Bootstrap.java revision 1186:4a2dfd2ec3f3
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime.linker;
27
28import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
29import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
30
31import java.lang.invoke.CallSite;
32import java.lang.invoke.ConstantCallSite;
33import java.lang.invoke.MethodHandle;
34import java.lang.invoke.MethodHandles;
35import java.lang.invoke.MethodHandles.Lookup;
36import java.lang.invoke.MethodType;
37import jdk.internal.dynalink.CallSiteDescriptor;
38import jdk.internal.dynalink.DynamicLinker;
39import jdk.internal.dynalink.DynamicLinkerFactory;
40import jdk.internal.dynalink.GuardedInvocationFilter;
41import jdk.internal.dynalink.beans.BeansLinker;
42import jdk.internal.dynalink.beans.StaticClass;
43import jdk.internal.dynalink.linker.GuardedInvocation;
44import jdk.internal.dynalink.linker.LinkRequest;
45import jdk.internal.dynalink.linker.LinkerServices;
46import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
47import jdk.internal.dynalink.support.TypeUtilities;
48import jdk.nashorn.api.scripting.JSObject;
49import jdk.nashorn.internal.codegen.CompilerConstants.Call;
50import jdk.nashorn.internal.codegen.ObjectClassGenerator;
51import jdk.nashorn.internal.codegen.RuntimeCallSite;
52import jdk.nashorn.internal.lookup.MethodHandleFactory;
53import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
54import jdk.nashorn.internal.objects.ScriptFunctionImpl;
55import jdk.nashorn.internal.runtime.ECMAException;
56import jdk.nashorn.internal.runtime.JSType;
57import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
58import jdk.nashorn.internal.runtime.ScriptFunction;
59import jdk.nashorn.internal.runtime.ScriptRuntime;
60import jdk.nashorn.internal.runtime.options.Options;
61
62/**
63 * This class houses bootstrap method for invokedynamic instructions generated by compiler.
64 */
65public final class Bootstrap {
66    /** Reference to the seed boostrap function */
67    public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
68
69    private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
70
71    private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED);
72
73    /**
74     * The default dynalink relink threshold for megamorphisism is 8. In the case
75     * of object fields only, it is fine. However, with dual fields, in order to get
76     * performance on benchmarks with a lot of object instantiation and then field
77     * reassignment, it can take slightly more relinks to become stable with type
78     * changes swapping out an entire proprety map and making a map guard fail.
79     * Therefore the relink threshold is set to 16 for dual fields (now the default).
80     * This doesn't seem to have any other negative performance implication.
81     *
82     * See for example octane.gbemu, run with --log=fields:warning to study
83     * megamorphic behavior
84     */
85    private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD =
86            ObjectClassGenerator.OBJECT_FIELDS_ONLY ?
87                     8 :
88                    16;
89
90    // do not create me!!
91    private Bootstrap() {
92    }
93
94    private static final DynamicLinker dynamicLinker;
95    static {
96        final DynamicLinkerFactory factory = new DynamicLinkerFactory();
97        final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
98        factory.setPrioritizedLinkers(
99            new NashornLinker(),
100            new NashornPrimitiveLinker(),
101            new NashornStaticClassLinker(),
102            new BoundCallableLinker(),
103            new JavaSuperAdapterLinker(),
104            new JSObjectLinker(nashornBeansLinker),
105            new BrowserJSObjectLinker(nashornBeansLinker),
106            new ReflectionCheckLinker());
107        factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
108        factory.setSyncOnRelink(true);
109        factory.setPrelinkFilter(new GuardedInvocationFilter() {
110            @Override
111            public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
112                final CallSiteDescriptor desc = request.getCallSiteDescriptor();
113                return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
114            }
115        });
116        factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() {
117            @Override
118            public MethodHandle asType(final MethodHandle target, final MethodType newType) {
119                return unboxReturnType(target, newType);
120            }
121        });
122        factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter());
123        final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
124        if (relinkThreshold > -1) {
125            factory.setUnstableRelinkThreshold(relinkThreshold);
126        }
127
128        // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
129        factory.setClassLoader(Bootstrap.class.getClassLoader());
130
131        dynamicLinker = factory.createLinker();
132    }
133
134    /**
135     * Returns if the given object is a "callable"
136     * @param obj object to be checked for callability
137     * @return true if the obj is callable
138     */
139    public static boolean isCallable(final Object obj) {
140        if (obj == ScriptRuntime.UNDEFINED || obj == null) {
141            return false;
142        }
143
144        return obj instanceof ScriptFunction ||
145            isJSObjectFunction(obj) ||
146            BeansLinker.isDynamicMethod(obj) ||
147            obj instanceof BoundCallable ||
148            isFunctionalInterfaceObject(obj) ||
149            obj instanceof StaticClass;
150    }
151
152    /**
153     * Returns true if the given object is a strict callable
154     * @param callable the callable object to be checked for strictness
155     * @return true if the obj is a strict callable, false if it is a non-strict callable.
156     * @throws ECMAException with {@code TypeError} if the object is not a callable.
