_state) {
2426    ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
2427    ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
2428  } else {
2429    ShouldNotReachHere();
2430  }
2431
2432  // Merge top frames.
2433  std(tmp1, _abi(callers_sp), R1_SP);
2434
2435  // Tmp2 is new SP.
2436  // Tmp1 is parent's SP.
2437  resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2438
2439  // Update LR in top_frame.
2440  // Must be interpreter frame.
2441  get_PC_trash_LR(tmp3);
2442  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2443  // Used for non-initial callers by unextended_sp().
2444  std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2445}
2446
2447// Set SP to initial caller's sp, but before fix the back chain.
2448void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
2449  ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2450  ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
2451  std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
2452  mr(R1_SP, tmp1); // ... and resize to initial caller.
2453}
2454
2455// Pop the current interpreter state (without popping the correspoding
2456// frame) and restore R14_state and R15_prev_state accordingly.
2457// Use prev_state_may_be_0 to indicate whether prev_state may be 0
2458// in order to generate an extra check before retrieving prev_state_(_prev_link).
2459void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
2460{
2461  // Move prev_state to state and restore prev_state from state_(_prev_link).
2462  Label prev_state_is_0;
2463  mr(R14_state, R15_prev_state);
2464
2465  // Don't retrieve /*state==*/prev_state_(_prev_link)
2466  // if /*state==*/prev_state is 0.
2467  if (prev_state_may_be_0) {
2468    cmpdi(CCR0, R15_prev_state, 0);
2469    beq(CCR0, prev_state_is_0);
2470  }
2471
2472  ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
2473  bind(prev_state_is_0);
2474}
2475
2476void InterpreterMacroAssembler::restore_prev_state() {
2477  // _prev_link is private, but cInterpreter is a friend.
2478  ld(R15_prev_state, state_(_prev_link));
2479}
2480#endif // CC_INTERP
2481