157     */
158    public static boolean isStrictCallable(final Object callable) {
159        if (callable instanceof ScriptFunction) {
160            return ((ScriptFunction)callable).isStrict();
161        } else if (isJSObjectFunction(callable)) {
162            return ((JSObject)callable).isStrictFunction();
163        } else if (callable instanceof BoundCallable) {
164            return isStrictCallable(((BoundCallable)callable).getCallable());
165        } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) {
166            return false;
167        }
168        throw notFunction(callable);
169    }
170
171    private static ECMAException notFunction(final Object obj) {
172        return typeError("not.a.function", ScriptRuntime.safeToString(obj));
173    }
174
175    private static boolean isJSObjectFunction(final Object obj) {
176        return obj instanceof JSObject && ((JSObject)obj).isFunction();
177    }
178
179    /**
180     * Returns if the given object is a dynalink Dynamic method
181     * @param obj object to be checked
182     * @return true if the obj is a dynamic method
183     */
184    public static boolean isDynamicMethod(final Object obj) {
185        return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj);
186    }
187
188    /**
189     * Returns if the given object is an instance of an interface annotated with
190     * java.lang.FunctionalInterface
191     * @param obj object to be checked
192     * @return true if the obj is an instance of @FunctionalInterface interface
193     */
194    public static boolean isFunctionalInterfaceObject(final Object obj) {
195        return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethod(obj.getClass()) != null);
196    }
197
198    /**
199     * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
200     * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
201     * invokedynamic instructions.
202     * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
203     * @param opDesc Dynalink dynamic operation descriptor.
204     * @param type   Method type.
205     * @param flags  flags for call type, trace/profile etc.
206     * @return CallSite with MethodHandle to appropriate method or null if not found.
207     */
208    public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
209        return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
210    }
211
212    /**
213     * Bootstrapper for a specialized Runtime call
214     *
215     * @param lookup       lookup
216     * @param initialName  initial name for callsite
217     * @param type         method type for call site
218     *
219     * @return callsite for a runtime node
220     */
221    public static CallSite runtimeBootstrap(final MethodHandles.Lookup lookup, final String initialName, final MethodType type) {
222        return new RuntimeCallSite(type, initialName);
223    }
224
225    /**
226     * Boostrapper for math calls that may overflow
227     * @param lookup         lookup
228     * @param name           name of operation
229     * @param type           method type
230     * @param programPoint   program point to bind to callsite
231     *
232     * @return callsite for a math instrinic node
233     */
234    public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
235        final MethodHandle mh;
236        switch (name) {
237        case "iadd":
238            mh = JSType.ADD_EXACT.methodHandle();
239            break;
240        case "isub":
241            mh = JSType.SUB_EXACT.methodHandle();
242            break;
243        case "imul":
244            mh = JSType.MUL_EXACT.methodHandle();
245            break;
246        case "idiv":
247            mh = JSType.DIV_EXACT.methodHandle();
248            break;
249        case "irem":
250            mh = JSType.REM_EXACT.methodHandle();
251            break;
252        case "ineg":
253            mh = JSType.NEGATE_EXACT.methodHandle();
254            break;
255        case "ladd":
256            mh = JSType.ADD_EXACT_LONG.methodHandle();
257            break;
258        case "lsub":
259            mh = JSType.SUB_EXACT_LONG.methodHandle();
260            break;
261        case "lmul":
262            mh = JSType.MUL_EXACT_LONG.methodHandle();
263            break;
264        case "ldiv":
265            mh = JSType.DIV_EXACT_LONG.methodHandle();
266            break;
267        case "lrem":
268            mh = JSType.REM_EXACT_LONG.methodHandle();
269            break;
270        case "lneg":
271            mh = JSType.NEGATE_EXACT_LONG.methodHandle();
272            break;
273        default:
274            throw new AssertionError("unsupported math intrinsic");
275        }
276        return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
277    }
278
279    /**
280     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
281     * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
282     * available dynamic operations can be found in the
283     * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
284     * examples here:
285     * <ul>
286     *   <li>Get a named property with fixed name:
287     *     <pre>
288     * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
289     * Object obj = ...; // somehow obtain the object
290     * Object color = getColor.invokeExact(obj);
291     *     </pre>
292     *   </li>
293     *   <li>Get a named property with variable name:
294     *     <pre>
295     * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
296     * Object obj = ...; // somehow obtain the object
297     * Object color = getProperty.invokeExact(obj, "color");
298     * Object shape = getProperty.invokeExact(obj, "shape");
299     * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
300     * Object elem42 = getNumProperty.invokeExact(obj, 42);
301     *     </pre>
302     *   </li>
303     *   <li>Set a named property with fixed name:
304     *     <pre>
305     * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
306     * Object obj = ...; // somehow obtain the object
307     * setColor.invokeExact(obj, Color.BLUE);
308     *     </pre>
309     *   </li>
310     *   <li>Set a property with variable name:
311     *     <pre>
312     * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
313     * Object obj = ...; // somehow obtain the object
314     * setProperty.invokeExact(obj, "color", Color.BLUE);
315     * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
316     *     </pre>
317     *   </li>
318     *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
319     *     <pre>
320     * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
321     * Object obj = ...; // somehow obtain the object
322     * Object foo_fn = findFooFunction.invokeExact(obj);
323     * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
324     * // Note: "call" operation takes a function, then a "this" value, then the arguments:
325     * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
326     *     </pre>
327     *   </li>
328     *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
329     *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
330     *   operation:
331     *     <pre>
332     * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
333     * Object obj = ...; // somehow obtain the object
334     * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
335     *     </pre>
336     *   </li>
337     * </ul>
338     * Few additional remarks:
339     * <ul>
340     * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
341     * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
342     * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
343     * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
344     * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
345     * fixed property name or a variable property name. The only significant difference is handling of missing
346     * properties: {@code getMethod} for a missing member will link to a potential invocation of
347     * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
348     * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
349     * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
350     * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
351     * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
352     * {@code Object}, and so on regardless of the kind of the operation.</li>
353     * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
354     * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
355     * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
356     * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
357     * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
358     * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
359     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
360     * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
361     * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
362     * specific type information than "everything can be an object".</li>
363     * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
364     * available in either Java or JavaScript will be automatically applied, similar to the process described for
365     * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
366     * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
367     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
368     * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
369     * delegating to the function will be returned.</li>
370     * </ul>
371     * @param opDesc Dynalink dynamic operation descriptor.
372     * @param rtype the return type for the operation
373     * @param ptypes the parameter types for the operation
374     * @return MethodHandle for invoking the operation.
375     */
376    public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
377        return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
378    }
379
380    /**
381     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
382     * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
383     * set the call site flags of the dynamic invoker.
384     * @param opDesc Dynalink dynamic operation descriptor.
385     * @param flags the call site flags for the operation
386     * @param rtype the return type for the operation
387     * @param ptypes the parameter types for the operation
388     * @return MethodHandle for invoking the operation.
389     */
390    public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
391        return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
392    }
393
394    /**
395     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
396     * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
397     * method type in the signature. See the discussion of that method for details.
398     * @param opDesc Dynalink dynamic operation descriptor.
399     * @param type the method type for the operation
400     * @return MethodHandle for invoking the operation.
401     */
402    public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
403        return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
404    }
405
406    /**
407     * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments.
408     * @param callable the callable to bind
409     * @param boundThis the bound "this" value.
410     * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound.
411     * @return a bound callable.
412     * @throws ECMAException with {@code TypeError} if the object is not a callable.
413     */
414    public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) {
415        if (callable instanceof ScriptFunctionImpl) {
416            return ((ScriptFunctionImpl)callable).makeBoundFunction(boundThis, boundArgs);
417        } else if (callable instanceof BoundCallable) {
418            return ((BoundCallable)callable).bind(boundArgs);
419        } else if (isCallable(callable)) {
420            return new BoundCallable(callable, boundThis, boundArgs);
421        }
422        throw notFunction(callable);
423    }
424
425    /**
426     * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
427     * methods on it.
428     * @param adapter the original adapter
429     * @return a new adapter that can be used to invoke super methods on the original adapter.
430     */
431    public static Object createSuperAdapter(final Object adapter) {
432        return new JavaSuperAdapter(adapter);
433    }
434
435    /**
436     * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
437     * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
438     * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
439     * @param clazz the class being tested
440     * @param isStatic is access checked for static members (or instance members)
441     */
442    public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
443        ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
444    }
445
446    /**
447     * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
448     * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
449     * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
450     * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
451     * type converter method handles) outside of a code path that is linking a call site.
452     * @return Nashorn's internal dynamic linker's services object.
453     */
454    public static LinkerServices getLinkerServices() {
455        return dynamicLinker.getLinkerServices();
456    }
457
458    /**
459     * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
460     * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
461     * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
462     * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
463     * to the aggregating linker is the responsibility of the linkers themselves.
464     * @param inv the guarded invocation that needs to be type-converted. Can be null.
465     * @param linkerServices the linker services object providing the type conversions.
466     * @param desc the call site descriptor to whose method type the invocation needs to conform.
467     * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
468     * already conforms to the requested type, it is returned unchanged.
469     */
470    static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
471        return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
472    }
473
474    /**
475     * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing
476     * conversion. This will ensure that nulls are unwrapped to false or 0.
477     * @param target the target method handle
478     * @param newType the desired new type. Note that this method does not adapt the method handle completely to the
479     * new type, it only adapts the return type; this is allowed as per
480     * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method
481     * is used for.
482     * @return the method handle with adapted return type, if it required an unboxing conversion.
483     */
484    private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) {
485        final MethodType targetType = target.type();
486        final Class<?> oldReturnType = targetType.returnType();
487        final Class<?> newReturnType = newType.returnType();
488        if (TypeUtilities.isWrapperType(oldReturnType)) {
489            if (newReturnType.isPrimitive()) {
490                // The contract of setAutoConversionStrategy is such that the difference between newType and targetType
491                // can only be JLS method invocation conversions.
492                assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType);
493                return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType));
494            }
495        } else if (oldReturnType == void.class && newReturnType == Object.class) {
496            return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT);
497        }
498        return target;
499    }
500}
501